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“Én azt tapasztaltam, hogyha a hegyet előnytelen oldalon másszuk meg, az sem

elveszett munka, mert mászás közben igen sokat tanulhatunk, olyat is, amit emberek, akik

hibát nem követnek el, sohasem tudhatnak meg.”

“In my experience, climbing a mountain from the wrong side is not a futile effort. As

we climb, we learn things that someone who never made that mistake, would never have

known.”

— György Békésy
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Summary
István Taisz

The circuit basis of olfactory mate recognition and localisation

Finding a mate has two essential steps: recognising an appropriate partner and
locating it. Sex pheromones are used in solving both tasks; they carry qualitative information
to recognise, and positional information to locate a mate. How does the brain extract both a
qualitative and a quantitative message from a single signal, like a pheromone smell?

We used the pheromone sensing circuit of Drosophila melanogaster as a model to
understand how such a signal is processed in the brain and how that instructs sexual
behaviours. We used connectomics, functional imaging, and behavioural tests to investigate
the anatomy and function of a circuitry dedicated to processing cis-vaccenyl acetate (cVA) a
male pheromone signal. We discovered a previously unknown second order projection neuron
class (PN) that senses cVA, and relays this signal to a neural hub for sexual behaviours -
including female receptivity. We imaged the activity of sensory neurons and second order
PNs in the cVA pathway while presenting the female with a male fly at defined positions and
asked what features of the stimulus can be decoded from neuronal activity. We show that both
sensory neurons and PNs carry information about male position by cell type-specific distance
tuning properties and lateralisation ability. Additionally, we found an interneuron that is only
activated by contralateral input and is well placed in the circuit to create mutual inhibition
between the two sides. We propose that this mechanism underlies improved lateralisation in
PNs compared to sensory neurons.

To further understand cVA processing we characterised the responses of two
third-order neurons. We found that one is selectively tuned to an approaching male, and the
response magnitude is strongly dependent on approach speed. A second, previously
described, sexually dimorphic third-order neuron receives taste input besides cVA, and
integrates these signals at its dendrites. Following the flow of information downstream of the
taste and cVA integrating neurons we discovered a layered axo-axonic circuit; this layout
suggests a hierarchical gating of different sensory modalities. Through connectomics and
functional experiments, we showed that signals from the abdominal ganglion - controlling
reproductive organs - and leg muscle load information enter this axo-axonic motif, and that
manipulating any of these neurons during behaviour affects female receptivity bidirectionally.

These findings together extend our understanding of cVA’s function as a pheromone
that signals positional information. Supporting this function we propose an olfactory
lateralisation mechanism previously unknown in Drosophila. Our observations about third
order neurons suggest that quantitative and qualitative signals are separated at the third layer
of cVA processing and that integrating other relevant modalities plays a role in this
separation.
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This work aims to understand how (i) a brain can extract and encode two different

aspects of the same sensory stimulus, and (ii) how these aspects instruct specific behaviours.

In this introduction, I lay out why I have chosen to examine this phenomenon using an

olfactory pheromone of Drosophila melanogaster that guides courtship behaviours.

Olfaction, and specifically, sparsely tuned odour channels provide an entry point to

investigate sensory processing with known signal identity at deeper circuit layers. Therefore I

chose sex pheromones, signalling mate identity and location, with dedicated olfactory

pathways to uncover how these features of a stimulus are encoded in the brain. I briefly

introduce sex pheromones and their behavioural role as first described in moth species, and

discuss the function and processing of a male pheromone of Drosophila melanogaster in

detail. Finally, I provide an overview of the extremely powerful genetic and connectomic

tools uniquely available in the vinegar fly, Drosophila melanogaster that allow us to probe

our question at multiple levels of neuroscientific investigation.

1.1 Extracting distinct features of a sensory stimulus
Sensory stimuli carry information about their identity, timing, intensity, and location

(Fechner 1860). Sensory systems translate such stimuli to an efficient neural code

representing these features to instruct behaviour (Laughlin 1981; Heng, Woodford, and

Polania 2020). Out of these four characteristics of a signal, timing is encoded most trivially:

neurons are active when the stimulus is either present or absent, often with specific neurons

responding to stimulus onset and offset. The next aspect, stimulus intensity and its coding

may provide the most successful example of understanding a part of the neural code: in

general the higher the stimulus intensity, the higher the neuronal firing rate (Adrian and

Zotterman 1926). Both timing and intensity coding have many additional layers of

complexity to ensure reliable and efficient encoding of a signal. However, stimulus identity

and location are different from timing and intensity, as their availability varies across sensory

modalities. The sense of smell is excellent in encoding stimulus identity by relying on a wide

variety of distinct receptor proteins and a combinatorial neural code (Buck and Axel 1991;

Malnic et al. 1999). In contrast, the spatial arrangement and number of sensilla make

olfaction suboptimal for fast and precise directional processing. Vision, on the other hand,

relies on a receptor geometry that allows quick and excellent coding of stimulus location

already at the sensory neurons, while identity can be only established by complex neural

computations.
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The visual streams of identity and location information are believed to be separately

processed in mammalian brains, and the neural circuits were named the what and where

pathways (Goodale and Milner 1992). The computations required to extract identity or

location seem specific to the feature, arguing for separate streams during processing steps.

However, creating a coherent percept about a stimulus requires a representation that encodes

all of its features together. To address this problem, we use a sparsely tuned olfactory

pathway – specifically activated by an odour, as this system relays the identity of the stimulus

unchanged to deeper layers of sensory processing circuits.

1.2 Sex pheromones signal mate identity and location
We set out to investigate this question by focussing on sex pheromone processing.

Pheromones evolved to act as chemical communication channels between organisms and are

widely used in the animal kingdom. Sex pheromones are specific to either males or females,

therefore, they carry essential information about the sex of an individual and provide

important messages for reproductive behaviours. The first described sex pheromone,

bombykol, signals the identity and direction of a female moth, and males use this information

to identify and locate potential mates from large distances (Butenandt, Beckmann, and

Hecker 1961). Pheromonal communication is mostly used among conspecifics and evokes

innate behavioural responses, implying that the circuits underlying pheromone processing are

stereotyped across individuals, which facilitates neuroscientific inquiry.

The example of bombykol and similar moth pheromones have been studied

extensively to understand odour navigation strategies in flying and walking moths (Kennedy

and Marsh 1974; Baker et al. 1985; Takasaki, Namiki, and Kanzaki 2012). Moths turn

towards pheromones as fast as a few tens of ms following the stimulus, followed by local

circling search for olfactory information upon the stimulus ends. Recordings of sensory and

second order neurons of the bombykol sensing pathways showed that they are able to resolve

odour pulses at 10 Hz frequency (Bau, Justus, and Cardé 2002; Chu et al. 2020). Flying

moths use this information to start positive anemotaxis, upwind flight, which at such large

distances is a more reliable navigational signal than odour concentration gradients. In

walking moths, however, it was also demonstrated that bilateral information is used to

determine walking direction, suggesting that once the odour source is closer, gradient

information (i.e. odour concentration difference at the antennae) is highly relevant (Takasaki,

Namiki, and Kanzaki 2012). These studies are foundational to our understanding of olfactory
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navigation, however, further characterisation of the underlying neural circuits and

computations is limited by the lack of genetic tools to reproducibly record or manipulate

specific cell types deeper in the brain. In order to understand how pheromone-based

positional and identity information are processed and translated to behaviour, we can use the

genetically tractable model, Drosophila melanogaster.

1.3 cVA processing as a model for parallel positional and identity coding
Cis-vaccenyl acetate (cVA) is a male-specific pheromone in Drosophila produced in

the ejaculatory bulbs. cVA is a low-volatility, therefore short-range pheromone, that evokes

distinct behaviours in the sexes. Male flies are repulsed by cVA, their courtship is suppressed

towards a fly carrying cVA, and male aggression is increased in the presence of this

compound (Wang and Anderson 2010; Tachibana, Touhara, and Ejima 2015). Females, on the

other hand, are attracted to the pheromone and show increased receptivity towards courting

males when they sense cVA (Kurtovic, Widmer, and Dickson 2007; Ronderos and Smith

2010). Importantly, placing cVA in a behavioural chamber was sufficient to evoke these

effects, suggesting that the general abundance of the odour is relevant rather than the

stimulus’ temporal and spatial structure.

Flies have two olfactory organs, the antennae, and the maxillary palps, which house

olfactory receptor neurons (ORNs). ORNs fall into roughly 50-60 types defined by their

odorant receptor expression responsible for their odour responses. The sensory neurons enter

the brain and form synapses with second order projection neuron (PN) dendrites in the

antennal lobe (AL). The AL is organised into discrete compartments: glomeruli, like its

analogous brain region in vertebrates, the olfactory bulb. Tens of ORNs with the same

receptor project into the same glomerulus, and connect to one or multiple sister PNs, most of

which have glomerulus-specific dendrites (Vosshall, Wong, and Axel 2000; Stocker et al.

1990). Odour information is processed in the AL by reciprocal interactions of ORNs, PNs,

and primarily inhibitory local neurons (LNs). LNs are the substrates of olfactory processing

phenomena like lateral inhibition, lateral excitation, and gain control, which are achieved by a

diverse set of LN cell types suggestive of specialised functions (Schlegel et al. 2021).

Olfactory PNs relay information with stereotyped projection patterns to two higher-order

brain centres, the mushroom body (MB), and the lateral horn (LH), which have been

established as essential brain areas for learned (MB) and innate (LH) odour driven behaviours

(Jefferis et al. 2007; Heisenberg et al. 1985; Dolan et al. 2018); (Figure 1A-C).
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cVA is sensed by two types of olfactory receptor neurons (ORNs) housed in trichoid

sensilla, Or67d and Or65a, which send this signal to DA1 and DL3 PNs, respectively.

Previous work has shown that Or67d ORNs and DA1 PNs selectively respond to cVA, and it

was proposed that this pathway functions as a labelled line for cVA (Schlief and Wilson

2007). Although male flies have more Or67d ORNs than females, resulting in a larger

glomerular volume, PN responses were shown to be identical in males and females (Datta et

al. 2008). While the sexually dimorphic anatomy and physiology of some third-order LH

neurons have been characterised (Kohl et al. 2013; Jeanne and Wilson 2015; Ruta et al.

2010), we lack an understanding of how this signal is transformed into behaviour (Figure

1D).

A key circuit element for sexual behaviours was described to respond to cVA in

female flies. These neurons, called pC1, are widely considered as master regulators of female

receptivity. Indeed, they integrate the likely most salient cues of a courting male’s quality:

courtship song and cVA, and control the activity of vpoDNs, a descending command neuron

for vaginal plate opening (Zhou et al. 2014; K. Wang et al. 2021). pC1 is one of the best

known example of sexually dimorphic neurons in flies; a male specific subset of pC1

neurons, P1, is known to regulate male sexual behaviours: courtship, and aggression

(Philipsborn et al. 2011; Kohatsu, Koganezawa, and Yamamoto 2011; Hoopfer et al. 2015).

pC1 is one of many sexually dimorphic neurons in Drosophila that provided key insights into

the morphology - function relationship of nervous systems. Two central transcription factors,

fruitless and doublesex are members of the sex determination hierarchy, and are known to be

central for sex-specific neuron morphology (Kimura et al. 2005, 2008). Investigating neurons

that express either one or both of these factors has been an entry point to understand the

genetic and neural basis of behavioural differences in the sexes (Demir and Dickson 2005;

Rideout et al. 2010). Ever since, our understanding of sexually dimorphic neurons is growing,

with a special focus on trying to provide a circuit mechanism underlying courtship (Zhang et

al. 2018; McKellar et al. 2019; K. Wang et al. 2021).

The complex dialogue of a courting male and female Drosophila relies on most, if not

all sensory modalities (Pavlou and Goodwin 2013; Aranha and Vasconcelos 2018). Male flies

sample contact pheromones to select optimal courtship targets by tapping other flies with

their forelegs covered by gustatory receptor neurons (GRNs; Spieth 1952; Koganezawa et al.

2010; Seeholzer et al. 2018). If the approached fly is a conspecific virgin female, the tap will

be most likely followed by courtship, which includes the close following of the target and

vibration of a wing to produce a species-specific set of auditory stimuli: the courtship song
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(Zhang et al. 2018). If the female is receptive, it will slow down and pause more frequently,

groom its abdomen, and open the vaginal plates to make copulation possible. The male

modulates the chasing speed and song depending on the proximity of the female (Coen et al.

2014). After detecting signals of receptivity, the male will engage in a behavioural sequence

to attempt mating: a lick of the female’s genitalia, curling of the abdomen, and lifting of the

forelegs to mount the female (McKellar et al. 2019). Other communication channels include

abdominal vibrations (Mazzoni, Anfora, and Virant-Doberlet 2013; Fabre et al. 2012) and

visual cues involved in male following behaviour (Ribeiro et al. 2018). Such an abundance of

signals creates an interesting problem: females need to integrate inputs from many modalities

to make a binary decision, mate or not to mate. (Spieth 1952; Koganezawa et al. 2010;

Seeholzer et al. 2018)

Odours have been suggested to play an important role in the initial part of courtship in

males to select ideal mating targets (Agrawal, Safarik, and Dickinson 2014), while for

females, it is unclear whether cVA elicits its aphrodisiac effect at a specific phase. It is also

not known how other sensory modalities are used in females to instruct the mating decision

and what aspects of the cVA signal are integrated with them. When comparing the response

differences to delayed bilateral antennal nerve stimulation across odour channels the cVA

responsive DA1 PNs were shown to detect stimulus timing differences better than other

glomeruli (Agarwal and Isacoff 2011). This feature could underlie odour localisation

behaviour, as was shown for moth pheromone sensing PNs. A similar idea was proposed for

the role of methyl-laurate (ML), a general fly pheromone, in guiding male courtship (Root et

al. 2008).

PNs responsive to general odours were shown to be activated more strongly by

ipsilateral stimulation than contralateral (Gaudry et al. 2013), and flies can detect odour

direction during walking and flight (Borst and Heisenberg 1982; Duistermars, Chow, and

Frye 2009). However, all these experiments required odour presentations where the stimulus

was strongly lateralised artificially. The proximity of the antennae (~250 μm) raises the

question whether a volatile stimulus can have sufficient concentration difference in space at

such a short distance to evoke lateralised responses. The problem is further complicated by

the fact that most ORN types (including DA1) innervate glomeruli bilaterally, relaying odour

information to PNs from both antennae (Figure 1A). Although this bilateral information is

biassed at the level of connectivity: ipsilateral ORNs (the ones with their soma on the same

side) give more inputs to PNs than contralateral ORNs (soma one the opposite side) of the

18

https://paperpile.com/c/JBv9tX/KfcNg
https://paperpile.com/c/JBv9tX/Verfu
https://paperpile.com/c/JBv9tX/Verfu
https://paperpile.com/c/JBv9tX/HzJ6y
https://paperpile.com/c/JBv9tX/vXsJ+Tkp4
https://paperpile.com/c/JBv9tX/bJLgv
https://paperpile.com/c/JBv9tX/MC8wl+6UKOK+5VKRa
https://paperpile.com/c/JBv9tX/MC8wl+6UKOK+5VKRa
https://paperpile.com/c/JBv9tX/jaH8s
https://paperpile.com/c/JBv9tX/I9ESM
https://paperpile.com/c/JBv9tX/AmbQz
https://paperpile.com/c/JBv9tX/AmbQz


same type (Tobin, Wilson, and Lee 2017; Schlegel et al. 2021), it is unclear if detecting

bilateral odour contrast – lateralisation – of naturalistic stimuli, like another fly, is possible.

Our current understanding of cVA processing and its role in female receptivity

provides an entry point to study how a pheromone signal can be used both as a transient

positional cue and as a signal of male identity that tonically regulates sexual behaviours.
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Figure 1: Architecture of olfactory systems and cVA processing
A: Anatomy of the olfactory system of D. melanogaster. Olfactory receptor neurons project
from the antennae (and maxillary palps) bilaterally to specific glomeruli in the antennal lobes
(AL). Second-order projection neurons relay the information to higher-order centers: the
lateral horn (LH) and the mushroom body (MB). B: Anatomy of the olfactory system in Mus
musculus. Olfactory receptor neurons have sensory endings in the olfactory epithelium and
project unilaterally to a specific glomerulus of the olfactory bulb. Second order mitral, and
tufted cells relay this information to higher-order brain centers, including the cortical
amygdala and the piriform cortex. C: Circuit schematic of the olfactory system of D.
melanogaster. A given cell type of olfactory receptor neurons projects to a single glomerulus
in the antennal lobe, and connects with projection and local neurons (PN, LN). Projection
neurons forward this signal to third-order Kenyon cells (KC) in the mushroom body, and to
third-order lateral horn neurons (LHN). PN to KC connectivity is close to random, while PN
to LHN connectivity is largely stereotyped. (Throughout this work a circle and an arrow
represent a neuronal cell-type, irrespective of the number of neurons in a given cell-type.) D:
Known cVA processing pathways. Two ORN types (both consisting of a few tens of
neurons), Or67d and Or65a respond to cVA, projecting to DA1 and DL3 glomeruli,
respectively. aSP-g is a cVA responsive, fruitless+ lateral horn neuron innervated by DA1
PNs in female flies. pC1 is a doublesex+ central brain neuron that integrates cVA and male
courtship song, and regulates female receptivity. The role of fruitless and doublesex is
explained on page 18.
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1.4 Circuit neuroscience in Drosophila
Circuit neuroscience aims to understand the computational functions of the brain at

the level of interacting neuronal populations – circuits, placing itself between neuroscientific

disciplines with longer history: studying single neurons or whole areas of the brain. Using

Drosophila melanogaster for circuit neuroscience allows us to bring together multiple levels

of investigation: circuit anatomy, physiology, and behaviour. All these possibilities originate

from the rich ethological, genetic, and genomic advances achieved in flies over the 20th

century. A key problem in circuit neuroscience is to gain access reproducibly to the same

neurons to probe their function across individuals. The combination of two separate

transgenic lines that express a transcription factor and a reporter engineered to be transcribed

by this factor we call a binary expression system. These provide a fast, efficient, and uniquely

precise solution to this problem in Drosophila. Large libraries of driver lines, relying on the

yeast transcription factor, GAL4, can be combined with reporter lines using the UAS

promoter. Importantly, two orthogonal binary expression systems, LexA/LexAop and

QF/QUAS, are commonly combined with GAL4/UAS to drive multiple reporters with

independent expression patterns. This study relied on the GMR (Gerry M. Rubin) and VT

(Vienna Tiles) driver line libraries, generated at Janelia Research Campus, and IMP Vienna,

respectively, to generate specific lines for neurons of interest. These libraries use single

transcriptional enhancers, an approximately 3000 base sequence from a gene expressed in

adult brains, to specify the expression of GAL4 or LexA inserted at a defined location by

site-specific recombination (Pfeiffer et al. 2008; Jenett et al. 2012; Tirian and Dickson 2017).

These drivers rarely label single neurons but an intersectional strategy can further specify the

neuronal labelling pattern. Using a split version of the GAL4 transcription factor in which the

activation domain (AD) and the DNA-binding domain (DBD) are controlled by distinct

enhancers, one can create a combined driver line, where the reporter is only expressed where

both the AD and DBD components are present in a neuron (Figure 2A; Luan et al. 2006;

Pfeiffer et al. 2010). These libraries were made available as searchable image databases,

including sparse and stochastic multi-colour labelling by these drivers, that facilitate finding

neurons of interest, and selecting split-GAL4 hemidrivers to be combined for specific access

(Meissner et al. 2020; Otsuna, Ito, and Kawase 2018). Further intersectional strategies to

limit expression include the FLP/FRT (flippase / flippase recognition target) site-directed

recombination system, and the GAL80 transcriptional repressor of GAL4. The FLP/FRT

system uses a defined expression pattern for FLP recombinase via an enhancer, and the

22

https://paperpile.com/c/JBv9tX/J5xUL+MFivY+kXlh4
https://paperpile.com/c/JBv9tX/XPzoX+1pwmQ/?prefix=Figure%202A%3B,
https://paperpile.com/c/JBv9tX/XPzoX+1pwmQ/?prefix=Figure%202A%3B,
https://paperpile.com/c/JBv9tX/3Bwfl+0clEC


reporter’s expression is dependent on FLP recombination guided by FRT sites in the inserted

transgene (Konsolaki et al. 1992). GAL80 can repress GAL4 driven transactivation by

binding to its activation domain, thereby limiting the reporter’s expression to neurons with

GAL4 but without GAL80 (Giniger, Varnum, and Ptashne 1985). Combination of GAL4,

GAL80, and FLP is used by the MARCM method (mosaic analysis with a repressible cell

marker, (Lee and Luo 2001)). MARCM uses a FLP driven recombination of the heterozygous

GAL80 during mitosis to create two daughter cells, one homozygous for GAL80, and one

without any GAL80. The progenitor cell without GAL80, and all of its daughter cells - a

clone, will express the reporter driven by GAL4. A further variation, FLPout MARCM labels

individual cells of a clone (J. Wang et al. 2002).

Using such labelling strategies for neuroanatomical studies further developed our

understanding that flies have conserved neuron morphologies across individuals (E. C. Marin

et al. 2002; Chiang et al. 2011). Being able to identify the same neuron or cell type across

animals is crucial to reproducibly test the function of a circuit element (Bates et al. 2019). A

vital step in making comparisons of neuron morphology across different flies is to use a

common template space, and image registration tools to place neurons from individuals into

the same brain space (Bates, Manton, et al. 2020; Bogovic et al. 2020). After registration,

expert inspection at small scales, or algorithmic comparison of morphological similarity at

large scales can provide a consensus on a neuron’s identity and cell type (Costa et al. 2016).

Using MARCM studies to define developmental clones, and large databases of individual

neuron morphologies registered to a single template brain provided a rich and systematic but

far from comprehensive description of neuronal cell types in D. melanogaster (Chiang et al.

2011; Ito et al. 2013; Cachero et al. 2010).

Currently, electron microscopy (EM) is the only method that achieves sufficient

resolution to create a neuron level wiring diagram, or connectome. Following pioneering

studies by Sydney Brenner’s lab in the worm, Caenorhabditis elegans (White et al. 1986),

EM based connectomics aimed to account for all cell types and explore synaptic connectivity

in the fly. The small size of the fly brain, the recognisable neurons across individuals, and the

wide variety of neuroscientific methods available in flies made it an attractive target to

acquire and annotate a connectome of its nervous system (reviewed in Schlegel, Costa, and

Jefferis 2017). After studies acquiring and analysing smaller brain regions like the visual and

antennal lobes (Takemura et al. 2017; Tobin, Wilson, and Lee 2017; Horne et al. 2018), a full

adult fly brain (FAFB) was imaged at 4x4x40 nm resolution by serial section transmission

EM (ssTEM), followed by approximately one-third of a fly brain, dubbed the ‘hemibrain’,
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with focussed ion beam scanning EM (FIBSEM), and a full adult nerve cord (FANC) with

ssTEM (Zheng et al. 2018; Scheffer et al. 2020; Phelps et al. 2021). The ssTEM datasets are

primarily used for sparse reconstruction of circuits of interest via manual tracing of neuron

morphologies and annotation of synapses. This method was superseded by automated

segmentation of neurons and synapses, that is followed by manual proofreading for FAFB

and FANC (P. H. Li et al. 2020; Dorkenwald et al. 2020; Buhmann et al. 2018). This strategy

was first used to achieve a dense reconstruction of the hemibrain dataset. Currently neuron

morphologies and connectivity from the hemibrain dataset are accessible via a web interface

and programmatic tools, allowing large scale analyses of full sensory systems or specific

brain regions like the mushroom body or central complex (Schlegel et al. 2021; F. Li et al.

2020; Hulse et al. 2020). In parallel, the FAFB dataset is continued to be used for sparse

reconstructions with special focus on circuits with components in the gnathal ganglion

(GNG) or descending and ascending neurons (DNs, ANs), which are fully or partially absent

in the hemibrain. FANC, the first ssTEM dataset of the VNC (ventral nerve cord)

incorporates sensory and motor circuits of the leg and abdomen, also, it is a useful

complement to FAFB to investigate DNs and ANs. Having two datasets about parts of the fly

brain allows comparisons across individuals. Surprisingly, innate olfactory circuits across

individuals are conserved to the extent that interindividual variability (FAFB compared to

hemibrain) is not bigger than interhemispheric variability (FAFB right compared to FAFB

left, Schlegel et al. 2021).

These connectomic resources help us understand the flow of information from

sensory input to motor output at an unprecedented detail. In order to reveal the computations

performed throughout this flow we need to functionally test, measure, and manipulate the

activity of neurons. In vivo whole-cell electrophysiology and GCaMP calcium imaging,

complementary methods to record neural activity, were adopted in flies early on, and were

efficiently combined with existing genetic tools (Wilson, Turner, and Laurent 2004;

Jayaraman and Laurent 2007). These techniques unravelled neural computations such as

olfactory gain control in the antennal lobe, odour representation and associative learning

mechanisms in the mushroom body, and the emergence of a heading direction signal in the

central complex (Olsen and Wilson 2008; Root et al. 2008; Caron et al. 2013; Hige et al.

2015; Seelig and Jayaraman 2013). These studies are further extended or challenged by novel

connectomic insights. In the case of understanding directional selectivity in visual processing,

early connectomic resources already proved their value, demonstrating how they aid forming

hypotheses about circuit function (Takemura et al. 2017; Strother et al. 2017). Current work
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in fly neuroscience can exclude circuit models incompatible with connectomic data, and

constrain and develop hypotheses based on the observed circuit layout.

Recording neural activity allows us to understand sensory coding and information

processing, but is limited in answering the question what aspects of sensory stimuli were

relevant to changing an animal’s behaviour. Early descriptions of Drosophila behaviour both

in the wild and the laboratory provide rich information about the merkwelt (perceptual world,

(Tinbergen 1951) of flies. Recent technological advances in computer vision and machine

learning methods made it possible to track, quantify, and cluster fly behaviour, organise it

into hierarchical or sequential modules, and ultimately, to gain the best possible read out of

the fly’s goals (Branson et al. 2009; Kabra et al. 2013; Berman et al. 2014; Pereira et al. 2019;

Mathis et al. 2018). The rigid body parts of flies make their movement easier to track than

that of mammals, making behavioural classification more accurate. An impactful analysis

pipeline, which we also use in this study, JAABA (Janelia Automatic Animal Behaviour

Annotator), can incorporate positional data about fly body, wings, and legs from multiple

tracking methods (Kabra et al. 2013). The data is processed to generate more complex

features based on other available information, e.g. distance to arena wall, distance and facing

angle relative to another fly. After manual marking of frames with positive and negative

examples of a given behaviour a machine learning algorithm uses the descriptor features to

find the function that best detects examples of the behaviour. Iterative teaching and testing

steps achieve human-level accuracy in detecting fly social behaviours, like chasing,

wing-extension, copulation attempt, or aggressive lunge (Robie et al. 2017). This supervised

learning method can be extended by unsupervised tools, to detect and cluster unknown

behavioural elements (Berman et al. 2014; Calhoun, Pillow, and Murthy 2019). As an

alternative to video based tracking, behaviour can be quantified in a tethered walking or

flying fly based on measuring proxies of velocity (Borst and Heisenberg 1982; Lehmann and

Dickinson 1997). These approaches come with the great advantage of recording neural

activity while measuring behaviour (Maimon, Straw, and Dickinson 2008; Seelig et al. 2010),

although social behaviours are limited in a head-fixed fly. More recent efforts to measure

neural activity in freely behaving flies are promising, but rather constrained by the low signal

to noise ratio (Grover et al. 2020; Mercier et al. 2018).

