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Abstract Psychology moved beyond the stimulus response
mapping of behaviorism by adopting an information process-
ing framework. This shift from behavioral to cognitive science
was partly inspired by work demonstrating that the concept of
information could be defined and quantified (Shannon, 1948).
This transition developed further from cognitive science into
cognitive neuroscience, in an attempt to measure information
in the brain. In the cognitive neurosciences, however, the term
information is often used without a clear definition. This paper
will argue that, if the formulation proposed by Shannon is
applied to modern neuroimaging, then numerous results
would be interpreted differently. More specifically, we argue
that much modern cognitive neuroscience implicitly focuses
on the question of how we can interpret the activations we
record in the brain (experimenter-as-receiver), rather than on
the core question of how the rest of the brain can interpret
those activations (cortex-as-receiver). A clearer focus on
whether activations recorded via neuroimaging can actually
act as information in the brain would not only change how
findings are interpreted but should also change the direction of
empirical research in cognitive neuroscience.
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Everybody knows what information is

The word ‘information’ is often used in a way that implicitly
assumes an obvious and pre-defined meaning. Just like the
concept of attention, however, ‘information’ means very dif-
ferent things to different people. The intuition that ‘everybody
knows what information is’ is therefore problematic. Indeed,
without a clear definition, the search for ‘information’ or ‘rep-
resentations’ in the brain could potentially be as misleading as
the search for the ‘vital forces’ in biology or ‘impetus’ in
classical mechanics.

The intention of this paper is not to undermine the potential
of using neuroimaging to measure information, but rather to
make more explicit the assumptions that may lead us astray in
that endeavor. We will argue that most neuroimaging
(implicitly) focuses on interpreting physical signals in the
brain from the perspective of an external experimenter, where-
as the key question for neuroscience should be how (or wheth-
er) those signals are used by the rest of the brain. In light of
Shannon’s (1948) information theory, we will argue that in-
formation in neuroscience is often measured with an implicit
‘experimenter-as-receiver’ assumption, rather than thinking in
terms of ‘cortex-as-receiver’. For example, many studies re-
port differential responses in the brain (from single cells, EEG,
fMRI, etc.) as the discovery of ‘the neural representation of X’
or ‘revealing the neural code underlying Y’ without ever pro-
viding evidence that those recorded responses reflect differ-
ences in activity that can actually be used (received or
decoded) by other areas of the brain. This is a problem be-
cause information is not a static property inherent to a physical
response: It is only when physical responses can be shown to
be used by the brain that we have positive evidence that a
physical signal acts as information. A neuron might fire vig-
orously every time an organism is presented with a visual
object (for example), and as an external observer it is easy
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for us to assume that the vigorous firing of that neuron informs
the rest of the system about that object. If, however, the rate at
which that neuron fires never influences any other processes
in the brain, then that firing rate cannot be part of the neural
code underlying the representation of that object. It could be
that the firing rate is an artifact or by-product, and that the
actual information is contained in the phase at which that
neuron fires. Most importantly, the only way we can test this
is by following the dynamics of what causes what in the brain,
but this is quite different from the focus of most neuroscience
and neuroimaging. We believe our understanding of what in-
formation is lies at the heart of a shift in emphasis that is
needed in cognitive neuroscience.

The nature of measurement

What does it mean to measure information in the brain? When
we record neural activity after the presentation of a stimulus, can
we call that activity the neural representation of that stimulus?
What technique provides the best measure of information? Are
single-cell recordings a more direct measure of information than
fMRI or EEG? Does fMRI sometimes provide a better measure
of information by looking at activity at a larger scale? Can the
more precise timing of EEG and MEG sometimes provide a
better measure of information in the brain?

To answer these questions, we need to step back, not just to
consider what information is but also to consider any process of
measurement. Critically, all measurement is indirect. We always
have to measure via some instrument, which necessarily entails
assumptions about how that device works (Kuhn, 1961).
Consider for example how we ‘measure’ the existence of the
nucleus of an atom. In his classical experiments, Rutherford
launched helium molecules at thin sheets of gold and observed
that a small proportion of these helium molecules would not
follow their original path, but seemed to be deflected onto a
new path. These deflections were assumed to happen because
the helium nucleus would occasionally collide with the very
small nucleus of the gold atoms. In this way, the structure of
the atom was not directly observed but inferred from its effects
on the measurement apparatus. All measurement is of this type
(Kuhn, 1961). We make inferences about the structure or nature
of things based on indirect observations. The inference that an
atom contains a relatively tiny nucleus is now so plausible that
we regard it as a fact, and Rutherford’s experiments may, in
retrospect, seem like a direct means of measuring an apparently
known feature of our physical world.

If all measurement is actually an inference, what inference
enables us to posit the existence of information? Shannon
provided an explicit formal description of this inference by
quantifying the amount of information that can be conveyed
over a noisy channel. This formulation was made up of a
number of steps, including a transmitter, a channel (with

signal and noise) and a receiver. The focus of Shannon’s for-
mulation was on the signal and noise of the channel, but he
made it clear that whatever was sent over the channel would
need to be decoded by a receiver. Thus, in Shannon’s formu-
lation, the quantification of information over a channel was
contingent on the existence of a ‘receiver’. The importance of
a receiver in Shannon’s formulation seems to be neglected in
modern neuroscience, perhaps because, for the communica-
tion systems which he was considering, he merely stated that
(p. 2) ‘The receiver ordinarily performs the inverse operation
of that done by the transmitter’, and he did not elaborate much
further on this point. We will give two examples, a simple
thermostat and a process of encryption, to illustrate that it is
impossible to meaningfully consider something to be informa-
tion without considering how (or whether) a signal can be
decoded by a receiver.

Whilst philosophers debate whether a thermostat can be
considered conscious, it most certainly provides a concrete
example for thinking about Shannon’s conception of an infor-
mation processing system. In Shannon’s terms, the tempera-
ture gauge could take the role of the transmitter, the channel
could be a current-carrying wire, and the heating device could
be the receiver which turns on or off contingent upon the state
of the electrical current in the wire. The electrical current in the
wire can be regarded as information in this system because it
is decoded and interpreted by a receiver. Critically, however,
we cannot make the inference that an electrical current is in-
formation unless it is causally influenced by a transmitter, and
exerts a causal influence on a receiver. We will argue that a lot
of neuroscience focuses on quantifying the potential sources
of information without giving enough consideration to how
(or whether) that potential information might actually be
decoded by a receiver. To illustrate the necessity of this, we
can envisage a different set-up for our cartoon information
processing system in our thermostat, where rather than re-
maining on when there is a current, and turning off when there
is none, the state of the heater (on or off) changes every time a
current is passed through the wire. In this simple example, the
information content is not just determined by physical flow of
electrons in the wire but also by the current state of the receiv-
er. Indeed, we could envisage another system where the exis-
tence of a constant current, by itself, cannot be decoded by the
receiver in any meaningful way, but rather the receiver turns
the radiator on and off depending on the precise timing of
pulses in the current. Information, in our simple thermostat
example, is therefore not inherent to the physical activity (cur-
rent in the wire) but one has to think about how any measur-
able aspects of the current will be used by the receiver. To
combine a quote attributed to Bateson, with Shannon’s ideas,
for information to truly be information, it has to be a difference
that makes a difference to a receiver. Critically, therefore,
when reverse-engineering any device, one cannot simplymea-
sure a physical property (the flow of electrons in a wire, the
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firing of a neuron, a pattern of activity measured with fMRI)
and assume that one has measured information. Rather, you
have to construct a model of how that physical activity can be
used as a signal by a receiver.

