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When a classical system is driven through a continuous phase transition, its nonequilibrium
response is universal and exhibits Kibble-Zurek scaling. We explore this dynamical scaling in the
novel context of a three-dimensional topological magnet with fractionalized excitations, namely the
liquid-gas transition of the emergent mobile magnetic monopoles in dipolar spin ice. Using field-
mixing and finite-size scaling techniques, we place the critical point of the liquid-gas line in the
three-dimensional Ising universality class. We then demonstrate Kibble-Zurek scaling for sweeps
of the magnetic field through the critical point. Unusually slow microscopic time scales in spin ice
offer a unique opportunity to detect this universal nonequilibrium physics in current experimental
setups.

I. INTRODUCTION

The theory of equilibrium phase transitions is one of
the major achievements of 20th-century physics [1]. Ef-
fective theories based on local order parameters describe
the universal aspects of such transitions. Our under-
standing of nonequilibrium physics in their vicinity has
also progressed on many fronts, from scaling properties
of dynamical correlation functions [1, 2], to Kibble-Zurek
(KZ) behavior [3–5].
Topological phases do not fit into the conventional

framework as they are not characterized by local order
parameters [6]. Indeed, one of the principal attractions
of systems with emergent gauge fields is that standard
Landau-Ginzburg-Wilson arguments can fail. The phe-
nomenon of deconfined quantum criticality [7] and anal-
ogous phenomena noted earlier in quantum dimer mod-
els [8] are examples of this. On general grounds this sug-
gests that critical points can exhibit new and unexpected
universality classes, and it is not clear in which settings
this happens.
This work combines the study of a critical point in a

topological system with an investigation of topological
phases out of equilibrium. This is a young, multi-faceted
and rapidly developing subject [9]. In particular, the
interplay of nonequilibrium physics, long-range interac-
tions and classical topological order near a critical point
is largely unchartered territory, which this work explores.
We consider three-dimensional dipolar spin ice,

realized in rare-earth pyrochlore oxides such as
{Dy,Ho}2Ti2O7. At low temperatures, frustration pre-
vents the system from ordering [10] and it enters a
highly degenerate topological regime described by an
emergent gauge field with magnetic Coulomb-interacting
monopoles as fractional excitations [11]. In many—
primarily thermodynamic—respects, spin ice is well
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modeled as a magnetic version of an electrolyte [12],
whereas—particularly out of equilibrium—fundamental
deviations on account of the Dirac strings connecting the
monopoles have been observed [13, 14].
In an appropriately oriented magnetic field, spin ice

exhibits a liquid-gas phase diagram in the temperature-
field plane, where a first-order transition line terminates
at a critical point [15]. This behavior is extremely un-
usual for a system of localized spins. However, its origin
is naturally understood in the monopole picture: the field
acts as a tunable chemical potential for the monopoles,
which form a type of Coulomb liquid [16], well known to
exhibit liquid-gas phase diagrams [17].
Our study combines the above questions on critical

and nonequilibrium properties of topological systems by,
firstly, characterizing this critical point and, secondly,
studying the universal dynamics in its vicinity.
We characterize equilibrium properties via field mixing

analysis [18] and finite-size scaling. This analysis strongly
suggests that the critical point is in the three-dimensional
(3D) Ising universality class, as is believed to be the case
for conventional Coulomb liquids [17, 19].
We then analyze local (single spin-flip) dynamics in the

vicinity of this transition. We study the magnetization
response on linearly sweeping the system across the criti-
cal point. The response is hysteretic and, for slow enough
sweeps, universal à la Kibble-Zurek [3, 20, 21]. We estab-
lish the presence of KZ scaling [22–25], confirming Ising
universality and allowing us to obtain the dynamical scal-
ing exponent.
Although there is some experimental evidence for KZ

scaling of defect density [5, 21], a decisive test of the
scaling of dynamical response functions in this context
is still lacking. Our simulations suggest that KZ scaling
in spin ice is realistically accessible in field sweep exper-
iments [26], owing to unusually slow microscopic time
scales of the large rare-earth moments [27, 28]. In ad-
dition, the (uniform) magnetization turns out to be a
direct measure of the monopole density near the critical
point—an informative quantity that is otherwise difficult
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FIG. 1. (Color online) Liquid-gas phase diagram of spin ice
in the (T,H) plane. The insets show representative spin con-
figurations of two tetrahedra in each of the phases. The field-

and temperaturelike directions at the critical point, ~̃
H and ~̃

T ,
are shown. Note that the crossover from kagome ice to spin
ice occurs outside the range of parameters shown.