This work relies on most of these techniques, including intersectional genetic

labelling methods, computational neuroanatomy, connectomics, in vivo functional calcium

imaging, and supervised classification of social behaviours.
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Figure 2: Genetic and connectomic tools in flies
A: Schematic of split-GAL4 labelling strategy. Two components of the GAL4 transcription
factor, the activation, and the DNA-binding domain, have specific expression patterns
defined by upstream enhancer regions. If these expression patterns overlap the cells in the
intersection will carry both components, and they can assemble to a functional transcription
factor to drive reporter expression. B: Expression pattern of two enhancer trap lines from the
GMR collection. Top: confocal image of the GMR38D01-GAL4 enhancer line’s expression,
maximum projection. Bottom: confocal image of the GMR59G08-GAL4 enhancer line’s
expression, maximum projection. Scale bar is 20 μm. C: An example of the split-GLA4
technique to sparsely label a cell type in the fly brain. Confocal image of combining the
GMR38D01-AD GMR59G08-DBD enhancer lines, maximum projection. Scale bar is 20 μm.
D: Coverage of the central nervous system by recent EM datasets for fly connectomics. E:
Comparison of the largest EM datasets for fly connectomics, also used in this study. Sparse
reconstruction: focussed reconstruction of selected neurons to gain an understanding of a
circuit of interest. Dense reconstruction: unbiased tracing of every neuron to create a
comprehensive connectome.
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2 Materials and Methods
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2.1 Fly stocks

Table 1: Fly stocks used in this study

name and genotype source identifier

lPN SS:
w[1118]; GMR54A11-AD; BJD_115F09 gift from Dr Yoshi Aso SS01189

lvPN SS:
w[1118]; GMR38D01-AD; GMR59G08-DBD gift from Dr Mike Dolan LH467

yw, UAS-CD8::GFP, UAS-CD8::GFP

w[1118]; 20XUAS-opGCaMP6s su(Hw)attP5;

gift from Dr Yonil Jung,
Dr Barrett Pfeiffer, and
Dr David Anderson NA

w[1118]; 20XUAS-opGCaMP6f su(Hw)attP5;

gift from Dr Yonil Jung,
Dr Barrett Pfeiffer, and
Dr David Anderson NA

w, Or67d-GAL4;; BDSC
RRID:
BDSC_9998

w[1118];; GMR24A10-GAL4 BDSC
RRID:
BDSC_49059

w[1118];; VT046100-GAL4 BDSC
RRID:
BDSC_75076

w[1118];; GMR53A03-GAL4 BDSC

RRID:
BDSC_38858
(currently not
available)

pC1 SS2: w[1118]; VT002064-p65ADZp in
attP2, dsx-DBD Janelia FlyLight SS59911

w[1118], 13XLexAop-IVS-jGCaMP7f
su(Hw)attP8;; BDSC

RRID:
BDSC_80910

w;; dsx-LexA

gift from Dr David
Deutsch and Dr Mala
Murthy NA

w[1118];; 20XUAS-CsChrimson-mCherry
gift from Dr Marta Zlatic
and Dr Vivek Jayaraman NA

w[1118]; 20XUAS-CsChrimson-mVenus; BDSC
RRID:
BDSC_55135

w[1118], UAS-Hid, UAS-Reaper gift from Dr Barry J.
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Dickson

AV2a2 SS:
w[1118]; GMR30A10-AD; GMR53A03-DBD gift from Dr Mike Dolan LH907

aSP-g SS1:
w[1118];; GMR76G09-DBD, JK1029-AD this study

w[1118]; P{y[+t7.7]
w[+mC]=20XUAS-IVS-GCaMP6f}attP40 BDSC

RRID:
BDSC_42747

yw, Or67d-QF;; gift from Dr Chris Potter NA

;QUAS-CsChrimson-mVenus; gift from Dr Chris Potter NA

w[1118];; Ir94e-GAL4
gift from Dr Richard
Benton NA

w[1118]; GMR81A04-LexA; BDSC
RRID:
BDSC_54390

aSP-g SS1/aSP-g SS2:
w[1118];;GMR76G09-DBD,JK1029/GMR81A0
4-DBD,JK1029 this study

JK1029, empty-DBD:
w[1118]; JK1029,GAL4-DBD.empty control
(BPZpGDBD) this study

w1118];; fruFLP
gift from Dr Barry J.
Dickson

aSP-g FLP1:
w[1118];; 76G09-GAL4, fruFLP this study

aSP-g FLP2:
w[1118];; 81A04-GAL4, fruFLP this study

empty-GAL4 FLP:
w[1118];; empty-GAL4 (pBDPGAL4Uw),
fruFLP

w;; UAS>mCherry>eGFP:Kir2.1

gift from Dr Rebecca
Yang and Dr Barry J.
Dickson

aSP-g LexA FLP:
w[1118];; 81A04-GAL4, fruFLP this study

w;; 20xUAS>dsFRT>CsChrimson:mVenus
gift from Dr Taketoshi
Kiya

mAL1 SS: this study
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w[1118]; VT033636-AD; VT013555-DBD

w; pJFRC-10xUAS-IVS-eGFP-Kir2.1;;
Janelia Research
Campus NA

w;; pJFRC-10xUAS-IVS-eGFP-Kir2.1;
Janelia Research
Campus NA

dMS6 SS:
w[1118]; 22B10-AD;VT059003-DBD this study

abdSMP SS:
w[1118]; 42D03-AD; 20C05-DBD this study

w[1118]; GMR67E08-LexA; BDSC
RRID:
BDSC_54092

w[1118];; GMR22B10-GAL4 BDSC
RRID:
BDSC_48969

2.2 Drosophila husbandry
Standard techniques were used for fly stock maintenance. Flies for experiments were

raised and kept at 25˚C in an incubator with a 12 hour light:dark cycle, and grown on iberian

Drosophila food. For optogenetic experiments the food was supplemented with all-trans

retinal.

2.3 Split-GAL4 hemidriver combination screening
The split-GAL4 hemidriver lines were selected based on the full expression pattern of

GAL4 using the same enhancer, and multi colour flip-out (MCFO) labelling of these drivers.

Expression was assessed by both visual screening of mean intensity projections from the

FlyLight database, and Colour depth MIP mask search relying on FlyLight MCFO data of

GMR and VT hemidriver lines that were generated at Janelia Research Campus, and IMP

Vienna (Otsuna, Ito, and Kawase 2018; Meissner et al. 2020; Jenett et al. 2012; Tirian and

Dickson 2017). Split-GAL4 lines contain two hemidrivers, the p65ADZp in attP40 and the

ZpGAL4DBD in attP2, with a few exceptions where a hemidriver of a non-GMR enhancer

was used (JK1029-AD, dsx-DBD). Split-GAL4 line candidates for confocal imaging were

selected by choosing two hemidriver lines (an AD and DBD) whose GAL4 patterns seemed

to contain the target cell type. The lines were screened by combining the two hemidrivers and

a UAS reporter: Enhancer-p65ADZp (attP40); Enhancer-ZpGAL4DBD (attP2) crossed to

20xUAS-csChrimson::mVenus (attP18) or UAS-CD8::GFP; UAS-CD8::GFP.

31

https://paperpile.com/c/JBv9tX/0clEC+3Bwfl+MFivY+kXlh4
https://paperpile.com/c/JBv9tX/0clEC+3Bwfl+MFivY+kXlh4


2.4 Neuron tracing in FAFB and FANC
Definitions of terms and expressions used in connectomics:

Sparse reconstruction: focussed reconstruction of selected neurons to gain an understanding

of a circuit of interest. Dense reconstruction: unbiased tracing of every neuron to create a

comprehensive connectome. Manual reconstruction: tracing of neuronal morphology and

annotation of synapses across EM sections by a human annotator. This results in a neuron

skeleton, a point and line representation of 3D neuron structure. Automated reconstruction:

software based segmentation of neuronal morphology, machine learning algorithms are

trained to detect the contiguous neuron parts across EM sections, and synapses based on

human generated ground truth datasets. This results in neuron segments, volumetric

representation of neuron structure. Segment concatenation: automated reconstruction

algorithms make errors where neurons are split into several segments which are joined by a

human proofreader - this is segment concatenation. False merge errors are also common

which need to be cut by a proofreader. Upstream neuron, input neuron: neuron A is

upstream to neuron B if A is presynaptic to B, i.e. A forms directional synapses that transmit

the signal to B, therefore A is an input neuron of B. Downstream neuron, output neuron:

neuron A is downstream to neuron B if A is postsynaptic to B, i.e. B forms directional

synapses that transmit the signal from A, therefore A is an output neuron of B.

(Trans)-synaptic sampling: EM datasets relying on sparse reconstruction, tracing a given

neuron or cell type does not inform us about the identity of its synaptic partners. In order to

reveal these partners we have to reconstruct the neuronal profiles (a small part of a neuron on

a single EM section) that were annotated as a synaptic partner. We can sample synapses either

up- or downstream of our neuron of interest to identify pre- or postsynaptic neurons,

respectively. Top synaptic partner: the neuron or cell-type that has the highest synaptic

weight with our neuron of interest (can be either upstream of downstream). Synaptic weight:

the number of annotated synapses for a given connection between to neurons, e.g. if neuron A

is presynaptic to neuron B, and there are 10 individual synapses annotated between these

neurons in this direction, the synaptic weight of this connection is 10. When specified this

can refer to the sum of synaptic weights across all members of two cell-types. Synapse

strength: in this work this is used only as a synonym of synaptic weight. In general, there is

an underlying assumption that more synapses result in a physiologically stronger synapse.

While proving this statement is technically challenging, there have been studies that

demonstrated synapse size linearly scales synapse number (Barnes, Bonnéry, and Cardona
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2022), and that synapse size linearly scales with synapse strength (Holler et al. 2021),

furthermore in Drosophila it was found that synapse density and location jointly predict

synapse strength (Liu et al. 2022). Brain space: in order to compare neurons across brains a

common template space can be used. This template may be made by averaging the 3D image

of many brains – usual for light microscopy, or by using a single brain specimen – usual for

EM. Neuron images from other sources (e.g. confocal images of driver line expression, or

different EM datasets) can be registered onto this template and compared with neurons from

different brains. Biassed input, biassed connectivity: much of this work focusses on the

comparison of bilateral signals from the antennae. Biassed input here means that a neuron or

cell-type with bilateral input forms more synapses with one side than the other.

We used ssTEM (serial section transmission electron microscope) volumes to sparsely

reconstruct the morphology and connectivity of neurons of interest in a female fly brain

volume (FAFB) and a female VNC volume (FANC), (Zheng et al. 2018; Phelps et al. 2021).

Neurons were either fully manually reconstructed or leveraging a partial segmentation of the

FAFB database (P. H. Li et al. 2020). Tracing and segment concatenation was done using

CATMAID (Saalfeld et al. 2009), a Web-based environment for working on large image

datasets and for tracing of neuronal morphologies. Annotated synapses represent chemical

synapses (both inhibitory and excitatory) based on previously described criteria.

aSP-g upstream sampling: Sampling was done as described in (P. H. Li et al. 2020). In

brief, we combined an automated segmentation of the FAFB dataset with manually annotated

presynaptic locations. The presynaptic locations were mapped onto the volumetric neuron

segments, that allowed us to rank upstream segments by the number of presynapses inside the

volume. We traced all upstream segments with more than one presynapse, thereby covering

56% of all inputs to aSP-g neurons. To reconstruct upstream neuron morphologies we

concatenated skeletonised versions of the segments as described in Bates et al. 2020.

G2N-SLP1 upstream sampling: Sampling relied on another automated segmentation

of the FAFB dataset, and the related FlyWire proofreading environment (Dorkenwald et al.

2020). We ranked upstream segments by the number of manually marked synaptic locations

in them, and all of those containing more than two synapses (75% of all inputs) were

reconstructed via concatenating segments.

aSP-g2 downstream sampling: Manual tracing was used to randomly sample 27% of

the 1120 post-synaptic profiles of two aSPg2 neurons. 152 profiles were traced to their soma,

and clustered by morphology to rank downstream cell types by synaptic weight.
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mAL1 downstream sampling: Manual tracing was used to randomly sample 20% of

the 1501 post-synaptic profiles of two mAL1 neurons. 134 profiles were traced to their soma,

and clustered by morphology to rank downstream cell types by synaptic weight.

dMS6 upstream sampling: Manual tracing was used to fully reconstruct the 849

post-synaptic profiles of two dMS6 neurons. Profiles were traced to their soma, and neurons

with three or more dMS6 connections were clustered by morphology to rank upstream cell

types by the number of connections.

Identifying sensory neurons in FANC: Putative sensory neurons have dark cytostol,

granular appearance, frequent invaginations with neighbouring neurons. Upstream neurons

that possessed one or more of these traits were traced until evident that they were not sensory

neurons or exiting the VNC through a nerve fibre. This method was used to find sensory

neurons presynaptic to exemplar neurons of the five strongest dMS6 upstream neuron groups.

2.5 Computational neuroanatomy and connectomic analysis
A dense reconstruction of one third of a female fly brain imaged with FIBSEM

(focussed ion-beam scanning electron microscopy), referred to as hemibrain, was used to

investigate connectivity in the antennal lobe (Scheffer et al. 2020). The website displaying

the data (neuprint.org) and the natverse R package family was used to find connectivity

information, and to visualise neuronal morphologies (Bates, Manton, et al. 2020).

For morphological clustering we calculated mean NBLAST similarity scores of

neuron skeletons (point and line representations) and used Ward’s hierarchical clustering on

these scores and expert inspection to find morphological cell types (Costa et al. 2016).

Quantification of dendritic cable length in the lateral horn (i.e. what proportion of the

dendritic arbour is in the LH) was done with natverse R package. Neuron skeletons were

resampled at 1 µm, to get an even distribution of nodes throughout the neuronal cable. We

pruned these skeletons to dendrites by manually selecting a node on the skeleton before the

axon branching (in aSP-g neurons axons are easily distinguished based on the large number

of presynaptic boutons in those arbours, while dendrites almost completely lack these), and

removing all nodes distal to the axonal branching. After this we took the proportion of nodes

that were inside the lateral horn, divided by the number of all nodes that remained after

pruning, i.e. the nodes that make up the dendrite part of the neuron’s skeleton. For FAFB

neurons, we used the LH_L volume (lateral horn left) to define which nodes are inside or

outside the LH. For FlyCircuit neurons we used the LH volume of the FCWB reference brain,
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which is the template that these neurons were registered to in the dataset. For MCFO data,

neuron skeletons were traced in Fiji (Schindelin et al. 2012) with the Simple Neurite Tracer

plugin (Longair, Baker, and Armstrong 2011) and then registered to the IS2 template brain

with CMTK - Computational Morphometry Toolkit as described in Cachero et al. (2010). We

used the LH volume of the IS2 template brain to calculate the dendritic cable inside the LH

for neurons from MCFO data.

2.6 Immunohistochemistry and confocal microscopy
Immunohistochemistry was done as described in (Jefferis et al. 2007) except that the

blocking step was overnight at 4°C. Primary antibodies: mouse anti-nc82 (DSHB,

AB_2314866) 1:40, chicken anti-GFP (Abcam, ab13970) 1:1000, rabbit anti-RFP

(antibodies-online, ABIN129578) 1:1000, mouse anti-ChAT4B (DSHB, AB_528122), rabbit

anti-GABA (Sigma, A2052). Secondary antibodies: Alexa-568 anti-mouse (Invitrogen)

1:400, Alexa-488 anti-chicken (Invitrogen) 1:400, Alexa-633 anti-mouse (Invitrogen) 1:400,

Alexa-568 anti-rabbit (Invitrogen) 1:400.

Prolonged incubation of brains (2–3 days at 4°C) with primary and secondary antibodies was

required for homogeneous staining. Brain specimens were whole mounted in Vectashield

(Vector Labs) on charged slides to avoid movement. Confocal stacks were acquired using a

Zeiss 780 confocal microscope. Brains were imaged at 768 × 768 pixel resolution every 1 μm

(0.46 × 0.46 × 1 μm) using an EC Plan-Neofluar 40×/1.30 oil objective and 0.6 zoom factor

in the ZEN confocal imaging software. VNCs were imaged with the same conditions with

two subsequent acquisitions to fully capture a single specimen, followed by manual stitching

of mean intensity projections for presentation. All images were acquired at 16 bit colour

depth. Maximum projections of z stacks were made in Fiji (Schindelin et al. 2012).

2.7 In vivo calcium imaging and stimulus presentation
Functional imaging experiments of neurons were performed on virgin female flies

aged 3 to 7 days, containing one copy of codon optimised GCaMP6f, unless other GCaMP is

specified. Flies were placed into custom built holders, leaving the head and thorax exposed,

under ice anaesthesia and secured in place with UV curable glue (Norland Optical Adhesive,

NOA 68). Low melting point wax was used for securing the legs and the proboscis, unless

otherwise specified. A window was then cut into the head capsule with a 30G needle, and

trachea and air sacks were removed with forceps in order to uncover the brain. Fly brains
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were bathed in external saline adjusted to 275mM and 7.3 pH, and bubbled with 5% CO2 -

95% O2 mixture. The saline had the following composition (Concentration, mM): NaCl

104.75; KCl 5; NaH2PO4 1; MgCl2.6H2O 1; CaCl2.2H2O 1; NaHCO3 26; TES 5; glucose

10; trehalose 10. The antennae were left under the holder so that they could be exposed to

odour stimuli. A custom-built setup based on the Sutter (Novato, CA) Movable Objective

Microscope with a Zeiss W Plan-Apochromat 20x/1.0 objective was used for the two photon

imaging. A Coherent (Santa Clara, CA) Chameleon Vision Ti-Sapphire laser provided

excitation, and image acquisition was controlled by Vidrio ScanImage Premium software

(Leesburg, VA Pologruto, Sabatini, and Svoboda 2003). Image acquisition and stimulus

delivery were triggered by a separate computer via Igor Pro software (Wavemetrics, Lake

Oswego, OR) running Neuromatic. Images were captured at 7 Hz at 200 x 200 or 140 x 280

pixels for most experiments. Responses to an approaching male with varying speed were

captured at 21 Hz, with two 80 x 80 pixel ROIs. Two-photon excitation was provided at 900

nm.

cVA delivery was done with a custom built olfactometer with two odour channels,

each equipped with a solenoid valve (SH360T041, Neptune Research). Carrier airflow rate

was 600 ml/min and odour channels entered the airstream approximately 3 cm from the fly’s

antennae with a flow rate of 200 ml/min, all regulated by separate mass flow controllers

(Alicat Scientific Tucson, AZ, MC Series). Clean air from both odour channels was

constantly flowing to the fly until a trigger pulse arrived to one of the valves, redirecting the

odourised air from waste to the fly. Odours were 10% cVA (Pherobank, 6186-98-7) diluted in

mineral oil, and the solvent control. The odour path containing cVA had a manual valve

between the mass flow controller and the odour bottle, that was used to send the air to waste

in between presentations to avoid depletion of cVA from the bottle with constant airflow.

Males used as stimuli were 4-8 days old Canton S flies, collected upon hatching and

raised in groups of 5-10 individuals. A single male was selected and had its legs and wings

removed under ice anaesthesia, and glued onto a metal needle with UV-curable glue (Norland

Optical Adhesive, NOA 68). The glue was applied onto the proboscis, thorax, and abdomen

of the male to inhibit any movement, but the genitalia were left free to avoid covering the

regions where cVA is most abundant. A female fly was placed in the imaging holder (and

later discarded) to position the male relative to the imaged fly’s antennae. A Luigs Neumann

Mini 23 compact in vivo micromanipulator was used to move the male, controlled by an

Luigs Neumann SM-5 system. The SM-5 was connected to the imaging PC to externally

trigger movements of the stimulus fly to defined locations with custom MATLAB scripts.

36

https://paperpile.com/c/JBv9tX/wIvWA/?prefix=Leesburg%2C%20VA


The male, facing up with its genitalia, was positioned manually directly in front of the

female’s antennae by the help of a camera equipped with a high magnification lens (FLIR

BlackFly S3, and 3.3X Macro Zoom Lens, Computar). The zero position was reset on the

manipulator in this position, so that any subsequent movement of the male happened relative

to this origin. Male movement via the manipulator and two photon imaging was triggered as

described above. To infer the timing of male movement a camera (same as above) was

triggered together with the imaging experiment, and recorded throughout the acquisition at 33

frames per second. The start and end frames for each movement were noted down, and male

movement traces were generated based on these in R, assuming constant velocity. An IR LED

was used for illumination during imaging, and the camera was protected from 2-photon light

with an 800 nm short pass filter.

For all stimulus protocols the starting position of the male was 10 mm below the

female’s antennae. For single male presentations we moved the male to 0.75 mm distance for

10 s (Figure 4B). For speed tuning experiments, the presentation length at lower speeds was

shorter, as the time of movement start (both up and down) was kept constant. We used three

speeds: 1.41, 4.30, and 8.04 mm/s, which correspond to speed settings 7, 11, and 15

(maximal) on the micromanipulator, respectively. For distance tuning experiments we used

ten distances: 5, 3.5, 3, 2.5, 2, 1.5, 1, 0.75, 0.5, 0.25 mm. For each distance the male was

moved up for 5 s, and then lowered back to the starting positions (10 mm) for 12 s. For

lateralisation experiments the male was moved to 0.5 mm distance in z, 1.25 mm laterally to

one side with respect to the antennae (Figure 6A). For 2D spatial coding experiments we used

sixteen positions defined by a hexagonal lattice centred around the imaged fly. The points had

a distance of 1, 1.732, or 2 mm from the antennae, and an angular position ranging from

+150˚. We did not use 180˚ presentations, as the imaged fly’s body takes up these positions

defined by the lattice.

Antennae were blocked for lateralisation experiments with Kwik-Sil (world Precision

Instruments), a fast curing, low toxicity adhesive. The two components of Kwik-Sil were

mixed and fumed silica (microscopic droplets of amorphous silica, Sigma, S5130) was added

until curing was imminent. The mixture was gently applied on one of the antennae under a

dissection scope, with care taken not to touch the other antenna. All flies used for these

experiments were imaged with intact antennae prior to the antennal block, and the resulting

data is included in the relevant figures and analyses.

Optogenetic stimulation of CsChrimson (a red-light gated cation channel) during

imaging was done by a fibre-coupled 617 nm LED (M617F2, Thorlabs, Ely, UK). The light
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was passed through a 600 nm long-pass filter, to avoid any light bleedthrough into the

imaging PMT (GCaMP emission filter was 525/70 nm band-pass). An optic fibre was placed

approximately 0.5 mm away from the fly’s head from below, and the LED was turned on via

external triggering, described as above. In all experiments the LED was constantly on for the

specified period, except for lvPN - pC1 experiments, where the LED sent 50 ms light pulses

for 5 s with 10 Hz frequency.

For experiments with a platform under the fly a metal cooling pad was used during

dissection to extend anaesthesia, and to allow positioning of the fly without fixing the legs

with wax. After five minutes of recovery under the objective, once the flies started moving

their legs vigorously, a platform was lifted by a manipulator, approximately to 0.5 mm

distance from the fly, so it could comfortably stand on it. Calcium imaging and video

recording of behaviour was triggered simultaneously as described above. The time of events

when the fly pushed on the platform was manually detected by the following criteria: these

events last at least 0.5 s, and all visible legs are in flexion at the tibio-tarsal joints. These time

points were used to generate event-triggered averages of the ΔF/F0 imaging traces.

2.8 Calcium imaging quantification and statistical analyses
Images were registered with the NoRMCorre algorithm implemented in MATLAB

using the signal channel (“NoRMCorre: An Online Algorithm for Piecewise Rigid Motion

Correction of Calcium Imaging Data” 2017) https://github.com/flatironinstitute/NoRMCorre,

flies with notable movement in the z axis were removed from analysis. Image analysis was

performed with custom scripts written in R employing the open source scanimage package

(see https: //github.com/jefferis/scanimage). Raw ΔF/F0 traces were gently smoothed with a

low-pass Butterworth filter, except for speed tuning and distance tuning experiments (Figure

12, 13, and 5). For distance and angular tuning curves, largest values from a given ROI over

an experiment were used for normalisation. Response maxima and means were calculated in

R.

For lateralisation experiments – where bilateral response contrast was assessed based

on ipsi- and contralateral stimulation – (Figure 6, 7, 8) the mean value was taken from six

responses for all imaging ROIs, and these data were checked for normality (Shapiro-Wilk’s

test), and the variance of ipsilateral and contralateral ROIs were compared with F-test. If a

condition passed both tests ( p > 0.05), unpaired t-test was used to test the statistical
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significance of response differences in ipsi- and contralateral ROIs. Where either conditions

failed (normality, equal variance), Wilcoxon-test was used instead.

Distance tuning curves were calculated based on the mean normalised response

maxima to a given male distance, and fitted with a sigmoid curve. Curve fitting was done

with nonlinear least squares method, self-started by a logistic function and parameters from

the data.

For 2D positional coding experiments we used a hexagonal lattice centred around the

imaged fly to define male positions, thereby sampling 2D space at equal distances between

neighbouring stimulus positions. This resulted in three possible distances from the imaged

fly’s antennae: 1, 1.732, and 2 mm, and eleven angular positions (30˚ steps between -150˚ to

+150˚ with 0˚ being frontal to the imaged fly). To create the angular tuning curves of left and

right lPNs we used a fixed distance (1.732 mm), for which mean responses at six angular

positions were recorded directly, and mean responses at five positions were linearly

interpolated based on mean responses to 1 mm and 2 mm presentations at these angles. A

single multivariate linear model was used to predict the x and y position (equal to the cosine

and sine of the angular position on a unit circle, respectively) of the male based on the

difference and the sum of right and left lPN responses. Based on these predictions of x and y

position the angular position was calculated and compared with the actual position and

angular direction to get prediction errors in mm and degrees (Figure 11).

For speed dependence experiments, mean response maxima from six trials per fly

were compared by Friedman-test to assess if male approach speed had a significant effect on

responses. Where the Friedman-test rejected the null-hypothesis (AV2a2) it was followed by

paired Wilcoxon-test for pairwise comparisons across speeds with Benjamini-Hochberg

correction for multiple comparisons (Figure 12). All analyses were done in R.

Representative 2-photon images with intensity colour coding were made in Fiji

(Schindelin et al. 2012).

2.9 Courtship assays and behavioural analysis
A courtship assay modified from Hoopfer et al. (2015) was used to measure female

receptivity. 4-8 day old virgin females of the experimental genotype and Canton S males were

placed with gentle aspiration in a transparent behavioural plate with eight chambers, 16 mm

in diameter, equipped with sliding separators. Walls were covered with teflon-like material

(polytetrafluorethylene) and the lid was covered with Sigma-coat to prevent flies from
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climbing and holding onto the walls and lid. The plate was placed into a 23˚C incubator and

males and females were allowed to habituate to the chamber for a few minutes after transfer.

The separators were removed upon the start of the experiment, and flies behaved and

interacted freely in the chambers. The behavioural plate was backlit with homogenous IR

light from an LED panel, and a Teledyne FLIR Grasshopper 3 camera was used to record

behaviour for 20 minutes at 30 frames per second. Dim ambient light was provided to the

flies to stimulate courtship by the males. The intensity of the ambient light was adjusted in

experiments for a given cell-type manipulation for all conditions, to set the baseline rate of

courtship and thereby the latency to copulation. This was necessary to avoid situations where

genetic controls mated immediately, in which case a receptivity increase by a manipulation

could not be detected due to a ceiling effect.

Video files were converted to a compressed format (ufmf), and fly positions were

tracked with FlyTracker software (Eyjólfsdóttir 2014). Tracking data was fed into a JAABA

analysis pipeline with custom behavioural classifiers, also detecting the time of mating

(Kabra et al. 2013). Mating was defined when both flies in the chamber were classified as

mating for at least 30s, and mating events were eventually manually checked and corrected

for errors. Survival analysis of mating latency, followed by log-rank test, was used to test

statistical significance of differences in latency to copulation. When multiple comparisons

were made, it was followed by post-hoc Benjamini-Hochberg corrections. Data processing

was done in MATLAB, statistical analyses were done in R with the survminer package.

For neuronal manipulations we used driver lines specific to the neuron of interest and

expressed an actuator or a pair of apoptosis promoting proteins to perturb function. The same

LED panel that provided IR light was equipped with 617 nm LEDs as well to activate

CsChrimson. For most experiments the activation LED was kept on throughout the 20

minutes of the experiment, providing constant light intensity of 40 uW/mm2. For lPN and

lvPN activation we used 5 s long periods of 50 ms light pulses at 10 Hz, separated by 5 s of

no stimulation light periods, throughout the experiment. Hyperpolarisation via Kir2.1, and

genetic ablation of manipulated neurons via Hid and Reaper were constitutive. Genetic

controls carried an empty GAL4 insertion (or split-GAL4, where a split-GAL4 line was used)

at the same landing site where the driver was inserted (attP2 for GAL4 lines, and attP40 and

attP2 for split-GAL4 hemidrivers). For cases where a non-GMR or VT hemidriver was used

(JK1029-AD), the genetic control carried this transgene together with an empty-DBD.
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3 Parallel pheromone pathways
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Previous work has described two types of DA1 PNs, the excitatory DA1 lPNs (lateral

lineage) projecting to the mushroom body and the lateral horn (Figure 3A, B), and the

inhibitory DA1 vPNs (ventral lineage) which project only to the lateral horn (E. C. Marin et

al. 2002). To explore other potential cVA pathways we relied on a comprehensive description

of olfactory projection neurons (Bates, Schlegel, et al. 2020; Zheng et al. 2018). These

studies used an EM volume of a female Full Adult Fly Brain (FAFB) and reconstructed all

olfactory PNs. In this dataset, we found a previously uncharacterised uniglomerular PN type

from the lateroventral lineage consisting of three neurons, with dendritic arbours in the DA1

glomerulus (Figure 3C, D). We identified the same cell type based on morphological

similarity in another EM dataset of a female fly brain, the hemibrain (Scheffer et al. 2020).

