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Abstract

Empirical demand models used for counterfactual predictions and welfare analysis must be

rationalizable, i.e. theoretically consistent with utility maximization by heterogeneous con-

sumers. We show that for binary choice under general unobserved heterogeneity, rationaliz-

ability is equivalent to a pair of Slutsky-like shape-restrictions on choice-probability functions.

The forms of these restrictions differ from Slutsky-inequalities for continuous goods. Unlike

McFadden-Richter’s stochastic revealed preference, our shape-restrictions (a) are global, i.e.

their forms do not depend on which and how many budget-sets are observed, (b) are closed-

form, hence easy to impose on parametric/semi/non-parametric models in practical applications,

and (c) provide computationally simple, theory-consistent bounds on demand and welfare pre-

dictions on counterfactual budget-sets.

1 Introduction

Many important economic decisions faced by individuals are binary in nature, including labour force

participation, retirement, college enrolment, adoption of a new technology or health product, and

so forth. This paper concerns nonparametric analysis of binary choice under general unobserved

heterogeneity and income effects. The paper has two goals. The first is to understand, theo-

retically, what nonparametric restrictions does utility maximization by heterogeneous consumers

impose upon choice-probabilities, i.e. whether there are analogs of Slutsky restrictions for binary
∗Keywords: Binary choice, general heterogeneity, income effect, utility maximization, integrabil-

ity/rationalizability, Slutsky inequality, shape-restrictions. JEL Codes: C14, C25, D12.
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choice under general unobserved heterogeneity and income effects, and conversely, whether these

restrictions are also suffi cient for observed choice-probabilities to be rationalizable. This issue is

important for logical coherency between theory and empirics and, in particular, for prediction of

demand and welfare in situations involving counterfactual, i.e. previously unobserved, budget sets.

It is important in these exercises to allow for general unobserved heterogeneity, because economic

theory typically does not restrict its dimension or distribution, and does not specify how it enters

utility functions. To date, closed-form Slutsky conditions for rationalizability of demand under gen-

eral heterogeneity were available only for continuous choice. The present paper, to our knowledge,

is the first to establish them for the leading case of discrete demand, viz. binary choice.

The second goal of the present paper is a practical one. It is motivated by the fact that in

empirical applications of binary choice, requiring the estimation of elasticities, welfare calculations

and demand predictions, researchers typically use parsimonious functional-forms for conditional

choice probabilities. This is because fully nonparametric estimation is often hindered by curse of

dimensionality, the sensitivity of estimates to the choice of tuning parameters and insuffi cient price

variation, especially in consumer data from developed countries. The question therefore arises as to

whether the economic theory of consumer behavior can inform the choice of such functional forms.

Answering this question is our second objective.

Since McFadden, 1973, discrete choice models of economic behavior have been studied exten-

sively in the econometric literature, mostly under restrictive assumptions on utility functions and

unobserved heterogeneity including, inter alia, quasi-linear preferences implying absence of income

effects and/or parametrically specified heterogeneity distributions (c.f. Train, 2009 for a text-

book treatment). Matzkin (1992) investigated the nonparametric identification of binary choice

models with additive heterogeneity, where both the distribution of unobserved heterogeneity and

the functional form of utilities were left unspecified. More recently, Bhattacharya (2015, 2018)

has shown that in discrete choice settings, welfare distributions resulting from price changes are

nonparametrically point-identified from choice probabilities without any substantive restriction on

preference heterogeneity, and even when preference distribution and heterogeneity dimension are

not identified.

In the present paper, we consider a setting of binary choice by a population of budget-constrained

consumers with general, unobserved heterogeneity. In this setting, we develop a characterization of

utility maximization which takes the form of simple, closed-form shape restrictions on choice prob-

ability functions in the population. These nonparametric shape-restrictions can be consistently

2



tested in the usual asymptotic econometric sense and are extremely easy to impose on specifi-

cations of choice-probabilities —akin to testing or imposing monotonicity of regression functions.

Most importantly, they lead to computationally simple bounds for theory-consistent demand and

welfare predictions on counterfactual budgets sets —an important goal of empirical demand analy-

sis. Interestingly, our shape-restrictions differ in form from the well-known Slutsky inequalities for

continuous goods.