to access experimentally. As such, the liquid-gas tran-
sition is a classical instance of destabilizing the emer-
gent magnetic vacuum via the “Schwinger mechanism”
of monopole-antimonopole pair creation [29].
Spin ice may thus be a unique experimental system,

not only in which to observe this KZ scaling, but also as
an instance of a 3D topological material out of equilib-
rium.

II. FIELD MIXING AT THE CRITICAL POINT

We consider dipolar spin ice in a magnetic field of
strength H along the [111] direction. We use the Hamil-
tonian

H = −µH
∑

i

(

Ĥ · êi

)

σi + J
∑

〈ij〉

σiσj

+Dr3nn
∑

j>i

(

êi · êj
|rij |3

−
3(êi · rij)(êj · rij)

|rij |5

)

σiσj , (1)

where {σi = ±1} are pseudospins of local easy axis
êi and magnetic moment µ = 10µB; J = −1.24 K
and D = 1.41 K are respectively the nearest-neighbour
exchange and dipolar coupling constants relevant for
Dy2Ti2O7 [30]; rnn is the nearest-neighbour spacing of
the pyrochlore lattice; rij is the separation vector be-

tween sites i and j, and H ≡ HĤ is the external mag-
netic field which we measure in Tesla (T). We set kB = 1
and measure all energies in Kelvin (K).
The schematic phase diagram of spin ice in the (T,H)

plane is shown in Fig. 1. At low T , upon increasing the
field strength H , spin ice crosses over to a partially po-
larized phase known as kagome ice, and then undergoes
a first-order transition to a saturated phase. In kagome

ice, monopole excitations are activated and exponentially
sparse at low T , whereas in the saturated phase they are
dense as they correspond to the lowest-energy spin con-
figuration. H acts as a chemical potential and the transi-
tion is characterized by a finite jump in monopole density,
from a monopole gas to a monopole liquid phase [15, 16].
Representative spin configurations of two tetrahedra in
each of the phases can be seen in the insets of Fig. 1.
The first-order line terminates at a critical point, typ-

ical of liquid-gas phase diagrams. To determine its loca-
tion, it is convenient to introduce the reduced Hamilto-
nian

H

T
≡ −βε− hm, (2)

where β and h are dimensionless couplings; m is the
dimensionless [111] component of the magnetization;
and ε is the dimensionless total spin interaction en-
ergy. The location of the critical point in the (T,H)
plane is determined from the crossing of the Binder
cumulant of the magnetization m for different system
sizes L (see Appendix B for details). Our best esti-
mate for the critical point thus obtained is (Tc, Hc) =
(0.5875± 0.0005K, 0.86295± 0.00005T).
In liquid-gas phase diagrams, the fieldlike and temper-

aturelike directions at the critical point typically do not
coincide with the original parameters in the system (H
and T here). The field mixing formalism [18, 31], de-
veloped in the context of classical fluids, allows the uni-
versal properties of such critical points to be extracted.
According to the revised scaling hypothesis, the correct
scaling operators m̃ and ε̃ are linear superpositions of the
quantities m and ε that appear in the Hamiltonian,

(

m̃
ε̃

)

=

(

1 s
r 1

)(

m
ε

)

, (3)

where r and s are appropriate mixing parameters [18].

