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ABSTRACT 

Phased nonlinear finite element (FE) analyses were carried out to predict the behavior of 

precracked reinforced concrete (RC) T-beams repaired in shear with externally bonded (EB) 

carbon fiber reinforced polymer (CFRP) sheets and subjected to two loading patterns (LPs). 

Appropriate constitutive relationships were employed to model the behavior of concrete, 

internal steel reinforcement, EB CFRP reinforcement, and CFRP-to-concrete interface, and 

consequently predict the structural behavior and capture the failure modes of the strengthened 

beams. Three constitutive models for the behavior of concrete in shear were evaluated, 

namely a total strain rotating crack model and two fixed-angle crack models with either 

constant or variable shear retention factors.  

The majority of published FE studies have considered rectangular sections that were 

strengthened before testing. The key feature of the FE models presented in this paper is the 

use of the phased analysis technique to model realistically the process of strengthening RC T-

beams under load and predict the structural response of the beams to different loading 

patterns. Furthermore, the paper provides insight into, and evaluates the accuracy of the three 

concrete shear models named above. A detailed comparison between the numerical and 

experimental results included the shear forces at failure, shear force-deflection curves, crack 

patterns, failure modes, and strains in the internal steel and external CFRP shear 

reinforcement. The FE models predicted the experimental shear force capacities and crack 

patterns with sufficient accuracy but underestimated the post-repair stiffness for the beams 

subjected to Loading Pattern 1 and overestimated the strain in the CFRP sheets.   

CE Database subject headings: Concrete beams; Cracking; Fiber reinforced polymers; 

Finite element method; Reinforced concrete; Retrofitting; Shear Strength; Sheets 
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INTRODUCTION   

Shear failure of reinforced concrete (RC) infrastructure often leads to catastrophic 

consequences as it occurs in a brittle manner without prior warning. An example of such 

consequences can be seen in the collapse of the de la Concorde overpass in Laval, Canada 

which killed or seriously injured eleven people (Johnson et al., 2007).  

The need to upgrade or replace a structure that has been identified as having insufficient 

shear capacity can result in significant user delays as well as high detour and reconstruction 

costs. Hence, the shear strength enhancement of existing RC infrastructure is of considerable 

economic and strategic importance, particularly for bridges.  

Externally bonded (EB) fiber reinforced polymer (FRP) shear strengthening systems offer 

several advantages over steel systems, such as high strength-to-weight ratio, corrosion 

resistance, and ease of application. Thus, EB FRP systems have attracted the attention of 

many researchers (Khalifa and Nanni 2002; Pellegrino and Modena 2002; Chen and Teng 

2003a,b; Deniaud and Cheng 2003; Bousselham and Chaallal 2006) who have confirmed 

their effectiveness as external shear reinforcement for RC members.  

Several design guidelines for the shear strengthening of RC structures with EB FRP 

reinforcement have been published (fib Bulletin 14 2001; The Concrete Society Technical 

Report No. 55 2012; ACI 440.2R-08 2008). To date, none of these design guidelines has 

gained wide acceptance. The reason is twofold. First, shear failure of FRP-strengthened RC 

structures is of notable complexity and depends on many factors that have not yet been 

considered within a single design model. Second, the majority of the proposed design models 

employ empirical or semi-empirical expressions for the effective strain in the FRP. This 

suggests the need for sophisticated models involving compatibility as well as equilibrium 

considerations in order to address the complex shear behavior of FRP-strengthened RC 

members. 

One possible approach is to use the Finite Element Method (FEM) to predict the behavior and 

capacity of RC structures repaired in shear with EB FRP reinforcement. The FEM is a 

powerful analytical tool that can be used to model various combinations of geometry and 

loading. The nonlinear behavior of FRP-strengthened RC structures can be taken into 

consideration by incorporating appropriate constitutive laws and iterative procedures. Finite 

element (FE) analysis, however, carries inherent difficulties in modeling the shear behavior 

of concrete as well as the behavior of the FRP-to-concrete interface. A careful consideration 

of these complexities is thus essential to the successful implementation of the FEM in shear 

strengthening applications. 
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Many researchers (Wong and Vecchio 2003; Godat et al. 2007; Kim and Vecchio 2008; Chen 

et al. 2010; Godat et al. 2012) have successfully implemented the FEM to analyze FRP-

strengthened RC structures. However, very few researchers (Vecchio and Bucci 1999; Kim 

and Vecchio 2008) have considered precracked RC structures strengthened in shear with EB 

FRP reinforcement. Furthermore, FE-based studies modeling the effect of different load 

histories on the shear behavior of FRP-strengthened RC structures are scarce. This paper 

addresses FE modeling of precracked RC T-beams strengthened in shear with EB carbon 

FRP (CFRP) sheets using the commercial FE package DIANA-9.2. The paper presents the 

predicted structural response of the beams to different load histories, provides insight into 

three alternative constitutive models for the behavior of concrete in shear, and concentrates in 

particular on modeling the sequence of loading, unloading, repair and reloading.       

