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Abstract

The use of pulsed mode scanning electron microscopy cathodoluminescence (CL) for both
hyperspectral mapping and time-resolved measurements is found to be useful for the study of hybrid
perovskite films, a class of ionic semiconductors that have been shown to be beam sensitive. A range of
acquisition parameters is analysed, including beam current and beam mode (either continuous or
pulsed operation), and their effect on the CL emission is discussed. Under optimized acquisition
conditions, using a pulsed electron beam, the heterogeneity of the emission properties of hybrid
perovskite films can be resolved via the acquisition of CL hyperspectral maps. These optimized
parameters also enable the acquisition of time-resolved CL of polycrystalline films, showing
significantly shorter lived charge carriers dynamics compared to the photoluminescence analogue,
hinting at additional electron beam-specimen interactions to be further investigated. This work
represents a promising step to investigate hybrid perovskite semiconductors at the nanoscale with CL.

1. Introduction

Halide perovskites have emerged as exceptional candidates for next-generation optoelectronic applications, as
they are high-performing photoactive materials produced at lower costs and processed in a wider range of
conditions than many other traditional semiconductors [1]. Hybrid perovskite thin films are heterogeneous at
the micro- and nano- length scales in their optoelectronic, structural and chemical properties [2].
Characterization techniques which reveal the structure-property relations are thus fundamental to understand
this family of new materials.

Cathodoluminescence (CL) is a promising candidate for the investigation of emerging semiconductor
materials [3]. In this technique, an electron beam excites a semiconductor causing emission of photons, which
are subsequently collected and analysed. This allows the optoelectronic properties of the material to be probed at
ahigh spatial resolution.

Guthrey and Moseley [4] recently reviewed the body of work on how CL has been helpful to understand
these novel halide perovskite materials. Here, we focus on CL signals from scanning electron microscopy (SEM).
SEM-CL can produce sub-micrometer spatially resolved maps of optoelectronic emission properties, which can
be related to phase composition, defects, impurities and degradation products, both in top-view and cross-
section geometries [4]. Numerous studies discuss how the focused high-energy electron beam interacts with the
specimen causing reversible and irreversible changes, in a process generally known as beam damage.
Methylammonium lead iodide films (MAPbI;), the most widely studied hybrid perovskite structure, and
subsequent hybrid perovskite compositions, are highly sensitive to the current and energy of the electron beam.
These can result in knock-on damage, inelastic scattering and localized heating, which can promote the loss of
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the more volatile (organic) species [5—7]. These phenomena are correlated with a decrease in CL intensity of the
perovskite peak and with the emergence of additional emission peaks [8, 9]. For MAPbI; the emergence of Pbl,
is observed upon degradation, whereas for formamidinium (FA) containing compositions other degradation
pathways involving Pb’ formation and the loss of an iodide molecule are reported [10]. Some electron beam
irradiation effects resemble modifications observed under light exposure, [6] ascribed to similar transient
changes such as iodide segregation leading to peak broadening and shifts [11]. While the electron beam
interaction could be used as an accelerated platform to understand the material stability, electron beam damage
is generally undesired for CL analysis. Some general guidelines exist to reduce beam damage, mainly by reducing
the beam current and acquisition time, and optimising the acceleration voltage and specimen temperature [4].

CL has been used to characterize semiconductors at the nanoscale for many decades [3]. However, only
recent innovations have allowed this technique to move beyond the well-established continuous wave (CW)
electron beam CL imaging. Since the creation and application of an optically driven pulsed mode (PM) electron
gun adapted to acquire CL, [12] it is now possible to measure time-resolved cathodoluminescence (TRCL) using
bright picosecond pulsed electron beams. Such systems enable the probing of picosecond charge-carrier
dynamics at the nanoscale, as has been extensively done for III-V semiconductor nanostructures, overcoming
some of the limitations of older beam-blanking based PM techniques [13]. For hybrid halide perovskites,
Cortecchia et al [14] showcased the possibility of using such a system to probe the dynamics of 2D/3D perovskite
nanocrystals. They identified heterogeneity of the self-assembled phases of different dimensionality, and probed
the TRCL recombination dynamics for each phase, exhibiting both Auger ultrafast recombination in the range
of picoseconds and slower TRCL traces matching the time-resolved photoluminescence dynamics. Zhao and
Lian et al [15] used such a system to study the improvements in luminescence efficiency, uniformity, and lifetime
of mixed-dimensional perovskite films after layer and additive engineering.

