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Abstract (111 words) 27	  

Salicylic acid (SA) is a plant hormone essential for effective resistance to viral and 28	  

non-viral pathogens.  SA biosynthesis increases rapidly in resistant hosts when a 29	  

dominant host resistance gene product recognizes a pathogen. SA stimulates 30	  

resistance to viral replication, intercellular spread and systemic movement.  However, 31	  

certain viruses stimulate SA biosynthesis in susceptible hosts. This paradoxical 32	  

effect limits virus titer and prevents excessive host damage, suggesting that these 33	  

viruses exploit SA-induced resistance to optimize their accumulation.  Recent work 34	  

showed that SA production in plants does not simply recapitulate bacterial SA 35	  

biosynthetic mechanisms, and that the relative contributions of the shikimate and 36	  

phenylpropanoid pathways to the SA pool differ markedly between plant species.      37	  

 38	  

Article Highlights 39	  

• Salicylic acid (SA) stimulates plants to resist viral replication, cell-to-cell 40	  

movement and systemic movement 41	  

• Recent work indicates that SA also contributes to meristem exclusion of 42	  

viruses and symptom amelioration 43	  

• Certain viruses induce SA biosynthesis as they spread through susceptible 44	  

hosts, suggesting they exploit SA-induced resistance to prevent over-45	  

accumulation and to moderate host damage 46	  

• Plant SA biosynthesis from isochorismate is completed in the cytosol, not in 47	  

the plastid, and the relative importance of the shikimate versus 48	  

phenylpropanoid pathways in SA biosynthesis varies between plants   49	  
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Introduction: Salicylic acid has a central but ambiguous role in defense 50	  

against viruses and other pathogens 51	  

In a groundbreaking paper, White [1**] showed that applying aspirin (acetylsalicylic 52	  

acid), benzoic acid (BA) or salicylic acid (SA) solutions enhanced virus resistance 53	  

and induced pathogenesis-related (PR) protein accumulation in plants of three 54	  

tobacco mosaic virus (TMV)-resistant tobacco cultivars.  PR proteins are known to 55	  

effect resistance against certain cellular phytopathogens but at that time were 56	  

suspected to be antiviral [2].  White’s discoveries led to the realization that SA is a 57	  

phytohormone required for induction of systemic acquired resistance (SAR: a 58	  

pathogen-induced or stress-induced plant-wide enhancement of resistance to 59	  

secondary infection by a variety of phytopathogens), for localization of pathogens to 60	  

the infection site during hypersensitive responses (HRs) induced by resistance (R) 61	  

gene-mediated effector-triggered immunity, and for maintenance of basal resistance 62	  

[3,4,5,6].   63	  

Initial studies suggested that pathogen-induced SA biosynthesis was associated with 64	  

necrosis occurring during the HR or caused by infection with necrotrophic pathogens 65	  

such as Colletotrichum lagenarium [7,8].  However, subsequent work showed that 66	  

certain viruses that spread systemically in hosts without causing necrosis can also 67	  

induce SA accumulation [9,10,11,12]. Viruses that induce SA biosynthesis express 68	  

factors that subvert SA-induced virus resistance, which explains how they can still 69	  

replicate and spread.  However, this provides no clarity as to whether SA 70	  

accumulation is an incidental effect of infection, if it is somehow advantageous to the 71	  

virus, or if it represents a delayed or ineffective resistance response. In this article, 72	  

we review recent advances in the understanding of plant SA biosynthesis and how 73	  

some viruses may exploit its induction to optimize their accumulation.      74	  
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Plant salicylic acid biosynthetic pathways are distinct from those in bacteria 75	  