 

RESEARCH SIGNIFICANCE 

The majority of existing publications in the field of FE modeling of RC beams strengthened 

in shear with EB FRP reinforcement (Wong and Vecchio 2003; Chen et al. 2010; Godat et al. 

2012) have focused on rectangular sections strengthened before testing. This paper presents 

FE models for predicting the structural response of shear-critical, CFRP-strengthened RC T-

beams to different loading patterns. The FE models presented herein successfully employ the 

phased analysis technique to model realistically the process of strengthening RC structures 

under load. Furthermore, this paper provides insight into, and evaluates the accuracy of three 

widely used constitutive models for the behavior of concrete in shear, namely a total strain 

rotating crack model and two fixed-angle crack models with either constant or variable shear 

retention factors (DIANA-9.2 Material Library, 2007).          

 

EXPERIMENTAL INVESTIGATION 

The FE models reported in this paper were validated using experimental work carried out by 

Dirar et al. (2012). They tested five CFRP-strengthened RC T-beams that were precracked 

before the application of the EB CFRP reinforcement. The experimental parameters 

considered were load history (precracking the test specimens under two loading patterns), 

effective beam depth (either 215 mm or 295 mm), and percentage of longitudinal steel 

reinforcement (either 3.3% or 4.5%). Figure 1 depicts the T-shaped cross-sections considered 

in the experimental investigation.   

The loading regime adopted for testing comprised two loading patterns, each with two 

loading phases as shown in Figure 2. Phase I included precracking a test specimen under a 
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load level of 70% of its unstrengthened shear force capacity and then unloading the specimen 

to 40% of its unstrengthened shear force capacity. Phase II consisted of installing the EB 

CFRP sheets and loading the specimen up to failure. In Loading Pattern 1 (LP1) the location 

of the applied load in Phase II was the same as in Phase I, whereas in Loading Pattern 2 

(LP2) the loading in Phase II was different to that in Phase I. This enabled a comparison of 

the mobilization of different shear crack patterns before and after strengthening. 

All tested shear spans had 6 mm shear links spaced at 250 mm center-to-center. The external 

CFRP reinforcement on a tested shear span consisted of three layers of continuous CFRP 

sheets in the form of a U-wrap around the webs and base of the beam, bonded over a length 

of shear span of either 1125 mm (F/295/LP1/4.5, F/295/LP2/4.5, and F/295/LP1/3.3) or 820 

mm (F/215/LP1/4.6 and F/215/LP2/4.6). The composite material (sheets + adhesive) had a 

nominal thickness of 1 mm per layer whereas the CFRP sheets had a nominal thickness of 

0.131 mm per layer. The CFRP sheets, epoxy resin, and composite material had tensile 

strengths of 4300 MPa, 30 MPa, and 350 MPa respectively and elastic moduli of 238 GPa, 

4.5 GPa, and 28 GPa respectively.  

The beams were referenced using the notation F/beam depth (mm)/loading pattern/percentage 

of longitudinal steel reinforcement. All beams were tested in four-point bending and had a 

1000 mm long constant moment region, except that F/295/LP2/4.5 was tested in three-point 

bending. Additional shear reinforcement was placed in part of F/295/LP2/4.5 thereby leaving 

a single test span. The base of the web was chamfered in the shear span regions to provide a 

contoured surface around which the CFRP sheets could be applied. Table 1 details the 

geometrical and material properties of the tested specimens. The stress-strain curves of the 

steel reinforcement are depicted in Figure 3. Further details of the experimental program are 

available in Dirar et al. (2012).  

 

FINITE ELEMENT MODELING STRATEGY 

Four of the five CFRP-strengthened beams tested by Dirar et al. (2012) failed in shear due to 

debonding of the EB CFRP sheets from the concrete. The exception was F/295/LP1/3.3 

which failed in flexure. The debonding plane occurred within a thin layer of concrete 

adjacent to the concrete-to-adhesive interface because the adhesive was stronger than the 

concrete. Hence, the FRP-to-concrete interface in this study was considered as the adhesive 

plus the adjacent thin layer of concrete within which debonding occurred. Three-dimensional 

models incorporating interface elements were deemed necessary to properly simulate the 

bond-slip behavior at the FRP-to-concrete interface.   
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The double symmetry of F/295/LP1/4.5, F/295/LP1/3.3, F/215/LP1/4.6, and F/215/LP2/4.6 

about the x-y and y-z planes shown in Figure 4(a) enabled a quarter-model to be developed 

for the nonlinear analysis of these beams. A half-model was developed for F/295/LP2/4.5 

since it was symmetric only about the x-y plane shown in Figure 4(b). Appropriate boundary 

conditions were applied at the plane(s) of symmetry in each case.    