In other words, there is no such thing as objective informa-
tion, because it is always subject to interpretation by a receiv-
er. Another example which makes the subjective nature of
information explicit is encryption. Good encryption algo-
rithms will make the target information appear as noise to an
observer or receiver who does not have the correct decryption
key. When the observer has the correct decryption key, the
information in the message is interpretable. So, whether the
message is noise or information depends on the properties of
the receiver. In this case, the critical question is whether the
receiver is in possession of the correct decryption key.
Without the key, there is no immediate way to tell whether a
message is signal or noise. For example, we can take a mes-
sage, and encrypt it by combining it with some noise that has
been generated for the purpose of creating a one-time encryp-
tion key. The message can be encrypted by the transmitter by
multiplying each bit in the message by its corresponding
paired bit in the key made of random noise. The sender gives
the noise key to the receiver, and so the noise is now knowl-
edge owned by the receiver. At a later date, the sender sends
the encrypted message across a public channel. It appears as
noise to all receivers except the one with the correct key. Now
the noise we generated is the key that enables the observer to
decrypt the message. What counts as signal and what counts
as noise very much depends on the correct model of the inter-
action between the sender, the channel and the receiver. We
will argue that the purpose of neuroscience is to find the ‘cor-
rect model of interaction’ for the case of the brain. Any mea-
surement of information in the brain’s system very much de-
pends on the model used for its correct interactions, and infer-
ences about what is signal (and equally critically what is
noise) cannot be made without considering this. Without do-
ing so, there is a risk that one could assume that recorded
neural activity contains objective information that can be read
out in a direct empirical manner.

Single-cell recordings do not directly measure
information

Perhaps the best way to get to the heart of the issue is to consider
Hubel andWiesel’s recording from the primary visual cortex, in
which they found cells that would fire when the animal was
presented with stimuli that we would call edges (Hubel &
Wiesel, 1959). This result is often interpreted as evidence that
the primary visual cortex represents edges, or, more boldly, that
individual neurons in the primary visual cortex represent edges.
Whether or not a single cell can code for anything, however,
depends entirely on the underlying codingmodel. To say that the

firing of one cell represents an edge assumes that other parts of
the brain can explicitly make use of the firing of this one cell in
causing further processing, and ultimately in generating behav-
ior. It is entirely plausible, however, that some other feature of
the physical activity is used at further stages of processing. For
example, the actual information could be carried in:

1. the pattern of activity across a large number of cells or a
population code (Pouget, Dayan, & Zemel, 2000);

2. the timing of the first wave of spikes (Thorpe, Delorme, &
Van Rullen, 2001);

3. the timing or phase of continuous activity (Schyns, Thut,
& Gross, 2011);

4. synchrony across a population (Singer, 1999);
5. or a combination of these.

That is not to say that it is impossible (or even implausible)
that single cells are ever used as symbolic representations
(Bowers, 2009). Indeed, part of the excitement around single-
cell recording techniques stemmed from the fact that the firing of
individual cells could sometimes provide very good predictions
of how the animal would respond on a given task. However,
there are many reasons why the activity of a given cell might
correlate with the behavioral output of the organism that entirely
depend upon the coding model that has been assumed. To its
credit, some of the most influential and foundational work in
linking neural activity to perceptual decisions was very clear
about this, and explicitly referred to ‘neural correlates of a per-
ceptual decision’ (emphasis added; Newsome, Britten, &
Movshon, 1989), rather than the ‘neural representation of a per-
ceptual decision’.

The problem in assuming that a given neural response is an
explicit representation of something is also highlighted by the
breadth of other things that V1 cells could be representing.
Koenderink (2012), for example, questions what exactly is an
edge, in the absence of a circular definition based upon what
V1 cells respond to. Koenderink argues that the intuitive ap-
peal of a functional role for V1 cells as edge detectors could
mislead us from their actual function, for example, as a filter
whose responses sometimes approximate what we might
(mistakenly) assume to be an edge detector. Edge-detectors
may also be better understood as the most efficient means of
encoding the pattern of two-dimensional input typically en-
countered in natural images (Olshausen & Field, 1996), a
relabeling that leads to a different set of questions. Others have
argued that responses in V1 are sometimes not driven by bot-
tom–up input alone. More specifically, Rao and Ballard
(1999) have argued that, rather than reflecting a representation
of a certain kind of input, ‘end-stopped’ neurons in fact signal
(provide information regarding) the violation of a prediction
of the existence of a longer line based on feedback from higher
areas. Others have argued that receptive field responses in V1
are organized in terms of contextual maps of textures that
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appear in the visual field (Alexander & Van Leeuwen, 2010).
This again provides a very different interpretation, such that
the classical edge-detection response within the receptive field
in a standard V1 experiment actually arises due to an unusual
absence of contextual cues. Indeed, rather than isolating the
representational building blocks of visual perception, it may
be that neurons in V1 simply respond in qualitatively different
ways when presented with more complex spatio-temporal sig-
nals that are closer to the visual input patterns (or natural scene
statistics) that normally impinge upon our sensory apparatus
(Olshausen & Field, 2005).

Recordings made from V1 can therefore be interpreted in
different ways. Although this should not be surprising, it clar-
ifies that (just like measures of the current in the wire of our
thermostat above) single-cell recordings do not provide a direct
measure of information. In terms of Shannon’s framework, we
cannot infer whether the firing of a neuron in V1 represents
anything without considering the receiver of that information.

