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Abstract

Neural approaches to discourse coherence: modeling,
evaluation and application

Youmna Farag

Discourse coherence is an important aspect of text quality that refers to the way
different textual units relate to each other. In this thesis, I investigate neural approaches
to modeling discourse coherence. I present a multi-task neural network where the main
task is to predict a document-level coherence score and the secondary task is to learn
word-level syntactic features. Additionally, I examine the effect of using contextualised
word representations in single-task and multi-task setups. I evaluate my models on a
synthetic dataset where incoherent documents are created by shuffling the sentence order
in coherent original documents. The results show the efficacy of my multi-task learning
approach, particularly when enhanced with contextualised embeddings, achieving new
state-of-the-art results in ranking the coherent documents higher than the incoherent ones
(96.9%). Furthermore, I apply my approach to the realistic domain of people’s everyday
writing, such as emails and online posts, and further demonstrate its ability to capture
various degrees of coherence.

In order to further investigate the linguistic properties captured by coherence models,
I create two datasets that exhibit syntactic and semantic alterations. Evaluating different
models on these datasets reveals their ability to capture syntactic perturbations but their
inadequacy to detect semantic changes. I find that semantic alterations are instead captured
by models that first build sentence representations from averaged word embeddings, then
apply a set of linear transformations over input sentence pairs.

Finally, I present an application for coherence models in the pedagogical domain. I first
demonstrate that state-of-the-art neural approaches to automated essay scoring (AES) are
not robust to adversarially created, grammatical, but incoherent sequences of sentences.
Accordingly, I propose a framework for integrating and jointly training a coherence model
with a state-of-the-art neural AES system in order to enhance its ability to detect such
adversarial input. I show that this joint framework maintains a performance comparable
to the state-of-the-art AES system in predicting a holistic essay score while significantly
outperforming it in adversarial detection.
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Chapter 1

Introduction

In a written discourse, the writer’s aim is to be understood and convey their intended
meaning to their readers in an organised and well-formed manner. The readers, at the
other end, leverage the relations between discourse segments to make the connections and
inferences necessary for comprehension.1 These relations that tie textual units together to
compose a meaningful content are what we refer to as discourse coherence. Coherence is,
therefore, a property of text that describes the way propositions are linked together to
facilitate a logical flow of information and form a meaningful unified whole as the discourse
unfolds. There are various aspects that contribute to discourse coherence, ranging from
overt linguistic devices realised at the surface of text, such as anaphoric references and
repetition of words (Halliday and Hasan, 1976; Morris and Hirst, 1991) to pragmatic
relations inferred by world knowledge (Levinson, 1983; Redeker, 1990). A discourse is
formed by intertwining these properties and not just relying on one type. A coherent
discourse is not a set of random sentences; these sentences are rather connected to represent
a certain idea/topic. For instance, the following example (a) is a coherent text from the
book ‘Outliers: The Story of Success’ (Gladwell, 2017, p. 77), whereas (b) is an incoherent
distracted text from a patient of schizophrenia (Iter et al., 2018):

(a) “One of the most widely used intelligence tests is something called Raven’s
Progressive Matrices. It requires no language skills or specific body of
acquired knowledge. It’s a measure of abstract reasoning skills. A typical
Raven’s test consists of forty-eight items, each one harder than the one before
it, and IQ is calculated based on how many items are answered correctly.”

(b) “When I was three years old, I made my first escape attempt. I had a
[unintelligible] sticker in the window. Like everybody listened to AM radio
in the sixties. They had a garage band down the street. I couldn’t understand
why the shoes were up on the wire. That means there was drug deal in the

1This also applies to spoken discourses, but I focus on written texts in the scope of this thesis.
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neighborhood.”

Coherence can be described as local or global; local coherence refers to the relatedness
between successive sentences, whereas global coherence looks at the structure and topic of
the discourse as a whole. According to Graesser et al. (1994), local coherence is achieved
when “conceptual connections relate the content of adjacent text constituents (i.e., a
phrase, proposition, or clause)”, while global coherence is achieved when “most or all of the
constituents can be linked together by one or more overarching themes”. Similarly, Van Dijk
(1980) defines local coherence in terms of “pairwise relations between sentences of a textual
sequence”, and global coherence by the notions of ‘idea’, ‘theme’, ‘gist’ and ‘upshot’ of a
discourse. Local coherence is, thereby, necessary to achieve global coherence (Marcu, 1997;
Barzilay and Lapata, 2005) and both levels are important to form a coherent discourse. For
instance, the previous example (a) exhibits the two levels, where local coherence between
successive sentences is realised by means such as referential pronouns (e.g., ‘it’ in the
second and third sentences) or semantic relations (e.g., the third sentence elaborates the
second.), while global coherence is achieved by focusing on one idea (i.e., Raven’s test).

This thesis contributes to research on discourse coherence from three perspectives:
modeling, evaluation and application. In the remainder of this chapter, I will give an
overview of these three directions and my work in relation to them, state my thesis aims
and present the structure of the thesis.

1.1 Coherence modeling

Since the 1970s, various theories have been proposed to explicate what makes a dis-
course coherent and study the relations between discourse elements, including lexico-
grammatical (Halliday and Hasan, 1976; Webber, 1988; Hoey, 2005), entity-based (Joshi
and Weinstein, 1981; Gordon et al., 1993; Grosz et al., 1995), psychological (Kintsch and
Van Dijk, 1978; Graesser et al., 1994; Givón, 1995), semantic (Hobbs, 1979; Redeker, 1990;
Sanders et al., 1992), pragmatic (Widdowson, 1978; Van Dijk, 1979; Lascarides and Asher,
1991) and structural (Danes, 1974; Grosz and Sidner, 1986; Mann and Thompson, 1988)
theories. Such studies have provided a foundational framework for coherence modeling
which aims to estimate text coherence with computational models. For instance, lexical
chains of semantically-related words occurring in consecutive sentences have been utilised
as a proxy for text coherence (Morris and Hirst, 1991; Barzilay and Elhadad, 1997; Silber
and McCoy, 2002; Somasundaran et al., 2014), inspired by the work of Halliday and Hasan
(1976) on lexical cohesion. Other models have leveraged the notion of semantic related-
ness between co-occurring words to measure the similarity between their encompassing
sentences, where a higher degree of similarity between neighbouring sentences indicates a
more coherent text (Foltz et al., 1998; Higgins et al., 2004; Yannakoudakis and Briscoe,
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2012). Theories that describe discourse structure have also been translated into coherence
assessment models. For instance, Lin et al. (2011), Feng et al. (2014) and Mesgar and
Strube (2015) computationally estimated coherence by leveraging the semantic/rhetorical
relations between text parts as described by Rhetorical Structure Theory (RST; Mann
and Thompson, 1988), and Louis and Nenkova (2012) modeled the intentional discourse
structure (Grosz and Sidner, 1986) that defines a discourse in terms of the communicative
purposes of its segments. Furthermore, Centering theory (Grosz et al., 1995) has been
the basis of a plethora of coherence models (Miltsakaki and Kukich, 2000; Karamanis,
2001; Hasler, 2004; Karamanis et al., 2004; Rus and Niraula, 2012a); it focuses on the
distribution and realisation of entities across sentences, deriving from the premise that
sentences should be about the same entities to form a coherent discourse. The Entity
Grid (EGrid) model (Barzilay and Lapata, 2005, 2008) is one of the key coherence models
that spurred from Centering theory; it creates an abstract representation of text that
tracks entity distribution and the transition of the syntactic roles entities take across
sentences. The EGrid approach has been adapted and further enhanced in numerous
coherence models (Elsner et al., 2007; Filippova and Strube, 2007; Burstein et al., 2010;
Cheung and Penn, 2010a; Elsner and Charniak, 2011b; Feng and Hirst, 2012; Guinaudeau
and Strube, 2013).

More recently, and with the advancement of deep learning in Natural Language Process-
ing (NLP), neural networks have been adopted in coherence modeling and outperformed
traditional statistical models. A few approaches operate on structured text by incorpo-
rating EGrid representations of text as input to a neural model (Tien Nguyen and Joty,
2017; Joty et al., 2018). Other approaches are end-to-end with some focusing on capturing
global context (Li and Jurafsky, 2017; Logeswaran et al., 2018; Cui et al., 2018; Bohn
et al., 2019; Kumar et al., 2020a) and others focusing on capturing local coherence (Li and
Hovy, 2014; Cui et al., 2017; Mesgar and Strube, 2018; Xu et al., 2019). In contrast to
previous methods that focused on one aspect of coherence (e.g., lexical features, rhetorical
relations or entity distribution), and in many cases relied on handcrafted features or
external tools (i.e., parsers), neural end-to-end approaches take advantage of the ability of
neural networks to automatically learn relevant features from unstructured text. They
capture discourse-related properties by only utilising input word representations that are
initialised from semantically-rich pre-trained spaces, either standard (Mikolov et al., 2013c;
Zou et al., 2013; Pennington et al., 2014; Mikolov et al., 2018) or contextualised (Peters
et al., 2018; Devlin et al., 2019) as will be explained in §2.3.2. I further discuss different
traditional and neural approaches for discourse coherence in the next chapter.

In this thesis, I extend this line of work and propose a neural Multi-Task Learning
(MTL) approach to coherence modeling. MTL has been widely leveraged in machine
learning models, where a model exploits training signals from related tasks to enhance
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its performance on its main task (Caruana, 1997; Ruder, 2017). My MTL model is a
hierarchical neural network that learns to predict a document-level coherence score (at
the network’s top layers) along with word-level syntactic information (at the bottom
layers), taking advantage of inductive transfer between the two tasks. My choice of
the word-level auxiliary task is inspired by previous studies that have utilised syntactic
properties in coherence modeling as indicators of entity salience by using grammatical
roles (GRs) (Grosz et al., 1995; Barzilay and Lapata, 2008), or the intentional structure
of discourse by using Part-of-Speech (POS) tags (Louis and Nenkova, 2012), as will be
detailed in Chapter 3. In contrast to neural EGrid approaches, MTL limits the use of
syntactic parsers to training time as syntactic labels are learned and not fed as input
features, which facilitates generalisation to new test sets.

1.2 Coherence evaluation

Barzilay and Lapata (2005, 2008) presented coherence evaluation as a binary task where a
model should discriminate between coherent and incoherent documents. To that end, they
proposed creating synthetic datasets, where the sentences in source coherent documents
are shuffled to construct incoherent texts with the underlying assumption that the sentence
order in an original document is more coherent than its permuted versions. Consequently,
evaluation is carried out in a pairwise fashion, where a coherence model should be able to
rank a coherent source document higher than its noisy counterparts. The news domain has
become a ubiquitous source for creating coherence datasets. Barzilay and Lapata (2005,
2008) created two datasets of news articles about earthquakes and aviation accidents,
while Elsner and Charniak (2008) proposed to use the Wall Street Journal (WSJ) portion
of the Penn Treebank; these datasets have been widely adopted in coherence modeling
research.

Leveraging synthetic data has become dominant in coherence modeling as it is easy to
create and upscale. Nonetheless, there have been some attempts to create more realistic
data, annotated by humans. For instance, there have been efforts in the pedagogical
domain to assess coherence quality in student essays and test how strongly models agree
with human graders (Higgins et al., 2004; Burstein et al., 2010; Crossley and McNamara,
2011; Burstein et al., 2013; Somasundaran et al., 2014). More recently, Lai and Tetreault
(2018) released a dataset for coherence assessment of texts written by non-professional
writers in everyday contexts (e.g., Yahoo posts and emails from Hillary Clinton’s office
and Enron). The dataset is annotated by human judges with three degrees of coherence:
low, medium and high.

In this thesis, I follow previous work and train and evaluate my coherence models
on synthetic data (WSJ) (Elsner and Charniak, 2008) as well as data from realistic
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domains (Lai and Tetreault, 2018). Furthermore, I extend my evaluation and develop a
framework to investigate the linguistic features learned by neural coherence approaches.
Predicting an overall coherence score for a document, whether in a binary domain or with
multiple levels of coherence, does not tell much about what the models actually learn. This
is particularly problematic in deep learning where neural networks are hard to interpret,
and becomes even more challenging in a complex task like coherence assessment where
many factors contribute to the coherence of a discourse (as will be elaborated in §2.1).
Attempting to pinpoint the linguistic phenomena captured by neural discourse models and
creating datasets that facilitate this has been a neglected area of research, which motivated
me to devise datasets that exhibit syntactic and semantic alterations and examine the
ability of the models to detect them.

1.3 Coherence application

Coherence is an inherent property of discourse quality and thus modeling it has various
NLP applications. For example, in the domain of mental health, measuring discourse
incoherence could help detect symptoms of illnesses that cause disorder in language such
as schizophrenia, Alzheimer’s disease and mild strokes (Elvev̊ag et al., 2007; Ditman and
Kuperberg, 2010; Bedi et al., 2015; Barker et al., 2017; Iter et al., 2018; Paulino et al., 2018).
Furthermore, in the pedagogical domain, evaluating coherence in student essays has gained
much attention as it is an important dimension of writing competence (Miltsakaki and
Kukich, 2000; Higgins and Burstein, 2007; Burstein et al., 2010; Rus and Niraula, 2012b;
Yannakoudakis and Briscoe, 2012; Somasundaran et al., 2014; Feng et al., 2014; Palma and
Atkinson, 2018; Tay et al., 2018; Nadeem et al., 2019). Additionally, coherence approaches
have been widely employed in readability assessment since coherence is strongly associated
with readability, where the more coherent a text is, the easier it is to read (Graesser
et al., 2004; Crossley et al., 2007; Barzilay and Lapata, 2008; Pitler and Nenkova, 2008;
Li and Hovy, 2014; Mesgar and Strube, 2015, 2016; Xia et al., 2016). This is useful
in pedagogy as measuring the difficulty of reading a text helps teachers select reading
comprehension tasks based on students’ abilities. In addition, coherence modeling has
been frequently paired with information insertion and information ordering tasks. In
information insertion, a sentence is pulled out of a text and the model is tasked with
inserting it back in its original place (Chen et al., 2007; Elsner and Charniak, 2008, 2011b;
Guinaudeau and Strube, 2013; Tien Nguyen and Joty, 2017); this is useful in community
edited web resources such as Wikipedia that require continuous update and insertion of
new information (Chen et al., 2007). In information ordering, a model is asked to organise
a given set of sentences to form a coherent text (Lapata, 2003; Barzilay and Lee, 2004;
Bollegala et al., 2006; Gong et al., 2016; Li and Jurafsky, 2017; Cui et al., 2018; Logeswaran
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et al., 2018; Yin et al., 2019a; Wang and Wan, 2019; Oh et al., 2019; Kumar et al., 2020a),
which has utility in text generation applications such as ordering the sentences produced
by multi-document summarisers (Lapata, 2003). Accordingly, coherence modeling has
been leveraged in summarisation tasks, either by rating the coherence of human or machine
generated summaries (Barzilay and Lapata, 2008; Pitler et al., 2010; Feng and Hirst,
2012; Zhang et al., 2015; Tien Nguyen and Joty, 2017), or generating coherent summaries
for documents (Barzilay and Elhadad, 1997, 2002; Barzilay and Lee, 2004; Barzilay and
McKeown, 2005; Parveen and Strube, 2015; Koto et al., 2019). It has also been integrated
in other text generation tasks such as machine translation (Meyer et al., 2012; Hardmeier,
2014; Smith et al., 2016b; Joty et al., 2017; Born et al., 2017; Bawden et al., 2018)
and story generation (McIntyre and Lapata, 2010; Clark et al., 2018). Other coherence
applications include authorship attribution (Feng and Hirst, 2014; Ferracane et al., 2017),
information retrieval (Petersen et al., 2015), text segmentation (Wang et al., 2017a; Glavaš
and Somasundaran, 2020), question answering (Verberne et al., 2007) and conversation
thread disentanglement and reconstruction (Elsner and Charniak, 2011a; Joty et al., 2018).