We refer to these neurons as lvPN in this work (cell type M_lvPNm45 in the hemibrain).

lvPN dendrites are largely confined to the volume of the DA1 glomerulus (defined based on

the dendritic arbours of DA1 lPNs; Bates et al. 2020). lvPNs project to the superior

intermediate protocerebrum (SIP), not innervated by lPNs, and the LH where the axons of the

two PN types overlap in space. Together, these observations suggest that cVA information

diverges at the first synapse (from a single cell type, Or67d ORNs, to two PN types) and is

relayed onto distinct third order neurons by parallel pathways.

3.1 Characterisation of a novel cVA pathway
We used the hemibrain dataset to explore the input connectivity of lvPNs. DA1

ORNs, the ORN type that responds selectively to cVA, are the strongest presynaptic cell type

of lvPNs, and provide 99% of all ORN inputs to lvPNs (270 synapses out of 273). Therefore

anatomically speaking, lvPNs are sparsely tuned to cVA, although uniglomerular PNs have

been shown to have wider tuning profile than the ORNs of the same glomerulus due to lateral

excitation by local neurons (Olsen, Bhandawat, and Wilson 2007). There are 90 ORN input

synapses per lvPN in this dataset, which is more than an order of magnitude smaller than in

lPNs (1252 synapses / lPN), indicating different response properties to similar ORN activity

(Figure 3F).

We identified a split-GAL4 genetic driver line generated in a previous study in our lab

that sparsely labels lvPNs (line LH467 in Dolan et al. 2019). We used this line to drive GFP

expression and showed colocalisation of GFP signal and ChaT4B, an enzyme known to

synthesise acetyl-choline, in lvPN cell bodies by immunostaining (Figure 3I), therefore we

expect lvPNs to be cholinergic. When we compared the anatomy of lvPNs in male and female
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brains we did not observe a gross morphological difference in the sexes (Figure 3G, H). Next

we expressed a genetically encoded calcium indicator, GCaMP6s, under the control of lvPN

Stable Split to perform in vivo two photon calcium imaging. We observed a strong axonal

calcium increase when presenting cVA from an olfactometer (Figure 3J). Earlier findings

about lPNs and these data together show that lPNs and lvPNs are sexually monomorphic,

parallel excitatory pathways, relaying cVA information.

3.2 lPNs and lvPNs differ in sensitivity and adaptation properties
Using olfactometers to deliver cVA in physiology experiments is a widely used

method, but relating cVA concentration to ethological events is non-trivial. A rarely used

alternative stimulus to cVA is a male fly (Clowney et al. 2015; Tachibana, Touhara, and

Ejima 2015). In this case the distance of the male or a directed air puff can be used to

temporally control cVA presentation. While using a male fly is a more complex odour

stimulus than cVA alone, we wanted to control not only the temporal but also the spatial

structure (distance and angular direction) of the stimulus. Given that DA1 (Or67d) ORNs and

lPNs were shown to be sparsely tuned to cVA (Schlief and Wilson 2007) we attribute calcium

responses in these cell-types to this odour upon male presentation. However, we cannot

exclude that the presence of other fly odours modulates PN activity. We used an externally

controlled micromanipulator to present a male at defined positions relative to the imaged

female fly’s antennae, and measured the activity of DA1 ORN, lPN, or lvPN axons with in

vivo two-photon calcium imaging by using specific driver lines to drive GCaMP expression

in the respective cell types (Figure 4). We used 10 mm distance from the antennae as the

male’s starting position in all experiments, which is approximately five body lengths for a fly.

Moving the male to 0.75 mm distance for 10 s evoked a large calcium increase in all

three cell types (Figure 5A, E, I). ORN and lPN responses are consistent with previous

reports about other olfactory glomeruli in flies, ORN responses reach their maximal activity

slower than PNs, and PNs adapt stronger during the stimulus ((Bhandawat et al. 2007), see

also Chapter 2.7). Interestingly, we found that DA1 lvPNs did not adapt throughout the 10 s

stimulus, and to our knowledge there is no published physiological data about PNs from the

lvPN lineage that we could use for comparison. The sustained responses in lvPNs shows a

basic difference in what these PN pathways can signal about an odour. lPNs are responding

stronger to changes in cVA concentration (stimulus onset) while lvPNs may signal the

absolute level of cVA concentration. Another key result of these experiments is the fact that a
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male from 10 mm distance did not activate the ORNs or PNs. Based on this our next question

was whether cVA can be used to signal the distance of a male.

We presented a male at ten distances between 5 and 0.25 mm in sequence (see

Methods) and measured GCaMP signal in ORNs and PNs. All three cell types show a strong

concentration dependent and therefore indirectly distance dependent activation (Figure 5C, G,

K). To describe the distance tuning of these cell types we fit a sigmoidal function to their

maximal responses to each distance (Figure 5D, H, L). ORNs respond reliably at 5 mm

distance and have a wide dynamic range, resulting in monotonously increasing responses as

distances get shorter. We did not expect ORNs to be saturated by these stimuli as it was

previously shown that touching cVA to the antenna results in higher ORN firing rate than just

moving cVA close to the sensilla (van der Goes van Naters and Carlson 2007). lPNs on the

other hand have a sigmoidal tuning curve, with a plateau at shorter distances than 1 mm.

lvPNs respond weaker to mid range distances (5 - 2 mm) and their response grows sharply at

distances under 2 mm without saturation at 0.25 mm. These data show that lPNs are more

sensitive to cVA than lvPNs, which is consistent with their large difference in the number of

Or67d ORN synaptic inputs (Figure 3F). As there is no airflow in the experiment, we expect

that cVA forms a steady concentration gradient around the male, resulting in cVA

concentration increase at the imaged fly’s antennae when the male is closer. This allows

ORNs to report male distance in a windless environment, which signal is then split into

different sensitivity ranges at the PN level. This differential distance tuning of lPNs and

lvPNs might allow improved distance estimation if the two signals are compared by

downstream circuits.
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Figure 3: A novel PN pathway for cVA
A: EM reconstructions of DA1 lPNs from the right hemisphere of the FAFB dataset; frontal
view, AL: antennal lobe, DA1: dorsal anterior (glomerulus) 1, LH: lateral horn, SIP: superior
intermediate protocerebrum. B: Same as A; dorsal view. C: EM reconstructions of DA1
lvPNs from the right hemisphere of the FAFB dataset; frontal view. D: same as C; dorsal
view. E: Confocal image of DA1 lPN in a female brain, reporter expression driven by lPN
Stable Split, maximum projection. Image kindly provided by Dr Yoshi Aso. F: Circuit
diagram of Or67d ORNs, DA1 lPNs, and DA1 lvPNs based on the hemibrain dataset. Top left
inset: schematic of an antenna and the antennal nerve. The numbers show the average number
of Or67d ORN input synapses per neuron for a PN type. In the hemibrain dataset there are
143 Or67d ORNs (both left and right), 7 DA1 lPNs (right), and 3 DA1 lvPNs (right). G:
Confocal image of DA1 lvPN in a female brain, reporter expression driven by lvPN Stable
Split, maximum projection. H: same as G, in a male brain. Scale bars for A, B, C, D, E, G,
and H are 20 μm. I: Confocal image of co-immunostaining of lvPN somata (top) and
ChAT4B enzyme (bottom), single imaging channels on the left, composite image on the right.
Scale bars are 5 μm. J: GCaMP responses in lvPN axons to cVA and mineral oil presented
from an olfactometer. Mean trace from 5 flies, 6 odour presentations each, grey area is SEM.
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Figure 4: Presenting a male fly as an olfactory stimulus
A: Schematic of the experimental setup for in vivo 2-photon imaging and male presentation.
A female fly is mounted in a holder under the objective with the head cuticle removed to gain
access to the brain for imaging. A male fly is glued onto a metallic needle with the abdomen
towards the imaged fly. The wings and legs of the male are removed. An externally triggered
micromanipulator moves the male to a predefined location relative to the female’s antennae
during GCaMP imaging. B: Frames from a video recording of the male being moved from 10
mm distance to 0.75 mm and back during an experiment.
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Figure 5: ORNs, lPNs, and lvPNs respond to a male fly in a distance
dependent manner
A: ORN GCaMP response to moving a male fly from 10 mm to 0.75 mm distance from the
antennae of a female fly (imaged fly is female). Mean trace from 10 flies, 6 male
presentations each, grey area is SEM. Bottom black trace is the male’s position based on a
video recording of the presentation, baseline is 10 mm, plateau is 0.75 mm. B: ORN GCaMP
response to a sequence of ten distance steps ranging from 5 to 0.25 mm, all starting from 10
mm. Mean trace from 10 flies, 3 presentations for all distances, grey area is SEM. C: ORN
distance tuning curve, responses are the maximum values of the normalised responses for
every distance from 10 flies, 3 presentations, error bars are SEM. Residual standard error =
0.0087. D: lPN GCaMP responses in females to a male stimulus (solid line), in males to a
male stimulus (dashed line) and in females to a virgin female stimulus (dotted line) in axon
boutons. n = 10, 7, 6, respectively. E: Same as B, but responses measured in lPN axons; n =
9. F: Same as C, but for lPN responses; n = 9, residual standard error = 0.020. G: Same as D,
but responses measured in lvPN axons. n = 9, 7, 6, respectively. H: Same as B, but responses
measured in lvPN axons; n = 7. F: Same as C, but for lvPN responses; n = 7, residual
standard error = 0.016.
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4 cVA as a positional signal

51



Intrigued by the PN’s sensitivity to detect small differences in a male’s distance, we

were curious if cVA can be used to infer the angular direction of a male. Such coding would

require bilaterally different responses when a male is presented on the side of the fly. As

introduced earlier, the behavioural relevance and mechanism of odour lateralisation was

described for general odours with highly artificial stimulus presentation paradigms, leaving

doubts that this also occurs with real odour stimuli given the tiny (0.25 mm) inter-antennal

distance in flies. We asked whether cVA from a male can reach sufficient concentration

difference at the antennae to evoke bilaterally different responses.

4.1 A male fly is a lateralised olfactory stimulus
To test cVA lateralisation we presented a male fly on the two sides of a female

sequentially while performing in vivo 2-photon calcium imaging to record the activity of

ORNs or lPNs on both sides of the female’s brain (Figure 6A). We averaged trials from

glomeruli on both sides when the male was on the ipsilateral or contralateral side with respect

to the imaged glomerulus. We found a strongly lateralised response: ORNs are activated more

by ipsilateral male presentation (Figure 6B, D). The mean response is larger for ipsilateral

stimulus than for contralateral stimulus (Figure 6E). The lateralisation was similar in lPNs,

but the contralateral responses were close to baseline and had a faster decay than responses to

ipsilateral stimuli (Figure 6B); neither of which is true for ORNs. This strong lateralisation at

both the ORN and PN levels to a natural stimulus with intact antennae suggests that cVA can

be used as a positional cue not only for male distance but potentially also for angular

position.

Given that ORNs innervate the antennal lobes bilaterally, the previous experiment

measured combined activity of left and right ORNs, yet there was a stronger response to

ipsilateral presentation. In order to understand how these responses are built we performed

antennal block experiments by sealing one antenna with a fast curing low-toxicity adhesive

before male presentation. Blocking an antenna means that we measure the responses from

ORNs originating from one antenna that innervate both hemispheres, therefore we expect

responses on both sides of the brain. When we imaged from glomeruli that had the

contralateral antenna blocked we did not see a change in response magnitude or in the ratio of

responses evoked by an ipsi- and contralateral male stimulus (Figure 6F, G). Imaging from

glomeruli with the ipsilateral antenna blocked decreased the response magnitude to both

stimuli, and reversed the lateralisation: a contralateral stimulus evoked a stronger response
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(Figure 6H, I). This is in agreement with the fact that the ORNs imaged in this condition

originate from the intact, contralateral antenna, which is closer to a stimulus presented on the

contralateral side, resulting in a higher cVA concentration. If ORN responses are lateralised

with a single intact antenna, as we observed, we can conclude that cVA is low volatility

enough to produce a detectable concentration difference even at the short inter-antennal

distance of flies. This is in line with the ORN responses being different at 1000, 750, 500,

and 250 μm distances, as shown in Figure 5C.

4.2 lPN lateralisation is dependent on an active mechanism
We saw that with intact antennae, lPNs show a larger bilateral contrast than ORNs

(Figure 6J), suggesting that there may be an active circuit mechanism underlying this

increased difference. Blocking an antenna had strikingly different effects on lPN responses.

Lacking contralateral inputs rendered the lateralisation less efficient in lPNs, with smaller

than control responses to ipsilateral and larger than control responses to contralateral

stimulation (Figure 7D, E). This suggests that blocking the contralateral input not only affects

the contralateral ORN input – rendering ipsilateral responses smaller, but also releases an

inhibition on the lPNs – making responses to contralateral stimuli larger. In this layout,

depending on the exact position of the stimulus the net effect of contralateral inputs onto

lPNs might be excitatory (ipsilateral stimulus) or inhibitory (contralateral stimulus).

Accordingly, blocking the ipsilateral antenna caused the responses to be smaller and more

transient than in control, and the contralateral excitation was followed by sustained inhibition

of lPNs (Figure 7F, G). When we present the male in front of the female (the same protocol

as in Figure 5E), blocking an antenna results in an artificially lateralised stimulus, as only one

antenna senses cVA. lPN responses decreased by blocking the ipsilateral antenna, while

blocking the contralateral antenna caused an even more pronounced inhibition than we saw

with the lateralisation protocol (Figure 7H-J). These data strongly suggest that lPN

lateralisation depends on a contralateral inhibition mechanism, however the exact nature of

the inhibition is unclear: it could be a direct synaptic effect onto lPN dendrites or potentially a

presynaptic mechanism inhibiting ORN axons. This is surprising, as previous work found no

evidence of GABA antagonists affecting odour lateralisation ability, and that lateralisation

has a presynaptic origin in DM6 PNs (Gaudry et al. 2013).
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4.3 il3LN6, a candidate for contralateral inhibition
What could be the circuit substrate of this apparent contralateral inhibition on DA1

lPNs? A comprehensive description of the fly olfactory system pointed out a pair of antennal

lobe local neurons, il3LN6 as a potential source of contralateral inhibition based on its

connectivity (Schlegel et al. 2021). il3LN6 bilaterally innervates the AL and forms arbours in

most glomeruli (Figure 9A, C, D). Importantly this local neuron receives biassed input from

ORNs: more synapses from contralateral ORNs than from ipsilateral ones, atypical of

ALLNs, and is presynaptic to PNs (Figure 9F). We used a GAL4 driver from the Vienna Tiles

collection to gain genetic access to il3LN6 neurons (Tirian and Dickson 2017), and expressed

GFP to perform co-immunostaining with GABA. We observed co-labelling with GABA at

the il3LN6 soma (Figure 9B), therefore this cell type is likely to be GABAergic and

inhibitory.

Next we recorded calcium responses from il3LN6 neurons, specifically from the

arbours in the DA1 glomerulus on both sides, using the lateralisation stimulus protocol we

showed earlier with ORNs and lPNs. il3LN6 showed inverted lateralisation to a male in the

DA1 glomerulus: a contralateral stimulus evoked a larger response (Figure 8D, E). This is

consistent with the connectivity: contralateral ORNs provide more than five times as many

synapses to il3LN6 than ipsilateral ones. Blocking the contralateral antenna caused il3LN6

responses to completely disappear (Figure 8F, G), indicating that only the contralateral ORN

input is functional. In line with this, blocking the ipsilateral antenna had no effect on either

the size of the responses or the lateralisation ability of il3LN6 (Figure 8H, I).

We did not observe responses in il3LN6 in other glomeruli than DA1 (data not

shown), suggesting that this neuron is highly compartmentalised and operates independently

in glomeruli. Indeed, the neuron that is considered to be the larval equivalent of il3LN6 was

recently reported to show compartmentalised odour responses in first instar larva (Si et al.

2021). Similarly high level of compartmentalisation was observed in an amacrine cell in the

fly and it was shown that tortuous branching and loops in the arbour facilitate the necessary

electrotonic separation of the arbours of a single cell (Meier and Borst 2019). Similarly to this

amacrine cell, il3LN6 neurites form many loops where branches follow a tract for a while

only to turn back; also il3LN6 splits into branches far outside the AL which then continue in

the same tract parallel to each other. In general the splitting of il3LN6 neurites happens much

earlier than the actual spatial separation of these branches (Figure 9E). These anatomical
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features and responses to lateralised male presentation are consistent with a model where

il3LN6 performs contralateral inhibition in a glomerulus specific manner.

To assess how general this computation could be in other olfactory channels we

compared the ratio of contra- and ipsilateral ORN inputs to il3LN6 and the fraction of inputs

from il3LN6 to canonical uniglomerular PNs for all glomeruli. Both of these measures are

indicators of potential contralateral inhibition efficiency via il3LN6. DA1 lPNs receive a

higher than average proportion of their inputs from il3LN6, but in other glomeruli like DC2,

and VC1 PNs also get strong il3LN6 inputs while the ORN contra-ipsi bias is stronger in

these odour channels than in DA1 (Figure 9G). Importantly, DM6 PNs receive very little

il3LN6 input, consistent with earlier work by Gaudry et al (2013), where they showed that

GABAergic blockade does not affect lateralisation in DM6 PNs. These together suggest that

il3LN6 could have a similar role in other glomeruli as in DA1, likely to enhance lateral

contrast of selected odours.

A recent study suggested that contralateral inhibition plays a role in enhancing lateral

contrast of odours in third-order lateral horn neurons, and suggested that this inhibition is

presynaptic at the PN-LHN synapse (Mohamed, Hansson, and Sachse 2019) feedback

mechanisms originating from the LHN level, however they did not investigate the possibility

of an inhibition mechanism in the antennal lobe.

4.4. Decoding position from a pheromone signal
Encoding male distance and angular direction is sufficient to create a representation of

male position in 2D space. lPN responses to a male are distance dependent and clearly

lateralised. To test 2D positional coding we presented the male at sixteen positions which

were defined by the centerpoints of a hexagonal lattice around the imaged fly (Figure 10A).

This protocol sampled the space at 1, 1.732, and 2 mm distances, and at 30˚ steps in the range

between -150˚ to +150˚ angular positions (with 0˚ being the direction that the fly faces). We

imaged the lPNs on both sides of the brain and found that responses show a spatial gradient

with strongest responses with the male presented closest (1 mm) and slightly ipsilateral (30˚

or 60˚) with respect to the imaged PN (Figure 10A). We then calculated mean responses for

eleven angles at 1.7 mm distance (six of these means are direct measurements, five of them

are based on interpolation from responses at 1 and 2 mm distance, see Methods). Left and

right lPNs show symmetric angular tuning: responses were larger for stimulation ipsilateral to

55

https://paperpile.com/c/JBv9tX/7cgQK


the imaged PN, and identical for both sides when the male was in front of the fly (Figure

11A).

Could the fly infer a male’s angular direction by using lPN responses from both sides

of the brain? We found that the difference and the sum of the left and right responses strongly

correlate with the sine and the cosine of the male’s angular position (Figure 11B, C, E, F).

The sine and the cosine together give a unique solution to angular position around a full

rotation of a circle. The difference and the sum of bilateral lPN responses therefore provide

measures to predict a male’s angular direction. Moreover, the sine and cosine of an angle are

equal to the Cartesian x and y coordinates of a point on the unit circle. We devised a bivariate

linear model using lPN responses from the two hemispheres, where the difference and the

sum of the right and left lPN responses are used as predictors, and the male’s x and y position

are the response variables. This model accurately predicts stimulus position when given the

response of left and right PNs (Figure 10D median error 1.3 mm). For angular direction the

median prediction error was 26˚ (Figure 10G). This model shows that, using lPN responses

from both sides of the brain, a fly could estimate a male’s angular position based only on cVA

information.

In this chapter we focussed on lPNs and did not characterise lvPNs, yet their

contribution to positional coding will be interesting to explore in the future.
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Figure 6: cVA lateralisation in ORNs does not depend on bilateral input
A: Frames from a video recording of the male being moved first to the right, then to the left
side of the imaged fly during a lateralisation experiment. B: Representative 2-photon images
of Or67d ORN GCaMP signal from a left (top row) and right (bottom row) DA1 glomerulus
at the time points shown in A. Warmer colours indicate higher signal intensity. C: Schematics
of antennal manipulations with respect to an imaging ROI (red square over the antennal
lobe). Left: both antennae intact, middle: contralateral antenna relative to the imaging ROI is
blocked, right: ipsilateral antenna relative to the imaging ROI is blocked. D: ORN GCaMP
response to ipsilateral and contralateral male presentation. The male is presented during the
time marked by blue and red horizontal bars. Mean traces from 14 flies, 6 presentations for
both sides, grey area is SEM. E: ORN GCaMP mean during ipsi- (blue) and contralateral
(red) male presentation. One datapoint is the average of 6 presentations from a hemisphere (1
ROI / hemisphere); n = 28, unpaired t-test p < 0.001. F: Same as D, but the contralateral
antenna is blocked, n = 10. G: Same as E, but the contralateral antenna is blocked; n = 10,
unpaired t-test p < 0.001. H: Same as D, but the ipsilateral antenna is blocked, n = 10. I:
Same as E, but the ipsilateral antenna is blocked; n = 1-, Wilcoxon-test p < 0.001. J: Bilateral
contrast is larger in lPNs than in ORNs. Bilateral contrast was calculated as the difference of
mean responses to ipsi- and contralateral male presentation.
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Figure 7: cVA lateralisation in lPNs depends on bilateral input
A: Schematics of antennal manipulations with respect to an imaging ROI (red square over the
antennal lobe). Left: both antennae intact, middle: contralateral antenna relative to the
imaging ROI is blocked, right: ipsilateral antenna relative to the imaging ROI is blocked. B:
lPN GCaMP response to ipsilateral and contralateral male presentation measured in the calyx
axons. The male is presented during the time marked by blue and red horizontal bars. Mean
traces from 10 flies, 6 presentations on both sides, grey area is SEM. C: lPN GCaMP
response mean during ipsi- (blue) and contralateral (red) male presentation. One datapoint is
the average of 6 presentations from a hemisphere; n = 20, Wilcoxon-test p < 0.0001. D: Same
as B, but the contralateral antenna is blocked, n = 8. E: Same as F, but the contralateral
antenna is blocked; n = 8, unpaired t-test p = 0.348. F: Same as B, but the ipsilateral antenna
is blocked, n = 8. G: Same as C, but the ipsilateral antenna is blocked; n = 8, unpaired t-test p
= 0.717. H: lPN GCaMP response to moving the male from 10 mm to 0.75 mm distance from
the antennae. Mean trace from 8 flies, 6 male presentations each, grey area is SEM. Bottom
black trace is the male’s position based on a video recording of the presentation, baseline is
10 mm, plateau is 0.75 mm. This same data is included in the trace shown in Figure 5D. I:
same as H, but the contralateral antenna is blocked. J: same as H, but the ipsilateral antenna
is blocked.
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Figure 8: il3LN6 shows bilateral contrast with larger contralateral
responses
A: Simplified circuit diagram of the ORN, lPN, il3LN6 circuit based on the hemibrain
dataset. ORN interconnectivity is not shown. Numbers show the number of synaptic
connections between the two connected cell-types. B: The effect of contralateral antenna
block on the circuit in A. C: The effect of ipsilateral antenna block on the circuit in A. D:
il3LN6 GCaMP response to ipsilateral and contralateral male presentation measured in the
DA1 glomerulus. The male is presented during the time marked by blue and red horizontal
bars. Mean traces from 11 flies, 6 presentations for both sides, grey area is SEM. E: il3LN6
GCaMP mean response during ipsi- (blue) and contralateral (red) male presentation. One
datapoint is the average of 6 presentations from a hemisphere; n = 22 Wilcoxon-test p <
0.001. F: Same as D, but the contralateral antenna is blocked, n = 9. G: Same as E, but the
contralateral antenna is blocked; n = 9, two sample t-test p = 0.39. H: Same as D, but the
ipsilateral antenna is blocked; n = 9, two sample t-test p < 0.001. I: Same as E, but the
ipsilateral antenna is blocked, n = 9.
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Figure 9: il3LN6, a candidate ALLN for enhancing odour lateralisation
A: Colour coded mean intensity projection of a brain labelling a single il3LN6 with MCFO
using 53C03-GAL4, image acquired and processed by FlyLight at Janelia Research Campus.
Arrow indicates il3LN6 soma. B: Confocal image of co-immunostaining of an il3LN6 soma
and GABA, imaging channels are GABA: red, nc82 neuropil stain: blue, VT046100-GAL4:
green. C: EM morphology of il3LN6 arbours in the right antennal lobe from the hemibrain
dataset, red: right il3LN6, blue: left il3LN6. D: Same as C but from the FAFB dataset,
reconstructed with FlyWire, white lines represent locations where EM sections were taken for
E. Scale bars for A, B, C and D are 20 μm. E: ssTEM sections from the FAFB dataset
showing multiple profiles in a tract that belong to the pair of il3LN6, colours as in D. The
place of sections relative to the neuron’s morphology is shown in D. Scale bars are 750 nm.
F: Input (left) and output (right) connectivity of major LN classes with AL neuron types form
the hemibrain dataset. The il3LN class consists of the pair of il3LN6 neurons only. Adapted
from Schlegel et al. (2021) Figure 5. G: Lateralisation measures based on connectivity for
glomeruli: x axis shows the ratio of contralateral and ipsilateral ORN input to il3LN6 in a
glomerulus, y axis shows the fraction of il3LN6 inputs to canonical, uniglomerular PNs in a
glomerulus. For glomeruli where the contra / ipsi ORN input ratio is shown as zero the real
value is unknown due to limitations in assigning ORNs into contra- or ipsilateral groups.
Glomeruli are coloured by the ethological relevance of odours that activate them according to
Huoviala et al. (2018).
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Figure 10: lPNs encode angular position
A: GCaMP6 responses of left (red) and right (cyan) lPN dendrites to male presentations.
Positions of the male during the stimulation protocol are indicated by the centerpoints of the
hexagons around the respective responses. Positions are at 1, 1.732, and 2 mm distances, and
at 30˚ steps in the range between -150˚ to +150˚ angular positions; the fly faces 0˚, negative
angles are on the left, positive angles on the right side. The position of the imaged female fly
is indicated by the brain volume in the centre (top view), lPNs colored based on their side as
the corresponding GCaMP traces. Average response from 8 flies, 3 trials, shaded area is
SEM. Scale bar: 1 mm.
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Figure 11: Decoding male position from left and right lPN responses
A: Angular tuning curves of left (red) and right (cyan) lPNs based on A. Six of these
positions are direct measurements, five of these (at angles -120˚, -60˚, 0˚, +60˚, +120˚) are
based on linear interpolation from responses at 1 and 2 mm at these angular directions (see
Methods). Error bars are SEM. B: The difference of mean right and left lPN responses at
given male angular positions. Error bars are SEM. C: The sum of mean right and left lPN
responses at given male angular positions. Error bars are SEM. D: A linear model predicts
male position based on bilateral lPN responses. Model formula in Wilkinson notation: (x, y) ~
(lPNR - lPNL) + (lPNR + lPNL). Where x and y are the Cartesian coordinates of the male fly,
and lPNR, lPNL are right and left lPN responses, respectively. The predicted position is
calculated from the x and y predictions for single trials from (A). Small circles show the
original positions, large points show the mean predictions by positions of the model with
SEM error bars. Mean error of position prediction in mm, mean: 1.46, median: 1.28. E: The
difference of right and left lPN responses correlates with the sine of the male angular
position. R2 = 0.982, dashed line shows linear fit. F: The sum of right and left lPN responses
correlates with the cosine of the male angular position. R2 = 0.907, dashed line shows linear
fit. G: Using the model in D, predicted male angular positions correlate with the actual
angular position, R2 = 0.791. Red solid line shows the linear fit, the dotted line shows x = y.
Prediction error in angles, mean = 35˚, median = 26˚.
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5 Separation of positional and identity information at third order

neurons
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We demonstrated that lPN responses reflect male distance, and bilateral comparison

of lPN activity can inform a fly about the male’s angular position, while lvPNs tonically

respond to cVA on a male, ideal for signalling the presence of a male. How is this

information read out by downstream circuits? We chose third order neuron types postsynaptic

to one of the PNs to investigate this question. AV2a2 is a sexually monomorphic, lateral horn

output neuron projecting to the SIP (Figure 12H) with strong lPN input (115 synapses across

4 AV2a2 neurons, numbers from the hemibrain), and we can access it genetically by two

driver lines (Figure 12I, J). Downstream to lvPNs, we found pC1 neurons (59 synapses across

5 pC1 neurons), a well known doublesex+ sexually dimorphic cluster (Figure 14F, G) which

integrate cVA with male courtship song and bidirectionally regulate female receptivity:

activating these neurons promotes, silencing these neurons abolishes mating in females;

furthermore pC1 also regulates female aggression (Zhou et al. 2014; Deutsch et al. 2020;

Schretter et al. 2020).