The above results are developed in a fully nonparametric context; nonetheless, they can help

guide applied researchers intending to use simple parametric or semiparametric models. As a

specific example, consider the popular probit/logit type model for binary choice of whether to buy

a product or not. A standard specification is that the probability of buying depends (implicitly

conditioning on other observed covariates) on its price p and the decision-maker’s income y, e.g.

q̄ (p, y) = F (γ0 + γ1p+ γ2y), where F (·) is a distribution function. We will show below that

these choice-probabilities are consistent with utility maximization by a heterogenous population

of consumers, if and only if γ1 ≤ 0, and γ1 + γ2 ≤ 0. While the first inequality simply means

that demand falls with own price (holding income fixed), the second inequality is less obvious, and

constitutes an important empirical characterization of utility maximization.

For the case of continuous goods, Lewbel, 2001 explored the question of when average demand,

generated from maximization of heterogeneous individual preferences, satisfies standard properties

of non-stochastic demand functions. More recently, for the case of two continuous goods (i.e.

a good of interest plus the numeraire) under general heterogeneity, Hausman and Newey, 2016

have shown that constrained utility maximization is equivalent to quantiles of demand satisfying

standard Slutsky negativity. The analog of the two goods setting in discrete choice is the case of

binary alternatives. Accordingly, our main result (Theorem 1 below) may be viewed as the discrete

choice counterpart of Hausman and Newey, 2016, Theorem 1. Note however that quantiles are

degenerate for binary outcomes, and indeed, the forms of our Slutsky-like shape restrictions are

completely different from Hausman-Newey’s quantile-based conditions for continuous choice.

An alternative, algorithmic —as opposed to closed-form and analytic —approach to rationaliz-

ability of demand is the so-called “revealed stochastic preference”(SRP, henceforth) method, which

applies to very general choice settings where a heterogeneous population of consumers faces a finite

number of budget sets, c.f. McFadden and Richter, 1990, McFadden, 2005. When budget sets

are numerous or continuously distributed, as in household surveys with many income and/price

values, SRP is well-known to be operationally prohibitive, c.f. Anderson et al 1992, Page 54-5
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and Kitamura and Stoye, 2016, Sec 3.3. Furthermore, the SRP conditions are diffi cult to impose

on parametric specifications commonly used in practical applications, they change entirely in form

upon addition of new budget sets, and are cumbersome to use for demand prediction on counter-

factual budgets, especially in welfare calculations that typically require simultaneous prediction on

a continuous range of budget-sets. In contrast, our approach yields rationality conditions which (a)

are global, in that they characterize choice probability functions, and their forms remain invariant

to which and how many budget sets are observed in a dataset, and (b) are closed-form, analytic

shape-restrictions, hence easy to impose, standard to test, and simple to use for counterfactual

predictions of demand and welfare. As such, these shape-restrictions establish the analogs of Slut-

sky conditions — the cornerstone of classical demand analysis — for binary choice under general

unobserved heterogeneity and income effects.

2 The Result

Consider a population of heterogeneous individuals, each choosing whether or not to buy an indi-

visible good. Let N represent the quantity of numeraire which an individual consumes in addition

to the binary good. If the individual has income Y = y, and faces a price P = p for the indivisible

good, then the budget constraint is N + pQ = y where Q ∈ {0, 1} represents the binary choice. In-

dividuals derive satisfaction from both the indivisible good as well as the numeraire. Upon buying,

an individual derives utility from the good but has a lower amount of numeraire y − p left; upon

not buying, she enjoys utility from her outside option and a higher quantity of numeraire y. There

is unobserved heterogeneity across consumers which affect their choice, and so on each budget set

defined by a price p and consumer income y, there is a (structural) probability of buying, denoted

by q (y, y − p); that is, if each member of the entire population were offered income y and price p,

then a fraction q (y, y − p) would buy the good. It is more standard to write this choice probability

as conditional on price and income, i.e., in the form q̄ (p, y), but the equivalent q (y, y − p) expres-

sion is an important and helpful step toward obtaining closed-form rationalizability results, as will

become clear below. Indeed, one can go back and forth between the two specifications because

q̄ (c, d) ≡ q (d, d− c) and q (a, b) ≡ q̄ (a− b, a). Also, for now, we implicitly condition our analysis

on observed covariates, and later show how to incorporate them into the results.

Our main result establishes conditions that are necessary and suffi cient for the conditional choice

probability function to be generated from utility maximization by a heterogeneous population,
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where no a priori restriction is imposed on the dimension and functional form of the distribution

of unobserved heterogeneity or on the functional form of utilities.

Theorem 1 For binary choice under general heterogeneity, the following two statements are equiv-

alent:

(i) The structural choice probability function q (·, ·), defined above, satisfies that (A) q (a, b) is

non-increasing in a for each fixed b, and non-decreasing in b for each fixed a; (B) for each fixed

b ∈ R, it holds that lima↓−∞ q (a, b) = 1, and (C) q (a, b) is continuous in a for each fixed b.

