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Abstract: 88 

Over the past 3.5 million years, there have been several intervals when climate conditions were 89 

warmer than during the preindustrial Holocene. Although past intervals of warming were forced 90 

differently than future anthropogenic change, such periods can provide insights into potential future 91 

climate impacts and ecosystem feedbacks, especially over centennial to millennial timescales that are 92 

often not covered by climate model simulations. Our observation based synthesis of the 93 

understanding of past intervals with temperatures within the range of projected future warming 94 

suggests that there is a low risk of runaway greenhouse gas feedbacks for global warming of no more 95 

than 2°C. However, substantial regional environmental impacts can occur. A global average 96 

warming of 1-2°C with strong polar amplification has, in the past, been accompanied by significant 97 

shifts in climate zones and the spatial distribution of land and ocean ecosystems. Sustained warming 98 

at this level has also led to substantial reductions of the Greenland and Antarctic ice sheets, with sea-99 

level increases of at least several meters on millennial time scales. Comparison of paleo observations 100 

with climate model results suggests that, due to the lack of certain feedback processes, model based 101 

climate projections may underestimate long-term warming in response to future radiative forcing by 102 

as much as a factor of two, and thus may also underestimate centennial to millennial-scale sea level 103 

rise. 104 

 105 

  106 



1. Past warm intervals as benchmarks for future environmental changes  107 

 108 

Depending on the choice of future carbon emission scenarios, projected global surface air 109 

temperature changes for the end of this century relative to preindustrial conditions (defined here as 110 

average conditions from 1850-1900 AD1) range from 1.6°C (0.9°C to 2.4°C, 5-95% confidence 111 

interval, RCP2.6) to 4.3°C (3.2°C to 5.5°C, 5-95% confidence interval, RCP8.52). Models project 112 

substantially higher warming at high latitudes with Arctic temperature changes being amplified in 113 

simulations by a factor of 2 to 3, implying future warming of ~3°C (RCP2.6) to ~12°C (RCP8.5) in 114 

these regions. Moreover, in most areas, the warming is projected to be greater over land than over 115 

the ocean.  116 

 117 

Even if future emissions are reduced, warming will continue beyond 2100 for centuries or even 118 

millennia because of the long-term feedbacks related to ice loss and the carbon cycle3,4. Given 119 

concern about these impacts, the Paris agreement proposes reducing emissions to limit global 120 

average warming to below 2°C and pursue efforts to limit it to 1.5°C, effectively defining a climate 121 

“defense line”5. Although this guardrail concept is useful, it is appropriate to ask whether the global 122 

limits proposed in the Paris COP-21 Climate Agreement really constitute a safe operating space for 123 

humanity6 on our complex planet.  124 

 125 

Many state-of-the-art climate models may underestimate both rates and extents of changes observed 126 

in paleo data7. Models are calibrated based on recent observations, simplifying some processes (e.g., 127 

the representation of clouds and aerosols) or neglecting processes important on long timescales under 128 

significantly warmer boundary conditions (e.g., ice sheet dynamics or carbon cycle feedbacks). This 129 

lack of potentially important feedback mechanisms in climate models underscores the importance of 130 

exploring warm climate intervals in Earth’s history. Understanding these past intervals may 131 



illuminate feedback mechanisms that set long-term climate and Earth System sensitivity, enabling an 132 

assessment of possible impacts of warming on physical, biological, chemical, and ecosystem services 133 

upon which humanity depends.  134 

 135 

Examples of such warmer conditions with essentially modern geographies can be found in Figure 1 136 

during the Holocene Thermal Maximum (HTM) and the Last Interglacial (LIG; ~129-116 kyr before 137 

present (BP), where present is defined as 1950). Here, the HTM is broadly defined as a period of 138 

generally warmer conditions in the time range 11-5 kyr BP, which, however, were not synchronous 139 

in their spatio-temporal expression. The LIG can also be compared to the warmer peak interglacial 140 

Marine Isotope Stage (MIS) 11.3 (~410-400 kyr BP) where climate reconstructions exist. Note that 141 

these times of peak warmth were associated with different orbital parameters, thus different spatial 142 

and seasonal distribution of solar insolation, while their greenhouse concentrations were close to 143 

preindustrial levels and their temperatures, although within the projected range of anthropogenic 144 

warming for the near future, have been controlled by a different blend of forcing mechanisms (see 145 

Section 2). Accordingly, past interglacials can be thought of as a series of natural experiments 146 

characterized by different combinations of climate boundary conditions8. Although they are not strict 147 

analogs for future warming, these past warm intervals do illustrate the regional climate and 148 

environmental response that may be triggered in the future, and thus remain useful as an 149 

observational constraint on projections of future impacts.  150 

 151 

The HTM is amenable to detailed reconstruction based on availability of data and more refined 152 

approaches to chronology, but the older interglacial intervals illustrate greater warming and impacts. 153 

To examine past climates with greenhouse gas concentrations of >450 ppm (as expected for the 154 

RCP2.6), we must look farther back in time, to at least 3 Myr BP (Mid Pliocene Warm Period, 155 

MPWP, 3.3-3.0 Ma) when atmospheric CO2 was between 300 and 450 ppm9 (Figure 1) and warm 156 



conditions lasted long enough to approach equilibrium. Older intervals, such as the Early Eocene 157 

Climatic Optimum (EECO, ~53-51 Ma) offer an opportunity to study extremely high-CO2 scenarios 158 

(900-1900 ppm) that are comparable with the fossil-fuel intensive RCP 8.52 scenario10 (>1200 ppm), 159 

however, these older intervals had continental configurations significantly different from today.  160 

 161 

Paleo evidence over the last 2000 yr and during the Last Glacial Maximum (LGM) was discussed in 162 

detail in the 5th Assessment Report of the Intergovernmental Panel for Climate Change (IPCC)2. 163 

Here we focus on the climate system responses during the three best-documented warm intervals 164 