This wide variety of discourse coherence applications is my main motivation to con-
tribute to discourse coherence research. As an application to coherence modeling, I apply
my coherence models to the pedagogical domain and show that integrating them to a
state-of-the-art neural Automated Essay Scoring (AES) model enhances its ability to
capture discourse-related features. More concretely, I demonstrate that state-of-the-art
AES is not well-suited to capturing adversarial input of grammatical but incoherent
sequences of sentences. To address this problem, I propose a framework for integrating
and jointly training coherence models with a state-of-the-art AES model. I show that this
joint learning approach can effectively capture adversarial input, further contributing to
the development of an approach that strengthens AES validity.

1.4 Thesis aims

This thesis contributes to the work on discourse coherence and its main aims are as follows:

• Develop a neural model to assess text coherence; the model leverages syntactic
features relevant to discourse coherence efficiently as the features are only extracted
for training data. This is achieved by training the model in an MTL fashion,
where the model learns to predict a document-level coherence score (as the main
task) together with word-level syntactic information (as an auxiliary task), taking
advantage of inductive transfer between the two tasks.

• Compare the effect of using GRs or POS tags as the labels of the auxiliary task.

• Investigate the value of initialising the model with contextualised embeddings and
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whether the features learned from these embeddings are complementary to the
auxiliary syntactic labels leveraged by MTL.

• Validate the MTL approach by creating other variants to the model that: perform
the single task of predicting a document-level coherence score and/or incorporate
the syntactic information in different fashions.

• Compare the MTL approach to state-of-the-art neural models that are either end-
to-end or operate on EGrid representations of text, where the grids are required at
both training and test times.

• Evaluate coherence models on the standard binary discrimination task of synthetic
data where the model should rank a coherent document higher than its permuted
counterparts, in addition to a stricter evaluation setting in which the model is tested
on its ability to rank coherent documents higher than any incoherent/permuted
document in the dataset, and not just its own permuted versions.

• Evaluate coherence models on the realistic domains of everyday writing (e.g., online
posts and emails) that reflect varying degrees of coherence.

• Inspect the features the models focus on using visualisation techniques and examine
quantitatively and qualitatively their biases towards certain syntactic labels.

• Create an evaluation framework for systematically investigating the syntactic and se-
mantic features that neural coherence models learn and analysing the inter-sentential
properties they capture with respect to model architecture and pre-training domain.
This helps understand the models and therefore, provide insight into how to frame
the task of coherence modeling and further improve the models.

• Demonstrate empirically that state-of-the-art approaches to AES are not robust
against adversarially crafted essays of grammatical but incoherent sequences of
sentences.

• Build a neural network that strengthens AES validity by capturing adversarial essays
as well as achieving a competitive performance to state-of-the-art AES models in
predicting a holistic essay score. The network jointly trains a coherence model and
a neural AES system; I experiment with plugging different coherence models into
the joint framework and investigate different parameter sharing setups between the
coherence and AES models.
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1.5 Thesis structure

The rest of the thesis is structured as follows. In Chapter 2, I put my work in context and
give a background about various theories that explain discourse coherence, traditional and
neural approaches to coherence modeling and different neural encoders used to generate
text representations. In the same chapter, I also give an overview about MTL, highlight a
few approaches used to interpret neural models and present the evaluation metrics I use.
In Chapter 3, I present my MTL approach. I first describe my hierarchical model that
performs the single-task of predicting a document-level coherence score then detail how it
is enhanced with: auxiliary functions to predict word-level syntactic properties (GRs or
POS tags) and/or contextualised word embeddings. I also discuss different approaches
to incorporating syntactic information to further validate my MTL approach. Chapter 4
discusses my experimental results in coherence modeling. I present the two domains
I leverage, i.e., synthetic binary data and realistic data, explain the training setup for
my experiments and report the results of evaluating my models on the two domains in
comparison to previous state-of-the-art approaches. Furthermore, I explicate the model
performance with further analysis and visualisation techniques to understand what features
the models focus on. Next, in Chapter 5, I introduce my evaluation framework for discourse
models and detail the two datasets I create to better understand the models. The chapter
includes results and analysis of evaluating a wide variety of neural approaches with this
framework. After that in Chapter 6, I propose my joint learning framework for AES that
is robust to adversarial input. I explain how a neural AES model can be integrated with
different discourse models in this framework and present the results of evaluating the AES
and the joint learning models on predicting holistic essay scores in addition to flagging
adversarial essays. I also investigate the effect of incorporating contextualised embeddings
into the evaluated models. Finally, I conclude the thesis in Chapter 7 with a summary of
my work and outline possible directions for future research.
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Chapter 2

Background

2.1 Theories and frameworks of coherence

Due to the key role coherence plays in defining a meaningful readable discourse, numerous
studies have focused on investigating the features that contribute to discourse coherence. In
this section, I summarise some of these theories that later formed the basis for computational
models.

2.1.1 Cohesion

Cohesion is defined in terms of the lexical and grammatical devices that link text elements
to one another. According to Halliday and Hasan (1976), cohesion determines whether
a set of sentences has a ‘texture’ that gives it “the property of being a text”; i.e., when
the interpretation of a textual unit is dependent on another. Cohesion leverages explicit
linguistic cues identified at the surface of text which either connect elements in the same
sentence (intra-sentential) or across sentences (inter-sentential). Halliday and Hasan (1976)
classify the cohesive relations that signal coherence in text into 5 categories:

• Reference, which includes personal (e.g., he, she) and demonstrative (e.g., this, that)
pronouns and comparatives (e.g., same, fewer). Both the referenced item and its
anaphora (referencing word) refer to the same entity in the real world, example:

(1.a) Mary went shopping. She bought a sweater.

• Substitution, which occurs when an entity appearing in a sentence is substituted in
the next for another that has the same structural function. The substituting item
could be nominal (e.g., one, the same), verbal (e.g., do, do so) or clausal (e.g., so,
not), example:

(1.b) John bought a blue sweater. Mary bought a pink one.
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• Ellipsis, which occurs when an entity in a sentence is the same as a previous one
and is deleted, example:

(1.c) Mary was the first person to leave the party. John was the second
<person to leave the party>.

• Conjunction, which includes conjunctive phrases (i.e., discourse markers or connec-
tives) that may be additive (e.g., furthermore, moreover), adversative (e.g., however,
nevertheless), causal (e.g., therefore, thus) or temporal (e.g., afterwards, next),
example:

(1.d) John studied hard for the exam. However, he failed.

• Lexical cohesion, which depends on the selection of vocabulary. It could be realised
via reiteration by repeating the same word or using a synonym / superordinate /
subordinate / general noun, or via collocation by using semantically related words
that often co-occur, example:

(1.e) John went to the park. The park was empty. (reiteration by repeti-
tion)
(1.f) The weather is nice today. It is sunny. (collocation)

Reference, substitution and ellipsis can be classified as types of grammatical cohesion, while
conjunction can be classified as a combination of both grammatical and lexical cohesion.

Although, cohesive ties are indicators of text coherence and readability (Haviland and
Clark, 1974; McCulley, 1985; Haberlandt, 1982; McNamara, 2001; Duran et al., 2007;
Crossley and McNamara, 2016), cohesion does not necessarily entail coherence (Carrell,
1982; Brown and Yule, 1983; Giora, 1985). I elaborate this with an example from Hobbs
(1979):

(2) John took a train from Paris to Istanbul. He likes spinach.

Even though the second sentence contains a pronoun (he) that refers to an entity in the
first (John), the text is not coherent. This takes us to another level of coherence achieved
by semantic/pragmatic relations.

2.1.2 Coherence relations

Not all discourse relations can be expressed in terms of explicit cohesive ties and some can
be defined as “the relationship between the illocutionary acts which propositions, not always
overtly linked, are being used to perform.” (Widdowson, 1978, p. 28). Following Hobbs
(1979), I refer to these relations as Coherence Relations; they are analogous to Halliday
and Hasan’s 1976 ‘conjunctive relations’ but could also be implicit without recourse to
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discourse connectives. They can be categorised into different types that have been widely
studied in the literature, including temporal, elaborative, causal, justification, and contrast
relations (Hobbs, 1979; van Dijk and Kintsch, 1983; Mann and Thompson, 1988; Hovy,
1990; Sanders et al., 1992; Lascarides and Asher, 1993; Graesser et al., 1994; Kehler and
Kehler, 2002).

Coherence relations can be semantic or pragmatic. Semantic relations link the under-
lying meaning of propositions. For example, if I change (2) to “John took a train from
Paris to Istanbul. He hates planes.”, it becomes more coherent because of the causality
relation introduced between the two sentences. Semantic relations could be implicit or
signalled by cohesive devices; examples:

(3.a) Sally is crying. Nanny has thrown out the time-worn teddy bear. (from Re-
deker (1990))
(3.b) Sally is crying. That is because nanny has thrown out the time-worn
teddy bear.

In (3.a), we understand the causal connection between the two sentences without an
explicit connective, while in (3.b) the causal connection is made explicit by leveraging
the conjunctive phrase ‘That is because’. In contrast, pragmatic relations need world
knowledge and context understanding to be inferred. Levinson (1983) defines pragmatics
as “the study of relations between language and context that are basic to an account of
language understanding”. Implicatures, for instance, are a form of pragmatics in which
there is discrepancy between what is said and what is implied (Grice, 1975). Consider this
example:

(4.a) There is a big party next week. Mary has to work.

It is implied that Mary will not be able to go to the party, although the text does not
mention it. Other examples of pragmatics include irony:

(4.b) No one attended John’s birthday party. He is very popular.

Moreover, if it is established in example (2) that Istanbul is famous for its spinach, the
example becomes more plausible. Pragmatic relations are, therefore, more challenging
to capture and require better understanding of the external situational model of text.
For a more detailed account of the distinction between semantic and pragmatic relations,
I refer the reader to the work of Widdowson (1978), Van Dijk (1979, 1980), Schiffrin
(1987), Redeker (1990) and Sanders et al. (1992).

Structure of coherence relations Due to the importance of coherence relations in
forming a meaningful discourse, research efforts have been devoted to formalising how
they are structured and organised in text. One of the prominent theories that describes
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discourse structure is Rhetorical Structure Theory (RST) (Mann and Thompson, 1988),
where a text is represented in a hierarchical fashion (as a tree) in which every discourse
unit (tree node) is rhetorically related to other units in the text. Rhetorical relations
have various types such as temporal, cause, elaboration, contrast and condition. They can
also be semantic or pragmatic, and explicit (i.e., signalled by discourse connectives) or
implicit. In order to facilitate the utilisation of RST, Carlson et al. (2001) released the
RST Discourse Treebank (RST-DT) corpus which consists of WSJ articles annotated with
rhetorical relations. RST-DT has been widely used in discourse parsing and coherence
modeling.

There are other theories that formalise coherence relations such as Discourse Lexicalized
Tree Adjoining Grammar (D-LTAG) (Webber et al., 2003) that defines relations in local
contexts instead of representing the whole text as a tree. In D-LTAG, a discourse
connective forms a predicate that takes two arguments (Arg1 and Arg2). Prasad et al.
(2008) adopted the D-LTAG approach to annotate a portion of the WSJ and create the
Penn Discourse Treebank (PDTB). Example from the PDTB is “[Third-quarter sales in
Europe were exceptionally strong,]Arg1 boosted by promotional programs and new products
– [although]connective [weaker foreign currencies reduced the company’s earnings]Arg2.”

2.1.3 Discourse structure theory

Grosz and Sidner (1986) describe discourse structure as three interacting components:

1. Linguistic structure: a discourse is divided into segments and each segment consists
of a group of topically related propositions. Local coherence ties the propositions
in the same segment, while global coherence exists between segments in the same
discourse.

2. Attentional structure: at any given point in a discourse, there is a space of entities
that constitute its center of attention and this space changes, according to a set of
transition rules (§2.1.4), as the discourse unfolds.

3. Intentional structure: each proposition has a communicative goal that contributes to
achieve the overall discourse purpose. Discourse intentions and their relations form
the overall rationale of text.

The intentional structure, therefore, captures the purposes of the discourse segments
identified by the linguistic structure, and the attentional structure abstracts the focus of
attention and models how it changes throughout the discourse.
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2.1.4 Centering theory

Centering theory (Grosz et al., 1995) is one of the fundamental entity-based theories that
postulate the idea that a coherent discourse is ‘about’ the same entities (Chafe, 1976; Joshi
and Weinstein, 1981; Prince, 1981; Grosz et al., 1983; Gordon et al., 1993).1 The theory
describes how entities are distributed and realised across discourse units, thereby capturing
the attentional state of discourse structure. More concretely, at any given point in a
discourse, there is a salient entity that constitutes the focus of the discourse at that point.
The notion of salience has been promoted by psychological studies of discourse (van Dijk and
Kintsch, 1983; Givón, 1992); it describes the discourse elements that are more accessible in
the memory of the reader/hearer, and therefore have a more prominent role in determining
discourse coherence. In other words, as a reader/hearer processes a sentence/utterance,
they build a mental representation of it in their memory in which some parts are more active
than others and thus more anticipated to be encountered in the next sentences/utterances

— these parts could be described as salient. Centering theory ranks the salience of entities
according to their grammatical roles (GRs), where more prominent roles correspond to
higher degrees of salience (e.g., subject > object > indirect object > others); this premise
has been adopted by many entity-based theories (Brennan et al., 1987; Walker et al., 1994;
Grosz et al., 1995; Kameyama, 1998). Other research has determined saliency based on
other factors such as cognitive accessibility or familiarity (Prince, 1981; Gundel et al.,
1993; Kameyama, 1998; Strube and Hahn, 1999), frequency (Barzilay and Lapata, 2008)
or the surface positions of words (Gernsbacher and Hargreaves, 1988; Rambow, 1993).2

According to Centering theory, texts in which the same centers of attention are
maintained in consecutive sentences are more coherent than those with repeated shifts
from one entity to the other. I borrow two examples from Grosz et al. (1995):

(a) (S1) John went to his favorite music store to buy a piano.
(S2) He had frequented the store for many years.
(S3) He was excited that he could finally buy a piano.
(S4) He arrived just as the store was closing for the day.

