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Recently, two new approaches have transformed our understanding of human population

history. Firstly, the sequencing of ancient genomes which gives us a snapshot of past genetic

variation. We can therefore make inferences from observed genetic signatures present before

historical events such as population bottlenecks and natural selection have obscured them

from the modern gene pool. Ancient DNA has thus revealed what cannot be determined

from modern genomes alone. Secondly, the development of methods that aim to reconstruct

population genealogies from genetic variation data. Together with an understanding of how

evolutionary processes alter genealogies, this has allowed inference of historical and ongoing

processes in real world populations. The latest updates in these approaches now allow us to

combine the two and infer genealogies involving both present-day and ancient individuals.

In this thesis I present a new method to infer local ancestry along sample chromosomes.

The method applies machine learning to tree sequences built from ancient and present-day

genomes and is based on a deterministic model of population structure, within which I

introduce the concept of ‘path ancestry’. I show with extensive simulation that the method is

robust to a variety of demographic scenarios and generalises over model misspecification.

Subsequent downstream analyses include estimating past effective population size, timing

of population specific selection and the time since admixture for individuals. I apply the

method to a large ancient DNA dataset covering Europe and West Eurasia to paint all sample

chromosomes. I show that the inferred admixture ages are a better metric than sample ages

alone for understanding movements of people across Europe in the past.
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Genome sequences are a product of their evolutionary history and therefore knowledge

of how genomes have evolved is important to understanding how they work and how they

influence our lives today. Population genetics analysis underpins the pursuit of this knowledge

and arguably provides the deepest comprehension of evolutionary change of any branch of

biology.



2 Introduction

Mutations are the foundational unit of study for all population genetic analysis. Mutations

are changes in the DNA sequence which take place either before or during the DNA copying

process and are then passed on in future DNA replications. The process of mutation produces

variant forms of genes termed ‘alleles’. Evolution can be thought of as changes in the

frequency of alleles in a given population over time. Mutation therefore creates the heritable

variation in a population required for evolution. After many generations evolution can create

marked differences in allele frequencies between populations. The evolutionary processes

which drive changes in allele frequency will be described in Section 1.1.

A fundamental practice within population genetics is ancestry inference [90], as it is

often necessary in many population genetics applications to assign a set of individuals to

different population groups [20, 119, 11]. Ancestry inference techniques exploit the allele

frequency differences to delineate populations or ‘ancestries’ and/or assign individuals to

populations. However, the concept of ancestry is not well established [76]. Its definition is

often context dependent which can confuse both researchers and the public, thereby making

its deeper meaning in some applications questionable.

There are two tools that are central to analysis of genetic data. The first is DNA se-

quencing which allows observation of the mutations present in individuals. The advent of

next-generation sequencing technologies that came with advances in computer science and

molecular biology created an exponentially growing pool of data from modern genomes,

capturing millions of genetic variants. Single nucleotide polymorphisms are the most com-

monly used type of genetic variant. These are substitutions of a single nucleotide for another

which are present in at least 1% of the population. Dense SNP data is now available from

ancient genomes which allows tracking of mutations and allele frequencies over space and

time (Section 1.2).

The second tool is mathematical modelling of how genes evolve in populations over

time (Section 1.3). The evolutionary processes that drive evolution are well understood
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(Section 1.1) and DNA replication imposes strong constraints so mathematical models of

how genomes change over time are easy to construct. While simplified models will fail to

capture the full complexity of the natural world, many simple models behave in similar ways

to the corresponding complex system and so can be used to make rich inferences. It is only

with these models that inferences about the evolutionary history of samples can be gleaned

from the mutations observed with DNA sequencing. A relevant example is genealogical

inference tools which can infer the genealogical relationships between large sets of sample

DNA sequences using SNP data [117, 53].

My thesis combines a collection of aforementioned tools and principles to advance

ancestry inference and from this our understanding of the evolutionary history of present

day Europeans. I first redefine the meaning of ancestry to be more flexible by considering

time as a dimension. With this new definition, I then develop a new method for inferring

local genetic ancestry that uses the central tools of population genetics; dense SNP data

from modern and ancient Eurasian genomes, and a recent genealogical inference program,

RELATE [117, 116]. Finally, I show how to carry out various analyses using these.

1.1 Evolutionary processes and population structure

There are four evolutionary processes that act at the level of populations that affect the

number of mutations present in a population, referred to as the allele frequency. The first is

mutation. As described above, this process introduces new variation into the population. The

next is gene flow, where alleles are introduced into a population by migrants from another

population. Gene flow either changes the frequency of alleles already present in the receiving

population or introduces new alleles.

Genetic drift and selection, the third and fourth processes, affect the representation of

alleles in the next generation and so alter the allele frequency between generations. Genetic

drift is the random sampling of alleles from the pool of parental alleles to form the next
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generation. Sampling starts at the gamete level where only a small sample of the possible

gametes that are produced by an organism are fertilised. Drift then continues at all life

stages from fertilisation to reproduction where random events (not related to allele fitness)

remove individuals from the populations. Over many generations this results in stochastically

fluctuating allele frequencies over time. At a single biallellic locus drift can be modelled

using the binomial distribution where p is the allele frequency of allele A, 1� p is the

frequency of allele B and N, the constant haploid population size, is the number of trials.

The expected frequency of allele A in the next generation p0 is p and its variance is

Var(p0) =
p(1� p)

2N
.

When under drift alone, an allele will either be completely lost from the population

or become present in all members of the population (fixation) given sufficient time. The

probability of fixation of an allele is equal to its initial frequency. Given that the variance is

inversely proportional to population size, the allele frequencies will fluctuate more rapidly

in small populations and therefore alleles will be fixed (or lost depending on their initial

frequency) more rapidly, i.e drift has a stronger effect in smaller populations. This model

of binomial sampling works under the assumption of a highly idealised population. Real

world populations never fit all assumptions which almost always results in more drift being

observed in these populations than an idealised population of the same size. The effective size

(Ne) of a real-world population is the size of an idealised population that would experience

the same amount of genetic drift. Ne is a fundamental concept in population genetics as it

allows the above model of binomial sampling to be applied to real world populations.

Selection is a bias in the sampling of alleles from the population, where some alleles

tend to be oversampled or undersampled in the next generation. For example, if an allele

confers resistance to a disease, its fitness (tendency to perpetuate into future generations) will

increase relative to the non-resistant alleles. The expected frequency of allele A in the next
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generation p0 is no longer p, but is weighted by the fitness of the allele Wa,

E[p0] = p
Wa

W̄
,

where W̄ is the average fitness of all alleles in the population. It is therefore the relative

fitness of an allele that biasses the sampling of that allele.

Selection acts only when there is a difference in fitness between alleles and causes an

allele to increase or decrease in frequency over time, with a proclivity towards one direction,

unlike genetic drift which is random. Genetic drift is always acting so alleles under selection

will also fluctuate in frequency around the expected value. This means that when selection

and drift act concurrently, a positively selected allele can drift to loss by chance and likewise

a deleterious allele can drift to fixation. Given that the variance in allele frequency under drift

is inversely proportional to Ne, it is therefore the effective population size that determines the

efficacy of selection.

Population structure is often defined as a difference in allele frequencies between groups

or populations. This occurs when individuals cannot randomly mate and the assumption of

panmixia is violated. This can be because groups are totally separated by an uncrossable

barrier such as a mountain range, or this can be more continuous where different parts of

a large population have different allele frequencies because the whole population is not

panmictic. Over time, evolutionary processes acting separately in the divided groups will

create different allele frequencies in the two groups.

Genetic drift is the most influential process that gives rise to divergent allele frequencies

in structured populations because not only is it always acting, but it is always acting on

all alleles. Furthermore it acts entirely without a directional bias as to whether alleles

increase or decrease in frequency at each generation. The probability that an allele takes the

same frequency trajectory in separate populations becomes vanishingly small after multiple

generations. When the Ne of different groups is small the rate of divergence in frequencies
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is greater. If the groups experience different environments, selection on different alleles

will also cause different allele frequencies. Lastly, mutations that appear after separation

contribute to differing frequencies.

Gene flow counteracts drift by homogenising allele frequencies. For example, consider a

simple model of one infinitely sized mainland and one small island population, with migration

from mainland to the island but not from island to mainland. This example captures the

effect of gene flow acting against drift. The allele frequency of an allele on the mainland

population is px and py on the island population. The mainland population is infinitely large

and so the frequencies of alleles are constant. In every generation, fraction m of the island

individuals are migrants from the mainland and fraction 1�m were already on the island.

The expected allele frequency in the island individuals at time t +1 is given by,

py,t+1 = (1�m)py,t +mpx.

Over time, the allele frequency in the island population will approach the frequency of the

mainland. The time it takes for the frequencies to converge depends on the difference between

the starting frequency in the island and the mainland py,t=0 � px and the migration rate m.

This demonstrates how gene flow erodes population structure by reducing the difference in

allele frequencies between groups. Admixture is when gene flow occurs between groups that

were previously isolated, or structured.

Detecting population structure fundamentally involves detecting differences in allele

frequencies. One way to do this is to measure heterozygosity. Wright’s Fst statistic measures

relative mean heterozygosity between biallelic loci in subdivided populations [126]. When

populations split, alleles are more likely to reach fixation by drift and therefore the mean

heterozygosity within populations stays the same or decreases. When this happens the

mean total heterozygosity, imagining all individuals belong to the same randomly mating
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population, increases. Fst is calculated from these heterozygosity measures as,

Fst =
HT �HS

HT
= 1� HS

HT
,

where HS is the average of the heterozygosities within subpopulations, 1
K ÂK

i=1 2piqi with K

subpopulations, and HT is the total heterozygosity from the average of allele frequencies

between subpopulations, 2p̄q̄.

Another commonly used method for detecting population structure is dimensionality

reduction, in particular Principal Component Analysis (PCA) [81]. The genotypes of indi-

viduals can be coded as integers by the number of non-reference alleles present, making

them well-suited for PCA. These integers are normalised using the allele frequency and fill

a matrix of N x S entries, where N is the number of diploid samples and S is the number

of sites. PCA transforms the data to maximise variation and produce principal components

(PCs), new variables that are linear combinations of the initial variables. The PCs are uncor-

related and are ordered in decreasing amount of variation they explain. When samples are

plotted together by their first two PCs, distinct clusters form which are attributed to discrete

populations.

I make use of both Fst statistics and PCA when assessing population structure in Chapter

2. In Chapter 5 I highlight some more approaches for detecting population structure given

variation data.

1.2 Ancient DNA

Despite a wealth of data, patterns in modern genomes alone are difficult to interpret as they

are an indirect measure of past events. Moreover, much of the genetic variation which was

present in past populations does not exist in the modern gene pool due to ancient demographic

events that exacerbate drift, such as bottlenecks and isolation. Recent technological advances
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have enabled the sequencing of DNA extracted from ancient specimens, so called ancient

DNA (aDNA). Ancient DNA gives us a genetic snapshot of a time before confounding

processes have taken place, meaning we regain some of the lost information. We gain a lower

bound on when genetic mutations first appeared and insight into what genetic changes may

have taken place over time, helping us to infer what events and forces have acted to produce

the patterns in modern genomes. The use of aDNA has transformed our understanding of

human origins and evolution in recent years ([113]).

Despite its great utility, ancient DNA is notoriously difficult to sequence and analyse.

After death of an organism, DNA repair mechanisms no longer function and over time

post-mortem damage accumulates. Cytosine bases deaminate to uracil on 5’ and 3’ terminal

overhangs and appear as C to T changes on the forward strand and G to A changes on the

reverse strand when sequenced, which can mask informative mutations [13]. Also, double

stranded breaks accumulate through oxidation and enzyme activity, creating fragments that

are too short to align. In addition, ancient DNA samples are often contaminated with DNA

fragments from microbes and modern human DNA. A number of processing steps are

needed to identify and extract contaminating DNA but it still can create issues with data

authenticity. Overall, these challenges result in low coverage of the endogenous genome in

ancient samples.

Two approaches exist that aim to boost the data available from ancient DNA in order to

perform many important analyses. The first is to enrich the dataset for known genotypes of

interest by designing specific probes that capture fragments containing target loci, which can

then be amplified and sequenced, so called capture sequencing. A target set of approximately

1.2 million SNPs is commonly used in assays for human genomes and the 1240K dataset is

free to download and consists of thousands of ancient and present-day individuals genotyped

at these positions. This gives access to genome-wide data from ancient samples with low

amounts of endogenous human DNA present and can increase efficiency by targeting sites
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that will actually be analysed. The standardised set of SNPs also makes it easy to analyse

new sample data with previously published samples. The major drawbacks with capture are

that analysis is limited to previously ascertained SNPs and potentially important information

is lost at sites in between. Additionally, the non-random selection of SNPs to include in the

assay leads to biasses in downstream analysis when compared to whole genome sequence data

[58]. Plus, systematic biases can be introduced at the molecular level, where the likelihood

of capture with a probe is not independent of the variant present.

The second strategy is to infer the unobserved genotypes that are missing between those

that are genotyped, called genotype imputation. Imputation is often applied to modern

genomes to boost power and lower the cost in GWAS studies [70]. When applied to sparse

ancient genotype data it greatly increases the information content and the range of analyses

that can be performed, including haplotype-based approaches as well as allele frequency

methods. Plus it can be applied to shotgun sequenced data with genotype calls, which

mitigates biases incurred from capture sequencing.

Imputation is based on linkage disequilibrium (LD) of haplotypes. LD refers to the

non-random association between alleles at different loci [112]. The extent of LD and the

distance between loci that are associated is influenced by many factors including selection,

mutation, drift, population structure, admixture and genetic linkage [112]. Recombination is

the exchange of genetic material between homologous chromosomes during meiosis which

breaks associations between loci on either side of a recombination break point, acting to

decay LD. When many loci are considered, haplotype blocks containing multiple SNPs in

LD appear, separated by recombination hotspots [28].

The correlation between SNPs means that the presence of unobserved alleles can be

predicted from those that are present at loci in LD. In order to build models of the haplotype

structure from which to impute SNPs at unobserved loci a reference set of high coverage

phased genomes is required. The basic principle of many imputation tools is to learn the
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associations between SNPs from a reference panel and then, using various approaches, predict

the presence of unobserved SNPs given the observed SNPs in query sequences. Predictions

can either be made from hard genotype calls in query sequences or using the genotype

likelihood scores with a probabilistic framework [14, 46, 103].

The major drawback of imputation of ancient samples is that it is impossible to recover

alleles that have been lost between the sample age and the present-day due to drift. Similarly

rare alleles of approximately <0.1% minor allele frequency are difficult to impute. Using large

global reference panels to include more diversity with the addition of high coverage ancient

samples, it is possible to achieve high imputation accuracy [6]. Importantly, imputation has

the potential to remove systematic bias from capture data by removing genotype errors, plus

it has been shown to reduce the affect of ascertainment bias [32]. This means that data from

capture and shotgun sequencing can be merged through imputation, increasing sample sizes

for a wide range of analyses.

In Chapter 2, I introduce a large dataset of ancient genomes that has been imputed to

whole-genome sequence data and later I will discuss the possible effects imputation is having

on my analyses.

1.3 Properties of the coalescent

Originally introduced by Kingman [55], the coalescent is the name given to the process

that underlies statistical inference of genealogies. It traces lineages backwards in time,

modelling how they coalesce, until one lineage remains, the most recent common ancestor

(MRCA).

The coalescent generates a probability distribution over trees, and allows a probability

to be given for any tree. It is applied to a sample of individuals from a population with the

assumption that the history of the sample is a smaller genealogy embedded within the whole
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population genealogy and so demographic parameters of the population are reflected in the

sample genealogy.

For the discrete time coalescent, in a population with a diploid effective population size

Ne, the probability that two lineages share a common ancestor (coalesce) in the previous

generation is 1
2Ne

. Consequently, the probability that they do not coalesce is 1� 1
2Ne

. Hence,

the probability of two lineages coalescing an arbitrary number of generations in the past t is

given by

P(Coal = t) =
✓

1� 1
2Ne

◆(t�1)✓ 1
2Ne

◆
.

This is a geometric series with parameter 1
2Ne

, so the expected time to coalescence for two

sequences is 2Ne.

Above is the coalescent for two sequences. For a sample of more than two sequences,

the n-coalescent, we also consider the number of ways of choosing two sequences from the

sample
�n

2
�
= n(n�1)

2 , where n is the sample size. The probability that any two sequences

coalesce in the previous generation is therefore:

P(Coal) =
n(n�1)

2

✓
1

2Ne

◆
.

The same logic as above follows to calculate the probability of two lineages coalescing at t

generations,

P(Coal = t) =
✓

1� n(n�1)
2

✓
1

2Ne

◆◆(t�1) n(n�1)
2

✓
1

2Ne

◆
,

and the expected time to a coalescence event is:

E[t] = 4Ne

n(n�1)
.
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Often it is conceptually and computationally advantageous to scale the discrete coalescent

in continuous time, so that one unit of time equates to the expected time for two sequences to

find a common ancestor, 2Ne. This makes the continuous-time coalescent independent of

population size. The waiting time tc for a coalescence event between n sequences is modelled

by the exponential distribution with rate
�n

2
�
,

P(Coal  tc) = 1� e(
n
2)tc

(1.1)

tc can be converted back to time in generations t by multiplying by the population size

t = 2Netc. The continuous-time coalescent is broadly applied and is referred to as the basic

coalescent.

The coalescent describes tree topologies onto which mutations can be added to model

sequences at the leaf nodes. The number of neutral mutations on a branch is sampled from

a Poisson distribution with intensity tq
2 , where t is the branch length and q = 4µNe is the

scaled mutation rate, where Ne is the population size and µ is the per sequence per generation

mutation rate. The timing of mutations along each branch is random and all branches are

independent. With a known tree (topology and branch lengths, T ), one can calculate the

probability of a tree with mutations as

P(T |Mutations) = P(T )P(Mutations|T ), (1.2)

where P(T ) is the basic coalescent prior (equation 1.1) and P(Mutations|T ) is a product of

Poisson distributions across all branches.

However, when the tree is unknown, to calculate the probability of a set of sequences,

one must integrate over all possible trees,

P(Mutations) =
Z

T
P(T )P(Mutations|T ) dT.
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The number of possible tree topologies and branch lengths become prohibitively large

as the number of sample sequences increases. MCMC, importance sampling and other

techniques have been employed in the past in order approximate the integral over all possible

genealogies [57, 44, 37].

The basic coalescent is founded on assumptions of random mating, constant population

size and no selection. The structure of genealogies will change when these assumptions

are not met, therefore the basic coalescent is often extended to model these deviations.

Throughout my analysis I rely on data produced by a coalescent simulator, msprime [52],

and a genealogy inference tool that uses coalescent priors, RELATE [117, 116]. Additionally,

I use the basic coalescent in my methods to infer demographic parameters in Chapter 5.

Another assumption of the basic coalescent is the absence of recombination. Recom-

bination means that a set of sample sequences cannot be related to each other by a single

coalescent tree but a graph. A recombination event splits genetic material backwards in

time into two ancestors while coalescent events join genetic material from two sequences in

one ancestor. Hudson [47] was the first to model the coalescent with recombination with a

‘breadth first’ approach, backwards in time. Sequences coalesce and recombine with waiting

times sampled from two competing exponential distributions. The result is a complicated

graph that is very difficult to infer, which I elaborate on in the next sections. I introduce later

models of the coalescent with recombination in Chapter 5.

1.4 Ancestral Recombination Graph estimates as tree se-

quences

During meiosis, genetic material is exchanged between homologous chromosomes in

the process of recombination. A recombination event will cause a single chromosome to

be inherited from two parents in the previous generation which, looking backwards in time,
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appears to split a lineage into two lineages. Conversely, when two chromosomes share a

common ancestor in the past the two lineages will join, backwards in time, in a coalescence

event. The full collection of coalescences and recombination events for a set of sample

chromosomes is called the Ancestral Recombination Graph (ARG) and it entirely describes

the history of relationships of those sequences. In the absence of recombination, a set of

sequences can be related to each other by a single tree containing all their coalescences as the

internal nodes. The tree topology can be inferred by the pattern of shared derived mutations

between the sequences given sufficient mutations. However, if there is a recombination event

in any of the ancestors, each piece either side of the breakpoint has a different pattern of

coalescences and therefore we observe two different trees relating the sample sequences.