HTM, LIG, and MPWP (Figure 1) and address spatial patterns of environmental changes and the 165 

forcing leading to them. Observations on the spatial temperature expression of these warm periods 166 

and their forcing are presented in Box 1, which also includes a discussion of the limitations of these 167 

time intervals as first-order analogs for future global and regional warming. Paleo evidence on the 168 

Earth System response to these warmer conditions is reviewed in Section 2 (summarized in Figure 169 

3). Section 3 discusses potential feedbacks and thresholds in the climate system in light of the paleo 170 

record and their implications for future warming impacts. Based on the paleo evidence on climate, 171 

sea level and past CO2 in warm intervals we assess the long-term Earth System Sensitivity (ESS)11 as 172 

imprinted in the paleo record in Box 2 and draw conclusions on limitations of current climate models 173 

to predict the long-term (millennial) change in Earth’s climate. Given the different continental 174 

configuration, we do not assess regional changes for the EECO in Section 2. We limit our analysis of 175 

the EECO to the issue of ESS in Box 2 based on available paleodata and published model 176 

experiments where we account for the global effects of changing distribution of landmasses at that 177 

time. 178 

 179 

  180 



2. Earth System responses during warm intervals 181 

2.1. Continental ice sheets and changes in sea-level 182 

Although alpine glaciers, parts of the Greenland Ice Sheet  (GIS) and some sectors of Antarctica may 183 

have had less ice during the HTM than today12,13, sea-level was still ~26 m (9 kyr BP) to ~2 m (5 kyr 184 

BP) lower than present14 implying the presence (but ongoing melting) of remnants of the glacial 185 

maximum continental ice sheets. Greenland ice retracted to its minimum extent between 5 and 3 kyr 186 

BP, perhaps as a slow response to HTM warming15.  187 

 188 

Global sea level reconstructions of 6-9 m higher than present during the LIG (and at least that for 189 

MIS11.3) require a substantial retreat of at least one of the Greenland and Antarctic ice sheets, but 190 

likely a significant reduction of both, relative to their current volumes16. During the LIG, the marine-191 

terminating ice sheet in southern and central Greenland retreated to terrestrial margins17. While latest 192 

ice sheet and climate model simulations allow for a substantial retreat of the West Antarctic Ice 193 

Sheet (WAIS) and potentially parts of East Antarctica18,19, direct observational evidence is still 194 

lacking. The GIS was also significantly reduced during MIS 11.3 peak warming with only a remnant 195 

ice cap in northern Greenland20. Cosmogenic exposure dating of subglacial materials under Summit, 196 

Greenland, suggest loss of part of the GIS during some warm intervals of the Pleistocene21.  197 

 198 

Ice sheets existed in Greenland and Antarctica during the MPWP, but their configuration is 199 

uncertain18,22. A sea-level rise of 6 m or more implies substantially less global ice than present (upper 200 

limit poorly constrained) during the MPWP16, and this calls for a significant shrinkage of the GIS 201 

and/or AIS. Model results suggest a significantly reduced GIS23, while geological data show 202 

evidence of West Antarctic deglaciation24 and potentially also over the Wilkes subglacial basin in 203 

East Antarctica25.  204 

 205 



2.2. Sea ice 206 

Qualitative reconstructions of sea ice extent and concentrations suggest reduced sea ice extent during 207 

past warm intervals both in the Arctic and around Antarctica26,27. However, even during the LIG, 208 

with strongly elevated summer insolation, sea ice existed in the central Arctic Ocean during summer, 209 

whereas sea ice was significantly reduced along the Barents Sea continental margin and potentially 210 

other shelf seas28. Ice core evidence for the LIG has been interpreted as suggesting that multi-year 211 

sea ice around Greenland was reduced, but winter sea ice cover was not greatly changed29. In the 212 

Southern Ocean, reconciliation of climate model output with warming evidence from Antarctic ice 213 

cores suggests that Antarctic winter sea ice was reduced by >50 % at the onset of the LIG30. 214 

However, although this reconstruction is consistent with a compilation of Southern Ocean sea ice 215 

proxy data, most published marine core sites are situated too far north for independent verification30.  216 

 217 

Based on limited observational evidence, generally reduced summer sea ice cover in the Arctic Basin 218 

has been reconstructed during the MPWP23 and biomarkers at the Iceland Plateau indicate seasonal 219 

sea ice cover with occasional ice-free intervals. During this warm interval the East Greenland 220 

Current may have transported sea ice into the Iceland Sea and/or brought cooler and fresher waters 221 

favoring local sea ice formation31.  222 

 223 

2.3. Marine plankton ecosystem changes  224 

Warmer ocean temperatures influenced marine ecosystems. The HTM warming was regionally 225 

diachronous and therefore did not leave a globally consistent fingerprint on the surface layer 226 

plankton habitat32. There is nevertheless abundant evidence for changes in productivity, such as in 227 

the North Pacific, where early Holocene warming appears to have promoted diatom blooms and 228 

enhanced export production in warmer, more stratified surface waters33.  229 

 230 



A reorganization of ocean productivity was also documented during the LIG, with evidence for 231 

increased frequency and poleward expansion of coccolithophore blooms34 and higher export 232 

production in the Antarctic Zone of the Southern Ocean35,36. Strongly increased export production is 233 

also found in the Southern Ocean during the MPWP37. The impacts of these changes on higher 234 

trophic levels and benthic ecosystems remain unexplored, except in the climatically sensitive 235 

marginal seas. Here, circulation changes during past warm intervals led to local extinctions and 236 

community reorganization in marine ecosystems38
, with a stronger response to LIG climate forcing 237 

than in the Holocene. 238 

  239 

Whereas HTM and LIG marine communities are good compositional and taxonomic analogs to the 240 

present, MPWP marine ecosystems differ due to substantial species turnover (extinctions and 241 

