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Abstract 

    This thesis presents a flexible graphene/polyvinylidene difluoride (PVDF)/graphene 

sandwich for three-dimensional touch interactivity. Here, an x-y plane touch is sensed 

using graphene capacitive elements, while force sensing in the z-direction is by a 

piezoelectric PVDF/graphene sandwich. By employing different frequency bands for 

the capacitive- and force-induced electrical signals, the two stimuli are detected 

simultaneously, achieving three-dimensional touch sensing. Static force sensing and 

elimination of propagated stress are achieved by augmenting the transient piezo output 

with the capacitive touch, thus overcoming the intrinsic inability of the piezoelectric 

material in detecting non-transient force signals and avoiding force touch mis-

registration by propagated stress. As a capacitive signal is important for force touch 

interpretation, optimization algorithms have been developed and implemented. With 

correlated double sampling (CDS) and spatial low-pass filtering (SLPF) based 

techniques, the signal-to-noise ratio (SNR) of the capacitive touch signal is boosted by 

15.6 dB, indicating improved detection accuracy. In terms of the readout speed, fixed 

pattern and random pattern related down-sampling techniques are applied, giving rise to 

reductions in both readout time (11.3 ms) and power consumption (8.79 mW).  
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Chapter  1 Human-machine Interaction 

Related Technologies in Interactive 

Displays  

_____________________________________________________________________________ 

 

Visual display of information is an obvious requirement in today’s highly digital world, 

and constitutes a powerful means of conveying complex information. This stems from 

the ability of the human eye and brain to perceive and process vast quantities of data in 

parallel. The history of visualizing information can be traced to the ancient era, when 

our ancestors carved images on cave walls and monuments (around 30000 BC [1]). 

Mosaic art form emerged in the 3rd millennium BC [2], using small pieces of glass, 

stone, or other materials in combination to display information. These pieces are similar 

to pixels in the modern electronic display. The electronic display has become the 

primary human-machine interface in most applications, ranging from mobile phones, 

tablets, laptops, and desktops to TVs, signage and domestic electrical appliances, not to 

mention industrial and analytical equipment. 

 

In the meantime, user interaction with the display has progressed significantly. Through 

sophisticated hand gestures [3]-[11], the display has evolved to become a highly 

efficient information exchange device. While interactive displays are currently very 

popular in mobile electronic devices such as smart phones and tablets, the development 

of large-area, flexible electronics, offers great opportunities for interactive technologies 

on an even larger scale. Indeed, technologies that were once considered science fiction 

are now becoming a reality; the transparent display and associated smart surface being a 

case in point. These technologically significant developments beg the question, “What 

will be the development trend of interactive technology?” This chapter will review 
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current mainstream interactivity techniques and predict what we believe will be future 

interactive technologies. This section will first review current mainstream interactivity 

techniques, and then predict the future trend of interactive display. Based on the review 

and the prediction, the motivation and contribution of this dissertation are provided. 

 

Human-machine interactivity can be categorized based on touch or touch-free gestures. 

The former is primarily employed in the small and medium-scale screens used in smart 

phones and tablets, while the latter is more popular in larger displays [12]. Various 

techniques for interactivity have been developed. Currently these are mainly based on 

resistive, capacitive, surface acoustic wave, acoustic pulse recognition and infrared 

schemes [3]. Recently, touch-free (e.g. gesture recognition by optical imaging) and 

force-touch have emerged and are now in commercial devices. These advanced features 

bring human-machine interactivity to a new level of user experience. 

 

1.1 Touch Interactivity Architectures 

The first generation of touch screens employed resistive based architectures [4], in 

which two transparent electrically resistive layers are separated by spacer dots and 

connected to conductive bars in the horizontal (x-axis) and the vertical (y-axis) sides, 

respectively. A voltage applied on one layer can be sensed by the other layer, and vice 

versa. When the user touches the screen, the two layers are connected at the touch point 

and work as voltage dividers, and the touch location is then calculated. These first 

generation devices were limited to locating a single point, restricting their use for 

complex gestures. 

 

In capacitive-based touch panels, electrodes are arranged as rows and columns and are 

separated by an insulating material such as glass or thin film dielectric. When a 

conductive object comes in contact with the screen surface, the electric field is 

perturbed hence changing the capacitance between electrodes [5][6]. Capacitive touch 
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panels are most commonly used in smart phones because they support multi-touch 

without altering the visibility and transparency of the display.  

 

In surface acoustic wave and acoustic pulse recognition interactivity schemes, the touch 

position is detected by acoustic waves [7][8]. In the former, ultrasonic waves are 

transmitted and reflected in the x- and y-directions. By measuring the touch-induced 

absorption of the waves, the location can be determined. In acoustic pulse recognition, 

transducers are fitted at the edges of the touch panel. A touch action on the screen 

surface generates a sound wave that is then detected by the transducers, digitalized and 

subsequently processed to determine the touch position.  

 

In the infrared-based architecture, two adjacent sides of a touch screen are equipped 

with light emitting diodes, which face photodetectors on the opposite sides, forming an 

 

                        (a)                                                        (b)                                                     (c) 

 

 

                        (d)                                                       (e)                                                       (f) 

Fugure 1. 1 Interactivity based on (a) – (e): resistive, capacitive, surface acoustic wave, acoustic pulse 

recognition and infrared touch architectures, and (f): touch-free interactive display based on image 

sensor. 
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infrared grid pattern [9][10]. The touch object (e.g. finger or stylus) disrupts the grid 

pattern, from which the touch location is determined.  

 

The techniques described above detect two-dimensional single- or multi-touch, i.e. 

touch locations on an x-y plane. Recently, commercial products released by Apple 

support force sensing, expanding touch interactivity to 3-D [11]. Here, screen deflection, 

and hence the corresponding change in capacitance, serves as a measure of the extent of 

applied force, which is then augmented with a haptic response.  

 

1.2 Touch-Free Interactivity Architecture 

Whilst a variety of touch technologies are currently in use in products, touch-free 

gesture recognition has emerged recently. One current technique relies on locating 

discrete infrared sources and detectors at different positions on the display edges to 

construct the touch event. However, imaging is not possible because of the discrete 

nature of the sensors. The pixelated approach reported recently employs an image 

sensor integrated at every display pixel. This way the display is actually able to view the 

underlying gestures of the user. Alternately the event can be remotely triggered by a 

light pen [13-17]. The interactive display can be transparent using, e.g. oxide 

semiconductor technology, and be able to carry out invisible image capture. This 

development has the potential for high technological impact in human interfaces. 

 

Voice recognition is another technique for remote interactivity [18]. Tremendous 

progress has been made in this area with very impressive results. Existing commercial 

products include Siri and Echo from Apple and Amazon respectively. Despite that, 

challenges remain in voice signal processing and machine limitations of speech 

perception. This is particularly true with differently spelled but similar sounding words, 

and signal recognition in a noisy acoustic background. These problems can be 

eventually overcome with use of much faster processers and more memory to bring into 

consideration contextual information. 
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1.3 Objectives 

Current mainstream human-machine interactive (HMI) technology-touch screen panel 

(TSP) has two shortcomings. First, recent TSPs employ a single sensing technique to 

detect one certain type of physical signal (one-dimensional sensing), as explained above 

and illustrated in Fig. 1.1 (a)–(f). Thus, multiple discrete devices with different sensing 

capabilities must be embedded into a single system to allow multi-dimensional sensing. 

For example, optical, temperature and force sensors are integrated into commercial 

mobile phones to provide multi-dimensional signal detection functions for customers. 

However, this results in increased component costs, circuitry complexity and power 

consumption. Second, although the energy cost is tiny for the individual touch sensors 

in a TSP, their total energy consumption is huge considering numerous touch panels are 

intensively used worldwide. Besides optimizing the product design to reduce power 

consumption, which approaches the limits of current technology, harvesting the 

environmental energy is essential to enhance the lifetime of the battery.  

 

Thus, in this project, the key task is to design and implement a multi-functional TSP 

prototype for multi-dimensional sensing along with possible applications to energy 

harvesting. First, multi-dimensional signals must be detected concurrently, providing 

customers with a similar user experience to when multiple mono-dimensional sensors 

are used. Second, since TSP is a highly commercialized product, the proposed technique 

should well fit to existing TSP techniques, to avoid/reduce changes to production lines. 

Third, potential issues of the proposed technique need to be analyzed and addressed.   

   

To achieve these objectives, functional materials must first be employed. More 

specifically, piezoelectric materials will be used, due to their intrinsic ability of 

converting mechanical stress to electric charges, providing the functions of force touch 

detection and energy harvesting. Second, the piezoelectric materials will be combined 
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with capacitive touch panels, which dominate the TSP market [19]. Third, algorithms on 

how to interpret these two signals will be developed.  

 

1.4 Thesis Outline and Contributions 

This thesis charts the author’s work on the understanding of capacitive TSP and 

piezoelectric materials, and the development of a multi-functional touch panel from 

theoretical analysis to touch panel fabrication and algorithm design. Chapter 2 provides 

literature reviews on capacitive touch panel and piezoelectric materials. The multi-

functional touch panel for concurrently sensing force and capacitive stimuli is proposed 

at the end of this chapter. In Chapter 3, a theoretical analysis is conducted of the 

proposed technique in mechanical and electrical terms. Secondly, preliminary 

experiments are performed for the purpose of validating the concept. The proposed 

multi-functional touch panel is fabricated and measured in Chapter 4. The experimental 

results demonstrate its good mechanical and electric response to touch events. Chapter 5 

focuses on design and implementation of the algorithm for interpreting the force touch 

signal. Two practical issues facing force touch sensing are first addressed with the help 

of the capacitive touch signal: static force touch detection and stress propagation. 

Second, an algorithm is developed to achieve concurrent force touch detection and 

energy harvesting. As the capacitive touch signal is vital for interpreting the force touch 

signal, its detection accuracy and readout speed must be improved. In Chapter 6, noise 

reduction and fast readout related techniques are developed. Finally, The conclusions, 

technological outlook and planned future work are described in Chapter 7. 

 

The novel contributions of this thesis can be summarised as follows: 

 A simple structured multi-functional touch panel system for concurrent multi-

dimensional sensing is demonstrated for the first time.   

 Mechanical analysis and experiments are given for a piezoelectric material based 

touch panel. First, we provide a possible means for achieving high sensitivity in 

force touch detection in an interactive display. Second, the challenges of using 
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piezoelectric materials are analyzed, such as detection uniformity across the 

panel.  

 Interpretation algorithms are proposed and implemented for static force touch 

detection and elimination of force touch interference.  

 A smart algorithm is proposed and implemented for obtaining force touch 

detection and energy harvesting at the same time.  

 Image based noise reduction and fast readout techniques are developed for 

capacitive touch signals. Correlated-double sampling and spatial low-pass 

filtering based techniques are employed to reduce the noise power. Down-

sampling techniques with fixed and random patterns are used to speed up the 

readout.  

 The above contributions have been reported in a series of peer-reviewed IEEE 

and ACS publications.  
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Chapter  2 Reviews on Capacitive 

Touchscreen and Piezoelectric Related 

Technologies  

 

In the previous section, the need for a simple-structured multi-functional touch panel 

was explained, along with the design requirements of the multi-functional touch panel. 

In order to develop a piezoelectric material based capacitive touch panel, it is necessary 

to develop an understanding of the capacitive touch panel and piezoelectric materials 

 

In this section, brief literature reviews are provided first in terms of the working 

principles of projected capacitive touch panels and piezoelectric materials. Following 

this, the design considerations of embedding piezoelectric material into capacitive touch 

panels are given through theoretical analysis and practical experiments. Finally, a multi-

layered stack-up is proposed to achieve multi-functionality.  

 

2.1 A Brief Overview of Projected Capacitance Touchscreen  

2.1.1 Working Principle and Panel Architecture  

Projected capacitance touchscreen system measures the change of capacitance at 

electrodes to detect the touch event [1][2]. When a conductive object (human figure or 

stylus) touches the screen, the original electromagnetic field will be affected hence the 

capacitance is changed. This can be sensed by electrodes as a signal and sent to the 

processor to determine the touch location. Two options are provided here, self-

capacitance and mutual capacitance.  
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In self-capacitance TSP, the capacitance between electrodes to ground is measured 

[3][4][5][6]. When a human finger is close to the electrode, the capacitance between the 

electrode to the ground is increased, hence a touch event is detected. Two types of self-

capacitance are constructed, which are multi-pad and row-and-column [4] as shown in 

    

                           

                                   (a)                                                                                         (b)  

 

(c) 

Figure 2. 1 (a) Multi-pad structure in self-capacitance TSP; P1 to P16 indicate the number of the touch 

pads. The yellow point represents the touch location. (b) Working principle of multi-pad structured 

self-capacitance TSP. CP6 is the capacitance between touch-pad P6 to ground and CF is the finger 

touch induced capacitance. (c) Ghost points in row-and-column structured self-capacitance. SR1 to SR7 

and SC1 to SC7 indicate the row and column sensing electrode 1 to 7, respectively. The yellow points 

and black block signs are the real touch locations and ghost points locations.  
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Fig. 2.1. In a multi-pad structure, each pad is connected with the controller individually, 

thus multi-touch is supported. In a row-and-column structure, each of the rows and 

columns is an electrode, instead of a pad as in a multi-pad structure, and individually 

connected with the processor. Although each intersection of rows and columns indicates 

a unique location on touch screen, it cannot support multi-touch. This is because each 

electrode is measured, instead of each intersection. Thus when multi-touch is 

            

                                         (a)                                                                                  (b) 

                        

                                         (c)                                                                                 (d) 

Figure 2. 2 (a) – (b) Mutual-capacitance diamond structure and bar structure. The yellow points 

indicate the touch locations. (c) – (d) Working principle of mutual-capacitance structure.  

 

 

 

 

 

Figure 2. 4 (a) – (b) Mutual-capacitance diamond structure and bar structure. The yellow points 

indicate the touch locations. (c) – (d) Working principle of mutual-capacitance structure.  

 

 

 

 

 

Figure 2. 5 (a) – (b) Mutual-capacitance diamond structure and bar structure. The yellow points 

indicate the touch locations. (c) – (d) Working principle of mutual-capacitance structure.  
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performed, ghost points are made as illustrated in Fig. 2.1 (c). However, zoom-in/zoom-

out function still works, as the distances between the interpreted touch locations are 

calculated by software. When the distance increases, a zoom-in action can be 

interpreted. In contrast, a decrement of distance between registered touch locations 

indicates a zoom-out action. One advantage of the self-capacitance structure is its ability 

in detecting hover touch and glove touch, since long-distance field projection is 

normally used [6]. 

 

 

(a) 

 

 

(b) 

Figure 2. 3 (a) – (b) Working principle of mutual-capacitance structure.  

 

 

 

 

 

 

(a) 
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Alternatively, in mutual-capacitance TSP, the mutual capacitance between two 

electrodes is measured [6][7]. In mutual capacitance, electrodes are normally placed as 

rows and columns [7]. Electrodes in rows work as driving lines and those in columns 

act as sensing lines, or vice versa. Each intersection of rows and columns represents a 

unique location, and each intersection will be measured individually. By periodically 

the scanning electrodes’ intersections, multi-touch is supported. As shown in Fig. 2.2, 

electrodes in rows are arranged from D0 to DN, after each of them is powered separately, 

the intersections with the sensing lines from S1 to SM will be measured in sequence to 

realize multi-touch detection. When a human finger touches the panel cover, the mutual 

capacitance is decreased, as charges are stolen by the human finger. One obvious 

drawback of mutual-capacitance TSP is that more time is needed for a full screen 

measurement compared with that of the self-capacitance TSP. Current commercial 

products have a sensing rate from 20Hz to 200Hz [2], while some lab-used and 

 

Figure 2. 4 Structure of a typical two-layer projected capacitive touch panel. 

 

 

 

 

 

Figure 2. 10 Structure of a typical two-layer projected capacitive touch panel. 
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developed touch panels can achieve higher sensing rate, up to 6400Hz [8]-[15].  