Multiple ancestral recombination events produce a sequence of changing trees as you move

from one end of the sample chromosomes to the other, each encoding the genealogy of a

chunk of DNA and each tree change reflecting one or more recombination events. Trees

located closer together on the chromosome will be correlated, meaning they share more edges

as fewer recombination events have occurred between them. In this way a tree sequence

represents the outcome of recombination, in contrast to an ARG which represents the

recombination events themselves. ARGs contain many nodes that do not alter the genealogy.

It is inefficient to store all of these events so only those that change the tree topology are

stored in the tree sequence [101].

Knowledge of the full genealogical history of many whole genome sample sequences

would greatly improve our ability to answer questions about their evolutionary history. A lot

of effort has therefore gone into devising methods to as accurately as possible infer ARGs

from genomic sequences. ARGs however are notoriously hard to infer, especially for larger

sample sizes. This is mainly because the number of possible ARGs relating samples is very

large and increases rapidly with sample size, plus the information in genome sequences is

often insufficient to choose a specific ARG above all others. Sampling from the posterior
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distribution of ARGs given the observed genetic data and a set of model assumptions, as is

the approach of ARGweaver [102], is computationally very expensive. Two methods that

were introduced in 2019 use heuristic approaches to infer tree sequences between many

DNA sequences, namely RELATE [117] and tsinfer [53]. The latest release of both these

programmes enables sample sequences to be placed in the past.

1.5 RELATE inference of tree sequences

In this section I describe the RELATE method of inferring tree sequences because Chapter

2 is a direct application of RELATE.

The RELATE software aims to infer the true underlying tree sequence from phased

genotype data. Unlike ARGweaver, RELATE is scalable to thousands of sample sequences

and offers the ability to infer population size changes through time under a panmictic model.

The method can be divided in several stages: Firstly, RELATE constructs a distance matrix

at every site that stores the probability of each haplotype i copying from all other haplotypes

j. Because recombination will change these probabilities, RELATE calculates them using

SNP information flanking each focal SNP with a modified Li and Stephens hidden Markov

model which considers ancestral and derived states.

From the distance matrices RELATE uses hierarchical clustering to build a tree topology

which finds clusters of haplotypes that coalesce with each other before other clusters. This

can be done for every distance matrix at every SNP but is very inefficient and slow, especially

for large sequences. To improve efficiency, RELATE makes use of the fact that trees at

neighbouring sites are likely to be very similar if not identical, given no recombination has

happened between them. Starting from one end of a chromosome RELATE constructs a

tree topology and maps mutations to the branches, where all descendants below the branch

with a mutation on it are carriers. Only when a mutation at the next focal SNP cannot be

uniquely mapped to the topology of the previously constructed tree does RELATE proceed
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to estimate a new topology at that SNP. To be robust to sequencing errors the constraint of

‘uniquely mapping’ is relaxed so that not all descendants of a branch must be derived for the

mutation. This has the effect of increasing the speed of the algorithm, but also results in an

underestimation of the number of trees.

After the first stages, RELATE has constructed rooted binary trees that adapt to changes

in local genetic ancestry due to recombination. Next RELATE infers branch lengths, first for

constant population size, using an iterative Markov Chain Monte Carlo (MCMC) algorithm.

Initially the order of coalescence events is chosen randomly but within topological constraint.

The likelihood of the tree P(t|m), with branch lengths t = (tb)b=0,..,2N�2 conditional on the

mutations m = (mb)b=0,..,2N�2, using equation 1.2, is given by

P(t|m) = P(t)P(m|t) = P(t)
2N�2

’
b=0

P(mb|tb). (1.3)

The algorithm proceeds by proposing a change in the order of coalescence (again within

topological constraint) or a change in the time while k lineages exist. The likelihood of

the new proposed configuration is compared to that of the current configuration. Only

the branches that have lengths altered by the change need to be included in the likelihood

calculation which improves efficiency. The change is accepted if the likelihood of the

new configuration is greater than the existing configuration or if the ratio is greater than a

uniformly sampled acceptance threshold less than one. After enough proposals the stationary

distribution, P(t|m), representing a maximum likelihood set of branch lengths given the

mapping mutations, is reached.

The initially inferred branch lengths can then be used in an add on module that re-

estimates branch lengths, this time under a model of variable population size through time.

Maximum likelihood, population-wide coalescence rates are calculated for time epochs for

the current tree configuration. These are then incorporated into the above MCMC process

when calculating the likelihood of proposed changes, therefore re-estimating the branch
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lengths but for a variable population size. This is iterated until convergence. After the final

re-estimation, changes in population size between the time epochs can be inferred given

that population size is inversely proportional to the final calculated maximum likelihood

coalescence rates.

A recent update to RELATE now means that ancient genomes can be built into the tree

sequences [116]. Sample ages passed to RELATE are used to constrain the coalescences of

lineages from ancient samples to only times and only with lineages that precede the date of

the sample. Additionally branch lengths must be measured from the ancient sample age to

the next coalescence during likelihood calculations.

1.6 A review of European population structure

During the last glacial maximum, Palaeolithic populations of Europe and West Asia

were isolated in climatic refugia. Genetic drift from population bottlenecks, lack of gene

flow and selection pressures resulted in distinct genetic populations during this time [27].

When the ice sheet started retreating between 16,000-13,000 years ago [19], Europe began

to be repopulated with people moving out of refugia and subsequently admixing. The

Western European Hunter-Gatherers (WHG) spanned across western and southern Europe

[35, 74, 49, 82] while Eastern European hunter-gatherers (EHG) occupied the west of present-

day Russia, Finland, Latvia and down to the Pontic-Caspian steppe. These groups were

related but EHG samples have a component of Ancestral North Eurasian (ANE) ancestry

characterised by the Mal’ta specimen [39, 100]. Many Hunter-Gather samples found between

the ranges of WHG and EHG appear as a mix of the two ancestries including Scandinavian

hunter-gatherers (SHG) and Ukrainian specimens [62, 50]. The population of Mesolithic

Europe therefore genetically appears as a cline of hunter-gatherer ancestry from Eastern to

Western extremes.
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Caucasus Hunter-Gatherers (CHG) were also present during the Mesolithic in the Near

East and show genetic continuity with early Iranian farmers and affinity to present-day

Armenians [39]. Although they are highly differentiated, the CHG/Iranians form a clade with

the Anatolian farmers distinct from the WHG/EHG [49]. The timing of divergence between

the four distinct groups appears to correspond to the onset of last glacial maximum [49, 61],

during which time these population became isolated from each other in refugia.

At the start of the Neolithic around 9000BP, farmers from Anatolia moved into Europe,

reaching Britain by 6000BP [12]. These incoming Anatolian farmers admixed to a small

extent with the local WHG to form the Neolithic farmer population [74, 45]. Some sites

produce genomes that look like Anatolian farmers with small amounts WHG ancestry [74, 75].

Other sites in the Balkans and Hungary exhibit individuals with little to no Anatolian farmer

ancestry but are associated with a farming culture [50, 29]. In general, there is an increase

in Hunter-Gatherer ancestry across Europe in Neolithic farmers during the Middle to Late

Neolithic that likely involved persistent local WHG populations rather than an expansion

from an isolated region [66]. This resurgence appears to be particularly large in present day

France [15]. Overall, the movement of Anatolian farmers into Europe and the subsequent

admixture with WHGs appears to have been slow with variable levels of admixture over time

and geography, likely involving admixture between already admixed individuals [18]. I will

later explore this heterogeneity in individual Neolithic farmer samples.

During the late Neolithic, steppe populations, characterised by the Yamnaya culture,

appear as a mix of EHG and CHG/Iranian ancestries [39, 49, 61]. At the start of the Bronze

Age after 5000 years ago, migrants with this "Yamnaya" ancestry moved west into Europe

and had a profound impact on the genetic landscape [39], with steppe ancestry appearing

first in individuals from central-eastern Europe [74] and spreading rapidly into central and

northern Europe [4]. By 4,500 years ago, steppe ancestry appears in the British Isles and

Ireland, brought by a population associated with the Corded Ware people and who replaced
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approximately 90% of Britain’s gene pool within a few hundred years [89, 16]. In central and

northern Europe Y-DNA haplotypes common in Neolithic farmers almost disappear with the

arrival of migrants and are replaced by steppe haplotypes [39, 74], suggesting that admixture

was a male dominated [34], although this conclusion has been contested [63]. The impact of

steppe migrants in Iberia was not so profound [73] where there appears to have been a more

subtle genetic influx in contrast to the genetic turnovers in northern and central European

populations. Modern populations of Iberia have the least Steppe ancestry and Scandinavian

and Northern European populations the most.

It is believed that the steppe migration brought Indo-European languages to Europe and

it is probable this is the case for central and northern Europe [39]. However, a few samples

from Bronze Age Anatolia contain no steppe ancestry but show evidence of Indo-European

languages, suggesting the ultimate source of Indo-European languages may not be in the

steppe populations but earlier in Anatolia or the Caucasus. Likewise, contact of Anatolian

populations with the greek Mycenaens and Minoans questioned whether it was the Yamnaya

steppe migrants who were the vector for Indo-Europeans languages to the southeastern

Europe [60]. A recent paper provides more clarity. Steppe ancestry was documented in

ancient genomes from Bronze Age Balkans, Armenians and Myceneans, showing links from

all ancient and present-day Indo-European language branches to Bronze Age steppe migrants.

The origin of both proto-Anatolian languages and the sister family proto-Indo-European

languages is in West Asian from which Caucasus populations expanded north, bringing

ancestry north to both steppe populations and south to Anatolian neolithic populations which

lead to the divergence of the two language families. The connection between Anatolians and

steppe migrants is therefore through West Asian in a southern arc [59].

Present-day Europeans are often described as a three-way mix of WHG, Anatolian

Farmer and steppe Yamnaya [62]. Figure 1.1 depicts the movement of these three ancestral

populations into Europe. Given that the Yamnaya ancestry itself resolves into EHG and
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Fig. 1.1 Figure from a recent paper by Souilmi et al. describing the major movements of
people into Europe and the geographic and temporal distribution of some ancient Eurasian
samples. Each human symbol represents a sample and the colours indicate different groups
classified into populations according to archaeological records. The green lines depict the
generalised migration route of Anatolian farmers into Europe 8.5kya, where they admixed
with Western Hunter-Gatherers to create the Early European Farmers (EF). Similarly, the
pink arrows represent the generalised movement of the Yamnaya which resulted in admixture
with Late European Farmers (LF) 5kya, giving rise to Bronze Age (LNBA) societies [115].

CHG/Iranian ancestry [49, 59], I propose a model of four ancestral streams that lead to

present-day Europeans (Chapter 2).

1.7 Concept of local genetic ancestry and approaches to

estimate it

As described in Section 1.1, when individuals can no longer mate randomly within a

population and allele frequencies begin to diverge between groups, the population is said to

be structured. Over time, gene flow between two subgroups within the larger population can

cease, resulting in two new populations. Admixture events occur when there is migration
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between two such divergent populations and they interbreed. Chromosomes of the resulting

admixed individuals will originate in one of the two ancestral populations. With each

generation there is recombination, meaning that over time the chromosomes in the admixed

population will be a mosaic of chunks originating in the two ancestral populations. These

chunks are inherited together on chromosomes creating admixture linkage disequilibrium

(LD). As the number of generations since the admixture event increases, the length of these

ancestral chunks will decrease. Local ancestry inference (LAI) is the process of decomposing

admixed chromosomes into these ancestral chunks and assigning each chunk an ancestral

label. Many tools are available that perform LAI due to its importance for understanding

population structure, migration history and disease risks [72, 5] .

Early LAI methods such as STRUCTURE [24] and ANCESTRYMAP [92] use unlinked

markers that are characteristic of populations, so called ancestry informative markers (AIMs).

The hidden Markov model (HMM) structure employed by these methods models admixture

LD as Markov chains, with the hidden states as the ancestry labels and the observations

as genotype data. The memoryless nature of Markov chains means these methods assume

that markers are independent and so do not model background LD, LD within the ancestral

populations due to their population histories (drift). Additionally, parameters such as time

since admixture and ancestry proportions have to be input, which are not always known.

With the decrease in cost of genotyping in recent years, the ability to deconvolve local

ancestry with greater resolution using denser data became possible. Dense SNPs violate the

assumption of independence between SNPs because of background LD, an independence

which earlier HMM approaches assumed. Methods that leverage this denser data emerged

such as LAMP [106] that uses a clustering algorithm within short overlapping windows

and then combines the results by majority vote [33]. LAMP employs a pruning step which

makes sure SNPs are unlinked in the ancestral populations. An extension method, WINPOP
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[91] allows for one recombination within each window and dynamically alters window size

making it more flexible to different times since admixture, especially those that are older.

The advantage of LAMP and WINPOP is that they can infer local ancestry without

the need for a reference panel of data from ancestral populations. However, not explicitly

modelling background LD within ancestral populations prevents the use of many informative

SNPs that are linked. Haplotype frequencies vary more between populations than SNP fre-

quencies meaning haplotypes can potentially provide greater ancestral resolution, especially

when the admixing populations are more closely related. Many methods now both utilise

denser SNP data and model background LD together with admixture LD by using extensions

of the basic HMM approach. SABER [121] uses a Markov-hidden Markov model to account

for background LD at consecutive markers. HAPMIX however, uses HMMs to model LD at

two levels, allowing small-scale transitions between haplotypes within a reference population

and large-scale transitions between reference populations [98, 111]. LAMP-LD was created

as an extension to LAMP, using the same sliding window approach but with an added HMM

to assign ancestry [7].

Recently machine learning has been utilised for local ancestry inference and has shown

to be computational efficiency and accurate. Furthermore, the ever increasing availability

of genomic data provides training data for supervised methods. RFMix uses a conditional

random field, parameterised by Random Forests trained on reference panels to infer ancestry

in windows across admixed chromosomes [69]. RFMix has been shown to be superior

to previous methods, especially when the time since admixture is short and the ancestral

populations are closely related. Subsequently, GNOMix has been shown to outperform

RFMix and other LAI methods. GNOMix has a two module approach to inference: The base

module is a classifier trained on an ancestral reference panel that outputs an initial ancestry

estimate for segments in admixed chromosomes. The chromosomes are split into windows

and each is assigned ancestry by a separately trained classifier. The classifier is modular
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and multiple types were tested including Random Forests, Linear Regression and Support

Vector Machines. The smoother module is then employed to refine ancestry estimates. The

smoother uses the estimates in surrounding windows as input to predict the final ancestry

assignment in the focal window [43]. In Chapter 2, I compare my method of local ancestry

inference to that of GNOMix.

However, despite all these advances, most of the existing local ancestry methods require

sequences from a discrete set of ancestral populations to form a reference panel. Choosing

the reference panel is based on several factors such as availability of genomes, ADMIXTURE

components [1] or questions that local ancestry inference is aiming to answer. In reality,

haplotypes are formed by mutation in an ancestor and are inherited from generation to

generation through history, likely through many populations and admixture events. An

ancestral population may itself be an admixed population from an event earlier in history

(Figure 1.2). In other words, populations are more like a braided river than a sequence of

well-defined discrete population identities. So assignment of a haplotype in an admixed

chromosome to that ancestral population does not inform us of ancestry further back in time.

Many LAI methods allow multiple admixture events [69, 43, 106, 121] and multiple

ancestral populations in the reference panel. One solution might be to include multiple

reference populations that represent populations involved in the deeper history of the focal

admixed samples i.e use ‘grand-ancestral’ populations instead of the immediate ancestral

populations in the reference panel. Yet this precludes the use of the ancestral populations to

use the ‘grand-ancestral’ populations in their place, when in fact a haplotype is from both.

Taking the example from Figure 1.2, population C is an ancestral population to population

E. A haplotype in E can be assigned to both C and A; both are true at the same time.

Existing LAI methods could include both C and A as discrete ancestral reference populations,

producing confusing results or choose either C or A for the reference panel and only use half

the available data. In other words, all LAI methods treat ancestral populations as discrete
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entities with no genealogical relationships with each other, requiring them to effectively

draw a line at some in the past time and take the populations existing at that time as ‘pure’

ancestral populations.

My aim is to develop a local ancestry inference method that takes time and genealogical

relationships of ancestral populations into account. For this I redefine ‘ancestry’ as no longer

a discrete population identity, but a complete path back in time through the population history.

The path that a haplotype takes backwards in time from a focal individual is fully informative

about its local ancestry: I am asking, in what populations has a haplotype been carried by

inheritance through a structured population history? By determining this path, its relationship

to all relevant historical and admixing populations is established.

I explain this in more detail using Figure 1.2 which shows a diagrammatic example

of a population structure with two consecutive admixture events and two population split

events. Population E is the focal population within which I want to perform LAI. I have

representative samples from populations A,B,C, and D from within this structure which are

termed ’ancestral populations’. Between these four ancestral populations, there are four paths

that haplotypes could have taken backwards in time from population E, through multiple

populations:

E !C ! A

E ! D ! A

E !C ! B

E ! D ! B

By using paths as local ancestry labels instead of discrete population identities, I am able

to use all available data from all four ancestral populations and assign four different labels

that convey meaningful information about the history of a haplotype.

My idea is to embed tree sequences inferred by RELATE into models such as Figure 1.2

of population structure. Population structure will alter the shape of coalescent trees as not
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C D
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Fig. 1.2 Schematic of a structured meta-population that goes through two population split
events and two admixture events. Populations marked A,B,C and D are ’ancestral popula-
tions’ and population E is the admixed population whose local ancestry is of interest. The
time slice tx is marked where the population sizes of ancestral populations A and B (NA(tx)
and NB(tx)) can be calculated from the coalescences occurring between the lineages passing
through those parts of the structure at that time.

all lineages have the same probability of coalescing with each other. By assuming therefore

that the topologies and branch lengths of trees inferred by RELATE reflect the underlying

population structure, I devised a way to determine the path from a feature I extract from trees

covering each haplotype (Chapter 2). Lineages passing through one path can randomly mate
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and so I can apply the basic coalescent to infer demographic parameters in different parts

of the structured population at different points in time (Chapter 3). For example, at time tx

in Figure 1.2, I can find NA(tx) the population size in ancestral population A using all the

lineages that take paths E !C ! A and E ! D ! A.

Ancient samples within this framework are a huge advantage. The further back in time a

population existed, the more difficult it is to find a proxy population that exists today and

from whom genomic data is available. Ancient samples are likely to be less diverged from

the true ancestral populations and so act as better representatives that existed before one or

many admixture and split events. Moreover, with present day samples alone the number

of lineages in trees falls going back in time as coalescences remove lineages. At deeper

timescales the number of lineages becomes so low that there is little power for inference

using the basic coalescent. Ancient samples increase power for inference deeper in time by

injecting lineages into trees at these older times.

1.8 Thesis overview

In this thesis I propose a new method to paint individual chromosomes with their local

genetic ancestries in terms of their recent evolutionary past. Instead of thinking of genetic

ancestry as belonging to a certain static ancestral population, I redefine ancestry as a path

going back in time through a structured population history as each haplotype is inherited

through multiple populations that split and admix. The method involves building tree

sequences with RELATE, then using a neural network to classify the ancestry path for

each sample haplotype in a genomic region given the local tree. I train the neural network

using data simulated from a model that represents the major ancestry flows contributing to

modern European genomes over the last 50,000 years. I compare the results of testing my

method on simulated data to results from GNOMix [43]. I also test how a range of simulated
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demographic scenarios affects classifier performance and how robust the method is to model

misspecification.

Using the local ancestry painting I describe techniques to 1. infer selection and changes

in population size in a structured population based on the assignment of coalescences in

the trees to paths and 2. infer the time since admixture using the rate of switching between

ancestral painted segments.

I apply the method to the MesoNeo genomes, a large dataset of newly published and

previously published ancient genomes that have been shotgun sequenced and imputed. From

my results I draw conclusions about the history of Europeans.