In the literature, the extent to which responses of V1 are
used by the rest of the brain is often evaluated by comparing
it to the behavioral performance of the participant. This certain-
ly helps to increase the confidence to infer that a response is
used by the rest of the system, but the motor cortex responsible
for generating the end signal to press one button or another is
very unlikely to literally be the receiver of the response the
experimenter records in V1. Looking at the anatomy, it seems
that, whilst many areas project back to V1, V1 itself only sends
input to a smaller number of visual areas (Kravitz, Saleem,
Baker, Ungerleider, & Mishkin, 2013). From this perspective,
V2 or MTare plausible ‘receivers’ for V1, but the motor cortex
probably is not. The key question then becomes: Does the
firing of a neuron in V1 ever cause activity in V2 (or any other
receiver for V1)? If it does not, it is a difference that never
makes a difference. It is not information, even if it correlates
with behavior. It could be that the firing of a given V1 neuron
only evokes a response in V2 (for example) if a particular
pattern of neurons in V1 are active. In this case, the information
is contained not in the response of any one cell but in the pattern
of responses across cells. Similarly, one could find that the
firing of neurons in V1 causes no further activity in V2, unless
it has a very precise timing pattern. There are therefore multiple
‘channels’ over which V1 could actually be communicating,
using a variety of possible codes, and we need to focus on the
‘cortex-as-receiver’ to track the causal dynamics from one area
to the next to establish whether a measured response is indeed
information used by the rest of the brain.

Can fMRI decode information?

In the previous section, we saw that we cannot take for granted
that information is conveyed via a particular channel (firing
rate, spike timing, population codes, etc.), and that in order to

identify the channel used by the brain, we need to consider
how physical signals might be decoded by a receiver. Recent
advances in fMRI analysis have reinforced this point by
highlighting that much more potential information exists in
the pattern of neural activity across voxels than had previously
been assumed (Haxby et al., 2001; Haynes & Rees, 2006;
Haynes & Rees, 2005; Kamitani, Tong, & Tong, 2005). Due
to the noisy and variable nature of the signals recorded with
fMRI, researchers had long assumed that one could find the
clearest signals by taking the average of the activity levels
over a large number of voxels. More recent Multi-Voxel-
Pattern-Analysis (MVPA) techniques make clear, however,
that spatial averaging can sometimes obscure potential signals
contained in the pattern of activation across voxels. One such
technique that has proved very influential involves the use of
Support Vector Machines to train linear classifiers to combine
potential signals across voxels. The increasing use of MVPA
techniques illustrates the importance of considering how a
receiver will decode information, and makes explicit that the
amount of information potentially available is fundamentally
contingent on the decoding method available.

It is typically assumed that any information that can be
decoded from fMRI will also be available to the rest of the
brain. Under this assumption, MVPA studies are often
employed to identify the ‘neural representation’ of different
cognitive and perceptual states. However, just as the firing of a
single neuron cannot, without adequate justification, be as-
sumed to represent anything, so too we need to acknowledge
that the pattern of activation measured with fMRI might not
represent anything to the rest of the brain. At the same time,
we also need to remember that a failure to identify potential
information with MVPA in a given area of the brain does not
necessarily mean that there is no information available to the
rest of the brain based on the activity in that area, as the
information could be represented via a channel that is not
detectable using fMRI MVPA.

In the literature, however, a failure to successfully decode a
certain perceptual or cognitive distinction is sometimes
interpreted as direct evidence that an area of the brain does
not code for, or represent, that distinction. To pick an example
(although there are many others), Kravitz, Peng and Baker
(2011) used data from fMRI-MVPA to make the case that
the Parahippocampal Place Area (PPA) represents the spatial
layout of visual scenes but not their semantic content. Kravitz
et al. demonstrated that the different spatial layouts of different
visual scenes could be decoded from patterns of activation
measured using fMRI, but the semantic content of those
scenes could not. Their result does potentially provide some
evidence to support the inference that PPA represents spatial
layout and not semantics, but it could also be the case that
semantics might be represented (and evoke differential neural
responses) using a channel that is not observable using fMRI-
MVPA. For example, it could be that semantic information is
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represented by a very sparse code in which only a very few
neurons responded to different semantic categories (Bowers,
2009). Furthermore, even if such semantic information was
represented by the firing rate of neurons using a large-scale
population code, it might still not be decoded using MVPA.
To understand why this is the case, we need to step back and
consider why successful decoding is possible at all.

The first demonstration that a linear classifier could reveal
more potential information than was evident in the average
activation level across voxels was based on the classification
of visual orientation in the primary visual cortex. As reviewed
in the previous section, we have long known that cells in V1 in
the primate visual system respond differently to different ori-
entations. Given that these different neural responses to differ-
ent orientations are distributed across a very large area of
cortex, it was previously assumed that the coarse spatial scale
of fMRI was insensitive to these differences. Indeed, a typical
(3 × 3 mm) voxel in V1 contains something in the order of 40,
000 neurons (Olman, 2015), so one might assume that each
voxel would contain cells with a mixture of different orienta-
tion responses, and thus respond (at the level of the whole
voxel) equally to all orientations. However, Kamitani and
Tong (2005) observed that some voxels had a slight bias for
one orientation or another. The differential responses of indi-
vidual voxels was not necessarily informative alone, but when
combining the weak signals from voxels across V1, Kamitani
and Tong were able to successfully decode which orientation
was being presented to the participant. Kamitani and Tong
originally assumed that the weak bias in individual voxels
was caused by the clustering of cells with different firing rates
to different orientations into so-called ‘orientation columns’
(i.e., anatomical clusters of cells with similar response prop-
erties to different orientations). The existence of ‘orientation
columns’ means that responses to different orientations are
unevenly distributed over V1, and that similar responses clus-
ter together. This uneven distribution could be the reason why
within 3 × 3 mm voxels there might be a slight bias for one
orientation over another. Since Kamitani and Tong’s original
observation, there has been some debate as to whether the bias
in responses to different orientations is caused by the cluster-
ing of different responses into orientation columns (Alink,
Krugliak, Walther, & Kriegeskorte, 2013; Mannion,
McDonald, & Clifford, 2009; Swisher et al., 2010), or due
to larger-scale anatomical biases in the distribution of re-
sponses to different orientations across V1 (Freeman,
Brouwer, Heeger, & Merriam, 2011; Freeman, Heeger, &
Merriam, 2013; Op de Beeck, 2010). We shall return to this
debate shortly, but for now it is sufficient to note that an un-
even anatomical distribution of response properties is required
for biases to exist at the level of individual voxels.

The necessity of this uneven anatomical distribution of
different responses in supporting decoding is concretely illus-
trated in a recent study by Dubois, Berker and Tsao (2015),

who demonstrated that fMRI-MVPA cannot decode the iden-
tity of a face in a particular area of the brain, but that neurons
in that area show differential firing rates to different faces.
Dubois et al. argued that the inability to successfully decode
facial identity using fMRI MVPA is likely caused by a rela-
tively homogeneous anatomical distribution of neurons that
respond to different orientations. It would be tempting to con-
clude from this study that this area of the brain does contain
information about facial identity (evident in the firing of indi-
vidual neurons) but that this information is not evident using
fMRI. Again, however, we would need to demonstrate that
this aspect of neural activity (firing of individual neurons in
response to individual faces) could be received and used by
other areas of the brain to conclude that it was actual
information.