Soon after SA was shown to be an endogenous defensive signal, rapid progress 76	  

was made in tracing its biosynthesis from intermediates in the phenylpropanoid 77	  

pathway (Figure 1).  In early work with tobacco and it was found that effective HR-78	  

type resistance to TMV, which is dependent upon SA, is inhibited in transgenic 79	  

plants with decreased expression of phenylalanine ammonia-lyase (PAL), which 80	  

catalyzes the initial step of the phenylpropanoid pathway [13]. SA can be 81	  

synthesized by hydroxylation of the phenylpropanoid pathway product BA by a 82	  

cytochrome P450 oxygenase, BA 2-hydroxylase [14,15] or, as later work suggested, 83	  

from ortho-coumarate [16]. During this early research it was also found that SA is 84	  

metabolized to methyl-SA, a volatile resistance inducer, and to biologically inactive 85	  

forms (SA-β-D-glucoside or to a lesser extent to SA-glucose ester) that serve as 86	  

vacuole-localized SA reserves [17,18] (Figure 1).  Recent work indicated that the 87	  

glycosylation status of di-hydroxylated SA metabolites helps regulate HR-related cell 88	  

death [19**,20].  89	  

In 2001 SA biosynthesis research re-focused almost exclusively to the shikimate 90	  

pathway as a source of SA precursors.  This was stimulated by Wildermuth and 91	  

colleagues’ [21] discovery that plants of the SA-deficient Arabidopsis mutant line SA 92	  

induction-deficient 2 (sid2) were depleted in isochorismate synthase (ICS) activity.  93	  

ICS catalyzes conversion of the shikimate pathway product chorismate to 94	  

isochorismate (Figure 1).  Arabidopsis chloroplasts contain two enzymatically active 95	  

ICS isozymes with similar catalytic properties: ICS1, encoded by the wild-type SID2 96	  

gene, and ICS2 [21,22].  ICS1 is translated from an inducible mRNA, transcription of 97	  

which is stimulated by pathogen attack and auto-regulated by SA, whereas ICS2 is 98	  
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produced constitutively at low levels [22,23].  ICS1 but not ICS2 is indispensable for 99	  

effective pathogen resistance in Arabidopsis [21]. 100	  

Bacteria use ICS in the first step of conversion of chorismate to SA, which they use 101	  

in synthesis of iron-scavenging molecules called siderophores [24,25].  The second 102	  

step of bacterial SA synthesis is conversion of isochorismate to SA, catalyzed by 103	  

isochorismate pyruvate-lyase (IPL).  Certain bacteria, including Yersinia 104	  

enterocolitica, produce SA synthases: bifunctional proteins with ICS and IPL 105	  

activities.  Others (e.g. Pseudomonas aeruginosa) produce separate ICS and IPL 106	  

enzyme molecules [24,25] (Figure 1).  Several groups showed that plant ICS 107	  

enzymes lack IPL activity (and are therefore not SA synthases) but attempts to 108	  

identify IPL-like sequences in plant genomes proved unsuccessful [22].  A putative 109	  

Arabidopsis IPL gene, encoding a protein with a sequence characteristic of a 110	  

peroxidase (PRXR1), was detected by screening an Arabidopsis cDNA library using 111	  

SA-responsive bacterial biosensors [26].  However, no work has been reported on 112	  

SA biosynthesis in prxr1 mutants, or if PRXR1 converts isochorismate to SA in vitro. 113	  

Thus, PRXR1’s conjectured IPL activity remains unconfirmed. 114	  

A recent exciting paper by Rekhter and colleagues [27**] indicates that in 115	  

Arabidopsis complete synthesis of SA from chorismate does not require an IPL.  116	  

Previous work had established that the protein ENHANCED DISEASE 117	  

SUSCEPTIBILITY 5 (EDS5) transports SA across chloroplast envelopes [28]. The 118	  

new paper reported that EDS5 also extrudes isochorismate from the chloroplast into 119	  

the cytoplasm where it encounters an amidotransferase, avrPphB SUSCEPTIBLE 3 120	  

(PBS3) [27**].  PBS3 belongs to the Gretchen Hagen 3 group of proteins that 121	  

catalyze formation of several phytohormone-amino acid conjugates.  PBS3 is 122	  

required for normal levels of SA accumulation [29,30,31] and can bind isochorismate 123	  
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or chorismate [27**,32].  Rekhter et al. [27**] demonstrated that PBS3 catalyzes a 124	  