(b) (S1) John went to his favorite music store to buy a piano.
(S2) It was a store John had frequented for many years.
(S3) He was excited that he could finally buy a piano.
(S4) It was closing just as John arrived.

1Centering theory was initially proposed in 1986 by Grosz, B. J., Joshi, A. K., and Weinstein, S and
widely circulated as a manuscript, then published in 1995.

2The surface positions of words is more useful in languages with free(r) word order such as German.
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Cb(Si) = Cb(Si−1)
Cb(Si) 6= Cb(Si−1)or undefined Cb(Si−1)

Cb(Si) = Cp Continue Smooth-Shift
Cb(Si) 6= Cp Retain Rough-Shift

Table 2.1: Entity transitions in Centering theory.

Grosz et al. (1995) argue that example (a) is intuitively more coherent than (b) based
on how the two entities (‘John’ and ‘store’) are introduced and realised. In (a), ‘John’
continues to be the focus of attention across all utterances while (b) keeps alternating focus
between ‘John’ and ‘store’. More formally, each sentence Si evokes a set of forward-looking
centers (Cf s) and one backward-looking center (Cb). In Si, the Cf s are ranked by salience,
according to their grammatical roles (subject > object > indirect object > others), and
the highest-ranked Cf is the preferred center (Cp). The highest-ranked element of Si−1

that is realised in Si constitutes Cb(Si).3 There are 4 possible types of entity transitions
across sentences; they are ranked from more coherent to less as: {continue, retain,
smooth-shift, rough-shift} which I define in Table 2.1. For instance, in example (a)
there is a continue transition between S1 and S2 as the center of attention is maintained;
i.e., ‘John’ which is the subject and hence most salient entity in S1 continues to have the
same role in S2 via pronominalisation. In contrast, the transition between S1 and S2 in
example (b) is a retain one as the center of attention changes from ‘John’ in S1 to ‘store’
in S2 (via the pronoun ‘It’).

2.2 Traditional approaches to coherence modeling

In this section, I give an overview of coherence approaches that translate some of the
aforementioned theories into computational models, using statistical NLP methods.

2.2.1 Semantic relatedness

Numerous coherence approaches were inspired by lexical cohesion that captures coherence
in terms of repetition of words or using semantically related terms across text. I focus
on two main approaches: lexical chains (Morris and Hirst, 1991) and Latent Semantic
Analysis (LSA) (Landauer and Dumais, 1997).

Lexical chains A lexical chain is a sequence of semantically-related words that occurs
in a span of text. For example, in the following paragraph from Morris and Hirst (1991),
the underlined words form a lexical chain.

3This description of centers follows Brennan et al. (1987).
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“In front of me lay a virgin crescent cut out of pine bush. A dozen houses were
going up, in various stages of construction, surrounded by hummocks of dry
earth and stands of precariously tall trees nude halfway up their trunks. They
were the kind of trees you might see in the mountains.”

There are various ways to determine the candidate words for a chain including leverag-
ing knowledge-bases such as thesauri (Morris and Hirst, 1991) or WordNet (Hirst et al.,
1998), distributional co-occurrence of words (Marathe and Hirst, 2010), or topic-based
models (Remus and Biemann, 2013). The strength of a chain could be estimated by a
few properties such as length or degree of relatedness between words (Morris and Hirst,
1991; Barzilay and Elhadad, 1997; Hirst et al., 1998). A coherent text is expected to
have strong chains. Accordingly, lexical chains were used to evaluate coherence in student
essays (Somasundaran et al., 2014; Rahimi et al., 2015) and machine generated sum-
maries (Lapata and Barzilay, 2005). They have also been leveraged in text summarisation
since strong chains correspond to important parts of text that need to be extracted for
the summary (Barzilay and Elhadad, 1997; Brunn et al., 2001; Silber and McCoy, 2002;
Li et al., 2007; Ercan and Cicekli, 2008; Berker and Güngör, 2012; Lynn et al., 2018), as
well as text segmentation tasks by capturing the linguistic structure of discourse and its
topically related segments (Manabu and Takeo, 1994; Galley et al., 2003; Stokes et al.,
2004; Marathe and Hirst, 2010; Tatar et al., 2013).

Latent Semantic Analysis (LSA) Spurring from the distributional hypothesis that
words with similar meanings occur in similar contexts (Harris, 1954; Firth, 1957), LSA
aims to capture the meaning of each word by constructing a matrix that represents its co-
occurring words, then reducing its dimensionality to a vector via dimensionality reduction
techniques (e.g., singular value decomposition (Berry et al., 1995)). A sentence vector is
then generated by calculating the mean of the vectors of its words. Therefore, two sentences
that contain semantically-related words are expected to have similar vectors. Foltz et al.
(1998) adopted LSA to estimate local coherence by measuring the semantic similarity
between adjacent sentences, where similarity is defined as the cosine similarity between
their respective vectors. The overall document coherence is then computed by averaging
its local similarity scores. LSA, and other semantic similarity methods that inherit from
it, have been used to assess student writing quality (Wiemer-Hastings and Graesser,
2000; Landauer, 2003; Higgins et al., 2004; Higgins and Burstein, 2007; Yannakoudakis
and Briscoe, 2012; Palma and Atkinson, 2018). The mental health domain has also
leveraged LSA to assess discourses by patients who suffer from disordered speech, such
as schizophrenia patients, and locate where the abrupt topic shifts occur (Elvev̊ag et al.,
2007; Bedi et al., 2015; Iter et al., 2018).
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2.2.2 Probabilistic models

Probabilistic models derive from the underlying premise that we can predict the probability
of a sentence, or generate it, based on its surrounding context. The overall coherence of
a document is then approximated by combining the probabilities of all of its sentences.
I categorise traditional probabilistic models into models that utilise lexical features or
syntactic ones.

Lexicalised models Lapata (2003) estimated the probability of a sentence based on
its previous sentence. They represented sentences as a set of features including verbs,
nouns and grammatical dependencies, and calculated the probability of two sentences
occurring consecutively using the cartesian product of their features. Barzilay and Lee
(2004) approximated the probability of transitioning from one topic to another using
a domain-specific content model, specifically a Hidden Markov Model (HMM), where
each state corresponds to a distinct topic. In this model, a high transition probability
corresponds to a more coherent text. Soricut and Marcu (2006) captured local coherence by
adopting the IBM translation approach (Brown et al., 1993) that estimates the probability
of a word appearing in a sentence conditioned on the words from its previous sentence.
This is based on the idea that using certain words in a sentence triggers the usage of other
words in the following sentences. Other probabilistic models rely on capturing coreference
information. For instance, Elsner and Charniak (2008) created a discourse-new model
that estimated the coherence of a document based on the type of mentions of its noun
phrases (i.e., if it is a first mention or a subsequent one).

Syntax-based models The aforementioned probabilistic models are lexicalised, but
unlexicalised generative models were also adopted. Louis and Nenkova (2012) proposed to
capture the intentional structure of discourse (§2.1.3) using syntactic patterns, where the
syntax of a sentence is represented by nodes at a specific level in its parse tree or a sequence
of POS tags. They argued that sentences with similar syntactic structures are likely to
have similar communicative goals that contribute to the purpose of the whole discourse.
In other words, each sentence type (e.g., questions or definitions) has distinguishable
syntax and therefore syntax could be used as a proxy for discourse intentions. In order to
verify this hypothesis, they examined the grammatical production rules that co-occur in
adjacent sentences in the WSJ and found that certain patterns often co-occur (further
details are provided in §5.1). Louis and Nenkova (2012) estimated local coherence in terms
of the probabilities of pairs of syntactic items occurring in adjacent sentences. They also
implemented a global HMM-based coherence model where each state corresponds to similar
syntactic constructions, thus presumably represents a discourse communicative goal, and
transitions between states model the syntactic regularities of the discourse. Accordingly,
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coherent texts in a specific domain that are expected to exhibit similar syntactic patterns
should have similar transition probabilities that discriminate them from incoherent texts
where those patterns are broken. The HMM-based approach surpassed the lexicalised
content model of Barzilay and Lee (2004) and the EGrid model of Barzilay and Lapata
(2008) that will be presented in the next section.

2.2.3 Entity-based methods

Entity-based approaches capture coherence by modeling the distribution and realisation of
entities as a discourse unfolds. Some approaches directly translate Centering theory (§2.1.4)
into a computational framework to evaluate local coherence. For example, Miltsakaki
and Kukich (2000) manually annotated a corpus of student essays with entity transitions
and found that rough shifts could be used as a proxy for essay incoherence. Furthermore,
incorporating rough shifts in the e-rater essay scoring system (Burstein et al., 1998)
significantly improved its performance. Rus and Niraula (2012b) on the other hand
automatically detected the continue transitions of Centering theory and leveraged them
to capture local coherence in student texts. Their method significantly correlated with
human judgments for coherence.

Entity Grid (EGrid) Barzilay and Lapata (2005, 2008) built an unlexicalised model
that captures local coherence by abstracting entity transitions in adjacent sentences; they
referred to their model as Entity Grid (EGrid) representation. The grid is a matrix where
rows represent sentences and columns refer to entities (which are the head nouns of NPs).
Each cell ai,j denotes the grammatical role of the jth entity in the ith sentence and can
take one of four values: subject ‘S’, object ‘O’, any other role ‘X’ or ‘-’ if it does not
appear in the sentence. Fig. 2.1 shows an EGrid from Barzilay and Lapata (2008). Entity
transitions are extracted from this grid according to a predefined length; for example, if the
transition length is set to 2, there are 16 possible entity transitions (e.g., {S,S}, {O,X},
{X,−},...etc.). Transition probabilities are then calculated from the EGrid to produce
a feature vector for the text. For instance, in Fig. 2.1, the probability of the transition
{S,−}= 0.08 (there are 75 transitions in the grid and {S,−} occurs 6 times). A feature
vector of length 16 will be generated by doing this calculation for each transition type,
which Barzilay and Lapata (2008) used to train a Support Vector Machine (SVM; Vapnik,
1995) to discriminate between transitions in coherent documents vs. incoherent shuffled
ones. Furthermore, Barzilay and Lapata (2008) investigated the impact of coreference
(i.e., mapping coreferential entities to the same entity), salience (determined by entity
frequency) and syntax (by creating another setup agnostic to syntax with only present
(‘X’) or absent (‘−’) values for cells) and found that their impact is domain dependent.
They applied their EGrid model on the tasks of ranking coherent documents against
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1 [The Justice Department]S is conducting an [anti-trust trial]O against [Microsoft Corp.]X

   with [evidence]X that [the company]S is increasingly attempting to crush [competitors]O. 
2 [Microsoft]O is accused of trying to forcefully buy into [markets]X where [its own products]S

   are not competitive enough to unseat [established brands]O. 
3 [The case]S revolves around [evidence]O of [Microsoft]S aggressively pressuring 
   [Netscape]O into merging [browser software]O. 
4 [Microsoft]S claims [its tactics]S are commonplace and good economically.
5 [The government]S may file [a civil suit]O ruling that [conspiracy]S to curb [competition]O

   through [collusion]X is [a violation of the Sherman Act]O.
 6 [Microsoft]S continues to show [increased earnings]O despite [the trial]X.

D
ep

ar
tm

en
t

Tr
ia

l

M
ic

ro
so

ft

Ev
id

en
ce

C
om

pe
tit

or
s

M
ar

ke
ts

Pr
od

uc
ts

B
ra

nd
s

C
as

e

N
et

sc
ap

e

So
ftw

ar
e

Ta
ct

ic
s

G
ov

er
nm

en
t

Su
it

Ea
rn

in
gs

S O S X O - - - - - - - - - -

- - O - - X S O - - - - - - -

- - S O - - - - S O O - - - -

- - S - - - - - - - - S - - -

- - - - - - - - - - - - S O -

- X S - - - - - - - - - - - O

1
2
3
4
5
6

Figure 2.1: EGrid example from Barzilay and Lapata (2008). The left hand side displays
a text with grammatical annotations for entities and the right hand side depicts the grid
representation for the text where cells correspond to grammatical roles (subjects (S),
objects (O), or neither (X)), or (-) if the entity does not appear in the sentence.

their incoherent permuted versions, evaluating the coherence of summaries and readability
assessment.

The EGrid has become a de facto coherence model that was further extended and
widely adopted in discourse-related applications. Elsner and Charniak (2008) were able to
significantly improve their discourse-new model (§2.2.2) by incorporating EGrid transition
probabilities. Elsner and Charniak (2011b) extended EGrids with entity-specific features
such as: whether an entity has a proper mention (i.e., is realised by a proper noun),
whether it has a singular mention, its Named Entity label and number of modifiers, in
addition to other coreference domain-specific features. They also expanded the definition of
entities to include non-head mentions in NPs. Their enhanced EGrid version outperformed
the basic one in coherence discrimination and sentence insertion tasks. Guinaudeau and
Strube (2013) adapted EGrids in a graph-based framework where there are two sets of
nodes: sentences and entities. An entity is linked to the sentence it appears in via an edge
weighted by its grammatical role, and entity transitions between sentences are modeled
by a projection graph, where two sentences are connected if they share the same entity.
EGrids were also combined with HMM generative approaches in order to capture both
local and global coherence via log-linear models (Soricut and Marcu, 2006) or learning local
and global features jointly (Elsner et al., 2007). Other models extended the EGrids with
semantic relatedness features between entities that do not necessarily entail coreference,
where semantic relations are extracted from knowledge bases (Filippova and Strube,
2007; Zhang et al., 2015). EGrids were also adapted to other languages; Cheung and
Penn (2010a) substituted grammatical roles with topological fields that capture high-level
clausal structure in German and showed that this approach further boosts performance on
detecting permuted texts.
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2.2.4 Coherence relation models

Discourse research has also exploited coherence/rhetorical relations (§2.1.2) in computa-
tional models for coherence assessment. Lin et al. (2011) leveraged the PDTB coherence
relations to build a matrix representation of text with rows corresponding to sentences and
columns to terms that take role as an argument in the predicate-argument style relations.
In the matrix, a cell ai,j corresponds to the coherence relation type and argument in which
term i takes part in sentence j; e.g., if a term is part of Arg1 in a comparison relation the
cell will be annotated with ‘Comp.Arg1’. Similar to Barzilay and Lapata (2008), coherence
is calculated based on the probability of the relation/argument transitions in the matrix.
They were able to gain further improvements in coherence ranking by combining their
model features with EGrid features. PDTB-style discourse relations were also utilised in
graph-based models (Guinaudeau and Strube, 2013) and combined with entity graphs
for readability assessment (Mesgar and Strube, 2015). Feng et al. (2014) adopted an
approach similar to Lin et al. (2011) but using RST relations and proved their efficacy
over PDTB relations and EGrids in coherence ranking and detecting organisation in
student essays. RST-based models have been utilised in various domains such as coherence
ranking in Brazilian Portuguese texts (Dias et al., 2014) and assessing coherence in student
writing (Burstein et al., 2013; Huang et al., 2018).