DIANA-9.2 Phased Analysis Module (2007) was used to model the different loading phases 

as well as the staged addition of the CFRP sheets. A phased analysis consists of several 

calculation phases. The FE model may change between phases by the addition or removal of 

elements or boundary conditions. In nonlinear phased analysis, the results of the last step in 

phase i are used as initial values for the first step in phase i+1. The FE models were subjected 

to two loading phases. Initially, a FE model was developed with elements representing the 

concrete, internal steel reinforcement, EB CFRP reinforcement, and FRP-to-concrete 

interface. However, the elements representing the EB CFRP reinforcement and the FRP-to-

concrete interface were set as inactive during Phase I. The remaining FE model consisting of 

the elements representing the concrete and the internal steel reinforcement was then loaded to 

70% and unloaded to 40% of the unstrengthened shear force capacity of the corresponding 

test specimen. Phase II included activating the elements representing the EB CFRP 

reinforcement and the FRP-to-concrete interface, and then loading the FE model up to failure. 

This technique allowed accurate modeling of the physical tests.              

 

GEOMETRICAL MODELING 

The following subsections describe briefly the element types used in the FE models. Further 

information on the chosen elements is available in DIANA-9.2 Element Library (2007). 

  

Concrete and Support Plate 

The concrete was modeled with eight-node isoparametric solid brick elements except in the 

chamfered regions of the web where it was modeled with six-node isoparametric solid wedge 

elements. These elements were favored because they offered computational efficiency 

without affecting the accuracy of the model. The brick and wedge elements have three 

degrees of freedom at each node (translations in the x, y, and z directions shown in Figure 4). 

The stress field in these elements is three-dimensional and the loading can be in any 

direction. 

Several concrete element sizes were investigated. The failure load predictions obtained by 

using element sizes of 1.25da (12.5 mm) and 2.5da (25mm) differed by approximately 7% (da 
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is the maximum aggregate size) in a few cases whereas the shear force-deflection curves were 

unaffected. Hence, the 25 mm concrete element size is adopted in this study as it is 

computationally inexpensive compared to the 12.5 mm element size. This is consistent with 

both the recommendation of Bažant and Oh (1983) to use element sizes of 3da, and the results 

of the convergence study carried out by Godat et al. (2012) which showed that the decrease 

of element sizes from 25 mm to 12.5 mm did not result in significant differences in the 

numerical results.    

The steel support plate was modeled with six-node isoparametric solid wedge elements 

similar to those used to model the chamfered regions of the beam web.            

 

Steel Reinforcement 

All internal steel reinforcement bars were modeled as embedded reinforcement, by rebar 

(truss-like) elements with no degrees of freedom of their own and strains computed from the 

displacement fields of the surrounding concrete elements. Ideally, the bond between the 

concrete and the steel reinforcement should be modeled as a recent study (Chen et al. 2012) 

reported that a strong bond assumption can either increase or decrease the shear capacity of 

FRP-strengthened RC beams with increasing number of shear cracks or increasing main shear 

crack angle respectively. However, other studies (Godat et al. 2007; Kim and Vecchio 2008; 

Godat et al. 2012) demonstrated that the perfect bond assumption between the concrete and 

the steel reinforcement can be used successfully to predict the behavior of FRP-strengthened 

RC structures when bond failure between the two components is not the governing failure 

mode. Indeed, bond failure between the concrete and the internal steel bars was not the 

governing failure mode of the tested specimens considered in this study, and so perfect bond 

was assumed between the concrete and the embedded steel reinforcement.  

 

FRP Reinforcement and FRP-to-Concrete Interface   

The unidirectional CFRP sheets were modeled with two-node truss elements spaced at 25 

mm center-to-centre along the tested shear spans, with truss elements aligned in the fiber 

direction (see Figure 4). All truss elements, apart from those next to the support and load 

positions, had a uniform cross-sectional area equal to the center-to-center distance of the truss 

elements multiplied by the thickness of the CFRP sheets. The truss elements next to the 

support and load positions had a uniform cross-sectional area equal to half of the area of the 

remaining truss elements.    
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The FRP-to-concrete interface was modeled with eight-node interface elements. These 

elements connected the edges of the concrete brick and wedge elements to the CFRP truss 

elements and allowed relative displacements to occur between the two materials. 

 

MATERIAL MODELING 

Three different constitutive models for the behavior of concrete in shear were used, namely a 

constant shear retention model, a variable shear retention model, and a total strain rotating 

crack model. These models were combined with material models representative of the 

behavior of concrete in compression and tension, internal steel reinforcement, CFRP sheets, 

and FRP-to-concrete interface. 