The same point should also be clear when fMRI-MVPA is
successful in revealing ‘potential information’. Revealing po-
tential sources of information is clearly valuable, but we need
to critically investigate how that activity could be used by
other areas of the brain to conclude that it is ‘actual informa-
tion’ used by the brain. Up to this point, we have focused on
the reasons why decoding might not be successful (when in-
formation might be present). We will now explain in more
detail why successful decoding (with experimenter-as-receiv-
er) cannot be assumed to measure actual information (with
cortex-as-receiver). In the case of decoding of orientation in
V1, we briefly touched on the debate between competing the-
ories regarding why responses to different orientations are
distributed in a way that leads to a bias towards one orientation
or another within individual voxels (that subsequently enables
decoding). Regardless of whether this bias is due to clustering
into orientation columns (Alink, Krugliak, Walther, &
Kriegeskorte, 2013; Mannion, McDonald, & Clifford, 2009;
Swisher et al., 2010) or larger-scale biases across V1
(Freeman, Brouwer, Heeger, & Merriam, 2011; Freeman,
Heeger, & Merriam, 2013; Op de Beeck, 2010), it should
not be taken for granted that the pattern of activity that enables
successful decoding (with experimenter-as-receiver) is some-
thing that can be used by the rest of the brain (cortex-as-re-
ceiver). If we consider the further processing of orientation
signals, for example, the next stage of information processing
(V2) only samples information (receives inputs) from a rela-
tively small region of V1 (Dumoulin &Wandell, 2008; Levitt,
Kiper, & Movshon, 1994; Smith, Singh, Williams, &
Greenlee, 2001) corresponding to its receptive field. In con-
trast, successful decoding with fMRI often samples across
(uses inputs from) the whole of V1. Thus, it is questionable
whether any ‘receiver’ in V2 could combine the inputs used to
identify potential information in V1 using fMRI-MVPA. Of
course, this is not to say that there are no areas of the brain that
might be able to sample across V1 (especially as receptive
fields become larger at further stages of the visual system),
but we should not take for granted that something that we can
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decode with the ‘experimenter-as-receiver’ is accessible with
the ‘cortex-as-receiver’. Successful decoding certainly shows
that potential information is available, but it does not prove
that any patterns used for decoding are used as information by
the brain. A good illustration of this point is provided by the
existence of retinotopic maps.

The clustering of differential visual responses into spatial
maps was among one of the earliest discoveries of visual neu-
roscience, but the functional significance of this clustering is
still not fully understood. In many areas that respond to visual
stimuli, one finds that the spatial relationships on the retina are
maintained such that neurons responding to adjacent locations
in space are located close together on the retina and close
together on the cortex. These topographic spatial relationships
can be identified in early retinotopic areas (V1–V3) using
conventional BOLD fMRI measures, and a range of other
techniques including optical imaging or single-cell recordings.
Moreover, they constitute a recurring feature of the spatial
distribution of responses in many higher visual areas
(Saygin & Sereno, 2008; Sereno et al., 1995). From
Shannon’s framework, the existence of these topographic
maps begs the question as to whether they provide a represen-
tational format that allows other areas of the brain to localize a
given stimulus. The existence of retinotopic maps may appear
very informative to us as external observers, but it should be
obvious that there is no a priori reasonwhy the rest of the brain
might be able to make any use of the spatial arrangement of
activity on these maps (Koenderink, 1990). Indeed, how ex-
actly could the fact that two neurons are physically close to
each other in V1 be communicated to neurons in other areas of
the brain? As external observers, we can see that these neurons
are close together, but how could any other area of the brain be
influenced by this fact? Many would argue that the presence
of maps reflects optimization constraints that makes commu-
nication more efficient, but that it does not communicate any-
thing in itself. Thus, retinotopic maps may look useful to us,
but the core question is whether the rest of the brain can use
the physical position of neurons in the brain as a means of
informing where to guide responses or make spatial judg-
ments. The validity of this point is further reinforced by
looking at different patient groups, who seem to have intact
retinotopic maps, but who are impaired in different forms of
spatial judgments. In the famous brain-damaged patient DF,
for example, one can reconstruct retinotopic maps in V1
(Bridge et al., 2013) which could inform an external observer
as to where objects are in relation to each other, but DF is
severely impaired in making judgments about allocentric spa-
tial relationships (Schenk, 2006). Perhapsmore dramatic is the
recently reported case of AG, who has a massive visual field
deficit (as measured behaviorally) but shows qualitatively nor-
mal retinotopic maps (Moutsiana et al., 2014). Finally, in pa-
tients with amblyopia, one can reconstruct intact retintopic
maps with input to their ‘weak’ eye (Li, Dumoulin,

Mansouri, & Hess, 2007), despite very poor spatial perception
when presented with stimuli to that eye (Mansouri, Hansen, &
Hess, 2009).

Hence, the ability to decode spatial position as an external
observer does not mean that we have identified the code by
which the brain represents spatial information. By now, we
hope the same point is also clear when it comes to our ability
to decode object properties as external observers. The fact that
certain neural responses to different object types cluster in a
way that might enable successful decoding does not mean that
we have identified the representational format by which the
brain communicates information about objecthood. However,
this is not to deny that the ability to look at large scales of
activity with fMRI could provide important insights into the
nature of object representations and the computations used to
process them. For example, Kriegeskorte and colleagues
(Kriegeskorte, 2009; Kriegeskorte, Mur, & Bandettini, 2008;
Nili et al., 2014) have used the ‘representational similarity’ in
activity across voxels to make inferences about the represen-
tational similarity of patterns of activity evoked by different
objects. In Kriegeskorte’s words, this form of analysis can
provide insights into the ‘geometry’ of neural representations
(Kriegeskorte & Kievit, 2013), such that, if two object have
more similar patterns of activity in fMRI, then these objects
could be represented in more similar ways than two objects
that evoke very different patterns. This approach, therefore,
potentially offers a powerful window into the nature of the
computations underlying object recognition. At the same time,
however, we need to remain very cautious about the conclu-
sions we can draw from this form of analysis given that they
are very dependent upon the channel over which the informa-
tion is conveyed (which we do not know), subject to the man-
ner in which responses are anatomically clustered (often not
known), and are dependent on a close correspondence be-
tween the precise flow of blood to different anatomical loca-
tions (Gardner, 2010) and the relationship between BOLD and
underlying neural activity (Logothetis, 2008). The potential
power of this technique, however, reinforces the need to focus
on testing whether ‘potential information’ measured with
fMRI really is ‘actual information’ used by the brain.