5.1 Extracting male approach speed information from cVA
A single presentation of a male for 10 s evoked a transient response in AV2a2

dissimilar to the response of upstream lPNs (Figure 12D). The observation that AV2a2 filters

out the sustained component of the lPN response suggests that they selectively respond to an

increase in lPN activity. To test this hypothesis we varied the approach speed of the male

stimulus, aiming to evoke a slower rise in lPN activity. We measured responses in ORNs,

lPNs, and AV2a2 to three approach speeds. ORNs of another glomerulus were shown to code

both odour concentration and the speed of change in odour concentration (A. J. Kim, Lazar,

and Slutskiy 2011), but how downstream circuits read these streams of information out is

unclear (Wilson 2013). In ORNs and lPNs we observed a speed-dependent rise-time in

intracellular calcium, but no difference in maximal responses with different approach speeds

(Figure 12B, C, E, F). In contrast, peak responses were strongly dependent on approach speed

in AV2a2 (Figure 12D, G).

How is lPN activity transformed to create the responses observed in AV2a2? By

taking the differential of the lPN trace we found that its positive part is qualitatively similar to

the AV2a2 responses (Figure 13A). Furthermore the size of the peaks on the lPN differential

trace are strongly correlated with the evoked peaks in AV2a2 at different speeds (Figure

13C). This correlation suggests that AV2a2 acts as a differentiator on lPN responses. As the

first derivative of position is speed, taking the differential of the lPN’s male distance signal
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allows AV2a2 to represent male speed. A differentiation would also signal (with a negative

deflection) when the male is moving away (also see Figure 13A). The fact that this is not

present in AV2a2 responses might be a result of low baseline activity in these neurons, in

which case an inhibition is not detected by a calcium sensor. These results indicate that

AV2a2 is selectively tuned to encode the speed of an approaching male, an example of

extracting specific features of positional information relayed by lPNs.

5.2 Tonic cVA response persists downstream of lvPNs
We tested the response of a cell type downstream of lvPNs, pC1, to sustained

presentation of a male. pC1 neurons were tonically activated over a 10 s period by a male,

and showed little adaptation.This is in stark contrast with the responses observed on the lPN -

AV2a2 pathway, and may suggest that pC1, following lvPNs, could signal male presence

rather than fast changes in cVA concentration. pC1 was shown to respond to cVA (Zhou et al.

2014), but the circuit responsible for this was unknown. The connection from lvPN to pC1 is

present in the hemibrain and both sides of the FAFB dataset (59, and 73 connections on one

hemisphere, respectively). To test whether lvPNs are sufficient to activate pC1s we expressed

CsChrimson under the control of lvPN-SS and recorded calcium activity in pC1s by

expressing GCaMP7f driven by dsx-LexA while imaging at a pC1 specific location in the

brain. When we activated CsChrimson in lvPNs we observed an increase in pC1 calcium

level (Figure 14E). This shows that the lvPN - pC1 synapse is functional, but we cannot

exclude that other pathways contribute to responses in pC1 when presented with a male fly.

5.3 Distinct behavioural effects by positional and identity signals
To understand the behavioural relevance of these parallel cVA pathways we used a

courtship assay and activated these neurons in females optogenetically via expressing

CsChrimson, a red-light gated cation channel. We measured mating latency, tracked the

position of flies and their wings using Caltech FlyTracker (Eyjólfsdóttir 2014), and developed

classifiers for modules of sexual behaviours in JAABA (Kabra et al. 2013). Activating lPNs

did not affect mating rate, while lvPN activation decreased the latency to copulation and the

number of pairs copulated (Figure 15A, D). This implies that the receptivity increasing effect

of cVA in females can be attributed to lvPNs but not to lPNs. Genetically ablating these

neurons by expressing apoptosis promoting genes showed consistent effects: lPN ablation did

not affect female receptivity, while lvPN ablation made females mate less and later (Figure
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15B, E). The effects on female receptivity by lvPN mimic manipulations of pC1 neurons

(Figure 15H, I, reproduced from Zhou et al. 2014). In contrast, the lPN downstream AV2a2

differed in its effect from lPNs. Both optogenetic activation of AV2a2, and silencing by

constitutive expression of an inward rectifying potassium channel (Kir2.1) resulted in

decreased female mating rate.

The direct and constant activation of AV2a2 neurons interferes with the neurons’

ability to signal an approaching male, hence perturbs female behaviour. Hyperpolarising

AV2a2 could lead to a very similar effect on neuronal activity, that is in line with the similar

behavioural phenotype. These results show that, while manipulation of the lvPN - pC1

pathways bidirectionally regulates female receptivity, a similar manipulation of lPNs and

AV2a2 has either no effect, or disrupted female behaviour by both activation and inhibition.

This is in line with a role for lvPN and pC1 with a role in signalling male quality, and a role

for lPN and AV2a2 in positional coding where temporal changes in activity are necessary for

informative signalling. A limitation of our behavioural experiments with AV2a2 neurons is

that a sparse driver line, 53A03-GAL4 (Figure 12I), used for calcium imaging had motor

defects when crossed to CsChrimson (data not shown), therefore we used a split-GAL4 line

from Dolan et al. 2018, which labelled other LHNs and two pairs of bilateral neurons

innervating the lateral accessory lobes. We cannot rule out the possibility that the behavioural

effects seen with this line are partially, or completely due to these neurons.

72



●

●

●
●
●

●●

●
●●

●

●

●

●

●
●

●

●●●

●●
●

●●●●

●

●

●

●●●

0.0

0.5

1.0

1.41 4.30 8.04
speed (mm/s)

m
ax

. n
or

m
. ∆

F/
F 0

●●●

●

●

●

● ●

●●

●●

●

●

●

●
●

●●

●●

0.0

0.5

1.0

1.41 4.30 8.04
speed (mm/s)

m
ax

. n
or

m
. ∆

F/
F 0

●●

●

●

●

●

●

●

●

●

●

●●●●

0.0

0.5

1.0

1.41 4.30 8.04
speed (mm/s)

m
ax

. n
or

m
. ∆

F/
F 0

lPN

ORN

AV2a2

A B

C

D

E

F

G

AV2a2

H no
rm

. Δ
F/

F0
 2

5%
 

10 s

1.41 mm/s 8.04 mm/s4.30 mm/s

10 m
m

ns
ns ns

ns
ns ns

*
ns ns

53A03-GAL4 AV2a2 SS

I J
m

ax
. n

or
m

. Δ
F/

F0
m

ax
. n

or
m

. Δ
F/

F0
m

ax
. n

or
m

. Δ
F/

F0

speed (mm/s)

speed (mm/s)

speed (mm/s)



Figure 12: AV2a2 responds to male approach in a speed dependent manner
A: Circuit schematic of Or67d ORNs, DA1 lPNs and AV2a2 LHNs. B: ORN response traces
to moving a male from 10 mm to 0.75 mm distance from the antennae at different speeds;
speeds shown at the top. Mean traces from 11 flies, 6 presentations each, grey area is SEM.
Bottom black trace is the male’s position based on a video recording of the presentation,
baseline is 10 mm, plateau is 0.75 mm, dashed line shows the male’s arrival time. (The trace
for the highest speed is the same as Figure 5A.) C: Same as B but for lPNs. Imaged in the
MB calyx axons. (n = 7) D: Same as B but for AV2a2 neurons. Imaged in the SIP axons. (n =
5) E: ORN mean maximal responses to male presentations at different speeds, based on data
shown in B. Lines connect values from the same fly. Statistical significance was tested by
pairwise Wilcoxon test followed by Bonferroni-correction for multiple comparisons. F: Same
as E, but for lPNs based on data shown in C. G: Same as E, but for AV2a2 neurons based on
data shown in D. Responses to 1.41 mm/s and 8.04 mm/s are significantly different (p =
0.029). H: EM reconstructions of AV2a2 neurons from the FAFB dataset I: Confocal image
of AV2a2 in a female brain, reporter expression driven by 53A03-GAL4, the driver used for
measurements in D, maximum projection. J: Confocal image of AV2a2 in a female brain,
reporter expression driven by AV2a2 SS, the driver used in Figure 15, maximum projection.
Scale bars in H, I, and J are 20 μm. The images presented in panels I and J were contributed
by Dr Dana Galili.
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Figure 13: AV2a2 responses correlate with the speed of lPN activity change
A: The differential of the lPN response trace to presenting a male at different speeds, based
on data in Figure 12C. n = 10. B: AV2a2 response traces to moving a male from 10 mm to
0.75 mm distance from the antennae at different speeds; speeds shown at the top, dashed line
shows the male’s arrival time. Mean traces from 5 flies, 6 presentations each, grey area is
SEM. Bottom black trace is the male’s position based on a video recording of the
presentation, baseline is 10 mm, plateau is 0.75 mm. (Same as Figure 12D.) C: Correlation of
the lPN response differential trace maxima, and the AV2a2 response trace maxima to male
presentation at different speeds. Error bars are standard deviation. Dashed line shows the
linear fit, R2 = 0.9976, p = 0.031. D: Circuit diagram showing inputs of AD1g1 neurons:
AV2a2, and looming sensitive visual neuron types: LPLC2, and LC4, based on the hemibrain
dataset.
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Figure 14: pC1 shows sustained responses to cVA, similarly to presynaptic
lvPNs
A: The connectivity diagram of Or67d ORNs, DA1 lvPNs and pC1 based on the hemibrain
dataset. B: ORN response traces to moving a male from 10 mm to 0.75 mm distance from the
antennae, dashed line shows the male’s arrival time. Mean traces from 10 flies, 6
presentations each, grey area is SEM. Bottom black trace is the male’s position based on a
video recording of the presentation, baseline is 10 mm, plateau is 0.75 mm. (Data also shown
in Figure 5A.) C: Same as B, but measured in lvPN axons. (Data also shown on Figure 5G.)
D: Same as B, but measured in pC1 axons. (n = 6) E: pC1 responses to lvPN optogenetic
activation. lvPN SS was used to drive the expression of CsChrimson, and dsx-LexA to drive
GCaMP7f. Red area shows the time of optogenetic stimulation by an LED (n = 5). F: EM
reconstructions of pC1 neurons from the FAFB dataset; frontal view. pC1 neuron
reconstructions were made publicly available by Wang et al. (2020). G: EM reconstruction of
lvPN (red) and pC1 (yellow), and lvPN to pC1 synapses (red circles in the SIP). H: Confocal
image of pC1 neurons in a female brain (top) and VNC (bottom), reporter expression driven
by pC1 Stable Split 2, maximum projection., image from FlyLight - Janelia Research
Campus, driver line published in Wang et al. (2020). Scale bars are 20 μm.

78



lPN lvPN

ORN

AV2a2 pC1

A B

C

D E

F G H I
++++

++++++

p = 0.02

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time (min)

C
op

ul
at

io
n 

ra
te

constant red light, n=80
+
+

empty GAL4 x CsChrimson
L907 x CsChrimson

+++

++++++

p = 0.024

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time (min)

C
op

ul
at

io
n 

ra
te

Kir block, n=72
+
+

empty GAL4 x Kir
L907 x Kir

++++
+++

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time (min)

C
op

ul
at

io
n 

ra
te

+
+

empty x HidReaper females
lPN SS x HidReaper females

+++++++++++++++++++

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time (min)

C
op

ul
at

io
n 

ra
te

+
+

empty split GAL4
lPN

++++++++++

+++++++++++

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time (min)

C
op

ul
at

io
n 

ra
te

+
+

empty split GAL4
lvPN2

++++

++++

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time (min)

C
op

ul
at

io
n 

ra
te

+
+

empty x HidReaper females
lvPN SS x HidReaper females

lvPNCsChrimson Hid-Reaper
lPNCsChrimson Hid-Reaper

pC1TrpA1 TNT
AV2a2CsChrimson Kir2.1

0
0

20Time (min)

1

ra
tio

 o
f m

at
ed

 p
ai

rs

0
0

20Time (min)

1

0
0

20Time (min)

1

0
0

20Time (min)

1

0
0

20Time (min)

1

0
0

20Time (min)

1

0
0

30Time (min)

1

0
0

30

1

Time (min)

27 ˚C 
22 ˚C 

pC1 x TNT 
Ctrl 1 
Ctrl 2 

* *

* *

nsns

ra
tio

 o
f m

at
ed

 p
ai

rs

ra
tio

 o
f m

at
ed

 p
ai

rs

ra
tio

 o
f m

at
ed

 p
ai

rs

ra
tio

 o
f m

at
ed

 p
ai

rs

ra
tio

 o
f m

at
ed

 p
ai

rs

ra
tio

 o
f m

at
ed

 p
ai

rs

ra
tio

 o
f m

at
ed

 p
ai

rs



Figure 15: Parallel pheromone pathways have distinct effects on female
receptivity
A: Copulation rate of lPN CsChrimson activated virgin females (orange) and genetic control
(grey). Log-rank test, n.s, n = 88-105. B: Copulation rate of lPN Hid-Reaper ablated virgin
females (orange) and genetic control (grey). Log-rank test, n.s, n = 110. C: Simplified
connectivity diagram of Or67d ORNs, DA1 lPNs and lvPNs, AV2a2 neurons, and pC1
neurons. (In the hemibrain dataset there are 143 ORNs, 7 lPNs, 3 lvPNs, 4 AV2a2 neurons,
and 5 pC1 neurons in one hemisphere.) D: Copulation rate of lvPN CsChrimson activated
virgin females (red) and genetic control (grey). Log-rank test, p = 0.01, n = 88-105. E:
Copulation rate of lvPN Hid-Reaper ablated virgin females (red) and genetic control (grey).
Log-rank test, p = 0.046, n = 110. F: Copulation rate of AV2a2 CsChrimson activated virgin
females (blue) and genetic control (black). Log-rank test, p = 0.02, n = 80. G: Copulation rate
of AV2a2 Kir2.1 blocked virgin females (blue) and genetic control (black). Log-rank test, p =
0.02, n = 72. H: Copulation rate of TrpA1 activated virgin females (yellow) and temperature
control (grey). Genotype: 71G01-LexA/LexAop2-FLP; dsx-GAL4/UAS>stop>dTrpa1.
(Adapted from Zhou et al. 2014.) I: Copulation rate of Tetanus Toxin blocked females
(yellow) and parental control (light grey), and inactivated toxin control (dark grey).
Genotypes in this order: 71G01-LexA/LexAop2-FLP; dsx-GAL4/UAS>stop>TNT,
LexAop2-FLP/+; dsx-GAL4/UAS>stop>TNT, 71G01-LexA/LexAop2-FLP;
dsx-GAL4/UAS>stop>TNTin. (Adapted from Zhou et al. 2014.) The behavioural data and
analyses presented in panels A, B, D, E, F, and G were contributed by Dr Dana Galili.
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6 Multimodal sensory integration increases signal specificity
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The previous chapters demonstrated that cVA, a single odour, can encode male

identity, distance, angular position, and speed. This impressive repertoire is made possible by

specific neurons tuned to features like the signal’s intensity, rate of change, or laterality.

However, these signals are not always reliable. The amount of cVA on males is age- and

social context dependent (Bartelt, Schaner, and Jackson 1985; Krupp et al. 2008), older males

may be perceived closer based on just PN signals than a freshly eclosed one, a mated female

may appear as a male, or males outside the range of cVA sensitivity may remain simply

undetected. A solution to these problems is offered by integrating cVA with information from

other sensory modalities. The pathways characterised above clearly make use of this.

pC1 has been shown to integrate cVA and male courtship song (Zhou et al. 2014),

although a recent study has questioned whether pC1 neurons directly respond to song (F.

Wang et al. 2020). This controversy may be a result of different physiology reagents. Zhou et

al. used dsx-LexA to image calcium in pC1 neurons, which labels many other song

responsive neurons like pC2l and pMN2 / vpoDN (Deutsch et al. 2019). Alternatively,

differences in song presentation methods could cause such different results. However, it was

clearly demonstrated by Wang et al. that a pC1 downstream neuron, vpoDN (vaginal plate

opening Descending Neuron), integrates pC1 activity and courtship song, therefore vpoDNs

could be an alternative site for integrating cVA and male song. This is also consistent with

vpoDN’s function of acting as a command neuron for vaginal plate opening, a necessary step

for mating.

We inspected the connectivity of AV2a2 neurons in the hemibrain, to understand what

other sensory modalities may be relevant to AV2a2 activity. There are no strong inputs from

other PN types or non-olfactory sensory pathways to AV2a2. However, on the output side,

connectivity suggests that the strongest downstream partner of AV2a2 is likely to be a site of

multimodal integration. These neurons, one per hemisphere, called AD1g1 (Figure 16B),

receive strong visual input from neurons that were shown to be selectively tuned to the size

(LPLC2 neurons) or the velocity (LC4 neurons) of a looming stimulus (Klapoetke et al. 2017;

Ache et al. 2019). It is tempting to speculate that AD1g1 neurons integrate visual looming

with their input from AV2a2 (which themselves do not receive visual input), and thereby

AD1g1 creates a specific representation of an approaching male by integrating olfactory and

visual information (Figure 13D, Figure 16A).

lPN neurons have numerous other downstream partners in the lateral horn than

AV2a2, one of which was characterised earlier in our lab (Kohl et al. 2013). This study

described a developmental switch that underlies sexually dimorphic wiring in a pair of third
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order neuron types. aSP-g respond to cVA in females but not in males, and the relationship is

reversed in aSP-f neurons (Figure 16E, reproduced from Kohl et al. 2013). This study also

showed that aSP-g is not sparsely tuned to cVA like the lPNs, but they also respond to food

odours, furthermore they have extensive dendritic arbours outside the LH where taste

projection neurons terminate (Figure 16D; H. Kim, Kirkhart, and Scott 2017b). Following

these observations we hypothesised that aSP-g integrates cVA with other stimuli to signal a

specific chemosensory scene related to a male’s presence.

6.1 aSP-g integrates smell and taste
A previous study showed that taste projection neurons innervate the SLP medial to the

LH (H. Kim, Kirkhart, and Scott 2017a), where aSP-g dendrites are abundant. To fully

reconstruct these circuits we used the FAFB dataset, as the hemibrain does not contain the

GNG, where taste sensory neurons form their presynapses. We traced out the morphology of

aSP-g neurons in confocal light microscopy stacks and transformed these to EM brain space

with the natverse neuroanatomy toolbox (Bates, Manton, et al. 2020), and used their

registered location to identify aSP-g neurons in FAFB. We fully reconstructed all 11 aSP-g

neurons on the left hemisphere of the FAFB volume, and found that lPNs but not lvPNs are

presynaptic to them. Interestingly, we found another lvPN cell type (lvPN2 in this work) that

innervates aSP-g, but no other olfactory PN forms strong inputs to aSP-g. lvPN2 are

multiglomerular PNs, typical of the latero-ventral lineage, and have most of their dendrites in

DA1, DC3, and VC4 glomeruli. DC3 and VC4 are known to respond to fruit odours (Münch

and Galizia 2016), consistent with findings of aSP-g odour tuning in Kohl et al. (2013). We

matched lvPN2s to their corresponding cell type in the hemibrain, and found that they have

little direct ORN input in the DA1 glomerulus, but are postsynaptic to DA1 lPNs at their

dendrites (Figure 18A). This suggests that if lvPN2 neurons respond to cVA that may be

dependent on lPN activity.

Consistent with recordings from Kohl et al., where only 70% of aSP-g neurons

responded to cVA, only a subset of aSP-g neurons (five out of eleven) were connected to

lPNs and lvPN2s in FAFB. In line with this, hierarchical clustering of FAFB aSP-g neurons

based on NBLAST morphology similarity scores (Costa et al. 2016) revealed three distinct

subtypes (numbered based on dendrite position from anterior to posterior, Figure 17Ai, Ci),

which are most different in the amount and position of their dendritic arbour. To confirm that

these subtypes are conserved across individuals we searched for aSP-g neurons in the
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FlyCircuit database that contains light microscopy images and traces of single neurons from

MARCM experiments. We found nine examples of female aSP-g neurons in FlyCircuit which

fell into the same three groups after clustering (Figure 17Aii, Cii). We performed

multi-colour flip-out experiments to label single cells in a split-GAL4 line labelling aSP-g

neurons (Figure 17D), and found the same three morphology groups after image registration

and clustering (Figure 17Aiii, Ciii). These subtypes were found and similarly named in the

hemibrain dataset based on our suggestion. Of these three types, aSP-g2 neurons have the

largest proportion of dendritic arbour in the LH across all datasets (Figure 17B), and are the

only aSP-g subtype that receives DA1 innervation. This applies to lPN and lvPN2 in both

FAFB and the hemibrain. To further confirm that our driver line, aSP-g SS, labels the aSP-g2

subtype we imaged their activity by driving GCaMP expression, while activating Or67d

ORNs optogenetically via CsChrimson driven by Or67d-QF. Activating Or67d ORNs evoked

a strong increase in neurons labelled by aSP-g SS, therefore we conclude that aSP-g2 is

labelled by our driver line.

To explore non-olfactory aSP-g input pathways we carried out a sampling of aSP-g

postsynapses, reconstructing the morphology of aSP-g input neurons first manually, later by

the help of partial segmentation of the FAFB volume (P. H. Li et al. 2020). We found that the

single strongest upstream neuron, G2N-SLP1 (gustatory second-order neuron - superior

lateral protocerebrum 1; Figure 18A, B) provides 60 synapses, 4.8% of all inputs to aSP-g2.

G2N-SLP1 is a projection neuron with dendrites in the GNG, suggesting gustatory inputs. We

sampled 75% of all G2N-SLP1 inputs, which revealed that indeed they receive inputs from

gustatory receptor neurons (GRNs). The GRNs fall into two types, one enters the brain via

the labellar nerve and provides 71 synapses (8.9% of all inputs - lGRN, Figure 18A, B) and

the other type enters via the accessory pharyngeal nerve to provide 163 synapses (20.4% of

all inputs, pGRN, Figure 18A, B). These data suggest that aSP-g2 neurons are third-order in

the processing of both olfactory and gustatory stimuli, serving as a point of intra- and

intermodal sensory convergence.

In parallel to reconstructing upstream partners of aSP-g2 neurons, we have sampled

inputs of aSP-g1 and aSP-g3 (Figure 18A). We found that the strongest dendritic input of

aSP-g1 neurons is also G2N-SLP1, and their strongest upstream cell type in general is aSP-g2

neurons via axo-axonic connections. Therefore aSP-g1 neurons seem to process similar

information to aSP-g2 even though they are not directly connected to DA1 PNs. In contrast,

the three strongest inputs to aSP-g3 are putative taste pathways, two GNG PNs and one

ascending neuron. aSP-g3 is therefore likely to integrate multiple gustatory channels.
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GRN anatomy and receptor expression has been extensively studied in Drosophila

both for Gr and Ir receptors (Kwon et al. 2014; Sánchez-Alcañiz et al. 2018). Based on

morphological similarity we identified the G2N-SLP1 upstream labellar GRNs to be the

population labelled by Ir94e-GAL4 (Koh et al. 2014; Sánchez-Alcañiz et al. 2018; Jaeger et

al. 2018). To test how aSP-g integrates cVA and taste we imaged intracellular calcium in

aSP-g by expressing GCaMP6s with 81A04-LexA, and drove CsChrimson by Ir94e-GAL4

(Croset et al. 2016). As expected, cVA presentation evoked a transient activation of aSP-g

neurons, while optogenetic activation of Ir94e GRNs caused a small and slowly decaying

signal increase in aSP-gs. Presenting these two stimuli together caused a superlinear

activation of aSP-g (Figure 18D). These anatomical and calcium imaging data show that

aSP-g indeed integrates multimodal stimuli: cVA, and an unknown taste substance. Ir94e

GRNs have been shown to weakly respond to salts (Jaeger et al. 2018), but it is not known

whether contact pheromones activate them. Although females normally do not sample male

pheromones by licking (typical of courting males), it has been shown that deposits from

males contain cVA, sufficient to activate Or67d ORNs (Mercier et al. 2018). These deposits,

with all their pheromonal content, may be also sampled by the proboscis, which could expose

the labellar Ir94e GRNs and the pharyngeal GRNs upstream of G2N-SLP1 to male specific

molecules, potentially providing a multimodal signal about male identity and quality. A

similar phenomenon was shown with behavioural experiments in males: cVA and a male

specific contact pheromone regulate male-male aggression together (L. Wang et al. 2011).

6.2 aSP-g increases female receptivity via a pC1 independent pathway
aSP-g integrates taste with cVA, well placed to recognise a conspecific male, or male

deposit. To test the behavioural effect of aSP-gs on female sexual behaviours we used a

courtship assay, described above, and manipulated the activity of aSP-g neurons. The driver

aSP-g SS labels 4.7±1.33 neurons per hemisphere, out of 11-12 neurons. To access more

neurons we added a second split-GAL4 DBD (DNA-binding domain) known to label aSP-gs.

This combined line (aSP-g SS1-2) labels 5.2±1.2 neurons, and we used this in our courtship

assay for activation experiments. Activating aSP-g neurons with CsChrimson and constant

red light increased female receptivity (Figure 19A). In order to block aSP-g activity we

generated driver lines that label even more aSP-gs (7.6±2 and 6.7±1), by intersecting fruFLP

with the GAL4 lines with the GMR insertions used as DBDs in aSP-g SS1-2. Blocking aSP-g

activity with Kir2.1 expression resulted in a small but significant decrease in female
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receptivity (Figure 19B), while activating these lines with CsChrimson reproduced the

receptivity increase phenotype seen with aSP-g SS1-2 (data not shown). These results

demonstrate that aSP-g bidirectionally regulates female receptivity, like lvPNs and pC1

neurons. Interestingly, activation or genetic ablation of lPNs did not affect receptivity (Figure

15A, B), suggesting that cVA alone is insufficient for aSP-g to express its behavioural effect,

rather the integration with taste is a necessary step for this.

Next we asked how the lvPN-pC1 and lPN-aSP-g pathways might interact to control

female receptivity. We have shown earlier that lvPNs do not innervate aSP-gs, similarly

aSP-g is not connected strongly to pC1 in FAFB or the hemibrain. This connectivity suggests

that these cVA responsive pathways act independently to affect female receptivity. To test this

idea, we devised a behavioural epistasis experiment, where aSP-g neurons are activated by

driving CsChrimson with the intersection of FruFLP and a GMR LexA line labelling aSP-g

neurons, while pC1s were genetically ablated by driving Hid, and Reaper apoptotic factors by

pC1 SS2 (F. Wang et al. 2020). As expected, ablating pC1 neurons alone suppressed female

receptivity, and aSP-g activation alone increased female receptivity compared to genetic

control (Figure 19C). In the epistasis genotype we saw a significant increase of receptivity

compared to the pC1 ablated condition, which shows that aSP-g neurons are able to elicit

their receptivity increasing effect without functional pC1 neurons. It is important to note that

our driver line for aSP-g (aSP-g FLP-LexA) labels a few neurons in the midline of the brain,

projecting from the peri-esophageal region to the pars intercerebralis. We cannot exclude the

possibility that these neurons contribute to the behavioural effects in this experiment.

Receptivity is not a single behaviour, rather a drive, or arousal state, that affects the

likelihood of expressing specific behavioural modules related to accepting a courting male for

mating. pC1 has been elegantly linked to such a specific module, vaginal plate opening (K.