 

Concrete Shear Models 

In the fixed-angle crack model, a crack initiates perpendicular to the direction of the principal 

tensile stress and its direction remains unchanged, i.e. the orientation of the crack is fixed. At 

the moment of crack formation, there are no shear stresses in the crack plane. With increased 

loading, the directions of the principal stresses might change. Hence, in the fixed-angle crack 

model, shear stresses can exist parallel to the existing crack but cannot be fully transferred by 

the concrete alone due to the presence of a weakened plane. In FE modeling, this is 

represented by reducing the shear stiffness parallel to the crack using a shear retention factor 

(β) between zero and unity. Both shear retention models available in DIANA, constant shear 

retention and variable shear retention, were used in this study.  

Bédard and Kotsovos (1986) suggested that shear retention values smaller than 0.1 tend to 

cause numerical instability whereas shear retention values greater than 0.5 result in high 

tensile stresses which lead to underestimating the load-carrying capacity of a concrete 

structure. They also demonstrated that numerical predictions are unaffected significantly by 

shear retention values between 0.1 and 0.5. Accordingly, two constant shear retention values 

of 0.1 and 0.2 were initially used. FE predictions (not reported in this paper due to space 

limitations) of the unstrengthened control beams tested by Dirar et al. (2012) showed that a 

shear retention value of 0.1 gave more accurate predictions for the peak loads than a value of 

0.2. Hence, a shear retention value of 0.1 was adopted in this study. 

The variable shear retention model [Eq. (1)] takes into account the deterioration of shear 

stiffness with opening strain (εcr) normal to the crack. 
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Based on DIANA recommendations, an initial value of β equal to 0.999 was used in order to 

avoid β becoming equal to unity when the crack arises, i.e., when εcr = 0. 

In the rotating-angle crack model, the crack direction changes with the change in direction of 

the principal tensile stress. As a result, the crack plane is always a principal plane and shear 

stresses cannot exist on that plane. Hence, no concrete shear model is required.  

 

Concrete in Compression and Tension 

For the models with constant or variable shear retention factors, constitutive relationships 

based on the theory of plasticity were used to model concrete compression. A compression 

stress-strain curve developed by Wang et al. (1978) was implemented and Von-Mises yield 

criterion was used to govern concrete failure in compression. Ideally, a concrete failure 

criterion should be used. However, the use of von-Mises yield criterion is justified in this 

study because the experimental behavior of the modeled beams was governed by the tensile 

and cracking behavior of the concrete whereas the compressive behavior of the concrete 

played a less important role. For the rotating-angle models, the concrete in compression was 

modeled by Thorenfeldt’s et al. (1987) stress-strain curve which is predefined in DIANA 

total strain model (DIANA Material Library, 2007). However, Thorenfeldt et al.’s (1987) 

stress-strain curve becomes comparable to Wang et al.’s (1978) stress-strain curve for fcu = 25 

MPa which is a reasonable approximation of the average cube compressive strength of the 

tested beams. 

The behavior of concrete in tension was modeled as linear up to the concrete tensile strength 

(ft). A linear tension cut-off criterion governed crack initiation. A crack forms according to 

the linear tension cut-off criterion if the principal tensile stress exceeds the lesser of ft and 

ft(1+σlateral/fcu) where σlateral is the lateral principal stress. The post-cracking behavior of 

concrete was modeled by a linear tension softening model [Eq. (2)] which relates the ultimate 

concrete tensile strain (εc,ult) to the concrete tensile strength, concrete fracture energy (Gf), 

and crack bandwidth (hb). 

 

tb

f
c,ult fh

G
ε

2
=                                               (2) 
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The concrete fracture energy (Gf) was calculated using the formulations of Phillips and 

Binsheng (1993):  

 

cuf13.12.43 +                                                (3) 

 

In Eq. (3), Gf is given in N/m whereas fcu must be in N/mm2. Of note is that the fracture 

energy values predicted by Eq. (3) for the beams considered in this study are practically equal 

to the fracture energy values that can be calculated using Bažant and Becq-Giraudon’s (2002) 

method.  

The crack bandwidth (hb) is a parameter used to regulate the value of εc,ult in order to achieve 

mesh-independent predictions. It was taken as the cube root of the concrete finite element 

volume as recommended by DIANA.  

The smeared crack approach was implemented where the concrete is treated as a continuum 

even after cracking.    

 

Crack Unloading and Reloading 

Crack unloading and reloading were modeled with a secant approach where the crack normal 

strain (εcr) is reversible. Upon crack unloading, the stress normal to crack, crack strain, and 

crack orientation are stored in order to check for re-opening during a subsequent stage of the 

loading process. A crack is considered fully closed when εcr = 0. A closed crack is assumed to 

re-open if the stress normal to it exceeds the stress which existed upon unloading. Further 

details can be found in Rots (1988) and DIANA-9.2 Material Library (2007).                

 

Steel Reinforcement and Support Plate 

The support plate and the 8 mm, 16 mm, and 20 mm reinforcement bars were modeled as 

elastic-perfectly plastic materials. However, the 6 mm and 25 mm bars were modeled as 

materials with plastic hardening according to their experimental stress-strain curves (see 

Figure 3). The Von-Mises yield criterion was implemented in the plastic region.  