In addition to enabling the acquisition of TRCL, the use of a pulsed beam can reduce the beam current to
tens to hundreds of pA [16]. Low-injection conditions can be tuned to match operando conditions of
optoelectronic devices, making this technique interesting from a device characterization perspective. More
importantly, low-current pulsed beams allow the material to relax electronically and thermally in between
pulses, which can be beneficial to hinder beam damage [17, 18]. While the vast majority of historical CL work has
been performed on traditional inorganic semiconductors, which show little to no beam damage, the use of a PM
electron beam for CL acquisition on hybrid perovskite materials is of interest.

This work aims at comparing CL in the SEM from a CW and PM electron beam for the characterization of
thin films of a well studied hybrid perovskite composition, namely the triple-cation double-halide
(FAg 70MAg.16Cs0.05)Pb(I.83Brg.17)5. This composition is one of the most stable for optoelectronic applications
such as solar cells [19]. We investigate how SEM acquisition parameters, especially beam current and beam
mode (wither CW or PM), affect the quality of the CL data for these perovskite thin films on glass substrates.

2. Methods

2.1. Fabrication of the hybrid polycrystalline perovskite film

Glass coverslips (18 mm x 18 mm, 0.13—0.17 mm thickness, Academy) were cleaned in acetone and isopropanol
(10 min each) in an ultrasonic bath. The substrates were treated for 10 min in an oxygen plasma cleaner
immediately before the spin-coating procedure.

The perovskite precursors solutions were prepared by first dissolving Pbl, (1.1 M), PbBr, (0.22 M), FAI (1.0 M)
and MABr (0.2 M) in a mixture of anhydrous DMF and DMSO (4:1 v:v). Csl solution (1.5 M in DMSO) was then
added to the precursor solution as 5% of the total volume. To form the (FA 7,0MA 16Cs¢.05)Pb(Ip.3Bro.17)5 thin
films, 50 pl of precursor solution was deposited on each substrate. A two-step spin-coating procedure was used for
the thin film formation: 10 s at 1000 rpm, 20 s at 6000 rpm. Chlorobenzene (120 1) was deposited onto the spinning
substrate 10 s before the end of the procedure. Films were annealed at 100 °C for 1 h. Lead halide precursors were
supplied by TCI, organic compounds were supplied by Greatcell Solar, CsI and solvents were supplied by Sigma.

The film was fabricated at a small fraction of Pbl, excess, as it is known to suppress non-radiative
recombination for mixed halide mixed cation compositions [19, 20]. The sample had been exposed to ambient
laboratory air for previous characterization measurements for ~10 h, and was consistently contained within a
nitrogen box between measurements. The CL and PL emission was checked to match the PL emission reported
for similar compositions prior to the experiment.

2.2. CL hyperspectral mapping and TRCL

A series of 30 CL hyperspectral maps (CL maps) were acquired at different regions on the perovskite film. CL
mapping was performed in an Attolight Allalin 4027 Chronos CL-SEM. The spectra were acquired with an
iHR320 spectrometer (focal length of 320 mm, 150 gratings per mm blazed at 500 nm, 700 zm entrance slit)
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and an Andor 1024 pixel charge-coupled device (readout rate of 3 MHz, horizontal binning of 2 and x2 signal
amplification). All the measurements were performed at room temperature under high vacuum (<10~ mbar).
Beam focusing before each CL map was performed on regions of the sample at least 100 ym away from those
used for the measurements.