The scaling fields conjugate to m̃ and ε̃—H̃ and T̃
respectively—define new fieldlike (symmetry-breaking)
and temperaturelike (non-symmetry-breaking) directions
in parameter space. The symmetry of the critical point
and the universal scaling content of the transition is man-
ifest in the mixed operators and fields.
From the locations of the Binder cumulant minima

(alternatively, the maxima of the susceptibilites), the
slope of the first-order line in the vicinity of the criti-
cal point is determined. This slope in the (β, h) plane,
(dβc/dh)|h=hc

, is directly related to the mixing parame-

ter r = (dβc/dh)
−1 = 4.283± 0.005. It is interesting to

note that this value is in reasonable agreement with the
estimate obtained from the Clausius-Clapeyron relation,
dHc/dT = −∆S/∆M ≃ 4.45 [32], where ∆M and ∆S
are, respectively, the differences in magnetization and en-
tropy between the kagome ice and saturated phases. The
relation is expected to hold at low T where the transition
is strongly first order and has indeed already been shown
to extrapolate up to the critical point in 16.
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FIG. 2. (Color online) Finite-size scaling collapse of the equi-
librium susceptibility χ in the vicinity of the critical point,
using the critical exponents γσ and νσ as fitting parameters.
The collapse gives γσ = 0.76 ± 0.02 and νσ = 0.41± 0.01, in
agreement with the Ising values γσ ≃ 0.79 and νσ ≃ 0.40.

Obtaining the mixing parameter s is not as straight-
forward [33]. Here we do so by requiring the statistical
independence of fluctuations in m̃ and ε̃ at the critical
point, and find s = 0.0(3)± 0.0(7). Other methods give
consistent results (not shown).

A substantial admixture of m̃ in ε is expected from the
monopole picture. Indeed, the spin interaction energy
in the Hamiltonian encompasses both a Coulombic term
as well as a chemical potential for the monopoles, and
they are of comparable strength. While it is possible to
separate (approximately) the two contributions in ε, we
find that it does not lead to an appreciable improvement
in the field-mixing analysis.

Performing a finite-size scaling analysis in the vicinity
of the critical point we obtain critical exponents that are
consistent with 3D Ising universality: γσ = 0.76 ± 0.02
and νσ = 0.41 ± 0.01, compared with the Ising values
γσ ≃ 0.79 and νσ ≃ 0.40 in nonzero field [40]. The finite-
size scaling collapse for the magnetic susceptibility χ is
illustrated in Fig. 2. In the 3D Ising class, fluctuations in
m̃ are dominant over those in ε̃ and we observe the same
magnetic susceptibility exponent γσ whether we consider
fluctuations in m̃, m, or even ε. In order to observe
the heat capacity exponent α(σ), substantial statistical
accuracy would be required to ensure that ε̃ does not
contain any contribution from m̃.

The joint probability distribution of the fluctuations
in m̃ and ε̃ at the critical point, the form of which is
known to be universal [34, 35], is another powerful tool to
identify the universality class of a system [18, 33, 36, 37].
The distribution can be seen in Fig. 3. It displays a
characteristic shape which is the hallmark of an emergent
Z2 symmetry and thus Ising universality. The data can
be compared with the 3D Ising model (Z2 symmetry)
and contrasted with the 3D XY model [U(1) symmetry]
in the insets of Fig. 3. Direct comparison between Ising
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FIG. 3. (Color online) Histogram of mixed operator fluctu-
ations ∆m̃, ∆ε̃, where ∆X ≡ X − 〈X〉, normalized by their

respective standard deviations,
√

〈(∆X)2〉. The character-
istic shape is indicative of emergent Z2 symmetry and Ising
universality. Inset: Corresponding data for the 3D Ising and
3D XY models at criticality (adapted from Ref. [33]).

and XY criticality in three dimensions is important due
to the very similar scaling exponents, which are difficult
to differentiate between within our numerical accuracy.
Recently, the long-standing question [17] of the uni-

versality class of critical classical Coulomb liquids has
been resolved in numerical simulations [19] in favour of
Ising (and not mean-field) behavior. Our results are con-
sistent with this, in accordance with the picture of a
liquid-gas transition of the emergent monopoles. It is
important to note that the Ising universality does not
arise trivially from the Ising nature of the original spins.
Indeed, their Z2 symmetry is explicitly broken by the
applied field. The spins constitute a vacuum for the
magnetic monopole excitations. It is then this emer-
gent Coulomb liquid, or magnetolyte, which undergoes
a liquid-gas transition as would a classical electrolyte,
with associated emergent Coulombic criticality. This is
highly nontrivial: emergent monopoles are connected by
a network of Dirac strings. These strings are however
statistically and energetically immaterial, thus allowing
the thermodynamic properties of the system to be the
same as for a gas of real pointlike charges.