 

FRP Reinforcement and FRP-to-Concrete Interface 

The CFRP sheets were modeled as an elastic brittle material. The bilinear bond stress–slip 

model developed by Lu et al. (2005) represented the behavior of the FRP-to-concrete 

interface. Lu et al. (2005) and Godat et al. (2012) showed that this model provides accurate 

fG =
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predictions of both the bond strength and the strain distribution in the FRP reinforcement. As 

depicted in Figure 5, the bond stress-slip relationship is linear up to the peak bond stress 

(τmax). Debonding initiates if the slip value exceeds so, the slip value corresponding to the 

peak bond stress. The debonding process is modeled by a linear softening function which 

relates the ultimate slip (smax) to the interfacial fracture energy (Gf,int). The interfacial fracture 

energy depends on the width of the FRP sheet (bf), the width of the concrete specimen 

bonded to the FRP sheet (bc) and the concrete tensile strength (ft). Complete debonding 

occurs when the slip value exceeds smax.  

 

SOLUTION PROCEDURE 

Initially, loads were applied using displacement increments of 0.2 mm but this method 

encountered convergence difficulties during the unloading-reloading stage. Consequently, 

this displacement control method was substituted with a load control method where load 

increments of 1 kN to 2 kN were used. The Quasi-Newton iteration method was used – up to 

a load level of 80% of the experimental shear force – to achieve equilibrium at the end of 

each increment. An iteration-based adaptive loading scheme, which decides automatically 

whether the next step must be an increment or a decrement, was then used up to failure 

because of its capability to tackle sharp snap-through or softening behavior (DIANA Analysis 

Manual, 2007). A force norm value of 0.001 was used to specify convergence whereas the 

force norm value used to specify divergence was 1000. A maximum of 500 iterations were 

allowed before ending the analysis due to non-convergence. This strategy proved successful 

as convergence was achieved at every load step. Hence, it was used in all the analyses 

reported in this paper. Alternatively, it could have been possible to use a dynamic solution 

procedure (Chen et al. 2011, 2012) or displacement increments in the reloading stage to 

predict the complete post-peak behavior of the beams. However, the adopted solution strategy 

was deemed acceptable as the main emphasis was on predicting the structural behavior up to 

and including peak loads rather than predicting the complete post-peak behavior. 

   

RESULTS AND DISCUSSION  

The following subsections compare the FE results with the experimental results. The FE 

strain and deflection data were collected at the same locations where these parameters were 

measured experimentally.  
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Shear Force Capacity  

The experimental, Vexp, and FE shear forces for the constant, Vconst, variable, Vvar, and rotating, 

Vrotat, models at failure are given in Table 2. In general, the FE predictions were in good 

agreement with the experimental results. 

The total strain rotating crack model was the most statistically accurate of the three concrete 

shear models used in this study. For the majority of the predictions, the model underestimated 

the shear forces at failure with a mean predicted/experimental ratio of 0.96 and a standard 

deviation of 0.10. This was to be expected since the rotating crack model assumes that the 

crack planes are always principal planes and hence underestimates the amount of shear 

stresses transferred across the cracks. It should be noted that the prediction of the rotating 

crack model for F/295/LP1/3.3 was not included in calculating the above values due to the 

erroneous failure mode predicted by the model. This will be further discussed in the next 

sections. 

The fixed-angle crack model with constant shear retention factor overestimated the shear 

forces at failure for most of the results with a mean predicted/experimental ratio of 1.09 and a 

standard deviation of 0.09. This result suggests that the constant shear retention value of 0.1 

considered in this study is quite reasonable. 

The least accurate model was the fixed-angle crack model with variable shear retention factor. 

The model generally overestimated the shear forces at failure with a mean 

predicted/experimental ratio of 1.14 and a standard deviation of 0.12. This result suggests that 

the variable shear retention model in DIANA overestimates the transfer of shear stresses 

across cracks. 

Table 2 shows that the FE models subjected to LP1 had lower shear force capacity than the 

corresponding FE models subjected to LP2. However, the differences in capacity were about 

10% in most of the cases. This result agrees with the experimental results which suggested 

that differing loading patterns did not generally seem to have a significant effect on the shear 

force capacity. In beams subjected to LP1, the shear cracks formed prior to strengthening are 

likely to be mobilized again once strengthened. In beams subjected to LP2, two different sets 

of shear cracks are stimulated, before and after strengthening. In order to propagate, shear 

cracks formed after strengthening have to cross the set of flexural cracks formed prior to 

strengthening. As a result of low stress transfer at the pre-crack interface, a higher load is 

needed to develop sufficient tensile stress for further crack propagation. This may explain the 

higher loads attained by the FE models for test specimens subjected to LP2. 
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Shear Force-Deflection Curves 

The experimental and FE shear force-deflection curves are compared in Figure 6. For the 

purpose of interpreting results, the shear force deflection curves are divided into three stages: 

loading, unloading, and reloading.  