I divide this thesis into the following chapters. Chapter 2 describes the construction of

a model of European population structure based on the MesoNeo dataset. Furthermore, I

detail the method of inferring path local ancestry from tree sequences. Chapter 3 covers

how to use the local ancestry painting to estimate time since admixture, followed by Chapter

4 which describes the application of this method to painted MesoNeo genomes. Chapter

5 explores methods to calculate effective population size within ancestral populations and

infer path-specific selection, with some results from the MesoNeo genomes. Chapter 6 is a

discussion of my work, its applications and future uses.
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2.1 Population genetic analysis of MesoNeo genomes

My research was funded from a Wellcome Trust collaborative grant within which the

aim was to sequence a large dataset of five to ten thousand ancient whole genomes from

people that lived mostly in the last 10,000 years from Eurasia (Figure 2.1). Ancient DNA

was extracted from the petrous bone and dental cementum of 317 specimens and shotgun

sequenced. After merging with >1300 previously published shotgun sequenced genomes, the

genomes were imputed using a new imputation method GLIMPSE [103], which is optimised

for low coverage samples. A 1000 Genomes reference panel was used with high coverage

ancient samples included in the panel. Imputation was tested with 42 high coverage ancient

genomes which were downsampled, imputed and compared to their full coverage version.

Genomes down to 0.1X coverage displayed good imputation accuracy [3]. The final dataset

comprises 1,490 genomes, once filtered for coverage (>0.1X), low imputation quality and

close relatives [3], at 3.7 million SNPs filtered at >0.5 imputation INFO score.

Fig. 2.1 Geographic and temporal distribution of the 317 newly reported MesoNeo genomes
[3]. Age of the sample is indicated by colour and geographic region by symbol.
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The dataset covers a critical time period during which radical changes in lifestyle occurred

with the transition from a hunter gatherer existence to farming and urbanisation. It has been

suggested that many diseases, especially chronic, autoimmune and inflammatory diseases,

are aggravated by a mismatch in the lifestyle of our ancestors and our current lifestyle

[67, 87, 26]; variants that were beneficial and selected for in the past may have a deleterious

effect in a modern environment and be associated with disease, and reciprocally previously

neutral variants may now be adaptive. Understanding what parts of chromosomes are

inherited from which ancestral groups and the evolutionary processes that acted during these

past transition may help inform our understanding of disease susceptibility and how we treat

and prevent diseases.

For my initial investigation I subset the full MesoNeo dataset to those that had archaeo-

logical locations in Europe and West Asia and performed Principal Component Analysis to

assess the population structure and assign samples to groups. The imputed genomes were

filtered to SNPs in the Affymetrix Human Origins Panel [94]. I used EIGENSOFT smartpca

[97] with the outlier removal option disabled to perform PCA directly on the imputed ancient

samples together with 1000 Genomes GBR samples, with no projection. The samples were

plotted by their first two principal components (Figure 2.2).

Broadly, principal component 1 (PC1) separates north-south geographically and PC2

separates east-west. Western hunter-gatherers (WHG) and Eastern hunter-gatherers (EHG)

are the extreme ends of a cline along PC2 across the right side of the plot, suggesting they are

extensions of the same continuous population that spans a large geographical range across

Europe. Scandinavian hunter gatherers lie in between these two groups.

The Anatolian farmers (Ana) form a cluster in the left centre of the plot defining genetic

ancestry from the southeast. This cluster consists of slightly earlier samples from Turkey

with some later samples from Europe that have little to no WHG admixture.
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Along PC1, the Neolithic farmers (Neo) lie in a smear between the Ana and WHG,

characterising the expansion of Ana out of Anatolia and into Europe, admixing with WHG at

varying levels.

The Caucasus hunter-gatherers (CHG) including early Iranian farmers, form a distinctive

cluster in the top left corner of the plot, separate from the other hunter-gatherer groups and

the Ana, despite the Southern Caucasus and Anatolia being geographically close.

The Bronze Age Anatolian group (BAA), above the Ana cluster, represent a later Anato-

lian population with genetic influence from the CHG.

The Yamnaya (Yam) group from the Pontic Steppe, consistent with their formation by

admixture between the EHG and CHG, lie between these groups in PCA space.

Finally, European Bronze Age samples sit in the centre of the plot between the Yam and

Neo, a result of the Yamnaya movement west into Europe and admixture with the Neolithic

farmers. The 1000 Genomes GBR samples fall within the Bronze Age cluster.

To take forward into my next analyses, I further subset the ancient genomes from this

subset of the MesoNeo dataset to samples that were tightly clustered in the groups relevant to

the genetic history of Europeans. The subset was chosen using the PCA analysis described

above, where individuals that fall in between the ancient groups in the PCA were removed

so that only samples diagnostic of each population were kept. This totalled 476 diploids

(952 haploids) including 91 GBR 1000 Genomes samples. The number of samples in each

population, shown in Table 1, was used in the following sections when building a model of

European population structure.

2.2 Demography construction and simulation in msprime

Genome sequences are a product of their evolutionary history, including large-scale

migrations, admixture and population divergence. Using the extensive amount of previous
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Fig. 2.2 Subset of MesoNeo genomes, plotted by their first two principal components.
Samples that are diagnostic of each ancient European group are coloured on a continuous
scale by their radiocarbon age in years ago. The samples that fall in between the circled,
coloured samples and were removed from further analysis, are coloured in grey. The
percentage of variance explained by each component is displayed in the axes labels.

Table 2.1 Table of the number of haploid genomes from each ancient European population
in the subset of the MesoNeo dataset chosen from PCA analysis. Total of 952 haploid
sequences.

Population Number of haploid samples
GBR 182
Bronze Age 162
Western hunter gatherers 102
Eastern hunter gatherers 86
Anatolian farmers 50
Neolithic farmers 302
Yamnaya 26
Caucasus hunter gatherers 28
Bronze Age Anatolian 14
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work elucidating the genetic history of Europeans, as described in section 1.6 and the PCA

(Figure 2.2), I put together a standardised model of European population structure.

Figure 2.3 shows a schematic of this demographic model that describes the population

structure in Europe during the last 50k years. Shortly after the expansion of anatomically

modern humans into Eurasia, I model a population split ⇠45kya (1500 generations ago)

between the Northern Europeans (NE), who continued travelling northwest into Europe, and

West Asians (WA) who stayed more locally in the Levant and South Caucasus area. The WA

population then splits to form the CHG/Iranians and the Ana ⇠24kya (800 generations ago).

Within the NE, ⇠18kya (600 generations ago), the WHGs and EHGs diverge. At that point

the four separate populations that make up present day European ancestry are distinct in the

model. The model subsequently describes how admixture between these populations leads

to the modern European gene pool. Firstly, the formation of the Neolithic farmers (Neo)

from admixture between WHGs and the Ana ⇠7.8kya (259 generations ago), secondly the

formation of Yam from admixture of EHGs and CHGs during the early Bronze Age ⇠5.3kya

(177 generations ago) and finally the formation of the Bronze Age gene pool ⇠4.9kya (166

generations ago) as an equal mix between Yam and Neo. The formation of the BAA from

admixture of CHGs with Ana happens ⇠5.1kya (170 generations ago).

Six different paths that haplotypes can take from any sample in the subset are shown in

different colours in Figure 2.3. Path 1 = red, starts from the present day Europeans, going

back through Neolithic farmers, Anatolian farmers, West Asians to the root. Path 2 = purple,

starts at present day Europeans, going back through the Yamnaya, Caucasus hunter gatherers,

then West Asians to the root. Path 3 = black, starts with present day Europeans, going back

through Neolithic farmers to Western hunter gatherers and then through Northern Europeans

to the root. Path 4 = orange, starts at present day Europeans, going back through the Yamnaya

to Eastern hunter gatherers and then through Northern Europeans to the root. Paths 5 = blue,

starting in the Bronze Age Anatolians and joins path 1 part. Path 6 = cyan, starts in Bronze
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Age Anatolians and joins path 2. When paths overlap, lineages from all overlapping paths

can coalesce.

In order to better understand the impact of population structure on local ancestry inference

and explore techniques to achieve this inference in real genomes, I simulated genotype and

tree sequence data from this model. I constructed my standardised model of European

population history in msprime [52], a coalescent simulator. The population sizes and

admixture fractions are shown in the schematic in Figure 2.3 (See section 2.3 for parameter

choice). Samples were taken from populations and times to match each real sample (Table

2.1), using their radiocarbon or context dates, to mimic my MesoNeo subset.

Upon simulation, data for sample individuals is produced, in the form of both VCF files

and tree sequence files, that is consistent with the constructed demographic history. Typically

I simulate chromosomes of length 200 Mbp with a recombination rate of 1e-8 per bp per

generation and neutral mutations dropped onto the branches at a rate of 1.25e-8 per bp per

generation. It is also possible to simulate using a real human chromosome recombination

map in which case the sequence length is given by the file and a variable recombination rate

across the sequence in applied. To manipulate and examine trees in tree sequence files I use

the tskit python API (https://tskit.dev/tskit/docs/stable/introduction.html).

My model of European population structure, constructed in msprime, has been submitted

to the stdpopsim catalogue (https://stdpopsim.readthedocs.io/en/latest/introduction.html) and

is publicly available for users to simulate data from.

2.3 Comparison of simulated and real variant data

2.3.1 PCA Analysis

I performed Principal Component Analysis on the simulated genotype data to compare

the structure to that of the real data. I used the same procedure as in section 2.2 on nine
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Fig. 2.3 Schematic diagram of the model of European population structure, implemented
in msprime. Samples are taken from points throughout the model corresponding to the
radiocarbon ages of the real MesoNeo samples in generation ago. Population labels are
abbreviated. Bronze Age = Bronze Age European population, Yam = Yamnaya steppe, Neo =
Neolithic farmers, WHG = Western hunter gatherers, CHG = Caucasus hunter gatherers, EHG
= Eastern hunter gatherers, Ana = Anatolian farmers, NE = Ancient Northern Europeans,
WA = Ancient West Asians. Effective population sizes are shown along edges and admixture
fractions are displayed as pie charts. The different paths are coloured. The timing of
population splits and admixture events are shown at the dotted lines in units of generations
ago.
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simulated chromosomes, filtered for minor allele frequency of 5%. In Figure 2.4 the cluster

for each ancient population falls in the same vicinity of PCA space as the real MesoNeo

samples and the variation explained by PC1 and PC2 is comparable. Overall, the similarity

of the PCA suggests that a lot of the underlying structure that determines how these groups

relate to each other is captured by the demographic model.
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Fig. 2.4 Principal Component Analysis on the simulated data compared to the real data,
plotted by the first two principal components.

2.3.2 Fst Statistics

Weir and Cockerham weighted Fst statistics were calculated over all chromosomes using

VCFtools between all pairwise populations in the MesoNeo subset dataset. The same was

done for nine simulated sequences of length 200Mbp. Higher Fst values suggest greater

divergence between a pair of populations so lower values are expected between populations

that diverged more recently from each other and between ancestral and admixed populations.
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The results shown in Figure 2.5 display the Fst pairwise values in the simulated data

plotted against those in the real data. The correlation of Fst values between the real and

simulated data is appreciable at 0.96. This means the demographic model produces data with

relative population divergences that are very similar to that in the real data, suggesting the

model represents the real population structure well.
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Fig. 2.5 Plot of the simulated Fst values against the real MesoNeo Fst pairwise values. The
solid black line represents the 1:1 mapping. The solid blue line is a linear regression on the
points, showing a 0.89 coefficient.

The relationships of these ancient groups and present day Europeans to each other and

the split/admixture times are well established and needed no adjustments in the model.

However, to produce PCA and Fst results in simulated that matched the real data as shown,

the population sizes needed some tuning. Both the Fst analysis and PCA final results suggest
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that, while the model is undoubtedly not entirely correct, it produces simulated data that

looks close enough to the true data, by these measurements, that I can continue with my

analysis on the basis that it forms a good enough approximation.

2.4 A method for estimating local genetic ancestry

From the perspective of the local genealogical trees, many existing programs aim to

describe the local ancestry of individual haplotypes by identifying their closest relative

haplotype(s) from a set of reference sequences. The population identity of the closest

relative(s) indicates the local ancestry of the focal haplotype. In other words, these programs

only examine samples leaves under the first coalescence node above the focal haplotype.

However, with ancient samples and admixture events, the first coalescence alone is

insufficient to understand the full ancestry of a given haplotype (Section 1.7). Firstly, the

first coalescence event may occur at a time younger than the age of some sampled groups, in

which case the older sampled individuals could not be found as the closest relatives and the

full local ancestry of haplotypes is not correctly established. Secondly, with some sampled

populations formed via admixture of other sampled populations, the closest relatives to a

haplotype may by chance be from an admixed population even if the age of first coalescence

is old enough to capture older sampled groups.

In order to capture the full ancestral history of a sample at a site, I redefine ancestry as a

path as described in Section 1.7. My method aims to infer the path that haplotype chunks,

that are covered by a single tree in a tree sequence, have taken through a population history.

To determine this ‘path’ ancestry, I leverage information in nodes above the first coalescence.

I first simulate variant and tree sequence data from a demographic model of the history of

the populations under analysis as constructed in the previous Section. Next I infer RELATE

tree sequences from the simulated genotype data. I then extract a feature vector of the trees,

that is related to tskit’s Genealogical Nearest Neighbours [53], and train a neural network to
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predict the path from this feature vector. The true path label for training is known from the

corresponding simulated tree sequences. The neural network can then be applied to RELATE

tree sequences inferred from the real data to classify a path for every sample in every tree.

2.4.1 Genealogical Nearest Neighbour distributions

As an illustrative example, using Figure 2.6, I take a European present-day haplotype for

which I want to infer the path going back through the model of European population history.

I extract and analyse its marginal tree from the tree sequence describing its genealogical

relationship to all other sampled haplotypes. From that haplotype I traverse up the tree,

jumping to successive parent nodes towards the root i.e parent, grandparent, great-grandparent

etc. Ideally, I would like to identify what population each of these internal nodes, or ancestors,

is from. The population label of internal nodes is recorded in simulated tree sequences but in

RELATE inferred tree sequences this is not possible.

I therefore adapted the concept of Genealogical Nearest Neighbours (GNNs) from

Kelleher et al. [53]. This involves recording the proportion of each ancestral group that makes

up the sample leaves below each node, not including leaves seen at previously analysed

nodes further down the tree. I refer to the distribution of leaf ancestry proportions at a node

as GNNx , where x is the xth node examined towards the root. The ordered collection of all x

GNN distributions of all x nodes examined during a tree traversal reflects the path that the

focal haplotype has taken to the root (Figure 2.6). The key is to use coalescences above the

first and to consider the GNNs together, not independently. Figure 2.6 demonstrates how by

looking at these ordered GNNs one can determine the path. The method also works when

traversing up to the root and finding the path for ancient sample haplotypes. Therefore, I can

assign local ancestry to Bronze Age, Yam, Neo and BAA samples, while WHG, EHG, CHG

and Ana sample haplotypes have paths given by their population identity alone.
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Fig. 2.6 An overview of GNN extraction. A shows an example marginal tree that relates the
focal haplotype to all other haplotypes in the dataset. Samples are shown by their population
labels. B shows the GNN matrix determined from the marginal tree, traversing up four nodes
towards the root V1-V4. C shows how the path can be determined through the model of
population history given the GNN matrix by mapping the nodes to the paths.
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I need to be able to assign paths to millions of sample haplotypes so this cannot be a

manual process. Instead, I implemented a supervised machine learning method, specifically

a convolutional neural network (CNN) using the Python Keras package with a TensorFlow

backend. The network was trained using a categorical cross-entropy function, Adam optimi-

sation and a batch size of 30. The final layer is a softmax transformer. A class is determined

as that with the highest softmax value.

The input to the network is the set of GNN distributions for the first five informative

nodes traversed towards the root, configured as a 5 x 9 matrix, one row per node examined.

Columns 1-8 contain the proportions, between 0 and 1, of leaves belonging to each of the 8

ancient sampled groups (Bronze Age, Bronze Age Anatolian, Yamnaya, Neolithic, WHG,

EHG, Anatolian, CHG) and column 9 contains the normalised age. Informative nodes are

those that have at least one leaf from the set of ancient sampled groups. If the root of the tree

is reached in less than five informative nodes, then the remaining rows of the matrix are filled

with -15 as ‘padding’. The output of the network is a numerical label 1-6 characterising the

path (Figure 2.3).

2.4.2 Training and testing a neural network

A large amount of training data and corresponding true labels can be generated by

simulation of tree sequences from the model. I simulated three 200Mbp tree sequences,

using different random seeds. RELATE tree sequences were inferred from the corresponding

simulated VCF files. Default parameters for RELATE were used; 1.25e-8 mutation rate

and starting population size estimate of haplotypes of 30,000. Sample ages were passed to

RELATE which are used to constrain topologies and coalescence times.

RELATE underestimates the number of trees by over a factor of ten (Table 2.2). This is

likely because of the RELATE’s relaxation of ‘uniquely mapping’ when placing mutations on

branches where not all descendants of a branch must be derived for the mutation for RELATE
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Table 2.2 The number of trees in the true tree sequences compared to the number of trees
inferred by RELATE from the corresponding simulated VCF files.

Number of trees
Simulated RELATE inferred

991409 90044
987636 89468
989834 89867
991693 90139
992928 90018
987797 89177
991613 89679
992180 90356
988802 90002

to estimate a new tree topology. The purpose of the relaxation is so that tree building is

robust to sequencing errors, which in the case of simulated data, is not applicable. As an

observation, when this relaxation is abolished the number of trees estimated by RELATE

doubles which is still an underestimation by over a factor of 5.

Accuracy and precision

I extracted 10,000 training pairs of GNNs and true labels from each of the five admixed

sample populations (GBR, Bronze Age, Yamnaya, Neolithic farmers and Bronze Age anato-

lians), 50,000 pairs in total. GNNs were taken from the trees covering evenly spaced sites

across three tree sequences output from RELATE, avoiding most of the correlation between

trees. True path labels were taken from the trees covering the same sites in the corresponding

simulated tree sequences. I trained the classifier described above to predict the path labels

from the GNNs.

For testing, I simulated five more tree sequences and tested the classifier on 10,000 GNNs

from each. Across the tree sequences I obtained a mean accuracy of 93.12% with a standard

deviation of 0.29%. To test the precision in each class, I pooled the testing GNNs from all five

sequences and applied the classifier. Figure 2.7 is a confusion matrix comparing the classed
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labels to the true labels for all testing data from all populations and classes, normalised by

the sum of the rows to show the precision of the classifier in each class i.e of the labels

assigned a class, how many are true positives. The network displayed a high precision for

every class. Path 5 and 6 have the lowest precision, being confused for each other or path 1

and 2 respectively. This is understandable as path 5 and 6 lead from the BAA and join paths

1 and 2. Paths 5 and 6 likely have overlapping GNN features with each other and paths 1 and

2.
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Fig. 2.7 Confusion matrix normalised by the sum of row to show the precision values when
testing a classifier trained on the model of European population structure

Separating the confusion matrix into one for each population, Figure 2.8, shows that

the GBR obtains the lowest accuracy. GBR samples also have the youngest sampling time.

More generations since the admixture events means more recombination events to break

down admixture LD, resulting in shorter tracts of ancestry. RELATE uses flanking SNPs

to calculate the distance matrix and allows some relaxation on the mapping of SNPs when

constructing new trees. These properties make it more difficult to determine the switch of

ancestry at the edges of tracts as there is some inertia in the changing of tree topologies
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compared to the true tree sequences. Shorter tracts produces more edges and therefore

less accuracy in the GNN assignment. However, high accuracy is still maintained for all

populations, even the GBR.
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Fig. 2.8 Confusion matrices per population, normalised by the sum of row to show the
precision values, when testing a classifier trained on the model of European population
structure.

To visually see the performance of the classifier, Figure 2.9 shows a classified painted

chromosome alongside the true simulated chromosome. Noise appears as short tracts of

correlated trees, within larger chunks of ancestry covering many sites in admixture LD.

Comparison to an advanced LAI tool

To see how my method compares to advanced existing methods, I tested my method

against GNOMix, a recent LAI tool that has been shown to outperform previous methods

on whole genome data [43]. GNOMix, like other LAI methods, views each reference

population as a discrete ancestral population with no awareness of relationship to other

reference populations. Therefore, for the GNOMix reference panel I use samples from the
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Fig. 2.9 Example of a simulated painted haploid chromosome from a Bronze Age individual
and the corresponding RELATE inferred chromosome, painted by classifiation.

four ‘path’ populations (EHG, WHG, CHG and Ana) to represent paths 1-4 from the model.