condensation reaction between isochorismate and glutamate to produce 125	  

isochorismate-9-glutamate, a conjugate that decomposes to SA and 2-hydroxy-126	  

acryloyl-N-glutamate (Figure 1).  Thus, it now appears that plant biosynthesis of SA 127	  

from chorismate is completed in the cytosol and is distinct from the bacterial IPL-128	  

dependent mechanism  129	  

At this time it appears that plants synthesize SA using carbon skeletons abstracted 130	  

either from the shikimate or phenylpropanoid pathways.  However, the proportion of 131	  

total SA derived from each pathway differs between plant species.  For instance, in 132	  

Arabidopsis most SA is produced from chorismate via isochorismate and 133	  

isochorismate-9-glutamate, with an additional <10% arising from the 134	  

phenylpropanoid pathway [27**,33].   But in some dicots, such as tobacco and 135	  

Prunus, SA arises predominantly from phenylpropanoid pathway activity 136	  

[13,14,15,34].  Similar variation occurs in the grasses.  For example, most SA in 137	  

barley is synthesized from chorismate [35] whereas SA biosynthesis in maize is 138	  

largely dependent upon PAL activity [36**].   Soybean is a particularly interesting 139	  

case in that the shikimate and phenylpropanoid pathways are equally important in 140	  

providing the carbon skeletons needed to generate sufficient SA to support defense 141	  

against pathogens [37**]. 142	  

Variation between plants that are mostly dependent upon ICS activity versus those 143	  

dependent upon PAL activity for SA production may reflect specific metabolic needs 144	  

or limitations in each plant, or the nature of external challenges (including viruses 145	  

and other pathogens), or the degree of metabolic flexibility required to rise to various 146	  

challenges.  Chorismate is essential for production of several vital metabolites 147	  

synthesized in chloroplasts, including aromatic amino acids, folate and 148	  
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phylloquinone [18]. Some plants may not have sufficient metabolic flexibility to be 149	  

able to maintain synthesis of these compounds while drawing on what might be a 150	  

limited chorismate pool to synthesize SA. 151	  

Salicylic acid-induced resistance to viruses: Still not fully understood 152	  

We recently reviewed the topic of SA-induced resistance to viruses and how it 153	  

connects with resistance mechanisms regulated by signals such as jasmonic acid, 154	  

abscisic acid, azelaic acid, glycerol-3-phosphate, nitric oxide, reactive oxygen 155	  

species (ROS) and pipecolic acid [2].  Therefore, the mechanisms suspected to be 156	  

involved in SA-induced resistance will only be summarized here (Figure 2). 157	  

For the most part SA influences virus resistance by acting as a signal over various 158	  

ranges to stimulate genetic and physiological changes in the plant. An exception to 159	  

this occurs in the case of the viral replicase complex of tomato bushy stunt virus, 160	  

where SA binds directly to a host factor, a glyceraldehyde 3-phosphate 161	  

dehydrogenase (GAPDH) isoform, required for regulating the ratio of viral genomic 162	  

(plus-sense) to viral minus-strand synthesis [38*].  In SA-treated tobacco the relative 163	  

proportions of minus and plus strands of TMV RNA and of sub-genomic mRNAs 164	  

synthesized were also altered. But in that plant-virus combination the effect of SA on 165	  

viral RNA synthesis was indirect and mediated by defensive signaling modulated by 166	  

the mitochondrial respiratory enzyme, alternative oxidase (AOX) [39] (Figure 2).     167	  

AOX and AOX-like enzymes occur in mitochondria of plants, certain fungi, 168	  

invertebrates and proteobacteria, but not in mitochondria of higher vertebrates [40*].  169	  