 

The main distinctions between self-capacitance and mutual-capacitance structures are 

summarized in Table 2.1.  

 

2.1.2 Touch Screen Construction  

Almost all the projected capacitive touch screens share two basic features in their 

construction [6]. First the touch surface is above the sensing circuits, and second all the 

components are fixed which means no moving part. A typical two layers projected 

capacitance construction concept is shown in Fig. 2.4. Two transparent thin-film ITO 

conductors are separated by a thin-film insulator (normally glass or PET), and a touch 

surface is set on top of them.  

 

The sheet resistance and line widths of the patterned ITO layer are normally 150 Ω/□ 

and 20μm, when glass is used as substrate [2].  In contrast, when PET is employed as a 

substrate, the line widths are typically 100-200 μm [2], due to the reduced flatness 

compared to glass. For glass substrate related ITO patterning, photolithographic 

 

Table 2. 1 Main Distinctions between self-capacitance and mutual-capacitance structures, modified 

from [2]-[6]. 

 

 

 

 

Table 2. 1 Main Distinctions between self-capacitance and mutual-capacitance structures, modified 

from [2]-[6]. 
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methods are widely used. As to the PET substrate, more techniques can be applied for 

ITO patterning, such as screen-printing [2]. Although the sheet resistance and line 

widths of the PET substrate based patterning are higher and larger than those of the 

glass substrate based patterning. The advantage of using a PET substrate is its thinness. 

The thickness of a PET substrate is usually from 50 μm to 100 μm [2][3][16][17]. 

Alternatively, glass substrate’s thickness is from 0.2 mm to 0.4 mm [2][3]. The detailed 

comparison of a PET substrate vs. glass substrate is given in Table 2.2. Optical 

clearance adhesive (OCA) is widely used to glue the multi-layered structure [2][6]. 

 

Besides the stack-up shown in Fig. 2.3, there are many other stack-ups widely used in 

industry. The reasons for touch-module makers to select one but not others are based on 

the considerations such as transmissivity, thickness, weight and cost. The symbols and 

meanings for different stack-ups are summarized in Table 2.3. 

 

2.1.3 Capacitance Measurement Methods  

Capacitance can be measured by a variety of methods. In general, touch induced 

capacitance can be detected by measuring the change of RC constant, impedance and 

amount of transferred charges. The main methods are relaxation oscillator [18], charge 

time vs voltage [19], voltage divider [20] and charge transfer [21]. Among them, the 

details of relaxation oscillator based and transferred charge based methods are discussed 

in this section. 

 

In transferred charge based methods, a current source (or a voltage source) is employed 

to provide a stable periodic signal [22]. As shown in the black components in Fig. 2.5 

(a), by integrating the charges accumulated on the electrode capacitor (CElectrode), the 

charge amplifier consisted of an operational amplifier and feedback components 

(feedback resistor RF and feedback capacitor CF) outputs a voltage signal (VOut). The 

amplitude of the output is positively proportional to the ratio of the CElectrode to the CF. 

When a touch event happens, a touch induced capacitor (CTouch) is paralleled to the 
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Table 2. 2 Main Distinctions between self-capacitance and mutual-capacitance structures, modified 

from [2][3]. 

 

 

Table 2. 3 Symbols and meanings of different stack-ups, modified from [6]. 
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original electrode capacitor (CF), as shown in the grey components in Fig. 2.5 (a). Thus 

the input capacitance increases, resulting in a boost in the output voltage. In this way, a 

touch event is detected.  

 

As to the relaxation oscillator based capacitance measurement, a non-linear electronic 

circuit is used to generate a periodic non-sinusoidal (e.g. triangular wave or square wave) 

signal. As shown in the black components in Fig. 2.5 (b), through the feedback resistor 

(RF), the input capacitor (CElectrode) is charged. When the voltage across the input 

capacitor CElectrode exceeds a certain threshold, the inverter is triggered, and then the 

output becomes zero. This process happens periodically, and the period is controlled by 

the feedback resistor RF and input capacitor CElectrode. When a touch event happens, the 

touch induced capacitor CTouch increases the RC constant, hence decreases the frequency 

of the output signal, as shown in grey part of Fig 2.5 (b). 

 

2.1.4 Characteristics of Capacitive Touch Signals 

To accurately interpret capacitive touch signals in terms of position and presence, and 

avoid touch mis-registrations, digital signal processing (DSP) algorithms [7][23][24] are 

normally applied to the digitized touch signals. To design and implement high 

efficiency DSP algorithms, the first thing to consider should be the capacitive touch 

signal’s characteristics. In practice, the characteristics of the touch signals are different 

case by case. They are highly dependent up on the structure of the touch panel, 

measurement methodology, environmental noise and user behaviour. However, there 

are still some shared factors for most of capacitive touch signals. Below we provide a 

detailed analysis on the shared human finger touch signal characteristics of mutual-

capacitance architecture, which is intensively used in current commercial mobile phones.  

 

The property analysis of capacitive touch signals can be based on a single electrode 

intersection or a whole scan of touch panel. If the capacitance value of each electrode 

intersection is assumed as a pixel value, and the data associated with a whole scan of the 
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touch panel is treated as an image, then the property analysis is equivalent to the 

analysis on a touch event related pixel and a touch event related image. Time domain 

analysis is widely applied on the touch event related pixel [7][23]. In the time domain, 

human touch is a low frequency signal, whose bandwidth is normally below 10 Hz [7]. 

Based on this property, many low-pass filtering based techniques [7][25] are applied to 

remove noise, in order to improve signal to noise ratio (SNR).  

 

As to the analysis on the touch event related image, spatial domain analysis is 

performed. In spatial domain, first touch signals are viewed as low spatial frequency 

signals [24]. This is because the size of the human finger is normally 7mm to 15mm, 

and traditionally, spacing of two adjacent electrode intersections is around 5mm [26]. 

When a finger touch is performed, normally 3×3 electrode intersections are affected 

[27]. As the spacing in recent touch panels is becoming smaller and smaller, more 

electrode intersections are affected. In our experiment carried out with an 80×80 

Blackberry lab touch panel, the spacing for sensing array is only 2mm, thus more 

electrode intersections (~11×11) are affected as shown in Fig. 2.6. Within the touch 

event affected region, the capacitance values of adjacent electrode intersections are 

similar; hence the touch signal offers a low spatial character. This character is important 

for smoothing noise spikes.  

 

 

 

Table 2. 4 Estimators for sub-pixel interpolation, modified from [28]. ri indicates the capacitance 

value at the ith row.  
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Second, the capacitance intensities of electrode intersections within the touch affected 

area follow a certain distribution (e.g. Gaussian) [26][27][28]. This is due to the shape 

of the human finger. Various sub-pixel interpolation algorithms [24][27] for detecting 

accurate touch positions are developed based on this characteristic. Some widely used 

subpixel estimators are summarized in Table 2.4. Furthermore, algorithms for avoiding 

 

CTouch CElectrode

RF

Original 

Output

Touch Related 

Output

Current 

Source

Operational 

Amplifier

CF

+
-

VOut

 

(a) 

 

 

(b) 

Figure 2. 5 Working principles of (a) charge amplifier and (b) relaxation oscillator techniques based 

touch detection. 
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mis-touch registrations are also based on this characteristic. For example, when a user’s 

cheek touches the touch panel, although the capacitance intensity exceeds the touch 

determination threshold, the cheek touch activity is not registered due to its intensity 

distribution; hence an important phone call will not be disturbed by a user’s 

unintentional operations.  

 

Third, touch signals also exhibit sparse property (only limited number of touch signals 

exist simultaneously) in the spatial domain [24][29]. Under practical situations, only 

one or two touch events happen simultaneously. In fact, although a touch panel scans all 

its electrode intersections periodically, it normally only supports a few touch events 

during one scan period. For example, by employing a multi-touch testing software 

(MultiTouch), we learn that iPhone 6S and iPad Pro can support 5 and 17 simultaneous 

touch events, respectively.  

 

2.2 Brief Overview of Piezoelectric Material 

2.2.1 Principle and Characterization of Piezoelectric Material 

Piezoelectricity is the phenomenon by which charges are generated in some solid 

materials when mechanical stress is applied [30][31]. It was first demonstrated in 1880 

by C. Linnaeus and F. Aepinus. The working principle of piezoelectric materials is 

based on their non-centrosymmetric structures. [32] When a load force is applied to a 

centrosymmetric material, its polarization remains intact. In contrast, the polarization of 

a non-centrosymmetric material becomes either positive or negative according to the 

direction of the applied force, inducing a charge in the material. This is illustrated in Fig. 

2.7 (a)-(b). The structure of a specific piezoelectric material, PVDF in its β-phase, is 

shown in Fig. 2.7 (c) to provide a direct view of how the polarization changes due to the 

structure of the material. Piezoelectric materials also demonstrate the inverse 

piezoelectric phenomenon, in which a mechanical deformation is induced when an 

external electric field is applied [33]. The phenomenon of force induced charge is a 

designated direct effect, and its counterpart is known as the motor effect [33]. To 



36 
 
 
 

 

quantify piezoelectric performance, piezoelectric equations and coefficients can be used. 

The piezoelectric equations and coefficients are summarised below. The measurement 

of the main coefficient is discussed in the next section.  

 

 

(a) 

 

(b) 

Figure 2. 6 (a) Single touch event related image and (b) multi-touch event related image. 
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(a) 

 

(b) 

 

(c) 

Figure 2. 7 (a)-(b) The change of polarization in Centrosymmetric and non-Centrosymmetric structures. 

(c) Structure of PVDF β-phase, modified from [30]. 
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The charge and voltage piezoelectric constants are denoted as d and g, respectively. 

Their relationship is expressed as [34]: 

 

                   ;                                                                                                                  (2.1) 

 

where ԑ0 is the vacuum permittivity (8.85 pF/m), and ԑr is the relative permittivity 

(dielectric constant) of the piezoelectric material. Electrically, d and g represent short 

and open circuit conditions for the piezoelectric materials. In direct and converse effects, 

d and g are defined as [34]: 

 

The generalised form of the interaction between mechanical and electrical behaviour, 

based on a linear approximation, can be expressed as: 

 

                                                                                                                                       (2.2) 

                                                                                                                                       (2.3) 

 

here S and T denote the strain and the applied stress, E and D represent the electric field 

strength and the dielectric displacement, and s and ԑ indicate the compliance and the 

permittivity. 

 

As the directions of poling and mechanical deformation can be varied, it is desirable to 

identify the axes of a sample when specifying the parameters. Normally a model similar 

to that shown in Fig. 2.8 is used to indicate the directions of poling and mechanical 

 

Table 2. 5 Definitions of d and g in direct effect and converse effect. 

 

 

Table 2. 11 Definitions of d and g in direct effect and converse effect. 

 

 

Table 2. 12 Definitions of d and g in direct effect and converse effect. 

 

 

0 r
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deformation [35]. Here the three axes (x, y and z) are perpendicular to each other. Of 

these, the “3-axis” (z) usually represents the poled direction. Shear strains related to 

directions 1, 2 and 3 are denoted as 4, 5 and 6. From this coordinate system, the 

generalised form incorporates directional notation. Thus, when a piezoelectric sample is 

poled in the “3-direction”, and stress is also applied in the “3-direction”, the relationship 

between d, D and T becomes: 

 

                                 ;                                                                                                    (2.4) 

 

The electrodes are on the faces in the “3-direction” and the external electric field is 

constant. Eq. 4 can be rewritten as: 

 

                         ;                                                                                                            (2.5) 

 

where Q is the charge developed, and F is the applied force. Equation 2.5 offers a 

means to measure d33 using the direct method. d33 can also be measured using the 

indirect method, which can be explained by rewriting Eq. 2.1 as: 

 

                                 ;                                                                                                    (2.6) 

 

 

Figure 2. 8 Directions of poling and mechanical deformation. 

 

 

Figure 2. 13 Directions of poling and mechanical deformation. 

 

 

Figure 2. 14 Directions of poling and mechanical deformation. 

 

 

33 3 3[ / ]Ed D T  
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In this case, the experiment is carried out under constant stress. The direct (Berlincourt) 

method is introduced below in detail, as force touch detection is similar to the inverse 

procedure of the direct method. 

 

2.2.2 Berlincourt Method for Piezoelectric d33 Coefficient 

Measurement 

The Berlincourt method uses the direct effect for quasi-static measurement of the 

piezoelectric d33 coefficient [36]. It is named after Don Berlincourt, who made an 

important contribution to designing and fabricating the first commercial d33 

measurement system [34]. A Berlincourt method based piezoelectric coefficient 

measurement system normally comprises two parts: the force head and the control 

electronics. The force head consists of the loading actuator and a reference sample, and 

the control electronics include the force control (strength and frequency) system, the 

charge measurement system, and the piezoelectric coefficient (d33) calculation system. 

There are many factors affecting the accuracy of d33 measurement using the Berlincourt 

method. These factors are summarized and explained below. 

 

AC Measuring Force 

The AC measuring force can be described according to its strength (magnitude) and 

frequency. The magnitude does not significantly influence the measurement result, 

unless the piezoelectric material works in a non-linear regime. The merit of applying a 

stronger AC force is to generate more charges, giving rise to a higher signal to noise 

ratio (SNR). However, this may result in the piezoelectric material operating in a non-

linear regime. 

 

In contrast, the frequency does result in different d33 measurement results. Due to 

thermal drift and charge dissipation, a static force cannot be applied. The frequency 

range is approximately 10 Hz to 1 kHz, governed by the charge measurement system, 

the stability of the generated charge during the measurement, and the load application 
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method. Furthermore, the measurement frequency should avoid the mains power 

frequencies and corresponding harmonics, because it is normally difficult to completely 

shield electro-magnetic interference (EMI) from surrounding electronic instruments. 

 

Besides the system performance, the effect of the AC force frequency depends on the 

properties of the tested piezoelectric material. In [37], the measurement results for hard 

(PC4D) and soft (PC5H) materials were different. The piezoelectric d33 coefficient of 

the hard material was boosted with the increment of AC force’s frequency; while the d33 

of the soft material was stable under 150 Hz, and then followed the same trend as the 

hard material. This can be explained by the suppression of domain movement at 

increasing frequencies for soft materials, and the de-aging effect for hard materials. 

 

Effect of Static Pre-load 

Static pre-load is used to clamp the samples at a desired position. Static pre-load has 

opposite effects on hard and soft piezoelectric materials. In hard materials, the 

piezoelectric d33 coefficient rises with increasing pre-load. Soft piezoelectric materials 

show the opposite trend. However, the measurement is more reliable under greater pre-

load [38]. 

 

Time Dependent Effect 

The measurement result is time dependent when the sample is under pre-load. For all 

the measurements in [39], the piezoelectric d33 coefficient reduces over time, and 

eventually becomes stable. The specific decay rate is related to the property of the tested 

piezoelectric material. However, in general, the time to reach stable status for soft 

materials is longer than that of hard materials [39]. 

 

Second Order Effect 

In practical measurements the time dependent effect can be combined with the 

frequency dependent effect. If the frequency sweeps from low frequency to high 

frequency then back to low frequency when measuring the piezoelectric d33 coefficient, 
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the measured results for a given frequency are different, showing hysteretic behaviour 

[40]. To eliminate the second order effect, the measurement can be made after the pre-

load has been applied for several hours, to ensure that the piezoelectric d33 coefficient 

has reached a stable region. 

 

Sample and Loading Geometry 

When measuring the piezoelectric d33 coefficient using the Berlincourt method, the 

sample under test should be under compression. However, this is not always true in 

practice. The effect of the sample and loading geometry refers to the shear stress 

generated when the load contacts the sample and the mechanical interactions between 

them. To reduce the shear stress, contact electrodes need to be carefully designed. For 

example, flat electrodes can be used for thin films. 

 

System Calibration 

Two calibration points are the zero calibration and gain setting. Normally a non-

piezoelectric material is used for zero calibration, and an already tested hard PZT is 

used for gain setting. Due to the frequency dependent effect, system calibration must be 

carried out again once the AC force frequency changes. 

