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H4

Orbital-optimised multiple self-consistent-�eld (SCF) solutions
are increasingly being interpreted as mean-�eld approximations
of diabatic or excited electronic states. However, surprisingly
li�le is known about the topology of the electronic energy
landscape from which these multiple solutions emerge. In this
contribution, we extend energy landscape methods, developed
for investigating molecular potential energy surfaces, to investi-
gate and understand the structure of the electronic SCF energy
surface. Using analytic gradients and Hessians, we systemat-
ically identify every real SCF minimum for the prototypical H4
molecule with the 3-21G basis set, and the index-1 saddles that
connect these minima. �e resulting SCF energy landscape has a double-funnel structure, with no high-energy local
minima. �e e�ect of molecular symmetry on the pathways is analysed, and we demonstrate how the SCF energy
landscape changes with the basis set, SCF potential, molecular structure, and spin state. �ese results provide guiding
principles for the future development of algorithms to systematically identify multiple SCF solutions from an orbital
optimisation perspective.

I. INTRODUCTION

�ere is never a unique self-consistent-�eld (SCF) solution
for a molecule. Every physical system must always have at
least two solutions: the global minimum and maximum of
the SCF energy. Most cases will also exhibit additional so-
lutions corresponding to local minima, maxima, or saddle
points. �ese multiple SCF solutions have long been a source
of fascination due to their inherent links with symmetry-
breaking,1–4 static electron correlation, and the breakdown of
single-reference wave function approximations.5–7 More re-
cently, higher-energy solutions have been proposed as mean-
�eld approximations to excited states,8–13 while symmetry-
broken solutions are o�en interpreted as quasidiabatic con�g-
urations for multireference calculations.14–19

�e existence of additional solutions to the mean-
�eld Hartree–Fock (HF) equations is intimately linked to
symmetry-breaking in the wave function. As a mean-�eld
approximation, the HF wave function is not required to con-
serve the symmetries of the exact Hamiltonian, including
the spin-operators S2, Sz , complex-conjugation, K, or the
time-reversal operator T .2,20 Enforcing particular symmetries
ensures that the wave function retains certain well-de�ned
quantum numbers, but restricts the variational freedom of
the HF approximation: a choice o�en referred to as Löwdin’s
symmetry dilemma.21 A HF solution that does not conserve a
particular symmetry must always occur as a degenerate set
of solutions related by the corresponding symmetry opera-
tor. �ese additional symmetry-broken solutions have been
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linked to the onset of strong electron correlation and pro-
vide reference states for methods such as projected Hartree–
Fock (PHF),22–24 or nonorthogonal con�guration interaction
(NOCI).16

While numerous developments have focused on locating
multiple SCF solutions,8,12,13,25–28 relatively li�le is known
about the topology of the HF energy surface itself. �e sta-
bility analysis popularised by Čı́žek and Paldus29,30 allows
a particular solution to be identi�ed as a minimum, saddle
point, or maximum, and allows downhill directions to be iden-
ti�ed to characterise pathways.31 However, the connectivity
between stationary points, the general structure of the HF
energy surface, and the e�ect of molecular symmetry on this
surface remain largely unexplored. As a result, computational
methods to locate multiple solutions generally rely on chemi-
cal intuition to determine which orbitals are associated with
symmetry-breaking or electron excitations. Notable excep-
tions include the use of power series expansions of the HF
energy,26 the SCF metadynamics approach,25 and linearisation
of the SCF equations through Lie algebraic approaches.27 In
contrast, elucidating the topology of the SCF energy landscape
itself promises a route towards more systematic approaches
for locating multiple solutions.

In our opinion, there are two main reasons why the topol-
ogy of the SCF energy has rarely been systematically inves-
tigated. Firstly, the SCF method is generally approached as
an iterative procedure for identifying a self-consistent solu-
tion, rather than as an energy optimisation problem.32,33 �e
combination of second-order optimisation methods34–38 and
Hessian-based stability analysis29–31,39,40 has partially shi�ed
this perspective, and provides a routine approach for �nding
true minima of the SCF energy (although there is no guar-
antee that the global minimum will be reached). Secondly,
the SCF energy landscape is a relatively high-dimensional
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surface with the number of free parameters determined by
the number of occupied-virtual orbital rotations.39 As a result,
the SCF energy surface can only by fully visualised in minimal
model systems,41 while for larger molecules low-dimensional
projections through the energy hypersurface are sometimes
used.26,42

Analogous problems with high dimensionality are well
known from studies of molecular energy landscapes, where
the number of free parameters (atomic coordinates) grows
linearly with the number of atoms in the system, and the num-
ber of stationary points grows exponentially.43,44 On molecu-
lar energy landscapes, local minima represent stable molecu-
lar structures, while �rst-order saddle points correspond to
transition states between distinct structures according to the
Murrell-Laidler de�nition.45 �e pathways connecting suc-
cessive local minima via �rst-order saddle points provide a
coarse-grained representation of molecular rearrangements,
and a wide variety of computational approaches for studying
this connectivity have been established.46

In the present contribution, we investigate the topology of
the real HF energy surface through the Energy Landscapes
framework,46 using analytic gradients and Hessians of the
HF energy. �e HF energy landscape is parameterised in
terms of occupied-virtual orbital rotations, and stationary
points correspond to individual solutions of the HF equa-
tions. �e gradient alone is su�cient to locate local minima
and the transition states that connect them through the hy-
brid eigenvector-following approach.47–50 An analytic Hessian
then allows the index (number of negative Hessian eigenval-
ues) of each stationary point to be classi�ed, avoiding the need
for numerical derivatives and the associated imprecision. �is
framework therefore allows us to understand how individual
minima of the HF energy are connected and, for the �rst time,
gain valuable insights into the topology of the SCF energy
landscape itself.

In comparison to molecular potential energy surfaces, de-
riving analytic gradients and Hessians of the HF energy is
complicated by the normalisation of the wave function and
the invariance of a single Slater determinant with respect to
occupied-occupied orbital rotations.34 �e relevant di�erential
geometry of the Hartree–Fock energy is therefore summarised
below. We have used these expressions to develop an inter-
face between the Q-Chem electronic structure package51 and
the methodology for exploring energy landscapes encoded
in our OPTIM52 and PATHSAMPLE53 programs. Results are
then described for the H4 model, which has proved to be a
popular benchmark for investigating the existence of multiple
HF solutions.25,27,28 In particular, we investigate the e�ect of
symmetry on the pathways connecting minima, and compare
the electronic structure landscape for di�erent geometries,
basis sets, SCF potentials, and spin states.

II. EXPLORING THE HARTREE–FOCK ENERGY
LANDSCAPE

A. Di�erential Geometry of the Hartree–Fock Energy

�e di�erential geometry of the HF energy has been de-
scribed in detail elsewhere (see Refs. 34 and 35), and so we will
only summarise the details required in the current work. In
what follows, we consider a 2n-dimensional (nonorthogonal)
spin-orbital basis {|ηµ〉} constructed as the direct product
of an n-dimensional spatial basis {|χν〉} (1 ≤ ν ≤ n) and
the two-component spin basis {|α〉, |β〉}. We employ the
nonorthogonal tensor notation de�ned by Head-Gordon et
al. throughout.54

�e HF wave function |ΨHF〉 for an N -electron system is
de�ned as a single Slater determinant constructed from a set
of occupied one-particle molecular orbitals |ψi〉.55 �e most
general expansion of a molecular orbital (MO) takes the form

|ψi〉 =

2n∑
µ

|ηµ〉Cµ··i , (1)

allowing each orbital to have both a spin-up (α) and spin-down
(β) component.2 We will only consider real HF wave functions
represented by the domain Cµ··i ∈ R. Orthonormality of |Ψ〉
is ensured by the orbital coe�cient constraint

2n∑
µ

C ·µi· gµνC
µ·
·j = δij , (2)

where gµν = 〈ηµ|ην〉 is the metric tensor of the nonorthog-
onal spin-orbital basis functions. Due to the direct product
structure of the spin-orbital basis, this metric takes the 2n×2n
matrix form

g =

(
g 0
0 g

)
, (3)

where g is the overlap matrix of the n-dimensional spatial
basis. �e HF energy is then de�ned in terms of the orbital
coe�cients as

E = Vnuc +

N∑
i

2n∑
µν

C ·µi· hµνC
ν·
·i

+
1

2

N∑
ij

2n∑
µνστ

C ·µi· C
·σ
j· 〈µσ||ντ〉Cν··i Cτ ··j ,

(4)

where Vnuc is the nuclear repulsion, hµν = 〈ηµ|ĥ|ην〉 are
the one-electron integrals, and 〈µσ||ντ〉 de�ne the antisym-
metrised two-electron integrals in the spin-orbital basis.55

