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ABSTRACT Maintenance task prioritization is essential for allocating resources. It is estimated that almost 1/3 of the maintenance cost is 
wasted to unnecessary activities. Task prioritization is based on risk assessment that takes into account the probability of failure and the 
criticality of an asset. The criticality analysis is defined by the asset owner based on several parameters, among them safety, downtime cost, 
productivity, whilst the probability of failure is determined based on deterioration models, regular manual inspections, or installed sensors. 
Currently, the latter is an extremely complicated and labour intensive procedure, when multiple and different types of assets need to be 
managed. This paper proposes an innovative method that exploits the advances in mobile communications, social networking, Internet of 
Things and machine learning to address this shortcoming. This approach brings building elements and assets online using asset tags with an 
online ‘asset profile’ linked to it. Users of assets are able to scan these tags using a mobile phone app to not only see the information about 
those assets, but also enter ‘comments’ describing issues and problems on the profiles. These comments are processed through machine 
learning-based inference methods to estimate the probability that a failure has occurred. This paper validates the proposed method using 
historical data collected from the Estate Management, of the University of Cambridge.   
 

1. Introduction 

It is estimated that the lifetime building maintenance cost is 
equal to 0.4 times the construction cost (Hughes et al., 2004). 
Maintenance actions aim to restore every part of a building 
back to its original status (British Standards Institution, 1993). 
Building failures and defects are common phenomena in 
construction. Some of the most typical types of  such defects 
are: wall cracks, faulty electrical wiring, faulty fire/smoke 
detection system, not working lighting, moisture, blocked or 
inadequate drainage systems (Ahzahar et al., 2011; Othman, 
2015). Any of these issues increase dramatically the 
maintenance cost. It is reported that moisture issues only, cost 
billions of dollars in the United States (Kubba, 2008).  

Efficient and good quality planning of maintenance tasks is 
crucial for the wellbeing of its occupants (Brugge et al., 2010). 
In this regard, a well maintained ventilation system can 
increase productivity by 2.5-5% during an 8 hour work period 
(Park & Yoon, 2011). On the contrary, a delayed response to 
malfunctions of the heat, ventilation and air conditioning 
system (HVAC) can cause productivity loss that ranges 
between 5% to 9% (Al Horr et al., 2017; Kosonen & Tan, 
2004), and Sick Building Syndrome (SBS) (Lan et al., 
2011)..The latter is linked to several illnesses, among them eye, 
nose, and throat initiation, headaches, and allergies (Au-yong 
et al., 2014). Researchers proved that insufficient maintenance 
quality results in poor indoor environmental quality in social 
housing (Diaz et al., 2018; Rauh et., 2008).  Poor indoor 
environmental quality is directly related to several health 
issues, especially respiratory illnesses, among them, asthma, 
rhinitis, bronchitis, common cold and cough (May et al., 2017). 
The potential savings from improving the above maintenance 
related health issues is estimated to be equal to 168 US dollars 
(Wargocki, 2018). In the UK, the annual costs incurred from 
asthma treatments are equal to 1 billion British Pounds 
(Mukherjee et al., 2014). Therefore, it is essential to devise an 

efficient method to improve the quality of maintenance 
planning of residential and office buildings.  

2. Background 

Maintenance actions are initiated either after an asset fails 
(corrective) or before (preventive) at regular intervals. The 
corrective actions in particular, need to be immediately 
addressed to avoid causing severe inconvenience to the 
building users (Le et al., 2018). Such fast response is 
achievable only if budget allows it. Unfortunately, the budget 
that is allocated for maintenance is limited (Le et al., 2018). 
This is mainly due to the lack of accurate estimation tools of 
the required maintenance funds (Yu et al., 2017). It is reported 
that one thirds of the maintenance cost is wasted insufficiently 
(Mobley, 2002). In order to accommodate the most critical 
maintenance needs under budget restrictions, maintenance 
tasks needs to be prioritized.  

Most of the prioritization methods consider the probability of 
failure and the criticality of an asset (consequences of failure). 
The criticality analysis is defined by the asset owner (or 
organisation) based on several parameters, among them safety, 
downtime cost, asset importance, productivity, whilst the 
probability of failure is determined based on deterioration 
models, regular manual inspections, or installed sensors 
(Crespo et al., 2016). On that respect, Parlikad & Srinivasan 
(2016) proposed a dynamic criticality-based method to 
optimize maintenance plans in terms of defining the optimal 
repair/replacement time for an asset. Sweis et al. (2014) 
developed a multi-attribute prioritization model that relies on 
predefined major criteria of major public healthcare facilities. 
Ratnayake & Antosz (2017) combined fuzzy logic with a risk 
matrix to optimize the prioritization of machinery 
maintenance. Chang et al. (2004) in a different approach, 
proposed a knowledge-based method to prioritize the 
maintenance needs of public universities. However, the main 
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limitations of the existing prioritization methods that rely on 
heuristic rules and experience-based common sense are the 
unscheduled downtime and the waste of resources (Li & Ni, 
2009). In addition, little focus is given on residential and office 
buildings as existing studies are predominantly designed for 
manufacturing and public infrastructure (e.g. hospitals). 