These are the populations that lie on one path only (Figure 2.3). For simplicity I only test the

four admixed populations, GBR, Bronze Age, Neo and Yam, as query sequences to GNOMix

and do not test the BAA (although this could be done separately using CHG and Ana as

ancestral populations).

Inference with GNOMix was done using the default logistic regression base and xgboost

smoother modules. All other parameters were default including a window size of 0.2cM

for Bronze Age, Neo and Yamnaya samples. Because the GBR are 166 generations since

admixture I decreased the window size to 0.02cM for them to account for the smaller

admixture tracts.

For testing, I simulated five 200Mbp length sequences from the model of European

population structure. I extracted ancestry predictions, produced by my method and by

GNOMix, from evenly spaced sites across the five sequences. The mean and standard

deviation for each admixed population, across the five sequences, obtained by each method
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Table 2.3 Table of mean accuracy values of LAI for four admixed populations tested with
either GNOMix or ancestral paths method. The mean was taken across five testing simulated
sequences by taking evenly space sites from each population.

Population GNOMix accuracy Ancestral Paths accuracy T-test p-value
GBR 74.7 91.8 5.963e-12
Bronze Age 87.1 93.5 1.171e-07
Neolithic farmers 94.4 95.5 1.491e-05
Yamnaya 98.6 95.2 1.593e-05

were used to perform two-sample T-tests to test for a significant difference in accuracy (Table

2.3).

For the GBR, Bronze and Neo the ancestral paths method is significantly more accurate.

GNOMix was significantly more accurate for the Yam population. While GNOMix has high

accuracies for populations closer to the time of admixture, classification of the present-day

GBR samples is much less accurate than my method. Despite reducing the window size for

GBR classification, it appears GNOMix struggles with smaller sized ancestry tracts. My

method displays high accuracy for all populations, demonstrating its versatility compared to

GNOMix.

Excluding Bronze Age Anatolians

My model of European population structure includes the Bronze Age Anatolians (BAA)

from which paths 5 and 6 lead. Given these paths are not directly relevant to the history of

present day Europeans, I tested how the accuracy of classification is altered when the BAA

are removed from the GNN distributions and paths 5 and 6 are removed as labels. This leaves

a four path model and a reduced GNN matrix size over which to train a neural network. I

tested the accuracy of this classifier in each of the 4 path classes, averaged over 5 testing tree

sequences, in the GBR population.

The overall accuracy across the four paths in the model with no BAA is 94.3% +/- 0.27%.

This is significantly greater than the overall accuracy in the model containing BAA when
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taken over all six paths in that model (p-value = 1.473e-05). However when averaging over

just the four non-BAA paths in the model containing BAA I obtain an accuracy of 94.6% +

0.46%, which is not significantly different to the classifier trained on the model excluding

BAA (p-value = 0.0918).
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Fig. 2.10 Confusion matrices showing the precision in each path tested over GBR samples in
5 testing tree sequences. The classifier trained on the model including BAA can predict one
of six paths, while the classifier trained on the model excluding BAA can predict one of four
paths.

This result can be seen in Figure 2.10 where the precision in each of the four non-baa

paths in the model including BAA is very similar to those in the model excluding BAA.

This result demonstrates that accessory paths such as those leading from the BAA in my

model of European population structure can be added with no detriment to precision of other

paths. Although the overall accuracy across all paths is lower when the BAA are included,

the accuracy is still over 90%.

2.4.3 Conditions affecting classifier performance

The "path ancestry" inference approach outlined above is applicable to many populations

of humans and other species. To help decide what types of populations and time resolutions
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this method would be appropriate for I assessed its performance under a variety of demo-

graphic scenarios. I simulated data from a range of demography models, systematically

varying features and parameters and I measured the overall classifier accuracy and precision

in each class when tested on simulated data.

Unless otherwise specified, I simulated tree sequences of 20 Mbp in length with 1.25e-8

mutation rate and constant recombination rate of 1e-8. All admixture events involve equal

proportions contributed by each participating population. The ordering of population split

and admixture events is determined randomly by sampling from the active populations. The

timing of split events is three generations after the previous split event while the timing

of admixture events is fifteen generations following the previous admixture event. All

populations have an effective population size of 10,000. Twenty five diploid samples were

taken from all the ‘path’ populations that are present after all split events have occurred and

also from all admixed populations. The sampling time for each population was sampled

uniformly from within the time each population was active and all samples per population

are taken at the same time. An example is shown in Figure 2.11.

Training GNNs and label pairs were extracted from all admixed populations. To gather

the same number of pairs for each path in each admixed population from sufficiently spaced

sites, I simulated five training tree sequences and five testing sequences. The largest source

of variation is across tree sequences so testing was performed on each sequence separately

and a mean and standard deviation across sequences was calculated. Two sample t-tests were

then performed to assess if there was a significant difference in classifier accuracy when a

parameter was changed. I then pooled the testing GNNs and applied the classifiers to produce

confusion matrices and calculate precision values in each class.
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Fig. 2.11 An example of a four path demography that was simulated for testing. Stars indicate
approximately where in time 25 diploid samples are taken. The populations and paths are
arbitrary numbered. Population split and admixture times are shown on the dotted lines in
units of generations ago. This example has a ‘path’ divergence time of 1500 generations, the
time period between the last population split and the first admixture event.
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Inference with varying path number and divergence time

I tested how the number of paths in the model and how much differentiation between

the ‘path’ populations affected the classifier’s ability. This was to explore 1. how complex

the demographic history could be for the classifier to tease apart separate paths and 2.

how applicable the method is to more finely structured populations with recent admixture

compared to populations with deep structure.

I simulated demographic models that contained two, four, six and eight paths. All demo-

graphic models started with a single trunk population that through binary population splits,

divides into several populations corresponding to the number of paths. These populations

remain separate for around a specified number of generations (10, 50, 100, 500, 1500 or

3500) before admixing successively with each other until one population remains (Figure

2.11). The same random seed was used to simulate models of the same path number, so all

models with the same path number but different divergence times had the same ordering of

population splits and admixtures.

Figure 2.12 shows the accuracy and standard deviation for classifiers trained on all

demographic combinations of path number and separation times. The accuracy decreases as

the number of paths in the model increases and as the number of generations that all the paths

are diverged decreases. All path numbers show a rapid increase in accuracy from 100 to 500

generations of divergence. The more generations that the ‘path’ populations are separate,

the larger the allele frequency differences become between paths for pre-existing variants

due to drift acting for a longer period of time. Additionally more mutations accumulate that

differentiate paths while paths are separated. More mutations and greater allele frequency

differences means that RELATE is better able to resolve the correct topologies, which results

in the GNNs looking more consistent within each class.

More paths increases the number of classes that the classifier must differentiate between

and therefore the opportunity to confuse between those classes. Models with more paths
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Fig. 2.12 Plot showing the mean and standard deviation of accuracy of classifiers trained on
models with different path numbers and ‘path’ population divergence times.

will require more time of divergence to achieve the same accuracies as models with fewer

paths. Models with only two paths maintain accuracies of above 50% with as few as ten

generations of separation time. By 3500 generations (⇠100,000 years) of divergence, models

containing two, four and six paths have accuracies above 90% and overlapping error bars,

showing that with enough time for divergence the decrease in accuracy due to path number

can be mitigated.

Overall, models with smaller path numbers are better suited when there is very fine scale,

recent structure involving closely related populations. Likewise, when the populations are

very diverged and deep structure is present, models containing more paths are viable.
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Inference with imbalanced population size

Next, I tested how imbalance in population size on paths affects classification. I used

a demographic model of four paths and 1500 generations of separation between ‘path’

populations. One ‘path’ population was chosen to have a population size of 50,000 from its

emergence after a split to its disappearance after an admixture. All other population sizes

were 10,000. A control set of tree sequences were simulated with the same population split

and admixture events but with all population sizes set at 10,000.

Compared to the control demographic with an accuracy of 80.66% +/- 2.48%, the

classifier trained on the imbalanced population size demographic demonstrates a significantly

lower accuracy of 73.45% +/- 0.71% (two sample t-test p=0.0033). Comparing the confusion

matrices (Figure 2.13), path 3, containing the differently sized population, exhibits the drop

in precision and is mostly confused with path 4. This makes sense given paths 3 and 4

are sister paths, descending from a common population that split (Figure 2.11). A larger

population size will reduce the number of coalescence events occurring around the time of

higher population size compared to the other paths, pushing coalescences into older time

periods before paths 3 and 4 separated. Many GNNs for path 3 will not have a coalescence

event falling in the period of higher population size, making them look like path 4 or other

GNNs and so are misclassified.

Inference with imbalanced sampling

It is characteristic of ancient DNA datasets that some populations may only be represented

by a few samples, while others many. Rather than subsetting some groups to match the

sample size of the groups with the fewest samples, I tested if an imbalanced number of

samples taken from each group alters the classification of certain paths. I simulated from

three demographics with divergence time of 1500 and four paths and trained a classifier to

each. In the control demographic model, the sample size was 25 diploids for all ‘path’ and
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Fig. 2.13 Confusion matrices of the model with all populations with size 10,000 compared to
the model where one population has size 50,000.

Table 2.4 Table displaying the mean and standard deviation of accuracy of classifiers trained
on models with variable number of samples taken from a population along path 1.

Number of samples from
path 1 population Mean accuracy (%) Accuracy standard deviation (%)
5 80.22 4.48
25 80.66 2.77
50 82.49 2.65

admixed populations. In the other demographic model, one ‘path’ population sample size

was either reduced to 5 diploids or increased to 50 diploids. The same order and timing of

split and admixture times were used, and all population sizes were 10,000. Path 1 contained

the population with variable samples.

There was no significant difference in overall accuracy of the classifiers when tested

pairwise with two sample t-tests (p-values = 0.318, 0.856, 0.364). Table 2.4 shows the

accuracies for each model and the standard deviations. The model with 5 sampled diploids

on path 1 has the highest standard deviation. This is likely because there are fewer examples
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of path 1 labels from those samples in the training data and so the training has not captured

as much of the variance of path 1 GNNs as other classes when training the classifier. Testing

that classifier, this translates to greater variance in the accuracy.

In the confusion matrices (Figure 2.14) path 1 has greater precision in the 50 diploid

model than the other two models, which have comparable precision values in path 1. However,

the overall mean accuracies are not significantly different suggesting there is no systematic

bias due to imbalanced sample sizes, rather an increase in precision due to greater sample

size on one path.

Inference and overall sample size

Lastly, I tested the effect of overall sample size on classification ability. I simulated

from seven different demographic models with a divergence time of 1500 and four paths and

trained a classifier to each. Each had a different number of diploids sampled evenly from the

admixed and ‘path’ populations: 5, 10, 15, 20, 25, 30 or 50 diploids. The same order and

timing of split and admixture times were used, and all population sizes were 10,000. The

same number of training GNNs were used to train classifiers for each demography so as not

to confound results with different amounts of training data.

Figure 2.15 shows how the mean accuracy increases as the number of diploids taken from

all sampled populations increases. There is a rapid increase in accuracy between 5 and 20

diploids, after which the increase in accuracy with more samples is less. At 50 diploids the

accuracy is around 90% and the standard deviation is low. Even with only 10 samples, with a

1500 generation diverged four path demography, the accuracies can be over 70%.

More samples means more variation in the training GNNs, given that I used the same

number of training GNNs from each demography. This prevents overfitting of the neural

network allowing for greater flexibility to novel testing GNNs. This results in greater accuracy

and smaller standard deviations upon testing.
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Fig. 2.14 Confusion matrices of models with different number of diploids sampled from a
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Fig. 2.15 Change in accuracy as the number of diploids sampled from all admixed populations
increases. Errors bars show the standard deviation over five testing tree sequences.
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2.4.4 Testing model misspecification

In Section 2.4.1 I showed that the model of population history in Europe produced data

that, from Fst statistics and PCA, looked similar to the real data. My neural network for

determining European local ancestry is trained on simulated data that I believe to match the

real data well enough. However, the true history of any population is never known exactly

and the following section explores how a classifier copes when it is trained on data that does

not match the testing data in various ways. For all investigations I used demographies with

four paths and 1500 generations of path separation time. Except where specified, simulations

were carried out in the same way as described in Subsection 2.4.3.

For each parameter under scrutiny, I simulate two datasets with only the parameter under

scrutiny differing between the two and train a classifier to each. Testing within the datasets

was performed as in Subsection 2.4.3. When testing between datasets, the classifier of one

was applied to each of the five testing tree sequences from the other dataset. This results in

a mean accuracy and standard deviation for all four combinations of classifiers and testing

data, to which I can then apply two sample t-tests to determine whether there is a significant

difference in classifier accuracy when applied to testing data that does not match the training

data. The two classifiers are then applied to pooled testing data in all four combinations to

produce confusion matrices.

Inference with different population size

Using the same simulations and classifiers as those used for testing an imbalance in

population size along paths, I tested the two classifiers trained on a 10k model and an

imbalanced 50k model on GNNs extracted from the alternative demography. A difference

in population size in a ‘path’ population will change the GNN structure, where a smaller

population size will produce more coalescence events in the path population and a larger

population size will conversely produce fewer coalescences. A difference in either direction
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in the GNN structure between training and testing data will result in the paths being less easy

to recognise by the classifier. Predictably there is a significant decrease in accuracy when

test data is classed by the classifier trained on different training data to when classed by the

classifier trained on the corresponding training data (Table 2.5). Two sample t-tests produce

p-values of 0.007 and 0.0067.

There is no significant decrease in accuracy when the 50k classifier is applied to 10k data

compared to 50k data (p-value = 0.418). However there is a significant decrease in accuracy

(p-value = 9.661e-05) when the 10k classifier is applied to 50k data compared to 10k data.

An unexpected deficit of coalescences along a path is more confusing to a classifier than a

surplus i.e the absence of a defining GNN is more detrimental than the presence of an extra

GNN.

Table 2.5 Table displaying the mean and standard deviation of accuracy of classifiers trained
on models with the same or different population size than the testing data, along path 3.

Classifier
Testing data 10k all 50k imbalanced

10k all 80.66. +/- 2.77 68.95 +/- 2.12
50k imbalanced 74.52 +/- 2.61 73.45 +/- 0.71

Inference with different admixture times

To explore how the classifier generalises to data with different admixture times, I simu-

lated from one demographic model with admixture events occurring every 15 generations

back in time from the present day and another every 30 generations. So the latter did not

result in a smaller time while the ‘path’ populations were diverged, which would confound

the results, I increased the time of the most recent population split in that demographic model.

Table 2.6 shows that the accuracy for the model with 30 generations separating admixture

events is not significantly different than the accuracy of the model with 15 generations, when

tested on their corresponding testing data and trained classifier (p-value = 0.976). When I
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swap the classifiers, to test the 30 generation separated testing data with a 15 generation

separated classifier and vice versa, there is no significant change in accuracy in either case

compared to testing corresponding data and classifiers (p-values = 0.977, 0.716). The

classifiers are able to generalise and compensate for the difference in admixture times. This

indicates that, despite providing the node ages in the GNNs, the classifiers are largely using

the topology of trees and not the coalescence times.

Table 2.6 Table displaying the mean and standard deviation of accuracy of classifiers trained
on models with the same or different admixture times than the testing data.

Classifier
Testing data 30 gen. admixture 15 gen. admixture

30 gen. admixture 80.58 +/- 4.81 81.27 +/- 2.33
15 gen. admixture 80.49 +/- 4.65 80.66 +/- 2.77

Inference with different admixture fractions

I next investigated how different admixture fractions would change the classification

accuracy. We simulated a dataset with all admixture fractions 50/50 and another with all

25/75. There is no significant change in accuracy when the 50/50 classifier is applied to

25/75 testing data compared to testing the corresponding 25/75 data and classifier (p-value =

0.393). Neither is there a significant change in accuracy when the 25/75 classifier is applied

to 50/50 data compared to testing the corresponding 50/50 data and classifier (p-value =

0.589). This suggests that classifiers are able to generalise when the admixture fractions are

misspecified.

Table 2.7 Table displaying the mean and standard deviation of accuracy of classifiers trained
on models with the same or different admixture fractions than the testing data.

Classifier
Testing data 50/50 25/75

50/50 80.66 +/- 2.77 85.53 +/- 1.95
25/75 79.58 +/- 3.27 86.82 +/- 2.51
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Inference when samples are drifted from ancestral populations

For all models we have been simulating samples that are taken directly from the simulated

populations. The ancient samples we have in the MesoNeo dataset are unlikely to be

individuals from the ancestral populations involved in the admixture events themselves, but

instead more or less closely related to them. To investigate the effect of drift between the

true ancestral admixing populations and sampled populations, we simulated population splits

so that the ancient samples were taken from ‘hanging branches’, slightly diverged from the

admixing lineages. A separation time of ten generations from the true ancestral populations

simulates approximately 300 years of drift. We trained classifiers using a demographic model

where the ancient samples are taken directly from the ancestral admixing populations and

tested its performance on GNNs from the drifted model.

Table 2.8 Table displaying the mean and standard deviation of accuracy of classifiers trained
on models with ancient samples that were drifted or not from the true ancestral populations.

Classifier
Testing data Drifted Not drifted

Drifted 83.28 +/- 1.44 84.60 +/- 0.78
Not drifted 81.51 +/- 3.32 82.63 +/- 3.79

Table 2.8 shows the accuracy results when classifiers are testing on different testing data.

There is no significant change in accuracy between any two pairs of testing data and classifier

combinations demonstrating that classifiers are able to generalise between drifted and directly

sampled models (p-values = 0.106, 0.314, 0.634, 0.320, 0.733, 0.122).

Inference for additional samples

The number of ancient samples that are available continues to increase and so more

samples relevant to population histories can be incorporated into datasets. Likewise, samples

may be removed from datasets after more stringent filtering. To test whether classifiers can

generalise to more or fewer samples, I applied a classifier trained on a simulation with 20
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Fig. 2.16 Change in accuracy as the number of diploids sampled from all sampled populations
increases using a classifier trained on 20 diploids vs the corresponding classifier trained on
the same number of diploids as the testing data. Errors bars show the standard deviation over
five testing tree sequences. Numbers show the two sample T-test p-values comparing the two
classifiers.

diploids taken from all sampled populations to testing data from a simulation with a different

number of diploids per sampled population (5, 10, 15, 25, 30, 50). GNNs were extracted

using all samples in the demography, as if testing a corresponding classifier.

Figure 2.16 shows that there is no significant difference when using the classifier trained

on 20 diploids compared to the corresponding classifier for testing data containing 5, 10,

15, 25 ad 30 diploids (p-value>0.05). For data containing 50 diploids there is a marginally

significant decrease in accuracy using the 20 diploid classifier.

Classifiers are able to generalise to fewer samples than in the training data. When the

number of samples is much larger than simulated in the training data, the accuracy begins

to decrease. This decrease is only to a small extent even for more than twice the number of

samples demonstrating that classifiers are flexible to differences in sample size.
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Inference of ghost lineages

Genetic evidence has revealed ghost populations in many species, including humans.

This is when a population is inferred to have existed but is not sampled with DNA or in

the fossil record. To test whether my method could be used in a case involving a ghost

population, I applied a classifier trained on a simulation where one ’path population’ of the

four paths present was not sampled.

I tested two scenarios from Figure 2.11 : One where the samples from population 0

were removed meaning path 1 contained the ghost lineage; and one where samples from

population 9 were removed meaning path 4 contained the ghost lineage.
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Fig. 2.17 Confusion matrices showing the precision of classifiers in each class when various
populations where removed from training and testing data to mimic ghost lineages.

Figure 2.17 shows that the precision in all paths is not decreased when path 4 contains

the ghost lineage and the precision of the classifier to predict path 4 actually increases. It

appears that the classifier receives enough information from other populations present along

path 4 to continue to identify path 4 with high precision.
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When path 1 contains the ghost lineages, the precision of the classifier is decreased in

path 1. This is likely because there are no other populations along path 1 that are included

in the GNNs, meaning that when population 0 is removed it becomes harder to identify the

path.