Identifying HF solutions is equivalent to locating stationary
points of the HF energy. However, satisfying the orthonor-
mality condition requires that the HF energy is constrained
to the hypersurface de�ned by Eq. (2). Furthermore, the HF
energy depends on only the subspace spanned by the occu-
pied orbitals and is invariant to occupied-occupied orbital
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transformations.55 Satisfying this invariance means that the
orbital coe�cients de�ning unique wave functions must be
considered as points on a Grassmann manifold (see Refs. 34
and 56 for details). In the case of a single occupied orbital,
this manifold reduces to a 2n-dimensional hypersphere.41

For a given set of coe�cients C , any set of orbital coe�-
cients C̃ satisfying the required constraints can be uniquely
parameterised by the �ouless transformation39

C̃(κ) = C exp

(
0O −κᵀ

κ 0V

)
, (5)

whereκ is an (2n−N)×N orNV×NO matrix with elements
κai de�ning local coordinates for the constraint surface at C .
Here we abbreviate the number of virtual and occupied molec-
ular orbitals as NV and NO, and denote the corresponding
square matrices of zeros as 0V and 0O. �e constrained gradi-
ent at the point C can then obtained in the local coordinate
system as35

∂E

∂κai

∣∣∣∣
κ=0

= 2

2n∑
µν

C ·µa·FµνC
ν·
·i = 2Fai, (6)

where the Fock matrix in the spin-orbital basis is de�ned as55

Fµν = hµν +

N∑
j

2n∑
στ

C ·σj· 〈µσ||ντ〉Cτ ··j . (7)

�e analytic Hessian of the HF energy in this local coordinate
system is given as29,31

∂2E

∂κai∂κbj

∣∣∣∣
κ=0

= 2
(
Fabδij − Fijδab + 〈aj||ib〉+ 〈ab||ij〉

)
,

(8)
where now the Fock matrix and two-electron integrals are
represented in the MO basis de�ned by the coe�cients C .
�e exponential representation Eq. (5) generally leads to an
in�nite series for the gradient and Hessian that only simpli�es
to Eqs. (6) and (8) in the limit κ = 0, as described by Ref. 35.

�e HF parametrisation described above provides the most
�exible form of real HF theory, corresponding to the gener-
alised HF (GHF) approach.20,57 While the �exibility of GHF
can lead to lower energies, it also allows the wave function
to break the symmetries corresponding to the S2 and Sz spin
operators, and the time-reversal operator T .2 In contrast, con-
straining the wave function as an eigenfunction of Sz leads
to the unrestricted HF (UHF) approach, where each electron
occupies either an α or β orbital (i.e. di�erent orbitals for
di�erent spins).58 �is constraint corresponds to spli�ing the
orbitals into α and β sets de�ned as

|ψi〉 =

n∑
µ

|α〉|χµ〉(Cα)µ··i (9a)

|ψī〉 =

n∑
µ

|β〉|χµ〉(Cβ)µ··̄i , (9b)

where the overbar indicates an index for a β orbital. �e
corresponding local coordinates and gradients are therefore
restricted such that all non-spin-conserving occupied-virtual
orbital transformations are ignored (i.e. κāi = κaī = 0). �e
addition of S2 and T symmetry leads to the restricted HF
(RHF) approach where the α or β molecular orbitals must
have the same spatial component, leading to the additional
constraints Cα = Cβ and κai = κāī.20

In the current contribution, we will initially focus on the
UHF formalism since this is the most familiar symmetry-
broken HF approach applied in molecular systems. We then
assess the connectivity of UHF solutions with di�erent Sz
eigenvalues by considering the GHF formalism. In the GHF
approach we must handle the additional invariance to overall
spin-rotations that lead to systematic zero Hessian eigenval-
ues of the GHF energy, as discussed in Appendix B. All the
present calculations exploit a real HF wave function, although
the computational framework can be extended in a straight-
forward way to complex HF formalisms.59,60

B. Distinguishing Hartree–Fock Stationary Points

Exploring the topology of the HF energy landscape requires
a metric for distinguishing unique wave functions according
to their orbital coe�cients. One possibility includes the SCF
electronic distance metric that compares the density matri-
ces de�ned by the two states.25 However, the wave function
constraint produces a periodic hypersurface with every opti-
mal HF density occurring as two stationary points |Ψ+

HF〉 and
|Ψ−HF〉 related by an overall sign change in the wave function.
�is pair of stationary points occur at di�erent points on the
electronic structure landscape, raising the possibility that so-
lutions may be connected between their sign-related copies
along di�erent pathways. �erefore, while these sign permu-
tations do not represent distinct physical wave functions, they
are essential for understanding the topology of the electronic
energy landscape.

To de�ne a distance metric that distinguishes sign permu-
tations of wave functions that produce the same electronic
density, we �rst introduce the overlap between the wave func-
tions |xΨHF〉 and |wΨHF〉 as

xwS = 〈xΨHF|wΨHF〉 = det
[
(xC)ᵀg(wC)

]
. (10)

In the UHF case, this overlap factorises into the form

xwS = det
[
(xCα)ᵀg(wCα)

]
det
[
(xCβ)ᵀg(wCβ)

]
. (11)

We then introduce the wave function dΨ and density dρ dis-
tances that compare the two sets of orbital coe�cients as

dΨ(x,w) = 1− xwS, (12a)
dρ(x,w) = 1− |xwS|. (12b)

Since the overlap is bound in the range xwS ∈ [−1, 1], both
of these metrics are strictly positive (or zero). Using dΨ treats
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the two sign permutations of the wave function as distinct
points, while dρ ignores sign permutations and provides an
equivalent to the SCF distance metric for comparing electronic
densities.25

GHF wave functions with a zero Hessian eigenvalue exist
as part of a one-dimensional continuum of solutions that
are interconverted by a global spin rotation. We therefore
consider stationary points that lie on the same continuum to
be equivalent solutions. To identify the equivalence of two
sets of coe�cients, we apply a spin-rotation to maximise the
spin-component of each wave function along a given axis
before evaluating the overlap and distance metric de�ned
above, as described in Appendix C.

C. Optimisation Techniques

An interface to Q-Chem already exists in the OPTIM pro-
gram, providing access to a wide range of molecular geom-
etry optimisation techniques. �e same methodology was
exploited to characterise the electronic structure landscape
using a new interface, where the local variables of theκmatrix
are employed together with analytic derivatives and (option-
ally) second derivatives. Working with the local variables
enables us to use a non-redundant coordinate space, but re-
quires the molecular orbital coe�cients to be updated from
the current reference at every optimisation step. All the opti-
misation routines produce a step in κ space, but the relation
between C(κ) and κ via Eq. (5) is non-linear. We therefore
applied every step in κ space to the current molecular orbital
coe�cients, and updated this reference. �is approach allows
us to deal only with steps in κ while the cumulative e�ect of
the optimisation is tracked via the C coe�cients.

�e database of stationary points is saved in terms of the
correspondingC values, and any subsequent calculations can
be restarted from this set using new steps in κ space. �is
approach enables all the necessary derivatives to be evalu-
ated for κ = 0, but it required various modi�cations to the
bookkeeping in OPTIM and PATHSAMPLE. For example, to
calculate approximate integrated path lengths in κ space, we
add the magnitudes of the steps along the steepest-descent
pathways as the calculation proceeds, instead of storing all
the intermediate con�gurations.

�e optimisation techniques that were used to calculate
minima, and the pathways that connect them via transition
states, are equivalent to the usual formulation for geometry
optimisation, aside for the changes noted above. �ese meth-
ods have been described in detail elsewhere,46,61–63 and only a
brief overview is provided here. Local minima were located
using a customised L-BFGS64 (limited memory Broyden,65

Fletcher,66 Goldfarb,67 Shanno68) routine in OPTIM. Transi-
tion states were located using the gradient-only version of
hybrid eigenvector-following,47–50 following systematic per-
turbations in κ space applied to the molecular orbital co-
e�cients corresponding to local minima. Here we de�ne a
transition state as a stationary point with Hessian index one.45

Approximate steepest-descent paths were calculated to estab-
lish the connectivity using L-BFGS minimisation following

small displacements parallel and antiparallel to the eigenvec-
tor corresponding to the unique negative Hessian eigenvalue.
�e Hessian index of every stationary point was veri�ed using
the eigenvalues of the analytic Hessian, since gradient-based
methods can converge to higher index saddles, especially in
con�gurations with high symmetry.69

We also searched systematically for index two saddle points,
using an appropriately modi�ed eigenvector-following ap-
proach with analytic second derivatives, previously employed
to study the landscapes of structural glasses.44,70 �is method
exploits the capability of the general eigenvector-following
framework to walk uphill in a speci�ed number of eigendi-
rections. �ese searches were again initiated from the local
minima following random perturbations applied through the
κ coordinates.