(ii) There exists a pair of utility functions W0 (·, η) and W1 (·, η), where the first argument

denotes the amount of numeraire, and η denotes unobserved heterogeneity, and a distribution G (·)

of η such that

q (a, b) =

∫
1 {W0 (a, η) ≤W1 (b, η)} dG (η) ,

where (A’) for each fixed η, W0 (a, η) is continuous and strictly increasing in a, and W1 (b, η) is

non-decreasing in b; (B’) for each fixed b and η, W1 (b, η) > lima↓−∞W0 (a, η); (C’) for any a, b, it

holds that
∫

1 {W1 (b, η) = W0 (a, η)} dG (η) = 0.

Intuitively, conditions (A/A’) mean that having more numeraire ceteris paribus is (weakly)

better for every consumer. To interpret condition (B), note that for fixed b, lima↓−∞ q (a, b) ≡

lim(a−b)↓−∞ q (a, b). Now, since a − b = p is the price, condition (B/B’) say that everyone can be

persuaded to buy product 1 by making its price low enough (perhaps even negative). Condition

(C/C’) —the “no-tie”assumption —is standard in discrete choice models, and intuitively means that

there is a continuum of tastes. Note that (A)-(C) place no restriction on income effects, including

its sign.

In statement (ii), the functionsWj (x, η) will correspond to the utility from choosing alternative

j ∈ {0, 1} and being left with a quantity x of the numeraire, and with η denoting unobserved

heterogeneity. This notation allows for the case where different vectors of unobservables enter

the two utilities, i.e. where the utilities are given by u0 (·, η0) and u1 (·, η1), respectively, with

η0 6= η1; simply set η ≡ (η0, η1), W0 (·, η) ≡ u0 (·, η0), W1 (·, η) ≡ u1 (·, η1). In the proof of the

above theorem, when showing (ii) implies (i), η will be allowed to have any arbitrary and unknown

dimension and distribution; in showing (i) implies (ii) we will construct a scalar heterogeneity

distribution that will rationalize the choice probabilities (see further discussion on this point under

the heading "Observational Equivalence" in the next section).
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Proof. That (ii) implies (i) is straightforward. In particular, letting W−10 (·, η) denote the inverse

of W0 (·, η), we have that

q (a, b) =

∫
1
{
a ≤W−10 (W1 (b, η) , η)

}
dG (η)

whence (C’) implies continuity of q (·, b), (B’) implies that lima↓−∞ q (a, b) = 1 for each b, and (A’)

implies (A).

We now show that (i) implies (ii). Note that lima↓−∞ q (a, b) = 1 for each b implies that for any

u ∈ [0, 1] and b ∈ R, the set {x : q (x, b) ≥ u} is non-empty. For any fixed b ∈ R and for u ∈ [0, 1],

define

q−1 (u, b)
def
= sup {x : q (x, b) ≥ u} . (1)

By condition (A) in (i), q−1 (u, ·) must be non-decreasing. Now, consider a random variable V '

Uniform (0, 1). DefineW0 (a, V )
defn
= a andW1 (b, V )

defn
= q−1 (V, b), and note that by construction,

W0 (a, V ) and W1 (b, V ) satisfy properties (A’)-(C’) listed in (ii) above. We will now show that

W0 (·, V ) and W1 (·, V ) will rationalize the choice-probabilities q (·, ·).

Indeed, given any fixed b, since q (·, b) is continuous and non-increasing, we have that for any

v ∈ (0, 1),

a ≤ q−1 (v, b)
by q(·,b) non↑

=⇒ q (a, b) ≥ q
(
q−1 (v, b) , b

) by q(·,b) cont.
=⇒ q (a, b) ≥ v. (2)

To see why continuity is required for the last implication in (2), suppose for some v ∈ (0, 1), we

have that q (x, b) > v for all x < c, but q (c, b) < v, i.e. q (·, b) takes a discontinuous ‘plunge’at

c. Then q−1 (v, b) = sup {x : q (x, b) ≥ v} = c, but q (c, b) = q
(
q−1 (v, b) , b

)
< v. Continuity of

q (·, b) rules this out, and guarantees that q (c, b) = q
(
q−1 (v, b) , b

)
≥ v; therefore, in (2), q (a, b) ≥

q
(
q−1 (v, b) , b

)
=⇒ q (a, b) ≥ v.