 

Environment Effect 

In addition to the effects arising from the sample and measurement system, the testing 

environment also significantly affects the value of the measured piezoelectric d33 

coefficient. For example, EMI from surrounding electronic instruments disturbs the 

electric field, so that the measurement is not made under a constant electric field. Also 

sudden changes to temperature and humidity can create pyroelectric charges and 

additional paths for charge leakage. All of these can produce inaccuracy in the 

measurement.  

 

For ideal solid state materials, the most simple model for describing deformation 

behavior is Hookean linear elasticity. The end point of elastic deformation is fracture. 
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However, the behavior of many materials in real world is time dependent and nonlinear 

as discussed above which is related to some combinations of elastic and viscous 

responses. As to the PVDF, we mainly consider its time and temperature dependent 

responses (especially the temperature as which may decrease d33 [45]), which are 

related to force touch’s detection accuracy.  

 

2.2.3 Challenges of Piezoelectric Material Based Force Touch 

Detection in Interactive Displays 

As mentioned above, the force detection process is similar to the inverse process of 

measuring the piezoelectric d33 coefficient using the Berlincourt method. Here, d33 is 

determined by measuring the force induced charges. Equations for this can be 

summarized as: 

 

                   ;                                                                                                                (2.7) 

                  ;                                                                                                                 (2.8) 

                            ;                                                                                                       (2.9) 

 

where P3 is the force induced polarization in the poled direction, σ indicates stress. As 

the sample is under compression, scalar expression of Hook’s law is used. As stated in a 

previous section, the piezoelectric d33 coefficient is not constant, and the actual value 

depends on many factors. Thus, it is necessary to address how these factors affect the 

accuracy of force touch detection, when the piezoelectric material is integrated into a 

touch panel system. Two assumptions are made. First, that the touch panel is designed 

for interactive displays in a current commercial consumer product (e.g. a mobile phone). 

Second, that the force touches are performed by human fingers. The following 

discussion is based on these two assumptions. 

 

The frequency of the force touch is limited to a certain frequency band, and is highly 

dependent on the individual’s behaviour and the type of software application. For 

/F A

333P d 
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example, drawing applications normally don’t require fast touch actions, while game 

applications may demand quick touches. Thus, when the piezoelectric material is used 

for force detection, the same force can generate different charges when the touch speed 

differs, decreasing the force touch detection accuracy. 

 

The effects of force amplitude and time of the pre-load can be neglected, since after the 

product is assembled, the amplitude of the pre-load is almost fixed, and will not 

dramatically change during a short time. The time of the pre-load is normally at the 

scale of days and months, indicating that the piezoelectric d33 coefficient is in the stable 

region. The geometry of the sample and loading are strongly related to the product 

design, thus the effect of geometry is not discussed here. 

 

The main environmental factors are the temperature and EMI interference. In practice, 

the main contributor to these two factors usually is the interactive display itself. The 

electric power source, touch function and display function can be the main EMI 

contributors, affecting both the piezoelectric d33 coefficient and the accuracy of the 

readout circuit. As shown in [23], the noise from the charger and LCD can exceed 1 V, 

strongly weakening the force touch accuracy. However, these two types of noise can be 

canceled using correlated double sampling (CDS), as described in [7]. Another type of 

noise from the interactive display can originate from other touch sensing functions. 

Here, only the project capacitive touch sensing is discussed. DC signals are widely used 

for resistive and optical touch sensing functions, the effects of which can be treated and 

removed as offset [41][42]. The capacitive touch function employs a sensing signal of 

around 100 kHz [21] to detect capacitive touch events, as shown in [23]. Thus, by using 

low-pass and high-pass filters, the capacitive and force touch signals can be separated. 

 

Two main sources contributing to changes in temperature are the external AC electric 

field and electrical components of the interactive display. The AC electric field can 

result in small vibrations of the piezoelectric film, giving rise to a boost in temperature 

[34]. However, as the EMI induced heat is normally much smaller than that from the 
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processor of the interactive display, it can be neglected. Temperature changes made by 

the processor or other components can give rise to charge generation, due to the 

pyroelectric behavior of ferroelectric materials. The incremental rate is very slow, 

indicating that the frequency is much lower than the force touch signal. Hence, the 

pyroelectric signal can be filtered out, or cancelled using CDS related techniques [7], 

since it is a time correlated signal. 

 

Besides the instability issue of the piezoelectric d33 coefficient previously discussed, 

there are two challenges facing force touch detection using piezoelectric materials in 

interactive displays: static force detection and elimination of force interferences. Two 

factors affect the static force detection. First, piezoelectric materials normally offer high 

relative permittivity [40], which results in charge dissipation. Second, thermal drift 

gives rise to charge generation due to the pyroelectric phenomenon [34]. Elimination of 

force interferences is complicated by charges induced by adjacent force touches, which 

can be interpreted by the system as a light force touch, giving rise to force touch mis-

registration. 

 

 

Figure 2. 9 Main factors affecting force touch sensing in a piezoelectric material based interactive 

display. 
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The above discussion shows that there are many factors that can influence the accuracy 

of force touch detection in a piezoelectric material based interactive display, as shown 

in Fig. 2.9. Some factors among these can be neglected, such as time, static pre-load and 

temperature, since they do not change dramatically over a short period of time. 

Nevertheless, the touch speed and geometry of the touch object may strongly disturb 

interpretation of the force signal. For example, the extreme touch speed case is a DC 

force touch vs. a high speed touch, since although the same force is used, the output 

signals are different. As to the case of various touch object geometries, different 

amounts of stress can be induced by the same force when the contact areas are different. 

As the touch detection accuracy can be undermined by the factors explained above, the 

readout circuit design is vital for achieving high detection accuracy. The following 

section discusses readout circuit designs for piezoelectric material based human force 

touch sensing. 

 

2.2.4 Readout Circuit for Piezoelectric Material Based Force Touch 

Signal 

Previous sections discussed the Berlincourt method for measurement of the 

piezoelectric d33 coefficient, and the reverse Berlincourt method for force signal 

detection in interactive displays. This section discusses the practical considerations in 

designing readout circuits for force touch induced electric signals. 

 

The main purpose in carefully designing the readout circuit is to improve the sensitivity 

of the electrical system. Sensitivity here indicates the minimum detectable force for the 

system, which is equivalent to the condition at which the applied force is strong enough 

that the SNR of the system is equal to 0 dB. To increase the system sensitivity, either 

the signal power can be boosted, or the noise power decreased. Boosting the signal 

power can be done at different stages, for example, an RF signal can be amplified 

before sensing and after receiving through an antenna. The most important stage is at 
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the signal source, because at other stages, the noise is also amplified, due to it sharing 

the same bandwidth as the signal, as shown in Fig. 2.10. 

 

The issue at the signal source side of the piezoelectric material touch sensor is that, due 

to its high impedance, not all the electric signal generated by force touch can be 

acquired by the circuit. The equivalent circuit for a piezoelectric material based touch 

pad can be modeled as Fig. 2.11, consisting of a charge generator, a capacitor, and a 

resistor. The charge generator is based on the piezoelectric phenomenon. The magnitude 

of the generated charge depends on the piezoelectric coefficient of the piezoelectric 

material and the applied force. The capacitance of the touch pad capacitor can be 

calculated by the following equation: 

 

(a) 

 

(b) 

Figure 2. 10 Main factors affecting force touch sensing in a piezoelectric material based interactive 

display. 

 

 

(a) 
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 ;                                                                                                           (2.10) 

 

  

where A is the overlapped area of the electrode, d is the piezoelectric film’s thickness, 

and e0 and er are the vacuum permittivity and relative permittivity, respectively. The 

resistance of the piezoelectric film touch pad is expressed as: 
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Figure 2. 11 Equlvalent circuit of piezoelectric film based force sensor。(a) current source, (b) voltage 

source and (c) with input resistance.  
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 ;                                                                                                                 (2.11) 

 

where ρ is the resistivity of the piezoelectric material. The resistivity of the piezoelectric 

material is normally huge. For example, the electrical resistivity of PVDF [44] is around 

2×1014 Ω/cm. As in the calculation of the capacitance, A indicates the contact area 

between the electrodes and the piezoelectric film, and l represents the thickness of the 

piezoelectric film. For a piezoelectric material based touch pad, l is equal to d. If d (l) is 

assumed to be 100 μm, and A is 1 mm2, the corresponding values for the capacitance 

(CPF) and resistance (RPF) are 1 MΩ and 1 pF, respectively. 

 

In order to acquire the force induced electric signal, the impedance of the readout circuit 

needs to be large enough to take sufficient signal. This can be explained in Fig. 2.11 (c). 

The input resistance of the readout circuit is Rin, and the internal resistance and 

capacitance of the piezoelectric film based touch sensor are CPF and RPF, respectively. 

These three components consist of a voltage divider, requiring Rin to be large enough to 

take sufficient voltage. Below a simple experiment is demonstrated. 

 

First an oscilloscope is directly connected to the sample to read the force induced 

piezoelectric signal. The experimental results are shown in Fig. 2.12 (a). The touch 

induced signal is around 3.5 V, large enough to light a light emitting diode (LED). 

However, when an LED is connected to the sample, the LED is not lit. This is because 

the internal impedance of the oscilloscope is very large, thus a part of the signal can be 

taken from the signal source. When an LED is used as the load, its impedance is not 

comparable to the signal source, thus the LED cannot be lit. A buffer circuit can be used 

to transfer the signal energy to the load. The buffer circuit should be designed to have 

high input impedance and low output impedance. In the experiment, a charge amplifier 

is used as the buffer circuit, as shown in Fig. 2.12 (b). With the charge amplifier, the 

generated charges can be conveyed to the load (LED), and then the LED is lit as shown 

in Fig. 2.12 (c). 
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Besides acquiring enough signal power from the piezoelectric material based touch 

sensor, the signal frequency band must also be taken into consideration. The signal 

frequency depends on the speed of the touch action. The signal frequency is correlated 

to how fast (absolute speed value) a user performs the force touch. For example, the 

frequency of human touch action may be limited to within 10 Hz, which means that a 

user can tap the touch panel ten times during one second. However, the force touch 

signals from an oscilloscope, as shown in Fig. 2.13, show that the property of the force 

touch signal in the frequency domain is within 10 kHz. Thus, the cut-off frequency of 

the filter should be around 10 kHz to maintain enough signal power when fast touch 

events are performed.  

 

2.3 Proposed Multi-functional Touch Panel 

Based on the above literature reviews on capacitive touch panels and piezoelectric 

materials, the simple-structured multi-layered multi-functional stack-up shown in Fig. 

2.14 is proposed for multi-dimensional sensing and energy harvesting in an interactive 

display. The piezoelectric material functions as an insulating, force touch sensing, and 

energy harvesting layer. A theoretical analysis of both electrical and mechanical aspects 

of the proposed technique is provided in the following chapter. 

 

2.4 Conclusion 

This chapter provides a brief literature review on capacitive touch panels and 

piezoelectric materials. With an understanding of these two techniques, a multi-layered 

stack-up is proposed, which is expected to be able to detect capacitive touch and convert 

mechanical stress to electrical energy.  
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Figure 2. 12 (a) Signals from piezoelectric film and commercial force sensor. (b) Readout circuit. (c) An 

LED is lit by force touch induced electric power.  
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Figure 2. 13 Force touch signals in (a) time domain and (b) frequency domain.  
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Figure 2. 14 Proposed multi-functional stack-up. 
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Chapter 3  Mechanical and Electrical 

Analysis of Interactive Stack-ups 

 
 

The previous chapter proposed and briefly discussed an approach to implement multi-

functionality in capacitance TSPs by employing piezoelectric materials [1][2]. With the 

piezoelectric material related technique, charges are generated on the surface when a 

force load is applied. The amount of charge produced is proportional to the strength of 

the force. Thus when the piezoelectric material is used as the substrate for the touch 

sensors, the induced charge can be read by the touch sensors for force sensing and 

energy harvesting.  

 

However, as explained in chapter 1, the proposed technique should provide customers 

with similar or advanced user experience. Thus, we need to evaluate our technique with 

state-of-the-art commercial products. Since conventional capacitive touch detection 

technology is employed in our proposed technique, and there is no energy-harvesting 

function in commercial touch panels to the date of this research, force touch sensing 

function is compared to the iPhone 6S [3], in which capacitive sensors are integrated 

into the backlight of the display for measuring the distance change between the cover 

glass and the backlight. However, when a force touch happens near the edge of the 

touch panel, the small displacement challenges the detection accuracy. In [3] only two 

force sensing levels and a single force touch are supported, which cannot provide good 

user experience especially for drawing applications and multi-user games. Thus, in this 

chapter, we theoretically examine if the proposed technique based touch panel can 

potentially provide advanced force touch detection experience or not.  
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Four stack ups widely used in industry are investigated and depicted in Fig. 3.1. A thin 

layer of the piezoelectric film (~20µm) is underneath the touchscreen glass (~0.5mm). 

The electrodes are much thinner compared to the piezoelectric film, PET film and cover 

glass so they are not shown in the figure. As shown in Fig. 3.1.e, when a force is applied 

to the glass surface, the stress transmitted to the piezoelectric film layer will result in the 

induction of charges, which will be measured to interpret the force level. The 

mechanical and electrical properties of the touch panel strongly affect the force touch 

sensitivity. Below, studies on these two properties are provided, based on theoretical 

analysis and simulation results.  

 

After acquiring the force induced electric signal, a challenge is to successfully interpret 

the capacitive touch signal and force touch signal. At the end of the chapter, the 

separation method for capacitive touch and force touch signals is provided, with 

experimental demonstration.  

 

3.1 Mechanical Analysis of Proposed Touch Panels 

In this section, we analyze the mechanical response of the touch panel to force touches. 

Here, the relationship between force, stress, strain, panel thickness and displacement is 

investigated. The mechanical properties for different piezoelectric film thicknesses are 

investigated. The parameters of the materials are illustrated in Table 3.1. Electrode 

layers are not given as they are very thin compared to the other layers. Electrodes will 

not affect the mechanical investigation. The touch panels can be assumed as thin plates 

as their thicknesses are far smaller than the widths and lengths. To investigate the 

mechanical response of the proposed stack-ups, 13 touch locations evenly distributed 

throughout the touch panel are investigated. Due to the symmetric property of the touch 

locations, only 5 of them are analyzed, as depicted in Fig. 3.1 (f).  

 

The force is assumed to be uniformly distributed over the contact area. The boundary 

conditions of the touch panel lie between a simple supported case and a fully clamped 
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case. For the latter, there is little literature available due to its high complexity. Thus, 

numerical results from finite element simulation software (COMSOL) are used for 

analysis. In this section, only the simply supported case is investigated. Furthermore, as 

the thickness and Young’s modulus of the glass panel are much bigger than those of 

other layers, the glass panel dominates in the mechanical analysis. As a result the other 

layers are neglected. 

 

Navier-Stokes double Fourier series solution [8] is used to obtain the displacement (Eq. 

3.1) at a particular position (x, y) from a point force applied at a particular location (ζ, η). 

Some of the assumptions of Kirchhoff-Love plate theory are as follows: 

1. The thickness of the plate is much smaller than all the other physical dimensions 

2. The displacements of the plate are small compared to the plate thickness 

3. The material is linear elastic 

4. Plane strains are small compared to unity 

 

 

Table 3. 1 Dimension parameters of the proposed stack-ups. 