originations)39. In some groups of plankton, such as in planktonic foraminifera, enough extant 242 

species existed in the MPWP to judge general ecosystem shifts40. Data from these groups indicate 243 

that poleward displacement of mid and high-latitude marine plankton during the MPWP was stronger 244 

than during the LIG, but the diversity-temperature relationship remained similar and comparable to 245 

the present41. Thus, oceanic marine plankton responded to warming with range shifts rather than by 246 

disruption of community structure.  247 

 248 

2.4. Vegetation and climate on land 249 

Extensive proxy data is available from all continents showing large changes in vegetation and shifts 250 

in moisture regimes, indicating that the HTM was complex and temporally variable. For example, 251 

major HTM changes in vegetation are marked by greening of the Sahara42, whereas in other regions, 252 

including the Northern Great Plains of North America, aridity increased and expanded east into the 253 

boreal biome43. Many regions experienced a climate driven poleward extension of their biome 254 

boundaries with similar altitudinal vegetation expansions by a few hundred meters44. The tundra and 255 



tundra-forest boundary in eastern North America, Fennoscandia and Central Siberia shifted 256 

northward (by ~200 km), while forest shifted southward in eastern Canada (by ~200 km)45. 257 

 258 

During the LIG, tundra vegetation46 contracted, the Sahara desert vanished47, and boreal forest 259 

vegetation48 and Savanna47 expanded. Temperate taxa (hazelnut, oak, elm) were found north of their 260 

current distribution in southern Finland49. In Siberia, birch and alder shrubs dominated vegetation 261 

compared to herb-dominated tundra at present50. Southwestern Africa was marked by expansion of 262 

nama-karoo and fine-leaved savanna51.  263 

 264 

In the MPWP, temperate and boreal vegetation zones shifted poleward (for example in East Asia and 265 

Scandinavia52). Tropical savannas and forests expanded, while deserts contracted23. 266 

 267 

3.  Amplification and thresholds - paleo lessons for the future  268 

Understanding potential amplification effects and nonlinear responses in climate and environmental 269 

systems is essential, as they have substantial environmental and economic consequences53. Many 270 

potential amplification effects are outside of historical human experience, so paleo data may help 271 

understand these processes.   272 

 273 

3.1. Carbon cycle feedbacks 274 

Radiative forcing over the last 800,000 years by the atmospheric greenhouse gases CO2, CH4 and 275 

N2O was often lower but rarely higher than preindustrial values54 and also greenhouse gas rise rates 276 

in past warm periods were much slower. Over the period 1987-2016, global annual greenhouse gas 277 

concentrations rose on average by 19 ppm/decade for CO2 (with generally increasing rise rates over 278 

this 30 yr interval), by 57 ppb/decade for CH4 and by 8 ppb/decade for N2O (all data from 279 



https://www.esrl.noaa.gov/gmd/), while during the last deglaciation, high-resolution ice core data  280 

(WAIS Divide and Taylor Glacier, Antarctica) reveal maximum natural rise rates up to a factor of 10 281 

slower (~ 2.3 ppm/decade for CO2, ~ 21 ppb/decade for CH4, and 0.9 ppb/decade for N2O
54-56). 282 

While these natural variations in greenhouse gas forcing represent a substantial contribution to 283 

glacial-interglacial climate variations, the climate mechanisms that drive changes in the carbon cycle 284 

and the associated climate feedbacks remain a matter of debate. 285 

 286 

Analyses of last millennium CO2 and northern hemisphere temperature variability suggest a 287 

warming-driven net CO2 release from the land biosphere (2 - 20 ppm / oC) on decadal-to-centennial 288 

scales57,58. During short-term warming events in preindustrial times (when CO2 was rather constant), 289 

net release of land carbon due to enhanced respiration of soil and biomass appears to compensate 290 

plant growth associated with fertilization effects by higher temperatures. A similar short-term 291 

response can be expected for future regional warming. 292 

 293 

Peat accumulation rate is positively correlated with summer temperature59, but is a relatively slow 294 

process. Peat reservoirs have gradually increased over the Holocene, resulting in long-term 295 

sequestration of carbon60.  HTM rates for net carbon uptake by northern peatlands were clearly 296 

higher than those for the cooler late Holocene61,62 as a result of rapid peatland inception and peat 297 

growth during times of ice sheet retreat and strong seasonality.  298 

 299 

While peatlands were present during the LIG63, the preserved record is fragmentary so the magnitude 300 

of LIG peat carbon storages is not well constrained. During the Pliocene (and MIS 11.3), peats were 301 

likely abundant but there are only a few dated peat deposits of this age (for instance German and 302 

Polish lignite64). Boreal-type forested peatlands with thick peat accumulations may have 303 

accumulated over >50,000 years in response to warmer climates during the Pliocene65.  304 



 305 

Based on these paleo-environmental analogs, peatlands will likely expand in a 2°C warmer world on 306 

centennial to millennial time scales, although the size of this sink is difficult to estimate based on the 307 

paleo record alone and the net carbon source or sink may depend on the rate of warming and 308 

moisture conditions. If warming is fast (decadal-to-centennial) carbon may be released via 309 

respiration faster than it can accumulate via peat growth. If warming is slower (centennial-to-310 

millennial) continued peat growth may outstrip respiratory losses, yielding a net carbon sink.  311 

 312 

Widespread permafrost thaw and enhanced fire frequency and/or severity could counteract carbon 313 

sink effects of long-term peat growth66. Today, about 1330-1580 gigatons of carbon (GtC) are stored 314 

in perennial frozen ground, of which ~1000 GtC (more than the modern atmospheric carbon 315 

inventory) are located in the upper 0-3 m of soil. This frozen carbon is susceptible to a thawing of 316 

the upper permafrost layer under future warming67 and risks of the related carbon release can be 317 

assessed in ice core gas records. Although detailed data are limited, the observed variation of CO2 318 

and CH4 in ice core records suggests that the risk of a sustained release of permafrost carbon is small 319 

if warming can be limited to the modest high-latitude warming encountered during past interglacial 320 

periods68. Apart from short-lived positive excursions observed at the onset of many interglacials, 321 

atmospheric CH4 and CO2 concentrations in the ice record69,70 were not significantly elevated in past 322 

interglacials, in which the Arctic was significantly warmer than during preindustrial times50. 323 