Finally, by definition of q−1 (·, b) as the supremum in (1), we have that

q (a, b) ≥ v =⇒ a ≤ q−1 (v, b) . (3)

Therefore, by (2) and (3), we have that q (a, b) ≥ v ⇐⇒ a ≤ q−1 (v, b), and thus, for V ' U (0, 1),

it follows that

Pr
(
q−1 (V, b) ≥ a

)
= Pr (V ≤ q (a, b)) = q (a, b) .

Therefore, the utility functions W0 (a, V ) ≡ a and W1 (b, V ) ≡ q−1 (V, b) with heterogeneity V '

Uniform (0, 1) rationalize the choice probabilities q (·, ·), and satisfy all the properties specified in

panel (ii) of Theorem 1. In particular, W1 (b, η) is non-decreasing in b (see (1)).
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3 Discussion

A. Slutsky Form: To see the analogy between the shape restrictions in Theorem 1 and the

traditional Slutsky inequality constraints with smooth demand, rewrite the choice probability on a

budget set (p, y) in the standard form as a function of price and income, viz. q̄ (p, y) ≡ q (y, y − p)

i.e., q (a, b) ≡ q̄ (a− b, a). Then, under continuous differentiability, the shape restrictions (A) from

Theorem 1 are equivalent to ∂
∂b q̄ (a− b, a) = ∂

∂bq (a, b) ≥ 0, and ∂
∂a q̄ (a− b, a) = ∂

∂aq (a, b) ≤ 0, i.e.,

for all p, y,

∂

∂p
q̄ (p, y) ≤ 0, (4)

∂

∂p
q̄ (p, y) +

∂

∂y
q̄ (p, y) ≤ 0. (5)

The forms of these inequalities are distinct from textbook Slutsky conditions for nonstochastic

demand q∗ (p, y) for a continuous good, which are given by

∂

∂p
q∗ (p, y) + q∗ (p, y)

∂

∂y
q∗ (p, y) ≤ 0 for all p, y. (6)

For a continuous good and under general unobserved heterogeneity, Hausman and Newey, 2016 show

that (6) also holds with q∗ (p, y) denoting any quantile of the demand distribution for fixed (p, y)

(see also Dette, Hoderlein and Neumeyer, 2016). Thus, for binary choice with general heterogeneity,

the forms of the Slutsky inequality (4) and (5) are different from the continuous choice counterpart

(6).1 In particular, the inequalities (4) and (5) are linear in q̄ (·, ·) (and q (·, ·)), unlike (6), and

hence easier to impose on nonparametric estimates of q (·, ·) using, say, shape-preserving sieves that

guarantee that ∂
∂b q̂ (a, b) ≥ 0, and ∂

∂a q̂ (a, b) ≤ 0 for all a, b.

Remark 1 It is tempting to think of (4) and (5) as (6) with the level q∗ (p, y) replaced by 0 and

1 corresponding to either of the two possible individual choices. However, this interpretation is

incorrect, since q̄ (p, y) is average demand, and takes values strictly inside (0, 1). In other words,

q̄ (p, y) is neither a quantile, nor individual demand at price p and y, and generically (e.g. in a

probit model) does not take the values of 0 and 1. Thus (4) and (5) cannot be rewritten as

∂

∂p
q̄ (p, y) + q̄ (p, y)

∂

∂y
q̄ (p, y) ≤ 0 for all p, y,

and, as such, are different from the continuous choice counterpart (6).

1Bhattacharya, 2015 (see also Lee and Bhattacharya, 2018) noted that (4) (resp, (5)) is necessary for the CDF of

equivalent variation (resp., compensating variation) resulting from price-changes to be non-decreasing.
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B. Observational Equivalence: The construction in our proof of (ii) ⇒ (i) shows that a

rationalizable binary choice model with general heterogeneity of unspecified dimension is obser-

vationally equivalent to one where a scalar heterogeneity enters the utility function of one of the

alternatives in a monotonic way, and the utility of the other alternative is non-stochastic.2 An intu-

itive explanation of this equivalence is that in the binary case, choice probabilities are determined

solely by the marginal distribution of reservation price (given income) for alternative 1, and not

the relative ranking of individual consumers in terms of their preferences within that distribution.

So, as income varies, choice probabilities change only insofar as the marginal distribution of the

reservation price changes, irrespective of how individual consumers’relative positions change within

that distribution.