Overall, the accuracy remains high for identifying ghost lineages. The precision main-

tained depends on whether there are other sampled populations involved that can inform the

classifier of path identity. The ability to identify ghost lineages, even with little to no other

populations present along the lineages highlights the advantage of a path structure compared

to a frame work of single population identity that is used by other local ancestry inference

tools.

2.5 Conclusion

I have developed a method to infer local path ancestry using a neural network trained

to recognise path labels from GNNs extracted from trees in a tree sequence. I have shown

that the method is accurate for classifying European haplotypes into one of 6 paths and

that it performs as well or better than an advanced local ancestry inference tool, GNOMix,

especially in populations at greater time since admixture.

I have shown what sort of populations the method would be appropriate for and I have

demonstrated that the method is robust to a variety of misspecifications in the underlying

population model. My findings suggest that the choice of how complex to make the model

will depend on what accuracy the user is willing to accept:

• For demographies with fewer paths, the populations can be more closely related to

each other, or have experienced less time of separation.

• Demographic histories with large differences in effective population sizes may be less

accurate.
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• More samples means more accuracy, so I would recommend using all available samples

even if there is an imbalance across paths. By including the same number of GNNs

examples of each path and each different admixed population in the training data, one

should be correcting for an imbalance.

• Fewer samples overall or on one path will be more vulnerable to overfitting and so it

is tempting to simulate many samples from all paths to improve classifier accuracy.

However, simulating the same number of samples as the real data will produce tree

sequences that resemble those inferred from the real data more and so will produce

classifiers that are more applicable to the real data. Simulating more independent

training tree sequences to balance smaller sample sizes should mitigate the effect of

overfitting.

I have demonstrated that classification with a path structure allows to identification of

ghost lineages. This is a major advantage offered by a path framework over other local

ancestry inference tools, that use single population identities as ancestries within which the

presence of ghost lineages in chromosomes cannot be inferred.

The range back in time from the age of focal samples over which paths can be drawn is

limited by the recombination rate and the availability of relevant population proxy genomes.

The recombination rate will define how far back in time a haplotype can originate before

the length seen in focal samples is too small to detect or differentiate from noise tracts,

recombination decays linkage disequilibrium over time (Section 1.2). When there are no

proxy samples available for populations to differentiate paths, paths will collapse together.

This is especially harder deeper in time, highlighting the advantage of ancient samples.

Rather than being a ‘black box’, we can trace back through the GNNs and demographic

structure why the overall accuracy and class precision is altered when various parameters

are changed. When applied to different populations, this intricate understanding of how the
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classifier is working helps when drawing deeper conclusions and making decisions on how

to build a demographic model.
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Estimating time since admixture and
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Contents
3.1 Existing approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 A method to estimate time since admixture . . . . . . . . . . . . . . . 69

3.3 Performance on simulated data . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Time since admixture analysis . . . . . . . . . . . . . . . . . . . 73

3.3.2 Admixture fraction analysis . . . . . . . . . . . . . . . . . . . . 77

3.4 Pulse vs. continuous admixture . . . . . . . . . . . . . . . . . . . . . . 82

Admixture events are pervasive throughout all human population histories. Some events

happened recently in the past such as the admixture of Europeans and Africans in America,

an example which has been widely used in genetic studies of admixture events. Travel across

the world became easier during the last century, so admixture between people with relatively

diverged ancestries became more widespread. With the ability to sequence large numbers of

present-day people, these recent events can be studied.



68 Estimating time since admixture and admixture fractions

Although more distant in time, ancient admixture events also shaped modern population

genetics and therefore affect the lives of modern people today. As demonstrated in the model

of European population structure, Figure 2.3, multiple large-scale migrations and admixtures

are key features of European history. Importantly, it was through these events that lifestyle

changes were precipitated. Knowing when admixture occurred across the continent and

in what proportions informs discussion on the speed of migration, under what conditions

admixture may have been favourable and also helps with investigating natural selection and

heritable diseases.

Signs of ancient admixture events are harder to see in modern genomes since the signal

decays exponentially with time and can be obscured by subsequent demographic processes.

Ancient genomes provide us with genetic material that was created closer to the time of

admixture, making studying these ancient events easier.

3.1 Existing approaches

Existing approaches that aim to date admixture events from genomic data can be split into

two categories: Those that use linkage disequilibrium (LD-based) and those that use ancestry

tract lengths (haplotype-based). Both are founded on the understanding that admixture

brings genetic material from two (or more) diverged populations together and that over time

recombination breaks up the segments of the chromosome that originate in each ancestral

population into smaller and smaller chunks. The result of this process is two-fold: admixture

LD decreases exponentially with genetic distance; and the distribution of tract lengths can

be modeled by an exponential decay function. The amount of exponential decay of both

measures depends on the time since admixture under the assumption that recombination in

each generation occurs according to a Poisson process with rate 1 along the chromosome

when using genetic distance units. It is therefore possible to extract the time since admixture
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by charactering decreasing LD with genetic distance [84, 68, 40, 130, 95] or the distribution

of tract lengths [65, 96, 36].

Haplotype-based methods first perform local ancestry inference and then characterise the

distribution of tract lengths to obtain an estimate of the time since admixture. These methods

tend to be harder to perform since they require phased data and accurate local ancestry

inference, which can be difficult without good reference ancestral populations. Errors in

local ancestry inference break up ancestry tracts making blocks appear smaller than in truth

and thus results in overestimated time since admixture. These errors are more detrimental to

large ancestry tracts and so haplotype-based methods are less accurate for predicting recent

admixture events.

LD-based methods are more flexible as they do not require phased data and progress has

been made in their ability to distinguish between background LD and admixture LD beyond

simply using a minimum starting distance [68]. Unlike haplotype-based methods, small

errors in local ancestry assignment or admixture LD can be smoothed over by using multiple

chromosomes and thus these methods are more robust to noisy data [18]. Additionally

some LD-based methods aim to assess whether data can be modelled better by a mixture of

exponential decay curves, indicating that multiple admixture events or continuous admixture

has occurred [40, 130, 95].

At very large times since admixture (>200 generations), the ancestry blocks are eroded

by recombination to sizes that are too small to be distinguished from background LD, thus

both these methods have an upper bound on the time since admixture that can be inferred.

3.2 A method to estimate time since admixture

Given the robustness to noisy ancestry inference, I devised an LD-based method to infer

the time since admixture of samples from my painted chromosomes that is similar to that

used in GLOBETROTTER [40]. Segments are painted by path, so admixture corresponds to
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when two paths join in a population history. This means that tracts made up of two or more

paths combined can be used to date multiple admixture events, where one event that joins

multiple paths follows other events that join two or more paths. For example, the joining of

paths 1, 2, 3 and 4 in the Bronze Age admixture event in Figure 2.3 is preceded by paths 1

and 3 joining in the Neolithic farmers and paths 2 and 4 joining in the Yamnaya. This opens

the possibility of being able to date older admixture events of the parent populations from

within the later admixed samples, for example, dating the admixture of EHG and CHG from

within bronze age samples using Yamnaya chunks. Likewise, the admixture fraction refers to

the fraction of the genomes taking each path.

With empirical sampling I plot the probability of being in the same path as a function of

genetic distance and fit an exponential decay curve to the distribution. The parameters of the

exponential decay correspond to the values of interest, time since admixture and admixture

fraction. This can be done for each sample chromosome individually and the results across the

whole genome for each sample combined to give an admixture time estimate and admixture

fraction for each individual.

The sampling process is as follows:

1. Sample a starting position uniformly from between 0 and 0.5cM from one end of the

chromosome.

2. Record the starting path.

3. Move 1cM towards the end of the chromosome.

4. Record the path 1cM away.

5. Now move to a new starting position 1cM away from the previous starting position.

6. Repeat steps 2-5 until the end of the chromosome.
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Repeat the above steps for testing distances 1-50cM in step 3 and 4. Over all autosomes,

I can then calculate the probability of being in path y given starting in path x, d cM away,

for all path combinations of x and y, including x=y. The shortest distance is 1cM, as in

ROLLOFF, to avoid the effect of background LD.

The probability when x=y decays exponentially with genetic distance and the rate of

decay depends on the time since admixture. Parameters are determined by nonlinear least

squares regression of the data to the formula

P(same path) = ae(�bd) +q (3.1)

The probability will asymptote to the probability of being in path x across the whole

chromosome, which intuitively is the admixture fraction of path x, therefore the admixture

fraction is given by q . The b parameter represents the time since admixture in generations

(Figure 3.1).

For samples which are the product of admixture between populations that are themselves

admixed, I combine the paths that make up each parent population, creating larger admixture

chunks. This opens the possibility of being able to date older admixture events of the parent

populations from within the later admixed samples, for example, dating the admixture of

EHG and CHG from within bronze age samples using Yamnaya chunks.

3.3 Performance on simulated data

To test the performance of this method, I simulated data from the model of European

population structure described in Section 2.2. I executed the analysis on the admixed

populations to infer time since admixture and admixture fractions of paths.
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Fig. 3.1 Exponential decay curves fit to the decreasing ancestry correlation at increasing
distances between two positions along the chromosome. This example is from fitting curves
to the Neolithic farmer chunks (paths 1 and 3) to a Bronze Age sample simulated at 19
generations since admixture. The b estimate for the simulated data is 18.05 generations and
for the RELATE inferred data the estimate is 18.64 generations.
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3.3.1 Time since admixture analysis

I dated the admixture times of all individuals by extracting the b parameter from fitting

exponential decay curves as described above. Counts for all distances were taken across all

nine tree sequences and the two haplotypes from each individual were treated independently.

The probability of remaining in the same path was therefore calculated using the total counts

from across 18 independent sequences per individual. For admixture events between two

populations, each individual has two estimates of the admixture age, one calculated per

ancestral path. I combine the estimates of the two in a way that minimises the standard error

to give a weighted average value of time since admixture for each individual. The time of

admixture in generations ago from present-day can therefore be calculated as the sum of the

sample age in generations ago and the estimated time since admixture for that sample. The

method was applied on both the simulated painted tree sequences and on tree sequences that

were inferred by RELATE from the simulated data and painted using a classifier. The results

are shown in Figure 3.2 and Tables 3.1 and 3.2.

Table 3.1 Table of results of admixture time analysis performed on simulated painted tree
sequences. For three admixed populations the mean time of admixture across all simulated
samples and the standard deviation of estimates around the mean is shown. All values are in
units of generations ago.

Population Simulated
time
of

admixture

Mean time
of

admixture

Standard
deviation

(+/-)

Bronze Age 166 166.03 3.86
Neolithic farmers 259 258.54 12.96

Yamnaya 177 177.74 1.66

In Figure 3.2, as the sample ages become more recent and further from the admixture time,

the variance of estimates around the true value increases for both simulated and RELATE

inferred results. Likewise, Figure 3.3 shows how the standard error of estimates increases as

the sample ages get further from the time of admixture. More generations since admixture
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Table 3.2 Table of results of admixture time analysis performed on tree sequences that
were inferred by RELATE from the simulated data and painted using a classifier. For three
admixed populations, the mean time of admixture estimate across all simulated samples
and the standard deviation of estimates around the mean is shown. All value are in units of
generations ago.

Population Simulated
time
of

admixture

Mean time
of

admixture

Standard
deviation

(+/-)

Bronze Age 166 166.45 4.56
Neolithic farmers 259 257.28 16.67

Yamnaya 177 177.24 2.00

mean that more recombination events have occurred resulting in shorter ancestry tracts.

Shorter tracts make it harder to differentiate between background LD inherited from the

parent populations from the relevant admixture LD. Therefore the standard error for the b

parameters when fitting exponential decay curves is greater and the variance in b parameters

estimates is greater. This is the case for both simulated data and RELATE inferred data

showing there is a limit to the length of admixture tracts, even in data with no noise, for

inferring time since admixture accurately.

Noise appears as short tracts of misclassified correlated trees in RELATE inferred data,

which starts to become difficult to differentiate from admixture LD when the admixture tracts

become comparable in length. The standard error values for the analysis of tree sequences

inferred by RELATE up to 100 generations since admixture are very similar to those from

the analysis of the simulated data (Figure 3.3). This suggests that up to approximately 100

generations since admixture the method is robust to noise introduced by classification error

in the painted chromosomes. Similar results can be seen in Figure 3.2, as the sample ages

become more recent and further from the admixture time, the deviation of estimates from

the true value increases in both sets of data but to a greater extent in RELATE inferred data.

Likewise, the overall standard deviation of the mean time since admixture estimate across all
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Fig. 3.2 Plots showing the predicted admixture time with standard error bars and the sample
age for three simulated admixed populations. The time since admixture from each painted
individual was calculated from the b parameter described in Section 5.2 and the time of
admixture plotted from the sum of the time since admixture and sample age in generations
ago.

samples is slightly larger in the RELATE inferred data compared to the simulated data for all

populations (Tables 3.1 and 3.2).

In results of analysis of the simulated data, the Bronze Age mean admixture time predicted

across all samples matches the true value of 166 (Table 3.1) and a small standard deviation
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Fig. 3.3 Plots showing the decrease in standard error of admixture time estimates as sample
age increases and gets closer to the simulated time of admixture for Bronze Age and Neolithic
farmer populations. The left column shows the results for admixture time analysis on the
simulated tree sequences and the right shows the results for tree sequences inferred by
RELATE from the same simulated data and painted using a classifier.

of estimates of +/- 3.86 generations. Neolithic Farmers display a mean admixture time

slightly under the true value of 259 and a larger standard deviation of estimates of 12.96

+/- generations. The slightly poorer ability to estimate Neolithic farmer admixture time is

because some samples have ages that are further from admixture compared to the Bronze

Age population, resulting in the mean being slightly under the true admixture time and a

greater standard deviation. The error may also be increased by the ancestry proportions of

75/25 Anatolian and WHG respectively, as the exponential decays are harder to fit when

the difference between the starting value, near 1, and the asymptotic value of 0.75 is not as

large. Yamnaya samples are a maximum of 17 generations from the true admixture time of

177. The mean predicted admixture date matches that simulated and there is a small standard

deviation of estimates of +/- 1.66 generations.
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Results of analysis of RELATE inferred data were very similar to that of the simulated

data (Table 3.2). The Neolithic farmer’s mean b estimate is slightly further from the truth in

the RELATE inferred data analysis than in the simulated data analysis due the same reasons

explained above; more samples with a greater time since admixture, above 100 generations,

meaning noise introduced by classification has more of an effect of decreasing the accuracy

of the b estimates.

For the present-day samples that are all 166 generations since admixture, in both simulated

and RELATE inferred tree sequences, the admixture tracts have become too short to produce

a reliable estimate of time.

3.3.2 Admixture fraction analysis

With painted chromosomes, there are two ways to calculate the admixture fractions in

individuals. The first method is to calculate the proportion of the genome in base pairs that is

painted with each path ancestry by summing the distance covered by each path, divided by

the total length of the simulated genome. I use admixture fractions for individuals calculated

in this way directly from simulated data painted with the true paths as the true admixture

fractions to compare the results from both methods to.

Figure 3.4 shows the fraction of the genome taking each path calculated over a simulated

genome of nine tree sequences that were inferred from simulated data using RELATE and

painted with a classifier. The four ‘path’ populations, WHG, EHG, Anatolians and CHG,

have genomes painted by almost entirely one path. All samples contain a small proportion

of the genome from paths that were not a component of those populations in the European

model, the result of error in classification of trees.

To find the admixture fractions for admixed samples whose ancestral populations are

themselves admixed and made up of two paths, I sum the proportions of the paths that make

up each for the two ancestral populations. For example in Bronze Age individuals I sum path
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2 and 4 that make up the Yamnaya and paths 1 and 3 that make up the Neolithic farmers

(Figure 3.5).
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Fig. 3.4 Bar plot showing for each simulated individual, the proportion of the diploid genome
taking each path. Analysis was done over nine RELATE tree sequences of 200Mbp in length
each, that were inferred from data simulated from the European model of population structure.
Colours correspond to paths matching those used in 2.3

Samples with older ages, that are closer to the time of admixture, tend to have proportions

of component paths further from the fractions input to the simulation. The reason for this

effect is that admixture events in msprime appear, forwards in time, as a new admixed

population formed in a single generation of individuals from each ancestral population in the

specified proportions. This means in the first few generations following an admixture event,

large chunks of sequence that take the same path remain in the population as there have been

few recombination events between sequences taking different paths. In addition, msprime
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Fig. 3.5 Barplot showing for each admixed group the admixture fractions calculated by
adding together the fractions of component paths if necessary from Figure 3.4. Samples
are ordered along the x axis by increasing sample age, decreasing the time since simulated
admixture.

simulation haploid sequences are arbitrarily paired up within the populations to form diploids.

After only a few recombination events, by chance some arbitrarily paired diploid samples

may have greater or lesser proportions of some paths than the true simulated fraction of

individuals who admixed. After many more generations and recombination events between

sequences taking different paths, without any further admixture events, the proportions of

each path in haploid sequences are homogenised and closely match the simulated admixture

fractions. However, sample age does not have any effect on the error in admixture fraction

estimates and all errors are less that 0.1 (Figure 3.6).
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The second method to calculate admixture fractions is by extracting the q parameter from

equation 3.1. When exponential decay functions are fit to decreasing ancestry correlation

as genetic distance increases as described in Section 3.2, q is the asymptotic value of the

exponential decay curves. It represents the overall probability of being in a particular path

across a sequence, which I assume is equivalent to the admixture fraction of that path. Noise

in the data is in the form of short sections of correlated trees which are too short to fit

exponential decay curves. This means, along with the curves being an approximate fit, the

admixture fractions do not necessarily sum to 1.
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Fig. 3.6 The difference between admixture fractions in simulated data compared to q value
calculated from RELATE inferred, classified data. Each individual has two points, one for
each ancestral population. Individuals are ordered by time since admixture.

Unlike the time to admixture analysis, samples with ages closer to the time of admixture

exhibit q values that tend to be further from the true simulated fractions (Figure 3.7). These

samples have larger chunks inherited from ancestral populations which reduce power when
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fitting the exponential decay curve to find the asymptotic value. Generally, the error is low

for samples with at least 10 generations since admixture but those closer can have errors of

up to 0.2 in fraction. Some ancestral populations display greater error likely because some

paths are more often confused for another path by the classifier and so contain more noise

chunks.
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Fig. 3.7 The error in admixture fraction estimates, calculated as the difference between the
true simulated fractions for each individual and q from equation 3.1. Each individual has two
points, one for each ancestral population. Individuals are ordered by time since admixture.

Overall, the first method for estimating admixture fractions by summing over base pairs

produces results with very low errors for all individuals regardless of age. The second

method of extracting q has comparable error values but only for samples with ages more

than 10 generations since admixture. For more reliable estimates of admixture fractions, I

recommend the first method. However, q is easy to obtain if a time since admixture analysis



82 Estimating time since admixture and admixture fractions

is carried out anyway and so this method can be a convenient use of time and resources,

bearing in mind the sample age limitation.

3.4 Pulse vs. continuous admixture

In the above Sections describing a method to infer admixture time, I assumed that

admixture happens as a single event followed by panmixia in the admixed population. In

reality admixture is unlikely to happen in a single pulse and is more likely to happen over

a number of generations with continuous influx and admixture of migrants. A challenge

faced by all methods that attempt to estimate the time since admixture is when admixture has

been ongoing and more continuous in nature than a single hybridisation event. In the case of

fitting exponential decay curves to tract length or LD data, continuous admixture will create

a curve that is a mixture of multiple exponential decay curves. I can potentially tease apart

the component decay curves in order to infer continuous admixture has occurred.

I explored one approach to identify more continuous admixture by fitting curves of

up to decreasing distances i.e 1-50cM 1-40cM, 1-30cM etc. It is possible to fit different

exponential decay curves with increasing rate parameter values, biassing towards older

admixture events. This technique of fitting several exponential decay curves with different

rate values to different parts of the curve is a promising approach to inferring multiple or

continuous admixture events. However, there are identifiability problems as the estimates are

very subject to noise so there is probably a limit to what can be done when making estimates

of continuous admixture.
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In this Chapter I apply the method developed in Chapters 2 and 3 to the MesoNeo

genomes and discuss the implications for the history of Europeans.
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4.1 Inferring tree sequences and evaluating model fit

I inferred a RELATE tree sequence for each autosome of our subset of 476 MesoNeo

genomes, using the fine scale recombination map for each chromosome, a mutation rate of

1.25e-8, and starting population size estimate of 30,000. All chromosomes for all samples

were painted by a classifier trained on the model of European population structure as described

in Chapter 2.