Plant AOX is an accessory respiratory chain component that prevents over-reduction 170	  

of ubiquinone, neutralizes excess reducing power from photosynthesis, and 171	  

moderates mitochondrial ROS accumulation [40*].  AOX uses ubiquinol to catalyze 172	  
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reduction of oxygen to water, without concomitant generation of ATP [40*].  There 173	  

are multiple examples of virus-plant interactions in which AOX is a factor in SA-174	  

induced virus resistance (reviewed in [2]).  175	  

Modulation of mitochondrial ROS by AOX is theorized to affect nuclear gene 176	  

expression via retrograde signaling. This probably involves signaling transduced via 177	  

reversible oxidation of sulfhydryl groups and reduction of disulfide bridges on 178	  

mitochondrial sensor proteins [41].  SA stimulates mitochondrial ROS production by 179	  

interactions with α-ketoglutarate dehydrogenase and/or inhibition of electron 180	  

transport [2,42*]. Increased mitochondrial ROS levels activate AOX activity and a 181	  

transient increase in AOX gene expression to counteract further ROS production 182	  

[2,42*]. Consistent with this idea, altering glutathione levels can compensate for 183	  

decreased SA accumulation in induction of virus resistance [43].  However, AOX is 184	  

not always a factor in SA-induced virus resistance.  While SA-induced resistance is 185	  

modulated by AOX in Arabidopsis, tobacco and N. benthamiana, it is AOX-186	  

independent in squash [2,44,45] (Figure 2).        187	  

SA-induced virus resistance is not dependent on any known PR protein and in most 188	  

cases is not dependent on NPR1 (‘Non-Expresser of PR proteins 1’), a regulator of 189	  

PR gene expression (reviewed in [2]) (Figure 2).  However, NPR1 is implicated in 190	  

two examples of virus resistance.  One is virus localization during the HR [46]. The 191	  

second is the suggested role of NPR1 in resistance induced by the SA analog 192	  

benzothiadiazole against plantago asiatica mosaic virus in Arabidopsis [47].  SA can 193	  

induce resistance to viral replication, cell-to-cell movement, and systemic movement. 194	  

But which step of the infection cycle is inhibited depends upon the virus-host 195	  

combination [2,6,45,47]. 196	  
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SA treatment can limit access of viruses to tissues adjacent to the meristem; the 197	  

growing tip where most cell division and differentiation occurs [48].  The extent of 198	  

viral invasion of meristematic tissue correlates with symptom severity [48,49].  Until 199	  

recently, meristem access was thought to be controlled predominantly by RNA 200	  

silencing mediated by RNA-dependent RNA polymerase (RDR) 6 (which is not SA-201	  

regulated) and RDR1, which SA induces at the transcriptional level and activates at 202	  

the enzymatic level [48,49].  Although RNA silencing and its reinforcement by SA 203	  

explains exclusion of TMV and potato virus X from meristems and symptom 204	  

amelioration [48,49], Medzihradszky and colleagues [50**] contend that for 205	  

tombusviruses, such as cymbidium ringspot virus, virus-induced changes in host 206	  

gene expression are more important for exclusion.  Most significantly, they point to 207	  

decreased gene expression for GAPDH, which, as previously noted, is not only a 208	  

host factor required for efficient tombusvirus replication but is also a target for SA 209	  

[38*,50**] (Figure 2).  210	  

RDR1 is an ancillary RNA silencing component that maintains basal resistance 211	  

against several viruses and SA enhances its expression in an NPR1-dependent 212	  

fashion [23,48,51].  However, neither RDR1, nor core RNA silencing components 213	  

such as the endonucleases Dicer-like (DCL) 2, 3, or 4 are essential for resistance 214	  

induced by SA or its functional analogs [47,52].  Thus, SA-induced virus resistance 215	  

is not dependent upon RNA silencing.  However, RDR1 enhances expression of 216	  

RDR6, AOX and of a suspected antiviral factor (Inhibitor of Viral Replication [51]). 217	  

Taken together with data showing that RDR1 expression, but not AOX expression, is 218	  

regulated by NPR1 [23], it seems that a complex but incompletely elucidated 219	  

regulatory network coordinates SA-induced resistance with other aspects of SAR 220	  

and with RNA silencing (Figure 2). 221	  
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Balancing act: Salicylic acid as a pro-viral factor 222	  