It is worth pointing out here that a binary choice model with additive scalar heterogeneity —

the so-called ARUM model —is restrictive, and not observationally equivalent to a binary choice

model with general heterogeneity. To see this, suppose choice probabilities are generated via the

ARUM model, viz.

q (a, b) = Pr [W1 (b) + η1 > W0 (a) + η0]

= Pr [η0 − η1 < W1 (b)−W0 (a)]

= Fη0−η1 [W1 (b)−W0 (a)] . (7)

Assuming smoothness and strict monotonicity of Fη0−η1 [·], W1 (·) and W0 (·), and thus of q (·, ·), it

follows that

∂2

∂a∂b
ln

[
−

∂
∂bq (a, b)
∂
∂aq (a, b)

]

=
∂2

∂a∂b
ln

(
W ′1 (b)

W ′0 (a)

)
, from (7)

=
∂2

∂a∂b

[
ln
(
W ′1 (b)

)
− ln

(
W ′0 (a)

)]
= 0,

for every a and b. This equality is obviously not true for a general smooth and strictly monotone

q (·, ·) satisfying Assumptions i(A)-i(C) of Theorem 1.
2For quantile demand in the continuous case, a result of similar spirit is discussed in Hausman-Newey, 2016, Page

1228-9, following Theorem 1. In general, a result holding for the continuous case with two goods does not necessarily

imply that it also holds for the binary case. For example, welfare related results are different for the binary and

the two-good continuous case, c.f. Hausman-Newey 2016, and Bhattacharya 2015, and so are Slutsky negativity

conditions, as discussed above.
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Remark 2 The construction of q−1 (V, ·) in our proof of (ii) ⇒ (i) is unrelated to the almost sure

representation of a continuous random variable X as F−1X (U) with U = FX (X), where FX and

F−1X denote the CDF and quantile function of X, and U is U (0, 1). Indeed, if we were to apply this

so-called "probability-integral transform" to X = W1 (a1, η) for a fixed a1, we will haveW1 (a1, η)
a.s.
=

F−1W1(a1,η)
(U (a1)), where the scalar-valued uniform process U (a1) ≡ FW1(a1,η) (W1 (a1, η)) will vary

with a1, unlike V in the proof of our theorem above, and therefore cannot represent unobserved

heterogeneity in consumer preferences. In other words, our constructed q−1 (V, a1) will not equal

the data generating process W1 (a1, η) almost surely, but the probability that q−1 (V, a1) ≥ a0 will

equal the probability that W1 (a1, η) ≥W0 (a0, η) for all (a0, a1).

C. Giffen Goods: Our rationalizability condition (4) says that own price effect on average

demand is negative. This condition has no counterpart in the continuous case, appears to rule

out Giffen behavior and may, therefore, appear restrictive. We now show that that is not the

case: indeed, Giffen goods cannot arise in binary choice models if utilities are non-satiated in the

numeraire. To see this, let the utility of options 0 and 1 be given by W0 (·, η) and W1 (·, η) as in

Theorem 1 above. Now note that if option 1 is Giffen for an η type consumer with income y, then

for some prices p < p′ she buys at price p′ but does not buy at p. Therefore,

W1 (y − p, η) < W0 (y, η) < W1

(
y − p′, η

)
,

which is a contradiction, since W1 (·, η) is strictly increasing. In contrast, consider a continuous

good with utilities W (x, y − px, η), where x denotes the quantity of the continuous good, and

W (·, ·, η) is increasing in both arguments. Now it is possible that x is bought at price p and x′ is

bought at price p′ with p < p′ and x < x′. That is, we can have

W (x, y − px, η) < W
(
x′, y − p′x′, η

)
,

if x′ is preferred suffi ciently over x. The intuitive reason for this difference between the discrete and

the continuous case is that in the former, the only non-zero option is 1. Indeed, in the continuous

case, it is also not possible that W (x, y − px, η) < W (x, y − p′x, η) for any common x if p < p′.

Also, note that although Giffen behavior cannot arise in binary choice, there is no restriction

on the sign of the income effect. Indeed, (4) and (5) are compatible with both ∂
∂y q̄ (p, y) ≥ 0 and

∂
∂y q̄ (p, y) ≤ 0.
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D. Parametric and Semiparametric Models: For a probit/logit specification of the buying

decision, viz.

q̄ (p, y)

= F (γ0 + γ1p+ γ2y)

= F (γ0 + (γ1 + γ2) y − γ1 (y − p)) , (8)

where F (·) is a strictly increasing CDF, the shape restrictions of Theorem 1 amount to requiring

γ1 ≤ 0 and γ1 + γ2 ≤ 0. While the first inequality is intuitive, and simply says that own price

effect is negative, the second condition γ1+γ2 ≤ 0 is not a priori obvious, and shows the additional

restriction implied by budget-constrained utility maximization. Now, applying Theorem 1, we

obtain

F (γ0 + (γ1 + γ2) y − γ1 (y − p))

= Pr (V ≤ F (γ0 + (γ1 + γ2) y − γ1 (y − p)))

= Pr

(
F−1 (V )− γ0 + γ1 (y − p)

γ1 + γ2
≥ y
)
,

since γ1 + γ2 < 0 (note that the condition lima↓−∞ q (a, b) = 1 for each b rules out γ1 + γ2 = 0),

implying the rationalizing utility functions

U1 (y − p, V ) =
F−1 (V )− γ0
γ1 + γ2

+

(
γ1

γ1 + γ2

)
︸ ︷︷ ︸

>0

(y − p) ,

U0 (y, V ) = y.

where V ' U (0, 1).