 

Table 3. 2 Mechanical and piezoelectrical properties of the proposed stack-ups. [4]-[7] 
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Our model meets all of these criteria. The closed-form solution is expressed as: 

 

 

 

 

(a)                                                                                   (b) 

 

(c)                                                                                   (d) 

 

 

 

(e) 

Figure 3. 1 Four proposed stack-ups of touch panels (a) – (d), the electrodes are on and underneath the 

piezoelectric film layer. (e) Conceptual force touch event applied on one of the stack-ups.  
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where                            ;                                                                                  (3.1) 

 

 

The stress in the z direction is assumed to be 0 since the material is very small in the z 

direction compared to the other dimensions. Therefore, only plane stresses are 

considered. Note that this step is only to validate the suitability of the simulation 

environment. With other boundary conditions, the stress in z direction won’t be 0, hence 

force induced charges can be calculated. The stresses and in the x and y directions and 

the shear stress (τxy) in the x-y plane can be found from the following expression: 
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Fig. 3.1. (f) Top view of the investigated touch locations.  
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Based on the above equations, the closed-form relationship between stress and 

displacement is depicted in Fig. 3.2. Numerical results from COMSOL are shown 
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Figure 3. 2 (a) Stress vs. Displacement when thickness is 0.5mm at location L5. (b) Stress [Pa] 

distribution of the touch panel. In the simulation, only one layer of PVDF is used, hence the 

displacement contributed by normal strain is much smaller than the curverature.   
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together with closed-form solution in Fig. 3.2. The good alignment validates the 

accuracy of COMSOL as a simulator.  

 

In the above paragraphs, the theoretical analysis of a simply supported plate was 

investigated. Due to the lack of literature on the fully clamped case, simulation results 

from COMSOL are utilized to analyze the resolution and sensitivity for displacements 

of the touch panel and stresses on the piezoelectric film. The results for location 1 and 5 

of stack-up 1 are illustrated, as stack-up 1 has the lowest panel thickness and 

consequently the largest displacement among the four stack-ups. Locations 1 and 5 

represent two extreme cases. Uniform forces over small concentric circles of radius 

1mm are applied at locations 1 to 5, with different strength levels (0.1N to 1N).  

 

The simulation results are depicted in Fig. 3.3. As described previously, five touch 

locations were investigated, which can be divided into two scenarios. Locations 4 and 5 

are at and near the center region of the panel, thus can be explained by fully clamped 

plate theory. In contrast, locations L1 to L3 are close to the edges of the plate, hence they 

are approximated in a better way by axial compression in the z plane [9].  

 

From Fig. 3.3, it can be observed that with the increment of piezoelectric film thickness, 

the displacements and stresses at locations L4 and L5 drop, which aligns with our 

expectation. This can be generally explained by bending stiffness (K) which is the 

function of Young’s modules (E) and thickness (t). With the increase of E and t, K 

boosts. However, at locations L1 to L3, the displacements increase, together with the 

piezoelectric film thickness. This is because when the edges of the plate are fixed, the 

displacement is purely due to the compressive strain in the z direction. As the thickness 

goes up the strain will therefore increase, since the piezoelectric film has a lower 

Young’s modulus than the glass. This also explains the stress resolution results. As the 

frames support the whole panel, most of the stress is concentrated at the frame regions. 

That is the reason why the stress values of location L4 and L5 are much smaller than 

those at locations L1 to L3, while location 1 has the highest stress value.  
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Figure 3. 3 Resolution results for stackup 1: displacement and stress of stack-up 1, location L1 (a) and 

stack-up 1, location L5 (b). 0.1:0.1:1 indicates from 0.1 N to 1 N, with a step of 0.1 N. 
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To further examine the proposed technique, we laminate a layer of piezoelectric film 

(d33 = 20pC/N) with a commercial touch panel (Microchip Inc). Optical Clearance 

Adhesive (OCA) glue is used for the lamination. The pictures of the original touch 

panel and laminated touch panel are shown in Fig. 3.4 (a) and (b). The structure and 

working principle of the laminated touch panel are shown in Fig. 3.4 (c) and (d). The 

touch panel’s electrodes and the ITO coated PET consist of many capacitors. By 

 

 
(a) 

 

 
(b) 

 

 

Figure 3. 4 (a) Original touch panel. (b) Touch panel laminated with PVDF and ITO coated PET. 
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selecting the correct electrode pin, the force induced voltage can be measured by an 

 

 
(c) 

 

 

 

 

(d) 

 

Fig. 3.4. (c) Structure of the laminated touch panel. (d) Working principle of collecting force induced 

charges. 
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oscilloscope. When a 1N perpendicular touch happens at the center of the panel edge, 

the output signal peaks at 0.2V (as shown in Fig. 3.5), indicating a high force sensitivity. 

 

From the simulation and experimental results, a good responsivity can be achieved at 

0.42 V/N. However, noise could affect signal detection, especially the system’s 

sensitivity. Therefore an electrical analysis in terms of SNR has been carried out.  

3.2 Electrical Analysis of Proposed Touch Panels 

The force applied to the touch panel needs to be converted into an electric signal for the 

processor to manipulate. Henceforth, a transimpedance amplifier (TIA) is employed as 

the readout circuit. The SNR is an important parameter for a sensing system. In this 

section we theoretically analyze the SNR value for the presented piezoelectric film 

based force sensing system.  
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Figure 3. 5 Voltage response of a 1N perpendicular force at the center edge of the piezo film laminated 

touch panel. The red point indicates the touch location. The actual contact area is 1mm2.  
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Piezoelectric films can be modelled as a charge generator in parallel with a capacitor 

(CPF) and an internal film resistor (RPF) [10] as depicted in Fig. 3.6 (a). Due to the fact 

that different circuit designs contribute to various noise components, a typical charge 

amplifier is analyzed as an example. This is shown in Fig. 3.6 (b).  

 

As the piezoelectric force sensor and readout circuit are uncorrelated noise sources, the 

input-referred noise power      of the force sensing system is expressed as 

 

                      ;                                                                                                              (3.3) 

 

      and     are the noise power spectrum densities (PSDs) of the piezoelectric touch 

sensor and the readout circuit, respectively. From Fig. 3.6 (c),    includes feedback 

resistor noise     and the input current and voltage noise of the opamp (       and        , 

values can be retrieved from operational amplifier product datasheet) [11].   is expressed 

as: 

 

               ;                                                                                                                   (3.4) 

 

where k is the Boltzmann constant and T is the temperature in Kelvin degrees. Note that 

        is the shot noise of the input devices. The PSD of the output noise generated by  

        is: 

 

 

 

                                                                      ;                                                            (3.5) 

 

Here ZF and ZPF are the feedback and piezoelectric sensor impedance values. As RPF is 

much higher than RF, Eq. 9 is simplified as 

 

                                                          ;                                                                        (3.6) 
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If a CMOS based operational amplifier is utilized, the shot noise can be neglected. 

Hence, the total input-referred noise PSD is expressed as (Fig. 3.6 (d)) 

 

                                                                      ;                                                            (3.7) 

 

If we assume the force is linearly increased within a “press” period (assumed to be 0.1s) 

and that the sampling frequency (fS) is 100Hz (to ensure that we can accurately interpret 

the applied force). Then the signal energy (ESignal) is calculated as:  

 

                         ;                                                                                                         (3.8) 
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Figure 3. 6 (a) Equlvalent circuit of piezoelectric film based force sensor; (b) charge amplifier based 

readout circuit; (c) noise sources of the circuit and (d) input referred noise source includes all the noise 

sources.  
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here QT is the total generated charge during the “press” period. Furthermore, if a 1MΩ 

feedback resistor and a 10nf feedback capacitor are used, the corresponding SNR at 

location 1 of stack-up 1 is around 59.1dB at room temperature. This indicates that high 

detection sensitivity is achieved. The force could be accurately interpreted.  

 

Besides the SNR, another thing that should not escape our attention is the electrostatics 

analysis. As the substrate of the touch sensors is changed from glass to piezoelectric 

film, the mutual capacitance (CM) between touch panel’s driving and sensing electrodes 

is decreased with the drop of dielectric coefficient. For force sensing, we need to 

consider if the applied force will change the distance between the electrodes to further 

affect the capacitance measurement, as the Young’s modulus of the piezoelectric film is 

much smaller than glass. In the simulation, a 5N force is applied at location 5 of the 

dielectric surface (panel glass). The capacitance (7.76pC) remains constant before and 

after the applied force, indicating that the capacitance change is negligible. 

 

3.3 Separation of Force and Capacitive Combined Touch 

Signals 

In previous sections we proposed four widely used stack-ups, and provided a detailed 

analysis for both mechanical and electrical aspects. Based on the theoretical analysis 

and simulation results, we learned that the piezoelectric material based force sensing 

technique can provide high force detection sensitivity. However, as the electrodes in the 

touch panel are shared by the force touch and capacitive touch signals, strong 

interference from each will decrease the accuracy of both capacitive and force touch 

detection. Thus interference elimination techniques must be applied to avoid the drop in 

detection accuracy. 

 

To separate these two external stimuli, the first thing to do is to analyze the frequency 

property of each. The frequency band of the capacitive touch signal is normally around 

100 kHz [12]. For example, in the nexus 7, the working frequency for the capacitive 
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(c) 

Figure 3. 7 Frequency bands of force touch signal and capacitive touch signal. Block diagram of 

low-pass and band-pass filtering based force touch and capacitive touch signal interpretation circuit.  
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Figure 3. 8 Capacitive touch signal and force touch signal and their combination in time domain.  
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touch signal is 90 kHz [13]. No literature is available as to the working frequency for a 

piezoelectric material based human force touch signal. Thus, in chapter 2, discussions 

and a simple experiment were carried out to find out the frequency band of the force 

touch signal. And we concluded that the force touch signal is a low frequency signal 

that occupies the frequency band from 0 to 10 kHz. The working frequency bands are 

conceptually shown in Fig. 3.7 (a). Thus, by using a low pass filter and a band pass 

filter, these two signals can be smoothly separated. As shown in Fig. 3.7 (b), the low-

pass filter and the band-pass filter can be implemented on the circuit or digital signal 

processing (DSP) side by using algorithms. However, it is also noted that the force 

touch induced signals are impulses, indicating that the cut-off frequency of the low pass 

filter should be much higher than 10 Hz. This will be demonstrated below by 

experimental results. 

 

Intuitively, these two signals (capacitive and force touch signal) should be added at the 

source, and then separated by the filters as discussed above. The combined signal can be 

assumed as a high frequency signal modulated by a low frequency signal. To 

demonstrate this, a function generator is used to generate a stable high frequency signal 

which represents the excitation signal for capacitive signal sensing. A commercial 

piezoelectric based touch sample (PEDOT/PVDF) is used for outputting the force signal. 

The fake capacitive signal and the real force signal are send to the different channels of 

an oscilloscope (channel 1 and channel 2), and then these two signals are added together 

using the math function of the oscilloscope. The signals are shown in Fig. 3.8 (a) and 

(b).  In Fig. 3.8, the yellow signal is the force signal, which is relatively low frequency, 

and the green signal represents the capacitive signal, whose frequency is 100 kHz. The 

blue signal is the combined signal, which is added up by the oscilloscope. The signals in 

Fig. 3.8 (a) and (b) are identical, with the only difference between these two figures 

being the time scale. The result aligns with the previous expectation. 

 

The next step is to implement the above signal combination in a circuit. In chapter 2, 

different methods for capacitive signal sensing were introduced. An easily implemented 
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method is needed which can detect the force touch signal and capacitive touch signal at 

the same time. To satisfy the two requirements, it was decided to use a charge amplifier. 

The circuit for combining capacitive and force signals is shown in Fig. 3.9. From the 

circuit diagram it can be seen that the value of the capacitance CSensor is related to the 

piezoelectric based touch sensor. However, when a human finger taps on the touch 

panel, the value of the CSensor increases, because the finger-related capacitance is in 

parallel to the original touch sensor, boosting the capacitance value [12]. The 

relationship between charge, voltage and capacitance: 

 

Q CV ;                                                                                                                       (3.9) 

 

shows that when the capacitance value increases for a given voltage level, the amount of 

stored charge decreases with linearly. Thus by periodically measuring the stored charges, 

we can know the capacitive change and hence interpret the presence of the capacitive 

touch events.  

 

The same experiment was performed with the charge amplifier. The output was 

illustrated using the oscilloscope, and showed that the force signal modulates the 

capacitive signal, as expected. Fig. 3.9 (a) and (b) show the same signal with different 

time scales, to clearly demonstrate this phenomenon. To further investigate how to 

separate these two signals, the force and capacitive combined signal is shown in the 

time domain and frequency domain. Fig. 3.10 (a) shows that when no touch events 

occur, there is a signal in the frequency domain only at 100 kHz. In contrast, when 

touch events are performed, energy is boosted within the 0 to 10 kHz range, indicating 

that the force signal occupies the low frequency range. As the frequency bands of force 

and capacitive touch signals are close to each other (only one order), applying filters is 

not easy using hardware, thus it is suggested to apply digital filters.  
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3.4 Conclusion 

In chapter 2, a sandwiched multi-functional stack-up was proposed after reviewing 

capacitive touch panels and techniques related to piezoelectric materials. In this chapter, 

the mechanical and electrical characteristics of the multi-functional based capacitive 

touch panel are investigated. Based on the analysis, the proposed technique can provide 

better force touch accuracy and sensitivity. Furthermore, the force touch signal and 

capacitive touch signal can be separated in the frequency domain, validating the 

possibility of concurrently detecting multi-dimensional signals. 
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(a) 

 

 

(b) 

Figure 3. 9 (a) Readout circuit for force and capacitive touch signals. (b) Capacitive and force touch 

combined signal in time domain.  
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(a) 

 

(b) 

Figure 3. 10 Frequency bands of force touch signal and capacitive touch signal.  
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Chapter 4  Fabrication and 

Measurement of Multi-Functional Touch 

Panel 

 
 

In chapter 3, the proposed multi-functional touch panel was evaluated theoretically. The 

analysis shows that the proposed technique can provide higher force detection accuracy 

and sensitivity compared to current commercial 3D (x-y-z) touch panels [1][2]. The 

analysis was further proven by laminating a PVDF/ITO/PET sandwiched layer with a 

commercial capacitive touch panel. In this chapter, the proposed multi-functional touch 

panel will be fabricated and measured. 

 

Here, mono-layered graphene [3]–[13] is used as a flexible and transparent electrode, 

due to its high optical transparency (97.7%), low sheet resistance (30 Ω/□ for highly 

doped and 300 Ω/□ for undoped [13]) and high mechanical strength (Young’s modulus 

of 1 TPa and intrinsic strength of 130 GPa [12]). In particular, the fracture strain of 

graphene can be one order higher than that of ITO [13] (ITO: 0.003-0.022 [14], 

Graphene: 0.14 [12]), indicating that graphene is a strong candidate for use as an 

electrode. In addition to the above reasons, we also want to prove that our proposed 

technique can cover a variety of materials, from conventional materials (e.g. ITO) to 

advanced materials (e.g. graphene). 

 

4.1 Touch Panel Fabrication 

Graphene is prepared using the previously reported chemical vapour deposition (CVD) 

recipe1, the process for which is shown in Fig. 4.1. First the graphene is grown on the 

5×5 cm2 copper substrate, which is then etched using acid (graphene is patterned by 

using oxygen plasma). The graphene is later transferred onto a piece of PET. The above 



86 
 
 
 

 

procedure is repeated to produce two graphene/PET structured devices. One of the 

devices is used as the bottom (ground) layer, and another device is patterned, working 

as the top electrode layer. The two devices are laminated with a piece of commercial β-

phase PVDF from Solvay Corp., becoming a flexible, transparent and multifunctional 

touch panel. Lamination is processed in 90-degree environment; the pressure is not 

measured due to lack of technique support. The high temperature degrades the polling 

process of the PVDF film, the corresponding effect will be explained in the following 

chapter. 

 

 

 

 

 

(a) 

Figure 4. 1 (a) Fabrication process of the graphene/PVDF based multi-functional touch panel.  
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(b) 

 

 

 

(c) 

Figure 4.1 (b) structure of β-phase PVDF and (c) structure of the multi-functional touch panel.  
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The fabricated touch panel is expected to be sensitive to changes in capacitance and 

force. To measure the change of capacitance, a parameter analyser (Keithley 4200 SCS) 

is used. Two scenarios of capacitive touch are performed and measured. In the first 

scenario conventional tapping touches are performed, indicating that the finger contacts 

the surface of the touch panel. In the second scenario, different layers of microscope 

slides (Thermo Fisher Scientific Inc.) are used to mimic a variety of distances for hover 

touch events. The thickness of each microscope slide is around 0.5 mm. 