How do we test whether ‘potential information’
in fMRI (experimenter-as-receiver) is ‘actual
information’ (cortex-as-receiver)?

In the previous section, we have highlighted that successful
decoding reveals potential information, but that we need to go
further to test whether different patterns of activity constitute
actual information used by the brain, especially if those pat-
terns are to be used to make inferences about the nature of
underlying representations (Kriegeskorte, 2009; Kriegeskorte,
Mur, & Bandettini, 2008; Kriegeskorte & Kievit, 2013; Nili
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et al., 2014) and about the computations by which represen-
tations are combined (Baeck, Wagemans, & Op de Beeck,
2013). This section will consider a range of approaches for
testing whether information decoded by the ‘experimenter-as-
receiver’ is actual information used by the ‘cortex-as-
receiver’.

One approach to providing evidence that potential sources
of information (identified with experimenter-as-receiver) are
in fact information with cortex-as-receiver is to look for a trial-
by-trial correlation between the performance based on fMRI-
MVPA and the behavioral performance of the participant (as
used in single-cell studies described in the previous section).
Using this approach, Williams et al. (2007) argued that ‘only
some spatial patterns of fMRI response are read out in task
performance.’ Their paper started from the observation that
the patterns of neural activity in a number of different areas
of the brain could be used to successfully decode which of
three shape categories was presented to a participant. Only one
of these three areas (the Lateral Occipital Cortex, LOC) re-
vealed a correlation between the classifications based on neu-
ral activity and the behavioral classification judgments made
by the participants. In simpler terms, when the participant
made a mistake, the output of the decoding based on patterns
of activity in LOC often produced the same mistake. The
decoding based on patterns from the ‘retinotopic cortex’1 also
produced errors, but these did not correlate with the behavior
of the participant. Based on this finding, the authors argued
that, whilst many areas may contain informative patterns of
activation, only the pattern of activation present in a particular
area (LOC in this case) is actually ‘read out’ or used in
forming the participant’s behavioral response. By explicitly
testing the link between decoding performance and behavioral
performance, this study constitutes an important advance on
many MVPA studies in providing more evidence that the ac-
tivity in a given area of the brain really is information with
cortex-as-receiver. At the same time, however, it raises some
challenging questions if their logic is followed. Are we to
assume that the behavior of the participant is literally based
on a linear classification of the patterns of activity in LOC? If
this is the case, what area of the brain is able to act as a receiver
integrating signals from the whole of LOC (used to identify
the potential information with fMRI)? The lack of a correla-
tion between the patterns in ‘retinotopic cortex’ with behavior
also leaves open many questions: Are these patterns in
retinotopic areas a mere consequence of the way representa-
tions cluster (like those seen in spatial maps) that plays no role
in the computation of shape? Or are the large-scale patterns
evident in early areas directly used (transformed in some way)

to construct representations of shape in intermediate visual
areas?

Thus, whilst a correlation with behavior is a useful first step
(and could be used more routinely in fMRI-MVPA research),
we still need to focus on ‘what causes what’ in the brain to be
sure that decoding with fMRI reveals information used by the
brain. V1 is a perfect case in point because, although many
higher areas feed-back to V1, V1 does not directly project to
areas that are likely to be involved in making a final decision
(Kravitz et al., 2013). Thus, for V1, the pertinent question is
often not whether it directly drives (and thus correlates with)
behavior, but whether it drives activity in other intermediate
areas of the brain such as V2 or MT.

Research has already attempted to use dynamic causal
modeling to analyze the effective connectivity between V1
and MT (Haynes, Driver & Rees, 2005) and V1 and V2 and
MT/V5 (Friston & Buchel, 2000). Indeed, studying the ‘big
data’ of these ‘functional interactions’ is clearly going to be a
large part of the next wave of neuroscience (Turk-Browne,
2013). It is important to be clear, however, that, just as neuro-
imaging does not provide a direct measure of information, so
too dynamic causal modeling techniques do not provide a
direct measure of the information transfer between two areas
of the brain. These two points are intimately linked. For ex-
ample, it might be that, in order to drive a response in MT,
neurons in V1 have to fire at a particular phase. In this case,
the rate of activity in V1 (presumably driving most of the
changes in the BOLD response measured in fMRI) may not
correlate with the BOLD signal in MT. Looking at effective
connectivity (if signals are carried by the precise phase of
neural firing) with fMRI might, therefore, lead one to miss
causal connections that are in fact present.

Any attempt to use ‘big data’ in mapping ‘functional inter-
actions’ therefore has to start from the understanding that we
cannot objectively measure information, and that we do not
yet know the channel over which the brain communicates
information. With this perspective in mind, we think that at-
tempts to model connectivity between different areas should
focus not just on modeling the relationship between activity in
different areas but critically to test which aspect of neural
activity in one area predicts which aspects of activity in anoth-
er. For example, in looking at the relationship between V1 and
MT, one should not just model the relationship between the
levels of activity in voxels in each area but also test whether
the performance of a linear classifier of the activity in V1 can
provide a better predictor of subsequent activity (or patterns of
activity) in MT. In this way, one could more directly test
whether information in V1 (with MT as the receiver) exists
in the overall rate of activity or in a more complicated distrib-
uted pattern across V1. Of course, fMRI can only measure
certain aspects of neural activity, and ideally fMRI needs to
be combined with other techniques which can sample a
broader range of candidate channels over which activity could

1 ‘Retinotopic cortex’ is in quotes here because evidence has accumulated
since that LOC is also organized into a number of retinotopic maps of
spatial relationships (Larsson & Heeger, 2006), and is therefore also
‘retinotopic’.
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be conveyed. For example, larger-scale multi-electrode re-
cordings could not only enable one to develop models based
on average firing rates (and certain large-scale population
codes) but also on more subtle timing and population codes.
The technical feasibility of such recordings is also rapidly
improving. For example, Port, Sommer and Wurtz (2000)
and Port and Wurtz (2003) have reported data from simulta-
neously recorded neurons in different parts of the Superior
Colliculus, and more recent research has also shown that mea-
suring from larger collections of neurons can provide data that
can enable one to predict the activity of individual neurons
(Stevenson et al., 2012). Moreover, the number of neurons
that can be recorded in one area is also rapidly increasing
(Stevenson & Kording, 2011). Of course, large-scale multi-
electrode recordings might also miss representations on scales
that would be more easily detected with fMRI, so we do not
wish to promote one technique over the other per se, but rather
highlight the importance of being able to simultaneously test
different potential candidate channels over which information
might be conveyed by looking at which best predicts subse-
quent activity in a receiver.