Remark 3 Note that since the restrictions γ1 ≤ 0 and γ1 + γ2 ≤ 0 are linear in parameters, it is

computationally straightforward to maximize a globally concave likelihood, such as probit or logit,

subject to these constraints.

The above discussion also applies to semiparametric models where one need not specify the

exact functional form of F (·). For example, the semiparametric method of Bhattacharya (2008),

which only utilizes the strict monotonicity of the CDF F (·), can be applied to estimate the binary

choice model, subject to our sign restriction and standard scale-normalization, viz. γ1 = −1 and

γ1 + γ2 ≤ 0, i.e. using the specification that q̄ (p, y) is a strictly increasing function of the linear

index −p+ γ2y with γ2 ≤ 1.
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E. Random Coeffi cients: An alternative parametric specification in this context is a random

coeffi cient structure, popular in IO applications. It takes the form

Pr (1|price = p, income = y)

=

∫
F (γ1p+ γ2y) dG (γ1, γ2, θ)

=

∫
F ((γ1 + γ2) y − γ1 (y − p)) dG (γ1, γ2, θ)

≡ H (y, y − p, θ) ,

where γ1 and γ2 are now random variables with joint distribution G (·, ·, θ), indexed by an un-

known parameter vector θ, and F (·) is a specified CDF (e.g. a logit). Theorem 1 then implies

that the distribution G (·, ·, θ) must be such that the choice probability function H (·, ·, ·) satisfies
∂
∂yH (y, ·, θ) ≤ 0 and ∂

∂(y−p)H (·, y − p, θ) ≥ 0. One way to guarantee this would be to specify the

support of γ1 and of γ1 + γ2 to lie in (−∞, 0). Using Theorem 1, a utility structure that would

rationalize such a model is:

U1 (y − p, η) = h (y − p, V, θ) ; U0 (y, η) = y,

where V ' U (0, 1), and h (y − p, v, θ) is sup {x : H (x, y − p, θ) ≥ v}.3

F. Counterfactuals: Theorem 1 can be used to nonparametrically predict theory-consistent

choice probabilities on counterfactual, i.e. previously unobserved, budget-sets. Obviously, without

shape restrictions, there is no nonparametric restriction on demand on counterfactual budgets. To

see how to use shape-restrictions, let A denote the set of (p, y) observed in the data. Then, using

part (i) condition (A) of our theorem, the probability q̄ (p′, y′) of buying at counterfactual (i.e.

previously unobserved) price p′ and income y′ can be bounded as

q̄
(
p′, y′

)
≡ q

(
y′, y′ − p′

)
∈

 sup
(p,y)∈A: y≥y′,
y−p≤y′−p′

q (y, y − p) , inf
(p,y)∈A: y≤y′,
y−p≥y′−p′

q (y, y − p)

 . (9)

The above calculation is extremely simple; for example, the lower bound requires collecting those

observed budget sets (p, y) in the data that satisfy y ≥ y′, y − p ≤ y′ − p′ (a one-line command in

STATA), evaluating choice probabilities on them, and sorting these values.

3Note that an alternative preference distribution producing the same choice probabilities is given by U1 (y − p, η) =

−γ1 (y − p), U0 (y, η) = γ0 − (γ1 + γ2) y, γ0 ⊥ (γ1, γ2), γ0 ' F (·), (γ1, γ2) ' G (·, ·, θ), γ1 < 0, γ1 + γ2 ≤ 0 w.p.1.

This shows that the rationalizing preference distribution may not be unique.
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G. Welfare bounds: Given bounds on choice probabilities, one can obtain lower and up-

per bounds on economically interesting functionals thereof, such as average welfare. For example,

the average compensating variation — i.e. utility preserving income compensation — correspond-

ing to a price change from p0 to p1 at income y is given by
∫ p1
p0
q (y + p− p0, y − p0) dp (c.f.

Bhattacharya, 2015).4 This requires prediction of demand on a continuum of budget sets, viz.