2.3 Deep learning representations

In the previous section, I gave an overview of traditional approaches to coherence modeling
that spurred from different discourse theories and frameworks. Before moving to describing
neural coherence approaches, I present, in this section, methods leveraged by neural
coherence models (and neural networks in general) to encode textual units such as words
or sentences.

2.3.1 Neural encoders

A large number of popular architectures have been used in NLP deep learning models to
encode representations of linguistic units. I here discuss three main approaches that are
referred to throughout this thesis.

Recurrent Neural Networks (RNN) RNNs (Elman, 1990) are designed to model
sequential information and therefore are well-suited for NLP. An RNN processes a sequence
(of characters, words, sentences, etc.) element by element and applies the same functions
to each element at each time step (t). The model calculates a hidden representation (ht)
at each time step using the input element at this step (xt) and the hidden representation
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of the previous element (ht−1):

ht = tanh(U ·xt+W ·ht−1 + b) (2.1)

where U ∈ Rk×d and W ∈ Rd×d are weight matrices and b ∈ Rd is a bias vector; k is
the length of the input vector xt and d is a hyperparameter indicating the size of the
hidden layer. Traditionally, the initial hidden representation used at the first time step
(ht=0) is initialised with zeros. Despite their ability to capture sequential information,
in practice, RNNs struggle with modeling long-term dependencies. Therefore, enhanced
models have been introduced to solve this problem such as Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Cho
et al., 2014). I focus on LSTM in my work.

LSTM extends the vanilla RNN model by adding a mechanism to control what the
network should remember or forget, in the long term, at each time step. This is achieved
by calculating a cell state (ct) that represents the network memory at t, a ‘forget gate
layer’ (ft) to control what to keep from the previous cell state (ct−1), an ‘input gate layer’
(it) to decide what values to update in ct and an ‘output gate layer’ (ot) to decide what
parts of ct to output:

it =σ(xt ·Ui+ht−1 ·Wi+ bi)
ft =σ(xt ·Uf +ht−1 ·Wf + bf )
ot =σ(xt ·Uo+ht−1 ·Wo+ bo)
ct =ct−1�ft+ tanh(xt ·Uc+ht−1 ·Wc+ bc)� it
ht =tanh(ct)�ot

(2.2)

where U ∈ Rk×d, W ∈ Rd×d and b ∈ Rd are the network’s learned parameters; σ is the
sigmoid function, � is the Hadamard product and ct=0 and ht=0 are initialized with zero
vectors. Equations 2.2 could be abstracted as:

ht = LSTM(xt,ht−1) (2.3)

Equations 2.1 and 2.2 encode the hidden vectors based on their previous context,
ignoring what comes next. This problem is addressed by applying Bidirectional RNNs
that, in addition to the previous context, build a hidden representation at t based on the
hidden representation at the next time step (t+1). This will result in two vectors for t
encoding its left and right contexts, which could then be concatenated or aggregated by
other functions such as averaging of multiplication. For instance in a Bidirectional LSTM
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(Bi-LSTM), ht could be calculated by:

−→
ht = LSTM(xt,

−−→
ht−1)

←−
ht = LSTM(xt,

←−−
ht+1)

ht = [−→ht ,
←−
ht ]

(2.4)

Convolutional Neural Network (CNN) CNN (LeCun et al., 1998) is a neural ar-
chitecture that extracts local features from input; it was initially proposed for image
processing then successfully imported to NLP (Collobert and Weston, 2008; Kim, 2014).
The key function in a CNN is convolution that slides a filter of weights over windows of
local context to extract local features. More concretely, a filter W ∈ Rk×l slides over the
input text x ∈ Rk×n and at each location, an element-wise multiplication between W and
a window of size l in x is applied. The resulting matrix is then summed up to indicate
feature hi for this window, where k is the vector dimensionality of an input feature (e.g.,
character, word,...etc), l is the filter length and n is the input length. The convolution
operation could be followed by a non-linearity:

hi = tanh([xi; ..;xi+l−1]∗W ) (2.5)

Here, i ∈ {1, ...,n− l+ 1} and ∗ is the linear convolutional operation. The local features
extracted at different positions (hi) form a feature map. Multiple filters could be applied
to extract various feature maps. In order to highlight the important features and extract
global features from the local ones, a max pooling operation is applied to each feature
map to select the highest-value feature(s). Other pooling operations could also be applied
such as average or L2 norm (Goodfellow et al., 2016, p. 335). Unlike RNNs, pooling allows
CNNs to become transitional invariant, which means that they are not sensitive to the
order of input features except locally (in the window where the convolutional filter is
applied).

Transformer Recently, a transformer model (Vaswani et al., 2017) was proposed to
learn the relations between input features using a self-attention mechanism. A transformer
encoder consists of Multi-Head Attention followed by a feed forward layer, where each
attention head aims to measure the importance of each word in relation to the words in
the input sequence. A transformer decoder has the same architecture as the encoder with
an extra encoder-decoder attention layer. An attention head first maps each input feature
xt (e.g., word) to three vectors: query ∈Rdk , key ∈Rdk and value ∈Rdv by multiplying xt
with learned weight matrices Wq, Wk and Wv. The vectors for the whole input sequence
x could be compacted in matrices Q for query, K for key and V for value. Q and K are
then used to calculate a score between each two input features (including a feature and
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itself) and attention is calculated by multiplying this score to the value vector:

Attention(Q,K,V ) = softmax(QK
T

√
dk

)V (2.6)

An input feature will, therefore, have a number of output vectors representing its relation
with each input feature and these vectors are then added to form one vector per feature.
With multiple attention heads that use different sets of query, key and value vectors, the
encoder calculates multiple representations per input feature which are concatenated and
multiplied with a learned weight, then fed to a feed forward layer to produce the final
output. In contrast to recurrent networks, a transformer computes the output vectors at
different input positions in parallel and the execution of the multiple heads is also achieved
in parallel, resulting in a more time-efficient model.

2.3.2 Word representations

Most NLP tasks fundamentally process words, and therefore researchers have devoted
much attention to investigating how to represent them. Initialising word representa-
tions/embeddings from pre-trained spaces that capture aspects of their syntax and seman-
tics has become the standard initialisation method for input words in neural networks.
The idea is to pre-train word embeddings on an unsupervised task using large unlabelled
corpora to capture their distributional properties, then use them to initialise the network.
This allows bootstrapping networks from a semantically-rich space, which is particularly
useful in low-resource tasks, instead of initialising word vectors randomly or as one-hot
vectors. We next discuss the two main types of embeddings in the literature: standard
and contextualised.

Standard word embeddings. In standard embeddings, each word in the pre-trained
space is represented by a single context-independent vector. For instance, the word play
in “I play football” and in “Yesterday I watched a play” is mapped to the same vector,
regardless of the different syntactic categories it belongs to. Throughout this thesis, I
refer to the context-independent word embeddings as standard word embeddings. These
embeddings are used to initialise neural networks for downstream tasks, and could either
be kept constant during training, or fine-tuned to be more task-specific.

There is a wide-range of approaches to building distributional word embeddings; LSA
is one of the early approaches that relies on word co-occurrence and dimensionality
reduction techniques. Afterwards, neural models have been widely adopted to learn such
representations (Bengio et al., 2003; Mikolov et al., 2011; Huang et al., 2012). Mikolov
et al. (2013a) proposed word2vec models that either employ Continuous Bag-of-Words
approach to predict a center/target word based on its context, or Continuous Skip-gram
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approach to predict the surrounding context given the target word. Mikolov et al. (2013c)
released pre-trained embeddings that have become ubiquitous in NLP tasks and were
trained as a Skip-gram model on a corpus of Google News articles that contain around
100B words.4 Another widely-used set of pre-trained embeddings are the Global Vectors
(GloVe) (Pennington et al., 2014) trained on Wikipedia articles;5 GloVe models word co-
occurrences, similar to LSA, but using a matrix factorisation method that leverages the log
probability of co-occurrences. Other embeddings rely on word position information (Mnih
and Kavukcuoglu, 2013), subword properties (Bojanowski et al., 2017) or idiomatic
phrases (Mikolov et al., 2013c), or combine all these approaches in one model, such as
fastText embeddings6 (Mikolov et al., 2018) that are pre-trained on the Common Crawl
corpus of 600B tokens.7 Cross-lingual word embeddings have also been proposed to transfer
knowledge across different languages (Zou et al., 2013; Gouws et al., 2015; Luong et al.,
2015).

Contextualised word embeddings. Instead of representing each word as a fixed
vector, contextualised word embeddings represent words as a function of their context; this
way, the same word will be mapped to different representations according to its surrounding
context (i.e., the sentence it appears in). This dynamic representation helps disambiguate
word senses (e.g., ‘play’ in the aforementioned example), and thus builds a richer semantic
space. There are various contextualised models that emerged since 2017, starting with
Context Vectors (CoVe) (McCann et al., 2017) learned from a machine translation encoder
that is attentional and LSTM-based, followed by many more (Howard and Ruder, 2018;
Akbik et al., 2018; Radford et al., 2018, 2019; Yang et al., 2019b). In this thesis, I focus
on Embeddings from Language Models (ELMo) (Peters et al., 2018) and Bidirectional
Encoder Representations from Transformers (BERT) (Devlin et al., 2019) as two of the
most successful models that have boosted performance on a variety of NLP tasks, such as
question answering (Rajpurkar et al., 2018; Yang et al., 2019a), summarisation (Gehrmann
et al., 2018; Liu and Lapata, 2019) and machine translation (Zhu et al., 2020). There
are two approaches to leveraging these models in downstream tasks: feature-based, where
static features are extracted from the pre-trained models and fed to a new task-specific
model, or fine-tuning, where the pre-trained model is re-trained and fine-tuned to perform
the target task. I use the first in this thesis.

ELMo utilises a deep LSTM-based forward and backward language model to create
three layers of representation for each input word (an input word embedding layer and two
Bi-LSTMs). More specifically, it stacks two forward LSTMs and another two backward

4https://code.google.com/archive/p/word2vec/
5https://nlp.stanford.edu/projects/glove/
6https://fasttext.cc/docs/en/english-vectors.html
7http://commoncrawl.org/2017/06/
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LSTMs and concatenates the hidden representations for each layer from both directions at
each time step. The bottom word embedding layer leverages character-based representa-
tions, enabling the model to handle out-of-vocabulary words. ELMo is pre-trained on the
1B Word Benchmark corpus (Chelba et al., 2014). After pre-training, the model layers
could be used (individually or combined) to initialise neural networks designed to perform
various tasks. Peters et al. (2018) suggested calculating task specific weighting of the three
layers to form a single vector (ELMot) for each word:

ELMot = γ
L∑
k=1

vkh
LM
tk (2.7)

where L is the number of hidden layers (3 in that case), vk is a weight assigned to the
k-th layer, hLMtk is the representation of the t-th word at the k-th layer, and γ is a weight
to scale the whole ELMo vector based on the task. They also motivated only taking the
last layer, following Peters et al. (2017), or simply averaging the three layers, which means
fixing the value of γ at 1 and assigning equal weights vk to all the layers (vk = 1/3). Peters
et al. (2018) empirically investigated, via intrinsic evaluation, the linguistic properties
encapsulated by each layer of representation and found that syntactic properties are better
captured by lower layers whereas higher layers better represent semantic features.

On the other hand, BERT pre-trains a language model using multi-head transformer
encoders. What is special about BERT is that it builds a language model by performing
bidirectional training for the transformer model, meaning that each word representation
relies on the context on its left and right. This is in contrast to ELMo that learns the
right and left contexts independently then concatenates their resulting representations. In
order to allow bidirectional language modeling, BERT randomly masks some percentage
of the input tokens and learns to predict these masked tokens. BERT utilises WordPiece
embeddings (Wu et al., 2016), and accordingly each word is tokenised into subwords (e.g.,
‘embeddings’ is tokenised into [‘em’, ‘##bed’, ‘##ding’, ‘##s’]). The model is pre-trained
on the BooksCorpus (800M words) (Zhu et al., 2015) and English Wikipedia (2,500M
words). It is also pre-trained on a sentence prediction task where the model must predict
whether two sentences are consecutive. Devlin et al. (2019) created two pre-trained BERT
models: (1) BERTBASE with 12 layers (i.e., transformer encoders), 12 attention heads,
feedforward layers of dimension 768 each and (2) BERTLARGE with 24 layers/encoders, 16
attention heads, feedforward layers of dimension 1024 each. Accordingly, each input word
is mapped to either 12 or 24 vectors that could be used individually or combined, similar
to ELMo. For each BERT model, there is a cased (i.e., lowercased) and uncased version.
A large body of work has investigated the linguistic information encoded in BERT layers.
Some studies have shown that syntactic information is better captured in the middle
layers (Hewitt and Manning, 2019; Jawahar et al., 2019), semantic features are spread
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across all the layers (Tenney et al., 2019a) and the middle layers are the most transferable
(i.e., perform better on different tasks) (Liu et al., 2019b).

2.3.3 Sentence representations

The meaning of a sentence is interpreted in terms of the meaning of its words, thus
it is important to learn composition functions over word representations (standard or
contexualised) to capture sentence meaning. Linear transformations to word vectors (e.g.,
addition, multiplication or average) have been investigated to build phrase and sentence
representations (Mitchell and Lapata, 2008; Blacoe and Lapata, 2012). Other more
complex approaches have utilised neural encoders, such as the ones presented in §2.3.1,
to encode the sequence of words in a sentence. The output of these encoders are latent
representations (i.e., a hidden representation for each word in RNNs and transformers or
for each local window of words in CNNs) that are aggregated into a fixed-length vector
representing the sentence meaning. In RNNs, the hidden representation of the last word
has commonly been used to represent the whole sentence (Cho et al., 2014; Sutskever
et al., 2014). Similarly in BERT, a transformer model, a sentence can be represented by
the output vector corresponding to the special token ‘[CLS]’ used to mark the beginning
of a sequence (Devlin et al., 2019; Liu et al., 2019c). Alternatively, as mentioned before,
different operations, such as addition, multiplication or average, could be applied to the
hidden word representations to collapse them into a single sentence embedding, instead of
taking one representation (e.g., the hidden state of the last word or the ‘[CLS]’ vector) to
encapsulate the whole sentence. However, these operations give equal weight to all words
despite the fact that some words might contribute more to the sentence meaning. Therefore,
attention mechanisms were introduced to mitigate this problem and help the network focus
on the important words. In NLP, attention was initially proposed for sequence-to-sequence
(seq2seq) machine translation models to allow the decoder to learn what parts of the
input sentence to attend to while generating the output sentence (Bahdanau et al., 2015).
Attention has also been used as an aggregation mechanism to combine, for instance, word
representations into one single sentence vector, while highlighting the words that are more
important to the final network prediction (Yang et al., 2016b; Lin et al., 2017). In order
to generate a sentence vector (s) by attending to its word hidden representations, the
following equations are applied (Bahdanau et al., 2015):

ut = tanh(Wht)

at = exp(vut)∑
t exp(vut)

s=
∑
t

atht

(2.8)
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where ht is the hidden representation of the word at position t and W and v are learnable
parameters. Finally, a sentence could be encoded independently (i.e., as a function of
its own words) or by also relying on its surrounding sentences (Kiros et al., 2015; Li and
Jurafsky, 2017).