Accordingly, the additional CO2 and CH4 releases at the onset of interglacials (if they were related to 324 

permafrost warming71), were not sufficient or long enough to drive a long-term “runaway” 325 

greenhouse-warming that outpaces negative feedback effects. If future warming is much greater than 326 

that observed for past interglacials, release of carbon from permafrost remains a serious concern that 327 

cannot be assessed based on the paleo evidence presented here.   328 

 329 



A release of CH4 from marine hydrates during climate warming as suggested from marine sediment 330 

records72 cannot be confirmed. Isotopic analysis of CH4 preserved in ice cores suggests that gas 331 

hydrates did not contribute substantially to variations in atmospheric CH4 during rapid warming 332 

events in the glacial and deglacial73,74. This may suggest that long-term CH4 releases are also 333 

unlikely to occur in future warming, as long as the magnitudes and rates of warming are limited to 334 

the range observed in the geologic record of past warm intervals.  335 

 336 

Based on the evidence summarized above, the risk of future massive terrestrial CH4 or CO2 releases 337 

that may lead to a runaway greenhouse gas effect under modest warming scenarios of RCP2.6 338 

appears to be limited. However, the amount of carbon released from permafrost as CO2 may amount 339 

to up to 100 GtC75 and has to be accounted for when implementing policies for future allowable 340 

anthropogenic carbon emissions. We cannot rule out net release of land carbon if future warming is 341 

significantly faster or more extensive than observed during past interglacials. Furthermore, past 342 

increases in CO2 were mostly driven by changes in the physical and biological pumps in the ocean 343 

and - on long time scales - through interactions between ocean and sediments and the weathering 344 

cycle. The reconstruction of ocean carbon reservoirs during past warm episodes remains a challenge, 345 

and the risk of significant reductions of ocean CO2 uptake or disturbances in the AMOC in the future 346 

with feedbacks on the carbon cycle are not well constrained. 347 

 348 

3.2. Thresholds for ice sheet melting 349 

Models of the GIS suggest extensive and effectively irreversible deglaciation above a certain 350 

temperature threshold, but the threshold is model dependent76,77. Marine records of southern GIS 351 

sediment discharge and extent suggest the GIS was substantially smaller than present during three 352 

out of the last five interglacials78 with near complete deglaciation of southern Greenland occurring 353 



during MIS 11.320,79. This suggests that the threshold for southern GIS deglaciation is already passed 354 

for the polar temperature amplification signal associated with a persistent global warming by 2˚C, 355 

i.e., within the range of the Paris Agreement (see Figure 2). Concentrations of cosmogenic 356 

radionuclides in bedrock at the base of Summit Greenland have been interpreted to suggest multiple 357 

periods of exposure of the western GIS during the last million years21. In contrast, the age of the 358 

basal ice at Summit Greenland suggests a persistent northern Greenland ice dome at least for the last 359 

million years79. Vice versa, the southern Greenland ice dome existed during the LIG but melted at 360 

some time before 400 kyr BP79. Marine records suggest the persistence of ice in eastern Greenland 361 

for at least the last 3 million years80, which would imply different temperature thresholds for 362 

deglaciation of different portions of the GIS.  363 

 364 

The WAIS was appreciated by AR52 and previous asessments as possessing an unstable marine-365 

based geometry, but the thresholds at which strong positive feedbacks would be triggered were 366 

unknown, and models failed to reproduce past sea-level contributions2. Several lines of observational 367 

evidence suggest episodes of major retreat of marine WAIS sectors81,82. Marine-based sectors of the 368 

East Antarctic Ice Sheet (EAIS) are now known to be at similar risk of collapse as those of the 369 

WAIS25,83. The main indicator for a substantial AIS contribution to global sea-level rise in past 370 

interglacials remains the sea-level proxy record16. The survival of parts of the GIS in the LIG 371 

requires a significant retreat of at least part of the AIS. Pliocene reconstructions of sea-level 372 

highstands require a substantial contribution of both the WAIS and EAIS but are subject to major 373 

uncertainties16.  374 

 375 

Since AR5, model simulations are now more consistent with prior theory and sea-level 376 

constraints18,19,84. Ice-sheet model simulations suggest that marine ice-sheet collapse can be triggered 377 

in sectors of the EAIS and WAIS for a local sub-surface ocean warming of +1-4˚18,19,84. However, 378 



thresholds for Antarctic marine ice-sheet collapse vary considerably between models and their 379 

parameterizations of ice-shelf mass balance and ice dynamics18,19,84. While some models predict that 380 

Antarctica is now more sensitive than the literature assessed in AR52, the current geological 381 

record85,86 and modeling evidence are not sufficient to rule out or confirm tipping points for 382 

individual Antarctic sectors within the 1.5-2°C global warming range. 383 

 384 

Of special societal relevance is also the rate of sea level increase. Sea-level rise has accelerated over 385 

the last century from 1.2 ± 0.2 mm/yr between 1901 and 1990 (largely due to thermosteric effects) to 386 

3.0 ± 0.7 mm/yr over the last two decades as net melting of glaciers and ice sheets has increased87. 387 

Records of paleo sea level rise rates expand our view into times when the melting response of the 388 