{q (y + p− p0, y − p0) : p ∈ [p0, p1]}. Now, it follows from our discussion above, and by Theorem 1,

that pointwise bounds on q (y + p− p0, y − p0) are given by

L (y + p− p0, y − p0) ≡ sup
(p′,y′)∈A, y′−p′≤y−p0, y′≥y+p−p0

q
(
y′, y′ − p′

)
≤ q (y + p− p0, y − p0)

≤ inf
(p′,y′)∈A, y′−p′≥y−p0, y′≤y+p−p0

q
(
y′, y′ − p′

)
≡M (y + p− p0, y − p0) .(10)

This implies that average CV at y is bounded below by
∫ p1
p0
L (y + p− p0, y − p0) dp, and above by∫ p1

p0
M (y + p− p0, y − p0) dp.

We can, in fact, make a stronger statement, viz., that the smallest set S (y, p0, p1) containing all

feasible values of the average CV, based on the restrictions of Theorem 1, is given by the interval

I (y, p0, p1)

=

[∫ p1

p0

L (y + p− p0, y − p0) dp,
∫ p1

p0

M (y + p− p0, y − p0) dp
]
.

This assertion requires a justification, because I (y, p0, p1) includes integrals of functions that violate

the shape restrictions of Theorem 1 but nonetheless satisfy the pointwise bounds (10). That

justification is as follows. First note that by definition, the set S (y, p0, p1) is given by

S (y, p0, p1) =

[∫ p1

p0

f (y + p− p0, y − p0) dp, f ∈ F
]
,

where F is the collection of all functions f (·, ·) : R × R → [0, 1], satisfying the conditions (i) of

Theorem 1, viz. non-increasing and continuous in the first argument and non-decreasing in the

second argument, satisfying L (y + p− p0, y − p0) ≤ f (y + p− p0, y − p0) ≤M (y + p− p0, y − p0)

for all p ∈ [p0, p1].5 We want to show that I (y, p0, p1) = S (y, p0, p1).

First, note that S (y, p0, p1) v I (y, p0, p1), because by definition, L (y + p− p0, y − p0) ≤

f (y + p− p0, y − p0) ≤M (y + p− p0, y − p0) for each p, and I (y, p0, p1) is a connected interval.

4The results in Bhattacharya (2015) are stated in terms of the standard forms of choice probabilities, viz.

q̄ (p, y) in our notation above. In particular, average CV is
∫ p1
p0
q̄ (p, y + p− p0) dp which, in our present notation, is∫ p1

p0
q (y + p− p0, y − p0) dp.
5The limit condition (B) in Theorem 1 can be dropped in defining S because y, p0, p1 are all finite.
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Now, we show that I (y, p0, p1) v S (y, p0, p1). To see this, note that we can write any i ∈

I (y, p0, p1) as

i = λ (i)×
∫ p1

p0

L (y + p− p0, y − p0) dp+ (1− λ (i))×
∫ p1

p0

M (y + p− p0, y − p0) dp

=

∫ p1

p0

λ (i)× L (y + p− p0, y − p0) + (1− λ (i))×M (y + p− p0, y − p0)︸ ︷︷ ︸
=Hλ(i)(y+p−p0,y−p0), say

 dp,
for some real number λ (i) ∈ (0, 1). But by definition, for every λ ∈ [0, 1], the function

Hλ (y + p− p0, y − p0)

≡ λ× L (y + p− p0, y − p0) dp+ (1− λ)×M (y + p− p0, y − p0)

belongs to F , since both L (y + p− p0, y − p0) and M (y + p− p0, y − p0), by definition, belong

to F , and monotonicity and continuity are preserved under convex additions. Hence the integral

i =
∫ p1
p0
Hλ(i) (y + p− p0, y − p0) dp ∈ S (y, p0, p1), and thus I (y, p0, p1) v S (y, p0, p1). Intuitively,

even if I (y, p0, p1) contains the integral (say of value v) of a function satisfying the pointwise

bounds but not the shape restrictions, there is another function satisfying the shape restrictions

and respecting the same pointwise bounds, whose integral has the same magnitude v.

H. Compatibility with SRP: The welfare calculation above requires prediction of demand

on a continuum of budget sets indexed by p ∈ [p0, p1], which is operationally diffi cult — if not

practically impossible — to implement, using the finite-dimensional matrix equation based SRP

approach. But in simple cases where there are a small, countably finite number of budget sets, and

it is easy to verify the SRP conditions, a natural question is whether our shape restrictions i(A)

of Theorem 1 are compatible with the SRP based criterion for rationalizability; condition i(B) and

i(C) of Theorem 1 are of course irrelevant in such cases. Indeed, it is not hard to show that our

shape restrictions are in fact necessary for the SRP criterion to be satisfied. To see this, suppose

we observe behavior on two budget sets corresponding to price and income equal to
(
p1, y

)
and(

p2, y
)
. Let a0 = y and aj1 = y − pj for j = 1, 2. Then there are three alternatives to consider, viz.