Treatment of susceptible plants with exogenous SA, synthetic resistance inducers or 223	  

induction of endogenous SA biosynthesis prior to inoculation inhibits infection by 224	  

most viruses, although it is not as effective as ETI in completely preventing infection 225	  

[2,6].   Paradoxically, some of the viruses that would be inhibited in some aspect of 226	  

their infection cycle in plants pre-treated with SA can induce SA biosynthesis, 227	  

although this does not prevent infection (Figure 3).  Examples include potyviruses, 228	  

cucumber mosaic virus (CMV) and cauliflower mosaic virus (CaMV), which induce 229	  

SA biosynthesis during compatible interactions with plants [9,10,11,36**,53].  230	  

Probably the best-studied viral factors that enable viruses to overcome at least some 231	  

aspects of SA-induced resistance include the CMV 2b protein [54,55], the potyviral 232	  

HC-Pro protein [56,57*] and the P6 protein of CaMV [11].  Interestingly, these viral 233	  

gene products also enable their respective viruses to overcome RNA silencing, and 234	  

provoke disease symptoms through interference with small RNA pathways as well 235	  

as via other mechanisms [58,59].  Two amino acid sequences within P6 condition 236	  

suppression of SA-mediated signaling by CaMV [60].  For the 2b protein, the N- and 237	  

C-terminal domains are required for evasion of SA-induced resistance to local virus 238	  

accumulation.  These domains, plus the region containing superimposed nuclear 239	  

localization and RNA binding sequences, and the central gly-ser-glu-leu sequence 240	  

contribute to priming of SA biosynthesis, which is induced by another, unidentified 241	  

CMV gene product.  The phosphorylation (nucleus-cytoplasm shuttling) domain 242	  

negatively regulates SA biosynthesis [10,55,61].  For potyviruses, HC-Pro both 243	  

induces SA biosynthesis and allows potyviruses to evade the antiviral effects of SA, 244	  

with inhibition of downstream signaling caused by interaction with SA-binding protein 245	  

3  [57*,62].     246	  
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Recently, it was found that the tobacco rattle virus (TRV) 16K protein induces SA 247	  

biosynthesis and expression of RDR1 and other SA-regulated genes in systemically 248	  

infected N. benthamiana plants [63**].  Mechanistically, the process hinges on 249	  

interaction of the 16K protein with the host protein coilin, leading to coilin’s relocation 250	  

from the intra-nuclear Cajal bodies to the nucleoli, which triggers SA-induced 251	  

resistance to further TRV accumulation [63**]. Once invoked, this process prevents 252	  

significant accumulation of TRV in young, developing tissues, which display no 253	  

discernable symptoms: a recovery phenotype.  When TRV-induced SA accumulation 254	  

was hindered by transgenic expression of the SA-degrading enzyme SA hydroxylase, 255	  

knockdown of coilin expression, or infection with a TRV 16K-deletion mutant, 256	  

infected plants exhibited aggravated symptoms culminating in necrosis [63**]. 257	  

Shaw and colleagues [63**] showed that recovery, previously attributed solely to 258	  

RNA silencing (critically reviewed in [64]), is SA-dependent and that, rather than 259	  

being a pure resistance phenomenon, may represent viral manipulation of host 260	  

resistance to optimize virus accumulation, whilst limiting damage to the host.  Other 261	  

evidence for viral self-limitation and symptom amelioration by inducing SA 262	  

biosynthesis is provided by studies where transgenic expression of SA hydroxylase 263	  

led to increased pathogenicity in potato virus Y-infected potato plants [53], and in 264	  