CL maps were taken at various acquisition conditions, as described in table S1 (available online at stacks.iop.
org/NANOX/2/024002/mmedia) in the supporting information (SI). These maps were taken at 3 or 6 kV
acceleration voltage, at various dwell times from 22 to 502 ms, and at different rastering pixel sizes ranging from
25t0 250 nm. The CL interaction depth at 3 and 6 keV is estimated to be ~100 and ~250 nm, respectively, as
calculated in the figure S8 in the SI. The electron beam current was modified from 62.5 pA to 10 nA in
continuous-wave (CW) beam mode, or from 14 to 115 pA in pulsed mode (PM). PM was obtained by pulsing an
electron gun with the third harmonic of an Nd:YAG laser (355 nm) at a pulse width of 7 ps and a frequency of
80.6 MHz (12.41 ns). All beam currents were calibrated using a Faraday cup.

Time-resolved CL measurements were recorded with a time-correlated single photon counting
photodetector at an acceleration voltage of 6 kV and beam current of 115 pA. The resolution of the
photodetector is 80 ps. Dwell times were extended until the TRCL signal was two orders of magnitude higher
than the background, which varied from 60 to 400 s for each peak of interest.

2.3. Processing of the CL data
CL maps were analysed in LumiSpy 0.1 (a Hyperspy-based open-source Python library for luminescence data
analysis) [21]. All spectra were background subtracted, cosmic-rays saturating the spectrometer were removed,
and the edges of each map were cropped, as these tend to show higher CL intensities due to uneven beam
dwelling at the corners as well as edge effects.

Fitting of the data enables the extraction of the emission shape parameters of the CL signal. Three Gaussian
distributions and a constant background offset were used to fit CL data, following:

)/(X) = kbkg + ngk(x) + gintermediate(x) + ngIz(x)

log(2) (x — x¢,)* (1)
FWHM?

with g;(x) = Ic,; exp {—4

where each Gaussian represents one of the three peaks of interest in this work (the perovskite, the intermediate
degradation phase and the Pbl, peaks). Each Gaussian is described by xy: the central peak position, I¢;: the peak
height at the central position and FWHM: the full-width half-maximum of the peak.

Equation (1) was fitted to the spatially averaged CL spectra for each map acquired to generate figure 1.
Similarly, the Gaussians were fitted to the CL maps, resulting in spatially-resolved fitted hyperspectral maps, as
shown in figure 2.

TRCL decays were normalized and smoothed using a 10-point mean filter before the 1/e values were found.

3. Results and discussion

A systematic study of how acquisition parameters, especially beam mode and beam current, affect the CL maps
of hybrid perovskite films is discussed. Under optimized conditions the perovskite phase exhibits the most
robust emission features, which we consider evidence for a more pristine crystal structure.

3.1. Optimization of the conditions for CL studies on hybrid perovskite films

A series of 30 CL maps were taken at different positions of a hybrid perovskite film under various acquisition
conditions. For each map, the spatially averaged CL spectrum was reported. Figure 1 shows how the mean
emission spectra are affected by various acquisition parameters. Figure 1(a) shows a subset of the mean spectra
acquired at beam currents ranging from 14 pA to 10 nA, with darker colours representing higher beam currents;
and acquired at two different electron beam modes, continuous line for CW, dashed line for PM. The absolute
CL intensity values were normalized by the acquisition dwell time of each scan and all the spectra in figure 1(a)
were acquired at the same pixel size of ~120 nm.