(0, a0) ,
(
1, a11

)
and

(
1, a21

)
. WLOG assume p1 < p2, i.e. a11 > a21. Under nonsatiation in numeraire,

there are 3 possible preference profiles in the population, given by (i) (0, a0) �
(
1, a11

)
�
(
1, a21

)
, (ii)(

1, a11
)
� (0, a0) �

(
1, a21

)
and (iii)

(
1, a11

)
�
(
1, a21

)
� (0, a0); assume the population proportions of

these three profiles are (π1, π2, π3), respectively. Let q
(
a0, a

1
1

)
, q
(
a0, a

2
1

)
denote choice probabilities

of alternative 1 on the two budgets, respectively. Then the SRP approach asks whether matrix

13



equation

 0 1 1

0 0 1



π1

π2

π3

 =

 q
(
a0, a

1
1

)
q
(
a0, a

2
1

)
 , i.e.

π2 + π3 = q
(
a0, a

1
1

)
, π3 = q

(
a0, a

2
1

)
, (11)

has a solution (π1, π2, π3) in the unit positive simplex. Clearly, we need that π2 + π3 ≥ π3 (guar-

anteeing π2 ≥ 0) which is precisely our shape restriction q
(
a0, a

1
1

)
≥ q

(
a0, a

2
1

)
(as a11 > a21).

Similarly, by considering the budget sets
(
p1, y1

)
and

(
p2, y2

)
with y1 < y2 and y1 − p1 = y2 −

p2 ≡ a1, say and a10 ≡ y1 < y2 ≡ a20, one can show that our shape restriction q
(
a10, a1

)
≥ q

(
a20, a1

)
(as a10 < a20) is necessary for the SRP condition analogous to (11) to have an admissible solution.

With more budget sets, the corresponding higher dimensional matrix equations analogous to (11)

quickly become operationally impractical and cumbersome, as is well-known in the literature (see

introduction). In contrast, our shape-restrictions, by being global conditions on the q (·, ·) functions,

remain invariant to which and how many budget sets are considered. Furthermore, we already know

via Theorem 1 above, that these shape restrictions are also suffi cient for rationalizability for any

collection —finite or infinite —of budget sets.6

I. Observed Covariates: One can accommodate observed covariates in our theorem. For

example, letX denote a vector of observed covariates, and let q (a, b, x) denote the choice probability

when Y = a, Y − P = b and X = x. If for each fixed x, q (a, b, x) satisfies the same properties as

(i) A-C in the statement of Theorem 1, then letting

q−1 (u, b, x)
def
= sup {z : q (z, b, x) ≥ u} ,

we can rationalize the choice probabilities q (a, b, x) by setting W1 (y − p, V, x) ≡ q−1 (V, y − p, x)

and W0 (y, V, x) ≡ y, where V ' U (0, 1).

J. Endogeneity: Our results in Theorem 1 are stated in terms of structural choice probabil-

ities q (·, ·). If budget sets are independent of unobserved heterogeneity (conditional on observed

covariates), then these structural choice probabilities are equal to the observed conditional choice

probabilities, i.e.,

q (a, b) = Pr (1|Y = a, Y − P = b) .
6 It does not seem possible to show directly, i.e. without using Theorem 1, that our shape restrictions are also

suffi cient for existence of admissible solutions to the analog of (11) corresponding to every arbitrary collection of

budget sets. But given theorem 1, this exercise is probably of limited interest.
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To date, all existing results on rationalizability of demand under heterogeneity, including McFad-

den and Richter, 1990, Lewbel, 2001 and Hausman-Newey, 2016 maintain independence. If the

independence condition is violated (even conditional on observed covariates), then Theorem 1 con-

tinues to remain valid as stated, since it concerns the structural choice probability q (·, ·), but

consistent estimation of q (·, ·) will be more involved. In applications, if endogeneity of budget

sets is a potential concern, then it would be advisable to estimate structural choice-probabilities

using methods for estimating average structural functions. A specific example is the method of

control functions, c.f. Blundell and Powell, 2003, which requires that η ⊥ (P, Y ) |V , where V is

an estimable “control function”—typically a first stage residual from a regression of endogenous

covariates on instruments.
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