During the initial loading stage, all the FE models predicted the uncracked linear stiffness 

accurately, suggesting that the elastic constants and boundary conditions were well modeled. 

The FE models for beams subjected to LP1 correctly predicted the initiation of flexural 

cracks at a shear force of about 20 kN and thus the predicted shear force-deflection curves 

turned nonlinear. Between a shear force of 20 kN and 60 kN, flexural cracks extended into 

the shear spans and turned into inclined cracks resulting in further stiffness deterioration. This 

was also well predicted by all the FE models for specimens subjected to LP1. Within this 

shear force range (20 kN – 60 kN), the FE models for beams subjected to LP1 started to 

overestimate the experimental deflections as can be seen in Figure 6. By the end of the 

loading stage, the rotating crack models for specimens subjected to LP1 overestimated the 

experimental deflections by an average of 2.68 mm. The corresponding values for the fixed 

crack models with constant and nonlinear shear retention factors were 0.88 mm and 0.45 mm 

respectively. This result demonstrates that both shear retention models accurately predicted 

the experimental stiffness of the beams subjected to LP1 up to the end of the loading stage. 

The overestimated deflections predicted by the rotating crack model were to be expected as 

this model implicitly provides shear softening, or deterioration of concrete shear modulus, at 

a rate higher than that provided by the fixed angle crack models due to the coaxiality of 

principal stresses and strains in the rotating crack model (Rots and Blaauwendraad, 1989). 

This higher shear softening rate resulted in higher deflection predictions by the rotating crack 

models.    

All the FE models accurately predicted the stiffness of the tested beams subjected to LP2 up 

to the end of the loading stage. This can be explained by the fact that these beams had shorter 

shear spans during the loading stage (see Figure 2) and thus had fewer cracks compared to the 

beams subjected to LP1, i.e. the cracked stiffness did not deviate much from the uncracked 

stiffness.   

All the FE models, apart from the rotating crack model for F/215/LP1/4.6, underestimated the 

deflections at the end of the unloading stage. This is directly influenced by the crack 

unloading model which assumes linear unloading from any point in the softening branch of 

the tension softening curve to the origin and therefore underestimates the residual deflections 

in analyses consisting of loading-unloading cycles. Unloading from a point with high crack 
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strain (i.e. high x-axis value) to the origin decreases the slope of unloading curve. Hence, for 

two different points on the softening branch, the unloading model results in a higher 

unloading rate (greater release of strain for a given reduction of stress) for the lower point 

than for the upper point. This is why the rotating crack models for beams subjected to LP1, 

which had higher crack strain compared to the corresponding fixed crack models, 

experienced higher unloading rates and therefore predicted better the deflections at the end of 

the unloading stage. As mentioned above, the beams subjected to LP2 did not experience 

much cracking during the loading stage and therefore their FE predictions were within 0.5 

mm of the experimental deflections at the end of the unloading stage.  

All the FE models correctly showed higher stiffness at the beginning of the reloading stage 

due to the activation of the interface and truss elements representing the CFRP strengthening 

system. Comparing the inclinations of the experimental and predicted reloading parts of the 

shear force-deflection curves, it can be seen that the FE models slightly underestimated the 

stiffness of the beams subjected to LP1. It should be noted that the pseudo-stiff response 

(lower deflections at a given load) shown by some of the fixed crack models subjected to LP1, 

e.g. the fixed crack models for F/295/LP1/3.3, is a consequence of the underestimated 

deflections at the end of the unloading stage. For beams subjected to LP2, the FE stiffness 

predictions reasonably matched the experimental results during the reloading stage. 

As can be seen in Figure 6, the shear force-deflection curve predicted by the rotating crack 

model for F/295/LP1/3.3, which failed in flexure, shows brittle failure characterized by a 

sudden drop in load. As will be demonstrated below, the crack strain results for a given beam 

are higher for the rotating crack model than for the fixed crack models. In the case of the 

rotating crack model for F/295/LP1/3.3, the higher crack strain, which is a measure of crack 

width, led to the shear capacity falling below the flexural capacity by about 8%. This explains 

the shear mode of failure predicted by the rotating crack model for F/295/LP1/3.3. The fixed 

crack models with constant and nonlinear shear retention values correctly predicted the 

flexural failure of F/295/LP1/3.3 as shown in Figure 6. 

          

Crack Patterns and Failure modes 

A significant strength of the FE models presented in this paper is their ability to predict the 

experimentally observed crack patterns. This can be seen in Figure 7 which illustrates the 

experimental and typical predicted crack pattern for F/295/LP1/4.5 before applying the CFRP 

sheets. The vectors shown in Figure 7 represent the normal to the crack strain, which is a 

measure of crack width. The maximum crack strain of 0.035 shown in Figure 7 was predicted 
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by the rotating crack model for F/295/LP1/4.5. The corresponding values predicted by the 

constant and nonlinear shear retention models for the same beam were 0.0081 and 0.0087 

respectively. This result further confirms the reason behind the overestimated deflections and 

underestimated load-carrying capacities predicted by the rotating crack models. 