Currently, digital twins are presented as a promising solution 
for improving maintenance decision making (Macchi et al., 
2018; Watson, 2011).  The digital twin is defined as a virtual 
entity that consists of sensor and transmitted data. This paper 
presents an innovative machine learning-based approach 
towards this direction to address the prioritization of 
maintenance tasks in an efficient way. This paper hypothesizes 
that the priority of maintenance tasks can be predicted through 
past reports of assets’ defects. It features an accuracy of 59% 
on average in terms of classifying the maintenance tasks as 
“Urgent”, “non-Urgent”, “Critical”, “High”, “Medium” and 
“Low”. The remainder of this paper is structured as follows. 
Section 3 analyses the overall method proposed in this paper 
using data from the Estate Management Department of the 
University of Cambridge. Section 4 presents the results. 
Section 5 summarizes the outcomes of this paper.  

3. Proposed Solution  

3.1 Internet of Things (IoT) for Maintenance    
The proposed method exploits the IoT in order to establish a 
communication between the managers and the assets. Such 
communication will provide real time information to the 
managers about the condition of multiple assets in a cost-
efficient way. Accessible assets “digital profiles” are exploited 
to achieve this. To access such profiles, the users scan unique 
identification tags attached on objects as displayed in Figure 1.  

Figure 1: Asset tagging 

 

These tags are directly linked to a software application that 
manages the “digital” profile of every asset (The Simple Asset 
Management Software, 2019) as shown in Figure 1 above. The 
“digital profiles” contain useful information about the location 
of the asset, the latest inspection and most importantly allow 
the users to send feedback about any potential assets’ defects. 
Table 1 illustrates some examples of users’ feedback as 
provided by the Estate Management Department of the 
University of Cambridge. 

Table 1: Example of labelled input training data 
Text (input) Label 

The fire alarm in the bull pens keeps going 
into fault. Urgent 

South research house lift More than one 
person stuck in the lift. Urgent 

Magnetic door holder - cover has been 
removed and there are exposed wires.  
Could BBC engineer attend to fix please. 

Urgent 

Water pump is leaking. Pls could someone 
attend. non-Urgent 

 We have some lights/bulbs out room 1.20 
x1 corridor outside 1.20 x2  non-Urgent 

  Can you please arrange for someone to 
visit site and look at the existing heating 
system as several radiators are not working 
and  may have air in the system 

non-Urgent 

After a fire alarm test the panel has gone 
into alarm with a 'power supply fault' 
message.  They can't find the source of the 
power supply fault.  Nothing has tripped 
out. 

Critical 

Lift entrapment Critical 
PIN HOLE IN 42ml COPPER PIPE TO 
CAGE WASH  Low 

Glass lift requires leveling up in the 
basement, (as there is half inch gap). Low 

Air con is leaking, pls could b & C attend. 
Dept said they have put bucket and towels 
underneath, so it should be ok for tonight, 
but pls could someone attend tomorrow. 

Medium 

MAIN KITCHEN GAS PUMP FAILED 
UNABLE TO USE COOKERS ECT.  Medium 

 

 
The users’ feedback is the input of a machine learning-method 
that infers the criticality of every asset defect reported. A 
prioritization label is finally returned based on this criticality 
output. This label indicates the response time. At the first stage 
(Stage A), the proposed method classifies the maintenance 
tasks as “Urgent” and “non-Urgent”. The former depict assets’ 
failures with a large impact on its users, whilst the latter 
failures of lower importance. At the second stage (Stage B), 
each of these two categories is subdivided based on the 
response time. The urgent are classified as either “Critical” 
(response within half an hour) or “High” maintenance tasks 
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(response within 2 hours), whilst the non-urgent as “Medium” 
(response within 2 days) and “Low” maintenance tasks 
(response within 10 days).  

The classification method proposed in this paper is based on 
the management practises followed by the Estate Management 
Department of the University of Cambridge that provided the 
historical data. To achieve such classification, the model is 
trained separately for each stage. Figure 2 illustrates the overall 
proposed framework proposed of this paper.  