III. KIBBLE-ZUREK SCALING OF

HYSTERESIS

The standard KZ choice is to vary the temperaturelike
parameter identified above (see e.g., the recent study 38).
However, in the context of a liquid-gas transition, fine
tuning would be necessary to identify the precise T̃ (T,H)
trajectory, which is in general rather difficult away from
the limit |H − Hc|, |T − Tc| → 0. As the simplest ex-
perimental prototcol, we therefore propose to vary the
applied field H(t), which is then a combination of H̃ and

T̃ , and measure the magnetization m(t). The resulting
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FIG. 4. (Color online) Hysteresis in the magnetization m dur-
ing a forwards-backwards field cycle. The field H is swept at
constant temperature from 0.75 T, through the critical point,
to 0.95 T in time τQ (measured in MC steps per spin), return-
ing similarly. The system size is L = 10. Inset: Hysteresis
loop size ∆mhyst(t) as a function of time to the critical point
t.

behavior is controlled by the most relevant correlation
length in the vicinity of the critical point (the magnetic
correlation length in the case of 3D Ising universality, as
discussed below).
Let H(t) be varied linearly from Hi to Hf in a time

τQ such that H(0) = Hc. Here, and in the following, we
use single spin-flip dynamics and measure time in Monte
Carlo (MC) steps per spin. Let the instantaneous re-
laxation time of the system be ξt(t). Initially, ξt(t) is
short and the evolution is adiabatic; the magnetization
is thus close to its equilibrium value at H(t). However,
the relaxation time diverges near the critical point, as
does its rate of change. When its rate of change be-
comes larger than that of the system parameter (of order
one for linear sweeps), the system can no longer stay in
equilibrium: (dξt/dt)|t=tKZ

∼ 1. This identifies the KZ
time, tKZ. Crudely speaking, for t ∈ [−tKZ, tKZ], the sys-
tem is out of equilibrium, the dynamics are slow, and
the magnetization response lags behind the field. For
t ≫ tKZ, the evolution is once again adiabatic. Over a
full (forwards-backwards) sweep cycle, one thereby ob-
tains a hysteresis loop in the magnetization m as a func-
tion of H . Examples of such hysteresis loops for different
ramp times τQ are shown in Fig. 4. The faster the sweep
(the smaller τQ), the larger the hysteresis loop.
For slow enough ramps (τQ ≫ 1), generalized KZ scal-

ing relations predict that the nonequilibrium contribu-
tion to the magnetization assumes a universal form [25]:

〈m(t)〉 ∼
1

t
∆/z
KZ

G

(

t

tKZ

)

, tKZ = τ
νz

νz+1

Q , (4)

where ∆ is the scaling dimension, and ν = (3−∆)−1 the
correlation length exponent, of the most relevant oper-
ator with projection on m close to the critical point; z
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FIG. 5. (Color online) Kibble-Zurek scaling collapse of
the hysteresis loop size ∆mhyst(t), using the critical expo-
nents ν and z as fitting parameters. The collapse gives
ν = νσ = 0.42± 0.01 and z = 1.85 ± 0.05, consistent with the
Ising values. Both the L = 8 and 10 data are plotted.

is the dynamical exponent, and G is a universal scaling
function.
The size of the hysteresis loop—namely, the difference

between forwards and backwards curves, ∆mhyst(t)—can
be calculated as a function of time to the critical point t
(inset of Fig. 4). Figure 5 shows the KZ scaling collapse
of ∆mhyst(t) according to Eq. (4), using the exponents ν
and z as fitting parameters. We find ν = νσ = 0.42±0.01
and z = 1.85 ± 0.05, again consistent with the values
for the 3D Ising model: z ≃ 2.0 for Metropolis single
spin-flip dynamics [39]; and (in nonzero field) the most
relevant operator is the magnetization, with correlation
length exponent νσ ≃ 0.40 [40]. Similar results are ob-
tained for linear sweeps in generic directions in the (T,H)
plane. We also checked robustness to small variations in
the choice of the location of the critical point.
In order to observe universal KZ scaling in numeri-