Wang et al. 2021). aSP-g may elicit its effect on this step, by converging on the same

descending neuron as pC1, although aSP-g is not directly presynaptic to the relevant cell

type, according to data from the hemibrain. Alternatively, aSP-g may regulate other steps of

female acceptance via a pC1 independent complete sensory-motor circuit (Figure 19D).
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Figure 16: Sensory integration steps in cVA processing
A: Connectivity diagram of cVA processing pathways downstream of Or67d ORNs with
other sensory modalities. lPN to ORN connection not shown. (In the hemibrain dataset there
are 143 ORNs, 7 lPNs, 3 lvPNs, 4 AV2a2 neurons, 1 AD1g1 neuron, 5 pC1 neurons, 1
vpoDN, 11 aSP-g neurons in one hemisphere.) B: EM reconstruction of the AD1g1 neuron in
the hemibrain dataset. C: EM reconstruction of vpoDN in the hemibrain dataset. Scale bars in
B and C are 20 μm. D: EM reconstruction of aSP-g neurons in the FAFB dataset. 11 neurons
from both hemispheres, left: purple, right: grey. E: Schematic of a sexually dimorphic circuit
switch at the level of third-order lateral horn neurons: aSP-g and aSP-f. Adapted from Kohl et
al. (2013).
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Figure 17: The aSP-g clone consists of three morphological subtypes
A: Reconstructions of aSP-g neurons coloured based on NBLAST morphological clustering
from the FAFB dataset (left), the FlyCircuit dataset (middle), and MCFO data from aSP-g
Stable Split (right). Scale bar is 20 μm. B: The proportion of dendritic cable inside the lateral
horn for aSP-g subtypes across three datasets. Squares: FAFB, circles: FlyCircuit, triangles:
aSP-g SS MCFO. C: Hierarchical clustering based on NBLAST morphological similarity
scores using ward’s method, k = 3. Order and colours are the same as in A. D: Confocal
image of aSP-g neurons in a female brain, reporter expression driven by aSP-g Stable Split,
maximum projection. B: aSP-g responses to Or67d ORN optogenetic activation. Or67d-QF
was used to drive the expression of CsChrimson, and aSP-g SS1 to drive GCaMP6f. Red area
shows the time of optogenetic stimulation by an LED (n = 5). The image presented in panel
D was contributed by Dr Dana Galili. The aSP-g SS1 MCFO labelling and the resulting
neuron traces presented in panel A (right) were contributed by Dr Erika Donà.
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Figure 18: aSP-g integrates taste inputs with cVA
A: Connectivity diagram of aSP-g subtypes with olfactory and gustatory pathways based on
FAFB presynaptic sampling, and hemibrain connectivity in the antennal lobe (AL). B: EM
reconstruction of aSP-g input neurons in the FAFB dataset. First row left: lvPN2; frontal
view, right: dorsal view. Second row left: pharyngeal GRNs, right: labellar GRNs. Third row
left: G2N-SLP1, right: G2N-SLP2. Fourth row left: G2N-SLP3, right: G2N-SLP4. Fifth row
left: G2N-SLP5, right: G2N-aSLP. C: Confocal image of Ir94e labellar GRNs in a female
brain (top) and VNC (bottom), reporter expression driven by Ir94e-GAL4, maximum
projection. Driver line generated by Croset et al. (2016). Scale bars in B and C are 40 μm. D:
aSP-g responses to Ir94e ORN optogenetic activation, cVA presentation, and simultaneous
stimulation. Ir94e-GAL4 was used to drive the expression of CsChrimson, and 81A04-LexA
to drive GCaMP6s and image aSP-g neurons. Red area shows the time of optogenetic
stimulation by an LED, and / or the delivery of cVA from an olfactometer (n = 3 - statistical
significance not tested). Dotted purple line shows the linear sum of responses to single
stimuli.
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Figure 19: aSP-g controls female receptivity independent of pC1
A: Copulation rate of aSP-g CsChrimson activated virgin females (purple) and genetic
control (black); log-rank test p = 0.017, n = 31-32. B: Copulation rate of aSP-g Kir2.1
blocked virgin females (aSP-g FLP1 driver: purple, aSP-g FLP2 driver: pink) and genetic
control (black). n = 40 for each group; log-rank test p = 0.008, pairwise comparisons with
Benjamini-Hochberg correction: aSP-g FLP1 vs. empty FLP p = 0.036, aSP-g FLP2 vs.
empty FLP p = 0.013. C: Behavioural epistasis with pC1 block and aSP-g activation.
Copulation rate for genetic control: grey; pC1 Hid-Reaper ablation: yellow; aSP-g
CsChrimson activation: purple; pC1 ablation and aSP-g activation: black; log-rank test p <
0.001, pairwise comparisons with Benjamini-Hochberg correction: aSP-g activation against
control: p < 0.001, aSP-g activation with pC1 ablation, against pC1 ablation alone: p = 0.017.
D: Connectivity diagram of cVA and Ir94e pathways upstream of aSP-g and pC1 neurons
based on the FAFB dataset with behavioural outputs. The behavioural data and analyses
presented in panels A, B, and C were contributed by Dr Dana Galili.
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7 A layered axo-axonic circuit for hierarchical processing of

multimodal signals
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We established that aSP-g neurons integrate cVA with an unknown taste signal and

affect female receptivity via a pC1 independent pathway. These results extend previous work

demonstrating that aSP-g neurons are fruitless+, sexually dimorphic, third-order neurons that

receive cVA information in females but not in males (Kohl et al. 2013). Next, we asked what

circuits read out the multimodal information from aSP-g to instruct female behaviour

independent of pC1.

Using the aSP-g neurons reconstructed in the FAFB volume we chose two aSP-g2

neurons with strong cVA input from PNs, and carried out a pseudo-random sampling of their

postsynaptic partners. We clustered the resulting neurons based on their morphology, and

ranked the clusters by the number of connections from aSP-g2 neurons. We found that a type

of mAL neurons (medial to antennal lobe) are the strongest downstream partners of aSP-g2 in

our sample, and we named them mAL1 (Figure 20A, B). To follow the flow of information

we carried out a second sampling, now of mAL1 postsynaptic partners. We found two cell

types strongly downstream of mAL1, and focussed on one of them, a pair of fruitless+

neurons, ascending from the nerve cord, called dMS6 (Philipsborn et al. 2011, Figure 20D, E

). Intriguingly, both aSP-g2 to mAL1, and mAL1 to dMS6 synapses are axo-axonic, that is,

the axons of the presynaptic neurons form synapses that are on the axonal arbours of the

postsynaptic neurons exclusively. This circuit layout is unusual as axons are usually the

output compartments of neurons, while dendrites receive inputs. This circuit motif suggests

that aSP-g2 may be part of a hierarchical gating mechanism, where its multimodal signal

modulates the information coming from mAL1 and dMS6 dendrites to instruct female sexual

behaviour.

7.1 Behavioural dissection of an axo-axonic circuit
We screened split-GAL4 combinations to selectively label mAL1 and dMS6 neurons

resulting in a sparse driver line for each cell type (Figure 20C, E). We used these lines to test

the role of mAL1 and dMS6 in female receptivity by either optogenetically activating them

via CsChrimson or constitutively hyperpolarising these neurons by Kir2.1 during a courtship

assay. Both mAL1 and dMS6 bidirectionally modulates female receptivity, but they act in

opposite directions. Activating mAL1 in female flies results in a drastic decrease in mating

rate and the number of mated pairs, while blocking mAL1 increases the rate and chance of

copulation (Figure 20F, G). On the other hand, dMS6 activation increased receptivity, while

Kir2.1 block elicited a small but significant mating rate decrease (Figure 20H, I), rather
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similarly to the same manipulations in aSP-g (Figure 19A, C). To better understand the

relationship between these neurons we performed co-immunostaining with neurotransmitter

markers. Consistent with previous results about mAL neurons in males we found co-labelling

of GABA and mAL1 neurons, while dMS6 somata showed overlap with ChAT4B staining,

suggesting that mAL1s are GABAergic and dMS6 are cholinergic (Figure 20J, L).

Based on these results and previous work showing that aSP-g are cholinergic (Kohl et

al. 2013) we devised a circuit model that is compatible with the behavioural data (Figure

20K). Walking through the circuit from inside out: we propose that dMS6 forms excitatory

synapses with an unknown downstream neuron with a positive effect on female receptivity.

mAL1 neurons gate this effect by GABAergic presynaptic inhibition onto dMS6 axons.

aSP-g neurons have a positive effect on female receptivity by providing a disinhibition:

aSP-g activity blocks mAL1 neurotransmission, thereby dMS6 is relieved of its presynaptic

inhibition. In this model the cholinergic aSP-g - mAL1 synapse blocks transmission. This

could be a result of metabotropic ACh receptors on mAL1 axons with an inhibitory effect (as

was shown in proprioceptive sensory neuron axons in locusts, (Wolf and Burrows 1995);

alternatively a second neurotransmitter could be used in the aSP-g - mAL1 synapse; or it may

be an effect of cholinergic subthreshold depolarisation of the mAL1 boutons inactivating

sodium channels and thereby stopping dendritic signals to evoke normal levels of vesicle

release upon firing. In order to better understand the nature of this layered axo-axonic circuit

we asked what information enters via mAL1 and dMS6 dendrites.

7.2 Characterisation of mAL1 and dMS6 inputs
mAL neurons are sexually dimorphic, fruitless+, GABAergic neurons, responsive to

male and female gustatory pheromones in males. They have a role in guiding male courtship

towards conspecific females, and male-male aggression (Kimura et al. 2005; Kallman, Kim,

and Scott 2015; Clowney et al. 2015; Koganezawa, Kimura, and Yamamoto 2016; Seeholzer

et al. 2018). Cachero et al. described that there are 28.6±8.02 mAL neurons (fruitless clone

aDT-b) in females, but their role in female social behaviour was not explored. We

exhaustively reconstructed neurons in the axon tract that contained mAL1 neurons on the

right hemisphere of the FAFB volume, and found 35 mAL neurons, comprising six

morphological subtypes we define by axonal morphology based clustering (Figure 21A).

These subtypes were similarly grouped and named in the hemibrain dataset based on our

suggestion.
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mAL1 neurons have three separate dendritic branches: two of them go ventrally

around the oesophagus towards the GNG, and one, most proximal to the soma, innervates the

protocerebrum. These proximal dendrites are found uniquely in mAL1, and the ipsilateral

peri-oesophageal dendrite is only present in mAL1 and mAL2, whereas all other mAL

subtypes have a single contralateral dendrite, larger than mAL1’s. The ipsilateral dendrites of

mAL1 make them similar to male mALs, however the dendrites end more dorsally on both

sides of the GNG for mAL1 than for male mALs (Kimura et al. 2005).

To learn about mAL1 inputs we carried out a full reconstruction of presynaptic

partners of a single mAL1 neuron in FAFB (7.5% of inputs were left as fragments due to

tracing ambiguity). We found that the strongest dendritic upstream cell type is a pair of

ascending neurons contributing 9.3% of the total input to mAL1 dendrites, we refer to them

as abdSMP (abdominal ganglion to superior medial protocerebrum, Figure 21B, C).

Morphologically similar neurons were labelled by the intersection of fruFLP and

Abdominal-B-GAL4 in earlier work, suggesting that abdSMP are fruitless+ (Bussell et al.

2014). abdSMP presynapses are distributed across all dendritic regions of mAL1, but do not

reach the axons where aSP-g2 inputs onto mAL1 (Figure 21E). To test the effect of abdSMP

on mAL1 activity we generated a splitGAL4 driver line labelling them (Figure 21D), and

drove CsChrimson expression to activate it optogenetically while imaging intracellular

calcium in mAL1 axons via GCaMP7f driven by 67E08-LexA. abdSMP stimulation resulted

in a strong activation of mAL1 (Figure 21F). Although our driver for abdSMP labels two

other ascending neurons and some interneurons of the abdominal ganglion, none of them

overlap with mAL1 neurons, therefore we interpret our imaging results as the abdSMP -

mAL1 synapse is excitatory.

The abdominal ganglion sends and receives information from all abdominal organs

including the reproductive system. Signals relevant for sexual behaviour enter the CNS here,

such as mating status, copulation and oviposition related cues, or stimuli associated with the

lick of a courting male. In order to better understand what abdSMP neuron activity might

relay we leveraged another recently acquired EM volume, the Female Adult Nerve Cord,

FANC, (Phelps et al. 2021). This dataset contains a full adult female VNC including the neck

connective and small parts of the GNG from the brain. We compared the structures in the

FAFB and FANC neck connectives and chose a location in FANC where we expected

abdSMP neurons to be based on their FAFB position. To confirm the identity of the VNC

abdSMP neuron we used MCFO data from the FlyLight GMR MCFO database, where we

could find whole CNS stainings with only abdSMP labelled on a channel (Meissner et al.
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2020). Unfortunately the FANC dataset is incomplete in the abdominal ganglion, and the

quality of the EM staining is poorest in this region. Due to these limitations the abdSMP

dendritic tracings are incomplete and sampling presynaptic inputs was mostly unsuccessful.

We found a few examples of sensory neurons entering via the abdominal nerve that are

upstream of abdSMP, suggesting that abdSMP is second- and mAL1 is third-order cell type in

this pathway. However, the limited number of connections and poor reconstruction of sensory

neurons does not allow us to better characterise the signals that reach mAL1.

Next we turned to dMS6 neurons to characterise their inputs. dMS6 neurons ascend

from the VNC, form axons ventral to the GNG and in the SMP, where mAL1 synapses onto

them (Figure 20D). dMS6 has not been characterised functionally, but it was briefly

described as a fruitless clone in a PhD thesis by Dr Tianxio Liu in Dr Barry Dickson’s lab.

Based on MARCM labelling in this work dMS6 neurons are fruitless+ and sexually

dimorphic, with larger dendritic arbours in females in the wing neuropil of the VNC. To

understand what dendritic signals are modulated by mAL1 axonal inputs at dMS6 axons we

reconstructed dMS6 dendrites in the FANC volume with the strategy used for finding

abdSMP (Figure 20D). dMS6 innervates the VNC medially with arbours in all leg neuropils

and the wing neuropil, and it does not enter regions where sensory neuron axons could

synapse onto them based on published maps (Tuthill and Wilson 2016; Tsubouchi et al.

2017).

We traced out all presynaptic partners to the two dMS6 neurons (one per hemisphere).

We ranked morphological clusters based on the number of dMS6 connections and fully

reconstructed exemplar neurons from the top five strongest upstream clusters which together

provide 19.2% of all inputs to dMS6 (Figure 22A). We then manually screened all the

profiles presynaptic to the five dMS6 upstream exemplars, to find putative sensory neurons

based on their distinct, electron-dense cytosol (Figure 22B). With this biased upstream

sampling strategy we identified multiple sensory inputs that belong to distinct modalities

originating in different neuromeres (Figure 22C, D). The fraction of sensory inputs from all

inputs is given for the five dMS6 upstream clusters in Figure 22C. The cluster with the

highest ratio of sensory inputs (33%) we call asc-Ms (ascending, mesothoracic neuron),

which receives innervation from neurons originating in the campaniform sensillum based on

their morphology. In stick insects campaniform sensilla are known to sense muscle load and

contribute to motor control (Zill et al. 2012). Based on their morphology sensory inputs to

other dMS6 upstream clusters include mechanosensory bristle neurons involved in sensing

touch in the hindleg (T3 neuromere), and leg GRNs relaying gustatory signals from the front
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and middle leg (T1 and T2 neuromeres, Figure 22D). Based on connectivity dMS6 neurons

are third order neurons with respect to multiple sensory modalities, including muscle load,

touch, and taste. This suggests that dMS6 may integrate a combination of stimuli that

together represent an event in courtship, e.g. male tap, or attempted copulation.

To test the functional relevance of dMS6 inputs we focussed on the pathway with the

strongest sensory input: asc-Ms neurons and campaniform sensilla (Figure 23A). We imaged

intracellular calcium in dMS6 axons by driving GCaMP6s under the control of dMS6-SS,

while we placed a stationary platform under the fly that could freely move its legs (Figure

23B). We observed frequent spontaneous events of tibio-tarsal flexion, with all legs

simultaneously pressed onto the platform. We believe this happens when the fly is trying to

free its thorax from the imaging holder and applies force on the platform with the legs. These

events were manually labelled on a video recording, and overlaid with the GCaMP trace

(Figure 23C). We found that this behaviour is followed by a strong activation of dMS6

neurons. While we cannot rule out the possibility that dMS6 activity reflects some other

component of the behaviour than increased muscle load on the legs, the relative timing and

the input connectivity of dMS6 makes this explanation likely. The load on leg muscles is

increased by the males weight upon copulation attempt, and during copulation. We speculate

that dMS6 could function as a final checkpoint before copulation, or potentially contribute to

the female’s sustained engagement in mating that can last up to twenty minutes.

7.3 A model for receptivity control by hierarchical sensory integration
Based on the anatomy, neurotransmitter identity and behavioural results we proposed

a model how the axo-axonic motif of aSP-g, mAL1, and dMS6 could interact to regulate

female receptivity (Figure 20K). Reconstructing two layers of upstream circuitry of mAL1

and dMS6 allows us to extend our model with more specific information about the identity of

dendritic signals to these nodes (Figure 24A). Based on these results we see a hierarchy of

distinct channels, smell and taste gating an abdominal signal, which then regulates another

multimodal, likely strongly proprioceptive input that positively controls female receptivity.

To test our model of disinhibition, we imaged mAL1 activity while activating the cVA

pathway. As imaging mAL1 activity with the 67E08-LexA driver can be done

unambiguously only from axonal signals we used DA1 lPN SS (labelling cVA responsive

PNs upstream of aSP-g) to drive CsChrimson and thereby provide an artificial cVA stimulus.

Initial experiments where we drove CsChrimson expression directly in aSP-g neurons were
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unsuccessful, as axonal mAL1 imaging required us to scan over aSP-g axons with the

imaging laser, which was sufficient to activate CsChrimson in them. This means that our

stimulation via lPNs only provides the cVA aspect of the aSP-g signal. Activating lPNs

resulted in a large increase in mAL1 intracellular calcium (Figure 24B). These results

contradict our initial circuit model of aSP-g inhibiting mAL1 axons (Figure 20K).

We looked for other pathways between lPN and mAL1 in the hemibrain to explain

this, but we found no cell type directly linking them with more than three synapses at each

step other than aSP-g2. On the other hand, when we looked at pathways between aSP-g2 and

dMS6 we found that a single neuron, called AVLP29, shares the same place in the circuit as

mAL1: directly postsynaptic to aSP-g2 (and indirectly via aSP-g1), and directly presynaptic

to dMS6 axons (Figure 24C). Based on our imaging data and the connectomic findings we

revisited our model, and we suggest that AVLP29 and mAL1 may provide an

excitation-inhibition balance on dMS6 axons, which aSP-g2 can trigger, but may be

separately modulated by other factors.

mAL neurons in males are part of a similar excitation-inhibition balance motif. Both

female and male contact pheromones strongly activate mALs in males, while a parallel

pathway converging on the same downstream neurons responds strongly only to female

pheromones (Clowney et al. 2015; Kallman, Kim, and Scott 2015 Figure 23E) . This layout

allows the flexible control of male courtship, by keeping the activity of downstream neurons

under tight control, but biasing responses to a specific sex. A recent study has found another

example of excitation-inhibition balance to control female receptivity (Figure 24F). vpoEN

and vpoIN (vaginal plate opening Excitatory, and Inhibitory Neuron) both respond to

courtship song. vpoEN is closely tuned to conspecific song elements, while vpoIN is a

broadly tuned auditory neuron responding to non-melanogaster song as well. vpoEN

activates, vpoIN inhibits vpoDN, resulting in highly specific responses in vpoDN to

conspecific song, showing how such a circuit motif can enhance the detection of relevant

signals to instruct behaviour (F. Wang et al. 2020). Interestingly, using the hemibrain dataset

we found that vpoIN is also presynaptic to AVLP29 and dMS6 axons. The connectivity

suggests that besides mAL1, an inhibitory pathway of another sensory modality can also gate

the receptivity promoting effect of dMS6. Although the exact behavioural events and

temporal kinetics of the circuit interactions remain to be explored, we propose that mAL1 and

AVLP29 balance the activity of dMS6 to control the mating decision in female flies.
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Figure 20: A layered axo-axonic circuit downstream of aSP-g regulates
female receptivity
A: Connectivity diagram of aSP-g downstream steps based on the FAFB dataset. Connections
onto other connectors represent axo-axonal synapses. B: EM reconstruction of mAL1 neurons
in the FAFB dataset (3 neuron / hemisphere). C: Confocal image of mAL1 in a female brain,
reporter expression driven by mAL1 Stable Split, maximum projection. D: EM reconstruction
of dMS6 neurons in the FAFB (top) and FANC (bottom) datasets. 1 neuron / hemisphere.
Scale bars in B and D are 20 μm. E: Confocal image of dMS6 in a female brain (top) and
VNC (bottom), reporter expression driven by dMS6 Stable Split, maximum projection. F:
Copulation rate of mAL1 CsChrimson activated virgin females (blue) and genetic control
(black); n = 40-48, log rank test p < 0.001. G: Copulation rate of mAL1 Kir2.1 blocked virgin
females (blue) and genetic control (black); n = 40, log rank test p = 0.024. H: Copulation rate
of dMS6 CsChrimson activated virgin females (blue) and genetic control (black); n = 38-40,
log rank test p < 0.001. I: Copulation rate of dMS6 Kir2.1 blocked virgin females (blue) and
genetic control (black); n = 48, log rank test p = 0.039. J: Confocal image of
co-immunostaining of mAL1 (3) and mAL2 (2) somata labelled by 67E08-LexA and GABA,
single imaging channels on top, composite image at the bottom. Scale bars are 10 μm. K: A
circuit model for controlling female receptivity by a layered axo-axonic motif. L: Confocal
image of co-immunostaining of dMS6 (2) somata labelled by dMS6 SS and ChAT4B, single
imaging channels on top, composite image at the bottom. Scale bars are 10 μm. The
behavioural data and analyses presented in panels F, G, H and I, and the anatomical data in
panels C, E, and J were contributed by Dr Dana Galili.
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Figure 21: mAL1 is a subtype of the mAL clone with inputs from an
abdominal ascending neuron
A: Reconstructions of 35 mAL neurons from the FAFB dataset. Coloured based on NBLAST
morphological clustering. Top: dendrogram of hierarchical clustering (Ward’s method, k = 6);
bottom: mAL subtypes coloured by clusters, all other mAL neurons in grey for each brain. B:
Representation of mAL1 inputs connectivity. Small circles represent a cell type with numbers
showing the synaptic inputs to mAL1 neurons. The strongest upstream partner (dark blue)
with 43 connections is abdSMP. C: Reconstructions of abdSMP neurons from the FAFB and
FANC datasets; top: brain, bottom: VNC, 1 neuron / hemisphere. D: Confocal image of
abdSMP in a female brain (top) and VNC (bottom), reporter expression driven by abdSMP
Stable Split, maximum projection. E: The placement of synapses on mAL1 arbours from the
top dendritic (abdSMP, dark blue circles), and the top axonal (aSP-g, purple circles) input cell
types. Scale bars in B and D are 20 μm. F: mAL1 responses to abdSMP optogenetic
activation. abdSMP SS was used to drive the expression of CsChrimson, and 67E08-LexA to
drive GCaMP7f. Red area shows the time of optogenetic stimulation by an LED (n = 5).
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Figure 22: dMS6 is a third-order neuron to multiple leg sensory modalities
A: Reconstructions of a single representative from the top five dMS6 upstream cell types in
the FANC dataset. B: A representative EM section of an electron dense sensory neuron
synapsing onto a dMS6 upstream partner in the FANC dataset. C: The percentage of sensory
inputs to representative dMS6 upstream neurons. The order and colour bars at the bottom are
the same as in A. D: Reconstructions of sensory neurons that synapse onto dMS6 upstream
neurons in A. Colours of sensory neurons match the colour of their downstream cell in A.
Left: frontal view, Right: lateral view. Scale bars in A and D are 20 μm. These data and
analyses were contributed by Shanice Bailey and William Morris.
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Figure 23: dMS6 is activated by increased leg muscle load
A: Circuit schematic of the dMS6 upstream pathway with the largest proportion of sensory
inputs. cfRN: campaniform sensilla receptor neurons, asc-Ms: ascending mesothoracic
neuron. B: Example frames from video recording of a fly at rest (top), and while pushing on
the platform (bottom). Red dashed circles show the tibiotarsal joint on the foreleg that is in
flexion while pushing down the platform. Next to it 2-photon images of GCaMP signal in
dMS6 axons at the respective timepoints. Warmer colours represent higher intensity. C: Event
triggered average of dMS6 GCaMP responses to the legs being pressed down on the platform
by the fly. Joint position was manually scored; n = 3.
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Figure 24: An excitation-inhibition model for receptivity control by mAL1
and AVLP29 via dMS6
A: A: Circuit schematic of a single dMS6 upstream pathway showing the synaptic partners
that provide the highest fraction of presynapses to their downstream partner. B: mAL1
responses to lPN optogenetic activation. lPN SS was used to drive the expression of
CsChrimson, and 67E08-LexA to drive GCaMP7f. Red area shows the time of optogenetic
stimulation by an LED (n = 5). C: Extended circuit model with AVLP29 of receptivity
control. Inset: EM reconstruction of AVLP29 in the hemibrain dataset, scale bar is 20 μm. D:
Excitation - inhibition model for receptivity control based on C. E: Excitation - inhibition
model of male courtship (adapted from Clowney et al. 2015) F: Excitation - inhibition model
of vaginal plate opening (adapted from Wang et al. 2020).
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8 Discussion
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This study described two parallel pathways for cVA processing in Drosophila

melanogaster that preferentially signal male sex and position. The lvPN - pC1 route signals

absolute levels of cVA on a 10 s timescale and promotes female receptivity. These features

are consistent with coding male identity and improves our understanding of how pC1 gathers

information about a courting male to guide the female mating decision. In contrast, the lPN -

AV2a2 pathway is tuned to cVA concentration change and can extract features like male

distance, angular position, and speed. lPNs are aided by an active antennal lobe mechanism

enhancing bilateral contrast, and we identify a cell type that is a strong candidate to provide

contralateral inhibition. This work establishes cVA as a pheromone that encodes positional

information, demonstrates how identity and positional features of this signal are separately

processed, and characterises a neuron likely responsible for improved olfactory lateralisation

for many glomeruli.

We extensively reconstructed and analysed the wider cVA processing circuitry by

using two connectomic datasets, and showed that cell types and connectivity are stereotyped

across all neurons, in line with their role in innate, sexual behaviours. The circuit provides

numerous examples of multimodal sensory integration. Connectivity and functional imaging

shows that aSP-g neurons integrate cVA with taste information at their dendrites. This

complex signal is sent onto a layered axo-axonic motif of mAL1 and dMS6 neurons. dMS6

neurons integrate information from leg sensory neurons that are likely from multiple

modalities. We propose a model, consistent with connectivity, calcium imaging, and

behavioural results, for how these multimodal signals regulate female receptivity. In this

model aSP-g activates a pair of neurons, mAL1 and AVLP29, which together provide an

excitation - inhibition balance onto dMS6 axons to gate ascending inputs controlling female

mating decision. This work suggests that axo-axonal connections and multimodal sensory

integration are frequent motifs in the fly brain.

8.1 Olfactory positional coding
Previous work on cVA has shown that the presence of cVA without any spatial or

temporal structure is sufficient to alter male aggression and courtship, and female receptivity,

clearly demonstrating how tonic stimulation of the cVA sensing Or67d ORNs affects

behaviour in both sexes (Kurtovic, Widmer, and Dickson 2007; Wang and Anderson 2010).

These findings defined our understanding of cVA’s role, but other work suggested that cVA

may do more than signal male sex. Agarwal and Isacoff (2011) claimed that DA1 lPNs have
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characteristics that enable them to report stimulus differences between the two antennae

better than other PNs, suggesting that they could encode male position.

Our study explores this possibility using a male fly as a spatially controlled stimulus

and shows that lPN responses are dependent on male position. First we demonstrated that

intracellular calcium responses in both ORNs and lPNs depend strongly on male distance,

with the lPN dynamic range between 5 and 1 mm (Figure 5). Presenting the male on the side

of a fly with or without unilateral antennal block evoked lateralised responses in ORNs,

suggesting that the interantennal distance is sufficiently large to distinguish between ipsi- and

contralateral male location on the ORN level (Figure 6). Notably, Or67d ORNs are housed in

sensilla close to the lateral edge of the antennae, likely helping lateralisation by maximising

the distance between the sensors (van der Goes van Naters and Carlson 2007; Grabe et al.

2016). ORNs from both sides converge onto PNs, although with a bias towards ipsilateral

connections, this introduces a problem of reading out male angular position at the PN level.

Earlier work in DM6 PNs, which respond to volatile food odours, showed that biassed

ORN input connectivity underlies odour lateralisation in this glomerulus and excluded a

contribution of GABAergic inhibition (Gaudry et al. 2013; Tobin, Wilson, and Lee 2017).