Figure 2: Proposed framework 

 

2.1 Machine learning-based inference of asset failure 
impact (criticality)  
Figure 3 illustrates the machine learning-based proposed 
method for prioritizing the maintenance tasks. The rectangular 
shapes refer to input/outputs and the skewed parallelogram to 
methods. The inputs of the method are free text provided by 
the users of the assets through itemit application and historical 
data. The proposed method is trained with historical data. 
These data are text messages that report multiple assets defects.  

Figure 3: Proposed machine learning-based 
prioritization of responsive maintenance tasks 

 

Initially, natural language processing techniques are exploited 
to pre-process the inputs. This includes: a) tokenization for 
splitting the sentences into a sequence of strings i.e. tokens, b) 
removal of stop words, c) lowercasing, and d) word stemming 
for converting the words to their root form. Secondly, 
Paragraph Vector (Mikolov & Com, 2014), an unsupervised 
algorithm, is trained to convert the processed texts (inputs) into 
feature vectors. This approach uses stochastic gradient descent 
calculated via backpropagation. One of the main advantages of 
such approach is that: a) takes into account word semantics, 
and b) considers the word order. The Paragraph Vector has two 
versions, the Distributed Bag of Words (PV-DBOW) and the 
Distributed Memory (PV-DM). The PV-DM is trained to 
predict the word following a text window, whereas the PV-
DBOW is trained to predict the words within a text window. 
The  PV-DM is selected for this paper as it proven to perform 
better (Mikolov & Com, 2014), an unsupervised algorithm is 
trained to convert the processed texts (inputs) into feature 
vectors. This approach uses stochastic gradient descent 
calculated via backpropagation. 

Thirdly, a random forest is trained to classify each of the inputs 
into the 4 response labels as described in the previous section. 
The scope of this papers is to prioritize a large variety of 
maintenance tasks efficiently. This implies imbalanced classes 
as the inputs will depict different types of assets failures. This 
paper selects random forest as they perform well with such data 
(Khoshgoftaar et al., 2007). Random forests are collections of 
decision trees that perform well with overfitting issues.    

4. Implementation and Results 

4.1 Data analysis  
The data used were provided from the Estate Management 
Department from the University of Cambridge. They depict 
actual maintenance reports raised over a period of 4 years 
(2014-2018).  They cover a variety of assets and building types 
(residential, office, teaching). The data are prioritized by 
experts with a response time as described in the previous 
section, considering the level of impact that the assets failure 
have on the residents, such as productivity, health and safety. 
A percentage of 80% of the training data is randomly selected 
for training and the remaining 20% for testing. Figure 4 
displays the frequency the “Urgent” and “non-Urgent” classes 
of Stage A, whilst Figure 5 presents, the training data of Stage 
B (Critical, High, Medium, and Low). In these figures, it 
appears that the training data are strongly imbalanced. To 
achieve a reliable performance, the classes with the largest 
training data are down-sampled to the size of the smallest class.   

Figure 4: Training data frequency (Stage A) 
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Figure 5: Training data frequency (Stage B) 

 
The training dataset contains 178 different types of assets in 
total. Table 2 illustrates some of them categorized as 
Mechanical, Electrical, Plumbing and Architectural.  

Table 2 Type of assets 

Mechanical Assets Total    Architectural  
Assets Total 

 lift  1396  door  2507 
 air conditioning  1144  window  722 

 boiler  700  roof  336 
 radiator  614  wall  260 
 chiller  366  lock  162 

 plant room  353  gate  131 
 fan  320  work top  89 

 heater  113  stair  75 
 Building 

management 
system (BMS) 

99  slab  71 

 Air Handling Units 
(AHU)   94 shelf 69 

 freezer  39 desk 63 
 air handling unit  35 cabinet 45 
pressurisation unit 33 whiteboard 34 

control panel 31 noticeboard 34 
cooling unit 15 seat 24 

duct 11 keypad 10 
dumbwaiter 8 pin board 6 

heat exchanger 5 shelter 5 
air compressor 3 paver 5 
electric heating 1 dispenser 4 

Plumbing Assets Electrical Assets 
 toilet  3049  lighting  3728 
 tap  544  fire system  965 
 sink  460  outlet  384 
 drain  416  smoke detector  104 
 pipe  307  camera  44 

 shower  193  intruder alarm  39 
 humidifier  81  sounder  32 

 cistern  70  card access  32 
 water pump  54  cooker  19 

 water tank  43  security 
detector  10 

basin 41 bell 3 
sewage 28 dishwasher 1 
 inverter  14   

 hot water system  11   
 water cooler  9   
grease trap 5   

gulley 5   

4.2 Performance  
The performance of the method presented in this paper is 
evaluated with a python implementation developed in 
PyCharm framework, running in a Windows 8.1 operating 
system. To display the performance of the proposed method 4 
classification metrics are used, accuracy (see Equation ((1)), 
precision (see Equation (2) recall (see Equation (3)), and 
F1_score (see Equation (4)). Accuracy returns the fraction of 
correct predictions. Precision depicts how well the proposed 
method avoids from labelling as positive a sample that is 
negative (true negatives), whilst recall represents the efficiency 
of the classifier to find all the true positive samples (true 
positives). Lastly, the f1_score is the weighted average of 
precision and recall. Table 3 shows the performance of the 
proposed method.  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)              (1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/	(𝑇𝑃 + 𝐹𝑃)                                               (2) 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                                     (3) 