In figure 1(a), three main peaks are observed: the main perovskite peak at 740-760 nm (1.68-1.63 eV), [19] a
peak corresponding to Pbl, at 507-518 nm (2.39-2.45 eV), [22] and a broad intermediate peak ranging between
650 and 740 nm (1.68-1.90 eV). The Pbl, peak is primarily ascribed to the small fraction of Pbl, excess during
the fabrication of the film [19]. The broad intermediate peak is referred to as the intermediate degradation phase,
as it only becomes prominent in conjunction with electron beam illumination (see figure S2 in the SI). For each
peak, the quality of the CL signal was determined from the parameterized variables of fitting the Gaussian
models on the mean emission spectra for each map. More specifically, the fitted central peak position (xy) and
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Figure 1. Optimization of the CL acquisition conditions for (FA 70MA 16Cso.05)Pb(Ig.83Brg.17)5 thin films. (a) The spatially averaged
CL spectra for a series of CL maps taken at different beam modes (continuous line in CW, dashed line in PM), at different beam
currents (darker colours represent higher currents), keeping all other parameters unchanged and the CL intensity normalized to the
pixel dwell time. The Pbl, and the perovskite peaks are visible, as well as an intermediate degradation broad peak. (b), (c) Normalized
CL peaks for the (b) Pbl, and (c) perovskite peaks, with visible peak position shifts. (d)—(i) Correlation of the beam current in nA, the
beam mode (CW in blue, PM in orange), and dwell time (from 22 to 502 ms from smaller to larger dots) with respect to different
emission peak parameters are shown. (d), (e) The fitted central peak position x, of the Pbl, and the perovskite peak, respectively. (f),
(g) The CL intensity (Icy ) for the Pbl, and the perovskite fitted peaks, respectively. (h) The perovskite to Pbl, CL intensity ratio
correlated to pixel dwell time. (i) The intermediate degradation peak to the perovskite CL intensity ratio correlated to beam current.
The asterisk (*) shows scans with long dwell times of 502 ms.

peak intensity (Ic; ) of the different emission peaks were taken as indicators for signal quality. These indicators
were then correlated with the respective acquisition parameters at which each CL map was taken, such as beam
current, beam mode, acceleration voltage, rastering pixel size, or dwell time, to mention a few. Some parameters
were found to have a bigger effect on the CL signal quality than others. These are discussed in depth below.
Figures 1(b)—(i) shows the effect of the electron beam current, beam mode (either CW or PM), and dwell
time, on the fitted peaks for each map. The perovskite and Pbl, emission peaks are analysed separately, as the
perovskite peak appears to be more sensitive to electron irradiation, while the Pbl, peak remains largely
unaffected upon continuous electron beam exposure of up to 90 s (see figure S2 in the SI for the evolution of each
peak over beam exposure). Figures 1(c) and (e) show that the perovskite peak position x, is dependent on the

4



10P Publishing Nano Express 2 (2021) 024002 J Ferrer Orri et al

(@ (b) (c) (d) (e)
SE image Pvk peak x0 Pvk peak height I, Pvk peak fwhm Intermediate/Pvk ratio
Mean: 747.05 Me 1E12] Mean: 50.79 «iiis
CW beam
High current: e
1000 pA
-
- .
Mean: 747.69
A ‘:
CW beam |+
Low current: &
250 pA .
<
. [
Mean: 749.94 3
@
2
o
CW beam =
Ultralow current:
62.5 pA
Mean: 753.42 Mean: 0.76 Mean: 47.51 Mean: 0.1
e ‘
PM beam - - N
L =
Low current: ld-." E 5
115 pA
o .
- A
" -
'_. ! I— ! ! ! ot ! ! ! 0.0 D.‘Z 0.‘4 D.‘G D‘B 1'0
Wavelength (nm) CL intensity per sec (s) Fwhm (nm) CL intensity ratio (a.u.)

Figure 2. Heterogeneity of CL emission and SEM images of (FAg 70MA 16Cs0.05)Pb(Io.g3Br0.17)5 thin films under improving
acquisition conditions: from suboptimal at the top towards more optimized conditions at the bottom (first three rows are taken in CW
mode and the last row in PM). (a) The SEM and (b)—(d) the fitted parameter CL maps for the perovskite peak, with (e) showing the
intermediate degradation phase peak to perovskite peak CL intensity ratio, a measure of beam damage. The mean values are reported
on the top left for each map.

electron beam current (ranging between 14 pA to 10 nA) and the beam mode (blue for CW and orange for PM).
Larger spreads of the values of the perovskite peak positions are observed under CW mode when other
parameters such as pixel size or dwell time are changed. For example, marked in figure 1(e), we observe a spread
of x90f 750 £ 10 nm (~50 meV) at 250 pA in CW, while at similarly low-current conditions of 115 pAin PM, a
spread of x, shifts of 750 £ 3 nm (~10 meV) is measured. At comparable currents we find that PM allows for a
more robust CL detection for the perovskite peak.