There is one recent study which illustrates very clearly the
value of looking not just at the transfer of activity from one
area to another but which explicitly tests what aspect of neural
activity in one area predicts activity in another. Van Kerkoerle
et al. (2014) recorded simultaneously from V1 and V4 and
showed that feedforward communication from V1 to V4 was
based on activity in a higher frequency (gamma) range, whilst
feedback (from V4 to V1) was based on lower frequency
(alpha) activity. This study offers a major advance in
highlighting that different temporal codes may be used as
the channels over which different types of information are
conveyed. Perhaps most impressively, van Kerkoerle et al.
were able to show that inducing higher frequency activity in
V1 caused more activity in V4, whilst in V4 inducing lower
frequency activity caused more activity in V1. Thus, van
Kerkoerle et al. tested not only whether activity in one area
was related to activity in another but also what aspect of that
activity was critical, with a specific receiver in mind.

The study by van Kerkoerle et al. (2014) also goes beyond
most studies using TMS and neuropsychology in testing not
just whether an area of the brain is critical but also in explicitly
testing what aspect of activity in a given area is critical with a
specific receiver in mind. Typically, the use of TMS or data
from neuropsychology patients can add to our confidence that
responses measured in a given area are (or are not) causally
important, but they do not necessarily help to clarify which
aspect of neural activity is actually critical in conveying infor-
mation. A typical brain lesion or standard TMS intervention
will undoubtedly disrupt all of the possible coding channels
one could consider (firing rates at different frequencies, the
phase of neural activity, population codes, etc.). However,
using TMS, there are also examples where time-locked

interventions could prove muchmore powerful in establishing
not only that an area is causally involved but also in helping to
identify what neural code is being used to communicate infor-
mation. For example, Romei, Driver, Schyns and Thut (2011)
showed that TMS applied to the same area of the brain at
different frequencies had different effects on perceptual pro-
cessing. More specifically, they found that higher-frequency
stimulation led to more local perceptual performance on a
Navon (1977) task, and lower-frequency stimulation led to
more global perceptual performance. This result not only adds
to the evidence that this area of the brain is causally involved
in this perceptual process, but also provides evidence regard-
ing the code bywhich this area computes information. Used in
this way, TMS (and other tools for manipulating the temporal
properties of neural firing) can advance on neuroimaging
methods, by not only providing evidence that an area is active
during in a particular task but also by helping to test how
neural activity in a given area is actually used to communicate
information.

Before concluding this section on fMRI, it is worth noting
that, whilst most neuroscience is really interested in informa-
tion with cortex-as-receiver, there are contexts in which it is
quite appropriate to use fMRI with the explicit purpose of
using neural activations to inform the experimenter (experi-
menter-as-receiver). Examples include trying to identify if
somebody is lying (Ganis, Kosslyn, Stose, Thompson, &
Yurgelun-Todd, 2003), trying to use neural activity to assess
whether a coma patient is still conscious (Owen et al., 2006),
or reconstructing what a participant is watching (Nishimoto et
al., 2011). The practical utility of these approaches is to some
extent (although not totally) separate from the issue of whether
one is recording activity that actually reflects information (dif-
ferences that make a difference) to the brain itself. In these
instances, the physical measurements can immediately be
regarded as information in Shannon’s framework because
the act of communication can be defined such that the partic-
ipant’s brain is the transmitter, the BOLD measured via fMRI
is the channel, and the experimenter is the receiver.

Is information carried by ERPs, rhythms, phase
or traveling waves?

The use of terminology that suggests or implies that neuroim-
aging can directly measure the neural code or neural represen-
tations is not limited to fMRI or single-cell recordings. An
interesting case in point here is a paper with the title
‘Cracking the code of oscillatory activity’ (Schyns et al.,
2011). This paper looks at oscillatory rhythms during a task
requiring the perception of facial emotion and suggests that
more information is carried in the phase of those rhythms than
in their frequency or amplitude.Within Shannon’s framework,
in which information needs a transmitter, a channel and a
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receiver, this work implicitly gives the role of the receiver to
the experimenter. However, as with other examples cited, this
does not mean this work is not important or useful; on the
contrary, it focuses on a very important question regarding
which physical differences carry potential information.
Whilst most research assumes that information is carried in
the power of the signals recorded in MEG, this study high-
lights that more information might be carried in the phase of
neural activity. However, whether thinking about phase or
power, the key question should be whether any area of the
brain can receive or ‘observe’ the physical signal that we mea-
sure with MEG. Stepping back, we could ask more generally
whether the physical differences measured with EEG or MEG
reflect or derive from physical differences that make a differ-
ence for further processes in the brain.

MEG and EEG measure signals that arise with the coordi-
nated activity of millions of neurons. It has long been sup-
posed that this coordinated activity is intimately tied to cog-
nition, but it has also been argued to be epiphenomenal
(Collura, 2013; Freeman, 1995). Just as steam might rise from
a factory, but not contribute to the actual process of produc-
tion, neurons firing might also generate electromagnetic fields
that have no influence in their own right. Recent evidence
from in vitro experiments, however, suggests that the re-
sponses of cortical and hippocampal neurons actually can be
influenced by the surrounding, endogenous electromagnetic
field (Fröhlich & McCormick, 2010). In principle, therefore,
these large-scale electromagnetic fields might play a direct
role in the transmission of information.

The question still remains, however, as to whether it is
helpful to already refer to this physical difference as ‘informa-
tion’ in the brain, when we do not yet have a model regarding
how the brain could possibly use this as a signal in further
processing. This is not simply an issue of making more con-
servative conclusions, it has important consequences in guid-
ing future research. A good illustration of this point involves
the way event-related potentials (ERPs) are computed and
used. Decades of study have suggested that the averaged,
time-locked EEG responses to stimuli provide a direct insight
into the underlying representations. ERPs are assumed to pro-
vide a direct measure of mental chronometry (Posner, 2005)
and information processing (Näätänen, 1990). Recent work
looking at traveling waves of activity across the cortex sug-
gests, however, that late ERPs (e.g., P2–N2, P3) do not
emerge from a static cortical dipole, but might instead be a
by-product of the way different traveling waves are combined
across trials (Alexander, Trengove,Wright, Boord, & Gordon,
2006; Alexander et al., 2013). More specifically, this work
suggests that most of the phase variability at the single trial
level can be explained as traveling waves. This leads to the
potential interpretation that in MEG, EEG and ECoG, static,
localized regions of activation, with peaks at specific laten-
cies, are actually a by-product of experimenter-averaging of

waves travelling in a variety of directions. ERPs (and event-
related fields and trial-averaged local field potentials) are
therefore potentially a prime example of how we can interpret
activity with an experimenter-as-receiver perspective, when
this might not be accessible to the participant’s brain, which
has no direct access to the trial-averages computed by the
experimenter. It is not the aim of this article to resolve how
information is represented in the cortex—as dynamic travel-
ing waves or static patterns of activity in particular areas, or as
some combination—but rather to highlight that establishing
which of these is true should be the core focus of neurosci-
ence. Calling physical activations ‘information’ before we
have established how (or whether) the brain can make use of
that physical activation potentially distracts us from that goal.