�e analytic Hessian was also used when accurate steepest-
descent pathways were required to characterise catastrophes
in the SCF landscape, as described in Section III C, and to in-
vestigate the downhill directions de�ned by speci�c Hessian
eigenvectors for index 2 saddles. Here we employed the sec-
ond order formulation of Page and McIver,71 as implemented
in OPTIM.

D. Visualising the SCF Landscape

�e global organisation of the HF energy landscape can be
visualised using disconnectivity graphs.72,73 Each minimum
corresponds to a vertical branch in the graph beginning at
the corresponding energy. �e branches are arranged on
the horizontal axis to avoid crossings. At regularly spaced
intervals in energy the minima merge if they can interconvert
via any pathway that lies below the threshold. �e landscape
is therefore segregated into disjoint sets, or superbasins,72 at
each energy threshold. Hence we obtain a graphical view of
how the landscape is organised, which faithfully preserves
the barriers, and does not require an order parameter or a
low-dimensional projection.

III. RESULTS: H4 MODEL

�e H4 model has been extensively used to benchmark
electronic structure methods and the existence of multiple
HF solutions.27,28,74,75 In particular, the square geometry (D4h)
provides an archetypal example of strong static electron
correlation,76–78 with a doubly degenerate RHF ground state
and a number of symmetry-broken UHF solutions.74 Further-
more, the H4 model allows the reduction of molecular symme-
try to be systematically studied by considering the distortion
to rectangular, trapezoidal, or linear structures76 (Figure 1).
We �rst consider the UHF formalism with 〈Sz〉 = 0 using
di�erent SCF potentials, basis sets, and molecular structures.
We then investigate the e�ect of changing the electronic spin
state using the more �exible GHF approach in Section III D.
Unless otherwise stated, we use the 3-21G basis set79 with
the HF potential. All energies are provided in atomic units of
Hartrees (Eh).
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FIG. 1: Di�erent structures considered for the H4 model, with
their corresponding spatial point groups.

A. Structure of the Landscape

We begin by considering the square H4 structure with a
side length of 2 Å using the UHF formalism with 〈Sz〉 = 0.
In this geometry and spin state, the symmetry operations of
the electronic wave function are given by the direct product
group DT

4h, which corresponds to T⊗D4h, where T is the group
generated by the many-electron time-reversal operator. �e
structure of the DT

4h group, and its irreducible representations,
is described in Appendix A. Since the 3-21G basis set only
includes s-type orbitals for hydrogen,79 every wave function
must be symmetric with respect to the σh mirror plane.

A total of 12 distinct minima were located on the UHF
energy surface using the wave function distance metric dΨ,
where each solution appears alongside its sign-permuted copy.
�ese minima reduce to six distinct electronic densities when
compared using the density distance metric dρ, forming two-
fold and four-fold degenerate sets (Figure 2). Both sets of
states correspond to a symmetry-broken wave function in the
DT

4h symmetry group. �e two-fold degenerate global min-
ima at −1.999283 Eh possess an antiferromagnetic structure,
analogous to the symmetry-breaking predicted by Slater.58 To-
gether, this pair of solutions span the reducible representation
B+

1g⊕A-
2g. In contrast, the local minima at−1.974018 Eh adopt

an electronic structure where the spin-up and spin-down elec-
trons localise on opposite sides of the square, and together
they span the reducible representation A+

1g ⊕ B+
1g ⊕ E-

u.
�e unique minima on the UHF energy landscape are in-

terconnected by a total of 68 index-1 saddles when sign per-
mutations are explicitly considered using the wave function
distance dΨ. �ese index-1 saddles correspond to 34 distinct
electronic densities using the density distance dρ, and lead to
six unique energies with degeneracies summarised in Table I.

�e connectivity of minima via index-1 saddles allows the
UHF energy landscape to be visualised as a disconnectivity
graph (Figure 3). When electronic states are distinguished
using dΨ, the landscape has a double-funnel structure where
the minima are split into two groups of six, separated by a
larger energy barrier (Figure 3a). In contrast, ignoring the
sign permutations using the density distance dρ leads to a
single-funnelled landscape (Figure 3b). �e two funnels on
the full HF energy landscape therefore correspond to wave

Energy / Eh Metric dΨ Metric dρ
−1.785587 8 4
−1.790809 4 2
−1.792774 8 4
−1.803657 32 16
−1.893890 16 8

TABLE I: Degeneracies for the electronic densities
corresponding to index-1 saddle points for square H4 (side
length 2 Å). Each pair of sign-permuted stationary points

located on the UHF energy surfaces using the wave function
distance dΨ corresponds to one distinct electron density

when compared using density distance dρ.

functions related by sign permutations, where each funnel
corresponds to the positive or negative copy of the exact
ground-state wave function. Furthermore, all the minima are
relatively close to the global minimum energy. �e absence
of high energy local minima suggests that mean-�eld HF ex-
cited states are likely to exist as higher-index saddles, and
thus saddle-point optimisation algorithms will be required to
identify such states.

Many of the index-1 pathways connect minima with
the same energy, de�ning 20 symmetric degenerate
rearrangements80,81 of the canonical MOs that are illustrated
in Figure 4. Each of these 20 transition states has an additional
order-2 symmetry element that interconverts the two down-
hill pathways and the corresponding minima. �e additional
symmetries that appear in the transition state wave functions
correspond to either a pure spatial symmetry operation, e.g.
pathway (a), or the combination of a spatial operation and the
time-reversal operator, e.g. pathways (b) and (c). �ese sym-
metric degenerate rearrangements demonstrate the strong
in�uence of molecular symmetry on the structure of the SCF
energy landscape through both the degeneracy of minima and
the symmetries encoded by index-1 saddles.

For molecular energy landscapes, symmetric degenerate
rearrangements must be associated with an additional spa-
tial symmetry at the transition state that interconverts the
two steepest-descent pathways and the product and reactant
minima.80,81 Asymmetric degenerate rearrangements are also
possible in molecules,82 where permutation-inversion isomers
are linked by a transition state with no additional symmetry
elements. Important examples arise for water clusters, where
tunnelling spli�ings have been analysed in detail to provide
a detailed experimental probe of the intermolecular forces
and dynamics.83–85 We discuss the analogue of asymmetric
degenerate rearrangements of SCF minima using the linear
structure of H4 in Section III C.

In addition to the symmetric degenerate rearrangements,
there are a further 48 non-degenerate pathways that connect
minima with di�erent energies. �ese non-degenerate path-
ways correspond to 24 distinct electronic densities that form
8-fold and 16-fold degenerate sets of HF solutions using the
density distance dρ (see Table I). �e corresponding rearrange-
ments of the canonical MOs are illustrated in Figure 5. Notably,
the only di�erence between the �nal minima (right) in path-
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−1.999283 Eh(1) −1.999283 Eh(2)

−1.974018 Eh(3) −1.974018 Eh(4)

−1.974018 Eh(5) −1.974018 Eh(6)

FIG. 2: Spin-up (blue) and spin-down (orange) densities associated with each minimum of the UHF energy surface for square H4
(side length 2 Å). �ese minima occur in a two-fold degenerate set (1 and 2) and a four-fold degenerate set (3–6), with the

minima in each set related by the DT
4h symmetry operations. �e minima within the pairs (1, 2), (3, 4) or (5, 6) are also

interconverted by the reversal of spin-angular momentum generated by the time-reversal operator. Each density corresponds
to two stationary points on the UHF energy surface, representing sign permutations of the corresponding wave function.

0.02 Eh

(a)

0.02 Eh

(b)

FIG. 3: Disconnectivity graphs for H4 electronic states (3-21G) in the square geometry (side length 2 Å), where the stationary
points are distinguished according to two di�erent metrics, as de�ned in Eq. (12). (a) Wave function distance dΨ. (b) Density

distance dρ.
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0.02 Eh

(a)

0.02 Eh

(b)

FIG. 4: Illustration of symmetric degenerate rearrangements between symmetry-related minima for square H4 (side length 2 Å).
For each state, the occupied α and β orbitals correspond to the le� and right columns, respectively. Every transition state gains
an additional order-2 symmetry operation that must interconvert the minima at the end points of the corresponding pathway.

�e C+
2 and C−2 rotations coincide with the y = x and y = −x axes, respectively (see Figure 1).

ways (d) and (e) is the introduction of a minus sign in one
spin-up MO, demonstrating the importance of considering dis-
tinct sign permutations. No new symmetry elements occur at
the transition state of these non-degenerate rearrangements.
�e symmetries of the MOs must therefore be conserved along
the full pathway because the gradient transforms as the totally
symmetric irreducible representation.86–90 In addition to the
σh re�ection, the transition state MOs for the lower energy
pathway (d) are only symmetric with respect to the combined
operation T Cy2 (where theCy2 rotation axis coincides with the
y-axis), and this symmetry is conserved along the full path-
way. In contrast, the higher-energy pathway (e) conserves no
symmetry elements, except the σh re�ection enforced by the
3-21G basis set.