Figure 1(c) shows a small blue-shift of a few nanometers (~10 meV) between the perovskite peak emission in
CW and PM. Blue-shifts at higher currents may be explained by the formation of beam-induced defects and by
the Burstein-Moss effect, in which large charge carrier populations can saturate the band edge and populate
higher vibrational energy states of the conduction band [8, 11, 14, 23]. At 115 pA and 6 keV, charge carrier
concentrations in PM are estimated to reach concentrations as large as ~10'® " —h™-pairs cm >, assuming a
cubic interaction volume of 200 nm depth (see the SI for the estimation). The pulsed nature of the beam would
allow carriers to relax, if the time-delay between each electron pulse is larger than the charge-carrier relaxation
time, resulting in lower blue-shifts than in CW mode. Figure 2(b), discussed later, is in agreement with this
observation of blue-shifts, with spatially averaged perovskite peak emission at 746—-749 nm (1.66 eV) in CW
compared to 752 nm (1.65 eV) in PM.

Figure 1(g) shows the effect of the perovskite peak intensity (Ic;) as a function of beam current and beam
mode. For the perovskite peak, we find that PM acquisition can achieve CL intensities as large as those achieved
in CW with twice the amount of current (250 pA in CW and 115 pA in PM). However, only low beam currents
can be accessed in PM, which strongly limits the intensity of the CL signal.

The analysis of the PbI, peak shows different trends, in which most of the observations seen for the beam-
sensitive perovskite peak are not applicable. Figures 1(b) and (d) show a narrow spread of the peak position x,
under both CW and PM, in the range of 3 nm (10 meV), when other parameters such as pixel size or dwell time
are changed. A red-shift of the Pbl, peak from 508—510 nm to 512-517 nm (2.43-2.44 t0 2.40-2.42 eV) is
observed when the largest beam current of 10 nA is used. This small red shift may be explained by the pre-
existing Pbl, crystallites in the film growing thicker under excessive electron irradiation, as Pbl, single crystals
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show thickness dependent photoluminescence [22]. Pbl, degradation can also result in the creation of defects
and peak shifts, consistent with these observations [24, 25]. For currents of 1 nA and lower, such red shifts are
not observed. Hence, Pbl, is a more stable phase and it is not as susceptible to beam damage as the perovskite
phase, as suggested from the evolution of each peak upon beam exposure (figure S2). Figure 1(f) shows the peak
intensity increasing proportionally to the current used. The PbI, CL emission acquisition does not benefit from
using PM in the same way the perovskite phase does.

Given the relative stability of the Pbl, peak, its intensity can be used as a reference from which to compare the
perovskite peak intensity for each acquisition condition. In a pristine specimen, the ratio between the perovskite
(Pvk) and the Pbl, peak intensities (Pvk:Pbl, ratio) is expected to be larger than 1 as the perovskite peak
dominates. The ratio can decrease due to electron beam irradiation, and this can be taken as a measure of beam
damage. Figure 1(h) shows that the Pvk:PbI, ratio is strongly related to dwell time and to beam mode (also to
beam current, as shown in the figure S9 in the SI). At dwell times of 52 ms the Pvk:Pbl, ratio is one order of
magnitude larger for PM than for CW, and this suggests that PM is significantly better at preserving the pristine
perovskite phase. However, at extremely low-current conditions, especially in PM, longer dwell times are
required to acquire signal-to-noise ratios (SNR) sufficient to discern the background from the signal at each
pixel. Longer beam exposures appear to enhance the degradation effect on the perovskite, as seen at larger dwell
times of 102 or 502 ms in figure 1(h). A compromise between beam current and dwell time is thus needed to
minimize the changes of the perovskite peak.

