S1 Appendix: Explanation of selected ordinal prediction models for CPM and eCPM

Multinomial logistic regression (MNLR)

CPM_{MNLR} and eCPM_{MNLR} were implemented using the 'MNLogit' class from the 'statsmodels' module (dev. v0.14.0) [1] in Python (v3.7.6). The GOSE score of 1 (death) was designated as the reference label, and, for each other GOSE score, a separate logistic model was trained to regress the logit of the ratio of the probability of that score to the reference score from a linear combination of the predictors. The logit outputs of each model feed into a softmax function, after which cumulative sums would determine the probability at each threshold. Model weights for MNLR were optimised using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [2] to maximize conditional likelihood.

Proportional odds (i.e., ordinal) logistic regression (POLR)

CPM_{POLR} and eCPM_{POLR} were implemented using the 'OrderedModel' class from the 'statsmodels' module in Python. The model maps GOSE scores to a latent, logit space where consecutive GOSE scores are separated by thresholds. Thus, the model trains only one set of linear predictor weights, but a separate intercept for each threshold. Model weights for POLR were optimised using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [2] to maximize conditional likelihood.

Class-weighted feedforward neural network with a multinomial output layer (DeepMN)

CPM_{DeepMN} and eCPM_{DeepMN} were implemented using the 'PyTorch' (v1.10.0) [3] module in Python. The network architecture of DeepMN included a hyperparametric number of dense hidden layers (either 1, 2, 3, 4, 5, or 6), each containing a hyperparametric number of nodes (either 128, 256, or 512) with a rectified linear unit (ReLU) activation function and a hyperparametric percentage (either 0% or 20%) dropout during training. The output layer of DeepMN was a softmax layer of 7 nodes, from which probabilities at each GOSE are calculated with cumulative sums (**Fig 1A**). DeepMN was optimised using the Adam algorithm (γ [learning rate] = 0.001, β_1 = 0.9, β_2 = 0.999) [4] with categorical cross-entropy loss. In the loss function, classes were weighted inversely proportional to the frequency of each GOSE score in the training set to counter class imbalance.

Class-weighted feedforward neural network with an ordinal output layer (DeepOR)

CPM_{DeepOR} and eCPM_{DeepOR} were implemented using the 'PyTorch' (v1.10.0) [3] module in Python. The network architecture of DeepMN included a hyperparametric number of

dense hidden layers (either 1, 2, 3, 4, 5, or 6), each containing a hyperparametric number of nodes (either 128, 256, or 512) with a rectified linear unit (ReLU) activation function and a hyperparametric percentage (either 0% or 20%) dropout during training. The output layer of DeepOR was a sigmoid layer of 6 nodes, where each node represented the binomial probability of the outcome being greater than a certain threshold, and each node is constrained to be less than or equal to lower-threshold nodes with a negative ReLU transformation (**Fig 1A**). DeepOR was optimised using the Adam algorithm (γ [learning rate] = 0.001, β_1 = 0.9, β_2 = 0.999) with binary cross-entropy loss. In the loss function, classes were weighted inversely proportional to the frequency of each GOSE score in the training set to counter class imbalance.

CPM or eCPM	Description	Hyperparameters			Total number of
		Hidden layers	Neurons per layer*	Dropout	configurations
MNLR	Multinomial logistic regression				1
POLR	Proportional odds (i.e., ordinal) logistic regression				1
DeepMN	Class-weighted feedforward neural network with a multinomial (i.e., softmax) output layer	1, 2, 3, 4, 5, or 6	128, 256, or 512	0% or 20%	2184
DeepOR	Class-weighted feedforward neural network with an ordinal (i.e., sigmoid at each threshold) output layer	1, 2, 3, 4, 5, or 6	128, 256, or 512	0% or 20%	2184

*Different hidden layers may have distinct numbers of neurons.

References

- Seabold S, Perktold J. Statsmodels: Econometric and Statistical Modeling with Python. In: van der Walt S, Millman J, editors. Proceedings of the 9th Python in Science Conference (SciPy 2010). Austin: SciPy; 2010. pp. 92-96. doi: 10.25080/Majora-92bf1922-011
- 2. Fletcher R. Practical Methods of Optimization. 2nd ed. New York: John Wiley & Sons; 1987.
- Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Wallach H, Larochelle H, Beygelzimer A, d'Alché-Buc F, Fox E, Garnett R, editors. Advances in Neural Information Processing Systems 32 (NeurIPS 2019). Vancouver: NeurIPS; 2019.
- Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv:1412.6980v9 [Preprint]. 2017 [cited 2021 December 26]. Available from: <u>https://arxiv.org/abs/1412.6980</u>