
The leap to ordinal: functional prognosis after traumatic brain injury using artificial intelligence

S1 Appendix Page 1 of 2

S1 Appendix: Explanation of selected ordinal
prediction models for CPM and eCPM

Multinomial logistic regression (MNLR)

CPMMNLR and eCPMMNLR were implemented using the ‘MNLogit’ class from the
‘statsmodels’ module (dev. v0.14.0) [1] in Python (v3.7.6). The GOSE score of 1 (death)
was designated as the reference label, and, for each other GOSE score, a separate
logistic model was trained to regress the logit of the ratio of the probability of that score
to the reference score from a linear combination of the predictors. The logit outputs of
each model feed into a softmax function, after which cumulative sums would determine
the probability at each threshold. Model weights for MNLR were optimised using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [2] to maximize conditional
likelihood.

Proportional odds (i.e., ordinal) logistic regression (POLR)

CPMPOLR and eCPMPOLR were implemented using the ‘OrderedModel’ class from the
‘statsmodels’ module in Python. The model maps GOSE scores to a latent, logit space
where consecutive GOSE scores are separated by thresholds. Thus, the model trains
only one set of linear predictor weights, but a separate intercept for each threshold. Model
weights for POLR were optimised using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [2] to maximize conditional likelihood.

Class-weighted feedforward neural network with a
multinomial output layer (DeepMN)

CPMDeepMN and eCPMDeepMN were implemented using the ‘PyTorch’ (v1.10.0) [3] module
in Python. The network architecture of DeepMN included a hyperparametric number of
dense hidden layers (either 1, 2, 3, 4, 5, or 6), each containing a hyperparametric number
of nodes (either 128, 256, or 512) with a rectified linear unit (ReLU) activation function
and a hyperparametric percentage (either 0% or 20%) dropout during training. The output
layer of DeepMN was a softmax layer of 7 nodes, from which probabilities at each GOSE
are calculated with cumulative sums (Fig 1A). DeepMN was optimised using the Adam
algorithm (γ [learning rate] = 0.001, β1 = 0.9, β2 = 0.999) [4] with categorical cross-entropy
loss. In the loss function, classes were weighted inversely proportional to the frequency
of each GOSE score in the training set to counter class imbalance.

Class-weighted feedforward neural network with an ordinal
output layer (DeepOR)

CPMDeepOR and eCPMDeepOR were implemented using the ‘PyTorch’ (v1.10.0) [3] module
in Python. The network architecture of DeepMN included a hyperparametric number of

The leap to ordinal: functional prognosis after traumatic brain injury using artificial intelligence

S1 Appendix Page 2 of 2

dense hidden layers (either 1, 2, 3, 4, 5, or 6), each containing a hyperparametric number
of nodes (either 128, 256, or 512) with a rectified linear unit (ReLU) activation function
and a hyperparametric percentage (either 0% or 20%) dropout during training. The output
layer of DeepOR was a sigmoid layer of 6 nodes, where each node represented the
binomial probability of the outcome being greater than a certain threshold, and each node
is constrained to be less than or equal to lower-threshold nodes with a negative ReLU
transformation (Fig 1A). DeepOR was optimised using the Adam algorithm (γ [learning
rate] = 0.001, β1 = 0.9, β2 = 0.999) with binary cross-entropy loss. In the loss function,
classes were weighted inversely proportional to the frequency of each GOSE score in the
training set to counter class imbalance.

CPM or
eCPM

Description Hyperparameters Total number of
configurations Hidden layers Neurons per layer* Dropout

MNLR Multinomial logistic
regression

1

POLR Proportional odds (i.e.,
ordinal) logistic regression

1

DeepMN Class-weighted
feedforward neural
network with a multinomial
(i.e., softmax) output layer

1, 2, 3, 4, 5, or 6 128, 256, or 512 0% or 20% 2184

DeepOR Class-weighted
feedforward neural
network with an ordinal
(i.e., sigmoid at each
threshold) output layer

1, 2, 3, 4, 5, or 6 128, 256, or 512 0% or 20% 2184

*Different hidden layers may have distinct numbers of neurons.

References

1. Seabold S, Perktold J. Statsmodels: Econometric and Statistical Modeling with

Python. In: van der Walt S, Millman J, editors. Proceedings of the 9th Python in
Science Conference (SciPy 2010). Austin: SciPy; 2010. pp. 92-96. doi:
10.25080/Majora-92bf1922-011

2. Fletcher R. Practical Methods of Optimization. 2nd ed. New York: John Wiley &
Sons; 1987.

3. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Wallach H,
Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, editors. Advances in
Neural Information Processing Systems 32 (NeurIPS 2019). Vancouver: NeurIPS;
2019.

4. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv:1412.6980v9
[Preprint]. 2017 [cited 2021 December 26]. Available from:
https://arxiv.org/abs/1412.6980

https://arxiv.org/abs/1412.6980