Another interesting feature is the intermediate degradation phase peak, which can be fitted with abroad
Gaussian between 650 and 740 nm (1.68—1.90 eV). A ratio between the Pvk and the intermediate degradation
peak intensities can be calculated (intermediate:Pvk ratio) as the former appears as the latter decays. The lower
this ratio, the more pristine the perovskite. Figure 1(i) shows how the intermediate:Pvk ratio is affected as the
beam current increases and as CW or PM is used. The degradation intermediate phase is more prominent when
high beam currents above 1 nA are used in CW mode, as seen from the ratio increasing by one to two orders of
magnitude than when lower currents are used. Both for low CW currents of 62.5 and 250 pA and for PM, the
degradation peak is low in intensity. Long dwell times in PM are correlated with the appearance of this
degradation phase, marked with an asterisk on the figure. Dose, the combination of beam current and dwell
time, is thus affecting the appearance of the intermediate degradation phase.

The appearance of higher energy emission features than the perovskite phase is in agreement with other works
studying electron beam damage [6, 26, 27]. While the nature of the intermediate degradation phase cannot be
conclusively assigned from this CL analysis alone, it can be attributed to a series of factors. The low activation
energy of halide-related defects enhances the vulnerability of these materials to beam-induced degradation,

[28, 29] which results in a broad distribution of trap states that can be optically active and detectable if present in
large densities. Moreover, loss of the more volatile iodine species due to electron beam irradiation could also result
in the observed blue shifts. Halide demixing across films has been reported after light soaking or device operation,
showing facile halide redistribution between the surface and interface [30-32]. The formation of beam-induced
small nanoscale crystallites could also result in a distribution of blue-shifted emission due to confinement effects
[33]. Finally, the blue shift could also be attributed to electron beam driven amorphization of the perovskite phase,
in agreement with similar high-energy emission peaks observed from pressure-induced amorphization [34].

Other acquisition parameters were found to have a smaller effect on the CL signal quality, such as the field of
view, raster scan size, or electron beam energy, which are shown in figures S5-S7 in the SI. The effect of the first
two is convolved with the dwell time effect, already discussed. The effect of acceleration voltage is consistent with
previous studies, [8, 27, 35-38] in which lower acceleration voltages probe the optical properties at the surface
while at higher beam energies the bulk is probed, which can emit differently than the surface. Photons generated
deeper in the bulk can also be absorbed by the perovskite layer and not contribute to the collected CL intensity.
In general, beam damage is more sensitive to increasing beam current than to acceleration voltage [26].

In short, PM has been found beneficial for the acquisition of CL on triple-cation double-halide hybrid
perovskite films, in comparison to CW mode. However, when PM is used, the beam current and dwell time need to
be carefully adjusted in order to obtain sufficient SNR while maintaining the perovskite emission. We find that
>115pAand <50 ms, under the experimental conditions and samples reported here, give the best results. Despite
the optimization in the acquisition, PM CL still exhibits some secondary features related to beam damage.

3.2. The potential of pulsed mode SEM CL on hybrid perovskite films

We use SEM CL to map the nanoscale heterogeneity of perovskite polycrystalline films. Figure 2 shows a series of
CL maps for the fitted perovskite peak taken at different positions on the same perovskite film. The perovskite peak
emission changes for spatially resolved CL maps as a function of acquisition conditions. We observe a gradual
modification of the perovskite peak quality, measured in terms of the fitted Gaussian position x, (figure 2(b)), peak
height Iy (figure 2(c)), and peak full-width half-maximum (FWHM, figure 2(d)), as a function of beam current. In
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Figure 3. TRCL measurements on a (FAg 70MA 16Cso.05)Pb(Io.g3Br0.17)3 perovskite thin film at acceleration voltage of 6 kV and beam
current of 115 pA in PM. (a) The CL emission spectrum with the perovskite peak, the Pbl, peak and a broad intermediate degradation
phase. (b) TRCL spectra of the three peaks of interest (smoothed signal as darker line). The inset shows the incoming photon counts
per second. The 1/e intensity line is shown on the y-axis.