Document/Paragraph representations In order to build higher representations, e.g.,
for paragraphs and documents, the same sentence encoding methods could be used. A
document representation could be generated in a hierarchical way, by applying neural
encoders and aggregation methods to sentence embeddings that were constructed earlier
from word vectors (Li et al., 2015; Yang et al., 2016b). Alternatively, a document vector
could access word-level representations directly, ignoring sentence boundaries, e.g., by
averaging the hidden representations resulting from applying an LSTM over the whole
sequence of words in the document (Taghipour and Ng, 2016), or generating a document
vector by extending a word2vec model (doc2vec; Le and Mikolov, 2014). In this thesis, I
leverage a hierarchical approach and build a document representation from its sentence
vectors.

2.4 Neural approaches to coherence modeling

Until 2014, coherence modeling relied on traditional NLP approaches (§2.2). Since then
however, due to the rapid advances in deep learning, neural models have been widely
adopted in coherence modeling, outperforming previous approaches. In this section, I
discuss different neural coherence systems to put my work in context. I categorise the
systems into discriminative and generative.

2.4.1 Discriminative approaches

Supervised discriminative coherence models are trained to discriminate between labelled
coherent and incoherent instances. My MTL approach (Chapter 3) falls under this category
of models. I divide them into end-to-end or entity-based.

End-to-end The earliest neural coherence model is the Local Coherence (LC) model (Li
and Hovy, 2014) that leverages a window approach, i.e., a CNN. The model first uses an
RNN or a recursive neural network (Socher et al., 2011) to construct sentence vectors,
that are concatenated to build a clique embedding.8 A filter of weights then slides over
clique representations to score them and the resulting scalar score is mapped to [0,1]
using a sigmoid function. The final coherence score of text is calculated by multiplying

8A clique is a sequence of neighbouring sentences.
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its composing clique scores. Li and Jurafsky (2017) adopted a similar approach but used
an LSTM to construct sentence embeddings and obtained the overall coherence score by
averaging clique scores.

Cui et al. (2017) utilised a CNN to build sentence representations (i.e., applying
convolution over word embeddings followed by max pooling). A clique representation (of
three sentences) is learned in turn by first calculating two similarity scores (with a bilinear
function) between the the first and second sentences, and the second and third sentences
and then concatenating these scores with a concatenation of the three sentences. Scoring
the cliques and approximating a document coherence score follows Li and Jurafsky (2017).

Calculating similarity scores between adjacent sentences to capture local coherence has
also been leveraged by Mesgar and Strube (2018). They applied an LSTM to generate
hidden states for words in each sentence, then selected the states that were most similar
(using the dot product) for every adjacent two sentences. These two hidden states were
then averaged into feature vector fi, then the similarity between each consecutive feature
pair (fi and fi+1) was calculated to measure the degree of continuity in the input document.
A coherent document is expected to have high similarity scores.

Moon et al. (2019) integrated a local and global model for coherence. Their local
model generates hidden representations (hi) for sentences with a Bi-LSTM with an explicit
language model loss. Subsequently, a bilinear operation is applied to project each two
adjacent sentences into a vector (vi) which represents local context. In order to capture
global coherence, a light weight CNN (Wu et al., 2019) is applied over the vectors hi, which
is a special type of CNN with reduced network parameters. The CNN is then followed by
average pooling to produce a global document vector u. Finally, in order to combine the
local and global models, u is concatenated with each pair of local vectors vi and vi+1 and
the output is fed to a linear layer to predict a local score; the overall score for the document
is the sum of its local scores. Moon et al. (2019) showed the efficacy of their model on
coherence ranking in addition to evaluating local coherence by training and testing the
model to detect documents where one or more window of sentences are permuted while
the rest of the document is kept intact.

Xu et al. (2019) developed a Local Coherence Discriminator (LCD) that leverages a
generative approach to build sentence representations, then adds a discriminative layer to
distinguish between coherent and incoherent pairs of sentences. The underlying premise of
the LCD model is that a coherent pair of adjacent sentences (si, si+1) should be ranked
higher than an incoherent one (si, s′). Incoherent pairs are created by negative sampling,
where in each training epoch, for each document, 50 triplets (si, si+1, s′) are sampled, where
(si, si+1) constitutes a coherent pair taken from the document and (si, s′) is an incoherent
pair where s′ is randomly selected from the same document. This sampling strategy allows
the model to learn from a large space of negative examples without expensive computations.
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As for building the input sentence representations, Xu et al. (2019) employed three encoders:
(1) an RNN language model (LCD-L), (2) InferSent: a sentence encoder by Conneau et al.
(2017), trained in a supervised way on the large Stanford Natural Language Inference
(SNLI) corpus (Bowman et al., 2015), (3) averaging the GloVe vectors of the words in
the input sentence. After generating sentence representations, linear transformations are
applied to the two sentence vectors in positive or negative pairs; the transformations
are: concatenation, element-wise difference, element-wise product and absolute value of
element-wise difference. The outputs of these transformations are then concatenated to
produce vector O that is fed to a one-layer MLP to predict a local coherence score for
each sentence pair:

O = [S, T, S−T, S ∗T, |S−T |] (2.9)

where S corresponds to the first sentence representation (i.e., si) and T to the second (i.e.,
si+1 or s′). The same model is trained in the reverse direction (i.e., given the input pair
in the reverse order: (si+1, si) for positive pairs and (s′, si) for negative ones). The local
coherence score of an input pair is the average of its two scores generated by the forward
and backward models and the final overall score of a document is calculated by averaging
its local scores. The network is trained in a pairwise fashion and optimises a margin loss
that aims to maximise the scores of the positive pairs as well as minimise the scores of
the negative ones. Xu et al. (2019) applied their model to the WSJ corpus in addition
to open-domain experiments of Wikipedia articles; their best overall results were using
an RNN encoder (LCD-L). Concretely, LCD-L applies an RNN over the word vectors in
each input sentence and optimises the difference between the conditional log likelihood of
a sentence given its previous context and the language model probability for generating
the sentence. The final sentence vector is generated by maxpooling the hidden states
of its words. The LCD-L model is the current published state-of-the-art on the WSJ in
ranking an original document higher than its permuted versions. We widely utilise the
LCD approach in this thesis and enhance it with contextualised embeddings as will be
discussed in Chapter 4.

Entity-based The efficiency of EGrid models in capturing entity distributions through-
out text inspired researchers to adapt them for neural models. Tien Nguyen and Joty (2017)
argue that utilising entity-based features in neural frameworks can enhance performance
by capturing “long range entity transitions”. More specifically, traditional non-neural
entity-based approaches define a length (l) for entity transitions of G different GRs,
meaning that Gl probabilities must be calculated which exponentially grows with longer
transitions. Tien Nguyen and Joty (2017) developed a CNN-EGrid model that applies a
CNN over EGrid transitions of input texts. The CNN slides multiple filters of weights to
extract feature maps that represent high-level entity-transition features, followed by a max
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pooling function to focus on the important features. Since the filters can have large sizes
(they use a size of 5−8), long-range transitions can be captured more efficiently than pre-
vious entity-based methods. Training is performed in a pairwise fashion where the model
takes a pair of documents as input, specifically a coherent document and its incoherent
counterpart, and optimises the margin loss similar to Xu et al. (2019). Furthermore, they
extended the model by attaching three entity-specific features (Elsner and Charniak, 2011b)
to the distributed representations of entities: named entity type, salience (represented as
the occurrence frequency of entities) and a binary feature indicating whether the entity
has a proper mention. I refer to this extended model as CNN-EGridext.

CNN-EGrid is agnostic to the lexical properties of entities which result in a model
that is unable to differentiate between transitions of various entities. Extending the model
with entity-specific features (CNN-EGridext) can mitigate this problem, yet requires an
additional feature extraction step which is less generalisable to low-resource languages (Joty
et al., 2018). To resolve this, Joty et al. (2018) further extended the CNN-EGrid model
with lexical information about the entities. More concretely, they represented each entity
as a combination of its word embedding, retrieved from a pre-trained space, and its GR
(S, O, X). For instance, if “Obama” appears as a subject in one location and an object in
another, there will be two different representations for it in the input embedding matrix:
Obama-S and Obama-O. Joty et al. (2018) managed to outperform CNN-EGridext in
coherence ranking on the WSJ dataset without including the three entity-specific features
in their model. I refer to this lexicalised version as CNN-EGridlex.

2.4.2 Generative approaches

Unsupervised learning has also gained much attention in coherence modeling and a plethora
of generative approaches have been developed. Although I do not build generative models
in this thesis, in this subsection I discuss this type of models to put my work in a wider
context. Generative models learn to produce a coherent sequence of sentences by generating
one sentence at a time, based on the previously generated sentences. Li and Jurafsky
(2017) proposed a generative LSTM-based seq2seq model, similar to machine translation
models (Sutskever et al., 2014), that learns to predict a sentence based on its previous and
next sentences. The model is only trained on original documents to maximise the likelihood
of coherent contexts. In order to enhance the model with document global information,
the sentence decoder utilises topic vectors learned either using Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) (which extracts latent topic vectors (i.e., topic distributions) from
training data) or automatically from the training data using a hierarchical LSTM model
(i.e., an LSTM over words to generate sentence vectors and another LSTM over these
vectors to generate a document vector). Li and Jurafsky (2017) showed that discriminative
approaches (e.g., the LC model) perform better in in-domain coherence ranking, but their
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generative model generalises better to open-domain experiments.
Subsequent unsupervised models have been trained to predict sentence order and have

been particularly popular in information ordering, where the model is asked to retrieve
the original order of a permuted set of sentences. More formally, given a set of n sentences
s= [s1, s2, ..., sn] with the order o= [o1,o2, ...,on], the model should learn the correct order
o∗ = [o∗1,o∗2, ...,o∗n]. Pointer Networks (Ptr-Net) (Vinyals et al., 2015) have been widely
used in this task. Ptr-Nets are well-suited for sorting variable sized sequences because
they generate a discrete output corresponding to positions in the input sequence by using
attention as a pointer to select input positions. A Ptr-Net based decoder utilised in
encoder-decoder coherence models predicts an order (ô) for input sentences by producing
a probability distribution over the sentences at each time step:

P (o|s) = Πn
i P (oi|oi−1, ....,o1, s) (2.10)

The predicted order with the highest coherence probability is then selected as the final
order:

ô= argmaxoP (o|s) (2.11)

At training time, the decoder is given the sentences (s) in the correct order, while at test
time, at each time step the input is the predicted output of the previous time step.

Several approaches have employed this Ptr-Net-based ordering strategy (Gong et al.,
2016; Logeswaran et al., 2018; Cui et al., 2018; Wang and Wan, 2019; Oh et al., 2019;
Yin et al., 2019b, 2020), with the core difference being the architecture of the encoder
and decoder. Gong et al. (2016) tested three encoding strategies: a Bag-of-Words, an
LSTM and a CNN, and got the best overall results with the LSTM approach in the task of
sentence ordering. Logeswaran et al. (2018) also employed an LSTM-based encoder-decoder
framework for sentence ordering; they specifically adopted the architecture of Vinyals et al.
(2016). Their model first creates sentence embeddings using an LSTM, then processes
these embeddings with another LSTM encoder, where at each time step, attention weights
are calculated based on the sentence embeddings and the current hidden state. These
weights are used as input for the next time step. The decoder is a Ptr-Net that is similar
to the encoder, but uses sentence embeddings as input instead of using attention weights.

Oh et al. (2019) used an LSTM encoder and a transformer decoder. They also used
LDA to learn latent topic vectors for sentences and paragraphs to capture local and
global context respectively. Each LSTM sentence representation is aggregated with its
topic vector and its paragraph topic vector, using a linear transformation followed by a
non-linear activation, to generate topic-sensitive sentence vectors. Finally, the decoder
is a transformer-based network that leverages a Ptr-Net to predict sentence order. In
contrast, Cui et al. (2018) used an LSTM and a transformer network as the encoder and
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an LSTM pointer-based decoder. Specifically, for the encoder, they first used the LSTM
to encode sentences then applied a transformer on top to encode the paragraph, where the
paragraph representation is the average of the output of the transformer last self-attention
layer. The LSTM decoder is then initialized with this encoded paragraph vector. Yin
et al. (2019b) extended the work of Cui et al. (2018) by replacing their encoder with a
sentence-entity graph (Guinaudeau and Strube, 2013) encoded with a recurrent neural
graph (Zhang et al., 2018).

Instead of using a pointer network decoder, some approaches predicted a position
for each sentence independently, without referring to the input sequence. Kumar et al.
(2020a) predicted real-valued positions with a feed forward network and used a pre-trained
BERT encoder. Specifically, each sentence is scored with the feed forward layer and the
scores are sorted to output the final order. For example, for a document of 5 sentences the
predicted scores [y1,y2,y3,y4] could be [0,0.25,0.50,0.75,1.0]. This approach outperformed
previous Ptr-Net based approaches in the information ordering task. Similarly, Bohn et al.
(2019) used a position model yet predicted a discrete distribution over possible positions for
each sentence. More concretely, they first applied a stacked Bi-LSTM where the input at
each time step is the concatenation of the pre-trained input word embedding, the average
of pre-trained word embeddings for the whole document (to capture global context) and
the difference between both. The LSTM output is then fed to a softmax layer to predict
a probability distribution for each sentence over a pre-defined number of quantiles; e.g.,
if the number of quantiles is 4, the model predicts which quarter of the document the
sentence belongs to.

2.5 Multi-task learning

In this section, I give a brief overview of MTL which forms the basis of my main model
in this thesis. Machine learning models typically focus on performing a single task and
accordingly tune their parameters to optimise a particular loss function (e.g., mean square
error or binary cross entropy). This Single-Task Learning (STL) setup ignores useful
information that could be learned from other related tasks. In contrast, Multi-Task
Learning (MTL) is “an approach to inductive transfer that improves generalization by
using the domain information contained in the training signals of related tasks as an
inductive bias” (Caruana, 1997). For instance, tasks such as POS tagging, Semantic Role
Labelling (SRL) and Named-Entity Recognition (NER) could be performed together as
POS tags are often used as features for SRL and NER (Collobert and Weston, 2008).
MTL is a type of transfer learning where two or more tasks are learned simultaneously;
the tasks are either of the same importance, or there is a main task that the model focuses
on and one or more auxiliary tasks to help improve performance on the main one. The
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model optimises a cost function that combines the loss functions of the different tasks;
one simple approach is to calculate a weighted sum over the individual functions:

Loss=
T∑
i=1

λiLi (2.12)

where T is the number of tasks, λi is the weight of the i-th task and Li is its loss function.
All tasks are either assigned equal weights (e.g., λi = 1) or different ones to give more
attention to particular tasks. For example, if we have two tasks – a main one that we
want to focus on with loss L1 and an auxiliary task with loss L2 – then typically λ1 > λ2.
The weights (λi) are tuned as hyperparameters of the network to find the best balance
between tasks.