�e lack of symmetry in the transition state MOs for path-
way (e) leads to a 16-fold degenerate set of HF solutions. Since
every wave function using s-type orbitals must be symmetric
with respect to re�ection in the plane of the molecule, a degen-
eracy of 16 is the largest possible for a wave function in the
DT

4h symmetry group. �e corresponding HF wave functions
therefore conserve the fewest number of symmetry elements,
in contrast to the minima and other index-1 saddles on the
landscape. �e existence of these fully symmetry-broken sad-
dle points emphasises the fact that symmetry breaking does
not always lower the ground-state energy, but can also occur
throughout the energy spectrum. Instead, the lack of sym-
metry along non-degenerate rearrangements implies that the
most symmetry-broken HF solutions are likely to be index-1
saddles rather than minima whenever there are at least two

minima with di�erent energies.
Finally, we identi�ed a total of 164 index-2 saddles using

the wave function distance dΨ at the square geometry (side
length 2 Å), reducing to 82 distinct electronic densities us-
ing dρ. Index-2 saddles can represent important HF wave
functions on the SCF energy landscape. For example, the
spin-symmetry-pure RHF global minimum at this square ge-
ometry is an index-2 saddle on the UHF energy landscape. �e
steepest-descent pathways along the two eigenvectors of the
Hessian corresponding to the negative eigenvalues are found
to connect degenerate minima that are related by the spin-�ip
operation. Since the two steepest-descent pathways for each
downhill eigenvector are related by time-reversal symmetry,
the index-2 saddle itself must exhibit this symmetry element,
enforcing a restricted closed-shell wave function. �is index-2
saddle is itself doubly degenerate, with one saddle connect-
ing the pairs of minima (1,2) and (3,4) from Figure 2, and the
symmetry-related partner connecting the pairs of minima
(1,2) and (5,6).

B. Dependence on the Level of Theory

�e SCF approach can be applied at various levels of accu-
racy using di�erent theoretical approximations. For example,
increasing the size of the spin-orbital basis set increases the
accuracy towards the exact HF limit. Alternatively, apply-
ing the SCF approximation through density functional theory
(DFT) allows electron-electron interactions to be represented
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−1.999283 Eh

−1.893889 Eh

−1.974018 Eh

(d)

−1.999283 Eh

−1.803657 Eh

−1.974018 Eh

(e)

FIG. 5: Illustration of non-degenerate rearrangements that interconvert HF minima with di�erent energies. �e MOs do not
gain any new order-2 symmetries at the transition state, and all symmetries must be conserved along the full pathway.

through an exchange-correlation functional. If the exact func-
tional were known, then the Kohn–Sham (KS-DFT) approach
would allow the exact energy to be identi�ed in a single-
particle SCF representation.91 Additional SCF solutions are
common in KS-DFT and are also known to form symmetry
broken wave functions.75,92 In this Section, we investigate
how the topology of the SCF energy landscape depends on
the level of theory applied by considering UHF theory using
the 3-21G and aug-cc-pVDZ93 basis sets, and we compare the
HF and B3LYP94,95 potentials for a consistent basis set (3-21G).

Disconnectivity graphs for the square structure (〈Sz〉 = 0;
side length 2 Å) using these di�erent levels of theory are com-
pared in Figure 6. �e number and degeneracies of SCF energy
minima is the same in each case, with the same connectivity
via index-1 saddles. While the number of minima and index-
1 saddles is identical for the 3-21G and aug-cc-pVDZ basis
sets, there is a reduction in the number of index-2 saddles
for the aug-cc-pVDZ basis set (Table II). �ere is further re-
duction in the number of index-1 and index-2 saddles for the

B3LYP exchange-correlation potential. �erefore, although
the basis set or SCF potential leaves the general structure and
symmetry of the landscape unchanged, it can change the rela-
tive energies of stationary points and cause certain solutions
to disappear. �e disappearance of solutions using di�erent
levels of theory is analogous to the case of Coulson–Fischer
points in HF theory,96 where changes in relative components
of the energy for di�erent molecular structures can cause HF
solutions to coalesce and vanish.41,75,97

�e topology of the SCF energy landscape at di�erent levels
of theory provides insights into the origins of multiple SCF
solutions. Firstly, the similarity between the disconnectivity
graphs for di�erent basis sets demonstrates that symmetry-
breaking and multiple solutions arise from the single deter-
minant wave function constraint, rather than the particular
contributions to the energy. Viewing the space of single deter-
minants parametrised by the �ouless transformation39 as a
subspace of the exact wave function manifold, additional HF
solutions emerge from the way that the HF constraint surface
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0.02 Eh

(a)

0.02 Eh

(b)

0.02 Eh

(c)

FIG. 6: Disconnectivity graphs for H4 electronic SCF states in the square geometry (side length 2 Å) using di�erent levels of
theory. Sign permutations are considered as distinct solutions using the wave function distance dΨ. (a) HF using the 3-21G

basis set. (b) HF using the aug-cc-pVDZ basis set. (c) B3LYP-DFT using the 3-21G basis set.

0.02 Eh

(a)

0.02 Eh

(b)

0.02 Eh

(c)

FIG. 7: Disconnectivity graphs for H4 electronic SCF states (3-21G) in square geometries with various side lengths. Sign
permutations are considered as distinct solutions using the wave function distance dΨ. (a) Side length 2.0 Å. (b) Side length

1.5 Å. (c) Side length 1.0 Å.

projects the exact energy landscape.98 �is perspective reveals
how multiple local minima can occur in HF theory, while the
exact energy has strictly one minimum.

Secondly, the change in relative energies using di�erent
basis sets or the B3LYP potential demonstrates how the exact
energy landscape underlying the single determinant approx-
imation a�ects the topology of SCF solutions. Notably we
�nd fewer solutions overall using the B3LYP functional, with

a reduction in the number of index-1 and index-2 saddles.
�e index-1 saddles that are lost between HF and B3LYP cor-
respond to pathways (a) and (d), leaving only one pathway
between each set of degenerate solutions. �is reduction in
the number of solutions implies that the SCF energy land-
scape is more convex using the B3LYP functional than for
pure HF theory. In turn, a more convex landscape suggests
that the B3LYP surface provides a be�er approximation to the
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Basis �eory Minima Index-1 Index-2
3-21G HF 12 68 164

B3LYP 12 28 84
aug-cc-pVDZ HF 12 68 132

TABLE II: Total number of minima and index-1 saddle points
of the SCF energy for alternative basis sets using HF or
B3LYP potentials. Sign permutations of solutions are

considered as distinct stationary points using the wave
function distance dΨ.

exact electronic energy surface (with one global minimum),
as might be expected if the exchange-correlation functional
provides a be�er representation of the electron-electron in-
teractions. One might interpret this result as a vindication of
the DFT approach.

C. E�ect of the Molecular Structure

It is well known that the number of HF solutions can change
for di�erent molecular structures. For example, solutions
to the HF equation may disappear along a molecular bind-
ing curve when the eigenvalue structure of the HF Hessian
changes, leading to so-called HF instability thresholds.99,100

�ese thresholds are o�en associated with the emergence of
a symmetry-broken HF wave function, for example at the
Coulson–Fischer point in H2 where two UHF minima spon-
taneously emerge from the ground-state RHF solution as the
bond length increases.58,96 In this Section, we visualise how
changes in molecular structure a�ect the topology of the cor-
responding UHF solutions in H4 with 〈Sz〉 = 0.

Geometry Point Group Minima Index-1 Index-2
Square 2.0 Å D4h 12 68 164
Square 1.5 Å D4h 12 20 52
Square 1.0 Å D4h 4 8 20
Rectangle D2h 12 68 164
Trapezium C2v 12 68 172
Linear D∞h 2 4 12

TABLE III: Total number of minima and index-1 or index-2
saddle points of the HF energy for various geometries. Sign

permutations of solutions are considered as distinct
stationary points using the wave function distance dΨ.

Consider the symmetric stretch of the square geometry
using the 3-21G basis set. �e H4 wave function is highly
multireference in character at the stretched con�guration,
but becomes more single-reference at shorter bond lengths,
although the RHF ground state remains doubly degenerate
throughout. �e total number of minima, index-1 saddles, and
index-2 saddles for square side-lengths of 2.0, 1.5 and 1.0 Å,
compared using the the wave function distance dΨ. is given
in Table III, and the corresponding disconnectivity graphs are
plo�ed in Figure 7. �ere is a clear reduction in the number
of HF solutions as the side length shortens, with more higher-

energy saddles appearing at longer side lengths than minima.
However, the degeneracy of solutions and the symmetry of
the landscape is conserved, as expected, since the molecular
structure remains in the D4h point group throughout. Similar
to the results in Section III B, the smaller number of solutions
at shorter side lengths can be interpreted as an indication that
the HF energy provides a be�er approximation to the exact
energy landscape at these geometries.