cal simulations of finite-size systems, one has to be in
the appropriate speed regime [38]. The system can gen-
erally be characterized by three length scales: a lattice

scale a, the KZ length scale lKZ ∼ t
1/z
KZ , and the system

size L. Universal KZ physics characteristic of the ther-
modynamic limit appears when a ≪ lKZ ≪ L. Too slow
sweeps lead to lKZ & L and adiabatic evolution at finite
size. For the larger systems considered here (L ≥ 8),
the universal scaling behavior is clearly visible and spans
approximately two decades in τQ (see Appendix C).
It was recently demonstrated [14] that spin ice systems,

as magnetic Coulomb liquids, exhibit a (transient) second
Wien effect, whereby the monopole density increases in
response to an applied field. While this is in principle
relevant to the dynamics discussed above, the effect is
appreciable only at low monopole densities, which is not
the case in our work.
Finally, it is interesting to note that, even during

our fastest sweeps, the spins located between adjacent
kagome planes remain essentially fully polarized so that
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the monopole density ρ follows extremely closely the
magnetization m of the system [41] according to the
formula m(ρ) ∝ (5ρ+ 10)/3 (in units of µB per spin).
The magnetization is therefore an excellent proxy for the
monopole density [42].

IV. OUTLOOK AND EXPERIMENTS

We have presented a study of the universal equilib-
rium and out-of-equilibrium properties of an emergent
liquid-gas critical point in a three-dimensional topolog-
ical magnet—spin ice in a [111] field. This holds the
promise of experimental verification. One ingredient of
practical importance is an unusually slow microscopic
time scale due to the large energy barriers of the single-
ion crystal-field environment, combined with comparably
small transverse fields [43]. Spins appear to flip at a char-
acteristic rate of approximately 1 kHz [27, 28]. This is
to be contrasted with typical magnetic materials where
microscopic dynamics occur on time scales of the order
of nanoseconds or even picoseconds.
Moreover, single spin-flip Monte Carlo dynamics have

proved to capture reasonably well real dynamics in spin
ice materials [28, 44]. Combining these two observa-
tions to translate our results into experimentally rele-
vant terms, we find that KZ scaling in spin ice may be
accessible by sweeping fields in the range of 0.5–1 T, at
temperatures of the order of 0.6 K, at rates from around
0.7 to 0.03 T/s, while measuring magnetization with an
accuracy of about 1 % or . 0.1µB per spin. This is emi-
nently accessible and indeed comparable to achievements
in earlier field sweep measurements [26].
Spin ice may thus be the ideal experimental setup to

observe dynamical Kibble-Zurek scaling in the context of
a three dimensional topological magnet with a liquid-gas
critical point driven by emergent fractionalized monopole
excitations.
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Appendix A: Technical details of the Monte Carlo

simulations

Our Monte Carlo simulations of spin ice use a con-
ventional cubic unit cell containing 16 spins. A system
consists of L × L × L unit cells, so N = 16L3 spins in
total, with periodic boundary conditions. The Hamilto-
nian of the system is given by Eq. (1) in the main text
and we treat the long-range dipolar interactions using
Ewald summation [45, 46]. We use the experimentally-
determined parameters relevant for Dy2Ti2O7, namely
J = −1.24 K, and D = 1.41 K from 30, and we imple-
ment Metropolis single spin-flip updates.
In our out-of-equilibrium simulations, we assume that

Monte Carlo steps represent the actual time evolution of
the system, namely, that the system has a well-defined
single spin-flip time scale. This has been argued to cor-
rectly capture the dynamics in experiments at the tem-
peratures relevant to this work [28].