However, recording lPN activity during lateralised male presentations with antennal

manipulations revealed that inhibition shapes the responses in DA1 PNs (Figure 7). A pair of

broad antennal lobe local neurons, il3LN6, were found to have strongly biassed input

connectivity from contralateral ORNs and inversely lateralised responses, consistent with a

role in providing contralateral inhibition onto lPNs (Figure 8). The lack of a GABAergic

mechanism in DM6 PN lateralisation is consistent with the fact that il3LN6 gives very little

input (34 synapses) to them, compared to DA1 PNs, which receive 436 synapses from

il3LN6. The morphology of this interneuron strongly suggests compartmentalised odour

responses (Figure 9); in line with this, using a male fly as a stimulus specifically activated

il3LN6 arbours in the DA1 glomerulus. These features make il3LN6 a strong candidate

underlying enhanced lateral contrast of odour signals in many glomeruli.

Sampling the space with the male stimulus while recording lPN responses illustrates

how the signal from both hemispheres can be used to decode angular direction and distance

(~30˚ angular precision, 1.3 mm spatial precision; Figure 11). The sum of the activity on the

sides correlates with the cosine of the male’s angular direction (y-axis), and the difference

between the sides correlates with the sine of the male’s angular direction (x-axis) (Figure 11).

Therefore these neurons are sufficient to estimate male position in 2D space using cartesian

coordinates.
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Our work also demonstrates that the concentration dependence of first and second

order olfactory neurons translates well to distance tuning. As in many sensory systems, there

is an inverse relation between signal intensity and distance, which leads to ambiguity in

estimating these features. Additionally, cVA amount on males and cVA sensitivity depends on

odour context, mating history and age (Das et al. 2017; Kuo et al. 2012; Lebreton et al. 2014;

Park et al. 2020). Therefore cVA alone is always an ambiguous signal on its own for

estimating distance but flies could use cVA for male localisation while incorporating sensory

information from other modalities and temporal correlations in the signal, thereby

overcoming these limitations.

These results extend our understanding of how cVA instructs behaviour. We showed

that the stimulus' fine temporal and spatial aspects are closely followed by ORN and lPN

activity, which would be superfluous for a role in shifting the arousal state for sexual

behaviours on a time scale of minutes. Notably, flies cannot differentiate between males and

females only using visual cues (Agrawal, Safarik, and Dickinson 2014), and this statement

can be likely extended to other similarly sized Drosophilids. Using cVA to estimate a fly’s

position comes with the advantage of adding identity information to an ambiguous visual cue,

and the possibility of tracking a male’s movement in the dark. During courtship the male

spends most of the time following the female from behind, while the female runs away from

the male by orienting away from it, and running forward. Orienting away from a male is a

behaviour where knowing the angular position of a male is essential, and cVA could be used

to estimate this. Methyl laureate, another low volatility pheromone carried by both males and

females, might extend the localisation range defined by cVA, and use a similar mechanism to

detect female flies, as proposed by Root et al (2008), where they showed that males in a large

dark arena can use methyl laureate to find females.

Previous work has shown that ORN and lPN responses to cVA are isomorphic in the

sexes (Datta et al. 2008), our work showed that not only lPNs but also lvPNs respond

similarly to a male at a single distance (Figure 5D, G). Potentially cVA based positional

coding has a more prominent role in male behaviours like aggression or courtship

suppression, as during these behaviours the cVA source (the male) is in front of the fly.

Olfactory lateralisation was shown to be relevant in detecting odour sources in many

species, including flies, moths, moles, rats, and humans (Borst and Heisenberg 1982; Rajan,

Clement, and Bhalla 2006; Catania 2013; Croy et al. 2014; von Békésy 1964; Takasaki,

Namiki, and Kanzaki 2012). A recent review proposed contralateral inhibition as the most

likely mechanism of efficient odour lateralisation in mice based on findings that a population
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of anterior olfactory nucleus (AON) neurons are excited by ipsilateral and inhibited by

contralateral odour presentation; furthermore, ablating crossing bilateral inputs to the AON

disrupts odour localisation behaviour (Dalal, Gupta, and Haddad 2020; Esquivelzeta Rabell et

al. 2017; Kikuta et al. 2010). These results and our work together strongly suggest that

contralateral inhibition is another analogous aspect of insect and mammalian olfactory

systems.

Using signal differences at two sensors to estimate the position of a stimulus is a

general feature of sensory systems, most intensely studied in auditory processing (Gulick and

von Békésy 1963; E. Knudsen and Konishi 1978). It was first demonstrated in barn owls that

interaural time and intensity differences can be used to represent the position of auditory

stimuli by neurons with specific receptive fields for spatial locations (E. I. Knudsen and

Konishi 1979; E. Knudsen and Konishi 1978; Peña and Konishi 2001). Earlier, in von

Békésy’s foundational work he showed that humans can estimate the angular position of

odour sources with 7-10˚ precision using similar information, despite the small distance

between the nostrils (Gulick and von Békésy 1963). Whether there are neurons dedicated to

representing the spatial aspect of olfactory information based on comparing bilateral signals,

as is known for sound, is unclear.

Representing an arbitrary position in space by an abstract neural map comes with the

advantage that this information is available independent of the behavioural task. In crickets,

however, it was shown that females follow the song of males by reactive steering to single

song pulses, without the time or the need to extract more complex features of the stimulus

than azimuthal location (Hedwig and Poulet 2004), although the gain of turning is modulated

by qualitative aspects of the song (Poulet and Hedwig 2005). Whether positional information

in lPNs is used to create a map encoding male position based on cVA, or in general, whether

there is a set of neurons with spatially localised olfactory receptive fields will be interesting

to investigate. Potentially, the imbalance in the cVA signal levels at the two sides is sufficient

to instruct lateralised behavioural responses without the need for a more abstract

representation of male position. However, it is also possible that both kinds of circuit might

coexist in the insect brain: fast acting circuits mediating reactive steering and more map-like

representations that could interact for example with circuits mediating very long range

navigation (Leitch et al. 2020).

Crucially, the mechanism of olfactory localisation we describe provides an

instantaneous way to infer the location of the stimulus, similar to auditory and visual systems.

Olfactory navigation strategies evolved to deal with the intermittent nature of odour stimuli,
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and often rely on active sampling, integration over time, or other modalities like

wind-sensing (Payne 1986; Khan, Sarangi, and Bhalla 2012; A. C. Marin, Schaefer, and

Ackels 2021). We found that cVA, likely due to its low volatility, provides an olfactory signal

that requires no temporal integration or multiple sampling events, rather it continuously

informs the fly about a male’s position. Recent work in mice showed that olfaction operates

on a faster time scale than expected (Ackels et al. 2021), suggesting that a similar continuous

positional code could be used by mammals to infer the location of stable odour stimuli.

An important limitation of our study is that our experiments used a male mounted

with the abdomen facing the experimental fly during imaging. Clearly this orientation is very

rare during behaviour, but based on the clear and reproducible responses in ORNs and PNs at

different distances, and the lack of responses to only airflow (Figure 5) we assume that in a

windless environment the cVA gradient around a male is largely unchanged as the male is

moving along, other than it moves together with it. Likely, this “odour cloud” is not perfectly

spherical, centred around the male genitalia, but we regard this as a useful first estimate, also

based on mass spectrometry imaging where most cVA on a male was found at the top of the

abdomen (Kaftan et al. 2020). An interesting possibility to consider is that males could also

fan their smell towards a female during courtship song, a similar phenomenon was observed

in silkworm moths (Loudon and Koehl 2000), furthermore antennal movements of the

receiver fly could actively contribute to cVA sensing e.g. by modifying the interantennal

distance.

8.2 Separate pathways for what and where
Above we concluded that cVA can be used for positional coding besides its

well-known function of signalling male identity. How are these two distinct features, relevant

on different time scales, extracted from a single sensory input? Connectomic work showed a

previously unidentified cVA responsive PN type, lvPNs, which receive ORN input

specifically from Or67d ORNs. lvPNs were shown to be a parallel excitatory cVA pathway to

lPNs (Figure 3). lvPNs have lower sensitivity to cVA consistent with having fewer input

synapses than lPNs. Furthermore, these neurons respond tonically to a male, while lPNs adapt

fast, implying that they operate on different time scales (Figure 5). A tonic response can

represent the presence of an object as long as it is there; e.g. as long as a male is courting.

The physiology and behavioural role of other PNs from the latero-ventral lineage is
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unexplored in adult flies, therefore it is an open question whether adaptation properties of

DA1 lvPNs is common in this lineage.

Previous work has characterised how cVA information is transformed across three

neuronal layers to improve the speed and accuracy of stimulus onset detection, however, it

focussed on very short, 100 ms long, stimuli (Jeanne and Wilson 2015). Using two

third-order neurons; AV2a2, a sexually non-dimorphic downstream partner of lPNs, and pC1,

a sexually dimorphic downstream partner of lvPN; this work reveals a striking difference in

response properties at the third layer. pC1 shows the tonic responses like lvPNs, while AV2a2

responses are even more phasic than their input, lPN, thereby specifically responding to

stimulus onset (Figure 12, 14). Furthermore, AV2a2 responses are strongly dependent on the

male’s approach speed and correlate with the speed of change in the lPN signal (Figure 12,

13). These response profiles of the lPN - AV2a2 and lvPN - pC1 pathways are consistent with

their behavioural effect on female receptivity. AD1g1, the neuron that AV2a2 gives most of

its output synapses, also receives strong input from visual looming sensors, while pC1 is

known to integrate cVA and courtship song (Figure 16). Intriguingly, AV2a2 is sexually

monomorphic and does not express fruitless or doublesex, while pC1 is doublesex+ and

dimorphic. This suggests that identity-related features are processed differently in the sexes,

while positional features could be processed identically in males and females.

lPNs have a wide variety of downstream partners in the lateral horn: twenty cell types

receive at least 1% of their inputs from lPNs. AV2a2 is one that keeps the “labelled line”

nature of the PNs based on connectivity, as it does not receive direct PN input from other

glomeruli or non-olfactory modalities. aSP-g neurons, a fruitless+, sexually dimorphic lPN

partner, integrate cVA with taste. aSP-g regulates female receptivity bidirectionally, similarly

to pC1, however lPN manipulations were not sufficient to evoke these effects (Figure 15).

Based on these data, a model emerges in which distinct features are extracted from a

single olfactory signal by specific pathways to encode male position and identity at the third

layer of the circuits. The AV2a2 extracts a specific feature of positional information,

approach speed, to integrate this with relevant visual signals, and manipulating AV2a2

activity in either direction disrupts temporal coding and negatively affects female receptivity.

pC1 and aSP-g, on the other hand, could signal a male related signal. pC1 may represent a

courting male by integrating cVA with courtship song, while aSP-g could assess a

combination of male pheromones (olfactory and gustatory) to regulate female receptivity.

This model does not account for the fact that lvPNs also carry information about male

distance; thereby pC1, and aSP-g (via lPNs) might relay positional aspects of cVA.
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Importantly, aSP-g neurons are bilateral, with overlapping axonal arbours in the two

hemispheres and their downstream partners receive input from aSP-g neurons on both sides.

This circuit layout may suggest that angular position information is lost downstream of aSP-g

by summing signals from the two antennae. Intriguingly, pC1 and aSP-g are sexually

dimorphic, while AV2a2 is identical in males and females. These findings together suggest

that positional and identity features are represented in a strongly biassed manner at the third

layer of this olfactory circuit. Furthermore, we propose that identity-related features are

encoded by sexually dimorphic circuit elements, consistent with their function in regulating

sex-specific behaviours, while positional features are encoded by the same neurons in males

and females (Figure 25).

It will be interesting to ask how these cell-types interact in male flies. P1 neurons, a

hub for male social behaviours including aggression are a likely candidate for being

downstream of lvPNs. If AV2a2 is indeed not only morphologically but also physiologically

isomorphic, responding to male approach in both sexes, it might play a specific role in male

aggression. The integration of visual and olfactory approach signals could be tested in AD1g1

neurons. Finally, all these pathways must reach descending neurons to instruct motor circuits

in the VNC that are not identified yet.

8.3 Dendritic and axonal sensory integration steps shape sexual decision making
Earlier work in our laboratory described a developmental circuit switch at the third

layer of the cVA pathway (Kohl et al. 2013). aSP-g neurons respond to cVA in females, but

not in males, while aSP-f neurons are wired oppositely. This dimorphism is a result of

cell-autonomous mechanisms, driven by fruitless, a sex-determination factor. These findings

provided a link between sexually dimorphic gene expression, neuroanatomy, and physiology

(Kohl et al. 2013). Building on this work, our study advanced our understanding of how one

of the female member’s of this switch guides the expression of sexually dimorphic

behaviours, and which downstream neurons are involved. Our efforts were led by

connectomic tracing of information flow. With this largely unbiased approach, we found that

the most relevant circuit components are also fruitless+ (mAL1, abdSMP, dMS6). This

suggests that fruitless specifies a subset of neurons that preferentially wire with each other to

form extensive dimorphic circuits that guide sexual behaviours.

Showing that aSP-g neurons bidirectionally regulate female receptivity demonstrates

the behavioural significance of the circuit switch described by Kohl et al. Contradicting
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previous expectations in the field (Auer and Benton 2016) we show that aSP-g controls

female receptivity via a pC1-independent pathway (Figure 19). This finding, together with

the fact that DA1 lvPN is sufficient to activate pC1, suggests that cVA controls female

receptivity via two pathways that already split at the first synapse. These results signify

exploring the upstream and downstream circuits of aSP-g.

This study characterises anatomically and behaviourally the fourth and fifth layer of a

cVA processing pathway and describes the distinct sensory modalities entering this circuit

(Figure 21, 22). The third-order aSP-g neurons integrate cVA with a taste cue sensed by

Ir94e+ labellar GRNs and relay this signal to the axons of mAL1 neurons (Figure 19, 20). It

is important to note that the evidence of integration of taste signals with cVA by aSP-g

neurons is limited. While the connectomic data is very clear, the calcium imaging

experiments used only three flies, more data is needed to make this observation more robust.

mAL1 is activated at its dendrites by an abdominal signal via abdSMP neurons, and also at its

axons by aSP-g (Figure 21, 24). How these signals are integrated is unclear, but they could

evoke presynaptic inhibition by mAL1 onto dMS6 axons, given that mAL1 are GABAergic.

dMS6, an ascending neuron with dendrites in the VNC, is innervated by many modalities

from the legs (Figure 22). These include external mechano- and proprioceptive pathways, and

indeed dMS6 responds to increased load on leg muscles (Figure 23). dMS6 regulated

receptivity similarly to aSP-g, while mAL1 activation negatively affects female mating drive,

which would be consistent with the inhibitory relationship from mAL1 to dMS6 (Figure 20).

We found AVLP29 neurons to take a similar place in the circuit as mAL1, between aSP-g and

dMS6. This connectivity suggests that aSP-g activates mAL1 and AVLP29 together to switch

on an excitation - inhibition balance onto dMS6 axons, likely affected by other signals

(Figure 24). mAL neurons in male flies play a similar role in choosing the right target for

courtship (Clowney et al. 2015; Kallman, Kim, and Scott 2015).

This study found several examples of sensory integration motifs. Presenting a male

together with optogenetic taste stimulation caused a superlinear activation in aSP-g (Figure

18). Future work will characterise the precise quantitative nature of this dendritic integration.

At the next two circuit elements, we found examples of axo-axonal synapses; we speculate

that a different interaction emerges where dendritic signals are gated or modulated by

presynaptic inputs. This is in line with findings from many other studies using connectomic

data, that axo-axonal connections are prevalent in the fly brain (Bates, Schlegel, et al. 2020;

F. Li et al. 2020). What computational rules apply to this type of connection needs to be
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further investigated. Our work provides a circuit with defined behavioural roles and synaptic

signs as an entry point to this problem.

The anatomical and functional data we present show a layered circuit with sensory

integration at almost every step, including modalities (e.g. proprioception) that were not

previously considered to play a role in female receptivity. These findings open up questions

about the exact nature and ethological relevance of these sensory pathways: what stimuli

activate Ir94e GRNs, abdSMP neurons, and other dMS6 inputs? Furthermore, we believe that

the network we uncovered is a central part of the female mating decision: integrating a

multitude of sensory inputs from a courting male to make a binary decision whether to reject

or accept him. We propose that a motif of excitation-inhibition balance, similar to other

pathways in fly sexual behaviours, is at the core of this circuit, improving signal specificity to

fine-tune behaviour.
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Figure 25: Separation of positional and identity cues in cVA processing
cVA information diverges onto two parallel excitatory PN pathways at the first synapse.
Third-order neurons mainly extract either positional or identity features and integrate these
with other relevant sensory modalities. Neurons encoding male identity related information
are sexually dimorphic and bidirectionally regulate female receptivity.
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Table 2: Neuron identifiers from EM datasets (FAFB, hemibrain)

cell type FAFB skeleton id hemibrain bodyid

abdSMP 6536545, 4291069 519012059, 519603027

AD1g1 1316642 792326206

aSP-g1 1064888, 1100594, 1101176,
1070581, 1074687, 1079881,

1083904, 6649459

485430434, 485775679, 610916994,
887148641, 949534412

aSP-g2 1055936, 1064687, 7899781,
7918690, 534333, 1064853,
1086385, 1149437, 2477473

421992069, 641278400, 855414220,
5813115796

aSP-g3 7856299, 11322700, 8415303,
1041505, 1168923

329919036, 421650982, 485430336

AV2a2 1811965, 1870230, 6762450 486444499, 612285653, 674001478,
948135822

AVLP29 10977800, 7928068 580227374

DA1 lPN 4207871, 3239781, 2381753,
2380564, 2379517, 2345089,

2319457, 2863104, 61221,
57381, 755022, 57353, 57323,

57311, 27295

722817260, 754534424, 754538881,
1734350788, 1734350908, 1765040289,

5813039315

DA1 lvPN 4520197, 7710838, 7414894,
57179, 57158, 57035

757258507, 757591093, 792023887

DA1 lvPN2 7430367, 7423477, 7414916,
7414898, 57089, 57023, 57019,

57011

851684181, 1827473315, 792024028

123



DA1 ORN L 2285344 1671970331, 1764703462, 1574160129,
1574833154, 1575170261, 1639938708,
1669949998, 1670627821, 1671620813,
1671629267, 1671629301, 1671966114,
1671966254, 1671970212, 1671970367,
1671970683, 1672311578, 1672639485,
1672643988, 1703337673, 1703342190,
1703678670, 1704006659, 1704011227,
1734350776, 1734350800, 1734350801,
1734350808, 1734350882, 1734355450,
1734359876, 1734691780, 1734691853,
1734696429, 1734696604, 1735037273,
1735041817, 1735050696, 1735050861,
1735054428, 1735058800, 1735378225,
1735378236, 1735386920, 1764703552,
1765053669, 1765727039, 1766068129,
1766068153, 1766409090, 1766753982,
1766758683, 1796075469, 1796080038,
1796420624, 1796757192, 1796757522,
1796766157, 1797443721, 1797793830,
1826773830, 1827110060, 1827114589,
1827446803, 1827633289, 5812995356,
5812995402, 5812996926, 5812996943,
5813083386, 5813134848, 5901204334,

5901210481

DA1 ORN R 2253836 1734355466, 1827451271, 1671966064,
1671970238, 1671974365, 1672307311,
1672311668, 1672315788, 1672652372,
1702301766, 1703682799, 1703682848,
1703682852, 1703683023, 1703683156,
1734355247, 1734355428, 1734691670,
1734691865, 1734705240, 1735032816,
1735037070, 1735037194, 1735041965,
1735042035, 1735054607, 1735378183,
1735382530, 1735382574, 1735391275,
1735395504, 1735395524, 1764699151,
1765040222, 1765044896, 1765381455,
1765386030, 1765403303, 1766067809,
1766068147, 1766413024, 1766754285,
1766762919, 1795402166, 1795734015,
1795742734, 1796416505, 1796761826,
1797439276, 1797789401, 1826773768,
1858162227, 1858486077, 1858822939,
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1859190013, 5812995437, 5812996079,
5813020396, 5813054729, 5901204564,

1796757163

dMS6 1255100, 2125955 611262552, 704367157

G2N-aSLP 11463951, 11483002,
11490387, 11491648,
11491723, 11491809,
11491851, 11495175,

11968494, 11968950, 3917175

671618401, 5901195362

G2N-SLP1 7552826, 2434711 424379864

G2N-SLP2 1059970, 1064624 583042026, 614059839

G2N-SLP3 9484087, 11464526, 2686821,
3781311

330998071, 362024428

G2N-SLP4 9165878, 1102458 5813056890

G2N-SLP5 9040832, 2255652 515450389

il3LN6 8964539 5813018460, 5901206553

LC4 NA 1158187240, 1158864995, 1189559257,
1218901359, 1249932198, 1251287671,
1281303666, 1405780725, 1438524573,
1466861327, 1471601440, 1498574596,
1503999967, 1562673627, 1590979045,
1621357756, 1625080038, 1627117134,
1688505620, 1715459859, 1745821751,
1749258134, 1781268241, 1782668028,
1809264255, 1810956698, 1815070402,
1838257401, 1839288696, 1840636280,
1845078711, 1874035952, 1876471221,
1876894387, 1876898200, 1876902545,
1877217777, 1877930505, 1877939213,
1878271377, 1906159299, 1906496111,
1907156409, 1907169406, 1907510214,
1907519001, 1907571222, 1907574944,
1907578957, 1907584319, 1907587934,
1907924777, 1907933561, 1908226457,
1936848448, 1937875810, 1938207942,
1938541380, 1938544937, 1998922583,
2121711447, 2215161310, 5812993692,
5812998136, 5813000577, 5813055129,
5813061197, 5813069053, 5813069377,

5813075607, 5901215446
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lGRN 7759395, 7789757, 7789762,
7802087, 11302515, 11559749,

11987931, 10780443,
10795558, 11243248

NA

LPLC2 NA 1221971218, 1282007450, 1283013506,
1343749180, 1403392477, 1407179534,
1437850908, 1438908304, 1438912593,
1441598865, 1467548306, 1470971204,
1500598873, 1530636214, 1533683889,
1534363304, 1566411868, 1626482563,
1626827782, 1627131491, 1682707330,
1688164533, 1691259738, 1716496582,
1719225241, 1719595635, 1751329909,
1751670748, 1752016801, 1753674977,
1782364786, 1782369015, 1782369340,
1782369359, 1783051578, 1783051753,
1809614687, 1811630361, 1813403630,
1813403762, 1813403869, 1813403953,
1813403998, 1814414329, 1814418212,
1814422650, 1814426918, 1814777260,
1814780768, 1814781082, 1814781356,
1814781537, 1814781628, 1814781633,
1815126312, 1815126433, 1815131045,
1815471919, 1815480848, 1815809293,
1815826155, 1844750081, 1845449270,
1845453234, 1872033743, 1876147388,
1876147437, 1876484146, 1876492837,
1938195143, 2059978318, 5812987894,
5812996383, 5812998825, 5812999264,
5813034151, 5813038769, 5813038821,
5813038822, 5813038825, 5813039136,
5813046478, 5813050827, 5901214470,

5901226269

mAL1 1670287, 4119200, 8792484,
1182615, 1273130, 8167845

360958913, 390616496, 452694446

pC1 3838015, 3807212, 3212353,
3781621, 3837769, 3794183,
3884170, 3979930, 3883095,

3770805

5813046951, 267214250, 267551639,
5813063587, 514850616

pGRN 7108314, 5864214 NA

vpoDN 5094164 5813057864
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pC1 neurons and vpoDN were reconstructed in FAFB and published by Wang et al.

(2021). We reconstructed all cell types on both sides in FAFB with the following exceptions:

AD1g1, AV2a2, AVLP29, il3LN6, G2N-aSLP, lGRN, vpoDN. All cell types in the hemibrain

come from one hemisphere, with the following exceptions: DA1 ORN, il3LN6, dMS6.

Table 3: List of synaptic weights from FAFB and hemibrain for relevant
connections across cell types

As described above, most cell types in FAFB were reconstructed on both sides of the

brain, with the following exceptions: AD1g1, AV2a2, AVLP29, il3LN6, G2N-aSLP, lGRN,

vpoDN. The presented FAFB synaptic weights are the sum from both sides for cell type pairs,

where both pre- and postsynaptic partners are reconstructed on both sides. Synaptic weights

from the hemibrain are based on the version 1.2.1 of the dataset, displayed at neurpint.org,

and represent connectivity from a single hemisphere, with the following exceptions: DA1

ORN, il3LN6, dMS6. ORNs from the right hemisphere (DA1 ORN R) are ipsilateral to the

antennal lobe in the hemibrain, and ORNs from the left hemisphere (DA1 ORN L) are

contralateral.

presynaptic
cell type

postsynaptic
cell type

FAFB #
synapses

hemibrain #
synapses

abdSMP mAL1 43 23

aSP-g1 AVLP29 44 75

aSP-g2 aSP-g1 129 77

aSP-g2 aSP-g2 74 29

aSP-g2 AVLP29 45 23

aSP-g2 mAL1 254 64

aSP-g2 pC1 2 17

aSP-g3 mAL1 12 25

AV2a2 AD1g1 NA 142

AV2a2 pC1 18 48

AVLP29 aSP-g1 27 42

AVLP29 aSP-g2 21 11

AVLP29 dMS6 84 148
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DA1 lPN aSP-g2 132 37

DA1 lPN AV2a2 232 115

DA1 lPN DA1 lvPN2 NA 114

DA1 lPN DA1 ORN L NA 43

DA1 lvPN aSP-g2 13 3

DA1 lvPN pC1 85 59

DA1 lvPN2 aSP-g2 113 28

DA1 ORN L DA1 lPN NA 3580

DA1 ORN R DA1 lPN NA 5184

DA1 ORN L DA1 lvPN NA 113

DA1 ORN R DA1 lvPN NA 157

DA1 ORN L DA1 lvPN2 NA 9

DA1 ORN R DA1 lvPN2 NA 28

DA1 ORN L il3LN6 NA 1901

DA1 ORN R il3LN6 NA 359

DA1 ORN L DA1 ORN L NA 1070

DA1 ORN R DA1 ORN R NA 1411

DA1 ORN L DA1 ORN R NA 959

DA1 ORN R DA1 ORN L NA 791

dMS6 AVLP29 33 37

dMS6 pC1 68 90

G2N-aSLP aSP-g1 36 NA

G2N-aSLP aSP-g2 11 NA

G2N-aSLP aSP-g3 61 NA

G2N-SLP1 aSP-g1 79 80

G2N-SLP1 aSP-g2 85 28

G2N-SLP1 aSP-g3 25 19

G2N-SLP2 aSP-g1 3 11

G2N-SLP2 aSP-g2 34 29

G2N-SLP2 aSP-g3 33 45

G2N-SLP3 aSP-g2 70 27

G2N-SLP3 aSP-g3 24 18

G2N-SLP4 aSP-g3 33 15
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G2N-SLP5 aSP-g3 66 20

il3LN6 DA1 lPN NA 465

il3LN6 DA1 lvPN NA 3

il3LN6 DA1 lvPN2 NA 5

il3LN6 DA1 ORN L NA 165

il3LN6 DA1 ORN R NA 297

LC4 AD1g1 NA 434

LPLC2 AD1g1 NA 474

lGRN G2N-SLP1 63 NA

lGRN G2N-SLP2 86 NA

mAL1 dMS6 87 29

pC1 pC1 426 347

pC1 vpoDN 386 92

pGRN G2N-SLP1 166 NA

pGRN G2N-SLP2 56 NA
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Table 4: Neuron identifiers from the FANC EM dataset

cell type FANC skeleton id

dMS6 206759, 206956

asc-MT 228730, 243758

asc-MS 228414, 230684, 232113, 233993

int-Abd 230179, 230735, 231741

asc-Pro 208452, 208721, 208759, 227353, 229411

int-Ms 231162, 247540

cfRN
334563, 334569, 334590, 334590,

338766, 342249, 343258, 391955, 392293

Table 5: List of synaptic weights from FANC across cell types

presynaptic
cell type

postsynaptic
cell type

FANC #
synapses

asc-MT dMS6 39

asc-MS dMS6 34

int-Abd dMS6 33

asc-Pro dMS6 29

int-Ms dMS6 25

cfRN asc-MT 27

Synaptic weights including dMS6 are numbers based on both hemispheres.
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Appendix
The appended paper was under review at the time of submission, and appeared as a

preprint on the biorxiv server (P. H. Li et al. 2020). This study introduces Flood Filling

Neural Network based automated image segmentation methods for connectomic

reconstruction. It also presents novel data augmentation and alignment techniques to deal

with missing EM sections and local misalignment. I contributed to this work by showing how

this segmentation facilitates finding the most relevant synaptic partners of a neuron. In brief,

prior best practice was annotating all (pre- or post-) synapses of a neuron, and randomly

sampling connected profiles. Due to the random nature of the sampling the partners with

most synaptic connections are the most likely to be found. This strategy can be improved

with the segmentation: once synapses are annotated, the segments can be ranked by the

number of overlapping connections. By following the ranking to reconstruct connected

segments, neurons with strong synaptic weights can be found with tracing out five times

fewer neurons than with random sampling (Figure 7D, E in the paper). We used this method

to find presynaptic partners to aSP-g neurons and G2N-SLP1 (Figure 18). This approach can

be leveraged by connectomic researchers working with CATMAID on any segmented EM

dataset by using the R catnat package and the functions: segments_ranked_post, and

segments_ranked_pre; https://github.com/jefferislab/catnat.
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Abstract: 
Reconstruction of neural circuitry at single-synapse resolution is a key target for improving             
understanding of the nervous system in health and disease. Serial section transmission electron             
microscopy (ssTEM) is among the most prolific imaging methods employed in pursuit of such              
reconstructions. We demonstrate how Flood-Filling Networks (FFNs) can be used to           
computationally segment a forty-teravoxel whole-brain Drosophila ssTEM volume. To         
compensate for data irregularities and imperfect global alignment, FFNs were combined with            
procedures that locally re-align serial sections as well as dynamically adjust and synthesize             
image content. The proposed approach produced a largely merger-free segmentation of the            
entire ssTEM Drosophila brain, which we make freely available. As compared to manual tracing              
using an efficient skeletonization strategy, the segmentation enabled circuit reconstruction and           
analysis workflows that were an order of magnitude faster.  
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Introduction: 
The description of neural function in terms of the circuit architecture of individual neurons and               
their connections remains a fundamental goal in neurobiology (Shepherd and Grillner 2018).            
Progress towards this goal has recently been enabled by advances in “connectomics”,            
specifically nanometer-resolution volume imaging as well as computational methods for          
visualizing and annotating 3d image data. Scale, however, remains a fundamental constraint:            
most connectomic studies have been limited to imaging volumes that are millions of cubic              
microns or less, and in many cases only a fraction of the imaged data have been reconstructed                 
and analyzed (Kornfeld and Denk 2018). In practice this has meant limiting connectomics             
studies to, for example, fractions of mouse (Bock et al. 2011; Helmstaedter et al. 2013; Kim et                 
al. 2014; Kasthuri et al. 2015; W.-C. A. Lee et al. 2016), rat (Schmidt et al. 2017), rabbit                  
(Anderson et al. 2011), songbird (Kornfeld et al. 2017), zebrafish (Wanner et al. 2016), or               
Drosophila (Takemura et al. 2013; Takemura, Aso, et al. 2017; Takemura, Nern, et al. 2017;               
Shan Xu et al. 2020) brains, or else characterizing complete but smaller brains such as C.                
elegans (White et al. 1986; Varshney et al. 2011) or larval Drosophila (Ohyama et al. 2015). 
 