The distinction between static/averaged ERPs and
travelling waves also provides an important illustration
of the risks of prematurely labeling some physical re-
sponses as noise and others as signal. In particular, av-
eraging over trials to calculate ERPs is often justified as
a means of averaging over noise, to enhance the record-
ed signal. However, if traveling waves actually reflect
the functional topology of dynamic cortical activity,
then averaging the raw brain signals over trials is inap-
propriate. Averaging could cause one to cancel out what
might in fact be important signals. Thus, the relation-
ship between traveling waves and ERPs illustrates that
signal and noise are also very much model-dependent. It
is commonly assumed that signals that are not captured
by the event-locked response can be treated as random
background noise (Arieli, Sterkin, Grinvald, & Aertsen,
1996; Gruber, Klimesch, Sauseng, & Doppelmayr,
2005). However, for the case of waves travelling in
different directions, the lack of cross-trial synchrony
does not mean that there were no coherent patterns of
phase within each trial, which might be lost when
looking at the trial average.

The potential pitfalls of focusing on trial-averaged
evoked responses, and the bias this can lead to in
interpreting what is signal and noise, are illustrated in
a study by Arieli, Sterkin, Grinvald, and Aertsen (1996),
who investigated the topography of local field potentials
in cat visual cortex. They found that the spatial pattern
of within-trial activity dominated the signals they re-
corded, whilst the trial-averaged evoked responses con-
tributed very little. Critically, they measured the activity
before (and during) the usual latency window of the
evoked response and found that the preceding within-
trial activity was an excellent predictor of within-trial
activity at the latency of the evoked response―in fact,
a much better predictor than the trial-averaged evoked-
response topography. This means that the within-trial
topography of activity is in fact highly structured, whilst
it would normally be regarded as (to-be-averaged-away)
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noise in the background of the assumed signal of the
trial-averaged evoked response (Arieli et al., 1996).

Is the world a transmitter? What is the channel?
Who is the real homunculus?

Shannon’s theory of information specifies a transmitter, a
channel and a receiver. This formulation is useful in that it
forces one to be more explicit about the assumptions one is
making about how neural activity can be interpreted.
However, it is also questionable as a model for thinking about
what perception and cognition actually do. In particular, if we
consider sensory processing, it might seem strange to consider
the physical world as a ‘transmitter’, the visual system as a
‘channel’ and the motor cortex (or areas involved in making
perceptual decisions) as a ‘receiver’, particularly because it is
arguable that certain behavioral responses are driven by rep-
resentations that have no inherent basis ‘in’ the physics of the
external world (Hoffman, 2009; Koenderink, 2014; Rogers,
2014). Our cortex might represent certain signals as belonging
to the same object, for example, but it is philosophically ques-
tionable whether that object can be said to exist in any objec-
tively definable way in the actual physics of the world, as a
pre-existing signal that was ‘sent’ by the transmitter. In
distinguishing (segmenting) discrete objects, one could argue
that perception is not so much an act of ‘communicating’
(object) information but an act of ‘creating’ (object) informa-
tion. That is to say, perception could be understood as the
process of creating differences that make a difference, that
exist only because of what the brain does. Thus, if perception
should be understood as the construction of information as
part of a ‘user-interface’ that enables us to interact with the
world (Hoffman, Singh, & Prakash, 2015), this could suggest
a profoundly different framework for thinking about informa-
tion than that established by Shannon. This potential distinc-
tion between communicating information and creating infor-
mation is just one reasonwhy Shannon’s formulationmight be
a questionable framework for thinking about information pro-
cessing in the cortex. Again, however, Shannon’s precise for-
mulation brings into clear focus a fundamental question for
neuroscience that might otherwise be neglected.

Another complication to Shannon’s formulation is the hi-
erarchical but interactive nature of cortical dynamics, which
means that a clear segregation into a transmitter, channel and
receiver maybe inappropriate. Particularly if the cortex imple-
ments some form of predictive coding, information then be-
comes a complex interaction between the receiver and trans-
mitter, which could result in only ‘error signals’ being con-
veyed over the channel. Shannon’s initial formulation does
not consider more complicated feedback or recurrent dynam-
ics. These considerations are not straightforward or easy, but,
again, these are not side issues that neuroscience can ignore

while it gets on with the business of measuring information in
the brain. Instead, these are fundamental considerations that
need to be considered from the outset.

There are unarguably many candidate channels over which
information could be conveyed in the cortex, but a lot of
neuroscience is conducted with the assumption that we al-
ready knowwhat that channel is. The first sentence of a recent
Nature Neuroscience publication (Goris, Movshon, &
Simoncelli, 2014) illustrates this point quite clearly:
‘Neurons transmit information with sequences of action po-
tentials’. In another recent example, an Annual Review of
Neuroscience article opens with the sentence ‘Information is
encoded in patterns of neural activity’ (Haxby, Connolly, &
Guntupalli, 2014). Both these statements are questionable,
and neither is accompanied by a reference. As we have already
discussed, some authors have explicitly argued that in some
contexts information is not conveyed by sequences of action
potentials but by the precise timing of the first action potential
(Thorpe et al., 2001). Others have highlighted that it is plau-
sible that in some contexts single neurons could directly code
for information, and that a distributed pattern of neural
activity might not be needed (Bowers, 2009).

Related to this, neuroscientists have long been confident in
labeling some neural activity as noise, or mere ‘background’
activity. However, without an accepted definition of a channel,
how can we possibly know a priori what is noise and what is
signal? Indeed, the recent Nature Neuroscience paper cited
above helps to clarify that signals previously considered to
be noise might actually relate to ongoing activity, which ap-
pears as noise simply because it is not stimulus-dependent
(Goris et al., 2014). Indeed, others have already highlighted
the potential dangers of selectively recording from neurons
that are pre-identified as behaving ‘rationally’ or excluding
those (in the study of perception) that seem at first glance
‘visually unresponsive’ (Olshausen & Field, 2005). The prob-
lem with this pre-selection is again that certain neurons may
appear (un)informative to us, but the functional role of these
neurons is not to communicate information to an external
observer but to communicate with the rest of the brain. It could
very well be that the neurons with the non-obvious or less
reliable responses are actually providing a critical signal to
the rest of the brain. There is a very real risk that we will never
be able to build or test valid computational models (which
might actually inform us about what really is signal and noise
for the cortex), if the signals recorded are biased towards those
that made more intuitive sense to the experimenter.