Appendix B: Location of the critical point

As discussed in the main text, we analyze the fourth-
order (Binder) cumulant [47] to determine the location
of the critical point. This cumulant is defined for any
operator X as

BX
4 ≡

〈(∆X)4〉

〈(∆X)2〉2
, (B1)

where ∆X ≡ X − 〈X〉. The Binder cumulant of the
magnetization Bm

4 , at constant temperature T , shows a
minimum at some value of the field which is the finite-
size value for the transition field at that temperature and
system size L. Fig. 6 shows the minimum values of Bm

4 as
a function of the temperature T for different system sizes
L up to L = 12 (27 648 spins). The crossing for different
system sizes is indicative of a continuous transition and
the temperature at which it occurs gives an estimate for
the critical temperature Tc. We find the crossing point of
the two largest pairs of system sizes to be the same within
errors (suggesting that finite-size effects for these system
sizes are not the dominant source of error), and equal to
Tc = 0.5875± 0.0005. The estimate for the critical field
Hc is the transition field at Tc as indicated by either the
susceptibility maximum or Binder cumulant minimum.
Our estimate for the location of the critical point is thus
(Tc, Hc) = (0.5875± 0.0005K, 0.86295± 0.00005T). We
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FIG. 6. (Color online) Crossing of the fourth-order (Binder)
cumulant of the magnetization, Bm

4 (T ), for different system
sizes L. The behavior is indicative of a continuous transition
at Tc = 0.5875 ± 0.0005 K.

remark that the value of the Binder cumulant close to
the critical point, Bm

4 = 1.86 ± 0.02, differs from the
infinite-volume Ising value exactly at criticality, Bm

4 ≃
1.60. Deviations in the value of the Binder cumulant
have been reported in the literature due to details of the
lattice structure and interactions [48, 49].
We note that the magnetization m used to obtain the

Binder cumulant is not the critical Ising magnetization-
like operator m̃ due to field mixing (discussed in the main
text). However, identifying m̃ requires the values of Tc

and Hc, which in turn would in principle need the Binder
cumulant of m̃. Our analysis is justified because fluctu-
ations of m̃ dominate close to the critical point, so m or
any quantity containing some m̃ can be used. For con-
sistency, we repeated the Binder cumulant analysis using
m̃ after obtaining the mixing parameters and checked
that both the location of the critical point, and the value
of the Binder cumulant at criticality, remain unchanged
within error bars (not shown).

Appendix C: Further analysis of the ramp speed

regimes

As discussed in the main text, in order to observe
the universal out-of-equilibrium behavior characteristic
of the thermodynamic limit in our sweeps, the correla-
tion length when the system falls out of equilibrium, lKZ,
should be much larger than the lattice constant a (so
that the dynamics are universal) but significantly smaller
than the system size L (so that the evolution is not adi-

abatic) [25, 50–52].
To investigate the different regimes systematically, we

measure the total nonequilibrium contribution to the
magnetization over a whole forwards-backwards sweep
cycle, i.e., the integrated hysteresis loop area. Using the
finite-time scaling relation given by Eq. (4) in the main
text, the total area of the hysteresis loop scales with ramp
time τQ as

∫

∆mhyst(t) dt ∼ τ
(1−∆

z )(
νz

νz+1)
Q . (C1)

Fig. 7 shows the total hysteresis loop area as a function
of ramp time τQ, for different system sizes L. Departures
from power-law scaling can be seen at small and large τQ.
The departure at large τQ is because the evolution is adi-
abatic when lKZ is comparable to the system size. Indeed,
this departure occurs at smaller values of τQ for smaller
L, as predicted by lKZ ∼ L. The departure at small τQ is
because lKZ ∼ a and the evolution is nonuniversal. Con-
sistently, this departure is independent of system size.
The nonuniversality in this fast sweep speed regime also
manifests itself in an appreciable direction dependence
in the nonequilibrium contribution to the magnetization
(not shown). The universal scaling window is in the in-
termediate τQ regime. This window is appreciable (ap-
proximately two decades) for the largest system sizes we
can access. The pink dotted line in Fig. 7 corresponds
to scaling with the critical exponents from Fig. 5 in the
main text.
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FIG. 7. (Color online) Hysteresis loop area as a function of
ramp time τQ. Deviations from power-law scaling are seen at
large τQ ∼ Lz due to the time-evolution becoming adiabatic,
and small τQ due to lattice-scale effects independent of L.
For intermediate τQ there is a universal scaling regime (pink
dotted line with exponents from Fig. 5 in the main text).
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