GIS and AIS may have been much larger than today. Sea-level changes within the LIG were likely 389 

between 3 and 7 mm/yr (1000-year average), with a 5% probability of >11 mm/yr88. For example, 390 

exposed fossil coral reefs from Western Australia89 suggest that, after a period of eustatic sea-level 391 

stability (127 to 120 kyr BP), sea-level rose quite quickly from 2.5 to nearly 8.5 meters in less than 1 392 

kyr (i.e., 6 mm/yr). Indirect evidence for sea level rise from Red Sea isotopic measurements within 393 

the LIG allows rise rates as high as 16 mm/yr90. All of these estimates are uncertain for both level 394 

and chronology and are subject to regional isostatic effects but multimeter-scale sea level oscillations 395 

within the Last Interglacial cannot be excluded16. They highlight the possibility that future sea level 396 

rise may be significantly faster than historical experience as also suggested in recent satellite 397 

altimeter data91. 398 

 399 

3.3 Response of land ecosystems 400 

The paleo record suggests sensitivity of forest ecosystems, specifically in ecotone positions, to 401 

moderate warming (1-2°C) at the decadal-to-centennial scale92,93, with tipping points reached in 402 



regions where moisture availability will go below critical ecophysiology levels for trees94. At higher 403 

latitudes and in mountain ranges increased temperatures will promote forest expansion into tundra95. 404 

Such northward shifts of boreal ecosystems will be counterbalanced by forest die-back in areas 405 

where increased drought will instead favor open woodlands or steppe96.  406 

Evidence from the HTM suggests that cool-temperate and warm-temperate (or subtropical) forests 407 

may collapse in response to climate warming of 1-2°C, if moisture thresholds are reached97, and 408 

flammable, drought-adapted vegetation will rapidly replace late-successional evergreen vegetation in 409 

Mediterranean areas98. 410 

Substantial and irreversible changes are also expected for tropical forests, with large tree mortality 411 

occurring where peripheral areas of rainforest will turn into self-stabilizing, fire-dominated 412 

savanna99. The green Sahara-desert transition that occurred at the end of the African Humid Period100 413 

implies that a warmer climate may cross the threshold to open, fire-maintained savanna and 414 

grassland ecosystems. Such rainfall thresholds are more easily reached with deforestation, and imply 415 

increased flammability, reduced tree reestablishment, and rapid runaway change toward treeless 416 

landscapes99. Opposed to carbon reduction in tropical forests is fuel buildup in subtropical regions 417 

under increasing rainfall scenarios2, implying that critical transitions will be spatially complex, 418 

depending on the position along moisture gradients96,99. 419 

 420 

4. Conclusions 421 

Past warmer worlds were caused by different forcings, which limits the applicability of our findings 422 

to future climate change. Nevertheless we can conclude that even for a 2°C (and potentially 1.5°C) 423 

global warming - as targeted in the Paris Agreement101 - significant impacts on the Earth System are 424 

to be expected. Terrestrial and aquatic ecosystems will spatially reorganize to adapt to warmer 425 

conditions as they did in the past (e.g. HTM, LIG). However, human interferences other than climate 426 



change, such as pollution, land-use, hunting/fishing and overconsumption, appear to have a much 427 

larger influence on species extinction and diversity loss102 than climate warming.  428 

 429 

The risk of amplification such as runaway greenhouse gas feedbacks appears - based on the paleo 430 

record - to be small under the modest warming of RCP2.6. From this perspective, staying in a range 431 

of warming experienced during the past interglacial periods is appropriate to limit risks and impacts 432 

of climate change101. Although these findings support the 2°C global warming target of the Paris 433 

Agreement, more rapid or extensive warming in scenarios such as RCP8.5 would be outside the 434 

experience provided by past interglacial periods reviewed here. Such a pathway into conditions 435 

without well-studied precedent would be inherently risky for human society and sustainable 436 

development. 437 

 438 

However, even a warming of 1.5-2°C is sufficient to trigger substantial long-term melting of ice in 439 

Greenland and Antarctica and sea-level rise that may last for millennia. For instance, the LIG and 440 

Marine Isotopic Stage 11.3 were characterized by prolonged warmer-than-present-day conditions in 441 

high latitudes, leading to melting of parts of Greenland and Antarctica. This ice sheet melt 442 

contributed to a more than 6 m sea-level rise compared to preindustrial16 on time scales of millennia 443 

and caused significantly higher rates of sea level rise compared to those of the last decades. 444 

 445 

Comparison of paleo data and model estimates of long-term (multi-centennial to millennial) 446 

warming in response to CO2 (see Box 2) suggests that models may underestimate observed polar 447 

amplification and global mean temperatures of past warm climate states by up to a factor of two on 448 

millennial time scales. Despite the significant uncertainties in climate and CO2 reconstructions for 449 

many of the past warm intervals, this underestimation is likely because the models lack or potentially 450 

simplify key processes such as interactive ice sheets, cloud processes and biogeochemical feedbacks 451 



that impact long-term Earth System Sensitivity. Again, this implies that long-term sea-level rise and 452 

regional and global warming may be significantly more severe than state-of-the-art climate models 453 

project.  454 

 455 

Knowledge gaps remain for all periods and all processes, including the reconstructions of past CO2 456 

concentration, air and ocean temperatures, and ecosystem responses, but also for extreme events, and 457 

changes in variability (see supplementary text). It will be important to increase our understanding of 458 

cloud and aerosol physics, to improve the representation of cryosphere-climate and biogeochemical 459 

Earth System feedbacks in climate models used for long-term projections, and to refine paleo 460 

reconstructions as a key constraint for modeled climate sensitivity. In spite of existing uncertainties, 461 

our review of observed paleo data and models associated with known warmer climates of the past 462 

underscores the importance of limiting the rate and extent of warming to that of past interglacial 463 

warm intervals to reduce impacts such as food and ecosystem disruptions, loss of ice, and the 464 

inundation of vast coastal areas where much of the world’s population and infrastructure resides. 465 