𝑓1;<=>? = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)(4)	

Table 3: Performance of proposed method  
Class Accuracy Precision Recall f1 

Urgent 0.62 0.59 0.69 0.64 
Non-Urgent  0.64 0.54 0.58 

Critical 0.57 0.59 0.67 0.63 
High 0.55 0.46 0.50 

Medium 0.58 0.58 0.69 0.63 
Low 0.60 0.48 0.53 

Average  0.59 0.58 0.59 0.61 
 
Each stage (A, B) is separately evaluated. In general, Table 3 
shows that all classification steps perform equally well under 
all 4 metrics. The proposed method returns an accuracy of 62% 
in terms of classifying samples as “Urgent” or “non-Urgent”, 
features an accuracy of 57% in classifying samples as 
“Critical” or “High”, and lastly scores an accuracy of 58% in 
labelling samples as “Medium” or “Low”. However, the main 
limitation of the proposed method is that the accuracy of Stage 
A affects the performance of Stage B, since samples are first 
classified as “Urgent”/“non-Urgent” before being classified as 
either “Critical” vs “High” or “Medium” vs “Low”. One of the 
main reasons that the proposed method does not achieve a 
higher accuracy is that experts were not entirely consistent 
through the years when labelling the training data. Table 4 
presents such an example. In this table it is shown that the same 
maintenance issue (i.e. same importance and asset type) it is 
tagged with difference response time. For instance, in #1 and 
#2, a faulty fire door is labelled as “non-Urgent” (response 
from 2-10 days), whilst the same issue in #3 and #4 is labelled 
as “Urgent”. In addition, as shown in Figure 4 the classes of 
Stage A are strongly imbalanced. This is mainly because not 
all assets had a “Critical” or “High” label. This occurs mainly 
with the architectural assets as the issues related with such 
assets are mostly of “Medium” or “Low” importance.  
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Table 4: Non-consistent labelling of training data 
# Text (input) Label Asset 
1 GROUND FLOOR 

CORRIDOR FIRE DOOR 
DROPPED FRAME 
ISSUE REPAIR BROKEN 
DOOR 

non-
Urgent 

 

Door 

2 GROUND FLOOR TO 
BASEMENT THE FIRE 
DOOR IS BROKEN  

non-
Urgent 

 
Door 

3 Replace worn fire door that 
is not closing on alarm Urgent Door 

4 Replace worn fire door 
seal to room SW02 Urgent Door 

5 Taken from Email Good 
afternoon, We have a 
blocked toiler in the men’s 
fitness changing rooms. 
Would someone be able to 
come and unblock it? 
Thank you 

Low Toilet 

6 Basement toilet is blocked  Medium Toilet 
7 The air conditioning unit in 

the SP clean room is not 
working. Please can 
someone attend.  

Medium Air 
conditioning 

8 Air Con is not working in 
room M113C. Pls could B 
& C attend.  

Low Air 
conditioning 

9 The radiator in room 416 is 
not working. Low Radiator 

10 The heating in this office is 
not working properly. One 
of the radiators is like 
warm, the other is not 
working at all. 

Medium Radiator 

 

5. Conclusion 

Up to present, while the maintenance cost remains high the 
budget that is allocated for it is limited. The wellbeing of 
occupants is directly linked with a good quality of maintenance 
management. Several studies are proposed focusing on 
prioritizing the maintenance works. However, they remain 
inefficient as they cause downtime and waste of resources. This 
paper exploits IoT and machine learning inference in order to 
prioritize maintenance tasks in a time and cost-efficient way. It 
hypothesizes that the priority of maintenance tasks can be 
predicted through past reports. The proposed method features 
a classification accuracy of 59% on average. The main 
limitations of the proposed method are the non-consistent 
labelling of the historical data by the asset managers, and the 
strongly imbalanced classes. Future work will focus on: a) 
standardizing the labelling process in order to avoid such issues 
and increase the performance, b) focusing on assets with the 
most frequent issues in order to avoid strongly imbalanced 
training data, and b) establishing a semantic-based linkage with 

the digital twin of the building in order to increase the accuracy 
of estimating the impact that the failure of assets have on its 
users.  
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