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S1 Appendix: Explanation of selected ordinal 
prediction models for CPM and eCPM 
 
Multinomial logistic regression (MNLR) 
 
CPMMNLR and eCPMMNLR were implemented using the ‘MNLogit’ class from the 
‘statsmodels’ module (dev. v0.14.0) [1] in Python (v3.7.6). The GOSE score of 1 (death) 
was designated as the reference label, and, for each other GOSE score, a separate 
logistic model was trained to regress the logit of the ratio of the probability of that score 
to the reference score from a linear combination of the predictors. The logit outputs of 
each model feed into a softmax function, after which cumulative sums would determine 
the probability at each threshold. Model weights for MNLR were optimised using the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [2] to maximize conditional 
likelihood. 
 
Proportional odds (i.e., ordinal) logistic regression (POLR) 
 
CPMPOLR and eCPMPOLR were implemented using the ‘OrderedModel’ class from the 
‘statsmodels’ module in Python. The model maps GOSE scores to a latent, logit space 
where consecutive GOSE scores are separated by thresholds. Thus, the model trains 
only one set of linear predictor weights, but a separate intercept for each threshold. Model 
weights for POLR were optimised using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
algorithm [2] to maximize conditional likelihood. 
 
Class-weighted feedforward neural network with a 
multinomial output layer (DeepMN) 
 
CPMDeepMN and eCPMDeepMN were implemented using the ‘PyTorch’ (v1.10.0) [3] module 
in Python. The network architecture of DeepMN included a hyperparametric number of 
dense hidden layers (either 1, 2, 3, 4, 5, or 6), each containing a hyperparametric number 
of nodes (either 128, 256, or 512) with a rectified linear unit (ReLU) activation function 
and a hyperparametric percentage (either 0% or 20%) dropout during training. The output 
layer of DeepMN was a softmax layer of 7 nodes, from which probabilities at each GOSE 
are calculated with cumulative sums (Fig 1A). DeepMN was optimised using the Adam 
algorithm (γ [learning rate] = 0.001, β1 = 0.9, β2 = 0.999) [4] with categorical cross-entropy 
loss. In the loss function, classes were weighted inversely proportional to the frequency 
of each GOSE score in the training set to counter class imbalance. 
 
Class-weighted feedforward neural network with an ordinal 
output layer (DeepOR) 
 
CPMDeepOR and eCPMDeepOR were implemented using the ‘PyTorch’ (v1.10.0) [3] module 
in Python. The network architecture of DeepMN included a hyperparametric number of 
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dense hidden layers (either 1, 2, 3, 4, 5, or 6), each containing a hyperparametric number 
of nodes (either 128, 256, or 512) with a rectified linear unit (ReLU) activation function 
and a hyperparametric percentage (either 0% or 20%) dropout during training. The output 
layer of DeepOR was a sigmoid layer of 6 nodes, where each node represented the 
binomial probability of the outcome being greater than a certain threshold, and each node 
is constrained to be less than or equal to lower-threshold nodes with a negative ReLU 
transformation (Fig 1A). DeepOR was optimised using the Adam algorithm (γ [learning 
rate] = 0.001, β1 = 0.9, β2 = 0.999) with binary cross-entropy loss. In the loss function, 
classes were weighted inversely proportional to the frequency of each GOSE score in the 
training set to counter class imbalance. 
 

CPM or 
eCPM 

Description Hyperparameters Total number of 
configurations Hidden layers Neurons per layer* Dropout 

MNLR Multinomial logistic 
regression 

   
1 

POLR Proportional odds (i.e., 
ordinal) logistic regression 

   
1 

DeepMN Class-weighted 
feedforward neural 
network with a multinomial 
(i.e., softmax) output layer 

1, 2, 3, 4, 5, or 6 128, 256, or 512 0% or 20% 2184 

DeepOR Class-weighted 
feedforward neural 
network with an ordinal 
(i.e., sigmoid at each 
threshold) output layer 

1, 2, 3, 4, 5, or 6 128, 256, or 512 0% or 20% 2184 

*Different hidden layers may have distinct numbers of neurons. 
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