A recent imaging milestone provides both completeness and significantly increased scale           
compared to previous synapse-resolution connectomic studies: a serial section transmission          
electron microscopy (ssTEM) volume of a complete adult Drosophila brain imaged at 4x4 nm              
resolution and sectioned at 40 nm thickness, known as the “full adult fly brain” (FAFB) dataset                
(Zheng et al. 2018). This trove of image data has the potential to reveal fundamental aspects of                 
the structure and function of the Drosophila central nervous system, provided that significant             
hurdles related to the manual and automated reconstruction of the neurons and their             
connections can be mitigated or overcome (Funke et al. 2016).  
 
For example, a complication of ssTEM and serial section microscopy in general is the necessity               
and difficulty of computationally aligning independently imaged sections into a coherent           
three-dimensional volume, in which physical structures in the tissue are represented at stable             
XY locations across consecutive imaging planes. In fact, large serial section electron            
microscopy datasets often require warping, or elastic alignment algorithms (Saalfeld et al.            
2012), as well as specific compensation for data irregularities that invariably occur such as              
tears, folds, cracks, and contaminant particles (Wetzel et al. 2016; Zheng et al. 2018). For large                
datasets, complete identification and compensation for artifacts is historically intractable, with           
some misalignments generally persisting throughout subsequent analysis efforts. When tracing          
over these misalignments, there is a significantly increased danger of introducing errors such as              
mergers (in which two or more processes are erroneously connected to one another), for both               
automated algorithms as well as trained human annotators (Schneider-Mizell et al. 2016). 
 
In order to compensate for imperfections in global alignment of the full adult fly brain (FAFB)                
ssTEM data, we integrated a new “local realignment” procedure into the flood-filling network             
(FFN) segmentation method (Michał Januszewski et al. 2018), which operates on local            
subvolumes as an intermediate step towards building a whole volume segmentation. Local            
realignment improved the alignment quality of subvolumes provided to the FFN, and when             
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combined with a procedure that further gated FFN segmentation depending on resulting data             
quality, reduced total merge errors by an order of magnitude (Fig. 3). In an additional “irregular                
section substitution” process, we automatically detected data irregularities that persisted after           
local realignment and, where possible, replaced affected regions with data from neighboring            
sections. This reduced split errors (where two processes are erroneously disconnected from            
one another) and thus tripled the “expected run length” (Michał Januszewski et al. 2018) (Fig.               
4). Finally, for severe situations in which multiple sections of raw data were missing, we used a                 
Segmentation-Enhanced CycleGAN (SECGAN) to synthesize replacement imagery (Michal        
Januszewski and Jain 2019). 
 
In the following we (1) describe a multi-scale FFN segmentation pipeline for FAFB, (2) show               
how local realignment and irregular section substitution can be used to deal with imperfect              
alignment and artifacts, (3) characterize reconstruction accuracy using ground truth skeletons,           
and (4) show how the automated segmentation results can be used to assist and accelerate               
manual reconstruction and analysis of neural circuits. We provide the complete segmentation            
and accompanying metadata such as derived skeletons as a public resource to assist further              
efforts related to FAFB, Drosophila connectomics, and connectomic algorithm development.  
 
Results: 
Flood-filling segmentation of FAFB 
The primary result presented here is an automated segmentation of neuronal processes            
densely covering the entire FAFB dataset (Fig. 1), which contains 40 teravoxels of tissue within               
a 995x537x283 μm EM volume resulting from a correlation- and feature-based deformable            
alignment of ~21 million raw ssTEM camera images (Zheng et al. 2018; Khairy, Denisov, and               
Saalfeld 2018). We segmented FAFB via a multistage pipeline whose workhorse was the FFN              
(detailed below), operating in a coarse-to-fine mode that reduced computational cost by an             
order of magnitude. 
 
The segmentation result, referred to as “FAFB-FFN1”, is largely an oversegmentation, in which             
each neuron in the dataset corresponds to multiple automated segments. Conversely, merge            
errors, in which a single segment overlaps multiple neurons, are rare. We evaluated these              
properties by comparing the segmentation to a set of 525 ground truth neuronal skeletons              
produced by human tracers (Zheng et al. 2018, 2020) (Fig. 2). For each ground truth skeleton,                
we found all FFN segments that overlapped skeleton node positions; ground truth skeletons             
could then be visualized alongside their overlapping segments to assess the quality of             
segmentation coverage for each neuron (Fig. 2B-C). We also checked whether each segment             
overlapped only a single skeleton, versus erroneously merging multiple skeletons together.           
Finally, for each ground truth skeleton we analyzed the percent of total path length correctly               
covered by merge-free segments versus the percent impacted by merge errors (Fig. 2D). Out of               
525 ground truth skeletons, 509 had negligible merge errors. 
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Figure 1 . Dense segmentation of the entire fly brain via FFNs. (A) 3D rendering of a smoothed tissue                  
mask of the FAFB dataset. Arbitrary coronal sections (dataset XY plane) reveal the FAFB-FFN1              
segmentation throughout the interior. In the lower right, two recent dense segmentation benchmarks, from              
the songbird tectum (Michał Januszewski et al. 2018) and Drosophila optic lobe (Takemura et al. 2015),                
for comparison. Scale bar 200 μm. Exterior surface of FAFB is pseudo-textured. (B-E) Increasing zoom               
levels of coronal sections intersecting the mushroom body peduncular tract (right hemisphere),            
FAFB-FFN1 segmentation overlaid on CLAHE processed raw data. Scale bars 200, 50, 10, 1 μm. 
d, dorsal; v, ventral; a, anterior; p, posterior; r, right hemisphere; l, left hemisphere. 
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Figure 2 . Automated neuron reconstructions validated against manual neuron tracings. (A) Manual            
skeleton tracings of Kenyon cell (KC) 12874 and olfactory projection neuron (OPN) 21999 (Zheng et al.                
2018), overlaid on the reference fly brain (Jefferis 2018a). Scale bar 120 μm. (B) The same KC12874                 
skeleton as in (A), displayed alongside the 23 FFN segments that overlap with it for more than 3 μm of                    
path length (offset for clarity, segments colored arbitrarily). FFN segments cover significant skeleton path              
length without erroneously merging into any neighboring neurites. Scale bar 20 μm. (C) As (B), for the 14                  
segments that overlap OPN21999. (D) Top, for each ground truth skeleton (n=525), three points showing               
coverage of the skeleton by FFN segments as a percent of total path length. The point groups are: just                   
the largest segment (by path length covered) for each skeleton (green), the summed path length covered                
by the five largest segments per skeleton (blue), or the summed path length per skeleton for all segments                  
greater than 1 μm (red). Points for KC12874 and OPN21999 are indicated. Bottom, for each skeleton, the                 
percent of total path length covered by segments that erroneously merge multiple skeletons. For 478 out                
of 525 cells there are zero merge errors, and for 509 cells the merged path length is < 1%. 
 
We further quantified FAFB-FFN1 final segmentation quality using summary metrics based on            
the ground truth skeletons (Michał Januszewski et al. 2018). Edge accuracy categorizes            
skeleton edges as either correctly reconstructed, or else falling into one of three error              
categories: split, omitted, or merged. FAFB-FFN1 achieves edge accuracies of 91.5% correct,            
4.4% split, and 3.3% omitted, with only 0.82% merged. Expected run length (ERL), computes              
the expected error-free path length in the segmentation given a uniformly sampled starting point              
along a ground truth skeleton. FAFB-FFN1 achieves an ERL of 199 μm, comparable to the path                
error rates computed between multiple expert human tracers in adult (61 μm / error) and larval                
(27 μm / error) Drosophila brain volumes (Zheng et al. 2018; Schneider-Mizell et al. 2016). We                
also used the skeleton metrics extensively to evaluate the quality of intermediate results             
throughout the development of the detailed FAFB-FFN1 pipeline described below (Figs. 3-5). 
 
Handling input data irregularities 
To segment FAFB, it was critical to address misalignments and data irregularities such as              
damaged, occluded, missing, or distorted sections. While these issues affect most connectomic            
datasets, they are particularly prevalent in serial-section data. FFN segmentation without           
specific procedures to address irregularities resulted in unacceptably high error rates,           
particularly for merge errors (Fig. 3). One strategy to handle irregularities is simply to prevent               
the FFN from moving into any field of view where irregularities are detected (Michał              
Januszewski et al. 2018). This reduces merge errors while increasing splits. More critically, it              
can also result in significant omission errors, where regions of the dataset are left unsegmented               
(Figs. 3A, 4A). Therefore, we addressed these issues more directly via three “preprocessing”             
steps (attempting to correct issues in the raw inputs before they are passed to the FFN): Local                 
Realignment (LR), Irregular Section Substitution (ISS), and Segmentation-Enhanced CycleGAN         
(SECGAN).  
 
LR sidesteps the difficulties inherent in globally aligning large serial-section datasets by            
correcting residual misalignment within each local subvolume block just prior to segmentation            
(Fig. 3A). We first automatically estimated residual misalignment in the globally aligned dataset             
via neighboring section cross-correlation template matching (see Methods). The resulting          
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section-to-section shift estimates allowed each local subvolume block to be realigned on-the-fly            
prior to FFN segmentation, with additional raw image context drawn as needed per section from               
the underlying dataset. LR significantly improved segmentation, correcting many merge errors           
and splits (Fig. 3B-E). 
 
ISS was also applied on-the-fly prior to FFN segmentation, to address the problems of              
damaged, occluded, missing, and distorted areas by selectively replacing these areas with data             
from neighboring sections (Fig. 4). We again used section-to-section cross-correlation, now to            
detect all classes of irregularity remaining after LR (e.g. Fig. 4A-B). We then evaluated, for each                
detected irregular section, whether the cross-correlation would be improved within the local            
subvolume block by replacing the irregular section with a copy of the previous neighboring              
section. Accepting substitutions that passed this evaluation and applying them prior to FFN             
segmentation significantly improved contiguity and completeness of the result (Fig. 4C), nearly            
tripling expected run length (Fig. 4D). While ISS did incur an increase in merge errors, this                
negative impact was effectively nullified by the later oversegmentation consensus stage (see            
below). For any areas where detected irregularities persisted after both LR and evaluation for              
ISS, we fell back to simply preventing the FFN from moving into the area. This corrected some                 
remaining merge errors, at the cost of omission and split errors that were addressed via later                
fill-in and agglomeration stages (see below). 
 
Finally, in three locations in the volume where multiple consecutive sections were partially or              
completely missing, we trained a SECGAN to synthesize (i.e., “hallucinate”) missing data (Fig.             
4E). The SECGAN enabled the FFN to trace through about 60% of the neurites in such                
locations, on average.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2020. ; https://doi.org/10.1101/605634doi: bioRxiv preprint 

https://doi.org/10.1101/605634
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 3. Local realignment (LR). (A) LR procedure; a local subvolume is requested for FFN inference                
(1-2); this is aligned according to section image content (3) and then cropped and segmented (4); the                 
segmentation output is then dealigned (5) and cropped back to the original requested subvolume              
dimensions for incorporation into a coherent output volume (6). The expansion of the subvolume bounds               
in (2) is computed to account for the two subsequent rounds of cropping. (B) YZ view of FFN                  
segmentation at for example location in FAFB without LR. (C) The same segmentation result as (B), with                 
LR applied post-hoc. This reveals more clearly the impact of the discontinuity in section alignment,               
including many clear split errors as well as a merge error (stars). (D) Segmentation of the same location                  
as (B) and (C), now with LR applied as a preprocessing step prior to segmentation. This fixes the merge                   
error as well as most splits. (E) Impact of LR on skeleton metrics for 16x16x40 nm resolution FFN                  
segmentation of the Sample E mushroom body cutout. LR fixes many merge and split errors, but cannot                 
correct heavily distorted areas or other types of data irregularity such as damaged or occluded sections.                
In combination with movement restriction to address these other cases, LR reduced merge errors by an                
order of magnitude while minimizing splits and omitted areas. 
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Figure 4 . Irregular section substitution (ISS) and SECGAN. (A) XZ view of FFN segmentation for an                
example location in FAFB, with LR and movement restriction preprocessing (Fig. 3). Segments are              
interrupted at multiple sections due to data artifacts incompletely addressed by LR. When artifacts occur               
on nearby sections, movement restriction can cause the whole area to be left unsegmented. (B) XY views                 
of two sections from (A) showing tissue fold artifacts. (C) The same view as (A), but with automatic ISS                   
applied prior to segmentation. (D) Impact of ISS on skeleton metrics for 16x16x40 nm resolution FFN                
segmentation of Sample E. Top, percent remaining skeleton edge errors by subtype. Bottom, expected              
run length, the average error-free path length of segments under uniform sampling along skeletons. ISS               
substantially reduces omission errors and nearly triples expected run length, but also causes some new               
merge errors. However, the increased merge error effect is nullified by later oversegmentation consensus              
procedure (Fig. 5). (E) Top, XZ view of three consecutive missing sections (Z indices 3595-3597). Bottom,                
SECGAN interpolation replaces the missing sections with synthesized imagery. 
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Overall FAFB segmentation pipeline 
FFN segmentation was first performed at reduced resolution (16x16x40 nm) to efficiently handle             
large structures at the scale of the whole fly brain, before switching to higher resolutions to fill in                  
remaining gaps and capture finer structures (Fig. 5A). As a result, the FFN considered 2.2               
teravoxels of tissue for each complete run at 16x16x40 nm resolution, but only 1.5 teravoxels of                
remaining unlabeled tissue at 8x8x40 nm (versus 8.8 teravoxels total) and only 4.2 teravoxels of               
remaining unlabeled tissue at 4x4x40 nm (versus 35.2 teravoxels total). Furthermore, resolution            
was selectively reduced within, but not across, tissue sections (i.e. in the X and Y, but not Z                  
dimensions). This rendered most pipeline inputs more isotropic than the raw data, allowing             
network architectures previously developed on more isotropic datasets to be successfully           
redeployed. 
 
The full segmentation pipeline consisted of three major stages: consensus, fill-in, and            
agglomeration (Fig. 5A). Each stage used the FFN in a different mode, and primarily addressed               
a different class of segmentation error (merges, omissions, and splits) as revealed in the              
skeleton metric evaluations (Fig. 5B). Every step involving FFN evaluation (Fig. 5A, rounded             
boxes) also included LR and ISS preprocessing, except the SECGAN computations which            
handled misalignment and data irregularity separately. 
 

 
Figure 5. Overall FAFB-FFN1 segmentation pipeline. (A) Detailed pipeline steps and major stages,             
bold numerals highlight selected intermediate volumes in the pipeline used for evaluations in (B).              
Rounded boxes indicate FFN inference stages. Each FFN step indicates the model checkpoint used. (B)               
Evaluation metrics relative to ground truth skeletons at progressive stages of the pipeline, columns              
corresponding to pipeline stages with bold numeral labels in (A). Top, percent remaining skeleton edge               
errors by subtype. Bottom, expected run length. 
 
In the initial stage, we ran the FFN multiple times at 16x16x40 nm resolution from different                
starting conditions to produce five separate segmentations of the entire FAFB volume. We then              
combined these results via an “oversegmentation consensus” procedure that breaks segments           
at any location where the input segmentations disagree (Michał Januszewski et al. 2018). The              
resulting consensus segmentation has a very low merge error rate at the cost of accumulating               
split errors (Fig. 5B), as merge errors are retained only when present in all input segmentations,                
whereas split errors in any input carry through. 
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In the second stage, the FFN was only allowed to fill-in remaining empty areas while leaving                
pre-existing consensus segments unchanged, thus reducing omission errors without introducing          
significant new merge errors. The primary cause of omissions was inadequate image resolution;             
FFNs trained and run at 16x16x40 nm resolution were unable to follow some finer structures,               
leaving these regions empty. FFNs trained and run at 8x8x40 or 4x4x40 nm were able to fill in                  
most of these areas (Fig. 5, steps 6-7). 
 
In the third stage, we used the FFN to evaluate whether selected abutting segments from prior                
fill-in results should be merged together (i.e. automatically agglomerated). For each evaluation,            
we extracted small subvolumes (60x60x30 voxels) surrounding a local interface between two            
candidate segments from both the image volume and the segmentation, seeded the FFN from              
several points on each side of the interface, and accepted a merge for the segments if the FFN                  
was able to flood significantly and consistently across the interface from both directions (Michał              
Januszewski et al. 2018). 
 
We evaluated agglomeration candidates at multiple resolutions. For segments in the 16 nm             
segmentation (Fig. 5A, step 5) we evaluated candidates using an FFN trained and run at               
32x32x40 nm. Segments in the 8 nm segmentation (Fig. 5A, step 6), including those created in                
consensus and fill-in stages, were agglomerated using FFNs trained at both 16x16x40 and             
8x8x40 nm resolution. Segments in the 4 nm segmentation (Fig. 5A, step 7) were agglomerated               
at 4 nm. The automated agglomeration process corrected 30% of the remaining splits in the               
segmentation (1.5% of total edges), and was tuned to avoid committing significant new merge              
errors (Figure 5B). 
 
Finally, we used SECGAN synthesized imagery in three regions of the volume to bridge multiple               
consecutive missing or irregular sections. Without SECGAN replacement, these areas split           
crossing processes for most of the neurons across the entire XY extent of the volume. We                
analyzed FFN segmentation of the SECGAN replacement imagery to agglomerate          
non-SECGAN segments across the gaps, repairing 150,000 splits and improving final ERL from             
156 to 199 μm (Fig. 5B). 
 
Application of automated segmentation to circuit tracing workflows 
Experiments with human tracers demonstrated the benefit of using FFN segmentation to assist             
typical biological analysis workflows. We assessed raw speed-up of neuron tracing in several             
brain areas (Fig. 6) as well as benefits for trans-synaptic circuit tracing efforts (Fig. 7). Some                
neuron tracing experiments (Fig. 6) were conducted using earlier preliminary versions of the             
FFN segmentation, with ERLs of 40-50 μm (see Methods); because of the human effort involved               
these were not repeated using the more complete final FAFB-FFN1. In some cases, tracers              
worked directly with FFN segments, while for other workflows we first automatically skeletonized             
the segmentation via blockwise TEASAR (Sato et al. 2000) and the tracers then worked with the                
skeleton fragments. Depending on the specific workflow, observed benefits ranged from           
several-fold to more than an order of magnitude in human effort saved. 
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As part of an ongoing effort to characterize the network connectivity of the mushroom body               
calyx (Zheng et al. 2020), we traced the dendritic arbors of 1,146 Kenyon cells (KCs) to                
determine the complement of olfactory projection neuron (OPN) inputs to each (Fig. 6A). All              
tracing was done in the CATMAID environment (Saalfeld et al., Schneider-Mizell et al.) (see              
Methods). An initial group of 545 KCs was traced entirely via manual node marking, with each                
arbor reconstructed completely. For a second group of 601 KCs, the arbor was instead              
reconstructed by manually concatenating segmentation-derived skeleton fragments, with limited         
manual node marking to link between automated skeletons as needed. In this case, the arbor               
was traced only to the completeness necessary to positively identify all OPN inputs (Fig. 6A,               
inset). FFN concatenation is a feasible approach in part due to the very low merge error rate in                  
the segmentation (Fig. 5B) as well as the high coverage of the larger (≥ 1 μm path length)                  
automated skeleton fragments that tracers find convenient to work with (Fig. 2B-D). Comparing             
tracing speeds (person-minutes per μm path length) shows a 5.4x speed-up on average from              
using FFN skeletons. 
 
In a separate tracing effort, a variety of neurons in the lateral horn (Frechter et al. 2018) and                  
gnathal ganglion (Hsu and Bhandawat 2016) were also reconstructed either manually or via             
FFN concatenation (Fig. 6B). In this case, the goal of tracing was primarily to allow cell type                 
identification; this generally requires lower levels of completeness, e.g. just the cell body fiber              
and the major axonal and dendritic branches. Comparing tracing speeds for this workflow shows              
an 14.6x speed-up on average from using FFN skeletons. 
 
Another common biological analysis workflow is trans-synaptic tracing. In this setting, the goal is              
to determine for a given neuron how its input and output synapses are distributed, and what the                 
complement of upstream and downstream synaptic partner neurons are. Often there is a             
particular emphasis on identifying strong partners, e.g. those making five or more synaptic             
connections with the given neuron. 
 
We assessed the benefits of using FFN segmentation to assist trans-synaptic tracing (Fig. 7).              
For these experiments, we assumed that a neuron of interest had already been traced, whether               
manually or via FFN concatenation (Fig. 6), but its upstream and downstream partner neurons              
had not. We further assumed that all input and output synapse locations had been marked; in                
this case marking was done manually, but an automated approach (Kreshuk et al. 2015;              
Buhmann et al. 2018; Heinrich et al. 2018; Huang, Scheffer, and Plaza 2018; Buhmann et al.                
2019) would also be viable. 
 
First, we asked how many input synapses onto a given neuron are associated with non-trivial               
(overlapping at least 3 consecutive manually traced skeleton nodes) upstream FFN segments.            
Starting from 82 manually traced neurons in the lateral horn, we found that on average 84% of                 
upstream synaptic connections could be recovered by concatenating FFN segments (Fig. 7A).            
For a number of traced partners recovery was close to 100%, and in some cases synapses                
were found in the FFN segmentation that had been missed in manual tracing. 
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Figure 6 . Segmentation-assisted neuron tracing. (A) Tracing speed (person-minutes per 𝜇m path            
length) for Kenyon cells in the mushroom body calyx. Cells are grouped according to the reconstruction                
methodology: “full manual” (gray points, n=545) or “FFN concatenation” (blue points, n=601), in which              
FFN segmentation-derived skeleton fragments were linked together. Inset illustrates for one cell the             
targeted level of reconstruction completeness for the concatenation methodology (blue) versus the            
complete dendritic arbor (gray). (B) Tracing speeds for various neurons in the lateral horn and gnathal                
ganglion, traced to lower levels of completeness primarily for cell type identification (mean path length for                
different completeness indicated for reference). Cells are grouped by reconstruction methodology as in             
(A).  Linear fits indicate tracing speed-ups from using FFN concatenation of 5.4x (A) and 14.6x (B). 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2020. ; https://doi.org/10.1101/605634doi: bioRxiv preprint 

https://doi.org/10.1101/605634
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 7 . Trans-synaptic circuit tracing. (A) For a set of manually traced neurons in the lateral horn                 
(LH, n=82), the number of incoming synapses recovered per upstream partner by concatenating FFN              
segments, versus ground truth synapse total from manual search. Upstream partners have either axonal              
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morphology (orange points) or dendritic morphology consistent with a local interneuron (green points).             
Points along the dashed gray unity line indicate near-perfect synapse recovery. The linear fit indicates               
84% recovery on average. (B) Illustration of two ways to use FFN segments to recover strong upstream                 
synaptic partners. For a traced neuron of interest (blue), we use the FFN segments (top) to search for                  
clusters of marked incoming synapses (red spheres) that originate from a single upstream partner; these               
are probable strong connections. If other cells of the same type have also been traced (gray), we can also                   
identify FFN segments containing multiple synapses onto any cell of the type of interest as probable                
strong partners (bottom). (C) Cumulative density plot for the proportion of upstream fragments             
discovered, and the number of connections they have with the given neuron. FFN segmentation-assisted              
sampling upstream of single starter neurons (black, n=82) and sampling by cell type (blue, n=54 neurons                
that have >1 neuron in their cell type traced). (D) Example average sampling curves for finding strongly                 
connected partners (connected by five or more synapses) of LH neurons. Left, sampling curves for               
downstream partners of a DA2 projection neuron (Huoviala et al. 2018). We assessed the recovery of                
strongly connected synaptic partners with different synapse sampling strategies (n=100); solid line:            
completely random sampling; dashed line: a sample of downstream FFN segments ranked by the number               
of estimated connections (“ranked sampling”); dotted line: a sample of downstream FFN segments ranked              
by the number of estimated connections from all five members of this cell type (“cell type assisted ranked                  
sampling”). Right, sampling curves for upstream partners of a PD2a1 LH output neuron (Dolan et al.                
2018). Again, five neurons of the same cell type were used for cell type assisted ranked sampling. (E)                  
Tracing benefit, i.e. the average proportion of randomly sampled synapses from which one would no               
longer need to reconstruct (to discover the same number of strong synaptic partners) if using the ranked                 
sampling approach. (F) Top, swarm plots of the proportion of strongly connected upstream partners that               
can be recovered by sampling only from FFN segmented fragments that contain two or more connections                
to the neuron of interest (gray) or to any neurons of the same cell type (color). Bottom, proportion of all                    
partners, strong or weak. Left, neurons whose upstream segment has axonic morphology. Right,             
upstream segments with dendritic morphology, consistent with local interneurons. 
 
Availability of FFN segmentation also allowed more efficient, targeted sampling for strong            
synaptic partners (Fig. 7B-F). The baseline workflow for strong partner discovery is simply to              
sample input/output synapses for a given neuron in arbitrary order, and reconstruct each             
corresponding upstream/downstream partner iteratively to find those making multiple synapses          
onto the neuron of interest, which implies greater significance to the neural circuit (Frechter et               
al. 2018). However, if an existing automated segment connects multiple synapses together,            
then that partner can immediately be prioritized for reconstruction as a likely strong partner. This               
can be extended if the neuron of interest is one of a class of neurons that have also already                   
been traced; in this case an upstream segment that contains multiple synapses onto the neuron               
of interest or any other neurons of the same class is a likely strong partner (Fig. 7B-D).                 
Segmentation-assisted ranked sampling allowed faster recovery of strong connections for a           
given level of reconstruction effort, for both upstream and downstream partners and especially             
for partner axons (Fig. 7D-F). In sum, this allowed human tracers to skip as many as 80% of                  
FFN fragments that were not multiply connected (Fig. 7C) to the neuron of interest and still                
recover the large majority of strongly connected partners (median 97.6% recovered for cell type              
ranked sampling with axonic partners; 100% for dendritic partners; Fig. 7F, top). 
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Discussion: 
We have demonstrated that it is possible to segment a complete ssTEM volume of a Drosophila                
brain using a combination of Flood-Filling Networks and novel procedures that compensate for             
imperfections in the raw data and its initial global alignment. To our knowledge, FAFB-FFN1 is               
the largest dense segmentation of a central nervous system that has been publicly released,              
and the first “whole brain” dataset that has been densely segmented by computational means.  
 