PAL-depleted maize plants infected with sugarcane mosaic virus [36**]. SA might be 265	  

considered to be pro-viral where it facilitates limitation of virus accumulation to avoid 266	  

excessive host damage such as necrosis, which would inactivate virus particles in 267	  

dying tissues or might render hosts unattractive to vectors (Figure 3).      268	  

Concluding comments: Future studies of SA-induced resistance 269	  
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Although SA-induced virus resistance occurs independently of RNA silencing, it 270	  

appears that these two phenomena reinforce each other [48,56] and are linked, 271	  

perhaps through the action of RDR1 [51]. It is plausible that SA accumulation in virus 272	  

infected plants primes RNA silencing. This is suggested by observations that in 273	  

transgenic Arabidopsis plants expressing the CMV 2b protein AGO2 expression 274	  

becomes SA-inducible [10], and that AGO2 provides a second line of defense 275	  

against CMV [65].  Priming of RNA silencing by SA, whether though induction and 276	  

activation of RDR1, or by increasing core components of silencing such as AGO2 277	  

would strengthen SA-induced resistance (Figure 3a) but may also be exploitable by 278	  

viruses to control their own accumulation (Figure 3b). Further research on the SA - 279	  

RNA silencing linkage is likely to yield important new insights into plant-virus 280	  

relationships. 281	  

Work on the tobacco-TMV pathosystem suggested that in general SA accumulation 282	  

is not induced during infection of susceptible plants [7].  However, virus-induced SA 283	  

accumulation has now been observed in many susceptible hosts, which suggest that 284	  

this may be the rule, and that the TMV-tobacco system might be an exception. 285	  

Further research in this area may reveal additional functions for virus-induced SA 286	  

accumulation in infected plants beyond modulation of virus titer.  Aguilar and 287	  

colleagues have shown that SA is needed to establish virus-induced drought 288	  

resistance [66] and that virus-induced SA accumulation protects plants against 289	  

secondary infection by bacteria [67**]. Both effects have mutual benefits for host and 290	  

virus and it is conceivable that SA will prove to be a key factor in facilitating quasi-291	  

mutualistic ‘pay-backs’ between viruses and their hosts.  292	  
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Figure Legends 632	  

Figure 1. Biosynthetic Pathways for Production of Salicylic Acid in Plants and 633	  

Bacteria.  (a) In plants SA biosynthesis can utilize carbon skeletons derived from 634	  

either or both of the shikimate or phenylpropanoid pathways. The relative importance 635	  

of each of these pathways varies between plant species. SA derived from the 636	  

phenylpropanoid pathway and dependent upon the conversion of phenylalanine to 637	  

trans-cinnamic acid by PAL and subsequent conversion by either of two CoA-638	  

dependent routes or a CoA-independent route to BA, which is converted to SA by 639	  

the action of a cytochrome P450 enzyme, BA2H, using molecular oxygen.  SA 640	  

produced from carbon skeletons provided by the shikimate pathway is derived from 641	  

isochorismate produced in the plastid. Isochorismate is translocated into the cytosol 642	  

by EDS5 and conjugated to glutamate by PBS3. The resulting compound,	  643	  

isochorismate-9-glutamate, decomposes to release SA and 2-hydroxy-acryloyl-N-644	  

glutamate (1). Alternatively, but only in Brassicaceae, EPS can catalyze 645	  

decomposition of isochorismate-9-glutamate to N-pyruvoyl-L-glutamate (an 2-646	  

hydroxy-acryloyl-N-glutamate isomer) and SA [68] (2). A large proportion of SA is 647	  

glucosylated to SA-β-D-glucoside (labelled SA-glucose) and a smaller proportion to 648	  

the glucose-SA ester and both of these biologically inactive molecules accumulate in 649	  

the vacuole and may act as stores or reserves of SA.  SA can also be metabolized to 650	  

various dihydroxybenzoates, which can also be glycosylated (omitted here for 651	  

simplicity). Methyl-SA is volatile and can act as a resistance inducer and also 652	  

influences plant-insect interactions. (b) In bacteria SA, which is typically utilized for 653	  

the synthesis of siderophores, is derived from the shikimate pathway. In some 654	  

bacteria (e.g. Pseudomonas aeruginosa), chorismate is converted to SA via 655	  

isochorismate by two enzymes, ICS and IPL (i). In others (e.g. Yersinia 656	  
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enterocolitica) an SA synthase, i.e. a bifunctional enzyme with both ICS and IPL 657	  

activity, converts chorismate directly to SA (shown with isochorismate as a transient 658	  

intermediate) (ii).  Abbreviations: AO4, aldehyde oxidase 4; BA, benzoic acid; BA2H, 659	  