 

4.2 Touch Panel Measurement 

4.2.1 Capacitive Response to Human Finger Touch 

As mentioned above, two types of capacitive touch event are performed: the tapping 

(contact) touch and hover (non-contact) touch. For the tapping touch, the amplitude of 

minimum capacitive change is measured. This is because a touch panel system normally 

has a threshold set to determine whether or not a contact touch event happens. The 

minimum capacitance change can help in determining the threshold of registering the 

touch events. It should be noted here that the minimum capacitance change is not the 

minimum detectable capacitance change, which is related to many factors such as the 

AC measuring signal frequency and the noise floor. 

 

A series of contact touches were performed; part of the experimental results is shown in 

Fig. 4.2 (a). As explained above, the intention of this experiment was to help estimate 

the touch detection threshold. Thus, the strength of the performed contact touches must 

be similar to conventional tapping touches with touch panels. The experimental results 

show that the minimum capacitance change caused by the finger contact touch was 

around 200 fF, which can be considered to be a threshold. Two factors related to the 

different capacitance values induced by the contact finger touches are the contact area 

(A) and the distance. The contact area has a positive relationship with the applied force. 

In contrast, the distance between the finger to the sensing electrode (d1) and the distance 

between the sensing electrode and the driving electrode (d2) have a negative 
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Figure 4. 2 Experimental results of (a) tapping touch and (b) hover touch related events.  
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relationship with the strength of the applied force. The precise reduced distance value 

depends on the applied force, mechanical properties of the touch panel (such as Young’s 

modulus and Poisson ratio of each layer) and boundary conditions (such as simply 

supported and fully clamped). 

 

In terms of non-contact touches, different layers of plain microscope slides were used to 

control the distance between the finger and the touch panel. Each glass slide is around 

0.5 mm thick. The experimental results are shown in Fig. 4.2 (b). It can be observed that 

the hover touch induced capacitance change decreases as the number of glass slides 

increases. The number of glass slides and the change in capacitance value are negatively 

correlated, which aligns with our expectation. The detailed experimental results of 

hover touch events are illustrated in Fig. 4.3. The experimental results demonstrated in 

Fig. 4.2 and Fig. 4.3 show that the fabricated touch panel can detect both contact and 

non-contact touch events, satisfying the needs of customers. The fluctuations in Fig. 4.2 

(b) and Fig. 4.3 are caused by the unstable finger position. The differences in measured 

results from the four touch pads are within 5%. 

 

4.2.2 Force Response to Machine Stylus Touch 

To examine the performance of the fabricated touch panel in terms of its response to the 

force touch, a test-bed was built as shown in Fig. 4.4 (a). It consists of three main 

components: a 3-D position control system for the touch panel (Fig. 4.4 (b)), a stable 

force source, and an accurate force sensor (Fig. 4.4 (c)). 

 

The 3-D position control system consists of three motors used to accurately control the 

position of the touch panel along the x-y-z axis. The resolution of the 3-D positioning 

system is 1 mm. A LabVIEW based graphic user interface (GUI) (Fig. 4.4 (d)) was 

designed to control the positioning system. After the touch panel was positioned 

properly, the shaker was started to provide a stable force touch signal. The stick of the 

shaker can be tuned from 0 to 90 degrees. In our measurement, the direction 
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(c) 

Figure 4. 3 Experimental results of hover touch events with (a) one, (b) two, and (c) three layers of 

plain microscope slides.  
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(a) 

 

 

 

 
(b) 

 

Figure 4. 4 (a) Test-bed for force touch experiment, and (b) three-motor controlled positioning system. 
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(c) 

 

 

 

 
(d) 

 

 

Figure 4.4. (c) Shaker stick mounted with a force sensor, LabVIEW based GUI for the 3-D 

positioning system. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 4. 5 Experimental results of (a) charger noise; (b) force touch signal with charger noise; (c) 

force touch signal after charger noise cancellation. 
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of the stick was fixed at 90 degrees (perpendicular) to the fabricated touch panel. The 

strength of the force touch signal can be read by the force sensor mounted on the stick 

of the shaker, as shown in Fig 4.4 (c). By comparing output signals from the force 

sensor and the touch panel, the force/voltage coefficient of the fabricated touch panel 

could be calculated. 

 

There are some limitations to the force touch measurement system. First, because the 

material of the plate holding the touch panel is conductive, strong environmental 

interference (e.g. charger noise) is coupled and hence disturbs the force touch 

measurement. As shown in Fig 4.5 (a), the peak to peak value of the charger noise can 

even exceed 1 V. When the force touch signal combined with the charger noise, it was 

difficult to read the accurate value (shown in Fig. 4.5 (b)). To solve this, the plate was 

connected to the ground of the oscilloscope. Fig. 4.5 (c) shows the result when the 

charger noise is cancelled out. Second, the plate is not fully fixed. When the stick of the 

shaker hits the touch panel, the plate moves together with the stick in a small distance. 

When the stick moves back, the plate rebounds as well, resulting in the loss of the 

negative part of the signal, as shown in Fig. 4.5 (c). This will be solved in a future 

design. For now, to keep the stage stable, the plate was manually held, and the 

frequency of the shaker was controlled to be 1 Hz (note, due to the functional 

limitations of the shaker, the shaker cannot provide a sinusoidal signal at low frequency 

range. Instead of a sinusoidal signal, the shaker produces an “impulse” signal). The 

results demonstrated in Fig. 4.6 show that both positive and negative components were 

obtained. The signal from channel 2 in Fig. 4.6 is the output from the commercial force 

sensor. By comparing the outputs from the commercial force sensor and the fabricated 

touch panel, the piezoelectric d33 coefficient of the fabricated touch panel can be 

obtained. In our measurement, 100 experiments were performed, and the averaged 

piezoelectric d33 coefficient was 0.092 V/N. This value is smaller than expected, we 

think a possible reason is because of the piezoelectric coefficient decreases during the 

lamination process. In lamination, high temperature (90 degree) is applied, hence the 

piezoelectric property is damaged a little bit. 
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As mentioned above, the direction of the stick was set to be perpendicular to the 

fabricated touch panel. However, in practical touch scenarios, the directions of touch 

 

 
 

 

Figure 4. 7 Conceptual descriptions of touch events from different directions. 

 

 
 

Figure 4. 6 Experimental results of force touch signal with “stabilized” plate. 
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events are not always perpendicular to the touch panel, as conceptually shown in Fig. 

4.7. 

 

To investigate how the angle of a touch event affects the touch panel’s output, two 

touch angles (80° and 70°) were performed. The experimental results are shown in 

Table 4.1. When touch angle is not normal, a portion of force will be divided into x-y 

plane, hence the force in z direction decreases, resulting in smaller force induced 

voltage. 

 

 

 

 

4.3 Conclusion 

In this chapter, the proposed multi-functional touch panel was fabricated and measured. 

CVD grown mono-layer graphene was used as the electrodes, which were then 

laminated with a commercial PVDF film to form the multi-functional touch panel. The 

capacitive touch response and force touch response of the fabricated touch panel were 

investigated. The experimental results showed that the fabricated touch panel can 

successfully detect capacitive and force touch events with high sensitivity (0.2 pF and 

92 mV/N). 

 

 

 

 
 

 

Table 4. 1 Conceptual descriptions of touch events from different directions. 
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Chapter 5  Algorithms for Force Touch 

Signal 

 

 

A theoretical analysis of the mechanical and electrical properties of the proposed 

technique was performed in chapter 3 in order to validate it, following which a graphene 

based touch panel was fabricated and tested in chapter 4. From the experimental results 

illustrated in chapter 4, it was learned that the fabricated touch panel can provide good 

force and capacitive touch detection sensitivity. Chapter 3 demonstrated that the 

capacitive touch signal and force touch signal can be separated by using their frequency 

properties. More specifically, the force touch signal takes the low frequency range 

(within 1 kHz), while the capacitive signal occupies a relatively high frequency range of 

100 kHz. After separating these two signals, the next step is to interpret them. This 

chapter focuses on developing algorithms to interpret the force touch signal. 

 

First, the strength of the applied force touch signal is addressed. Here the force touch 

signal can be divided into two scenarios: dynamic force touch events and static force 

touch events. As a piezoelectric material, PVDF can detect dynamic force touch signals 

[1]–[12]. However, it is unable to detect a static force signal, as explained in chapter 2. 

This chapter designs interpretation algorithms to realize both dynamic and static force 

touch sensing. 

 

Second, stress propagation is a practical issue for the PVDF based touch panel in 

detecting force touch events. More specifically, the stress caused by a force touch in one 

location can propagate to adjacent locations. Although the propagated stress can be 

small, it is difficult for the system to distinguish whether the detected signal at a specific 
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location is generated from a real touch event at this location, or propagated from other 

force touch locations. The algorithm developed in this chapter overcomes this issue as 

well. 

 

Third, power consumption is a critical issue in electronics. In the later part of this 

chapter, an algorithm is proposed and demonstrated that can concurrently detect force 

touch signals and harvest force touch generated electrical energy. 

 

5.1 Algorithms for Force Touch Interpretation 

As mentioned before in chapter 4, one piece of graphene was patterned into four small 

square areas, which represent four touch pads. The other piece of graphene was 

maintained and works as a ground layer. PVDF film was settled in between the two 

graphene layers, functioning as an insulating layer for the graphene based capacitor and 

the force detection and energy harvesting layer by generating force induced charges. 

The main drawback of using PVDF, or any other piezoelectric material, for force 

sensing is its inability to detect static force due to thermal drift and current dissipation 

[6]. Furthermore, when a force touch occurs at one location, mechanical stress can 

propagate to adjacent areas. The amount of propagated stress depends on the 

mechanical properties of the touch panel and the character of the applied force touch. 

Although the transferred mechanical stress and induced charges are sometimes small, it 

is difficult to distinguish whether they have been induced by a light touch or by an 

adjacent heavy touch. Hence, the propagated stress may give rise to force touch mis-

registrations. These two issues are shown in Fig. 5.1. 

 

To solve these two issues, capacitive signals are used. For the former, the existence of a 

capacitive signal can be used to indicate a static force signal, as these two signals are 

generated together by a force finger touch. Thus, although the force signal may fall to 

zero, or below a certain threshold, as long as the capacitive touch signal is detected, the 

force touch is assumed to be maintained at the same level as its peak value. This is 
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conceptually shown in Fig. 5.2. In Fig. 5.2 (a), the static force touch lasts within the 

time period t1 to t1+Δt2, however, the force touch signal is only detected during the time 

period t1 to t1+Δt1. After applying the algorithm, if a capacitive touch signal is detected, 

then the force is assumed to be maintained. 

As to force touch mis-registration due to propagated stress from adjacent force touches, 

the capacitive touch signal is also employed to distinguish a real finger force touch 

signal from a fake one. This is achieved based on the fact that when a location 

experiences propagated stress from adjacent force touches, its capacitance does not 

change dramatically. Thus, if there is no capacitive touch signal at a specific location, 

we assume that there is no finger based force touch, even if the readout shows an 

observable force signal. This is conceptually described in Fig. 5.3. A truth table of force 

and capacitive touch signals is explained in Table 5.1, and the algorithm flow chart is 

described in Fig. 5.4. 

 

To implement the designed algorithms, a touch panel system was assembled as shown 

in Fig. 5.5 (a) and (b). First the static force touch interpretation algorithm was applied. 

The force touch and capacitive touch signal output from a single channel is shown in 

Fig. 5.6 (a) and (b). Fig. 5.6 (a) and (b) show that static force touch is detected, and that 

the force is maintained during the static force touch period. A larger capacitance signal 

is obtained when a stronger force touch occurs. This is because when a stronger finger 

touch occurs, normally the contact area between the touch panel and human finger 

becomes larger, resulting in a bigger capacitive signal. In Fig.5.6 (c) and (d), outputs 

from two adjacent channels are plotted. The figure shows that, when a force touch 

occurs at sensor 1, the propagated stress can give rise to a light force signal at sensor 2, 

resulting in potential force touch mis-registration. In contrast, the capacitive signals at 

the adjacent sensors are very small, thus can be used as determination signals for force 

touch detection. After applying the propagated stress elimination algorithm, the issue is 

solved as shown in Fig. 5.6 (e). 
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(a) 

 

 

 

(b) 

Figure 5. 1 Two issues of piezoelectric-based force touch sensing in a touch panel. (a) Static force 

touch is not detected. (b) Propagated stress induced charge may result in force touch mis-registration. 

The red circles indicate the force touch positions. The forces are static force and dynamic force in (a) 

and (b), respectively.  
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(a) 

 
(b) 

 

Figure 5. 2 Conceptual output of the static force detection algorithm. 

 

 

 

 

 

 
Figure 5. 3 Conceptual outputs of the fake force touch signal before and after the algorithm. 
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Figure 5. 4 Flow chart of the force detection algorithm. 

 

 

 

Table 5. 1 Truth table of force and capacitive touch signals. 



106 
 
 
 

 

 

 

 

(a) 

 

 

 

(b) 

 

Figure 5. 5 (a)–(b) System diagram and interface circuit.  

 

 



107 
 
 
 

 

 

 

                                         (a)                                                                                    (b) 

 

                                         (c)                                                                                    (d) 

 

 

(e) 

Figure 5. 6 (a)–(b) Force and capacitive signals output from a single channel of the system. (c)–(d) Force 

and capacitive signals output from two adjacent channels of the system before the propagated stress 

elimination algorithm is applied. (e) Screen capture of the software.  
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5.2 Energy Harvesting 

Energy consumption is a practical and critical issue in today’s electronic devices. In 

smart phones, high power consumption, mainly caused by 3G (~31%), display (~24%), 

and Wi-Fi (~24%) [13] components, shortens the lifetime of the battery, giving rise to 

the popularity of portable charging devices [14]. Many low power consumption 

techniques have been proposed and implemented [15]–[20]. In addition to these, energy 

harvesting techniques are attracting attention. Traditional energy-harvesting techniques 

in smart phones are based on collecting RF, solar and thermoelectric related energy. 

However, harvested RF energy is only approximately 0.1 µW/cm3 [21], strong sunlight 

is needed for collecting solar energy, and thermoelectric energy requires stable heat 

sources, which are not convenient for customers [21]. Thus, a green and convenient 

energy harvesting technique is required for smart phones. 

 

As mentioned previously in chapter 2, the force induced charge can be employed to 

interpret the force level, or be stored for future use. The previous section demonstrated 

how the force induced charge is used for distinguishing the force level. This section 

provides a simple energy harvesting system, and the harvested energy is then used to 

light a blue LED. 

 

5.2.1 Piezoelectric Based Energy Harvesting System 

As conceptually shown in Fig. 5.7, the piezoelectric material based force induced 

electric signal has positive and negative components because the polarization changes 

twice during a whole press and release finger touch procedure. This kind of signal 

cannot be directly stored in an energy storage component such as a capacitor, because 

the negative part will compensate for the positive part. A single Diode based rectifier 

circuit can be used to block the negative part, as shown in Fig. 5.8 (a). However, 

blocking the negative part wastes half of the mechanical (force) energy transformed to 

electrical energy. Thus, a bridge rectifier circuit as shown in Fig. 5.8 (b) is employed to 

fully collect the energy. The conceptual output after the bridge rectifier is described in 
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Fig. 5.7 (b), and the collected energy in the capacitor is shown in Fig. 5.9. In Fig. 5.9 (a), 

the charging and discharging periods are clearly shown. After each force touch the 

capacitor is charged by a little bit. Zooming-in on the charging period shows that there 

are two charging moments during a single force touch. Because the polarization alters 

twice, the energy in the negative part is also collected by the bridge rectifier, and used to 

charge the capacitor. 