The experimental mode of failure for the tested beams, except F/295/LP1/3.3 which failed in 

flexure, was characterized by shear failure in the concrete accompanied by the debonding of 

the CFRP sheets. In order to demonstrate that the FE models can capture the debonding of the 

CFRP sheets, the interfacial slip profiles at the most critical region (750 mm from the 

support) of F/295/LP1/4.5 are plotted in Figure 8 for different values of the shear force. The 

fluctuations from negative to positive values of interfacial slip at a shear force of 66 kN 

indicate the presence of two inclined cracks at about 125 mm and 200 mm from the soffit of 

the beam. On further loading to 92 kN, the slip values increased at the vicinity of these cracks. 

At a shear force of 113 kN, the slip value of 0.2 mm at 125 mm from the beam soffit 

exceeded the maximum slip value (smax) of 0.17 mm calculated by Lu et al. (2005) model, 

resulting in the complete debonding of the CFRP sheets. Further interfacial slip results (not 

reported here due to space limitation) showed that debonding of the CFRP sheets occurred 

also at the free edge of the sheets close to the loading point and near the beam soffit close to 

the support. Hence, it could be concluded that the FE models were capable of predicting the 

debonding mode of failure.     

 

Strain in the shear links and CFRP sheets 

The strain results in the shear links and CFRP sheets are presented only for representative 

beams. Figure 9 shows that the FE models for F/215/LP2/4.6 correctly predicted that initially 

the strains were negligible and remained so until the formation of inclined cracks. The shear 

forces at which the links became active were on the whole overestimated. After the links 

were intersected by the inclined cracks, they exhibited a sharp increase in strain which 

continued until either yield or failure occurred. The rotating crack model overestimated the 

strain in the outer and middle shear links at failure. This is mainly because the rotating crack 

model underestimates the shear stiffness of cracked concrete due to shear softening and 

consequently overestimates the crack strain as discussed in an earlier section. The fixed crack 

models provided better predictions of the strain in the outer and middle shear links at failure 

but generally underestimated the strain at a given load. All the FE models correctly predicted 

that the inner shear links carried the least amount of strain. This is mainly because the region 
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close to the load, where the inner links were located, did not experience significant inclined 

cracking. 

The predicted and experimental shear force-strain curves for the CFRP sheets of 

F/295/LP1/4.5 are presented in Figure 10. The FE models correctly predicted that the CFRP 

sheets resist the further opening of existing shear cracks and hence start to develop strain with 

increased loading. However, the strain in the CFRP sheets, and consequently their 

contribution to the total shear force capacity, was generally overestimated by all the FE 

models. This result indicates that the bond-slip model overestimated the interfacial shear 

stresses at a given load. As the shear force capacity for F/295/LP1/4.5 is made up of three 

components (concrete contribution (Vc), steel contribution (Vs), and CFRP contribution (Vfrp)), 

all the FE models underestimated the steel and concrete (Vc+Vs) components because all the 

FE predictions for the shear force capacity of F/295/LP1/4.5 were less than the experimental 

shear force capacity (see Table 2). The predicted/experimental ratios of both versions of the 

fixed crack models for the shear force capacity of F/295/LP1/4.5 were 0.99 whereas the 

rotating crack model provided a predicted/experimental ratio of 0.85 for the same beam. 

Hence, the rotating crack model unduly underestimated the (Vc+Vs) components. This 

suggests that the rotating crack model, which generally provided conservative shear force 

capacity predictions, was artificially better compared to the two versions of the fixed crack 

model. 

   

Comments on Material Models  

The FE analyses modeled the process of strengthening the tested beams under load and 

reproduced their overall behavior. However, there were some discrepancies between the 

experimental results and the predictions of the FE models. The effects of the crack unloading 

model on deflection predictions have been explained in detail in an earlier section. The shear 

softening incorporated implicitly in the rotating crack model and its effect on deflections and 

crack strains have also been discussed. The fixed crack models generally underestimated the 

strain in the shear links at a given load. This was mainly influenced by the overestimated 

strains in the CFRP sheets which affected the shear force at a given load carried by the links. 

This result further confirms that the bond-slip model overestimated the transfer on interfacial 

shear stresses.  
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SUMMARY AND CONCLUSIONS 

This paper presented three-dimensional FE models for precracked RC T-beams repaired in 

shear with EB CFRP sheets and subjected to different loading patterns. The key features of 

the FE modeling are the implementation of the phased analysis technique to model 

realistically the structural response to different loading patterns as well as the staged addition 

of the CFRP sheets. The predictions of three constitutive models for concrete in shear 

available in the FE package DIANA-9.2 were compared with experimental results. Based on 

the results of this study, the following conclusions which relate to the material models used in 

this study are drawn: 

1. The shear force capacity predictions were in good agreement with the experimental 

results. The mean predicted/experimental capacity ratios achieved by the rotating 

crack model, the constant shear retention model, and the nonlinear shear retention 

model were 0.96, 1.09, and 1.14 and the standard deviations were 0.10, 0.09, and 0.12 

respectively.  