�e HF energies for the low-energy minima, index-1 sad-
dles, and index-2 saddles along the symmetric square stretch
are shown in Figure 8. �ere is a general increase in the HF
energies of index-1 saddles relative to minima, and index-2
saddles relative to index-1 saddles, providing further evidence
that there are no high-energy local minima on the SCF en-
ergy landscape. Furthermore, as the side length decreases,
solutions that disappear are seen to coalesce and vanish at
two-fold pair-annihilation points and three-fold con�uence
points along the binding curve.41,99 �e disappearance of the
four-fold degenerate local minima occurs at three-fold coales-
cence points corresponding to cusp catastrophes, where one
minimum coalesces with two index-1 saddle points to leave
a single index-1 saddle point (see Appendix D). When these
HF solutions disappear, complex-analytic extensions can be
constructed using the recently developed holomorphic HF
approach41,74,101 and its KS-DFT counterpart.97

�e symmetry of H4 can be systematically reduced by dis-
torting the molecule from the square D4h structure to the
rectangular D2h geometry, the trapezium C2v geometry, or a
linear chain D∞h (Figure 1). A rectangular structure was con-
structed by stretching two opposing bonds by 0.1 Å, while the
trapezium structure was constructed by symmetrically stretch-
ing one bond by 0.2 Å. �e linear chain was constructed with
interatomic spacings of 0.875 Å, corresponding to the equi-
librium distance for an equally-spaced chain. �e number of
minima, index-1 saddles, and index-2 saddles identi�ed using
the wave function distance dΨ is given in Table III, and the
corresponding disconnectivity graphs are shown in Figure 9.

Square 2.0 Å Square Rectangle Trapezium
Energy / Eh DT

4h DT
2h CT

2v

−1.974018 A+
1g ⊕ B+

1g ⊕ E-
u A+

g ⊕ B-
3u A+

1 ⊕ A-
1

A+
g ⊕ B-

2u A+
1 ⊕ B-

1

−1.999283 B+
1g ⊕ A-

2g A+
g ⊕ A-

1g A+
1 ⊕ B-

1

TABLE IV: Representations spanned by the degenerate
minima from the square 2.0 Å geometry as the H4 molecule
is distorted into a rectangular and trapezoidal structure. �e
four-fold degenerate set splits into two two-fold degenerate

sets, represented on di�erent rows.

For the rectangular and trapezium structures, the distor-
tion from the square geometry is relatively small and the
number of minima and index-1 saddles remains the same (Ta-
ble III). However, the number of index-2 saddles increases
in the trapezium structure. �ese additional solutions were
found to vanish as the structure is distorted back towards
the square. In both cases, the global minima remain doubly
degenerate, although the degeneracy of the local minima is
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FIG. 8: HF solutions along the square H4 stretch, and their classi�cation as either minima, index-1 or index-2 saddles.

0.02 Eh

(a)

0.02 Eh

(b)

0.02 Eh

(c)

FIG. 9: Disconnectivity graphs for H4 electronic states using the 3-21G basis set, distinguished according to wave function
distance dΨ from Eq. (12). (a) Rectangle. (b) Trapezium. (c) Linear, equilibrium bond length 0.875 Å.

reduced from four in the square geometry to two sets of two-
fold degenerate minima in the rectangle and trapezium. �e
representations spanned by the minima are summarised in
Table IV, where the time-reversal extensions of the D2h and
C2v spatial groups are introduced as DT

2h and CT
2v, respectively.

�e broken spatial symmetry is re�ected in the disconnectiv-
ity graphs (Figure 9) where we �nd that the transition states
connecting the new two-fold degenerate sets of minima also
become slightly higher in energy. However, the double-funnel
structure is retained throughout, suggesting that this property
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−2.168662 Eh

−1.850572 Eh

−2.168662 Eh

(f)

FIG. 10: Illustration of the asymmetric degenerate rearrangements that interconvert the sign-permuted global HF minima in the
equilibrium linear chain structure. �e MOs do not gain any new order-2 symmetries at the transition state, indicating that

sign-permuting the overall wave function is not a physical symmetry of the Hamiltonian.

is a fundamental feature of the SCF energy landscape for H4.
Finally, we consider the equilibrium linear structure with

an equal interatomic spacing of 0.875 Å. Only two minima
can be identi�ed using the wave function distance dΨ, corre-
sponding to positive and negative sign permutations of the
RHF global minimum. With no HF symmetry-broken solu-
tions, this structure would conventionally be considered to
have a single-reference exact wave function with no strong
static correlation e�ects. �e absence of static correlation
is directly re�ected in the disconnectivity graph (Figure 9c),
where the two sign-permuted minima are connected by a four-
fold degenerate set of index-1 saddle points. As above, the
reduction in the number of minima and higher-index saddle
points relative to the square geometry suggests that, for the
linear structure, the SCF landscape is more convex and pro-
vides a be�er approximation to the exact electronic energy
surface.

�e equilibrium linear structure is the only geometry where
we �nd two sign-permuted minima directly connected by an
index-1 saddle point, leading to a degenerate rearrangement.
�e canonical MOs along this rearrangement are illustrated
in Figure 10. Although the initial and �nal minima only dif-
fer by a sign change in the second occupied β orbital, there
is no other physical symmetry operation that can intercon-
vert these two minima. As a result, the transition state does
not gain an additional order-2 symmetry element and the
pathways correspond to an asymmetric degenerate rearrange-
ment. Order-2 symmetries, which must appear at transition
states for symmetric degenerate rearrangements, therefore
correspond to physical symmetries of the Hamiltonian, and
introducing a sign-change to the wave function is not such a
symmetry. Furthermore, the fact that this transition state is
spin-symmetry broken directly re�ects the failure of single
determinant wave functions for describing single excitations.

D. Comparing Spin States

Wave functions in the UHF approximation are constrained
as eigenfunctions of theSz operator with corresponding eigen-
values given by the quantum numberms. Since H4 has a total
of four electrons, this constraint gives rise to distinct energy
landscapes with ms = 0, 1, or 2. In this section, we consider
the ms = 1 and 2 landscapes for the square H4 structure at
a side length of 2 Å, for comparison with the ms = 0 results,
above.

Withms = 1, an eight-fold degenerate set of global minima
can be identi�ed using the wave function distance metric. �is
eight-fold degeneracy arises from a spatial symmetry breaking
in the wave function where the single β electron localises on
one of the four hydrogen atoms. �e various symmetric copies
of these degenerate minima are interconnected by a total of 44
index-1 saddles, with energies and degeneracies summarised
in Table V. �e corresponding pathways all correspond to
degenerate orbital rearrangements (see Section SI A), although
since the number of α and β electrons di�er, any symmetric
degenerate rearrangements can only occur via two-fold spatial
symmetry operations.

In contrast, only two minima, corresponding to mutual
sign-permutations, were identi�ed with ms = 2, along with
an eight-fold degenerate set of index-1 saddles (Table V). �e
existence of only two minima representing the same electronic
density re�ects the predominantly single-reference nature of
this high-spin con�guration, in common with the ms = 0
linear structure considered above. More generally, this single-
reference character is shared with other high-spin con�gura-
tions and provides the motivation behind the use of high-spin
reference orbitals in the spin-�ip family of methods.102 Fur-
thermore, since all the “1s” molecular orbitals are occupied in
the ms = 2 global minimum, the orbital rearrangement path-
ways must involve excitations to the 2s orbitals (see Section
SI B), leading to the relatively high transition state energy.
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−1.975246 Eh
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FIG. 11: Illustration of GHF pathway connecting ms = 0 sign-permuted minima via an index-1 saddle with |ms| = 1. For each
state, high-spin (α) and low-spin (β) orbitals occupy the le� and right columns respectively.

ms = 1 ms = 2
Energy / Eh Degen. Energy / Eh Degen.

Minima −1.975 246 8 −1.946 698 2
Index-1 −1.893 446 8 −0.849 013 8

−1.787 340 8
−1.783 818 4
−1.782 694 8
−1.773 859 4
−1.718 130 4
−1.665 124 8

TABLE V: Energy and degeneracy of minima and index-1
saddle points for the ms = 1 and 2 UHF energy of square H4

(3-21G) with side-length 2 Å. Sign-permutations are
considered as distinct points using the wave function

distance dΨ.