MTL is achieved by parameter sharing between tasks which can be categorised as
hard sharing (Caruana, 1993) or soft sharing (Duong et al., 2015; Yang and Hospedales,
2017). In hard parameter sharing, which I use in this work, model hidden layers are shared
between tasks while keeping the output layers task-specific. On the other hard, in soft
parameter sharing, each task has its own network and the distance between the parameters
of the networks is regularised to be similar (Ruder, 2017).

In MTL, each task is associated with a dataset that can be shared between, or different
from, other tasks. In the latter case, the model alternates between the tasks, during training,
using various methods, including randomly selecting a task and randomly sampling a
batch from its corresponding dataset at each training epoch (Søgaard and Goldberg,
2016), or iterating over all the tasks and processing their full training datasets in each
epoch (Hashimoto et al., 2017).

A large body of work has focused on applying MTL to word-level tasks such as
POS tagging, named entity recognition, syntactic chunking, coreference resolution and
grammatical error detection (Collobert and Weston, 2008; Collobert et al., 2011; Plank et al.,
2016; Søgaard and Goldberg, 2016; Yang et al., 2016a; Rei, 2017; Rei and Yannakoudakis,
2017; Sanh et al., 2019). Some approaches supervise all the tasks at the same level
(typically the outermost layer) (Collobert et al., 2011; Rei, 2017), while others investigate
which level in the network hierarchy is best for supervision. For instance, Søgaard and
Goldberg (2016) argued that POS tags are better predicted at lower layers in a multi-layer
Bi-LSTM network, and Sanh et al. (2019) leveraged hierarchical inductive bias between
tasks in a multi-layer Bi-LSTM model by supervising named entity recognition at the
first level, entity mention detection at the second and coreference resolution and relation
extraction at the third.

MTL has also been utilised to perform sentence-level tasks such as subjectivity
evaluation and sentiment analysis (Liu et al., 2016; Yu and Jiang, 2016), in addition to
machine translation by learning from multiple source and/or target languages (Dong et al.,
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2015; Zoph and Knight, 2016; Johnson et al., 2017). Furthermore, some models have added
supervision at both the word-level and sentence-level (Hashimoto et al., 2017; Rei and
Søgaard, 2019); however less attention has been directed to combining document-level
supervision with more fine-grained units (i.e., word or sentence supervision) (Cummins
and Rei, 2018).

In this thesis, my main model leverages MTL and applies supervision at both word and
document levels. To my knowledge, this is the first work to use MTL for coherence evalua-
tion (i.e., predicting a coherence score for a document). Nonetheless, I note that Jernite
et al. (2017) used MTL to learn 3 discourse-relevant tasks simultaneously: (1) whether
a pair of sentences are in the correct order, (2) the type of coherence relation between
two sentences and (3) given a sequence of three sentences and five candidate sentences
from the same paragraph, which candidate comes after the sequence. They evaluated
their model intrinsically (i.e., whether the tasks help each other) and extrinsically on
paraphrase detection, subjectivity evaluation and question classification. However, they
did not employ their model in coherence modeling or its different applications.

2.6 Model interpretability

Despite the high performance achieved by neural models on various problems, they are
typically viewed as a ‘black box’ and it is not clear what linguistic features they capture.
This is a common problem for deep learning models that has motivated a large body of
work to focus on their interpretability (Sundararajan et al., 2017; Lundberg and Lee, 2017;
Feng et al., 2018; Belinkov and Bisk, 2018). In this section, I give a brief background
about deep learning interpretability methods, some of which I use in this thesis.

Intrinsic evaluation A common way to understand neural models is to inspect the
quality of their learned representations via intrinsic evaluation. This approach has become
ubiquitous with the spread of distributional semantic models. Investigating these semantic
spaces can be achieved using various simple methods such as (1) comparing word vectors
(e.g., measuring cosine similarity between vectors) to detect the relations between their
respective words and (2) exploiting dimensionality reduction techniques (e.g., t-distributed
Stochastic Neighbor Embedding (t-SNE; van der Maaten and Hinton, 2008)) to map the
high-dimensional vectors to two dimensions and reveal the linguistic regularities in their
embedding space (Collobert et al., 2011; Erk, 2012; Mikolov et al., 2013c,b; Levy and
Goldberg, 2014; Faruqui et al., 2015; Farag, 2016).

Parameters of neural networks have also been visualised to understand the impact of
input words on network output. One approach calculates the derivative of the final output
with respect to input word embeddings in order to measure the contribution of input
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words in the final network decision (Li et al., 2016a). A saliency heatmap is created in
turn for visualisation, where more influential words are expected to have higher gradient
norms. This approach was used to interpret a few sentence ordering models (Chen et al.,
2016; Logeswaran et al., 2018). As for the models that employ attention mechanisms, a
straightforward interpretability approach is to visualise the attention weights (at in Eq. 2.8)
to examine which linguistic units the model focuses on (Bahdanau et al., 2015; Yang
et al., 2016b; Lin et al., 2017; Chen et al., 2017; Bao et al., 2018; Wang and Wan, 2019).
I use attention visualisation in this thesis. I note, however, that while attention could
provide useful insights about what the models focus on, it should not be regarded as the
only explanation for, or a fail-safe predictor of, model output (Serrano and Smith, 2019;
Wiegreffe and Pinter, 2019).

Other work has taken a deeper look into model representations and inspected the
functionality of certain dimensions of input and hidden activation vectors (Li et al., 2016b;
Karpathy et al., 2016; Kádár et al., 2017).

Adversarial evaluation The idea behind adversarial evaluation is to apply small
changes to the input examples with the intention of tricking the model into generating
incorrect predictions. This type of evaluation reveals model vulnerabilities and thus helps
us understand how the model works and how it could be further improved. Testing
the robustness of models against adversarial examples has been widely investigated in
the literature (Goodfellow et al., 2015; Jia and Liang, 2017; Mudrakarta et al., 2018;
Belinkov and Bisk, 2018; Shi et al., 2018). Adversarial evaluation is often categorised
into white-box examples that leverage knowledge about the model parameters (Goodfellow
et al., 2015; Ebrahimi et al., 2018) or black-box examples that do not have explicit access
to these parameters; I use the latter in this thesis. Several studies have exploited black-box
adversarial evaluation. For example, Jia and Liang (2017) evaluated reading comprehension
systems by inserting distracting sentences into the paragraphs that contain the answers, and
showed that state-of-the-art models are vulnerable to these adversarial examples. Hosseini
et al. (2017) showed that minor perturbations such as misspelling a word or adding a dot
in between its characters in an input sentence drastically lower the accuracy of Google’s
Perspective API for toxic comments detection. Belinkov and Bisk (2018) demonstrated
that machine translation models could be deceived with natural and artificial kinds of noise,
and Shi et al. (2018) attacked image captioning frameworks by replacing certain words in
the captions. In this thesis, I use adversarial evaluation to examine the vulnerability of
coherence models to syntactic and semantic changes. I also use adversarial evaluation to
test the ability of AES systems to detect inputs of grammatical but incoherent sequences
of sentences.
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2.7 Evaluation

In this section, I present the main evaluation metrics used throughout this thesis.

Pairwise Ranking Accuracy (PRA) Pairwise Ranking Accuracy is the standard
evaluation metric (Barzilay and Lee, 2004; Barzilay and Lapata, 2005) to evaluate coherence
on binary synthetic datasets that consists of well-organised coherent documents and their
incoherent counterparts created by permuting the sentence order in the coherent documents.
PRA calculates the fraction of correct pairwise rankings in the test data; i.e., an original
text should be ranked higher than its noisy counterparts.

Total Pairwise Ranking Accuracy (TPRA) Total Pairwise Ranking Accuracy is a
more generalised metric for coherence evaluation; it ranks each original article against all
the incoherent articles in the dataset, and not just its own permuted counterparts. TPRA
was first used by Smith et al. (2016a) and I further motivate it in Farag et al. (2018).

Quadratic Weighted Kappa (QWK) Quadratic Weighted Kappa measures the agree-
ment between two ratings. QWK ranges from −1 to 1 based on the degree of agreement
(0 represents random agreement, negative values indicate agreement worse than chance
and 1 is complete agreement). Using weighted Kappa differs from Cohen’s Kappa (Cohen,
1960) in that it accounts for the degree of disagreement and therefore, better represents
ordinal classes. In order to estimate QWK between ratings by annotator1 and ratings
by annotator2, 3 matrices are calculated as follows. First, a weight matrix W ∈ RN×N is
computed by:

Wi,j = (i− j)2

(N −1)2 (2.13)

where i is the label given by annotator1, j is the label given by annotator2 and N is the
number of possible ratings. Second, a histogram matrix is built O ∈ RN×N such that Oi,j
corresponds to the number of examples that are assigned label i by annotator1 and label
j by annotator2. A histogram vector is composed for annotator1’s ratings and another
histogram vector is composed for annotator2’s ratings where a vector element at position
k indicates the number of examples that received a rating k. A third histogram matrix
of expected ratings E ∈ RN×N is then calculated as the outer product between the two
histogram vectors; E is normalized to have the same sum as O by simply dividing both
matrices by their sum so that they each have a sum of one. Finally, using the three
matrices, QWK is calculated as:

qwk = 1−
∑
i,jWi,j Oi,j∑
i,jWi,j Ei,j

(2.14)
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QWK typically measures the agreement between two annotators. In order to adapt QWK
for more than two annotators, leave-one-out resampling (Weiss and Kulikowski, 1991) could
be used, where for each annotated example one annotator’s label is randomly chosen to be
rating1 and the mean of the other annotators’ labels is rating2; QWK is then calculated
between rating1 and rating2. This process is repeated for M times and the final QWK
is estimated as the mean of all the calculated QWK values. QWK has been used as a
standard evaluation metric for essay scoring systems where annotator1 represents the
tested AES system and annotator2 represents the human grader (Phandi et al., 2015;
Taghipour and Ng, 2016; Dong et al., 2017; Jin et al., 2018).

Pearson’s product-moment correlation coefficient (r) Pearson’s r is a parametric
measure that determines the strength of linear dependence between two variables. It
attempts to fit the data points of the two variables into a single line, and therefore, is
sensitive to outlier points. The value of r ∈ [−1,1], where r = 1 denotes a total positive
linear correlation, r =−1 denotes a total negative linear correlation, and r = 0 means no
correlation.

Spearman’s rank correlation coefficient (ρ) Spearman’s ρ is a non-parametric
measure that determines the degree of association between two ranked variables. In
contrast to Pearson’s r, Spearman’s ρ measures the monotonic relationship between the
two variables, not the linear relationship, and is only dependent on the ordinal arrangement
of the variables, and therefore, is not sensitive to outlier points. The value of ρ ∈ [−1,1],
where ρ = 1 denotes a perfect positive association, ρ = −1 denotes a perfect negative
association, and ρ= 0 means no association. Pearson’s and Spearman’s correlations have
also been used to evaluate AES systems (Yannakoudakis et al., 2011; Yannakoudakis and
Cummins, 2015; Alikaniotis et al., 2016; Dasgupta et al., 2018).

Kendall rank correlation coefficient (Kendall’s Tau (τ)) Kendall’s τ is also a
non-parametric rank correlation used to measure the ordinal association between two
variables. The value of τ ∈ [−1,1], where τ = 1 denotes a perfect positive association,
τ =−1 denotes a perfect negative association, and τ = 0 means no association. Kendall’s τ
determines the strength of association based on the concordance and discordance between
pairs of observations, where the pair (xi, xj) and (yi, yj) is concordant if xi−xj and
yi−yj have the same sign and discordant otherwise. Accordingly, Kendall’s τ has been
used in information ordering tasks to measure the degree of similarity between the sentence
order in a permuted document and its original version (Lapata, 2006). It is more suitable
than Spearman’s correlation in measuring this similarity as it is more accurate when the
sample size is small (Kendall and Gibbons, 1990; Lapata, 2006). Furthermore, Lapata
(2006) have shown that Kendall’s τ ranks correlate with human judgement of overall
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text understandability and coherence. In order to calculate Kendall’s τ , let π and σ

be the orderings of the original and permuted article respectively and S(π,σ) be the
minimum number of adjacent transpositions needed to transform σ back to π; Kendall’s τ
is calculated by:

τ = 1− 2S(π,σ)
N(N −1)/2 (2.15)

where N is the number of sentences.

Fisher transformation Some of the tasks presented in this thesis consist of multiple
datasets (e.g., the essay scoring task in Chapter 6 has 8 prompts), and are evaluated
by calculating kappa or correlation values for each dataset separately. Nonetheless,
aggregating the performance across all these datasets is useful to give an overall indication
of model performance on the task. Simply averaging the kappa/correlation values may
not be accurate as their sampling distribution might be skewed (Silver and Dunlap, 1987).
Therefore, to remedy this, Fisher transformation is applied as it is approximately a
variance-stabilizing transformation.9 Fisher transformation to a kappa/correlation value
(v) is defined as:

z = 1
2 ln

1 +v

1−v (2.16)

The mean of all the transformed kappa/correlation values (z) is then calculated (I denote
this mean by z̄) and the final average kappa/correlation (vavg) that measures the overall
performance is calculated by applying the reverse transformation to z̄:

vavg = e2z̄−1
e2z̄ + 1 (2.17)

F1 score F1 score is a measurement of accuracy based on the harmonic mean of precision
and recall:

F1 = 2×precision× recall
precision+ recall

(2.18)

where precision is calculated as:

p= true positives
true positives + false positives (2.19)

and recall is calculated as:

r = true positives
true positives + false negatives (2.20)

Accordingly, the F1 score gives equal emphasis to both precision and recall.

9It was recommended to use Fisher transformation before averaging QWK scores for the AES contest
by Kaggle (https://www.kaggle.com/c/asap-aes/overview/evaluation).
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Chapter 3

Approach

In this chapter, I present my neural discriminative approach to coherence modeling that
aims to capture both local and global aspects of coherence. Concretely, I propose a
hierarchical neural network trained in a multi-task learning (MTL) fashion that learns to
predict a document-level coherence score (at the top layer of the network) together with
word-level syntactic information (at lower layers), taking advantage of the hierarchical
inductive transfer between the two tasks. The syntactic information is either grammatical
roles (GRs) or part-of-speech (POS) tags. Additionally, I extend my approach by integrating
contextualised word embeddings, in particular ELMo and BERT embeddings. I start,
in §3.1, by describing my basic hierarchical model that performs the single task of predicting
a document-level coherence score and describe the neural representations generated at each
network level. I then discuss, in §3.2, my MTL framework, motivate the auxiliary functions
I optimise (i.e., predicting word-level GRs or POS tags) and explain their relevance to
coherence assessment. Finally, in §3.3, I present models that leverage syntactic labels in
different fashions to further validate my MTL approach, and in §3.4, I summarise the
chapter.