 466 

 467 
Data availability: All data and model results used in this review paper are from published literature 468 

(see references provided in the main text and the supplementary tables). 469 

  470 



 471 

Box 1 - Global and regional temperature changes in past warm intervals 472 

The HTM surface warming relative to preindustrial conditions was on average <1°C107 and is mostly 473 

expressed in northern-hemisphere proxies sensitive to the warm season. Although some regional 474 

studies define the HTM narrowly as older than 8.2 kyr BP, here we take a broad definition of ~11-5 475 

kyr BP. We exclude the 8.2 kyr cold event in the North Atlantic region, which is thought to have 476 

been caused by a freshwater disturbance111 in the North Atlantic and subsequent weakening of the 477 

Atlantic Meridional Overturning Circulation (AMOC) and is likely not representative for a global 478 

warming response expected for the end of this century.  479 

 480 

The HTM was a complex series of events in which warming occurred while ice cover and sea-level 481 

had not reached postglacial equilibrium and continental ice sheets in North America and Scandinavia 482 

were still retreating. This complexity of residual ice cover makes it likely that HTM warming was 483 

regional, rather than global, and its peak warmth, thus, had different timing in different locations10. 484 

Ice core data show that radiative forcing due to greenhouse gases during the HTM was slightly lower 485 

than preindustrial values112. Compared to preindustrial conditions, the HTM orbital configuration 486 

featured greatly enhanced summer insolation in high northern latitudes and reduced winter insolation 487 

below the Arctic Circle. On an annual average, HTM insolation was higher at high latitudes, but 488 

slightly lower in the tropics113.  489 

 490 

Global-average and high northern-latitude surface temperatures during the HTM appeared to be 491 

warmer (at least during summer) than today, while low-latitude climates were slightly cooler107, 492 

consistent with the annual orbital forcing. Although substantial warming was found in the North 493 

Atlantic marine sector between 11 and 5 kyr BP107, recent reconstructions of climate in the mid 494 

northern latitudes of continental North America and Europe based on pollen data were characterized 495 



by a cooler HTM with a slow warming as the continental ice sheets retreated114. In contrast, 496 

Greenland mean annual atmospheric temperature (after correction for ice sheet altitude changes) 497 

peaked earlier, between 10 and 6 kyr BP115,116 and was warmer than preindustrial by 1 to 4°C117, 498 

while the Nordic seas were only warmer by ~0.5 to 1°C118. The North Pacific Ocean also displayed 499 

an early Holocene warming and in most areas a mid-Holocene cooling relative to today, but warming 500 

in the North Pacific and East Asia occurred earlier than in the Atlantic sector.  Peak warming in the 501 

Bering Sea (1-2oC), the western subpolar North Pacific (1-2oC), and the Sea of Okhotsk (2-3oC) 502 

occurred between 9 and 11 kyr BP with a possible second warm event between 7 and 5 kyr BP in the 503 

Sea of Okhotsk 119. In the subpolar NE Pacific off Alaska, peak warming (~1oC above modern, ~3-504 

4oC above mid-Holocene) occurred near 11 kyr BP33, and in the Pacific off Northern California, peak 505 

warmth occurred in two events near 11 kyr BP and again near 10 kyr BP120.   506 

 507 

In summary, the HTM is a complex regional series of events, best expressed at higher northern 508 

latitudes, earliest in the north Pacific marine sector, substantially delayed on land areas influenced by 509 

residual ice, and slightly delayed in the North Atlantic and Greenland sector relative to North Pacific 510 

and East Asian locations. Although its regional expression makes it difficult to draw a unique global 511 

picture, it nevertheless serves as a well-dated and data-rich example of regionally warmer conditions, 512 

and is instructive for the impact of warming in these environments. Its complexity also suggests 513 

caution in over-interpreting older intervals as being representative of global climate states, because 514 

less data are available and chronological constraints are weaker.  515 

 516 

The LIG global average sea-surface temperature (SST) was likely 0.5-1°C warmer than preindustrial 517 

at least seasonally109,121-123 (Table S2). Here we use the value of 0.5±0.3°C as best estimate of the 518 

global SST warming at 125 kyr BP109, a time period when also the northern hemisphere reached a 519 

stable warm plateau, although global SST peak warmth may have been somewhat earlier123. Using a 520 



general scaling of global SST to global surface temperature103 of 1.6 this implies that global surface 521 

temperature was likely ~0.8 (maximum 1.3°C) warmer than preindustrial124 and followed a strong 522 

orbitally-induced maximum in Northern Hemisphere (NH) summer insolation after a rise in 523 

atmospheric CO2 concentrations from low ice age values to levels only slightly higher than 524 

preindustrial (latest data compiled by ref.69). Similar to the HTM, significant spatial and temporal 525 

differences in the expression of the warming exist; extratropical regions showed more pronounced 526 

warming, while tropical regions showed only little warming124 or even a slight cooling109 in line with 527 

modeling results110. Temperature reconstructions show a pronounced polar amplification signal in 528 

the Arctic during the LIG (see Figure 2), with northern high-latitude oceans warming by >1 to 4°C 529 

and surface air temperatures by >3 to 11°C46,125,126 relative to preindustrial. As with the HTM, the 530 

LIG warming caused by higher northern summer insolation appears to be more representative for 531 

regional high-latitude warming than for low latitude warming in the future. 532 

 533 

The MPWP was subject to intermittently elevated CO2 (potentially up to 450 ppm) compared to the 534 

HTM and the LIG9. The CO2 concentration at that time was most similar to the RCP2.6 scenario, and 535 

a factor of three to four less than concentrations expected by 2100 CE for the RCP8.5 scenario. 536 

Climate models simulate an increase in tropical temperatures by 1.0 to 3.1°C (for RCP2.6 CO2 537 

forcing of 405 ppmv2), generally in line with MPWP proxy reconstructions at low latitudes127. 538 

Strong polar amplification is observed for the MPWP. For example, proxy data from the North 539 