 

 

(a) 

 

 

(b) 

Figure 5. 7 Conceptual piezoelectric based finger touch signal. 
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Figure 5. 8 (a) Single diode based rectifier circuit; (b) four diodes based bridge rectifier circuit; (c) 

Practical rectifier circuit.  
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(a) 

 

 

(b) 

Figure 5. 9 (a) Charging and discharging period; (b) Details of the charging period. 
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The above demonstrates that force induced charges can be used to charge a capacitor, 

thus, when the software application doesn’t need to read force information, the force 

induced charge can be used for energy harvesting. It is also possible to read the force 

signal and do energy harvesting at the same time. For example, the positive part can be 

used for force signal detection, and the negative part used for energy harvesting, as 

shown in Fig. 5.10. 

 

Fig. 5.10 (a) shows that the force detection circuit and energy harvesting circuit share 

the same ground. Both use half of the energy generated by force touches. To illustrate 

these two functions, the force detection circuit and the energy harvesting circuit were 

connected to an oscilloscope, as shown in Fig. 5.10 (b). The corresponding touch signal 

and energy harvesting signal are shown in Fig. 5.10 (c), respectively. Force detection 

and energy harvesting were achieved at the same time. In practical circuit design, a 

charge amplifier is widely used to read the force touch signal, due to the high 

impedance of the PVDF sample. Since the oscilloscope is already equipped with high 

impedance, no charge amplifier was used in this demonstration. 

 

To calculate how much total energy is stored in the capacitor, the following equation 

can be used: 

 

2

. .

1
;

2
E HE CV                                                                                                                (5.1) 

 

where EE.H. is the energy stored in the capacitor, C denotes the capacitance of the 

capacitor, and V represents the voltage across the capacitor. To calculate the stored 

energy in Fig. 5.9 (a), the following values for the variables can be used in Eq. 5.1: C is 

equal to 1 µF and V is around 45 mV. Thus, EE.H. is 1.03 nJ based on the equation. To 

calculate the energy harvested by a single force touch, the following equation can be 

employed: 
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1
( ) ;

2
E HE C V V                                                                                                    (5.2) 

 

where ΔEE.H. indicates the energy stored by a single force touch, and ΔV represents the 

voltage change after a single force touch. 

 

Because of the high impedance of the PVDF based touch panel, the energy generated by 

the force touch cannot be efficiently transferred and stored in the capacitor. To solve 

this issue, a Maximum Power Point Tracking (MPPT) circuit is normally used. 

 

Piezo. Touch 

Pad

Bridge 

Rectifier

Capacitor
VForce

 

(a) 

 

(b) 

Figure 5. 10 (a) Circuit for force detection and energy harvesting. (b) Configuration of the touch 

panel, circuit, and oscilloscope.  
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However, this thesis is mainly concerned with demonstrating this function in a touch 

panel, thus MPPT circuits are not employed. 

 

Based on the work presented in this section, the functionalities in our touch panel 

expand from two (capacitive and force sensing) to three, including energy harvesting, as 

shown in Fig. 5.11. 

 

5.3 Conclusion 

This chapter has designed and implemented the interpretation algorithm and energy 

harvesting algorithms. The force touch interpretation algorithm addresses two issues 

facing the piezoelectric materials based force touch panel: static force sensing, 

 

(c) 

Figure 5. 11 Simultaneous force touch signal and energy harvesting.  



115 
 
 
 

 

 and stress propagation. The energy harvesting algorithm achieved both energy 

harvesting and force touch detection by using the altered polarizations of piezoelectric 

materials during force touch events. Furthermore, the accuracy and resolution for force 

touch detection are maintained. 

 

Detection of the capacitive signal in terms of accuracy and readout speed are vital to the 

force touch interpretation algorithm. Thus, the following chapter develops performance 

optimization algorithms for capacitive touch detection. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 12 Three functions in the touch panel are position detection (by capacitive sensing), force 

detection and energy harvesting.  
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Chapter 6  Signal Processing Algorithms 

for Capacitive Touch Signal 

Optimization 

 

 
In the previous section, in our proposed force touch interpretation algorithms for static 

force touch detection and “fake” force touch elimination, the capacitive touch signal is a 

key factor. Both detection of static force touch and remove of “fake” force touch rely on 

the accuracy and readout speed of the capacitive signal. In capacitive touch panels, two 

main factors affecting detection accuracy and readout speed are noise and number of 

scanned electrodes. The detection accuracy can be represented by the system’s signal-

to-noise ratio (SNR). Boosting the signal power or reducing the noise power can both 

give rise to an increment of SNR value. To avoid high power consumption, the 

reduction of noise power is more preferred. In this section, image processing based 

algorithms are proposed and implemented for noise reduction. For the purpose of 

applying the algorithms to commercial touch panel products, the algorithms developed 

are based on experimental data generated from a blackberry’s test-bed.  

 

6.1 Reduction of Common Mode Noise and Global Multi-

valued Offset in Touch Screen Systems by Correlated Double 

Sampling 

As shown in Fig. 6.1 (a), the noise in a TSP is generated from many sources. For 

example the charger induces common-mode noise including power supply spikes [1]. 

Under these conditions, the signal-to-noise ratio (SNR) is compromised, causing the 

touch detection to fail and/or lead to “fake touch”. In order to achieve a high SNR level, 
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the normal way is to boost the excitation power of the touch panel. However, this 

increases power consumption. Thus, reducing the noise in a TSP is critical for reduction 

 

(a) 

 

(b) 

Figure 6. 1 (a) Noise sources of touchscreen systems and concept of CDS algorithm. (b) The detection 

threshold (VT) is set by the highest offset value to avoid detection errors, resulting in increased power 

consumption. 

*Noise (or unwated signal) comprises stochastic (thermal or 1/f) and determinstic (clock signal, power 

supply spike) components. 
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of errors and the power consumption. Furthermore, the offset on a single electrode can 

be canceled by deducting a fixed value. However, the non-uniformity of the offsets over 

the whole panel makes it difficult to cancel, giving rise to a high threshold to avoid 

detection errors. As illustrated in Fig. 6.1 (b), the detection threshold has to be set 

according to the highest offset voltage, thus requiring a high excitation power.  

In this section, a technique to reduce common-mode noise and global multi-valued 

offset is proposed and implemented. In the proposed technique, the data associated with 

the whole frame after each scanning action is treated as an image [2]-[4]. Each electrode 

intersection constitutes a pixel and provides a capacitance value. In this way, image 

processing methods can be combined seamlessly with touch signal detection to remove 

any correlated noise and offset.  

 

The touchscreen related images right after the single touch event is shown in Fig. 6.2. In 

an ideal case, only the pixels at the touch location have signal values larger than 0, and 

when no touch happens, the entire image pixels should be all equal to 0. However, as 

shown in Fig. 6.2 (b), almost all the pixels have positive values (i.e. non-blue), which 

indicate that the touch signal needs to be strong enough to overcome the noise. Here is 

where correlated double sampling (CDS) [5]-[21] can be used to cancel the global 

multi-valued offset and common-mode noise (or fixed pattern noise as referred to in 

imaging terminology). 

                     

                                   (a)                                                                                (b) 

Figure 6. 2 Images of (a) single touch, (b) multi-touch, and (c) noise pattern. Red indicates high value 

region.  
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(a) 

           

 (b) 

Figure 6. 3 Conceptual outputs from an electrode of mutual capacitance TSP without and with touch. (a) 

Original output comprising offset and common-mode noise, and (b) the output after CDS. VS is the signal 

voltage and Voffset is the offset voltage.  

 

Figure 6. 4 Conceptual relationship between characterization factor α and sampling interval.  
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Theoretical Analysis on CDS Based Noise Reduction Technique 

Signal-to-noise ratio (SNR) is widely used to represent a system’s detection accuracy 

and resolution. The SNR is defined as the ratio of the signal power (Ps) to the noise 

power (Pn): 

  

                  ;                                                                                                                  (6.1) 

 

whereby SNR>1 implies that the touch signal surpasses the noise. The offset is not dealt 

will as a noise component, as it can be removed by deducting a fixed value. As depicted 

in Fig. 6.3 (a), the output from an electrode of a capacitance based TSP consists of the 

touch signal, the offset, and noise or unwanted signal. The offset together with 

common-mode noise can be canceled by CDS as shown in Fig. 6.3 (b), leaving signal 

and high frequency noise.  After CDS, the SNR is expressed as: 

 

                                    ;                                                                                                (6.2) 

 

where SNRCDS represents the SNR after CDS, Pn’ the noise power after CDS, and α the 

ratio of Pn to Pn’. The range of α values and corresponding implications are given in 

Table 6.1. In the ideal case, if two samples are obtained at the same time, the common-

mode noise can be canceled completely. Thus it seems that faster sampling can provide 

higher SNR. However, this is not always true in practice. For example, if a single 

frequency waveform is considered, faster sampling doesn’t imply higher SNR, as shown 

in the first two examples in Table 6.1. Thus, although CDS can cancel offset and reduce 

low-frequency common-mode noise, it may result in higher frequency noise. However 

this can be filtered by a low pass filter. If we assume that the sampling frequency (fs) is 

high enough compared to that of the noise (ensuring α>1), then the conceptual 

relationship between the characterization factor α and the sampling interval can be as 

depicted in Fig. 6.4. 
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Experimental Test Bed and Algorithm Description 

The experiments were carried out on an 80×80 touchscreen panel. Details of the test bed 

are given in Table 6.2. The system has an operating voltage of 10V and works with a 

refresh rate of 60Hz.  

 

 

Table 6. 1 The ranges of characterization factor α and corresponding implications. fS and fH are the 

sampling frequency and waveform frequency, respectively. In reality, fH is the highest noise frequency 

within a system’s noise bandwidth. If the system is a  one-pole low-pass filter, fH=(π/2)f3dB, where f3dB is 

system’s -3dB bandwidth.  

 

 

 

Table 6. 2 Parameters of the test bed. 
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The common-mode noise and offsets on electrodes don’t change dramatically between 

adjacent frames. Thus, by saving the noise pattern (i.e. treating it as a noise reference 

frame) which is constantly updated as shown in Fig. 6.5, and deducting it from the 

touch signal image, the low frequency and common-mode noise and offset can be 

canceled. The algorithm’s flowchart is shown in Fig. 6.5. After turning the device on, 

the drive lines are powered individually and sense lines work in sequence to measure 

the intersections’ voltages. The first scanned frame is the noise frame (denoted as fnoise), 

which has no touch signal but contains information of the noise and offset voltage value 

 

Figure 6. 5 Flowchart of the CDS based common-mode noise and global multi-valued offset reduction 

method. 
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on the electrode. This is saved as a reference pattern. Then the system scans the panel 

periodically. After each scan, the retrieved data (denoted as fsignal+noise) is subject to the 

CDS algorithm, and a new frame (denoted as fsignal) is generated. This procedure can be 

expressed as: 

 

                                                                       ;                                                             (6.3) 

 

where (x,y) represents the location of the electrode intersections. Then the frame fsignal is 

sent to the decision function to decide if a touch has happened or not. If the frame fsignal 

is interpreted as a touch event, the data will be used for further processing depending on 

the hardware/software environment. For example, the touch signal can be used to open a 

folder on desktop or close a webpage. If not, the frame fsignal+noise (prior to applying the 

CDS algorithm) will be saved as the new or replacement noise reference pattern. In this 

way, the noise reference pattern can be updated automatically with the most recent noise 

information. 

 

Results and Discussion 

As explained above, CDS can efficiently cancel the global multi-valued offset as well as 

reduce the low-frequency common-mode noise. In the experiments, two separate sets of 

data from sampling frequencies of 30Hz and 60Hz are used. Examples of applying CDS 

to single and multi-touch related touch images are illustrated in Fig. 6.6. The 

normalized output (no touch event) PSD plots are used to analyze the effect of CDS. 

Based on Fig. 6.6, before CDS a strong DC component is observed due to the offset. In 

Fig. 6.6 (a), we observe that when below 8Hz, after applying CDS with the 60Hz 

sampling frequency, the noise power drops. But between 9Hz to 17Hz, the noise power 

is of a similar level as without CDS. Above 18Hz, the noise power increases. When the 

sampling frequency is down to 30Hz, only below 3Hz does the noise power drop after 

CDS. This is because the correlation of low-frequency noise between adjacent frames is 

relatively weak at low sampling frequencies. This correlation increases at higher 

( , ) ( , ) ( , )
signal signal noise noise

f x y f x y f x y

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sampling frequencies at the expense of energy consumption. Since the offsets behave as 

DC, they can be canceled regardless of sampling frequency. 

 

As mentioned earlier in Section 6.2.2, CDS introduces higher frequency noise within a 

certain bandwidth. This is related to the sampling frequency and explained by the 

example below. Consider a noise component with frequency fs/2, which is subject to 

CDS of frequency fs. The distance between the two adjacent sampling points is π. Thus 

after CDS, the output y is expressed as 

 

                                                                                                    ;                                (6.4) 

 

where A and φ are the amplitude and the initial phase of the waveform, respectively, t is 

the time to sample the waveform. This indicates that the absolute output is doubled after 

CDS. Similar analysis can be made for other sampling frequencies.  

 

As the touch signal has a low frequency property, the increased high frequency noise 

power can be filtered. Within 10% of fs, SNR is boosted by 5.9dB and 7.6dB when 

sampling frequencies are 30Hz and 60Hz, respectively. Beyond this frequency, the SNR 

starts degrading. Thus CDS is powerful in reducing common-mode noise, and is 

expected to further enhance the SNR in the TSPs. 

 

Algorithm Robustness  

The assignment of the most recent frame that does not generate a touch event to be the 

noise reference pattern might raise concerns that an unexpected ‘bad frame’ resulting 

from a temporary hardware malfunction might result in a deterioration of SNR in 

subsequent frames. This can be addressed by applying exponential smoothing:  
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                                                                                ;                                                    (6.5) 

 

The weighting factor α can be adjusted to optimize the system’s performance. However, 

it should be noticed that this will slightly weaken the correlation between adjacent 

frames. 

 

Algorithm Time Budget 

Although CDS provides significant reduction of the common-mode noise and offset, the 

computational time and energy consumption of the algorithm are key considerations. As 

with many mainstream touchscreen systems [1], the system’s scan rate is 60Hz, which 

implies that the computational time should not be longer than 16.7ms. The 

                                  

                                     (a)                                                                                         (b) 

                                   

                   (c)                                                                                         (d) 

Figure 6. 6 The touch related images before and after CDS. (a) and (c) are raw images based on one and 

two touch events. (b) and (d) are the CDS processed images 
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computational time depends on the algorithm’s complexity, which is O(N) in this work. 

Here N is the number of pixels to be processed. In the case considered here, N equals 

6400. The processors in many of the current PDAs have a computational ability in the 
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(b) 

Figure 6. 7 Normalized PSD plots of the original output and CDS outputs with sampling frequency at (a) 

60Hz and (b) 30Hz.   
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range of GHz. For example, a 1GHz processor would take ~6.4μs for the CDS 

algorithm, which is a much smaller time period compared to the system’s refresh 

interval. 

 

Algorithm Energy Budget 

Current touchscreen controllers scan at 75kHz with a power consumption of 2.5mW 

[22]. The energy E for measuring each electrode intersection is 

                       

                ;                                                                                                                    (6.6) 

 

where P and fs denote controller’s power consumption and scan frequency, respectively. 

Thus, 1/30 μJ is needed for reading each electrode intersection. For a sensing matrix 

with M rows and N columns, the total power (Ptotal) for scanning the whole panel can be 

expressed as  

 

                           ;                                                                                                         (6.7) 

 

Current commercial TSPs in mobile phones use 9 column electrodes and 16 row 

electrodes, which yield 144 electrode intersections. Thus the power consumption for 

measuring the whole panel once is 0.288mW (assuming a scan rate at 60Hz), and the 

energy consumption for scanning each frame is 4.8μJ.   

 

Current embedded processors have a power efficiency (ƞ) of over 20MIPS/mW [23]. 

Thus the power consumption ECDS for the algorithm 

 

                     ;                                                                                                               (6.8) 

 

is roughly 7.2nW, and the computation time is 0.14μs. Therefore the energy 

consumption is around 1fJ, which is much smaller than that of the touchscreen 

controller, and can thus be considered negligible.  