The approaches introduced here handle data irregularities explicitly, detecting them and           
preprocessing on the fly to correct them before the segmentation model sees the data. An               
alternative approach is to train the segmentation model to take irregularities in stride, e.g. via               
training data augmentations that simulate the spectrum of issues present in the dataset (K. Lee               
et al. 2017). We found that while including these augmentations during FFN training improved              
segmentation robustness, it was not sufficient to allow competitive segmentation of FAFB            
without explicit handling of irregularities. 
 
FAFB-FFN1 is largely an “over-segmentation” in which each neuron in the automated            
segmentation is composed of a number of separate segments, each of which average 199 μm               
in path (run) length when sampled uniformly. Experiments with human tracers have shown that              
it is more efficient, by an order of magnitude, for humans to manually concatenate              
automatically-generated segments, as compared to performing manual skeletonization.        
Moreover, some highly useful biological inferences, such as identification of neuronal cell type,             
can be performed using FAFB-FFN1 in minutes or seconds per neuron, as compared to hours               
in the purely manual case. Experiments also demonstrated the applicability of FAFB-FFN1 to             
circuit tracing and connectomic analyses; these studies combine segmentation with an           
accounting of the synaptic connections between neurons, for which large-scale automated           
methods on Drosophila tissue are an active research area (Kreshuk et al. 2015; Buhmann et al.                
2018; Heinrich et al. 2018; Huang, Scheffer, and Plaza 2018; Buhmann et al. 2019). 
 
Further improvements in the automated reconstruction of volumes such as FAFB may be driven              
by advances in segmentation methodology. However, a survey of errors in FAFB-FFN1 that             
persist even after preprocessing for data irregularities suggests that further improvement to            
global or local alignment methods could improve results even with the same segmentation             
approach. Furthermore, the FFNs used to generate FAFB-FFN1 were trained primarily on a             
small subset of the volume located in one particular region of the fly brain (Funke et al. 2016),                  
augmented with a handful of sparsely proof-read neurons sampled from other regions. Training             
on additional ground truth that represents greater coverage of distinct regions and cell types in               
the fly brain may also improve reconstruction accuracy. One alternative segmentation of FAFB             
based on further refinement of the global alignment and an expanded training dataset has              
recently been released through the open-access, centrally-managed FlyWire tracing         
environment (Dorkenwald et al. 2020). Although not free to download, this resource will further              
enhance circuit analyses. Given that error modes between FAFB-FFN1 and FlyWire are            
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frequently uncorrelated, there is also an opportunity to combine both resources in tracing             
workflows, provided their differences in global alignment and data accessibility can be            
reconciled. 
 
In addition to accelerating the reconstruction and study of Drosophila neurons and circuits,             
FAFB-FFN1 may provide a useful resource for the development of novel computational tools.             
For example, there is a largely unexplored opportunity to develop novel segment agglomeration             
algorithms that exploit truly brain-wide neuron shape representations and priors. Large-scale           
morphometric analysis of Drosophila neurites and neuron shapes (Sümbül et al. 2014; Zhao             
and Plaza 2014; Costa et al. 2016; Kanari et al. 2018; Chandrasekhar and Navlakha 2019),               
along with efforts to model detailed biophysics, such as second messenger dynamics along             
neurites (Rangamani et al. 2019), may also immediately benefit from sampling segments within             
FAFB-FFN1. 
 
Methods: 
Input and training data 
The raw image and training data were all derived from the Full Adult Fly Brain (FAFB) dataset                 
described by (Zheng et al. 2018). The dataset was acquired at 4x4x40 nm nominal resolution,               
while our segmentation pipelines additionally used volumes downsampled to 8x8x40, 16x16x40,           
32x32x40, and 64x64x40 nm via non-overlapping boxcar-mean filtering. Prior to training and            
inference it was helpful to normalize all raw imagery via Contrast Limited Adaptive Histogram              
Equalization (CLAHE) (Zuiderveld 1994), with kernel sizes of 2048x2048 nm followed by            
1120x1120 nm. 
 
Evaluation data and metrics 
To evaluate automated segmentation quality, we compared our results to manually-traced           
ground-truth neuronal skeletons (Fig. 2). We used the set of 166 ground-truth skeletons from              
the mushroom body region, described in (Zheng et al. 2018), as well as a partially overlapping                
larger collection of 405 Kenyon cells and 123 olfactory projection neurons (Zheng et al. 2020).               
Where we list IDs for specific FAFB neurons (Fig. 2, and below), they are taken from the FAFB                  
public skeleton IDs (Zheng et al. 2018). We further quantified the agreement between             
automated segments and ground-truth skeletons via skeleton metrics. As described previously           
(Michał Januszewski et al. 2018), these metrics consist of edge accuracies and expected run              
lengths (ERLs). 
 
Briefly, edge accuracies count the proportion of ground-truth skeleton edges falling into four             
non-overlapping categories: correct edges, whose ends are both within one segment; merge            
errors, where either end is within a segment that erroneously joins two ground truth skeletons;               
split errors, whose ends are in two different merge-free segments; and omission errors, where              
either end is in an unsegmented area. ERL computes the expected error free path length (the                
linear distance connected by correct skeleton edges) in the segmentation given a uniformly             
sampled starting position along a ground-truth skeleton. 
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Dataset Description Visualization links Download link Citations 

FAFB 
The v14 aligned Full 
Adult Fly Brain dataset 

https://fafb.catmaid.virtualflybrain.org 
Neuroglancer http://temca2data.org/ 

(Zuiderveld 
1994; 
Zheng et al. 
2018) 

FAFB CLAHE 
FAFB with CLAHE 
contrast normalization Neuroglancer 

http://fafb-ffn1.storage.googleapis.
com/landing.html 

(Zuiderveld 
1994) 

CREMI 

Training data from the 
CREMI challenge, 
based on an earlier 
alignment of FAFB  https://cremi.org/data/ 

(Funke et 
al. 2016) 

FAFB-FFN1 
FAFB FFN 
segmentation Neuroglancer 

http://fafb-ffn1.storage.googleapis.
com/landing.html here 

FAFB-FFN1 
Skeletonization 

Automated 
skeletonization Neuroglancer 

http://fafb-ffn1.storage.googleapis.
com/landing.html 

(Sato et al. 
2000; 
Silversmith 
2019) 

FAFB tissue 
mask 

Semantic segmentation 
mask of different tissue 
types Neuroglancer 

http://fafb-ffn1.storage.googleapis.
com/landing.html here 

FAFB 
cross-correlation 

Section-to-section 
cross-correlation 
volume Neuroglancer 

http://fafb-ffn1.storage.googleapis.
com/landing.html here 

Table 1. Input data and results. 
The training data consisted of 3 densely labeled cutouts from the Mushroom Body region of an                
earlier FAFB global alignment, provided by the MICCAI Challenge on Circuit Reconstruction            
from Electron Microscopy Images (CREMI) (Funke et al. 2016). Each cutout totals            
1250x1250x125 labeled voxels at 4x4x40 nm. We downsampled these cutouts to train networks             
at reduced resolutions. To generate additional training data at 16x16x40 nm resolution, we             
additionally proofread 201.3 megavoxels of an earlier segmentation result to rough topological            
completion. For segmentation pipeline development (Figs. 3, 4) we also used a larger (120,000              
x 120,000 x 75,040 nm) unlabeled cutout, referred to as “Sample E”, from around the mushroom                
body of the v14 alignment (starting offset 376,000 x 80,000 x 158,200 nm). 
 
It was helpful to erode the ground truth skeletons by 1 node back from all branch endpoints, due                  
to many cases where the manually placed endpoint nodes were directly on the border between               
neighboring cells. We also ignored merge errors that involved fewer than 3 ground truth              
skeleton nodes (Berning, Boergens, and Helmstaedter 2015). These smallest detected mergers           
often reflected errors in ground truth skeleton node placement, or were expected due to              
irregular section substitution changing the positions of neurons within substituted sections, or            
else were real segmentation errors but were too minor to impact biological interpretation or              
subsequent processing. After inspecting a subset of manual tracings, we also removed 169             
nodes that were reported as larger merge errors but were found to be misplaced, as well as all                  
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nodes occurring in sections 4411 and 4423, which were subject to irregular section substitution              
across most of the XY extent of the manual tracings. 
 
In a handful of exceptional cases we also excluded entire ground truth neurons from              
evaluations. Olfactory projection neurons 30791 and 51886 were found to be legitimately fused             
together over about 25 um within the medial antenna lobe tract (mALT). This apparent              
biological aberration or tissue preparation artifact was reported as a merge error if included in               
the metrics. Olfactory projection neuron 28876 had abnormally dark cytoplasm, possibly due to             
cell damage (Fiala, Spacek, and Harris 2002), leading to many split and omission errors as well                
as a few mergers.  
 
Misaligned and irregular section detection 
Misalignments and irregular data regions were detected via section-to-section cross-correlation          
template matching (Lewis 1995). Overlapping image patches of about 4x4 𝜇m were extracted at              
32x32 nm resolution and 128x128 nm stride across each section, and cross-correlated against             
patches from the following section. For each image pair, the offset of the peak of the correlation                 
surface was taken as the local section-to-section shift. 
 
We found that cross-correlations based on simple zero-padded search windows, without           
extended image context or cumulative sum normalization (Lewis 1995), were more robust to             
areas with data irregularities or coherent lateral movement of neural processes (e.g. fiber tracts              
running transverse to the cutting plane). Therefore we simply zeroed the image mean prior to               
cross-correlation, found the peak of the unnormalized correlation surface, and then           
post-normalized the peak value by the autocorrelation magnitude to generate a measure of             
template match quality. 
 
The cross-correlation procedure produces a subsampled, quantized section-to-section flow field          
for the entire volume. In areas of misalignment or coherent lateral movement of neural              
processes, the flow field reveals the magnitude of local section-to-section shifts. It also detects              
irregular data areas such as tissue cracks and folds by the characteristic sharp discontinuities in               
their flow fields, and damaged or occluded sections by their large, inconsistent shift values and               
low template match quality values. 
 
Misaligned and irregular section handling 
Movement restriction (Michał Januszewski et al. 2018) blocks the FFN during inference from             
moving through or evaluating on any field of view where flow field shift magnitudes exceed               
threshold. For FAFB segmentation we set relatively tolerant thresholds of 64-128 nm, but this              
still resulted in significant movement restriction over the volume. Restriction generally causes            
local split errors, but when two restricted areas are close to each other it can prevent an area                  
from being segmented at all (Fig. 4A) and thus also causes omitted edge errors. 
 
Local realignment (LR) instead attempts to allow FFN evaluation through misaligned areas by             
dynamically correcting alignment at inference time (Fig. 3). Before the FFN considers each local              
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subvolume (generally 400x400x100 voxels, or 60x60x30 voxels for agglomeration) we compute           
a translation-only realignment transform based on the weighted median flow field shift over each              
section, with cross-correlation match quality used as weights. Excessive section-to-section shifts           
usually reflect data irregularities rather than misalignments, so we set a threshold of 128-256              
nm, above which we discard the shift for a given section, resetting it to zero. Applying the                 
computed realignment transform to the subvolume results in a view of the data in which errors in                 
the global alignment of the input are nominally corrected. The FFN operates on the corrected               
data, and we then reverse the transform to return the segmentation output back to the global                
coordinate space. 
 
An important requirement is that the subvolume provided to the FFN after realignment should be               
cropped to a rectilinear shape containing only valid data, so that the FFN is afforded free                
movement and has valid context. Similarly, the reverse transformed segmentation output should            
be cropped rectilinear and valid, so that output subvolumes can be reassembled into a coherent               
segmentation volume. To compensate for cropping, each subvolume has its bounds expanded            
before the forward realignment is applied, with the amount of additional context needing to be               
drawn from the input volume dependent on the largest accumulated XY shifts in the given               
transform. 
 
Following realignment, the flow field of the subvolume is also recomputed, so that any large               
remaining shifts can still trigger FFN movement restriction. This is important in cases where              
highly distorted, cracked, or folded sections can only be adequately realigned over a portion of               
the subvolume XY extent, as well as for data irregularities that realignment cannot address such               
as missing or occluded sections. In preliminary experiments, we found that replacing            
translation-only LR with an affine alignment approach could successfully address some of these             
areas. However, affine LR proved more difficult to regularize. 
 
For data issues inadequately addressed by LR, irregular section substitution (ISS) attempts to             
allow FFN evaluation through the area by replacing the affected section locally within the              
subvolume with data from a neighboring section (Fig. 4). The criterion for considering a section               
for substitution is whether the magnitude of flow field shifts for the unsubstituted section triggers               
significant movement restriction (defined as restriction over more than 3% of the section extent              
within the subvolume). If so, the section is replaced with the preceding section, and the               
cross-correlation flow field with respect to the following section is recomputed. If the new flow               
field results in a significant reduction in movement restriction (defined as 50% or more              
reduction), the candidate substitution is accepted and the LR transform is updated to reflect the               
new flow field.  
 
Thus ISS is only allowed when the sections on either side of an irregularity can be adequately                 
realigned to each other. The anisotropy of the FAFB dataset makes it rare for this to be effective                  
across more than a single consecutive section. For FAFB-FFN1, we considered only single             
section substitutions, except for the 32x32x40 nm agglomeration stage, where we allowed up to              
3 consecutive sections to be substituted. 
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Flood-filling network training and inference 
FFNs were trained as described previously (Michał Januszewski et al. 2018) and as publicly              
released (Michal Januszewski 2019). Briefly, a deep 3d convolutional neural network was            
trained in TensorFlow via asynchronous stochastic gradient descent. The network field of view             
was 33x33x17 voxels except networks trained at full 4x4x40 nm resolution, where the field of               
view was 33x33x9. The network architecture consisted of a series of 18 convolutional layers              
with 3x3x3 kernels and 32 feature channels, paired off into 9 residual units with no               
downsampling, resulting in 472,353 trainable parameters. All three CREMI cutouts of           
ground-truth labels were used for training, downsampled to the appropriate resolution as            
needed. 
 
FFN seeding and movement policies for training and inference were as described previously.             
Due to the anisotropy of serial-section data, we also found that a 2d variant of the                
Sobel-Feldman peak distance seeding procedure (Michał Januszewski et al. 2018) was           
effective for filling in small processes in later inference runs. FFN inference hyperparameters             
were set similarly to previously described: initial field-of-view fill value 0.05; movement threshold             
0.9; segment threshold 0.6. The base movement step size was 8x8x4 voxels. 
 
Network weights were checkpointed periodically during training, and convergence was          
assessed at each checkpoint by running test inference on a small cutout from the mushroom               
body calyx (“calyx1”) and evaluating skeleton metrics against the resulting segmentation. We            
then selected a subset of the checkpoints whose calyx1 evaluations had zero merge errors and               
high overall edge accuracy for inference over the larger Sample E mushroom body cutout.              
Finally, we selected the checkpoints with the lowest merge error rates and highest overall edge               
accuracies from these evaluations for inference over all of FAFB (Fig. 5). Two additional              
checkpoints were selected for oversegmentation consensus (Michał Januszewski et al. 2018) at            
16x16x40 nm by reevaluating all checkpoints over an additional small area (“adaptive1”) where             
the base segmentation had remaining merge errors, and selecting checkpoints that corrected            
these errors while maintaining high edge accuracy. 
 
Segmentation-Enhanced CycleGAN for Triple-Section Interpolation 
A SECGAN (Michal Januszewski and Jain 2019) was trained to synthesize missing data in the               
raw FAFB volume at 16x16x40 nm voxel resolution. Both “input” dataset X and “target” dataset               
Y were sampled from regions within FAFB. Samples for X were chosen from regions containing               
data with no known irregularities, and samples from Y were specifically chosen within regions              
that contained three consecutive missing or irregular sections. The field of view of the generator               
was 33x33x33 voxels, using a ResNet-like architecture previously described (Michal          
Januszewski and Jain 2019), and a ResNet18 discriminator architecture (He et al. 2016).             
During training, the central 3 sections of every training example were excluded from the Y cycle                
loss, and were zeroed-out in the input of the Y discriminator. The Y images were also altered by                  
filling the empty sections with the contents of the directly preceding non-empty section. 
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For SECGAN inference, the raw image data around the missing sections was first elastically              
realigned (Saalfeld et al. 2012) via an iterative procedure. First, the flow field between the two                
sections directly preceding and following the gap was estimated from downsampled imagery at             
64x64 nm in-plane pixel resolution using patch-wise cross-correlation (patch size 160 pixels,            
stride 40 pixels), and used to relax a 2-section (ignoring the gap) elastic mesh. The procedure                
was then repeated at 32 x 32 nm in-plane resolution to obtain the final alignment. 
 
After running FFN segmentation within 200-section subvolumes centered on the SECGAN           
substituted region, overlaps were computed between the SECGAN segments and the           
preexisting segments on either side of the substituted gap. For each SECGAN segment, the              
maximally overlapping pre- and post-gap preexisting segments were determined, and these two            
segment IDs were then joined if both overlaps exceeded 1000 voxels. By construction, this              
approach can only link a single pre-gap segment to a single post-gap segment for each               
SECGAN segment, which limits the ability to fully address neurites that branch within the              
substituted block. However, we found this constraint to be important for avoiding new merge              
errors. 
 
Overall segmentation pipeline details 
The overall pipeline comprised a series of FFN segmentation steps, selected to maximize             
overall skeleton edge accuracy and ERL while minimizing merge errors, as described previously             
(Michał Januszewski et al. 2018) and above. For filtering agglomeration decisions, we found             
that it was more effective to require the proportion of deleted voxels to be below threshold for                 
both segment A and B (operation AND), rather than for either segmentation A or B (operation                
OR) as done previously. 
 
Some experiments with human tracers (Fig. 6) were carried out using earlier segmentations,             
referred to as FAFB-FFN0 and SAMPLE-E-FFN0. Detailed hyperparameters for the different           
pipelines are given in Table 2. 
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 FAFB-FFN1 (Figs. 1-5, 7) FAFB-FFN0 (Figs. 6B) SAMPLE-E-FFN0 (Fig. 6A) 

Consensus input segmentations 

ckpt16a peaks2d forward, 
ckpt16a peaks2d reverse, 
ckpt16b peaks2d forward, 
ckpt16b peaks2d reverse, 
ckpt16c peaks2d forward 

ckpt16d peaks3d forward, 
ckpt16d peaks3d reverse, 
ckpt16e peaks2d forward 
unwhitened 

ckpt16d peaks3d forward, 
ckpt16d peaks3d reverse, 
ckpt16e peaks2d forward 

Fill-in segmentations 
ckpt8a peaks2d 
ckpt4a peaks2d 

ckpt16d peaks2d, 
ckpt8b peaks2d ckpt8b peaks2d 

Image normalization CLAHE 2x CLAHE CLAHE 

Cross-correlation normalization post-normalized 
whitened, except as noted 
above unwhitened 

 
Agglomeration 1 

Checkpoint ckpt32a ckpt16d ckpt16d 

Decision point radius 80x80x80 nm 48x48x32 nm 48x48x32 nm 

Decision point min segment size 16,000 voxels   

Fidelity minimums (segment A & B) 0.85 0.6 0.6 

Jaccard minimum 0.7 0.7 0.7 

Deleted proportion maximums (segment A 
& B) 0.01 0.02 0.02 

Deleted proportion combination operation AND OR OR 

 
Agglomeration 2  
Checkpoint ckpt16a 

 

Decision point radius 80x80x32 nm 

Decision point min segment size 16,000 voxels 

Fidelity minimums 0.95 

Jaccard minimum 0.7 

Deleted proportion maximums 0.01 

 
Agglomeration 3  
Checkpoint ckpt8a  
Decision point radius 80x80x32 nm  
Decision point min segment size 16,000 voxels  
Fidelity minimums 0.85 

 

Jaccard minimum 0.5 

Deleted proportion maximums 0.02 
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Agglomeration 4  
Checkpoint ckpt8a 

 

Decision point radius 80x80x32 nm 

Decision point min segment size 3,000 voxels 

Decision point min overlap 16 nm 5,000 voxels 

Fidelity minimums 0.9 

Jaccard minimum 0.5 

Deleted proportion maximums 0.02 

 
Agglomeration 5  
Checkpoint ckpt4a 

 

Decision point radius 150x150x150 nm 

Decision point min segment size 5,000 voxels 

Decision point min overlap 8 nm 5,000 voxels 

Fidelity minimums 0.85 

Jaccard minimum 0.85 

Deleted proportion maximums 0.02 

 
Agglomeration 6  
Checkpoint secgan16a 

 

Z-sections 
1564-1566; 2176-2178; 
3595-3597 

Couplet overlap minimums 0.75 

Table 2. FFN pipeline hyperparameters. All checkpoint names include the XY resolution used in training               
and inference. 
peaks3d, 3d Sobel-Feldman peak seeding; peaks2d, 2d Sobel-Feldman peak seeding; forward, normal            
seed order; reverse, reversed seed order; post-normalized, post-normalized cross-correlation (see          
Methods); whitened, square-root frequency amplitude normalized image cross-correlation; unwhitened,         
cumulative sum normalized image cross-correlation. 
 
Tissue Masking 
We trained a convolutional network to predict whether a voxel belonged to one of six categories                
that represented general structural features of the image volume. We manually labeled 10.7             
million voxels at 2x reduced lateral resolution as either neuropil (4.6M voxels), cell body (1.6M               
voxels), glia (0.11M voxels), black border (0.7M voxels), resin (1.6M voxels), or tissue border              
(1.9M voxels). Annotations were sparsely created using a custom web-based tool (“Armitage”)            
that enabled manual painting of voxels with a modifiable brush size. 
 
We then used TensorFlow to train a 3d convolutional network to classify a 65x65x5 patch               
centered on each manually labeled voxel. The network contained three “convolution-pooling”           
modules consisting of convolution (3x3x1 kernel size, 64 feature channels, VALID mode where             
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convolution results are only computed where the image and filter overlap completely) and max              
pooling (2x2x1 kernel size, 2x2x1 stride, VALID mode), followed by one additional convolution             
(3x3x1 kernel size, 16 feature maps, VALID), a fully connected layer that combines information              
from all 5 slices (512 nodes), and a six-class softmax output layer. We trained the network by                 
stochastic gradient descent with a minibatch size of 32 and 6 replicas. During training, each of                
the six classes was sampled equally often. Training was terminated after 0.5 million updates.  
 
Inference with the trained network was applied to all voxels in the image volume using dilated                
convolutions, which is several orders of magnitude more efficient than a naive sliding-window             
inference strategy. Inference on the whole volume at 16x16x40nm resulted in 1.97 teravoxels of              
predicted neuropil, 0.25 teravoxels of soma, 0.24 teravoxels of glia, 0.24 teravoxels of black              
border, 0.46 teravoxels of resin, and 0.41 teravoxels of tissue border. 
 
Tissue masking predictions were used during FFN inference to block FFN evaluations centered             
at locations with less than 12% predicted neuropil probability and less than 50% predicted soma               
probability. This improved efficiency of segmentation and prevented some segmentation errors           
in areas such as glia with textures underrepresented in the training set. Class-wise voxel counts               
from the tissue masking volume were used to estimate the total dataset size of 39.4 teravoxels                
of combined neuropil, soma, and glial tissue at full 4x4x40 nm resolution. These three classes               
were also combined to generate a whole brain mesh for visualization (Fig. 1). 
 
Automated skeletonization 
Some biological analysis workflows require a neuron skeleton representation (Fig. 2A-C, Fig. 6A             
inset) rather than volumetric segments. We used the TEASAR algorithm (Sato et al. 2000) to               
automatically convert the FFN segmentation to a skeleton representation. Earlier versions of the             
segmentation were skeletonized via a different pipeline than the final release; the differences             
are detailed in Table 3. 
 
The scale of FAFB required that TEASAR be run block-wise and at downsampled resolution. To               
reconnect skeletons at block boundaries, a simple heuristic was used to join the nearest              
neighbor nodes on either side provided their separation distance was below a fixed threshold.              
Occasionally this heuristic failed to reconnect across blocks, in which case a single skeleton ID               
in the result might comprise multiple components. In a few cases, large irregular bodies such as                
glia, trachea, somas, or non-biological material created highly fragmented skeletons; skeletons           
with total number of components above a fixed threshold were discarded. 
 
Skeletons were further post-processed to enhance suitability for FFN concatenation workflows           
(Fig. 6). First, we eroded skeletons back from all endpoints. Skeleton branches with a low path                
length relative to average diameter often reflect thickening or bumps at the surface of neurites,               
rather than true neuronal branches; these were either pruned off (for length / diameter < 10;                
earlier releases) or were excluded from skeletonization by increasing the invalidation radius            
scale factor (FAFB-FFN1 final release). Finally skeletons were sparsified to a target distance             
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between nodes within unbranched sections. After these post-processing steps, all resulting           
skeletons greater than 1 μm path length were exported to the tracing environment. 
 

 FAFB-FFN1 (Fig. 7) FAFB-FFN0; SAMPLE-E-FFN0 (Fig. 6) 

Block size 256x256x256 512x512x256 

Resolution (nm) 32x32x40 32x32x40 

Maximum reconnection distance (nm) 50 165 

Max fragments per skeleton 1,000,000 10,000 

Endpoint erosion (nm) 100 250 

Node sparsification distance (nm) 300 250 

Length / diameter minimum ratio NA 10 

Invalidation radius scale factor 4 NA 

TEASAR implementation (Silversmith 2019) (Funke 2017) 

Table 3. Skeletonization parameters 
 
Neuron skeleton tracing and trans-synaptic analysis 
All neuron skeleton tracing (Fig. 6) was done in the FAFB CATMAID environment (Saalfeld et al.                
2009). CATMAID provides an interface for exploring the EM image volume, and neurons can be               
traced manually by marking a series of node points (Schneider-Mizell et al. 2016). The              
TEASAR-generated skeletons of FFN segments were also imported into CATMAID, and tools            
were provided for linking skeleton fragments together (“FFN concatenation”) and quickly           
jumping to fragment endpoints to check for missing continuations of neurites. 
 
Neuronal reconstruction in mushroom body calyx (Fig. 6A) was typically done by two team              
members, an initial tracer and a subsequent proofreader who validated the tracing, potentially             
sending issues back to the tracer to iterate on. Neurites in the fly brain can be classified into                  
larger, microtubule-containing neurites (“backbones”) and fine, microtubule-free neurites        
(“twigs”) (Schneider-Mizell et al. 2016). Microtubules were used as guides during manual tracing             
and FFN concatenation to ensure quick reconstruction of backbones of the neurons, which is              
often sufficient for cell type identification.  
 
The CATMAID environment automatically records the amount of time spent tracing each            
neuron. When the FFN concatenation tracing methodology was introduced, there was a            
ramping-up period while human tracers adjusted and software tools for efficient concatenation            
matured. Thus, out of 916 total Kenyon cells (KCs) traced via FFN concatenation, the first 315                
had an average tracing speed of 20 seconds per μm path length with a standard deviation of 13                  
seconds, while the remaining 601 KCs from the later mature period averaged 9 seconds per μm                
with a standard deviation of 5 seconds. In the Results section, we therefore exclude the               
ramping-up period from the analysis. 
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Trans-synaptic analysis combined use of both skeletons and volumetric segments. Software           
tools for mapping between CATMAID skeletons and the FFN segments are available publicly             
(Jefferis 2018b). To simulate the recovery of strong synaptic partners using different sampling             
strategies over synaptic connections (Fig. 7D-E), we started from a fully traced neuron of              
interest. We also traced at least the local arbor and cell body fiber of all upstream or                 
downstream synaptic partners for purposes of simulation. We then picked a single synaptic             
connection from which to run simulated tracing, sampled either randomly or using FFN             
segments to rank multiply connected partners higher a priori. For each sampled connection, we              
recorded whether it corresponded to a strong partner (at least 5 synaptic connections). We also               
marked all other connections for that partner as visited, under the assumption that they would               
be discovered in tracing the partner to identification, or else would be trivially connected to the                
partially traced partner if sampled subsequently. Sampling was then repeated until all strong             
partners were discovered for the neuron of interest, and the entire procedure was repeated for               
each starter neuron. 
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