In an earlier section, we questioned the terminology used in
a paper purporting to demonstrate that phase carries more
information than power in MEG. It is useful to clarify here
that our concern with this research is that it draws a conclusion
about information with cortex-as-receiver based on what can
be deciphered with the experimenter-as-receiver. However,
despite this shortcoming, this work is actually more directly
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focused on what we would regard as the most immediate and
important challenge of neuroscience, namely, focusing on
how information might be conveyed (via power or phase)
rather than just assuming this is something we already know.
The work of Singer and colleagues is another prime example
here, where there is a clear attempt to address whether more
information could potentially be conveyed in spike timing
rather than in rates of firing (Singer, 1999).

One might argue that focusing on how one area of the
brain can act as a ‘receiver’ for signals from another area of
the brain returns us to the idea of a naive homunculus which
‘observes’ neural activity and makes decisions about it.
Often, however, the dreaded homunculus has in fact been
replaced, not with a theory of information processing but by
an external experimenter who observes and interprets
recorded activity. This assumption is sometimes embedded
in sophisticated mathematical frameworks such as the
computation of mutual information between activity
recorded by an external observer and stimuli or conditions
defined by that observer. As in the example of looking at
phase and power in MEG, the use of these techniques
certainly provides a powerful tool for actually quantifying
what are potentially informative signals. Once identified,
however, we need to move from the fact that these signals
can be identified by an external observer to thinking about
how they could actually be used as a neural code. There may
not be a homunculus in the brain interpreting neural signals,
but, if one presents a visual discrimination task to a
participant, somehow the responses in visual areas need to
be communicated to the motor cortex making a response. It
is certainly useful to directly record the responses in V1 in
such an experiment, but one cannot assume that the firing of a
neuron, or the decoding of a pattern which can inform one as
an external observer, is the same physical response that will
be used by other areas of the cortex to eventually initiate the
correct motor response. Rather than simply correlating
between one physical activity and presented stimuli, one
needs to record a rich range of physical responses in V1
that could act as potential signals, and then track the causal
dynamics from one area to the next to see which of these best
predicts whether physical activity is evoked in the next area
of the cortex. This way of doing research is not an entirely
novel endeavor. As discussed above, there are already
attempts to predict activity in one area, from activity in
another . For example, in a recent study, Heinzle, Kahnt,
and Haynes (2011) looked at the topographic relationships
between activations in V1 and V3, and found a clear mapping
between the location activated in V1 and the corresponding
topographic locations in V3. Interestingly, they also found
that the topographic specificity, in terms of whether a re-
sponse in V1 would be correlated with a response in V3,
was also observed when the participant was in a completely
dark room. Thus, spontaneous activity seemed to be

structured in a way that suggests that it is not simply ‘back-
ground noise’ but that it might play a functional role.

Tracking causal dynamics between areas of the brain in
order to make inferences about what physical responses might
act as sources of information is clearly not an easy task. We
would argue, however, that a lot of modern neuroscience is
difficult to interpret if we assume (often implicitly) that we
have already established what is signal and what is noise. If
we do not yet know what physical responses can be used as
information, it will clearly be hard, if not impossible, to an-
swer some of the questions that are the focus of modern neu-
roscience. How, for example, can we really know whether a
given area only represents faces when we do not actually
know how the brain represents information? If this paper is
to prove informative to the field, we hope that it makes a
difference not only in the extent to which we are explicit in
the assumptions we make when reporting neuroimaging data
but that it might also encourage a greater focus in tracking
causal dynamics in the brain in a way that enables us to iden-
tify the differences that make a difference in the brain.

Of straw men and neuroimaging: what are
the implications for neuroscience?

To many researchers, the idea that neuroimaging might be as-
sumed to provide a direct measure of information is so obviously
false that questioning it might seem like nothing but a strawman
argument. At the same time, however, results in neuroimaging
(and especially the recent rise in studies using fMRI-MVPA) are
often communicated as discoveries of the ‘neural representation
of X’, or the ‘neural encoding of Y’. As we noted earlier, some
of the earliest work linking neural responses to behavior was
much more straightforward in communicating findings from
neuroimaging, referring (for example) to the ‘neural correlates
of a perceptual decision’ (Newsome et al., 1989). The terminol-
ogy of ‘neural representations’ or ‘codes’might not be problem-
atic if it was clear to everyone that these terms are used as a
short-hand, or proxy, for a neural response which could poten-
tially provide information to other areas of the brain. However, if
the terminology of ‘neural codes’ and ‘neural representations’ is
used, one should be able to cite existing literature that clarifies its
meaning. Particularly as neuroimaging is adopted by diverse
fields from neuro-law to neuro-economics, the imperative to
make explicit assumptions that might be clear only within a
certain academic community becomes even more important.
Although we do not wish to claim that Shannon’s framework
is the definitive and only viable way to think about information
in the brain, we think its emphasis on a receiver helps to bring
into clearer focus what neuroimaging can measure, and how that
can be communicated more clearly. Within neuroscience, we
hope this article will cause a shift in emphasis away from think-
ing about what we can decode from different neuroimaging
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techniques (with experimenter-as-receiver) to thinking about
whether those recordings of neural activity are differences (or
markers of underling differences) that could be decoded by the
rest of the brain. Although the technical challenges would still be
substantial, we hope this article makes the theoretical case that it
is imperative to simultaneously record from different areas of the
brain to test which aspects of neural activity are actually com-
municated from one area to another to establish what actually
constitutes information in the brain. Recording from areas like
V1, and in areas sensitive to the same part of the visual field in
areas receiving inputs from V1 (such as V2 or MT), with multi-
electrode arrays would be an ideal starting point. By recording
simultaneously whilst an organism is performing a visual task, it
would become possible to test which aspect of V1's activity best
predicts subsequent activity in areas receiving that input. By
looking at a transmitter (such as V1) and a receiver (such as
V2 or MT), we can make progress in identifying the channel
over which information is actually conveyed. Such an analysis
could have profound implications. If, for example, it was found
that most of the activity in V2 or MTwas driven by the precise
timing of firing in V1, rather than by the overall rate at which
neurons fire, then we would have to seriously re-evaluate the
contribution that studies using fMRI could make to our under-
standing of information in V1. Particularly given the recent in-
crease in studies using fMRI-MVPA (which sometimes explic-
itly claim to decode information in the brain), we hope that this
paper offers a timely critique of assumptions that could lead
psychologists to use neuroimaging to ask questions that neuro-
imaging cannot yet answer. Moreover, we hope that this paper
will act as a catalyst to neuroscience to focus on the development
of methods and techniques that enable us to study what causes
what in the brain, and thus start to unravel the neural code.
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