As a measure of how well the model fits the real data, I explored the extent to which

coalescences are within paths, as expected according to the model, or between them in viola-

tion of the model. As a comparison, I simulated tree sequences with panmictic demography.

All else remained equal to the structured model except there were no split or admixture

events and only a single population. The population size was the sum of those on all paths

of the structured model at any given time point. Samples were taken at the same times

and arbitrarily assigned to the populations. RELATE tree sequences of this unstructured

simulated data were inferred and painted using the classifier trained on the structured model

using the samples with randomly assigned population labels.

For the MesoNeo dataset, the average number of coalescences within paths across all

trees is almost always higher than those between paths (Figure 4.1). The values per path

are comparable to those seen in the tree sequences inferred from data simulated from the

model of European structure. In contrast, the simulated unstructured genealogies have similar

within and between path coalescence numbers, with only those within pseudo-path 3 greater

than all between path levels.

Some between path coalescences are permitted within the model framework during

certain time periods. ‘Illegal’ coalescences are those that are not permitted in the model. For

example, a coalescence event between a path 1 lineage and a path 2 lineage between 166 and

800 generations ago would count as illegal given the model. The legal/illegal coalescence

ratio in Figure 4.2 is very high between 150 and 350 generations for the MesoNeo genealogies,
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inferred from simulated structured data, simulated unstructured data and MesoNeo genomes,
all painted using the same classifier.
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whereas the unstructured genealogies have a low ratio throughout never reaching above 2.

While the ratio is lower in the MesoNeo genealogies than the ratio in the tree sequences

inferred from simulated structured data, it is always above that of the unstructured genealogies
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and only approaches 1 around 600 generations ago, at which point there is a population split

in the model.

These results suggest that both the RELATE inference and the path classification have

captured structure within the MesoNeo genealogies. The similarity of the counts of coa-

lescences within and between paths through time of the MesoNeo genealogies and those

simulated from the structured model support the PCA and Fst evidence from Chapter 2, that

the model is a good representation of the real data.

4.2 Estimation of global admixture fractions

Global admixture fractions can be calculated for each individual as simply the proportion

of chromosomes painted with each path. Figure 4.3 shows how the fractions change in

the different populations. Yamnaya samples are painted as expected with primarily EHG

and CHG paths, and Neolithic farmers by WHG and Anatolian paths. Only in Bronze Age

samples do we see substantial steppe ancestry (EHG and CHG path) components in Western

European samples, after the migration of steppe pastoralists into Europe.

There are minor components from other paths. Many of these are likely due to noise

introduced in the RELATE inference and classification, but also potentially true signals are

present from gene flow between groups that fits with the geographic ranges of these groups.

In particular, WHG and EHG have a greater proportion of their genomes taking path 4 and 3

respectively, likely due to gene flow east to west between each other across the continent.

There is also a substantial presence of path 1 in CHG genomes, likely due to gene flow

between early Anatolians and CHG across the Caucasus mountains. The path 2 component

in Anatolian genomes is smaller than the path 1 component in CHG, suggesting directional

gene flow from Anatolia into the CHG. EHG genomes contain a proportion taking path 2,

probably due to gene flow from CHG ancestry in eastern Europe/Western Asia.
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Figure 4.4 shows the admixture fractions of three admixed populations separately, ordered

by increasing sample age of individuals. Component paths are added and coloured as one and

presumed noise is not coloured. The level of WHG path ancestry in Neolithic farmers shows

a slight resurgence as samples become younger at a rate of 0.027% increase per generation

(Pearson r = 0.22, p-value= 0.00582). There appears to be no corresponding decrease in

Anatolian path ancestry with time. This result is more consistent with a slow migration of

Anatolians into Europe where the amount of admixture and fractions involve varies across the

continent and at different times in different geographies. The resurgence in WHG ancestry in
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the middle to late Neolithic has previously been shown [66, 15], a signal I have recovered.

Perhaps the decrease in Anatolian path ancestry is masked when grouping all samples from

across the continent and ordering by sample age alone.
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Fig. 4.4 Bar plot showing for each ancient admixed group the admixture fractions calculated
by adding together the fractions of component paths if necessary from Figure 4.3. Samples
are ordered along the x axis by increasing sample age.

The fraction of Yamnaya paths decreases significantly as Bronze Age samples become

younger at a rate of 0.23% decrease per generation. (Pearson r = 0.45, p-value=2.8e-5).

Correspondingly, the fraction of Neolithic farmer paths increases at an equal rate of 0.23% per

generation (Pearson r = 0.45, p-value=2.6e-5). This result is consistent with previous work

[89], implying a punctuated rapid migration of steppe herders into Europe, and subsequent
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admixture with the Neolithic farmers present in Europe at similar rates across the continent.

The following resurgence of Neolithic farmer ancestry represents admixture with persisting

Neolithic farmer populations locally or alternatively movement of people with high Neolithic

farmer ancestry around the continent. Over generations, the ancestry levels of both Yamnaya

and Neolithic farmers homogenise in present day individuals (Figures 4.3 and 4.5).
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Fig. 4.5 Bar plot showing for three 1000 Genomes EUR populations the admixture fractions
of Neolithic farmers and Yamnaya calculated by adding together the fractions of component
paths. The mean Yamnaya path fraction is displayed under each population plot.

I calculated the Yam/Neo admixture fractions for three present day 1000 Genomes

populations TSI, FIN and GBR. The results shown in Figure 4.5 show how the relative

contribution of these two ancient groups varies in different modern European populations.

These results fit with previously published results in that as you move further north from

Italians (TSI) in southern Europe through British (GBR) in central western Europe to Finns

(FIN) in northern Europe, the relative proportion of Yamnaya path ancestry increases.

4.3 Estimation of time since admixture in Europe

Next, I estimated the time of admixture for each sample in the three admixed MesoNeo

populations; Neolithic farmers, Steppe Yamnaya and the Bronze Age population. The number

of genomes over which this was performed was increased from my original 476 to include
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samples that fall in between groups in the PCA, to explore whether these samples were the

result of more recent admixture. The new total number of samples was 963, including all

European 1000 Genomes samples. In Section 2.4.4 I showed that there was little decrease in

accuracy for painting extra samples if I use the same set of ‘reference’ samples in the GNNs.

I calculated a date of admixture as the sample age plus the estimated time since admixture

for each individual as described in Chapter 3, combining the standard error of the radiocarbon

age estimate and the time since admixture estimate. Previously, the age of the first samples

containing an ancestry are used as a proxy for the date of arrival of that ancestry to a

geographical area. To test whether my inferred admixture dates are a more informative

measure of the time of arrival of an ancestry, I fit spatiotemporal models of how time of

admixture depends on latitude and longitude of sample archaeological sites and compared

these to the same models constructed using sample age alone. I also use linear interpolation to

see how both inferred admixture times and sample ages vary across the European continent.

4.3.1 Neolithic farmers

Of the 176 Neolithic farmers individuals in my subset dataset, I was able to estimate the

time of admixture for 173. Figure 4.6 shows the inferred time of admixture in years against

sample age. A linear regression to the points fits a model coefficient where every year younger

in sample age increases the time since admixture in that sample by 0.28 years (p-value =

2.37e-06). This best fit line has a shallow gradient compared to the theoretical best fit line

in which the Neolithic farmers are formed by one instantaneous admixture event happening

7,800 years ago. This suggests the migration and admixture events between Neolithic farmers

and WHG was less punctuated and more of a slow process, ranging between 8,000 and 4,000

years ago.

It is important to note that admixture times are not always a proxy for movement of

people. It is possible that the Anatolian Farmers moved at a faster pace into Europe, but the
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subsequent integration with the local hunter gatherer populations was a slower process that

continued long after migrants arrived in an area. There is evidence of persistent un-admixed

hunter gatherer pockets existing long after the arrival of Anatolian migrants to the same area

which is seen in parts of the World today, such as the Hadza in East Africa.
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Fig. 4.6 Correlation of years since admixture and sample age over 173 Neolithic farmer
samples. The best fit line is coloured black. The theoretical best fit line, in the scenario of
instantaneous admixture happening at 7,800 years ago, is coloured red.

Linear models of how longitude and latitude can predict Neolithic admixture dates or

sample ages alone are shown in tables 4.1. Longitude and latitude are both with highly

significant predictors of admixture date. The model has a significant overall p-value of

5.947e-11 and the adjusted R-squared value (how much of the variance is explained by the

model) of 23.4% is high. The predicted coefficients of longitude and latitude suggests that



4.3 Estimation of time since admixture in Europe 93

Table 4.1 Summary of a linear model of Inferred Admixture time longitude + latitude for
173 Neolithic farmers samples.

Coefficients Estimate Std. Error P-value
Intercept 9092.66 450.59 < 2e-16
Longitude -25.66 4.87 4.08e-07
Latitude -42.74 8.98 4.18e-06

Table 4.2 Summary of a linear model of Sample age longitude + latitude for 173 Neolithic
farmer samples.

Coefficients Estimate Std. Error P-value
Intercept 7394.92 488.34 < 2e-16
Longitude -11.70 5.65 0.0396
latitude -35.25 9.89 0.000471

the admixture events occurs 25 years later with every degree east and 42 years later with

every degree north. In Figure 4.7 this appears as a movement north west starting in Iberia.
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samples coloured by the inferred admixture time in years before present of that sample. The
surface colour is of smoothed inferred admixture times in years before present created by
linear interpolation between inferred sample points. This was done by kriging using the R
fields package.
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Two theories exist for the route that Neolithic farmers took from their origin in Anatolian

into the European continent. One is a path along the northern Mediterranean coast to Iberia

first before expanding north and the second is an inland route following the Danube River,

north and west. My results fit with the coastal route, appearing to start in Iberia and radiating

north and east from there. The MesoNeo dataset contains few samples of Neolithic farmers

from along the Mediterranean coast east of Spain, due to low sample availability, or perhaps

poor preservation, and so I may not be capturing the earliest admixed samples. Alternatively,

the first migrants moving along the coast may not have admixed with local hunter gatherer

populations until they reached Iberia. Both scenarios would be consistent with our results

and in the future, more samples from critical regions could help provide clarity.

In contrast, in the model predicting sample ages alone (Table 4.2), the p-values for

coefficients and the overall model, while still significant, are larger than those for inferred

admixture ages and the adjusted R-square value is only 8.4%. This model suggests a more

gentle south east to north west gradient of older to younger sample ages. Overall, a model

involving longitude and latitude to predict inferred admixture time is more informative than

one predicting sample age, in terms of understanding the impact of Anatolian farmers in

Europe.

4.3.2 Bronze Age population

The migration of the Yamnaya associated ancestry into Europe is typically thought to

have been a fast migration, possibly accompanied by violence [109] and substantial alteration

the environment [99].

Figure 4.8 shows the inferred time since admixture in years for Bronze age individuals

plotted against sample age. Constituent paths for Yamanya ancestry (paths 2 and 4) and

Neolithic farmer ancestry (paths 1 and 3) were counted as one path when calculating the

probability of remaining in the same path with genetic distance (Section 3.2). Of the 105
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Fig. 4.8 Correlation of years since admixture and sample age over 97 Bronze Age individuals.
The best fit line to the points is coloured black. The theoretical best fit line, in the scenario of
instantaneous admixture happening at 4,900 years ago, is coloured red.

Bronze Age individuals in my MesoNeo subset, exponential curves could be fit to 97. A linear

regression model implies that every year younger a sample’s archaeological age, the time

since admixture in that sample increases by 0.78 years (p-value = 1.536e-11). A coefficient

value of 1 would mean near contemporaneous admixture over the whole continent, so as

shown by the theoretical best fit line in red, such a high coefficient found for the Bronze

Age admixture is a consistent with a rapid migration of the Yamnaya across the continent

between 4000 and 5500 years ago, with admixture events quickly following.

Likewise, linear models incorporating longitude and latitude do not find longitude or

latitude as a significant coefficients. This is again evidence of rapid movement of Yamnaya

into Europe from the steppe with admixture following soon after the migration started, and



96 Application of methods to MesoNeo genomes

Table 4.3 Summary of a linear model of Inferred admixture time longitude + latitude for 97
Bronze Age samples.

Coefficients Estimate Std. Error P-value
Intercept 3894.05 443.23 7.57e�14
Longitude 2.98 5.77 0.607
latitude 16.15 9.08 0.0785

then the admixture continuing with admixed individuals, producing no detectable variance

in inferred admixture time with geography. The variance in the data explained by a model

of longitude and latitude alone is small at only 4.9%. Other factors not accounted for here

must explain the variance of admixture times across the continent better, unlike the Neolithic

Farmers whose admixture times are substantially explained by geography (Table 4.3).

While the R-squared adjusted for the inferred admixture times is small, models using

sample ages alone explain the data even less well at only 2.1%.

4.3.3 Yamnaya population

The MesoNeo dataset provides more Yamnaya related individuals than were previously

available, adding more data points for dating the admixture event between EHG and CHG

groups. While this is a substantially boost in sample to size, there are still relatively few

samples and therefore not enough power to detect any trends in admixture time with sample

age or geography. This is compounded by the samples being from disparate geographic

locations in Ukraine, Poland, Kazakhstan and across Russia.

Despite this, I can date the samples I have and draw some conclusions. The genetic

formation of the Yamnaya population is not well understood. Culturally they appear in the

archaeological records 3300-2600 BC [85]. I dated the genetic formation of the Yamnaya

from 16 individuals of the 17 present in my MesoNeo subset (Table 4.4). Most estimated

admixture dates are 5000-6000 years before present, a millennium or so before their believed

cultural formation. Three outlier samples have inferred admixture times of more than 7000
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Table 4.4 Table of the results from inferring admixture time in 16 Yamnaya individuals.

Sample name Sample age Inferred
Admixture

Times
(years BP)

Standard
error

(years)

Country

Latvia_LN1 4832 5651 123 Latvia
MJ-06 4630 7134 206 Ukraine
MJ-09 4286 5016 75 Ukraine
NEO175 4606 5342 93 Russia
NEO212 7390 7880 103 Russia
poz81 4705 5535 80 Poland
RISE240 4706 5554 73 Russia
RISE509 4732 6961 66 Russia
RISE511 4744 5787 73 Russia
RISE546 4850 7564 238 Russia
RISE547 4710 6645 76 Russia
RISE548 4850 6558 203 Russia
RISE550 4934 5589 181 Russia
RISE552 4446 5893 190 Russia
RISE555 4627 5370 93 Russia
Yamnaya 4902 5761 63 Kazakhstan

years ago. These all have large standard errors on the estimates and so are less reliable.

However, even allowing for larger confidence intervals based on higher standard errors, their

admixture times are placed well before 6,000 years before present. NEO212 is the oldest of

these samples and falls between the other Yamnaya individuals and Eastern hunter gatherers

in PC space which suggests it might be a relatively early hybrid.

These admixture dates are much older than the archaeological appearance of the Yamnaya

and so, subject to technical artefacts they suggest extended prior genetic contact between

EHG and CHG well before the emergence of the Yamnaya culture, potentially early as 7000

years ago.
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4.4 Conclusion

I have shown from the Neolithic Farmers and Bronze Age populations in Europe that

my estimates of admixture time are more informative than using the sample ages alone

for assessing spatiotemporal dynamics of these population movements and mixing. While

admixture times may not be a proxy for movements of people, it is an interesting metric in

itself, and one that varied significantly between the different major admixture events involved

in the formation of the modern European population.

Given that the MesoNeo genomes have been imputed, there is possible phasing errors.

In the local ancestry painting phasing error will appear as switches of ancestry across

homologous chromosomes. As a result, phase errors will cause ancestral tracts to appear

smaller than in truth and therefore produce admixture times that are older than in truth. It is

possible that my calculated admixtures times have overestimated absolute times as I have

not accounted for phase error in my method. However, my conclusions drawn from the

relative admixture times between samples are still valid if I assume phase errors to happen at

a constant rate between samples.

A strategy to account for phase errors is to use both haplotypes from each admixed

sample when measuring the ancestry correlation with genetic distance and not treat the

two chromosomes from the same sample independently. Switches in ancestry across the

homologous chromosomes will be accounted by measuring over both haplotypes.
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A coalescence is the event where two haplotypes share a common ancestor in the past, at

which point two lineages coalesce to become one lineage. The rate that coalescences occur

at over a time period in the past between a set of sampled lineages is related to demographic
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and evolutionary processes acting within that population during that time period (Section

1.3).

Knowledge of coalescence rates through time enables inference of the parameters of these

processes. Specifically, coalescence rates are inversely proportional to effective population

size. When the population was small for some time period in the past, the number of

coalescences occurring in that time period will be high. Similarly, alleles under selection

during a past time period will have a disproportionately high coalescence rate compared to

the genome-wide average, during that time period.

While both a population bottleneck and positive selection create an excess of coalescences,

the difference in inference is that population size changes act on the whole genome, all trees

in the sequence, but selection will only alter the trees covering the selected site and the trees

surrounding, with decreasing extent.

The above concepts can be applied to tree sequences, combined with local ancestry

paintings, to infer parameters of evolutionary processes conditioned on haplotype ancestral

background. The advantage of the concept of local ancestry as a path is that population size

changes and selection signals can be inferred along paths in various populations that, with a

panmictic model, might otherwise be diluted. Therefore, with paintings for both the modern

1000 Genomes samples and ancient European samples combined with the tree sequences, I

propose a genealogy-based method that leverages both ancient genomes and local ancestry

estimates to infer population size changes and selection along paths of ancestry.
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5.1 Inference of effective population size

5.1.1 Existing approaches

Existing methods that aim to infer the parameters of complex demographic models,

including population size estimates, can be broadly divided into two approaches; Site

frequency spectrum-based and haplotype-based.

The site frequency spectrum (SFS) is a histogram of the number of alleles in a sampled

population that have corresponding derived frequencies. The expected SFS for a panmictic

population of constant size under no natural selection can be calculated using both coalescent

theory [55] and diffusion theory [54], where the expected proportion of sites with allele

frequency i is proportional to 1
i . If the SFS deviates from this expectation it indicates that

the population history deviates from the assumed panmixia of constant size and no selection.

The shape is sensitive to the population history including population size change, population

structure, migration and selection. For example a bottleneck in population size will produce

an excess of low frequency variants and so skew the SFS. Selection will affect the SFS

around the selected site only, while population size changes will change the combined SFS

across all sites.

Many methods have been developed that aim to infer the population history from the

observed SFS. The observed SFS can be compared to the expected SFS calculated under a

given model of population history and the goodness of fit of that model to the data evaluated.

A maximum likelihood set of parameters can be found by searching through different

parameters until the best fitting set is found.

Early methods used full likelihood approaches [9, 56] or approximate the posterior of

the SFS under a model of population history using techniques such as MCMC [42, 41].

The problem with full likelihood approaches is that the likelihood function is very difficult

to evaluate or is intractable and methods that approximate the posterior become very slow
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when complexity of demographic history increases. Additionally, most are limited to non-

recombining sequences.

To combat this, "likelihood-free" Approximate Bayesian Computation (ABC) methods

were introduced [8]. These methods approximate the likelihood function by simulations

and comparing the outcome of those simulations to the observed data. The parameter set

used to simulate is discarded if the ‘distance’ between the SFS of the simulated data and the

observed data is greater than a threshold amount. Simulating the SFS is possible using the

coalescent or diffusion theory and so ABC methods have allowed inference of more complex

demographic methods [83, 21, 105].

However, ABC can be very slow as computation time increases with the number of loci.

Composite likelihood methods have computation times that are independent of loci number.

Notably dad i approximates the joint multi-population SFS with a Wright-Fisher diffusion

approach and compares it to the observed SFS data with a composite likelihood function [38].

Similarly fastsimcoal2 uses coalescent simulations to estimate the SFS under demographic

models and compares simulations to the data, calculating a composite likelihood of the

model to optimise the parameters [23]. Unlike the dad i framework which can only model 3

populations, fastsimcoal2 can model handle arbitrary numbers of populations and may be

more robust than dad i.