2. The deflection predictions were more accurate for beams subjected to LP2 than for 

beams subjected to LP1. The deflection predictions for the latter beams were affected 

by the formulations of both the rotating crack and the crack unloading-reloading 

models. The rotating crack model, which assumes coaxiality between the principal 

stresses and strains, underestimated the shear stiffness of cracked concrete and 

therefore overestimated the deflections at a given load after cracking. The crack 

unloading-reloading model assumed linear unloading to the origin and therefore 

underestimated the deflections after the unloading stage.   

3. The main experimental mode of failure was characterized by shear failure due to 

debonding of the CFRP sheets. This mode of failure was well captured by the FE 

models with slip values in the interface elements indicating the debonding of the 

CFRP sheets. The fixed crack models correctly predicted the flexural failure of 

F/295/LP1/3.3 but the rotating crack model predicted a shear mode of failure for this 

beam due to underestimating its shear force capacity.   

4. The FE models overestimated the predicted strains in the CFRP sheets. Consequently, 

the FE models overestimated the FRP contribution and underestimated the steel and 

concrete contributions to the shear force capacity. The rotating crack model, which 

generally provided conservative shear force capacity predictions, was artificially 

better compared to the fixed crack models with constant and nonlinear shear retention 

factors. 
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Table 1 Geometrical and Material Properties of the Tested Specimens 

Specimen 

Shear 
span 
(a), 
mm 

Effective 
depth 

(d), mm 

Tension 
steel 

area (As), 
mm2 

As/bwd 
(%) 

Cube 
compressive 

strength 
(fcu), MPa 

Concrete 
fracture 
energy 

(Gf), N/m  

Tensile 
strength, 

MPa 

F/295/LP1/4.5 1125 295 1383 4.5 24 70.3 3.2
F/295/LP2/4.5 1125 295 1383 4.5 27 73.7 2.1
F/215/LP1/4.6 820 215 1030 4.6 32 79.4 3.8
F/215/LP2/4.6 820 215 1030 4.6 25 71.5 4.2
F/295/LP1/3.3 1125 295 1030 3.3 28 74.8 3.6

 
 
 
 
Table 2 FE and Experimental Shear Forces at Failure 

Specimen 
Vexp, 
kN 

Vrotat, 
kN 

Vrotat/Vexp 
Vvar, 
kN 

Vvar/Vexp 
Vconst, 

kN 
Vconst/Vexp 

F/295/LP1/4.5 135 114.8 0.85 134.4 0.99 134.4 0.99 
F/295/LP2/4.5 133.5 127.2 0.95 153.6 1.15 142.4 1.07 
F/295/LP1/3.3 122.5 113 0.92* 132.2 1.08 132.4 1.08 
F/215/LP1/4.6 102.5 96.6 0.94 115.6 1.13 109 1.06 
F/215/LP2/4.6 96.5 105 1.09 128 1.33 119.8 1.24 

Average 
Std. dev. 

  0.96* 
0.10* 

 1.14 
0.12 

 1.09 
0.09 

* The prediction of the rotating crack model for F/295/LP1/3.3 is excluded due to the erroneous failure mode. 
 

 



 

Figure 1 Cross-section details (dimensions in mm) 

 



 



 

Figure 3 Stress-strain curves for the steel reinforcement 
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Figure 4 FE models (dimensions in mm); (a) F/295/LP1/4.5, F/295/LP1/3.3, 

F/215/LP1/4.6, and F/215/LP2/4.6; and (b) F/295/LP2/4.5 

 



























≤<

−

−

≤

=

maxo

omax

max

max

o

o

max

sss if          
ss

ss
 τ

s  s if                           
s

s
 τ

 τ

t
fβ. τ w51max =

))/(2( maxintmax τG s f,=

two fβ. s 01950=

)]/(251)]/[/(252[ cfcfw bb.bb-. β +=

twf, fβ. G
2

int 3080=

maxτ

os maxs

intf,G

 

Figure 5 Lu’s et al. (2005) bilinear bond-slip model 

 



  

  

  

Figure 6 Predicted and experimental shear force-deflection curves 
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  Figure 7 Experimental and typical predicted crack pattern for  

F/295/LP1/4.5 before strengthening 

 



  

Figure 8 Interfacial slip profiles at 750 mm from the  

support (rotating crack model for F/295/LP1/4.5) 
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Figure 9 Predicted and experimental strain in the shear links of F/215/LP2/4.6 
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 Figure 10 Predicted and experimental strain in the CFRP sheets of F/295/LP1/4.5 
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