general, the CL maps acquired at higher currents show more heterogeneous distributions of the perovskite peak
features. Figure 2(e) shows a lower intermediate:Pvk intensity ratio for lower beam currents, suggesting a more
pristine perovskite emission due to a reduction in beam damage and more homogeneous charge carrier
recombination pathways. The least significant beam damage is recorded under PM, at a mean intermediate:Pvk
ratio of 0.18 (see figures S12 in the SI for the histograms of the pixel distribution of this ratio). In PM, longer pixel
dwell times, twice as long as in CW mode (from 22.28 ms in CW to 52.28 ms in PM), were used. These dwell times
were short enough, within the threshold shown in figure 1(h), to result in no increment of beam damage. CL maps
acquired in PM atlower currents of 14 or 33 pA resulted in reduced signal quality if dwell times of 52 ms were used,
which complicated spectral fitting in a per-pixel basis (figure S11 in the SI).

The switch from CW to a PM electron beam under similar low-current conditions of 62.5 and 250 pA in CW
and 115 pA in PM, reveals a further improvement in data acquisition in terms of peak consistency. Figure 2(d)
shows a reduction in the FWHM magnitude and a more homogeneous distribution for the PM than in CW
mode. Similarly, figure 2(b) shows a more homogeneous peak position distribution for PM.

Finally, the use of the optimized PM acquisition conditions enables the study of TRCL decays of the different
phases found in the films. Figure 3 shows the acquisition of spatially averaged TRCL decays on a hybrid
perovskite polycrystalline film for the first time. Figure 3(a) shows the three peaks of interest selected for the
TRCL signal at 507, 663 and 747 nm (2.45, 1.87 and 1.66 eV) for the Pbl,, intermediate degradation phase and
perovskite phase, respectively. The Pbl, and intermediate phases are shorter lived than the perovskite phase, as
shown in figure 3(b). The 1/e time decay value for the perovskite peak is found at 0.7 £ 0.1 ns. The lifetimes for
the Pbl, and intermediate phase TRCL decays could not be resolved as they are below the resolution limit of the
detector (80 ps). The understanding of the dynamics and nature of these phases are beyond the aims of this work,
hence we only present the 1 /e value and no fitting models.

Despite the optimization of the experimental conditions used to acquire the TRCL data, the perovskite peak
degraded continuously, as shown in the inset in figure 3(b). The inset shows the time evolution of the incoming
photon counts to the time-correlated single photon counting photodetector for each peak over continuous
beam exposure in PM. For the perovskite peak, the spikes in the photon count correspond to each of the 6
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different regions of the sample that were scanned during TRCL acquisition. The perovskite emission completely
degraded within 50-100 s of continuous beam rastering (similar to the spectral time evolution shown in figure
S2in the SI). In order to acquire SNR of two orders of magnitude, several different regions were rastered. For the
PbL, and the degradation higher energy peaks, only a single region was scanned to achieve the desired SNR.

The Pbl, and the intermediate degradation phase exhibit extremely short-lived dynamics. These short TRCL
curves may be attributed to the highly localized formation of these phases, in which charge carriers are produced
in a confined volume at high densities, thus affecting lifetimes due to the nature of the bimolecular
recombination. For the perovskite peak, the longer-lived carrier dynamics may be attributed to the large grains
in the film, which can disperse the charge carriers, formed locally by the electron beam, across the grain.
However, these lifetimes are significantly shorter than time-resolved photoluminescence measurements of
similar compositions, in the order of hundreds of nanoseconds [39]. These shorter lifetimes may suggest
degradation of the perovskite phase by the creation of beam-induced defects, which are visible in the broad
intermediate degradation peak and act as charge carrier quenching pathways. Moreover, Auger processes may
playa role due to the higher carrier densities produced in CL compared to PL, of the order of ~10'® e~ —h*-pairs
cm >, [40] which has also been seen in less beam-sensitive materials [41]. Similar perovskite formulations,
containing mixed iodide and bromide, are known to show higher Auger rates when the bromide fraction
increases due to gradual changes in phase structure, which may here be caused by beam degradation [39].