While all aforementioned methods are limited to demographies that are tree-like, momi2

can model the join SFS for non tree-like demographic histories involving admixture events by

defining demographies on general Directed Acyclic Graphs (DAGs). The expected joint SFS

is computed using the continuous time Moran model which shrinks the state space compared

to the coalescent model [51].

However, SFS-based methods are limited to independent sites and do not make use of

information contains in patterns of linkage between sites [108]. Additionally, there is debate

around whether demographic history is statistically identifiable from the SFS [86, 10].
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The demographic history influences coalescence times of haplotypes which in turn

influences the mutation patterns. Haplotype-based methods aim to infer the coalescence

times from the patterns of mutations and in turn infer the demographic history and so leverage

the full information from linked SNPs. Recombination alters the underlying genealogies and

so it is necessary to average over the possible recombination histories that may have shaped

the observed haplotypes [108].

Modelling the coalescent with recombination is difficult because long-range correlations

between sites makes the state space of possible genealogies very large. Building on the

work of Wiuf and Hein [125] who formulated the coalescent process as along the genome

rather than backwards in time, McVean and Cardin formulated the sequentially Markovian

coalescent (SMC) [80], to approximate the coalescent with recombination. SMC circumvents

long-range correlations between genealogies by making the current genealogy depend only

on the immediately previous genealogy. This allowed the Markovian class of algorithms

to be used along chromosomes to estimate population parameters. Additionally, Marjoram

and Wall introduced SMC’ which allows for recombination back into the same lineage at a

different coalescence time, a so called ‘invisible’ recombination that improves the closeness

of the approximation to the full coalescent model [71].

With SMC and SMC’ in hand, hidden Markov models (HMMs) can be applied across

chromosome, allowing the unknown genealogies to be integrated out by modelling them as

the hidden states and the genetic sequence data as the observed states. Through Baum-Welch

the coalescence rates can be calculated and from those the effective population size at discrete

time epochs is ascertained. Pairwise sequentially Markovian coalescent (PSMC) applies

this approach to a pair of haplotypes or a single diploid genome to estimate the coalescent

times between them at each site along the genome [64]. Subsequently, multiple sequentially

Markovian coalescent (MSMC) was developed that estimates the time to the first coalescent

between multiple phased haplotypes and which pair of haplotypes are involved [107]. This
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allows for estimates of population size in more recent time. SMC++ is a more recent method

in the same family as PSMC and MSMC but scales to many sample haplotypes and achieves

a substantial speed-up by ‘skipping over’ stretches of non-segregating sites [122].

These described methods can be used to infer changes in population structure. MSMC

and SMC++ are more suited to this task as they can use multiple sample sequences from

separate populations. MSMC calculates cross-coalescence rates between separate popula-

tions throughout the past, indicating when divergence occurred and cessation of gene flow.

However, the dual ability to also infer population structure from coalescence rates as well

as population size poses a problem: How to distinguish between a structured population of

constant size or a panmictic population of changing size when only representative samples of

one population are available? These methods have come under criticism for this reason [78].

An extension of MSMC called MSMC-IM attempts to tackle this problem. It fits an isolation-

migration model to coalescence rates estimated by MCMC to infer piece-wise migration

rates between populations and piece-wise population size histories within populations [124].

Unlike the methods presented in this section that treat the underlying genealogy of

samples as an unobserved variable, RELATE directly estimates the genealogies of a set of

samples across the genome. The shapes of trees are altered by evolutionary processes and

therefore they reflect the demographic history of a sample (Section 1.3). RELATE has the

advantage over PSMC and MSMC of being scalable to thousands of sample haplotypes. In

its current implementation RELATE has an MCMC method for re-estimating branch lengths

under a model of variable population size but assumes panmixia (Section 1.5). However,

since RELATE infers the genealogies themselves, its is possible to tease apart population

structure from population size change. I aim to estimate the changing population sizes on

separate paths through time by placing coalescence events along paths and from the counts

of coalescences in each path, calculate a maximum likelihood population size on each path

at a given time.
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5.1.2 A method for inferring population size along paths

Given that for each tree I have path assignments for leaf nodes, I traverse up the tree,

assigning path labels to internal nodes. All internal nodes can be reached when traversing

from multiple different leaf nodes. Whenever there is a discrepancy in the path assigned for

an internal nodes when traversing from different painted leaf nodes, I assign it the path of the

leaf node which obtained the larger maximum softmax value, output in the neural network’s

final layer. With all nodes in all trees assigned to a path, the diploid population size (N) for a

path can then, in principle, be estimated from the number of coalescences k occurring when n

lineages are present in the path. Across the whole tree sequence, I record in a 4-dimensional

matrix C(p,t)
(n,k) the count of trees where there are k coalescences between n lineages on path p

at time t in units of generations.

The maximum likelihood population size estimate can be calculated along each path

in each generation from these counts. The number of coalescences per generation can be

modelled as a Poisson distribution with mean,

l =
n(n�1)

4N
, (5.1)

and therefore, the probability of seeing k coalescences in a generation is

P(Coal = k) =
n(n�1)

4N
k
e[�

n(n�1)
4N ]

k!
. (5.2)

Taking a log of equation 5.2,

log(P(Coal = k)) = k log
✓

n(n�1)
4N

◆
� n(n�1)

4N
� logk!. (5.3)
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To find the maximum likelihood population size N, I need to find the value of N when the

derivative with respect to N is set to 0. In each generation and on each path, I sum over all

n,k pairs, multiplied by the count of each n,k pair C(n,k),

log(P(Data | N)) = Â
n

Â
k


k log

✓
n(n�1)

4N

◆
� n(n�1)

4N
� logk!

�
C(n,k), (5.4)
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C(n,k) logk!.

(5.6)

Taking the derivative with respect to N,

∂ log(P)
∂N

=� 1
N Â

n
Â
k

kC(n,k) +
1

N2 Â
n

n(n�1)
4 Â

k
C(n,k), (5.7)

and setting this equal to 0,

∂ log(P)
∂N

=� 1
N Â

n
Â
k

kC(n,k) +
1

N2 Â
n

n(n�1)
4 Â

k
C(n,k) = 0, (5.8)

1
N2 Â

n

n(n�1)
4 Â

k
C(n,k) =

1
N Â

n
Â
k

kC(n,k), (5.9)

N =
Ân

n(n�1)
4 Âk C(n,k)

Ân Âk kC(n,k)
, (5.10)

N̂ =
Ân

n(n�1)
4 Âk C(n,k)

Total number of coalescences
. (5.11)

The above derivation shows that the maximum likelihood population size is a weighted

average of the counts of n,k pairs. With the 4-dimensional array of counts C(p,t)
(n,k) I can

calculate a maximum likelihood population size along each path, in each generation. When

two paths are joined in a population history, the number of lineages is the sum of the number

in each path and coalescences can occur between any of those lineages.
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5.1.3 Testing on simulated data

Using nine simulated tree sequences from the model of European population history and

with all leaf nodes painted with the true paths, I assign internal nodes to paths by traversal

and apply the above procedure for population size estimate along paths. I recover estimates

close to the correct population sizes with some noise, demonstrating that my approach is

sound given perfect data (Figure 5.2).

I then applied the procedure to the RELATE tree sequences that were inferred from

simulated data with all internal nodes assigned a path label by traversal. Figure 5.3 shows

that the coalescence time distribution along each path is similar to that of the simulated tree

sequence but not an exact match. Inferred coalescence times are slightly lagging behind the

simulated coalescence times and so there is a small deficit in coalescences early in time and

a small surplus later in time.

Correspondingly, Figure 5.2 shows that in some parts of the structure, the correct pop-

ulation size can be recovered in the RELATE trees. At the start of paths, population sizes

are overestimated, meaning there are too few coalescence events for the number of lineages

present. Over admixture events, changes in population size estimates in RELATE are sloped

rather than stepwise changes as in the true demography and estimates from simulated tree

sequences. During the periods of lowest population size in all paths, population size estimates

from RELATE tree sequences are close to the truth. In the deeper time periods, older than

the population splits, the population sizes are underestimated, meaning there are too many

coalescence events for the number of lineages present.

From these results, it is clear that population size estimation is very sensitive to small

deviations from the correct path assignment and coalescence time. While I have shown that

the classifier has good accuracy as a percentage of testing GNNs and the coalescence times

are overall similar to the true times, mistakes in classification are multiplied two ways. The

first, a path error is effective as both wrongly placed along one path and missing from its true
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Fig. 5.1 The effective population size, calculated as in Subsection 5.1.2, over time in genera-
tions. The solid lines show the true coalescence count, dashed lines show the estimates from
simulated tree sequences and the dotted lines show the estimates from RELATE inferred
trees whose coalescences have been classified to paths. Lines plot an average population size
estimate across 10 generations.

path and second the incorrect removal of lineages from a path is carried up the remaining

part of the tree in the parameter n.

It should be noted that when the sample size is not sufficient to create any coalescence

events in a given generation across all trees, the denominator is equal to zero and equation

5.8 is unbounded. This can be improved with samples that are distributed throughout time,

resulting in coalescence events that are more evenly distributed through the demography and

allowing an estimate of population size in more generations as well as improving power for
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Fig. 5.2 The effective population size plotted up to 70,000, calculated as in Subsection 5.1.2,
over time in generations. The solid lines show the true coalescence count, dashed lines show
the estimates from simulated tree sequences and the dotted lines show the estimates from
RELATE inferred trees whose coalescences have been classified to paths. Lines plot an
average population size estimate across 10 generations.

inference deeper in time. This again highlights the utility of ancient samples. Likewise, more

samples overall create more lineages and coalescence events.

RELATE assumes no population structure, yet it has been shown that divergence times

and separation histories can be determined from coalescence patterns [117, 116]. With

knowledge of the structure of a population like that of Europeans, a future endeavour is to

incorporate a structure into the RELATE inference process which could be successful at

improving population size estimates along paths (Section 6.4).
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Fig. 5.3 The average number of coalescences per tree occurring along each path (coloured)
over time in generations. The solid lines show the true simulated coalescence count and the
dashed lines show the count from RELATE inferred trees whose coalescences have been
classified to paths.

Lastly, a lucrative strategy could be to subset the trees over which inference is performed

to those that are high-quality. With evenly distributed samples through time, there should be

enough trees from which a subset would still have enough coalescence events to maintain

power for inference.

5.2 Signals of positive selection along paths

Many examples of selection on European alleles have been demonstrated. In particular,

selection signals on the lactase persistence allele have been found using multiple methods
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[4, 75, 93]. Finding signals of positive selection on relevant genes in the MesoNeo dataset is

of particular interest since the dataset covers a big transition in lifestyle from hunter gathering

to farming. It is hypothesized that such a change would result in selective pressures on

features relating to diet and metabolism and may therefore be relevant to certain chronic

diseases today. In this section I will first give a review of existing methods for detecting

positive selection from sequences followed by an explanation of a new method for detecting

selection from painted tree sequences.

5.2.1 Existing approaches

When an allele is advantageous to individuals who carry it in a population, its frequency

in the population will tend to increase in each generation due to natural selection. Eventually

the allele might reach fixation in what is termed a selective sweep. Selection therefore alters

the shape of the underlying genealogy at selected sites. For example, positive selection will

produces a ‘star-like’ pattern of rapidly multiplying derived lineages. Methods to detect

positive selection are therefore very similar to those presented in Section 5.1.1 for detecting

population size changes in that they aim to infer selection and associated parameters from the

signatures in the genomes that are caused by genealogies differing from expectation under

neutrality.

One group of selection tests is based on analysing the rate of substitutions. Synonymous

substitutions are mutations where one base is substituted for another but does not change the

amino acid sequence. At sites with four-fold degeneracy, where every possible mutation is

synonymous, it is normally assumed that synonymous mutations are neutral and therefore

the substitution rate at these sites can be assumed to be the neutral substitution rate. Positive

selection will increase the rate of substitution compared to the neutral rate. Therefore,

comparing the ratio of the number of nonsynonymous substitutions at nonsynonymous sites

to the number of synonymous substitutions at synonymous sites indicates whether a locus is
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evolving neutrally or not. An increased relative nonsynonymous substitution rate indicates

positive selection and a decreased relative rate indicates purifying selection [128, 30, 48].

The McDonald Kreitman [79] test also utilises synonymous vs nonsynonymous substitu-

tion rate. It compares the divergence to diversity ratio which at synonymous sites is assumed

to represent the neutral ratio. Nonsynonymous sites with a higher divergence to diversity

than the neutral rate indicates that a locus is evolving under positive selection as positive

selection will fix alleles more rapidly than neutral alleles. However, these tests tend to only

good for long term sustained selection [30] and there is now also evidence that synonymous

mutations are not always neutral [17].

A second group of selection tests are based on the frequency of a selected alleles. After

a selective sweep, the site frequency spectrum (SFS) is depleted of intermediate-frequency

alleles, which the summary statistic Tajima’s D captures:

D =cqp �cqw,

where cqp is the average number of pairwise differences between individuals and cqw is

Watterson’s estimator of q . When evolving neutrally have an expectation of 4Neµ and

therefore E[D] = 0. Under positive selection E[D] < 0 [120]. Several extensions to Tajima’s

D have been developed such as Wu’s H [25] that is more sensitive to recent selective sweeps.

A problem with allele frequency or substitution-based methods is that they rely on

an expectation of neutrality which is estimated under assumptions of demography. As

described in Section 4.1, population structure and changes in population size can produce

the same signatures in the genome as selection, so these methods can easily be confounded

by violations of demographic assumptions [88]. Moreover, in the same way as population

structure estimation, these methods are limited to unlinked, independent SNPs and do not

use the full information from patterns of SNP linkage in haplotypes.
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During a sweep, sites that are in the region of the focal site undergoing selection will

also increase in frequency as they occur on the same haplotype. Linkage decreases at sites

further away from the selected site due to recombination, so the effect of nearby linked

alleles increasing in frequency with the selected allele decreases with genetic distance. This

process of ‘genetic hitchhiking’ and was first recognised by Maynard Smith and Haigh and

results in a valley of genetic diversity around the selected site [114]. Very close neutral sites

may also be fixed as they increase in frequency along with the selected variant. Moving

either direction along the chromosome, away from the selected site there is a steady increase

in diversity. Genetic hitchhiking therefore produces increase linkage disequilibrium (LD)

around selected SNPs.

A more recent class of methods exploits the haplotype structure of increased LD and

steadily increasing diversity around selected SNPs. The extended haplotype homozygosity

(EHH) statistic [104] measures the probability that two haplotypes are identical up to a

distance x from a focal SNP. This statistic converges to 0 at a sufficient distance from the

focal SNP as haplotypes structure breaks down due to recombination. The rate at which

the EHH decays to 0 indicates whether there has been selection. Similarly, the iHS statistic

[123] is designed to detect ongoing selection and uses the integral of the EHH statistic once

haplotypes are partitioned by ancestral or derived state of the focal SNP. In order to detect

soft sweeps, which haplotype homozygosity has less power to do so, the H12 score [31]

uses the frequency of haplotypes from a set of haplotypes surrounding a focal SNP to infer

selection, based on the principle that under sweep conditions, the several most frequent

should dominate the haplotype frequency distribution.

Lastly, coalescent based methods can be very powerful to detect selection while also

allowing an estimate of the timing of selection in the past. The problem with coalescent

methods to infer selection is that the space of possible genealogies is very large and so

integrating over all possible genealogies is challenging. CLUES [118] is a method based on



114 Using coalescence events

ARG structures such as those produced by RELATE which uses an HMM and importance

sampling to fully integrate out the allele frequency trajectory and in doing so estimate

selection coefficient parameters.

The above methods are concerned with finding signals of past selection from modern

genomes alone. With ancient genomes there is a direct sample of alleles from the past and so

the allele frequency of certain SNPs can be estimated. Allele frequency trajectories can then

be inferred, and selection is implied where frequencies rapidly increase [75, 93].

5.2.2 A method for identifying signals of positive selection along paths

Here I develop a method for detecting signals of positive selection in the past on paths

of ancestry using my local ancestry assignments of RELATE tree sequences. Variants that

increase the fitness of individuals can create a ‘star-like’ pattern in the genealogy of the

marginal tree that covers the selected variant. Positive selection will therefore produce more

coalescence events between carrier chromosome in the tree of the selected locus at the time of

selection than expected for the chromosome. I use an estimate of population size calculated

from across all trees in a given generation in the past to correct for changes in demography

altering the genealogies.

Using the painted leaf nodes, I assign internal nodes in all trees to a paths going by

traversal towards the root. Taking the marginal tree covering the potential selected site and

considering only lineages that are derived, I record the number of coalescences in each

generation back in time along paths. I model the number of coalescences for a neutrally

evolving site, per generation per path, as a Poisson distribution with rate parameter given by,

l =
n(n�1)

4Ne
, (5.12)

where n is the number of derived lineages between which coalescences are occurring in that

generation and path, and Ne is the effective population size for that generation and path,
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calculated as above, from across all trees in the sequence. I obtain the p-value of observing a

coalescence count in the selected marginal tree as the probability of sampling that number

of coalescences from the Poisson PDF, given the number of lineages present and effective

population size. Variants that have been selected at some time on a path will have p-values

above the significance threshold, when corrected for multiple testing.

By modelling the coalescence count at each time-point in the selected tree as a sample of

the concurrent chromosome-wide distribution in the same path, I correct for reductions in

population size which will also increase coalescence rates but over the whole chromosome.

Likewise, I also correct for the reduction in power to detect positive selection as the number

of lineages decreases going back in time by sampling from a Poisson distribution with a

rate parameter that is dependent on n. Even if the absolute population size calculated is not

correct, the signal of a relative excess of coalescences is still valid.

5.3 Application to MesoNeo genomes

In this Chapter I have described methods for inferring both population size changes and

selection along ancestry paths. Using RELATE I can directly observe plausible genealogies,

which most methods for estimating both demographic history and selection must model as

an unobserved variable. This means I can derive relatively simple expressions for calculating

maximum-likelihood population sizes and inferring selection, without the need for highly

expensive or intractable likelihood calculations that integrate over all possible genealogies or

approximate the integral.

In this Section, I present results from applying the above methods for population size

estimation and selection analysis to the MesoNeo genomes.
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5.3.1 Population size estimates

I applied the above method for calculating population sizes to my MesoNeo subset

containing 952 haplotypes (Table 2.1). Figure 5.4 shows the population size estimates for

each path. There is large spike in population size at the start of the Bronze Age, once all

paths have joined. This could represent an expanding population at that time followed by a

decrease in the effective population size as people started to move more across the continent

and admix, resulting in reduced the genetic diversity. However, a similar spike is seen when

testing the method on RELATE trees inferred from simulated data with a constant population

size of 50,000 at the start of the Bronze Age (Figure 5.1), so this spike could be a technical

artefact.

0
50

00
0

10
00

00
15

00
00

20
00

00

Generations ago

Po
pu

la
tio

n 
si

ze
 e

st
im

at
e

0 100 200 300 400 500 600 700 800 900 1100 1300 1500

Fig. 5.4 Effective population size estimates for the MesoNeo genomes along paths 1-4. Paths
are coloured as in the model of European population structure in Figure 2.3.
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During the time period when all paths are separate, from 260 to 550 generations ago, all

paths display low population sizes, with the EHG on path 4 reaching below 3,000 (Figure

5.5). This mirrors the low population sizes in the model of European population structure,

consistent with the PCA and Fst results, and is likely a genuine signal of a population

bottleneck in the four path populations induced by isolation in ice age refugia.

Deeper in time the population sizes increase, probably as a result of structure in these

older populations that is not modeled.
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Fig. 5.5 Effective population size estimates for the MesoNeo genomes along paths 1-4,
limiting the y axis at 50,000. Paths are coloured as in the model of European population
structure in Figure 2.3.
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5.3.2 Investigating selection of lactase persistence

Located in the MCM6 gene, rs4988235 is the marker SNP most strongly associated

with lactase persistence into adulthood in Europeans. Carriers of the derived allele show

expression of the LCT gene after weaning and therefore an adult with the derived allele is

able to digest lactose in milk. The derived allele has been shown to have been under strong

selection in Europeans in the past. However, the timing of selection and the population in

which selection occurred are debated.

I constructed the RELATE tree sequence of chromosome 2 from the larger subset of

samples, including all 1000 Genomes EUR samples and the additional ancient samples to

explore selection at the LCT locus. The mutation lies on a branch with a parent node age of

243,208 years ago and a child node age of 228,088 years ago. The rs4988235 derived variant

therefore appeared long before the beginning of my model of European population structure

at around 45,000 years ago, which means any selection was on standing variation.