( )total sP EMN f

/ sE P f

/CDSE N 
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6.2 Reduction of Noise Spikes in Touch Screen Systems by 

Spatial Low-pass Filtering 

In a previous section, the global multi-valued offset is removed along with the common-

mode noise by the CDS based technique. However, when the correlation between the 

touch frames and the noise reference frame becomes weak, noise spikes still remain, 

giving rise to detection errors. By analyzing the characteristics of the touch signal and 

noise spikes, we learn that the touch signal is normally of a low spatial frequency 

compared to the surrounding noise spikes [24]-[43]. Therefore spatial low-pass spatial 

filters can be used for the reduction of noise spikes. As depicted in Fig. 6.8, the noise 

spike is averaged by adjacent pixel values. However, the touch signal is reduced by the 

low pass spatial filtering as well, called the smoothing effect, which may decrease the 

signal-to-noise ratio, depending on the bandwidth and the mask size of the spatial filter. 

The induced smoothing effect may also result in signal distortion in terms of touch 

presence and position, leading to detection errors, and thus requires further research. 

 

In this section, we investigate the induced smoothing effect on touch detection. In 

particular, we analyze the following aspects: SNR, signal distortion (in terms of the 

change of touch position and the attenuation) and noise spike attenuation. The 

optimization of the above parameters can be achieved by tuning the mask size and 

bandwidth of the spatial filter. Based on the analysis, we present an adaptive bandwidth 

tuning algorithm for the dynamic optimization of spatial filter when the signal and noise 

conditions are changed. In the algorithm, we evaluate the attenuation of the signal and 

noise spike, and select a suitable bandwidth to maintain the desired performance. Below 

we start from a brief introduction of low pass spatial filtering techniques and its impact 

on noise reduction, and then followed by theoretical analysis, experimental results and 

corresponding discussion. 

 

Low-pass Spatial Filters and Corresponding Effect on Noise Reduction 
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Figure 6. 8 Noise in touch screen systems; the CDS based technique for common-mode noise and global 

multi-valued offset cancellation; noise spikes attenuation by a spatial LPF and the corresponding smoothing 

effect.  
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Spatial LPFs are divided into two categories: linear (e.g. average filter) and non-linear 

types (e.g. median filter) [44]-[48]. A mask/kernel with size m×n (m and n are normally 

odd positive integers to ensure that there is only one pixel in the center of the mask) is 

employed in the spatial filter, using the same or different coefficients to control the 

bandwidth. Each pixel in the original image is computed along with its neighboring 

pixels, and the outcome is produced in a new image at the same position.  

 

Both linear and non-linear structures offer benefits and drawbacks to noise spikes 

reduction for different types of touch based interactivities (e.g. finger touch). For 

example, good noise spike attenuation is offered by non-linear LPFs, which 

unfortunately may remove a stylus touch completely and cannot effectively remove the 

noise on the electrode. Thus, linear filters (average and Gaussian filter) are employed 

and analyzed in this paper. An example of an average filter is described in Fig. 6.9, 

whose mask size is 3×3 and the coefficients equal to 1. Each pixel is added to the 

surrounding 8 pixels. The sum is then divided by the scaling constant 9 to generate a 

new pixel value.  

 

In practice, this algorithm can be implemented by constructing an intermediate image in 

which each pixel contains the sum of 3 pixels in the x-direction. The final filtered image 

is obtained by performing the same process in the y-direction on the intermediate image, 

and then dividing by the scaling constant 9. This process is equally valid for Gaussian-

weighted filters. This is especially useful for higher resolution devices, which would 

require larger masks than 3×3, as this implementation scales linearly with mask size 

rather than quadratically. The presented algorithm in this section focuses on smoothing 

noise spikes to boost SNR while maintaining a desired signal strength level in order to 

avoid detection errors. 

 

Theoretical Analysis on Smoothing Effect on Touch Signal 

Mask Size and Touch Position 
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To avoid mis-registration at a wrong position and the interference from other touches, 

the mask size of the average filter is determined to be 3×3. This is because the touch 

event is limited in a certain region (e.g. 3×3 electrodes for a finger touch). If a large 

mask size is used, noise in the non-touch area weakens the strength of the touch signal, 

resulting in a high probability of touch mis-registration. Below we mathematically 

analyze the relationship between the mask sizes and touch position registration. Fig. 

6.10 shows that a perpendicular finger touch occurring in the red region only affects the 

adjacent 8 pixels (yellow and green regions). A represents the value at the touch point, 

B1 to B4 and C1 to C4 are the adjacent region values, and N1 to N40 indicate the 

surrounding noise values. When a 3×3 average filter is applied, the output at the same 

position in the new image is: 

 

Figure 6. 9 Algorithm description of a spatially based average low-pass filter. 
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                                                                                                                                      (6.9) 

 

If we assume that pixels at equal distance from the touch point have similar values, then 

Eq. 6.9 is simplified as: 

 

                                                                                                                                    (6.10) 

 

B1 and C1 can be represented by A with scaling down factors (b and c), expressed as: 

  

                                               ;                                                                                   (6.11) 

 

thus A’ is: 

 

                                                                                                                                    (6.12) 

If the registered touch position in the new image is shifted, this most likely happens 

within the yellow regions which are geographically closest to the red. The yellow region 

with value B1 is analyzed to explain when the mis-registration in terms of position takes 

place. The filtered value B1’ is expressed as: 

 

                                      

Figure 6. 10 Conceptual top-view of a finger touch on a mutual row-and-column capacitance TSP. A, B1 to 

B4, C1, to C4 and N1 to N40 indicate the values over the electrodes intersections. The average spatial filter is 

applied to the touch position pixel A (left) and the adjacent pixel B1 (right). 
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                                                                                                  ;                                (6.13) 

 

To ensure that A’>B1’, the following condition must be satisfied: 

 

                    ;                                                                                                              (6.14) 

  

Normally N11 is about 2 orders smaller than A; and b and c lie between 1 to 3. Hence, 

the condition expressed in Eq. 6.14 is satisfied. When the mask size increases to 5×5, 

the condition of A’>B1’ is completely determined by the surrounding noise values, 

resulting in a high probability of mis-registration.  

 

Spatial Frequency Properties of Signal and Noise Spikes  

The touch signal is normally at a low spatial frequency compared to the noise spikes. 

This is the fundamental assumption of the low pass spatial filtering technique. However, 

in some cases the touch signal can offer high spatial frequency as well. For example, 

only one electrode may be affected when a stylus touch is applied. In contrast, when a 

noise spike happens within the touch region, it may have low spatial frequency property. 

The low pass spatial filtering cannot remove noise spikes and may result in the 

decrement of SNR when the spatial frequencies of touch signal and noise spikes are 

very close or overlapped. A possible solution of this is the use of time domain low pass 

filtering at a pixel level.  

 

In this section, finger touch is used and analyzed, as this is the most preferred touch 

activity for PDAs. Finger touch is of low spatial frequency, and the bandwidth relies on 

the contact area, which is highly individual dependent. Even for the same user, the 

touch property can be changed when different applications are used. Hence, the filter 

bandwidth should be dynamically adjusted to keep the desired touch information while 

maximally reducing noise spikes. 
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Algorithm Description 

To reduce the noise spikes in the frame after CDS, a spatial LPF with an initial 

bandwidth is used. Since the touch and noise properties are dynamically changed, the 

bandwidth of the spatial LPF is required to be adjusted in order to optimize the 

performance. As described in Fig. 6.11, the frame after CDS (denoted as fCDS) is send to 

the spatial LPF for the noise spikes reduction. Then the filtered frame (denoted as fLPF) 

enters into the touch decision function to determine if a touch happens or not. If a touch 

is registered, then the frame (denoted as fTouch) is evaluated in terms of the signal and 

noise spike attenuation by the bandwidth decision function, to analyze if the bandwidth 

of the spatial LPF needs to be changed. If no touch is registered, the scanned frame 

(fscan) is updated as a new reference noise pattern, which will be used by CDS algorithm, 

as shown in Fig. 6.11. 

 

Results and Discussion 

To evaluate the smoothing effect, three factors are considered here: SNR, signal and 

noise attenuation. The normalized output (no touch event) PSD plots (Fig. 6.12) are 

used to analyze the noise behavior after the average LPF. It can be observed that the 

high frequency noise generated by the CDS is suppressed. The SNR is boosted by 

15.6dB. The signal and noise spike are attenuated by 4.51dB and 19.25dB respectively. 

The attenuation of the signal strength is undesirable, thus different coefficients are used 

for the bandwidth adjustment to retain more signal information. The coefficients of the 

filter mask follow Gaussian distribution with different standard deviations (σ), 

representing various bandwidths of the LPF. Four Gaussian distribution based filter 

masks are illustrated in Fig. 6.13. Here small standard deviation indicates that more 

information about the pixel itself is maintained. In contrast, large standard deviation 

implies that the pixel is strongly affected by the adjacent neighborhoods. The simulation 

results of applying spatial filter with different bandwidths are illustrated in Fig. 6.14. 

Due to the spatial high frequency property, noise spike suffers severer attenuation 

compared to the touch signal.  From Fig. 6.14 (a), the signal and noise spike are 
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attenuated dramatically when σ is within the range of 0.5 to 1. After σ >1.5, the trends 

of attenuation are reaching saturation. Thus the range of 0.5<σ<1 is further investigated, 

and the results are illustrated in Fig. 6.14 (b). By evaluating the signal and noise spike 

attenuation dynamically, the filter bandwidth is updated. For example, if the accepted 

signal attenuation is 2dB, then the initial Gaussian distribution based mask with 

standard deviation at 0.6 would be used to maximally attenuate the noise spike. Later, 

when the signal attenuation is found to be 1dB, then a bigger standard deviation can be 

selected to further smooth noise spikes and boost SNR. 

 

 

 

Figure 6. 11 Flowchart of the CDS and spatial LPF based noise reduction algorithm.  
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Figure 6. 12 Normalized PSD plots of the original output, CDS output with sampling frequency at 60Hz 

and spatial average LPF output with mask size of 3×3. 

 

                    

(a)                                                                                                (b) 

           

(c)                                                                                     (d) 

Figure 6. 13 Four Gaussian distribution based masks with different bandwidths (represented by standard 

deviations). (a) σ = 0.5; (b) σ = 1; (c) σ = 2; (d) σ = 4. 
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It is also important to investigate the computational time and energy consumption of the 

presented algorithm. Our system’s scanning rate is 60Hz, thus the computational time of 

the algorithm should be much lower than 16.7ms. The required computational time 

depends on the complexity of the algorithm and the performance of the processor. The 

complexity of the spatially based algorithms used in this research is around O(3N), 

where N is equal to 6400. Current commercial processors in mobile phones can operate 

in the range of GHz. Hence, a computational time of approximately 19.2μs is required 

when a 1GHz processor is equipped. As stated before, commercial processors can work 

at 20MIPS/mW, therefore the power consumption of the algorithm is 21.6nW which is 

negligible compared to that of scanning the whole panel. 

 

The noise spikes in TSPs give rise to “fake” touch, resulting in the high power 

consumption. In section, we present a low pass spatial filtering based technique for the 

noise spike reduction. By the approach of evaluating the spatial LPF induced smoothing 

effect, the filter bandwidth is dynamically adjusted to optimize the performance. Based 

on the experiment, a SNR enhancement of 15.6dB and a noise spike attenuation of 

19.25dB are obtained. The filtered signal improves detection accuracy, thus less energy 

is required to maintain a desired performance. 

 

6.3 Down-sampling Techniques for Capacitive Touch Panels 

In the previous section, touch event related frames are processed as images, and the 

noise is eliminated by correlated double sampling and spatial low-pass filtering related 

techniques. In this section, by employing the sparse, low spatial frequency and 

distribution property of touch signals, compressive sensing [49]-[55] and averaging 

based down-sampling techniques are presented to reduce power consumption while 

maintaining detection accuracy. Furthermore, as the number of scanned touch sensors is 

reduced, the touch panel’s readout speed is also boosted. As illustrated in Fig. 6.15, 

instead of scanning all the sensors, only a portion of them are selected with a random or 
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fixed pattern. A compressive sensing or other reconstruction algorithm is then applied to 

the down-sampled signal, depending on the down-sampling pattern. However, after 

interpretation of the signal, the detected touch position may differ from the original one, 

thus requiring a suitable regional scan around the reconstructed touch position to 

 

 

(a) 

 

 

(b) 

 

Figure 6. 14 Results of signal and noise spike attenuation by applying spatial LPFs with different standard 

deviations. (b) is the dashed part of (a).  
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Figure 6. 15 Merits and drawbacks of the down-sampled signal, and compressive sensing based fast 

readout technique. 
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retrieve accurate touch information. The regional scan range is determined by the 

reconstruction quality, which mainly depends on the percentage of the sampled sensors 

and the touch signal property. Through this method fewer sensors are scanned, therefore 

the readout speed is boosted and power consumption lowered.  

 

Algorithm Description 

Instead of scanning all electrode pads or intersections, only a small portion (e.g. 25%) 

were selected and measured, and then the collected data was processed by the 

reconstruction algorithms to recover the touch event related image. However, the touch 

location of the reconstructed signal may differ from the original one. The shifted 

distance mainly depends on both the percentage of the electrode pads sensed by the 

processor and the reconstruction algorithm. Pixel is defined as the unit of distance as 

shown in Fig. 6.16 (a). Thus, considering the changed distance, a regional scan within a 

certain range is performed to acquire the accurate touch location and relevant 

information. For example, if the changed distance is d, then the regional scan range will 

be a square centered at the reconstructed touch position, with a side length of 2d. This is 

illustrated in Fig. 6.16 (b). In this case, the side length is 2, and the square covers 9 

 

 

                                      (a)                                                                                 (b) 

Figure 6. 16 (a) The distance from one pixel (i,j) to other pixels (e.g. (i+1, j+1) )can be expressed by 

Euclidean distance. The unit of the distance is pixel. (b) Regional scan method for the multi-pad 

capacitance TSP. Red pads will be scanned rapidly after the reconstruction. The yellow point is the 

reconstructed touch position.  
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electrode pads, which indicates that these 9 electrode pads will be scanned after the 

reconstruction to obtain accurate touch information. 

 

The flowchart of the algorithm is described in Fig. 6.17. After selecting a portion of 

sensors, the scanned frame (fscan) is applied with reconstruction method (e.g. averaging), 

yielding the frame freconstruction. The reconstructed frame is then sent into the touch 

decision function to determine if a touch happens or not. On a positive determination, a 
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Figure 6. 17 Flowchart of the down-sampling based fast readout technique. 
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regional scan is performed to obtain the accurate touch location and relevant touch 

information.  

 

Below the results and discussions are divided into two sections, according to the type of 

the down-sampling pattern.  

 

Results and Discussion of Random Pattern Down-sampling 

Three sets of simulations are investigated by randomly collecting 10%, 30%, and 50% 

of the original electrode pads. The Monte Carlo method is applied to have the random 

distribution for the sampled touch electrodes. Each set had 1000 simulations. Three 

reconstruction results are depicted in Fig. 6.18 as examples. As expected, the least 

sampled data offered the highest probability of poor reconstruction result. The 

reconstructed touch positions followed a Gaussian distribution, and the distribution of 

the 10% sampled set is shown in Fig. 6.19 (a). Taking the cross-section of the direction 

with the largest variance (Fig. 6.19 (b)), we analyze the probability of the changed 

distance modeled as: 

 

                                            ;                                                                                      (6.15) 

 

Here d is the distance between the reconstructed touch position and the original touch 

position. We assume that the reconstructed results out of [μ-3σ, μ+3σ] (μ and σ are the 

mean and variance of the Gaussian distribution) [42] rarely happens, thus the maximum 

changed distance is 5 pixels. Under the same analysis, the maximum changed distances 

of 30% and 50% sampled data sets in our simulations were 4 and 3 pixels, respectively. 