3.1 Single-task learning model

In this section, I describe my baseline model that performs the single task of predicting an
overall coherence score for a given document. The single-task learning (STL) model is
lexical; it only leverages input word representations retrieved from a pre-trained space.
The model is later extended with syntactic information either via feeding this information
as input to the model (§3.3), or allowing the model to learn it in a multi-task fashion (§3.2).
The STL model is a hierarchical Bi-LSTM-based neural network. Hierarchical networks
are an attractive approach to encode the structure of a document (Li et al., 2015; Yang
et al., 2016b), where a document is composed of a sequence of sentences {s1, ..., si, ..., sm}
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and, in turn, each sentence consists of a sequence of words {w1, ...,wt...,wn}. In some
cases, the document might contain paragraphs {p1, ...,pj ...,pl}, adding another level to the
structure of the document. Accordingly, a document representation is built in a bottom-up
fashion:

Words Sentences
Paragraphs
(optional) Document

Figure 3.1: Document Structure

The hierarchical architecture we use follows the work of Yang et al. (2016b); the
core difference is that our model is LSTM-based and theirs is GRU-based. Our main
contribution is in our MTL framework (§3.2). The following subsections detail how each
level in the network hierarchy is encoded and Fig. 3.2 graphically illustrates the network
architecture (excluding the red-dotted box that is specific to MTL).

3.1.1 Word representation

The first step to encode a document is to initialise its word representations; I use one of
two representation types: standard and contextualised.

Standard embeddings In the standard embeddings setup, a vocabulary V is con-
structed from the words that occur in the training data wherein each word has a unique
index k ∈ [1, |V |]. A lookup table (i.e., word embedding matrix E ∈ R|V |×d

w) is then
constructed, where the k-th row corresponds to the feature vector of the k-th word in V

and dw is the vector length. The word vectors are retrieved from a pre-trained embedding
space (§2.3.2).

In order to process an input document, each sentence (si) is translated into a sequence
of its word indices in V , then fed to the neural network. The first layer in the network
performs a lookup operation in E to obtain the semantic representations of words. For
instance, if

E =


[vector1]

...
[vector|V |]


and the input document consists of two sentences, each contains three words mapped to their
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Figure 3.2: The architecture of the STL and MTL models. The dotted red box is specific
to the MTL framework. The purple box is applied if the document contains paragraph
boundaries (which is the case for the Grammarly Corpus in §4.1.2) in order to create
paragraph representations prior to the document one.

indices,1 (e.g., [[6,14,2], [7,90,2]]), the document will be translated into a matrix∈R2×3×dw :



[vector6]
[vector14]
[vector2]

 ,


[vector7]
[vector90]
[vector2]




If there are paragraphs, there will be a fourth dimension to represent the number of
paragraphs.

Contextualised embeddings In another setup, I bootstrap the network with contex-
tualised word vectors. In contrast to standard embeddings, the representation of each
word is a function of the entire sentence it appears in. I evaluate my models with two
types of pre-trained vectors: ELMo (Bi-LSTM-based) and BERT (transformer-based); see
§2.3.2 for further details about the two models. I use a feature-based approach where I
extract the contextualised representations from their pre-trained models and use them to
initialise my network. For ELMo, I use two approaches to extract the representations:

1I presume that sentences are of the same length for simplicity. In practice, sentences are of different
lengths and this difference is addressed by padding as will be discussed in §4.3.
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1. Only take the top layer in the three-layer representation (Peters et al., 2017).

2. Average the three layers to form a single vector (Peters et al., 2018).

As for BERT, I leverage BERTLARGE (cased) and specifically use layer 16 and represent
each word by the average of its subword representations, following previous work (Hewitt
and Manning, 2019). This choice is also supported by other studies that have shown
that syntactic information is better captured in the middle layers (Jawahar et al., 2019),
semantic features are spread across all the layers (Tenney et al., 2019a) and the middle
layers are the most transferable (Liu et al., 2019b).2 I motivate employing contextualised
embeddings in my work as follows:

• Learning representations for words based on their context lends itself to word sense
disambiguation (WSD) and thus builds semantically rich sentence embeddings which
is key to capturing connections and interactions between sentences.

• Contextualised embeddings are capable of encoding semantic and syntactic features
which is shown by their performance on relevant tasks such as POS and semantic
tagging and coreference resolution (Peters et al., 2018; Tenney et al., 2019b,a; Liu
et al., 2019b). Capturing such features is useful for coherence modeling, as will be
discussed in §3.2.1 and §3.2.2.

• Contextualised embeddings allow me to compare the results of initialising the STL
network with these embeddings that carry semantic and syntactic information against
learning this information via MTL. I also take the comparison further and integrate
ELMo and BERT in the MTL-based models in order to verify whether MTL can
capture different linguistic properties than the ones encapsulated in contextualized
embeddings.

With the different word initialisation methods, I end up with 4 versions of the STL model:
STL (using standard embeddings), STL+ELMo (using ELMo top layer), STL+ELMo-avg
(using the average of ELMo layers) and STL+BERT. Contextualised embeddings are also
integrated in the MTL framework as will be discussed in §3.2.

3.1.2 Sentence representation

Since I model coherence as transitions and interactions between sentences, building high
quality sentence representations is important for the task. As discussed in §2.3.1 and §2.3.3,
LSTM is a popular strategy to encode sentences and it has been utilised in numerous
coherence assessment models (§2.4). I employ a Bi-LSTM on the sequence of word

2See the per layer performance on a variety of linguistic tasks in tables 6, 8 and 10 in Liu et al. (2019b).
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vectors in each sentence to construct richer representations that encode information from
the forward and backward directions, and then concatenate the output vectors of both
directions:3

−→
hwit = LSTM(wit,

−−−→
hwit−1)

←−
hwit = LSTM(wit,

←−−−
hwit+1)

hwit = [
−→
hwit,
←−
hwit]

(3.1)

where wit is the input word representation and hwit ∈Rdim
w , where dimw is a hyperparameter

indicating the hidden layer size.4

Subsequently, a sentence representation is composed by applying an attention mecha-
nism to aggregate the output hidden states (§2.3.3):

uwit = tanh(Wwhwit)

awit = exp(vwuwit)∑
t exp(vwuwit)

si =
∑
t

awith
w
it

(3.2)

where Ww and vw are learnable parameters. Attention allows the model to focus on the
salient words for coherence and build better sentence representations.

3.1.3 Paragraph representation

The final document-level representation could be inferred directly from its composing
sentences, in case the document consists of one paragraph or we want to ignore paragraph
boundaries. However, if we want to model paragraphs in multi-paragraph documents,
then the respective representations should be constructed. A paragraph is a coherent
unit of text focusing on a specific topic, while transitioning to a new paragraph usually
signals topic shift. Building paragraph representations from sentences is similar to building
sentence representations from words:

−→
hsji = LSTM(sji,

−−−→
hsji−1)

←−
hsji = LSTM(sji,

←−−−
hsji+1)

hsji = [
−→
hsji,
←−
hsji]

(3.3)

3I use the notations w and s to refer to word and sentence representations respectively, and subscripts t
and i to denote the indices of words and sentences respectively. i.e. wit is the tth word in the ith sentence
and si is the ith sentence in the document. In case paragraphs exist, p is used to indicate paragraph
representations and a subscript j is added to the word/sentence notations to refer to the index of their
encompassing paragraph.

4For more detailed LSTM equations, see Eq. 2.2.
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where sji is the ith sentence in the jth paragraph computed in Eq. 3.2 and hsji ∈ Rdim
s .

Attention is then applied to aggregate the vectors generated by the Bi-LSTM:

usji = tanh(W shsji)

asji =
exp(vsusji)∑
i exp(vsusji)

pj =
∑
i

asjih
s
ji

(3.4)

where W s and vs are learnable weights.

3.1.4 Document representation

In order to build the final document vector (hd) that is to be scored, a Bi-LSTM is applied
to either the sentence representations in Eq. 3.2 (denoting a single-paragragh text) or the
paragraph representations in Eq. 3.4 (denoting a multi-paragraph text):

−→
hsi = LSTM(si,

−−→
hsi−1) (or)

−→
hpj = LSTM(pj ,

−−→
hpj−1)

←−
hsi = LSTM(si,

←−−
hsi+1) (or)

←−
hpj = LSTM(pj ,

←−−
hpj+1)

hsi = [
−→
hsi ,
←−
hsi ] (or) hpj = [

−→
hpj ,
←−
hpj ]

(3.5)

where hpj ∈ Rdim
p . Similar to the previous steps, an attention function is applied over the

hidden states of sentences or paragraphs:

usi = tanh(W shsi ) (or) upj = tanh(W phpj)

asi = exp(vsusi )∑
i exp(vsusi )

(or) apj =
exp(vpupj)∑
i exp(vpupj)

hd =
∑
i

asih
s
i (or) hd =

∑
j

apjh
p
j

(3.6)

where hd ∈ Rdim
d . The resulting document vector (hd) encompasses useful features learnt

at the different levels of the network. Applying a Bi-LSTM at each level facilitates learning
contextually rich representations and following that by attention is a selection strategy
to only forward the salient information to the next layer. Furthermore, my hierarchical
network is an architecture designed to be able in principle to capture aspects of local
coherence by using sentence-level Bi-LSTM which encodes each sentence in its local
context of preceding and successive sentences. Nonetheless, it could further capture global
coherence by constructing a document vector via attending to all its sentences/paragraphs.
In addition, modeling the interactions between paragraphs, in multi-paragraph texts, could
detect topic shifts, further promoting the global coherence of discourse.
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3.1.5 Scoring

In order to predict the overall coherence score for text, a linear transformation is applied
to the document vector (hd) followed by a sigmoid operation to bound the score in [0,1]:

ŷ = σ(W d hd) (3.7)

where W d is the linear function weight. The scoring process varies according to the dataset
and its number of labels as follows:

1. In binary datasets, documents are labeled as either coherent (y = 1) or incoherent
(y = 0). The network then predicts one score and attempts to push it towards 1 or 0
based on the true label. In that case, in Eq. 3.7, W d ∈ Rdim

d where dimd represents
the dimensionality of the document vector. The parameters of the network are
optimised to minimise the negative log-likelihood of the ground-truth label y, given
the predicted score ŷ, and thus the main loss is calculated by:

Lmain =−y log(ŷ)− (1−y)log(1− ŷ) (3.8)

2. In multi-class datasets, documents are labeled with one of different degrees of
coherence: y ∈ C where |C| > 2. Specifically, each document is labeled with a
one-hot vector with length |C| with a value 1 at the index of the correct class and
0 everywhere else. Accordingly, the model predicts |C| scores, using Eq. 3.7 with
W d ∈ R|C|×dim

d , and learns to maximise the value corresponding to the gold label.
For optimisation, I use Mean Squared Error (MSE) to minimise the discrepancy
between the one-hot gold vector and the estimated one:

Lmain = 1
|C|

|C|∑
j=1

(yj− ŷj)2 (3.9)

The final prediction of the model is the class with the highest predicted score. An
alternative approach to the multi-class problem is to apply a softmax over the
predictions instead of a sigmoid (Eq. 3.7), and minimise the categorical cross entropy;
however, initial experiments on the development set showed that my formulation
yields better results.

3.2 Multi-task learning model

The model described in 3.1 performs the single task of predicting a coherence score for a
text, and hence all model parameters are tuned to minimise the main loss (Lmain in Eqs. 3.8
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and 3.9). I extend this model to a multi-task learning (MTL) framework by training it
to optimise a secondary objective at the bottom layers of the network, along with the
main one, as shown in Fig. 3.2 (red dotted-box). Specifically, the model is trained to
predict a document-level coherence score along with word-level labels indicating syntactic
properties of words.5 I experiment with two types of word-level labels: grammatical
roles (GRs) and part-of-speech (POS) tags. The choice of these labels in particular is
motivated by their relevance to coherence assessment as will be discussed in the following
subsections. I present the first MTL model that learns to predict these syntactic labels as
an auxiliary task in order to enhance the performance on the task of coherence assessment.
Learning both tasks in a hierarchical network allows us to take advantage of hierarchical
inductive transfer between them and learn linguistically rich representations at the bottom
layers that can be exploited by the top layers of the network. Further details about these
syntactic labels are provided in §3.2.1 and §3.2.2, but first I explain how the secondary
objective is integrated to the network described in §3.1.

In order to create the secondary labels, each word in the input document is labeled
with a syntactic class in Y w which is a pre-defined set of all possible labels generated by
parsing the training data. More specifically, each word is labeled with a one-hot vector
of size |Y w| with value 1 at the the index of its ground-truth class and 0 everywhere
else. Subsequently, the model is trained to predict a probability distribution over Y w

for each input word by applying a linear operation normalized by a softmax function
over the word representation hwit (or hwt for simplicity) from Eq. 3.1 as follows. First, the
model calculates the dot product of a learned weight matrix W a ∈ R|Y

w|×dimw (dimw is
defined in §3.1.2) and each word representation hwt to get a vector of logit scores for each
word, in which each element represents the score assigned to each class in Y w. These
predicted scores are, however, unnormalized log probabilities which leads to the second
step of applying a softmax function to turn the scores into a probability distribution over
Y w. More formally, the probability distribution over all the classes in Y w for the word at
position t is calculated by:

P (ywt = r|hwt ) = exp(W a
r h

w
t )∑

r′∈Y w exp(W a
r′hwt ) (3.10)

where subscript r in W a
r refers to the rth row in W a, and 0≤ r < |Y w|. Adding supervision

for syntactic labels at hwt follows the previous work of Søgaard and Goldberg (2016).
However, in contrast to their work that focuses on word-level tasks (e.g., POS tagging and
syntactic chunking), I combine word-level with document-level tasks.

Equation 3.10 is applied for all the labels (r ∈ Y w) which results in a vector of
probabilities over Y w. The network aims at maximising the probability corresponding to

5My code for the MTL model is available at https://github.com/Youmna-H/coherence_mtl.
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the true label and hence optimises an auxiliary objective of categorical cross-entropy; i.e.,
the negative log-probability of the correct labels, for all the words in the document:

Laux =−
∑
t

∑
r
ywr logP (ywt = r|hwt ) (3.11)

where ywr either equals 1 if it is the correct class for the word or 0 otherwise. Both the
main loss (Eqs. 3.8 and 3.9) and the auxiliary one (Eq. 3.11) are optimised jointly, but
with different weights indicating the importance of each task:

Ltotal = αLmain+βLaux (3.12)

where α,β ∈ [0,1] are loss weight hyperparameters.6 The advantages of learning syntactic
properties in an MTL framework, in comparison to feeding them as input features, include:

• Efficiency, as using parsers to extract syntactic labels is limited to training data.
Additionally, predicting these labels is only required during training and therefore,
at inference time, MTL uses the same number of parameters as STL.

• The ability to control how much the model needs to learn from each task, by tuning
α and β in Eq. 3.12.

The following subsections explain the syntactic information I use as labels for the auxiliary
task.