I applied my method of selection inference described above to the tree sequence. I

calculated p-values for every generation along the four main paths up to 1500 generations

before present for only derived 1000 Genomes samples. I obtained significant p-values for

generations 6, 7, 9, 10, 11, 13, 21 and 159 along path 1 and generation 575 on path 4 (Figure

5.6). The results suggest selection occurred in Europeans mostly after the Bronze Age

admixture, spanning 170-590 years before present with some indication of selection around

4,500 years ago near the beginning of the Bronze Age. There is also a highly significant

signal around 16,100 years ago along path 4 in the EHG.

Selection on the lactase persistence allele seems to be occurring after all four paths have

joined, shown in Figure 5.6 by colour red after 150 generations ago. But lineages in this

time period have a path assignment and so I tested whether derived lineages are painted

significantly more with one ancestry than expected. This was to help elucidate the path from

which modern Europeans inherit the derived LCT allele. The number of samples painted



5.3 Application to MesoNeo genomes 119

0 500 1000 1500

0
5

10
15

20

Generations ago

−l
og

(p
−v

al
ue

)

10 generations (~280 years ago)

13 generations 
(~364 years ago)

575 generations (~16,100 years ago)

Fig. 5.6 For all 1000 Genomes EUR samples containing the derived rs4988235 variant, the
-log(p-value) of the observed number of coalescences in the tree covering rs4988235 given
the number of lineages and Ne estimate in each generation in each path. Points are plotted in
generations where at least one coalescence event occurred. Colours correspond to the main
paths 1-4, seen in Figure 2.3. The horizontal line marks the significance threshold, with a
Bonferroni correction for multiple testing.

with each path is normally distributed across all trees. I counted the number of derived 1000

Genomes present day samples that are painted with each path at the rs4988235 variant. I then

tested whether there is a significant enrichment and/or depletion of samples painted by each

path covering the rs4988235 site given the total distribution of those same derived samples

taking each path from all trees over chromosome 2.

The path labelling at the lactase persistence derived allele is highly enriched in path 4

and significantly depleted in other paths. The probability of observing 461 haploid samples

painted with path 4 out of 511, given the chromosome-wide distribution of present-day

samples, is 7.7e-37 (Figure 5.7A).

Moreover, I examined not just the labelling from the tree that covers the focal rs4988235

site but the surrounding +/- 25 trees which may be in linkage disequilibrium from selection.
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The distribution of number of present day samples painted with path 4 in those 50 trees falls

within the top tail of the total distribution across all trees (Figure 5.7B). The tree with the

largest number, 499, of present day derived samples painted with path 4 is also captured in

those 50 trees surrounding LCT.
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Fig. 5.7 Histograms showing the distribution of the number of present day samples painted
with path 4 across all trees on chromosome 2. A: All trees across chromosome 2 counted.
The red line shows where in the distribution the sample count for the tree covering rs4988235
lies. B: Counting only the 50 trees spanning across the rs4988235 site.

These results imply that the lactase persistence allele was significantly more likely to be

inherited from path 4, Yamnaya/EHG lineages. There is a signal for positive selection on

the derived variant in the EHG population at approximately 16,100 years ago and then again

more recently in European history between 170-590 before present, after the joining of all

paths in the Bronze Age.

One explanation for this is that pastoralism was initialised in the Eastern hunter gatherers

with some early selection that may have helped establish the lactase persistence allele, as

it gave these people the ability to extract more nutritional value from drinking milk. The
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derived variant was then brought to Europe, for the most part, by the Yamnaya, after which

most of the strong selection occurred in the European Bronze Age population. This suggest

that the Yamnaya also brought the practice of pastoralism with them, along with the derived

variant [110, 77].

I do not detect signals of positive selection in the periods in between the EHG selection

and the Bronze Age selection in RELATE trees. This could be because I am unable to detect

the signals due to a small selection coefficient. Alternatively, a small population size during

this period might have been enough for drift to reduce the efficacy of selection and only later

in the Bronze Age was selection on the allele strong enough to detect by my method.

However there are a couple of points to caveat these results. One is that I cannot rule out

that the derived allele was preferentially selected for on the path 4 background in the Bronze

Age population and EHG, perhaps because of some polygenic effect that is not related to

pastoralism [22, 110]. Secondly, there have recently been concerns raise around the accuracy

of imputation in highly selected regions. In particular, haplotypes in the LCT region were

found to be nonrandom, specifically when there was an error in imputation, the common

lactase persistence variant studied in this thesis was more likely to be imputed when not

present in truth than the opposite [2].

Given that path 4 is strongly highlighted in my results of selection and painting of the

LCT locus, a check for imputation error would be to check if the presence of the derived

variant in Yamnaya and EHG samples are highly imputed and low coverage compared to

other samples. Additionally, I could check if the allele frequency at the locus in Yamnaya

samples is well-predicted by the EHG alleles. A disconnect between the groups would

suggest that imputation error is having a substantial effect.
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Discussion and future work
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In this thesis I have presented a method for inferring local ancestry in ancient and modern

genomes given an explicit model of the structured population history for a set of samples.

The redefinition of local ancestry as a path, rather than a static identity, back in time through

various populations is more appropriate to histories involving multiple populations, admixture

and split events and in the context of ancient samples. Almost all human populations have

complex histories of this nature. I suggest that it is an important step to begin thinking of

ancestry in this way rather than in terms of static identity. It is also this reframing of the

meaning of ancestry which separates my method from pre-existing local ancestry inference

tools.

My method performs as well as a leading local ancestry inference tool, GNOMix, for

populations that are close to the time of admixture and performs better for populations further
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since admixture. I have shown through extensive simulations that the method is robust to

various demographic scenarios and mismatches between the training and testing parameters.

I have used highly interpretable machine learning to perform a process that could be done

manually. This helps to avoid the pitfalls of a ‘black box’ where it would be difficult to know

which basic features are driving classification. When testing the classifiers under various

scenarios, I can therefore understand why there are mistakes from the pattern of coalescence

events.

The combination of the tree sequence structure and the local path painting opens the

door to many downstream analyses, utilising the ability to place coalescence events along

paths and/or edges. I have developed a method to infer the date of admixture for individual

samples from their painted chromosomes. Applying this method to the MesoNeo genomes

has revealed spatiotemporal patterns of admixture of different populations in Europe and

I have showed how the inferred admixture date is more informative of this than using

the archaeological sample age. Results from Neolithic farmer genomes suggest that the

movement of Anatolian farmers into Europe and their subsequent admixture with WHG was

slow and can be explained by geography to a substantial extent. Admixture appears to occur

first in Iberia and moves north west over time, potentially supporting a route along the north

Mediterranean coast of Anatolian farmers into Europe. I also show a small signal of the

resurgence in WHG ancestry in the middle to late Neolithic.

In contrast, results from Bronze Age genomes suggest that the movement of steppe

Yamnaya into Europe was fast with admixture occurring soon after the migration started

followed by an increase in Neolithic farmer ancestry towards the late Bronze Age.

I found that the genetic formation of the Yamnaya is 5000-6000 years before present, a

millennium or so before their inferred cultural formation determined from archaeology which

is consistent with other recent results citedates. I also show evidence of potential contact

between the EHG and CHG in the eighth millennium before present.
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Lastly, I show evidence that the lactase persistence variant was inherited by present day

Europeans from the EHG/Yamnaya path and that selection occurred on this variant, primarily

recently in history during the last 600 years, but potentially also near the start of the Bronze

Age, 4,500 years ago, and deeper in time in the EHG around 16,100 years ago. These results

might suggest the initialisation of pastoralism in the EHG with placing the variant under

some selection and that the Yamnaya brought the variant to Europe along with pastoralism.

Next, I will discuss some of the drawbacks of the method, how these might be compen-

sated for, and then how, in the future, the method can be improved.

6.1 Caveats

The first caveat to mention is that the method has its foundations the ability of RELATE

to correctly construct a tree sequence. In essence I am embedding a tree sequence within a

population structure and thereby assuming that the trees fit within the model constraints i.e

that illegal coalescences are minimal. There are two reasons why this may not happen: 1.

The model is far from the true population structure or 2. RELATE is not inferring the tree

sequences correctly, despite the model representing the true structure well. The first point I

will address later. For the second point, I have tried to compensate for biases in the RELATE

inference by training the classifier with GNNs extracted from RELATE inferred trees with

labels from the true simulated trees. Results on simulations indicate this is successful.

A second, connected point is that imputation of ancient genomes is a fairly new approach,

only possible recently due to the large reference panels of modern high-quality genomes now

available. While extensive analysis was carried out to test the ability of GLIMPSE to recover

down-sampled high coverage ancient genomes, the branch length inference of RELATE is

vulnerable to imputation. Imputation is essentially the process of borrowing information

from closely related, higher coverage individuals. This has the effect of making samples that

coalescence most recently more similar to each other than their true sequences actually are.



126 Discussion and future work

Intuitively this effect should help the topology building process by making identification

of nearest neighbours easier. However, the same effect will also bias the coalescence times

younger as sequences will have fewer differences than in truth. Additionally, a shortfall in

imputation is there is no way to recover variants that are private to ancient groups and so not

present in the reference panel. This may both hamper neighbour identification within ancient

groups and also downward bias the estimated coalescence times.

One solution to this downward bias is to use the unimputed data and only calculate

the branch lengths for well genotyped, high coverage individuals. If the topology is kept

the same as that inferred from the full imputed set, then the low-coverage samples could

be added back to the trees constrained by the branch lengths computed on high coverage

samples, perhaps using the coalescent prior. Another solution could be to use the genotype

posteriors to estimate low coverage branch lengths and integrate over all possible placements

of mutations on branches.

Even if we accept that inferring tree sequences with RELATE from imputed data is likely

to produce coalescence times that are biased downward, there is no reason to think this should

affect the accuracy of inferring tree topologies. Given that my method of classification using

GNN structures relies on the topology alone, this might explain why my painting results

appeared to be more accurate and stronger than my analyses based on coalescence timing.

The familiar quote ‘all models are wrong, some are useful’ is applicable to the method

described in this thesis. Any model of the past demographic structure of a population will be

inaccurate in many ways. In Section 2.4.3 I demonstrated how the accuracy of classification

of paths drops as the number of paths increases so in most cases the structure will be

simplified to represent only major population events and ignore smaller scale migrations Yet

even with a simplified structure we can still obtain results that are interesting and meaningful,

answering the questions posed. However, for some populations, we may have no pre-existing

knowledge of the population structure and results from PCA and ADMIXTURE analysis
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may be unclear. While we have shown in Section 2.4.4 that misspecifications in the model

can be compensated for by generalisation of the neural network, with too little understanding

of the history we may not obtain results of much confidence or meaning.

6.2 Adapting to other populations

Nevertheless, with populations where the past population structure is well understood

or analyses such as PCA and ADMIXTURE produce good results, the method can be

adapted to these populations. It is becoming more apparent, especially from ancient DNA

analysis, that the history of human populations across the globe is characterised by multiple

population split, admixture, migration and isolation events and an appropriate analogy is a

braided river rather than a tree. This means that paths going back in time can pass through

multiple interrelated populations. Along with the growing amount of ancient DNA data

becoming available, the path concept of ancestry is applicable to many more cases other

than Europeans.The model presented in this thesis of European population structure is in

the stdpopsim catalogue and some other populations already have populations structures

available in the stdpopsim catalogue from which to simulate data: https://popsim-consortium.

github.io/stdpopsim-docs/stable/catalog.html. For those populations where demographic

model is not available one must be custom built with msprime from the results of other

analysis tools. The level of complexity and parameters will depend on the level of accuracy

the user is willing to accept and the particular questions that are posed. The total process to

apply the method to a new population is as follows:

1. If not already available in stdpopsim catalogue, construct a model of the population

structure from the samples available.

2. Define the paths going backwards in time through the model.

3. Simulate chromosomes from the model.
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4. Run RELATE on the simulated data.

5. Extract GNNs and train a neural network against the true path labels from the simulated

data.

6. Run RELATE on the real samples.

7. Classify paths in the real data using the neural network.

6.3 Future improvements in ARG inference

Here I have used RELATE to infer tree sequences but other tools that infer tree sequences

or ARGs exist, notably ARGweaver [102], tsinfer/tsdate[53] and more recently ARG needle

[129]. The pros and cons of these tools have been reviewed, analysing both coalescence

times and topology accuracy. Brandt et al. [127] showed that ARGweaver tends to have

more accurate coalescence time inference than RELATE and tsinfer with RELATE slightly

more accurate than tsinfer. Kelleher et al. [53] showed that the Kendall-Colijn tree distance,

a metric of how similar inferred to simulated trees are, is similar in tsinfer and ARGweaver.

ARGweaver is substantially slower, cannot scale to sample sizes of more than around

40 and cannot incorporate ancient DNA, making it the least appropriate for use with my

method, despite it producing the most accurate coalescence times. tsinfer/tsdate can scale to

thousands of haplotypes and can incorporate ancient DNA but is marginally less accurate in

coalescence time inference than RELATE. Additionally, it allows for pervasive multifurcating

nodes which change the GNN structure. At the time of writing I would recommend using

RELATE to produce the tree sequences for our method. It has strictly bifurcating nodes, can

scale to thousands of haplotypes and incorporate ancient DNA with less of a trade-off in

accuracy than tsinfer.

Further advances in the ability of these and future tools to infer more accurate tree

sequences will likely improve our method. In particular, the application of these methods to
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imputed data will allow us to exploit the great advantages of imputation to boost sample size

and SNPs data. While I recommend RELATE for the reasons described, the tree sequence

inference step of the method can be performed by any tool that produces a tree sequence

structure from variant data. Any superior future tools that also produce tree sequences will

simply be ‘plug-and-play’ due to the modularity of my method.

6.4 RELATE inference and population structure

In its current implementation, RELATE assumes a panmictic population where all in-

dividuals randomly mate at all times. In reality, most if not all species display population

structure to some degree. Given a model of population structure such as the one I have

constructed for Europeans, the branch length re-estimation steps of RELATE could be altered

to incorporate this structure.

Once the topologies and initial branch length estimates are calculated, time is split into

epochs and an algorithm is applied that iteratively calculates piecewise constant coalescence

rates in each epoch and re-estimates branch lengths using an MCMC approach. With a model

of ancestral population structure, there can also be multiple edges in each time epoch, with a

separate coalescence rate (inverse effective population size) for each edge.

The maximum likelihood coalescence rates are therefore expanded to be piece-wise by

time epoch and structure edge. Given that l e,ed is the constant piecewise coalescence rate in

epoch e and edge ed and tk is the time of the coalescence event, given path labelling, reducing

the number of lineages in epoch e and edge ed from k to k�1, then the likelihood for tree z

is

P(z) = ’
e

’
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’
k

✓
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Taking logs on both sides,
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Assuming independence across trees, the log-likelihood for the whole genome is given by

Âz log(P(z)). By differentiating with respect to l e,ed , setting equal to 0 and rearranging, the

maximum likelihood coalescence rate in epoch e and edge ed given by,

l̂ e,ed =
ne,ed

Âk
�k

2
�
T k

e,ed

,

where ne,ed is the number of coalescences between two haplotypes in epoch e and edge ed,

multiplied by the length of the tree along the genome, across all trees and T k
e,ed is the total

time spent with k lineages in that epoch and edge [117].

Assuming that branches and coalescences that occur on one edge can be treated indepen-

dently from the rest of the tree, MCMC proposals can be made to move nodes locally within

epochs and between edges and the likelihood ratio of these proposals calculated locally.

When moving nodes between epoch and edges in the MCMC branch length re-estimation

step, both the coalescence rates per epoch and edge must be used and also the correct number

of lineages used to calculate the ratio of coalescent priors (equation 1.3). For example, if a

proposed change moves a node to before a population split and into a new time epoch, both

the coalescence rate it experiences will change and the number of lineages will increase from

the time of the split. Penalisation of proposed moves that would change a ‘legal’ coalescence

event into an ‘illegal’ events could also be implemented.

The idea is to define a reversible Markov chain with the stationary distribution P(t|m),

where t is the collection of all branch lengths and m all mutations, given a population

structure of paths and a variable population size. While this approach is parametric in that

the population structure, topology and split/admixture times are supplied, it could help to
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refine population size estimates and selection analysis on edges. I started to implement this

model but ran into technical difficulties.
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E. V., Usmanova, E. R., Cappellini, E., Petersen, E. B., Kannegaard, E., Radina, F., Yediay,
F. E., Duday, H., Gutiérrez-Zugasti, I., Potekhina, I., Shevnina, I., Altinkaya, I., Guilaine,
J., Hansen, J., Tortosa, J. E. A., Zilhão, J., Vega, J., Pedersen, K. B., Tunia, K., Zhao,
L., Mylnikova, L. N., Larsson, L., Metz, L., Yeppiskoposyan, L., Pedersen, L., Sarti, L.,
Orlando, L., Slimak, L., Klassen, L., Blank, M., González-Morales, M., Silvestrini, M.,
Vretemark, M., Nesterova, M. S., Rykun, M., Rolfo, M. F., Szmyt, M., Przybyła, M.,
Calattini, M., Sablin, M., Dobisíková, M., Meldgaard, M., Johansen, M., Berezina, N.,
Card, N., Saveliev, N. A., Poshekhonova, O., Rickards, O., Lozovskaya, O. V., Uldum,
O. C., Aurino, P., Kosintsev, P., Courtaud, P., Ríos, P., Mortensen, P., Lotz, P., Persson,
P. Å., Bangsgaard, P., Damgaard, P. d. B., Petersen, P. V., Martinez, P. P., Włodarczak,
P., Smolyaninov, R. V., Maring, R., Menduiña, R., Badalyan, R., Iversen, R., Turin,
R., Vasilyiev, S., Wåhlin, S., Borutskaya, S., Skochina, S., Sørensen, S. A., Andersen,
S. H., Jørgensen, T., Serikov, Y. B., Molodin, V. I., Smrcka, V., Merz, V., Appadurai,
V., Moiseyev, V., Magnusson, Y., Kjær, K. H., Lynnerup, N., Lawson, D. J., Sudmant,
P. H., Rasmussen, S., Korneliussen, T., Durbin, R., Nielsen, R., Delaneau, O., Werge, T.,
Racimo, F., Kristiansen, K., and Willerslev, E. (2022). Population Genomics of Stone
Age Eurasia. bioRxiv.

[4] Allentoft, M. E., Sikora, M., Sjögren, K.-G., Rasmussen, S., Rasmussen, M., Stenderup,
J., Damgaard, P. B., Schroeder, H., Ahlström, T., Vinner, L., Malaspinas, A.-S., Margaryan,



134 References

A., Higham, T., Chivall, D., Lynnerup, N., Harvig, L., Baron, J., Casa, P. D., Dąbrowski, P.,
Duffy, P. R., Ebel, A. V., Epimakhov, A., Frei, K., Furmanek, M., Gralak, T., Gromov, A.,
Gronkiewicz, S., Grupe, G., Hajdu, T., Jarysz, R., Khartanovich, V., Khokhlov, A., Kiss,
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J. F., Fowler, C., Gazenbeek, M., Pena, R. G., Haber-Uriarte, M., Haduch, E., Hey, G.,
Jowett, N., Knowles, T., Massy, K., Pfrengle, S., Lefranc, P., Lemercier, O., Lefebvre,
A., Martínez, C. H., Olmo, V. G., Ramírez, A. B., Maurandi, J. L., Majó, T., McKinley,
J. I., McSweeney, K., Mende, B. G., Modi, A., Kulcsár, G., Kiss, V., Czene, A., Patay,
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Roefstra, J., Sankot, P., Šefčáková, A., Sheridan, A., Skae, S., Šmolíková, M., Somogyi,
K., Somogyvári, Á., Stephens, M., Szabó, G., Szécsényi-Nagy, A., Szeniczey, T., Tabor,
J., Tankó, K., Maria, C. T., Terry, R., Teržan, B., Teschler-Nicola, M., Torres-Martínez,
J. F., Trapp, J., Turle, R., Ujvári, F., van der Heiden, M., Veleminsky, P., Veselka, B.,
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