Atlantic and northeastern Russian Arctic indicate a rise of surface air temperatures by 8°C128 during 540 

the MPWP and even higher in the early Pliocene129. These regional temperature changes are similar 541 

to projected warming at 2100 AD for the RCP8.5 scenario, in spite of the much lower CO2 rise 542 

during the MPWP, and suggest that current models may underestimate the warming response in the 543 

Arctic130 to increased CO2 concentrations. 544 



Box 2 - Constraining climate sensitivity from past warm periods 545 

Fundamental to projecting future warming and impacts is the climate sensitivity to radiative 546 

greenhouse forcing, i.e., the global average surface air temperature equilibrium response to a 547 

doubling of CO2. The multi-model mean equilibrium climate sensitivity of the Coupled Model 548 

Intercomparison Project Phase 5 (CMIP5) is 3.2°C ± 1.3°C2. These models include most of the “fast” 549 

feedback processes that result in the “Charney Sensitivity” (CS) but lack some other important 550 

processes. In particular, many models do not include some of the real-world “slow” feedback 551 

processes relevant for the Earth’s total warming response, such as long-term changes in ice sheets, 552 

sea-level, vegetation, or biogeochemical feedbacks that may amplify or reduce the amount of non-553 

CO2 greenhouse gases in the atmosphere. Furthermore, our understanding of some atmospheric 554 

processes under warmer boundary conditions, such as those associated with cloud physics and 555 

aerosols, is still limited. The climate models therefore cannot be expected to include realistic long-556 

term feedbacks, which leads to increased uncertainty in climate sensitivity. The long-term climate 557 

sensitivity including all these processes is called the Earth System Sensitivity (ESS). 558 

  559 

Direct correlation of Pleistocene CO2 and temperature reconstructions suggest ESS values of 3-5.6 560 

oC131,132. These estimates are based on climate change during glacial cycles. They are therefore 561 

indicative of sensitivities associated with large varying glacial ice sheets, and may, therefore, not be 562 

appropriate for future warming11,133. When corrected for land-ice albedo feedbacks, vegetation, and 563 

aerosols, climate sensitivities implied by these geological estimates may have been 30-40% lower134.  564 

 565 

We revisit this issue, comparing our paleoclimate data synthesis from episodes warmer than today 566 

with published long transient model simulations 10,000 years into the future3 based on a range of 567 

CO2 emission scenarios with two fully coupled climate-carbon-cycle Earth System Models of 568 



Intermediate Complexity (UVic and Bern3D-LPX)3. Both models include fully coupled ocean, 569 

atmosphere, sea ice, dynamic vegetation and ocean sediment models with offline ice-sheet models3. 570 

Furthermore, we include a published series of equilibrium climate simulations with four dynamic 571 

atmosphere-ocean general circulation models, with primitive equation atmospheres (HadCM3L, 572 

CCSM3, ECHAM5/MPI-OM, GISS ModelE-R) and one model of intermediate complexity (UVic) 573 

under early Eocene boundary conditions10,135.  574 

 575 

In Figure B1 we compare global surface air temperature anomalies (relative to preindustrial) to CO2 576 

(Figure B1a), eustatic sea-level rise relative to CO2 (Figure B1b), and sea-level rise relative to 577 

surface air temperature anomalies (Figure B1c). Paleo data represent the three episodes (HTM, LIG, 578 

MPWP) discussed earlier, however, HTM sea-level data are excluded as sea-level is still strongly 579 

increasing by deglacial ice sheet melt at that time.  To expand the range of climate boundary 580 

conditions, we also include data from the EECO (~53-51 Myr BP) when CO2 was around 1400 ppm 581 

and within a possible range of ~900 to 2500 ppm136.  EECO conditions include changes in the 582 

configuration of the continents, land surface topography and albedo changes for loss of continental 583 

ice sheets. To separate fast and slow feedbacks, we show EECO model ensemble surface air 584 

temperature (SAT) anomalies including all boundary conditions (blue triangles) and values 585 

extracting the component related to modified land-surface albedo due to the removal of ice sheets 586 

(green squares) in Figure B1a. Model simulations suggest that the loss of ice at the EECO accounts 587 

for 0.2 to 1.2°C137. 588 

 589 

Transient model projections of future warming in response to CO2 (Figure B1a, black diamonds; see 590 

supplementary tables) indicate model ESS of ~3°C, a factor of 2 lower than inferred from the paleo 591 

data for the EECO (red squares, see also supplementary tables S1 and S2). EECO model ensemble 592 

estimates of warming (after removing the effect of changing surface albedo, green squares) are 593 



essentially identical to the transient future runs. The EECO simulations that include the effect of 594 

surface albedo (blue triangles) are closer to the paleo reconstructions, but still underestimate the 595 

inferred EECO warming at high CO2, so including interactive land ice as a feedback is essential to 596 

reproduce the ESS derived from paleo evidence. This finding echoes previous concern that models 597 

built to reproduce present-day climate conditions may be insufficiently sensitive to long-term 598 

change7. 599 

 600 

For modest CO2 rises associated with the MPWP, modelled sea level changes are generally 601 

consistent with paleo data, but for larger CO2 rises, the models underestimate the largest sea-level 602 

rise such as those reconstructed with larger uncertainties for the EECO (Figure B1b). The UVic 603 

model appears to have reasonable sensitivity for the relationship between sea-level rise and warming 604 

(Figure B1c, note uncertainty of Eustatic Sea Level (ESL) rise for MPWP). The underestimation of 605 

observed past sea level rises by the models is therefore likely due to an underestimation of warming. 606 

This misfit becomes important because the rate of sea-level rise in the models is dependent on the 607 

extent of warming (Figure B1d). If the models were more sensitive to radiative forcing in particular 608 

on long time scales (by up to a factor of two, if they are supposed to fit the paleoclimate data), this 609 

would imply a factor of two to three increase in the rate of sea level rise.  610 