Identifying connections between UHF solutions for di�er-
ent ms spin states requires the removal of the Sz-symmetry
constraint on the wave function and the application of the
GHF formalism. Although the symmetry of the GHF land-
scape ensures that UHF solutions must also be stationary
points in the GHF representation, the Hessian index is un-
likely to be conserved. �is change in index arises as new
pathways between stationary points become possible with
a more �exible wave function, as noted previously for com-
plex wave functions.103 Furthermore, the presence of zero
Hessian eigenvalues for solutions with 〈S2〉 6= 0 results in a
one-dimensional continuum of solutions de�ned by a global
spin rotation (see Appendix B). As a result, spin-�ip pairs of
solutions with ms = 0 fall on the same GHF continuum, as
do spin-collinear stationary points with non-zero ms values
related by a change in sign (e.g. ms = ±1). We consider sta-
tionary points that fall on the same continuum as equivalent
solutions, and identify them using the approach described in

Energy / Eh ms UHF Index GHF Index
−1.999 283 0 0 0
−1.974 018 0 0 2
−1.893 889 0 1 2
−1.803 657 0 1 3
−1.792 774 0 1 3
−1.790 809 0 1 4
−1.785 587 0 1 3
−1.975 246 1 0 1
−1.893 446 1 1 2
−1.787 340 1 1 3
−1.783 818 1 1 4
−1.782 694 1 1 4
−1.773 859 1 1 4
−1.718 130 1 1 4
−1.665 124 1 1 4
−1.946 698 2 0 3
−0.849 013 2 0 7

TABLE VI: Change in the Hessian index between the UHF
and GHF formalisms for UHF minima and index-1 saddles

located with each ms value.

Appendix C.
Table VI illustrates the change in Hessian index of the UHF

minima and index-1 saddles in the GHF formalism for the
square 2.0 Å structure. Only the ms = 0 UHF global minima
remain as minima in the GHF formalism, while all the other
UHF stationary points correspond to index-1 (or higher) GHF
saddles. �e degeneracy of the ms = 0 minima is reduced
from four-fold to two-fold because spin-�ip pairs of UHF solu-
tions become part of the same stationary GHF continuum, and
there are two such continua related by a sign-permutation of
the wave function. �ese two continua are connected by the
eight spatial symmetry-broken index-1 saddles corresponding
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to the UHF ms = 1 global minima. Each of these index-1 sta-
tionary points also has 〈S2〉 6= 0 and forms a one-dimensional
GHF continuum with |ms| = 1. No true non-collinear GHF
minima or index-1 saddles were identi�ed, as expected since
H4 would not generally be considered a spin-frustrated system.
�e ms = 0 minima at −1.999283 Eh therefore represent the
global minima of the real HF energy surface.

�e orbital rearrangement between the two degenerate
global ms = 0 minima via an |ms| = 1 index-1 saddle is illus-
trated in Figure 11. While GHF solutions have been shown
to connect di�erent UHF spin states along molecular binding
curves,60,104 we believe this is the �rst time that such states
have been connected in the orbital parametrisation space. It
seems non-intuitive that the ms = 0 solutions can be con-
nected by pathways mediated by |ms| = 1 index-1 saddles.
However, the only way to “physically” introduce the sign-
change that interconverts the two ms = 0 minima is to apply
the one-electron time-reversal operator τ̂ (see Appendix A)
twice to any single electron (since τ̂2 = −I). �e interme-
diate state, where τ̂ has been applied only once, reverses
the spin of this electron and hence gives rise to a state with
|ms| = 1. We have also identi�ed the same connectivity be-
tween ms = 0 and |ms| = 1 states in the linear equilibrium
geometry of H4, where the GHF global minimum is a closed-
shell RHF solution. �e consistency of these observations
suggests that there may be more fundamental and system-
atic connections between spin-states, and we will investigate
these in future work.

IV. DISCUSSION AND CONCLUSIONS

In this contribution, we have employed the Energy Land-
scapes framework to systematically understand solutions of
the real SCF equations. Using H4 as a prototypical model,
we have directly probed the structure and general properties
of the SCF energy landscape. In particular, we have found
that the real SCF energy surface generally forms a double-
funnel structure, with minima in each funnel related by a
sign-permutation of the overall wave function. �is double-
funnelled organisation has important consequences for the
development of single-determinant optimisation techniques.

Firstly, locating one of the lowest energy solutions will
not be challenging for methods such as basin-hopping global
optimisation,105–107 which can successfully treat far more com-
plex landscapes. One application of basin-hopping to SCF
optimisation has recently been introduced by Dong et al. us-
ing the Lie algebraic approach.108 �e funnelled structure of
the SCF landscape also explains why methods such as SCF
metadynamics25 and Geometric Direct Minimisation34 can
locate the global minimum.

Secondly, the absence of high-energy local minima provides
a guiding principle for developing methods to locate mean-
�eld SCF approximations to electronic wave functions. In
particular, it seems very likely that these high-energy SCF so-
lutions are all high-index saddle points of the SCF energy, par-
ticularly when symmetry constraints on the wave function are
removed. �is observation encourages further development

of excited-state optimisation approaches that systematically
search for stationary points regardless of their Hessian index,
for example squared-gradient minimisation,12 state-targeted
energy projection,13 or variance-based approaches.109 How-
ever, we note that square-gradient or variance optimisation
can lead to numerous nonstationary points where the gradient
is non-zero, but is instead a null-eigenvector of the Hessian
with a zero eigenvalue.44,110 �e e�ect of these nonstationary
points on wave function optimisation could be systematically
assessed by investigating the square-gradient SCF landscape
itself. Alternatively, these higher-energy saddles can be iden-
ti�ed e�ciently using the modi�ed eigenvector-following
approach developed for structural glasses,44,70 which we em-
ployed in the present work to locate index-2 saddles.

Using the square H4 structure, we have systematically char-
acterised the pathways connecting distinct minima via index-1
saddle points. In particular, we found that pathways connect-
ing degenerate minima that are not related by a sign permu-
tation correspond to symmetric degenerate rearrangements,
where the index-1 saddle point gains an additional order-2
symmetry element, which interconverts the two downhill
directions.80,81 On the other hand, non-degenerate pathways
that connect minima with di�erent energies lead to index-
1 saddles with a greater degree of symmetry breaking. As
a result, the most symmetry-broken SCF solutions are of-
ten index-1 saddles on non-degenerate pathways, empha-
sising that symmetry breaking does not always lower the
energy.21 High-energy excited-state SCF solutions are there-
fore likely to su�er from severe symmetry breaking, and post-
HF symmetry-restoration will o�en be required to recover
physically interpretable wave functions. Here we suggest
that projection-a�er-variation schemes such as NOCI16,17 or
the variance-based Half-Projected σ-SCF111 (variation-a�er-
projection) o�er the most reliable approaches to avoid varia-
tional collapse.

Using the ms = 0 UHF landscape, we have demonstrated
how changing the basis set, SCF potential, and the molecular
structure a�ects the topology of the SCF energy landscape.
Changing any of these factors can alter the relative energies
of SCF solutions or cause certain solutions to disappear in an
analogous way to the Coulson–Fischer point in H2.96 When
the SCF approximation is qualitatively correct, the electronic
energy landscape appears to have a small number of min-
ima and saddle points, with a convex structure; when the
single-determinant approximation fails in the presence of
static correlation, a large number of minima and higher-index
saddles can be found.

Improving the theoretical approximation by increasing the
size of the basis set or introducing a DFT exchange-correlation
functional also appears to reduce the total number of station-
ary points. However, the general double-funnelled structure
of the SCF landscape, and the pathways between minima,
are largely una�ected. As a result, the topology of the SCF
energy landscape is heavily in�uenced by the nature of the
single-determinant wave function constraint, and the way
that this constrained subspace projects the exact electronic
energy landscape. Further understanding the relationship
between approximate wave function subspaces and the ex-
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act wave function constraint surface may allow the merits
of di�erent ground and excited state approximations to be
be�er understood, and we will investigate this possibility in
future work. We also intend to extend the analysis to larger
molecules. �e SCF and analytic hessian calculations scale as
O(n4) and O(n5), respectively. �e optimisation procedures
we have employed to locate stationary points are routinely
applied to molecular systems with several thousand degrees
of freedom. In practice the bo�leneck for SCF landscape anal-
ysis may be the growth of the number of stationary points
with the number of degrees of freedom. In molecular systems
this growth is expected to be exponential,43,44 and the SCF
solutions show a similar scaling.98,112

Finally, by extending our description to the GHF approx-
imation, we have identi�ed the connectivity between UHF
solutions with di�erent ms values In the GHF formalism,
solutions with 〈S2〉 6= 0 form a continuum of stationary
points related by global spin rotations. We have found only
one global (continuum) minimum in H4, corresponding to
the ms = 0 ground-state, with sign-permutations connected
across |ms| = 1 index-1 saddles. �e existence of only one
distinct minimum and index-1 saddle suggests that the GHF
energy surface is also more convex than the corresponding
UHF landscape, as expected with the more �exible wave func-
tion. �is observed convexity supports the “single minimum
hypothesis” of Hammes-Schi�er and Anderson where, if the
GHF method is accurate, it should have only one minimum.57

�ese authors proposed that this single GHF minimum would
then aid the development of ab initio molecular dynamics
simulations by avoiding the arti�cal discontinuities that occur
when multiple RHF or UHF states cross. Our approach to un-
derstanding the HF energy surface now allows the convexity
of GHF to be systematically investigated in larger systems,
and we intend to explore this direction in the future.