BA 2-hydroxylase; BSMT, BA/SA carboxyl methyltransferase; 4-CL, 4-660	  

coumarate:CoA ligase; EDS5, Enhanced Disease Susceptibility 5 (isochorismate 661	  

transporter); EPS1, a member of the BAHD acyltransferase protein family; ICS, 662	  

isochorismate synthase; IPL, isochorismate pyruvate-lyase; PAL, phenylalanine 663	  

ammonia-lyase; PBS3, avrPphB SUSCEPTIBLE 3 (an amidotransferase), and SA, 664	  

salicylic acid.  Based on references [17,18,24,25,27**,68]. 665	  

  666	  
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Figure 2. Salicylic acid sits at the center of a complex network regulating 667	  

resistance to viruses and other pathogens. The diagram depicts in simplified form 668	  

some of the SA-dependent resistance phenomena described in this article (blue-669	  

outlined boxes).  SA can have direct effects on antiviral defense (pale blue arrows) 670	  

through its effects on ROS generation in mitochondria or its inhibitory effect on 671	  

GAPDH (a component of tombusviral replicase complexes). SA-induced ROS 672	  

increases in the mitochondria result in increased resistance to viruses and AOX 673	  

activity and glutathione levels modulate this form of signaling. SA can also stimulate 674	  

resistance to viral intercellular movement via a less well-characterized AOX-675	  

independent signaling system (dark blue arrow). Working through the master 676	  

regulatory factor NPR1 (and its partners NPR3 and 4 and TGA transcription factors, 677	  

which are omitted for simplicity) SA stimulates the transcription of PR mRNAs, 678	  

contributing to defense against non-viral pathogens. SA-stimulated increases in 679	  

RDR1 transcription (and possibly SA-stimulated increases in RDR1 activity) are also 680	  

dependent on NPR1. RDR1 also influences transcription of RDR6 and AOX 681	  

(indicated by asterisks). Abbreviations: AOX, alternative oxidase; GAPDH, 682	  

glyceraldehyde 3-phosphate dehydrogenase; NPR1, Non-Expresser of PR proteins 683	  

1; PR, pathogenesis-related protein; RDR, RNA-dependent RNA polymerase, and 684	  

ROS, reactive oxygen species. Based on references [2,23,38*,41,44,45,49,50**,51].  685	  

 686	  
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Figure 3. Salicylic acid as anti-viral or pro-viral factor. (a) In plants possessing a 688	  

dominant virus-specific resistance (R) gene, recognition of virus (depicted in this 689	  

cartoon by an icosahedron) triggers a hypersensitive reaction (HR), a resistance 690	  

response in which localization of the invading virus to the vicinity of the inoculation 691	  

site is dependent in part upon rapid production of salicylic acid by the host (SA). In 692	  

susceptible plants that have been treated with exogenous SA, the spread of virus out 693	  

of the inoculation zone is inhibited but not always completely halted. (b) Certain 694	  

viruses (e.g. potyviruses, cauliflower mosaic virus, cucumber mosaic virus, and 695	  

tobacco rattle virus) stimulate endogenous SA biosynthesis as they spread 696	  

systemically through susceptible hosts, which limits virus accumulation and 697	  

ameliorates disease symptoms.  (c) In plants depleted in SA (by transgenic 698	  

expression of SA-hydroxylase, or in mutant plants lacking SA biosynthetic capacity) 699	  

virus accumulation is enhance but this may lead to severe stunting of plants (and an 700	  

overall decrease in virus yield per plant) or symptoms may be exacerbated leading 701	  

to necrosis (likely leading to inactivation of virus particles present in the necrotizing 702	  

tissue).  Thus, in scenario (b), the virus is exploiting SA as a pro-viral factor by 703	  

ensuring that virus accumulation is optimized.  Based on references 704	  

[1,2,4,5,35,53,63*]. 705	  
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