To ensure the regional scan range can cover the original touch location, the scan side 

length is determined to be twice the maximum changed distance. The number of actual 

covered sensors within the square is expressed as: 

 

                                 ;                                                                                                 (6.16) 

2
( ) 101.4exp( (( ) / 2) )f d d 

2
(2 1)


 

Regional scan
N d
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where NRegional-scan is the number of measured sensors at the regional scan stage. 

Increasing the percentage of the sensed sensors gives rise to a higher probability of 

maintaining the touch location. 

 

For example, taking 10% sampled data to acquire the accurate single touch position, 

only 121 electrode pads centered at the peak touch value location are required to be 

regionally scanned. The number of totally measured sensors is 761. In contrast, 6400 

sensors are needed to be read using the traditional method. When multi-touch occurs, 

the number of measured sensors is expressed as: 

 

                                                                  ;                                                                (6.17) 

 

                            

(a)                                                                                    (b) 

                            

(c)                                                                                   (d) 

Figure 6. 18 (a) Original signal; (b), (c) and (d) are reconstructed signals with 50%, 30% and 10% of 

original electrode pads. 
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(b) 

Figure 6. 19 (a) Distribution of the reconstructed touch positions; X-Y coordinates indicate the distance 

between the reconstructed touch position and original touch position. (b) The cross-section with the 

largest variance of (a).   
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                                                      ;                                                                            (6.18) 

 

where NTotal denotes the total number of measured sensors and NDown-sampled is the 

number of randomly selected sensors. PDown-sampled and Nsensor are the percentage of 

sampled sensors and total number of sensors in a touch panel, respectively, and MTouch is 

the number of touch events. The relationship between PDown-sampled, NRegional-scan and 

NDown-sampled in this work is illustrated in Table II.  

 

It is observed that the presented algorithm is more suited to large-scale touch panels. 

For example, for a small-scale touch panel there are 320 (20×16) touch sensors and 50% 

sensors are randomly selected, if greater than 4 touch events happen NTotal may be 

bigger than NSensor. 

 

Results and Discussion of Fixed Pattern Down-sampling 

In this section, the spatial low-frequency property of capacitive touch signals is used for 

fixed pattern down-sampling and reconstruction. Below in this section, the algorithm 

proposed and implemented based on this property are explained, following with the 

discussion on experimental and simulation results. By analyzing the characteristic of the 

frame after zero-insertion (fzero-insertion), the filter size for averaging purpose has to be 

(2n+3) × (2n+3), where n is a positive odd integer. In this section, a 5×5 average filter is 

employed. 

 
 

Table 6. 3 Relationship between sampling percentage and regional scan range. 

  Down sampled Down sampled SensorN P N
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A swipe touch frame is illustrated in Fig. 6.20 with the corresponding reconstructed 

frames using a low-pass spatial filter as an example, based on which it can be observed 

that the touch event’s spatial low frequency property is reconstructed. After applying 

the spatial low-pass filter, an additional benefit is the boost in ratio between the touch 

signal to the peak noise spike, which in our experiments is 5.4 dB on average. The 

regional scan range is determined by the reconstruction quality, which is related to the 

touch signal properties (shape and position) and the size of spatial LPF. In the above, 

the determined filter size to reconstruct the touch signal and smooth the noise spikes is 

5×5, based on which the distribution of the estimated touch positions is shown in Fig. 

6.21. It can be observed that the distribution shape follows a Gaussian (Fig. 6.21 (a)) 

distribution. Taking the cross-section of the direction with the largest variance (Fig. 

6.21 (b)), we analyze the probability of the changed distance, which can be modeled as  

 

                                                      ;                                                                            (6.19) 

 

where d is the distance between the reconstructed touch position and the original touch 

position. Aligned to the assumption made above, the maximum changed distance is 2. 

From Eq. 6.16, it can be shown that to acquire the accurate single touch position, only 

25 electrode pads centered at the peak touch value location are required to be regionally 

scanned. The number of totally measured sensors is 1625. In contrast, 6400 sensors 

need to be read previously. The analysis of the number of measured sensors for multi-

touch events is the same as discussed in random pattern down-sampling section. 

 

Algorithm Time and Energy Budget 

If the minimum l1 norm reconstruction algorithm is employed, the computation 

complexity is O(Nlog2N) [53], which indicates that approximately 80K multiplications 

are needed to reconstruct the signal. For a GHz range processor, the calculation time is 

about 80 µs. Compared to the duration of a touch event, which is assumed to be 0.1 s, 

and the scanning interval (17 ms), the calculation time is negligible. As mentioned 

2
( ) 6.87exp( (( 0.6) /1.07) )  f d d
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above, commercial embedded processors achieve a power efficiency of over 

20 MIPS/mW, which means that the power consumption is around 25 μW. The energy 

required for measuring one sensor is approximately 1/30 μJ. For the experiment test-bed, 

the power consumption is around 12.8 mW. Therefore, the power consumption of the 

compressive sensing reconstruction is insignificant. If only 30% of the electrodes are 

measured, then around 8.79 mW can be saved. As for the fixed pattern based down-

sampling technique, the algorithm complexity is lower than the random pattern based 

technique, thus the discussion is neglected.  

 

If touch information is the most important consideration then iterations of regional 

scans can be performed to obtain more detailed information. For example, our 

experiment was carried out on an 80×80 touch screen panel with a scan rate of 60 Hz, 

                         

(a)                                                                                 (b) 

                         

(c)                                                                                (d) 

Figure 6. 20 (a) original swipe touch based frame, (b) down-sampled touch signal, (c) reconstructed 

touch signal by using low-pass spatial filtering, (d) regional scanned touch signal.  
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thus around 2.6 μs was required to read one sensor. If in the down-sampled stage 50% 

of the sensors are measured, roughly 8.4 ms is needed to use the reconstruction 

algorithm, after which the rest of the time can be used for a regional scan. One regional 

scan takes about 0.2 ms, thus during one touch event approximately 40 regional scans 
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(b) 

Figure 6. 21 (a) Distribution of the reconstructed touch positions; X-Y coordinates indicate the distance 

between the reconstructed touch position and original touch position. (b) The cross-section with the 

largest variance of (a). 
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can be performed. As more time is used to read the sensors, noise can be averaged. The 

above relationship can be expressed as: 

 

                                                                             ;                                                     (6.20) 

 

where TFrame is the time to scan the original frame (e.g. 16.7 ms in this paper), TDown-

sampled the time to read the down-sampled sensors and TSensor the time to measure one 

sensor. 

 

It should be noted that stylus touches were used in our experiments (multi-pad and 

rows-and-columns), which cover more sensors than a typical finger touch (e.g. 3×3). 

The radius of the regional scan area for a finger touch can be limited to 1 pixel. Details 

of this are currently being investigated.   

 

6.4 Conclusion 

Capacitive touch signal detection is a key factor in both 3D (force) touch detection and 

2D (x-y) touch detection. Thus the quality of capacitive signal detection is of significant 

meaning. Here, quality mainly refers to two performance metrics: detection accuracy 

and readout speed. In this chapter, the SNR of the capacitive touch signal is boosted by 

15.6 dB by using correlated double sampling and spatial low-pass filtering related 

techniques, indicating improved detection accuracy. In terms of the readout speed, fixed 

pattern and random pattern related down-sampling techniques are applied, giving rise to 

reductions in both readout time and power consumption.  

 

 

 

 

 

 

Frame Down-sampled Touch Times Regiona-scan SensorT T +M N N T
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Chapter 7  Conclusion 

 

 
This chapter summarizes the work that has been done in this study, which includes: a 

review of piezoelectric materials and capacitive touch panel related techniques; a 

theoretical analysis of the proposed technique, from aspects of the mechanical and 

electrical properties; fabrication and measurement of the graphene and PVDF based 

multi-functional touch panel; interpretation algorithms for force touch detection, and 

optimization algorithms for capacitive touch detection. Finally, this chapter ends with a 

brief discussion of a number of recommendations for future work, based on the results 

obtained from this work. 

 

7.1 Conclusion 

This dissertation has presented a multi-functional capacitive touch panel for multi-

dimensional sensing. The properties of piezoelectric materials, techniques related to 

capacitive touch panels, theoretical analysis of the mechanical and electrical properties 

of the multi-functional touch panel, touch panel fabrication and measurement, and 

interpretation and optimization algorithms, have been discussed.  

 

Design considerations for detecting force touch in capacitive touch panels were 

discussed based on the literature review of piezoelectric materials and techniques 

related to capacitive touch panels. From the discussion, we learned that the 

characteristics of capacitive touch panels, such as pre-stress, temperature and 

environmental EMI, don’t strongly affect the accuracy of force touch detection. In 

contrast, the characteristics of force touch events, such as force touch speed, touch 

direction and finger geometry can heavily influence the detection accuracy. These 

design considerations are of significant meaning in designing and calibrating a 

piezoelectric material based touch panel.  
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A theoretical analysis was conducted in terms of the mechanical and electrical 

properties of the proposed multi-functional touch panel. In the mechanical analysis, four 

widely used capacitive touch panel stack-ups were investigated. From the investigation, 

we learned that the proposed technique can provide enhanced z-axis touch detection 

resolution and sensitivity compared to the existing force touch technique, which relies 

on changes to force induced capacitance. In the electrical analysis, both the readout 

SNR and the frequency property of the force touch signal were studied. A high SNR of 

59.1 dB was obtained based on the theoretical SNR estimation, indicating high 

detection accuracy. From analysis of the frequency of the force touch signal, we learned 

that conventional tapping force touches occupy the frequency band with 10 kHz, thus 

can be separated from capacitive excitation signals which are normally above 90 kHz in 

capacitive touch panels. 

 

After the theoretical analysis, a multi-functional touch panel was fabricated. To ensure 

that the fabricated multi-functional touch panel has good flexibility, graphene electrodes 

were selected and grown by the conventional CVD method. Two types of measurements 

(capacitive and force touch measurement) were performed. In the capacitive touch 

measurement, the minimum changed capacitance value was 0.2 pF, indicating a good 

detection resolution. In the force touch measurement, the force-voltage sensitivity was 

92 mV/N, satisfying applications where high force touch sensitivity is needed. 

 

A touch panel system was then assembled. Two force touch detection issues related to 

piezoelectric materials were addressed by employing information provided by 

capacitive touch signals. More specifically, static force touch detection and propagated 

stress elimination were achieved by incorporating the presence of capacitive touch 

signals. The capacitive touch signal is very important for interpreting force touch 

signals. Optimization algorithms were developed in terms of SNR and readout speed. 

The numerical and experimental results showed that, after CDS and Spatial LPF related 
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noise reduction techniques were used, the SNR was boosted by 15.6 dB. Using down-

sampling related techniques, the readout time was reduced by 11.3 ms. 

 

7.2 Future Work 

The aim of this work was to design a multi-functional touch panel for concurrent multi-

dimensional sensing for interactive displays, to provide customers with a new and 

advanced user experience. However, due to time limits and facility constraints, there are 

still additional tasks that need to be undertaken to further increase the performance of 

the system. Recommendations are given here as part of this future work.  

 

As described in this dissertation, non-uniformity of force touch detection over the panel 

scale limits the resolution of force touch detection. One way to solve this issue is to 

model the relationship between the location of a force touch and the architecture and 

geometry of the touch panel, which requires deeper mechanical analysis and plenty of 

experiments. Furthermore, absolute force touch detection has not yet been achieved, due 

to the existence of triboelectricity. To address this, the mechanism and characteristics of 

triboelectric noise need to be investigated.  

 

 

 

 

 

 

 

 

 

 

 

 



163 
 
 
 

 

Publications 

 

Journal Publications 

[1] Gao, S., Wu, X., Ma, H., Robertson, J. and Nathan, A., 2017. Ultrathin Multi-

functional Graphene-PVDF Layers for Multi-dimensional Touch Interactivity for 

Flexible Displays. ACS Applied Materials & Interfaces, 9(22), pp.18410-18416. 

 

[2] Nathan, A. and Gao, S., 2016. Interactive Displays: The Next Omnipresent 

Technology [Point of View]. Proceedings of the IEEE, 104(8), pp.1503-1507. 

 

[3] Gao, S., Arcos, V. and Nathan, A., 2016. Piezoelectric vs. Capacitive Based 

Force Sensing in Capacitive Touch Panels. IEEE Access, 4, pp.3769-3774. 

 

[4] Gao, S., Lai, J. and Nathan, A., 2016. Fast Readout and Low Power 

Consumption in Capacitive Touch Screen Panel by Downsampling. Journal of Display 

Technology, 12(11), pp.1417-1422. 

 

[5] Gao, S., McLean, D., Lai, J., Micou, C. and Nathan, A., 2016. Reduction of 

noise spikes in touch screen systems by low pass spatial filtering. Journal of Display 

Technology, 12(9), pp.957-963. 

 

[6] Gao, S., Lai, J., Micou, C. and Nathan, A., 2016. Reduction of common mode 

noise and global multivalued offset in touch screen systems by correlated double 

sampling. Journal of Display Technology, 12(6), pp.639-645. 

 

Conference Publications 

[1] Gao, S. and Nathan, A., 2017. Augmenting Capacitive Touch with Piezoelectric 

Force Sensing.  Accepted in SID Symposium Digest of Technical Papers . 



164 
 
 
 

 

 

[2] Gao, S. and Nathan, A., 2016, May. P‐180: Force Sensing Technique for 

Capacitive Touch Panel.  SID Symposium Digest of Technical Papers (Vol. 47, No. 1, 

pp. 1814-1817). 

 

Patent Articles 

[1] A. Nathan, S. Gao and J. Lai, 2016. Processing Signals from A Touchscreen 

Panel. PCT/GB2016/053489, US20170139527 A1, May 18, 2017. 

 

[2] S. Gao, A. Nathan and J. Lai, 2017. Touchscreen Panel Signal Processing. 

PCT/GB2017/050156, US20170228096 A1, Aug 10, 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



165 
 
 
 

 

Appendix I 

 

Derivation of Eq 3.1 and Eq3.2 

 

Following sign convention will be followed: 

 

When deformation in x and y directions 

 

u(x,y,z) = -zΨy(x,y) 

 

v(x,y,z) = -zψx(x,y) 

 

when vertical deformation takes place: 

 

w = w(x,y) 

 

As explained in Chapter 3, an assumption for thin plate is that the out of plane shear 

strain is negligible. Hence, 

 

Figure Appendix 1. Definition of positive moments and rotations. 
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γxz = ∂u/∂z + ∂w/∂x = 0 

 

as 

 

γxz = -Ψy + ∂w/∂x = 0 

 

hence 

 

Ψy = ∂w/∂x 

 

γyz = ∂v/∂z + ∂w/∂y = 0 

 

as 

 

γyz = -Ψx + ∂w/∂y = 0 

 

hence 

 

Ψx = ∂w/∂y 

 

For non-zero strains: 

 

εxx = ∂u/∂x = -z∂Ψy/∂x = -z∂2w/∂x2 

 

εyy = ∂v/∂y = -z∂Ψx/∂y = -z∂2w/∂y2 

 

γyz = ∂u/∂y + ∂v/∂x = -2z∂2w/∂x∂y 

 

For thin plate, when out of plane shear strains vanish, the out of plane shear stresses 

also vanish: 
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τxz = 0, τyz = 0, 

 

The out of plane normal stress is also assumed to be zero. 

 

Non-zero stress components can be described as shown Fig. A2,  

 

 

If we assume the thin plate is linear elastic istropic, then three stress and strain 

components can be written as: 

 

εxx = σxx/E - vσyy/E 

 

εxx = σyy/E – vσxx/E 

 

γyz = τxy/G = 2(1+v)τxy/E 

 

expressed in matrix form 

 

 

Figure Appendix 2. All three in plane stress components. 
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expressed strains in terms of curvatures: 
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Hence eq 3.2 is obtained.  

 

if assume the point load acts over an infinitesimal area u x v, corresponding to 

uniformly distributed load [xx],   

 

q0 = P/uv 

 

we can obtain 
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When deflection is due to a point load 
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as 16 /mnq mn , we can obtain  
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hence Eq 3.1 is proved.  