In short, figures 1 and 2 have shown a more efficient data acquisition of the perovskite emission when a PM
electron beam is implemented. Given a CW and a PM electron beam at the same beam current, the PM beam
produces short pulses of higher electron currents while the CW produces a constant flux of lower electron
currents, both resulting in the same effective current. The higher excitation density in PM can produce larger
densities of charge carriers which could saturate non-radiative recombination sites and lead to overall stronger
emission. In CW mode, if currents are too low, the non-radiative recombination sites may never be saturated
and a smaller fraction of recombination would be radiative. It is therefore the nature of a pulsed beam that could
allow for a more efficient CL acquisition (see schematic S13 in the SI). These mechanisms may not be applicable
to materials with longer lifetimes, as charge carriers would remain in the excited state for a longer time and the
PM would give similar effects as the CW beam. In these cases, the higher efficiency in CL acquisition using PM
would not be as pronounced. However, given that electron beam damage may be unavoidable for beam sensitive
materials such as hybrid perovskites, the TRCL lifetimes are likely to be shorter than those measured with optical
excitations of the pristine structure, in favour of PM.

3.3. Outlook

We have shown the benefits of using a PM electron beam on hybrid perovskite films. It unlocks the use of SEM
CL on beam-sensitive hybrid perovskite materials and enables the acquisition of hyperspectral maps with high
spatial resolution. CL can thus be used to explore the heterogeneity of optical properties at the nanoscale, at
smaller length scales than photoluminescence. TRCL, enabled by the use of a PM electron beam, can be useful to
understand the carrier dynamics of these materials at high excitation densities, especially interesting for light
emission devices.

CL on beam-sensitive materials is affected by beam damage, and hence must be acquired under scrupulous
management of the acquisition parameters. After optimization of the acquisition conditions, CL still exhibits
features related to the beam damage; unambiguously assigning the nature of these degradation features in the
scanned regions of interest will be the subject of future work. In this work we have analysed mainly the effect of
beam current, dwell time and beam mode, yet other parameters should be further investigated. For example, it
was shown that temperatures as low as 80 K can hinder the formation of intermediate degradation high-energy
peaks in mono-cation mono-halide perovskite compositions [8]. The modification of the pulse rate in PM
electron beams may also further improve the CL acquisition for beam sensitive materials, as longer separations
between the pulses may allow the beam sensitive material to fully relax electronically and thermally. Finally,
further work on sample stabilization may result in beam damage mitigation. For example, the addition of
contact layers or the characterization of devices instead of films may help dissipate charges and prevent volatile
species from leaving the sample [42]. Such approaches will be the subject of future work.

4. Conclusion

We have systematically studied the parameters affecting the acquisition of CL maps of hybrid perovskite
(FAp.70MAg 16Cs0.05)Pb(Io.83Bro.17)3 films on glass, such as the effect of beam current, dwell time or beam mode.
PM electron beams have been found to be useful for the study of triple-cation double-halide perovskite films,
yielding more robust results than CW mode. Using PM, the CL spectra strongly resembles pristine perovskite
emission, in which the perovskite emission is the strongest peak. Even in optimized conditions, some effect
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related to beam damage is persistently observed in the form of an intermediate broad peak at higher energies.
TRCL of the polycrystalline film showed short lived charge carriers dynamics compared to photoluminescence,
suggesting additional electron beam-specimen interactions to be further investigated. The optimization
described in this work will help to unlock the use of CL hyperspectral mapping and TRCL on the more beam-
sensitive hybrid perovskite compositions.

As SEM-CL systems with PM capabilities become prevalent and equipped with more sensitive and faster
detectors, we anticipate that CL will play a large role in not only resolving the complex heterogeneity of the
materials in the family of hybrid perovskites, but also in understanding the properties and degradation of many
other novel beam sensitive semiconductors.
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