   611 

While simulations of climates similar to present day conditions, such as the HTM, agree reasonably 612 

well with paleo records, the differences become more substantial for climates that were significantly 613 

warmer (MPWP, EECO) but which are also subject to larger uncertainties in temperature and CO2 614 

reconstructions. Climate models underestimate polar amplification (Section 2.1) in the Arctic as well 615 

as global mean temperatures and therefore also underestimate the extent and rate of sea-level rise. 616 

Hence, climate models are still missing or misrepresenting key processes needed to simulate the 617 

dynamics of warmer climates on long time scales. Potential caveats include misrepresentations of 618 



cloud physics and aerosols138,139, ocean and atmosphere circulation changes and insufficient 619 

representations of ice sheet and carbon cycle feedbacks. 620 

 621 

Although state-of-the-art climate models plausibly have correct sensitivity for small magnitude and 622 

near-term projections (such as RCP2.6 at year 2100), they can be questioned to provide reliable 623 

projections for large magnitude changes (such as RCP8.5) or long-term climate change (beyond 624 

2100), when Earth System feedbacks become important, and for which the models likely 625 

underestimate sensitivity. 626 

 627 

 628 

 629 

  630 
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Figure Captions 1130 

Figure 1 – Changes in global climate and radiative forcing over the last 4 Myr: (a) Changes in 1131 

Global Surface Air Temperature (GSAT: Snyder, 2016103 (blue line) with 2.5% and 97.5% 1132 

confidence intervals (light blue shading), Hansen et al., 2013104 (grey line)) reconstructed from proxy 1133 

records (left y-axis) and changes in atmospheric CO2 (right x-axis) from ice core air bubbles (red 1134 

line: Bereiter et al., 201569) and marine CO2 proxies (light orange dots: Bartoli et al., 2011105, dark 1135 

orange dots: Hönisch et al., 2009106, green dots: Martinez-Boti et al., 20159) over the last 4 Myr. (b) 1136 

same as in (a) for the last 800,000 years. (c) same as in (a-b) for the last 160,000 years. (d) GSAT 1137 

reconstructed from proxy records by Marcott et al. (2013)107 over the Holocene and the PAGES2k 1138 

Consortium (2017)108 together with changes in atmospheric CO2 from ice core air bubbles (red 1139 

line69). (e) Measured GSAT over the last 150 years (HADCRUT41) and reconstructed from proxy 1140 

records over the last 2000 years108 together with changes in atmospheric CO2 from ice core air 1141 

bubbles (red line69) and globally averaged atmospheric observations (data from 1142 

https://www.esrl.noaa.gov/gmd/). Note that temperatures in (d-e) are given as anomalies relative to 1143 

the preindustrial mean, where preindustrial is defined as the time interval 1850-1900. Proxy data in 1144 

(a-c) are not available in sufficiently high resolution to unambiguously quantify a mean for this short 1145 

time interval. Accordingly, (a-c) are given relative to an extended preindustrial reference time 1146 

interval of the last 1000 years. The horizontal yellow bars indicate the 1.5-2°C warming target 1147 

relative to preindustrial of the Paris agreement. 1148 

 1149 
 1150 
Figure 2 – Model-data comparison of climate changes in the future and during the LIG: (a) 1151 

RCP2.6 model ensemble (CCSM4) results of Mean Annual Surface Temperature (MAT) anomalies 1152 

for the time interval 2080–2099 relative to our preindustrial reference interval 1850-1900; (b) 1153 

Observed Last Interglacial (125 kyr BP) annual Sea Surface Temperature (SST) anomalies109 relative 1154 

to its reference period 1870-1889 (dots) overlain on top of CCSM3 MAT anomalies for the 125 kyr 1155 



BP time window relative to 1850110. White areas in polar areas in panels (a) und (b) represent the 1156 

modeled sea ice extent.  1157 

 1158 
 1159 

Figure 3 - Impacts and responses of components of the Earth System: The figure summarizes the 1160 

statements in sections 2 and 3 in extremely condensed form (all statements relative to preindustrial).  1161 

Responses where other reasons prohibit a robust statement are given in italic. Additional evidence 1162 

that is either not applicable for the future warming or where evidence is not sufficient to draw robust 1163 

conclusions is summarized in the supplementary text. Note that significant spatial variability and 1164 

uncertainty exist in the assessment of each component and, therefore, this figure should not be 1165 

referred to without reading the text in detail.  1166 

 1167 

Figure B1 - Temperature and sea-level response to CO2 forcing: (a) Annual and global mean 1168 

surface air temperature anomalies (relative to preindustrial) as a function of atmospheric CO2 1169 

concentrations (see supplementary table S1 and S2), (b) eustatic sea-level rise relative to CO2 levels 1170 

(see supplementary table S8 and S10), (c) eustatic sea-level rise relative to surface air temperature 1171 

anomalies, and (d) peak rates of eustatic sea-level rise as a function of coeval surface air temperature 1172 

anomalies. Black diamonds show simulations of future scenarios by two models of intermediate 1173 

complexity3, blue triangles are model ensemble mean equilibrium simulations under EECO 1174 

boundary conditions10,135, green squares show EECO simulation responses due to changes in CO2 1175 

concentrations alone, estimated by removing the effects associated with the planetary surface 1176 

boundary conditions relative to preindustrial control, and red squares are paleo reconstructions 1177 

(supplementary tables S8-S11). Atmospheric CO2, surface air temperatures and eustatic sea-level 1178 

values are averaged over 10,000-12,000 CE in the future simulations (black diamonds, a-c). Peak 1179 

rates of simulated sea-level rise occur earlier, between the 23rd and 26th centuries CE, and are 1180 

compared to coeval transient model temperatures. The red arrows in b and c indicate minimum 1181 



uncertainties. (d). For eustatic sea-levels (b, c) EECO values include melting of the full modern 1182 

inventory of ice, plus steric effects (see supplementary Table S10 for details). Changes in ocean 1183 

basin shape are excluded from the EECO ESL calculation. 1184 

 1185 
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