Although we have only considered the model problem of H4
using the real HF approximation, we believe that our results
lay the foundations for further investigations of electronic
structure theory from an energy landscape perspective. In
particular, extending our approach to complex orbitals would
allow the relationship between strong correlation and complex
RHF solutions to be investigated.59,60 Furthermore, comparing
the landscapes of correlated methods with the HF energy
surface opens a new avenue for understanding the breakdown
of HF theory in the presence of strong correlation e�ects.
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Appendix A: Group Theory of H4 Model

Interpreting symmetric degenerate rearrangement80,81 path-
ways in H4 with 〈Sz〉 = 0 requires an understanding of the
underlying symmetries of the HF energy landscape. In gen-
eral, the symmetry groups that must be considered in the HF
approximation include spatial point group Ω, and the direct
product group S ⊗ T , where S is the spin-rotation group and
T is the time-reversal group.2 Since we are only considering
the UHF case, the spin of our wave function is collinear by con-
struction and must be invariant to all spin-rotations around
a common axis. Furthermore, in the absence of a magnetic
�eld, there is no preferred orientation for this common spin
axis, usually denoted the z axis. �e only way in which UHF
wave function can break symmetry is therefore through oper-
ations that belong to the direct-product group of the spatial
symmetry operatorsR and the time-reversal operator T .

A detailed overview of the time-reversal operator for gen-
eral spin states can be found in Ref. 113 and in the Appendix
of Ref. 114. �e action of T on a single-fermion state is de-
scribed as odd due to the relationship T 2 = −E, where E is
the identity operator. However, the many-electron form of T
is given by the direct product of the one-electron time-reversal
operators τ̂(i) that act on an electron i to give

T =

N⊗
i=1

τ̂(i). (A1)

Considering the many-electron form of T 2, given by

T 2 =

N⊗
i=1

τ̂(i)2 = (−1)NE, (A2)

we �nd that the action of T is odd for a system with an
odd number of electrons, and even otherwise. Since H4 with
〈Sz〉 = 0 has an even number of electrons, we only need to
consider the direct product group of the even time-reversal
group T = {E, T } and the spatial point group operations
R ∈ Ω, de�ning the set {R, T R |R ∈ Ω}, which clearly has
order 2|Ω|. We denote this extended form of the spatial point
group using the superscript notation ΩT.

�e molecular point group of square H4 is D4h. Noting
that T commutes with all the operations R, and that the
character of T can take two values χ(T ) = ±1, we can
use the relationship χ(T R) = χ(T )χ(R) to construct the
character table for the direct product group DT

4h, as shown
in Table VII. Each irreducible representation Γ in D4h maps
onto two irreducible representations Γ+ and Γ- in DT

4h with a
positive or negative character under T , respectively, giving a
total of 20 irreducible representations in the direct-product
group.

Doubling the number of irreducible representations in a
direct-product group ΩT is also important for the construc-
tion of symmetry-restored spin-pure wave functions using
nonorthogonal con�guration interaction (NOCI) expansions
of symmetry-broken HF solutions.16 For a spin-contaminated
ms = 0 determinant (i.e. one that is not an eigenfunction of
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DT
4h E 2C4 C2

4 2C2 2C′
2 i 2S4 σh 2σv 2σd T 2T C4 T C2

4 2T C2 2T C′
2 T i 2T S4 T σh 2T σv 2T σd

A+
1g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A+
2g 1 1 1 −1 −1 1 1 1 −1 −1 1 1 1 −1 −1 1 1 1 −1 −1

B+
1g 1 −1 1 1 −1 1 −1 1 1 −1 1 −1 1 1 −1 1 −1 1 1 −1

B+
2g 1 −1 1 −1 1 1 −1 1 −1 1 1 −1 1 −1 1 1 −1 1 −1 1

E+
g 2 0 −2 0 0 2 0 −2 0 0 2 0 −2 0 0 2 0 −2 0 0

A+
1u 1 1 1 1 1 −1 −1 −1 −1 −1 1 1 1 1 1 −1 −1 −1 −1 −1

A+
2u 1 1 1 −1 −1 −1 −1 −1 1 1 1 1 1 −1 −1 −1 −1 −1 1 1

B+
1u 1 −1 1 1 −1 −1 1 −1 −1 1 1 −1 1 1 −1 −1 1 −1 −1 1

B+
2u 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

E+
u 2 0 −2 0 0 −2 0 2 0 0 2 0 −2 0 0 −2 0 2 0 0

A-
1g 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

A-
2g 1 1 1 −1 −1 1 1 1 −1 −1 −1 −1 −1 1 1 −1 −1 −1 1 1

B-
1g 1 −1 1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 1 −1 1 −1 −1 1

B-
2g 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1

E-
g 2 0 −2 0 0 2 0 −2 0 0 −2 0 2 0 0 −2 0 2 0 0

A-
1u 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1

A-
2u 1 1 1 −1 −1 −1 −1 −1 1 1 −1 −1 −1 1 1 1 1 1 −1 −1

B-
1u 1 −1 1 1 −1 −1 1 −1 −1 1 −1 1 −1 −1 1 1 −1 1 1 −1

B-
2u 1 −1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 −1 1

E-
u 2 0 −2 0 0 −2 0 2 0 0 −2 0 2 0 0 2 0 −2 0 0

TABLE VII: Character table for the direct product group DT
4h. Each irreducible representation Γ in D4h maps onto two

irreducible representations Γ+ and Γ- with a positive or negative character under T , respectively. �e order of the group is 32.

Ŝ2), it is known that building linear combinations with the
spin-�ip partner function can reduce spin-contamination by
providing two new wave functions that are a mixture of the
exact states with odd S or even S, respectively. �e direct-
product group ΩT explains this approach, since the character
of an ms = 0 wave function under the operation of T is
given by (−1)S .113 States with even S must therefore form a
basis for an irreducible representation Γ+, while states with
odd S form a basis for the corresponding irreducible repre-
sentation Γ-. For example, the two degenerate minima at the
square geometry (see Section III A) transform together as the
reducible representation B+

1g⊕A-
2g, and thus their linear combi-

nation yields approximate singlet 1B1g and triplet 3A2g NOCI
states. �ese symmetries underpin the partial spin-restoration
achieved in the Half-Projected Hartree–Fock approach,23,115

although to the best of our knowledge it has not previously
been explained in this explicit group theoretical form.

Appendix B: Zero Hessian Eigenvalues for Overall
Spin-Rotation

When considering the energy landscape for GHF wave func-
tions, we need to take into account the degeneracy of states
with respect to an overall spin-rotation. For wave functions
satisfying Sz symmetry, this transformation corresponds to a
rotation of the spin-collinearity axis. More generally, overall
spin-rotations leave the energy unchanged and can result in
Hessian eigenvectors with zero eigenvalues.116 To understand
the e�ect of these eigenvectors, we require an analytic form
in the κ-vector space that we use to locally parameterise the
HF energy landscape.

A general spin-rotation of angle θ about an axis n̂ is repre-
sented in the two-component spinor basis as

R(n̂, θ) = exp

(
i
θ

2
n̂ · σ

)
, (B1)

where the vector σ = (σx,σy,σz) contains the Pauli spin
matrices. From the form of these spin matrices, only rotations
around the y-axis retain real orbitals, giving the transforma-
tion in the direct-product spin-orbital basis as

R(ŷ, θ) =

(
In cos θ2 In sin θ

2

−In sin θ
2 In cos θ2

)
, (B2)

where In is the n-dimensional identity matrix. �erefore,
overall spin rotations in real GHF lead to (at most) one sys-
tematic zero eigenvalue of the Hessian, and spin rotations
around the x or z axes can be ignored.

�e action of a y-axis spin rotation leads to a rotation of
the atomic spin-orbital basis and transforms the molecular
orbital coe�cients C as

C(θ) = Rn(ŷ, θ)C, (B3)

where C = C(0) and

Rn(ŷ, θ) =

(
In cos θ2 In sin θ

2

−In sin θ
2 In cos θ2

)
. (B4)

However, it is the corresponding transformation in the κ
space of non-redundant orbital rotations [see Eq. (5)] that is
required. �e relevant κ matrix can be identi�ed by solving

Rn(ŷ, θ)C = C exp

(
0O −κᵀ

κ 0V

)
. (B5)

Pre-multiplying by Cᵀg and exploiting the orthogonality
CᵀgC = I yields

exp

(
0O −κᵀ

κ 0V

)
= CᵀgRn(ŷ, θ)C. (B6)

Representing the orbital coe�cient matrix in terms of both
α/β and occupied/virtual subblocks as

C =

(
CO
α CV

α

CO
β CV

β

)
(B7)
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and the overlap tensor in direct-product form (3) gives

Cᵀg =

(
(CO

α)ᵀgn (CO
β )ᵀgn

(CV
α)ᵀgn (CV

β )ᵀgn.

)
(B8)

Hence we obtain

exp

(
0O −κᵀ

κ 0V

)
=

cos θ2

(
SOO
αα + SOO

ββ

)
+ sin θ

2

(
SOO
αβ − SOO

βα

)
, cos θ2

(
SOV
αα + SOV

ββ

)
+ sin θ

2

(
SOV
αβ − SOV

βα

)
cos θ2

(
SVO
αα + SVO

ββ

)
+ sin θ

2

(
SVO
αβ − SVO

βα

)
, cos θ2

(
SVV
αα + SVV

ββ

)
+ sin θ

2

(
SVV
αβ − SVV

βα

) (B9)

where the overlap matrices are de�ned as e.g. SOV
αβ = (CO

α)ᵀgCV
β . Exploiting the expanded orthogonality constraint(

SOO
αα + SOO

ββ , S
OV
αα + SOV

ββ

SVO
αα + SVO

ββ , S
VV
αα + SVV

ββ

)
=

(
IO 0OV
0VO IV

)
, (B10)

where 0OV and 0VO are rectangular matrices of zeros, allows Eq. (B9) to be simpli�ed as

exp

(
0O −κᵀ

κ 0V

)
=

cos
(
θ
2

)
IO + sin θ

2

(
SOO
αβ − SOO

βα

)
− sin θ

2

(
SVO
αβ − SVO

βα

)ᵀ
sin θ

2

(
SVO
αβ − SVO

βα

)
cos
(
θ
2

)
IV + sin θ

2

(
SVV
αβ − SVV

βα

) , (B11)

where we have used
(
SVO
αβ − SVO

βα

)ᵀ
= −

(
SOV
αβ − SOV

βα

)
.

To represent the spin-rotation as a κ transformation, we seek a relationship between Eq. (B11) and the exponential form of
an orthogonal matrix given by117

exp

(
0O −κᵀ

κ 0V

)
=

(
V cos(Σ)V ᵀ + (IO − V V ᵀ) −V sin(Σ)Uᵀ

U sin(Σ)V ᵀ U cos(Σ)Uᵀ + (IV −UUᵀ)

)
, (B12)

where κ = UΣV ᵀ is a compact singular value decomposi-
tion, andU , Σ andV ᵀ have dimensionsNV ×NV ,NV ×NV ,
and NV ×NO , respectively.

�e OV and VO blocks of Eq. (B11) and Eq. (B12) are very
similar in form, but a direct analogy fails in the OO and VV
blocks. However, occupied-occupied and virtual-virtual trans-
formations leave the overall energy unchanged and, although
global spin-rotations can cause such transformations, we want
to avoid them by construction in the κ representation. We
can therefore focus on only the OV or VO blocks of the two
transformation matrices, leading to the relationship

U sin(Σ)V ᵀ = sin
θ

2

(
SVO
αβ − SVO

βα

)
. (B13)

Since Σ is a diagonal matrix, one possible solution for the
corresponding κ matrix is

κ =
θ

2

(
SVO
αβ − SVO

βα

)
. (B14)

Although thisκmatrix does not exactly lead to the global spin-
rotation (due to di�erences in the OO and VV blocks), we can
view it as the combination of a global spin-rotation and a series
of occupied-occupied or virtual-virtual transformations; since
both can leave the energy unchanged, the combined matrix
successfully represents the e�ect of a global spin rotation.

It is possible for this form of the κ matrix associated with
global spin rotations to contain only zero values i.e. when

(
SVO
αβ − SVO

βα

)
= 0VO. For example, κ is zero for a set of

orbital coe�cients satisfying the RHF constraint since the α
orbitals are the same as the β orbitals, and thus the occupied α
spatial orbitals must be strictly orthogonal to the virtual β spa-
tial orbitals and vice versa. In this case, a global spin rotation
leads to pure occupied-occupied and virtual-virtual transfor-
mations that are already excluded by the κ representation.
More generally, a zero Hessian eigenvalue associated with a
global spin rotation will only occur if the coe�cients are not
symmetric with respect to y-axis spin rotations, for example
a spin-symmetry broken UHF solution. �ese zero eigenval-
ues are referred to as improper modes of the Hessian and are
associated with breaking continuous spin symmetries.116

Appendix C: Distinguishing GHF Continuum Solutions

GHF solutions with 〈S2〉 6= 0 form a one-dimensional con-
tinuum of stationary points in the direction of the correspond-
ing zero Hessian eigenvector (Appendix B). Since there are an
in�nite number of possible stationary coe�cients associated
with each continuum, we consider two sets of coe�cients that
lie on the same continuum as equivalent. To identify whether
two sets of coe�cients xC and wC lie on the same GHF con-
tinuum, we must �rst establish a primary axis de�ned by the
spin vector of each solution. Using the collinearity test intro-
duced by Small et al.,120 we de�ne this primary axis as the
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FIG. 12: Energy along selected pathways in square H4 (3-21G) with side lengths as marked on the plot. �e integrated path
length, s, is the sum of the step magnitudes for the κ matrix variables (dimensionless). rc = 8∆V/|λ|(∆s)2 is the cusp

ratio46,118,119 calculated using the magnitude of the negative Hessian eigenvalue, λ, at the transition state. Here ∆V is the
potential energy di�erence between the transition state and minimum, and ∆s is the integrated path length. �e ratio can also
be calculated as rc = 4∆V/λmin(∆s)2 using the smallest Hessian eigenvalue, λmin, at the corresponding minimum, which
gives the same trend. �e magni�ed inset panel shows the results for the smaller side lengths from 1.3485 Å to 1.35 Å; the

corresponding rc values are unity within the limits of numerical precision for calculation of the steepest-descent pathways.

eigenvector of the A matrix with the lowest eigenvalue [see
Eq. (11) in Ref 120]. In the case of a spin-collinear solution,
this axis aligns with the spin-vector and the corresponding
eigenvalue is zero.

Having identi�ed the primary axis for each solution, we
apply a global spin rotation to align this primary axis with the
z-direction using Eq. (B4). We can then compare the two sets
of coe�cients using the wave function and density distance
metrics de�ned in Eq. (12). For collinear solutions, it is possible
for the primary spin axis identi�ed from the collinearity test
to be aligned parallel or antiparallel with the overall spin
vector, i.e. with a positive or negative ms value. However,
once the primary axes of the two solutions are aligned, the
two cases can be identi�ed by applying a π spin-rotation to
one set of coe�cients, and the smaller of the two distances is
then chosen.

Appendix D: Analysis of Cusp Catastrophe

�e disappearance of the four-fold degenerate minima
along the H4 square stretch (Section III C) occurs at cusp catas-
trophes where one minimum coalesces with two index-1 sad-

dle points to leave a single index-1 saddle point. To visualise
this process, the steepest-descent pathways from one of these
transition states are plo�ed at di�erent bond lengths in Fig-
ure 12. �e corresponding pathways were calculated using a
second order method71 implemented in the OPTIM program,
with analytic second derivatives. �e path length to the higher
energy minimum decreases to 0.303 × 10−2 for the closest
approach to the catastrophe, at a side length of 1.34875 Å. In
this limit there is no signi�cant di�erence between using the
integrated path length and the straight line displacement be-
tween the stationary points in calculating the cusp ratio.46,118

�e displacements from the transition state parallel and an-
tiparallel to the eigenvector corresponding to the unique nega-
tive Hessian eigenvalue were obtained using a golden section
search with a maximum value of 0.004 Å. For a side length
of 1.34875 Å the negative eigenvalue at the transition state
is −0.19345 × 10−4 Eh/Å2, and the smallest eigenvalue at
the relevant minimum is 0.96156× 10−5 Eh/Å2. �e ratio of
−2.01 is therefore close to the ideal value of −2, de�nitively
identifying the presence of a cusp catastrophe.46,118



19

SUPPORTING INFORMATION

Orbital rearrangements for the UHF energy landscapes with
ms = 1 and 2.
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24Jiménez-Hoyos, C. A.; Henderson, T. M.; Tsuchimochi, T.; Scuseria, G. E.
Projected Hartree–Fock �eory. J. Chem. Phys. 2012, 136, 164109.

25�om, A. J. W.; Head-Gordon, M. Locating Multiple Self-Consistent Field
Solutions: An Approach Inspired by Metadynamics. Phys. Rev. Le�. 2008,
101, 193001.
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