3.2.1 Multi-task learning with grammatical roles

Grammatical roles (GRs) (alternatively called grammatical relations or grammatical
functions) refer to syntactic roles taken by words in a sentence based on their relations to
other words in the same sentence, such as subject, direct object, deteminer, etc. These roles
are defined within the grammatical dependency structure of sentences, where a sentence
has a head (root) on which every other word depends directly or indirectly.7 Dependency
structures are often extracted using dependency parsers (Chen and Manning, 2014; Dozat
and Manning, 2017) and traditionally, the main verb takes the role of the sentence root. A
grammatical relation consists of three participants: a head, a dependent and the type/label
of the relation between the head and the dependent as illustrated in Fig. 3.3. A GR is
the type of the relation and is assigned to the dependent word. Accordingly, each word in
my training data is annotated with a GR that denotes the type of the relation the word
participates in as a dependent, and the root is labeled with a root label. For instance, the

6I note that Eqs. 3.8, 3.9 and 3.11 calculate the loss for one document. However, the mean loss for the
documents in each training mini-batch is calculated and optimised, which I remove from the equations for
simplicity.

7Dependency grammar is often traced back to the work of Tesnière (1959).
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Jack likes green apples .

ROOT

nsubj amod

dobj

punct

Figure 3.3: A grammatical dependency structure generated by the Stanford Dependency
Parser (v. 3.8) (Chen and Manning, 2014). Each grammatical relation is represented with
an arrow where the head of the relation is the start of the arrow, the dependent is its end
and the relation type is written in the box. In this graph, nsubj is nominal subject, dobj is
direct object, amod is adjectival modifier and punct is punctuation.

sentence in Fig. 3.3 is labeled with the sequence: “nsubj, root, amod, dobj, punct”. As
GR annotation schemes are different across languages, the Universal Dependencies (UD)
project has been developed to create cross-linguistically consistent annotations for many
languages (Nivre et al., 2016), which I utilise in this thesis. The full list of GRs is detailed
in Table 3.1.

Learning the GRs of words is a way to capture sentence semantics which is useful
for many NLP tasks such as question answering (Hakimov et al., 2013), summarisa-
tion (Sakhare and Kumar, 2014) and machine translation (Sennrich and Haddow, 2016).
GRs have also been exploited for coherence modeling, more commonly with entity-based
approaches (Barzilay and Lapata, 2008; Elsner and Charniak, 2011b; Guinaudeau and
Strube, 2013; Tien Nguyen and Joty, 2017; Joty et al., 2018), due to their relevance to
the notion of salience (§2.1.4); they were also used in other probabilistic coherence mod-
els (Lapata, 2003). Furthermore, GRs were leveraged in abstractive summarisation (Fang
and Teufel, 2014) as an implementation of Kintsch and Van Dijk’s 1978 model of human
comprehension that describes how a text is represented in a reader’s memory, and which
textual elements are salient and thus will be recalled later as the reader processes the text.

Inspired by previous work, I propose an MTL framework that leverages the hierarchical
inductive bias between learning GRs and coherence assessment by predicting word-level
GRs as a secondary objective together with the main document-level coherence scoring
one. Similar to STL, I create different versions of the network where I use standard or
contextualised embeddings: MTLGRs, MTLGRs+ELMo and MTLGRs+BERT.8 In this
MTL setup, the labels in Y w are the GRs extracted by a dependency parser (the left
half of Table 3.1), and the network learns to assign the correct GR to each input word.
Contrary to entity-based approaches, I leverage all the GR types in Table 3.1, and predict
them for all the words in the input document, not just subject and object roles for entities.
The motivation for using the full set of GRs is two-fold:

8From STL experiments, I found that using the top ELMo layer outperforms averaging the layers, and
hence, I apply the first in the rest of the experiments.
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GR Type Description POS Tag Description
ACL
[relcl]

clausal modifier of noun
(adjectival clause) CC coordinating conjunction

ADVCL adverbial clause modifier CD cardinal number
ADVMOD adverbial modifier DT (or DET) Determiner

AMOD adjectival modifier EX Existential there
APPOS appositional modifier FW foreign word

AUX auxiliary IN preposition or subordinating conjunction
AUXPASS passive auxiliary JJ adjective

CASE case marking JJR adjective comparative
CC

[preconj] coordinating conjunction JJS adjective superlative

CCOMP clausal complement LS list item marker
COMPOUND

[prt] compound MD modal

CONJ conjunct NN noun, singular or mass
COP copula NNS noun plural

CSUBJ clausal subject NNP proper noun, singular
CSUBJPASS clausal passive subject NNPS proper noun, plural

DEP unspecified dependency PDT Predeterminer
DET

[predet] determiner POS possessive ending

DISCOURSE discourse element PRP personal pronoun
DOBJ direct object PRP$ possessive pronoun
EXPL expletive RB adverb
IOBJ indirect object RBR adverb, comparative

MARK marker RBS adverb, superlative
MWE multi-word expression RP particle
NEG negation modifier SYM symbol

NMOD
[tmod, poss, npmod] nominal modifier TO to

NSUBJ nominal subject UH interjection
NSUBJPASS passive nominal subject VB verb, base form
NUMMOD numeric modifier VBD verb, past tense

PARATAXIS parataxis VBG verb, gerund or present participle
PUNCT punctuation VBN verb, past participle
ROOT root VBP verb, non-3rd person singular present

XCOMP open clausal complement VBZ verb, 3rd person singular present
WDT wh-determiner
WP wh-pronoun
WP$ possessive wh-pronoun

, ,
. .
“ “
” ”
: :
$ $

Table 3.1: The left half displays the GRs (based on the UD scheme) extracted from the
WSJ training data (§4.1.1), the same roles are extracted from the Grammarly Corpus of
Discourse Coherence GCDC (§4.1.2). The text inside the square brackets in the leftmost
column denotes the extracted subtypes (language specific types). For more details about
subtypes, see http://universaldependencies.org/docsv1/ext-dep-index.html. The
total number of main types and their subtypes is 39. For the full list of UD, see http://
universaldependencies.org/docsv1/u/dep/index.html. The right half lists the POS
tags and their description, following the Penn Treebank project (https://catalog.ldc.
upenn.edu/docs/LDC99T42/tagguid1.pdf). The total number of POS tags is 41.
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1. Using all GRs enhances the prediction of subject and object roles for entities by
learning these roles in their full context (as will demonstrated in §4.4.3.2).

2. Utilising all the words in the input sequence, not just the words denoting entities,
allows the model to learn other coherence relevant features such as rhetorical relations
that are not represented by entities alone. Words with other grammatical roles such
as verbs are also important in building discourse relations (Lapata, 2003; Asher and
Lascarides, 2003). Consider the following examples:

(a) I booked my train ticket to Paris. I am travelling tomorrow.
(b) I booked my train ticket to Paris. I am cooking tomorrow.

The verbs in the second sentence of both examples (travelling and cooking) play
the key role in determining text coherence, making example (a) more coherent than
(b). An EGrid model would not be able to distinguish between both examples.
Furthermore, EGrid models require feature engineering at train and test time to
build the EGrids.

3.2.2 Multi-task learning with part-of-speech tags

In this section, I investigate the use of another type of syntactic information in coherence
modeling which is POS tags. Utilising the POS features of the words in a sentence helps
capture its syntax, thus builds better sentence representations. POS features have been
widely used in numerous NLP problems such as essay scoring (Yannakoudakis et al., 2011),
machine translation (Niehues and Cho, 2017) and question answering (Hommel et al.,
2019). They have also been leveraged in discourse related tasks such as detecting implicit
coherence relations (Lin et al., 2009), in addition to coherence modeling by capturing the
intentional structure of discourse (see Louis and Nenkova (2012) in §2.2.2).

Encouraged by the work of Louis and Nenkova (2012), I implement an MTL framework
where I use word-level POS tag prediction as a secondary training objective, where
the network learns to assign a POS category to each input word. I also create three
versions of the model based on the initialisation method: MTLPOS, MTLPOS+ELMo and
MTLPOS+BERT. In this MTL setting, the labels in Y w are the POS tags parsed by a
POS tagger (see right half of Table 3.1) and each word in an input sentence is labeled
with a tag in Y w. For instance, the corresponding sequence of labels to the input sentence
in Fig. 3.3 is “NNP VBZ JJ NNS .” My motivation for using POS tags is:

• to facilitate capturing syntactic patterns and thereby model the intentional structure
of text as shown by Louis and Nenkova (2012).

• to compare the impact of using different syntactic features (POS tags vs. GRs) on
coherence assessment.
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3.3 Neural syntactic models

In order to investigate the value of adopting MTL for coherence modeling, I compare it to
neural models that incorporate syntactic information in different ways. I examine whether
leveraging syntactic properties by learning them via MTL has an advantage over feeding
them as input to the network. I also compare different MTL setups by learning a subset
of GRs or jointly learning GRs and POS tags. All the models in this section are initialised
with standard embeddings and detailed as follows.

Concatenation models Instead of learning to predict syntactic features within an
MTL framework, I incorporate them as input features to the model by concatenating them
to the word representations in the STL framework. In this setup, I randomly initialise an
embedding matrix Econcat ∈R|Y

w|×g, where g is the embedding size, Y w, as defined in §3.2,
is the set of syntactic features and each feature is mapped to a row in Econcat. In order to
process an input document, each word vector (w1. . . wn in Fig. 3.2) is concatenated with
its syntactic label vector from Econcat. Here, the syntactic features are needed as input at
both training and test time, unlike in MTL, where they are only required during training.
I refer to the model that leverages GRs as concatGRs and the one that uses POS tags as
concatPOS.

Multi-task learning with SOX (MTLsox) As elaborated in 3.2.1, I utilise all the
GR types extracted from the training data, contrary to previous entity-based approaches
that only focus on subject and object roles of entities. Therefore, in order to further assess
the impact of my extended set of GRs, I re-train the same MTL model but now only utilise
subject (S) and object (O) types as my secondary training signal and map any ‘other’ role
to ‘X’; specifically, Y w = {S, O, X}. For instance, in this MTLsox approach, the input
sentence in Fig. 3.3 will be labeled with the sequence: “S, X , X , O, X”. Furthermore,
any word parsed as nominal subject (nsubj) is labeled as subject, and any word parsed as
direct object (dobj), indirect object (iobj) or passive nominal subject (nsubjpass) is labeled
as object.

Multi-task learning with two auxiliaries (MTLGRs+POS) I create another setting
for MTL with two auxiliary losses: one for GRs and the other for POS tags. In this setup,
there are two sets of word-level classes (Y w1 and Y w2 ) representing the sets of GRs and POS
tags and the model learns to predict both labels for each input word. Accordingly, Eq. 3.10
is applied twice with different W a weights for each set of classes and similarly Eq. 3.11 is
applied to obtain two auxiliary losses: Laux1 and Laux2. The final total loss the network
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optimises is a weighted sum of all the losses:

Ltotal = αLmain+β1Laux1 +β2Laux2 (3.13)

where α, β1 and β2 are hyperparameters to be tuned. The motivation for this setup is to
examine whether there are any further gains from learning both GRs and POS tags and
whether they can capture complementary features. I refer to this network as MTLGRs+POS.

3.4 Summary

In this chapter, I have presented my MTL approach to coherence modeling. I have first
explained the main hierarchical attention-based architecture that performs the single-task
of predicting a document-level coherence score (the STL model). I have then showed
how the model is modified to perform MTL, where it learns to predict a document-level
coherence score at its top layers together with word-level syntactic labels at its lower
layers. I investigated two types of syntactic labels: GRs, inspired by entity-based discourse
approaches and models of human comprehension, and POS tags, inspired by the role
syntactic constructions play in modeling the intentional structure of discourse. I have
also created variants of my models enhanced with ELMo (Bi-LSTM-based contextualised
embeddings) or BERT (transformer-based contextualised embeddings). Finally, as a
further investigation to my MTL approach, I have incorporated syntactic labels to my
hierarchical network in different fashions by: concatenating the labels with the input word
representations in the STL network, learning a subset of the GRs in MTL by focusing
only on subject and object roles, or learning both GRs and POS tags as auxiliary labels in
the MTL framework.
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Chapter 4

Experiments

In this chapter, I present my experiments using the models described in Chapter 3 and
compare them to state-of-the-art coherence models. I specifically assess my approach on
the standard binary discrimination task that ranks a coherent original document against
its incoherent counterparts created by distorting the sentence order in the original text.
Furthermore, I evaluate my approach on realistic data of everyday writing, such as emails
and online posts, that exhibits various coherence levels. I compare my models to a wide
variety of benchmarks and state-of-the-art models. My experiments show the effectiveness
of MTL, particularly when enhanced with contextualised embeddings, on the binary task
of ranking a coherent document higher than its noisy versions. Furthermore, MTL with
contextualised embeddings attains state-of-the-art accuracy using a more comprehensive
evaluation setting that ranks a coherent document higher than all the incoherent documents
in the dataset, not just its incoherent counterparts. MTL also achieves state-of-the-art
performance on the realistic domain that contains texts of varying degrees of coherence;
however, with further investigation I find that it fails to capture medium levels of coherence.
Finally, I provide further analysis and visualisation to the models in order to interpret
their behaviour and explicate their obtained results. I note that this chapter is based on a
long paper published in the 57th Annual Meeting of the Association for Computational
Linguistics (ACL 2019) (Farag and Yannakoudakis, 2019).

This chapter is structured as follows. In §4.1, I present the binary synthetic dataset
and the realistic one that exhibits multiple levels of coherence. Next, in §4.2, I present
previous neural models that I compare my approach to, including models that achieved
state-of-the-art results in coherence modeling. After that, in §4.3, I explain how the models
are trained and the hyperparameters they use. In §4.4 and §4.5, I discuss my results on
the binary synthetic data and the realistic one respectively, with further analysis to model
performance for each dataset. Finally, I summarise my findings in §4.6.
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#Docs #Synthetic Docs Avg #Sents Avg Sent Len
Train 1,238 23,174 21.4 24.1
Dev 138 2,593 18.13 25.13
Test 1,090 20,766 21.9 24.28

Table 4.1: Statistics for the WSJ data. ‘#Docs’ represents the number of original articles
and ‘#Synthetic Docs’ the number of original articles + their permuted versions. ‘Avg
#Sents’ is the average number of sentences per document.

4.1 Datasets and preprocessing

4.1.1 The Wall Street Journal - synthetic data

Following prior work (Elsner and Charniak, 2008, 2011b; Lin et al., 2011; Tien Nguyen and
Joty, 2017), I use the Wall Street Journal (WSJ) portion of Penn Treebank, which contains
business-focused articles, for the binary discrimination task. I prefer it to other widely
used datasets (e.g., Earthquakes and Accidents (Barzilay and Lapata, 2008)) as it contains
longer articles, allowing the models to reason over long stretches of discourse. Additionally,
each of the Earthquakes and Accidents corpora contains 100 original articles for training
and 100 for testing while the WSJ contains 1,376 for training and 1,090 for testing.1 I
follow the work of Tien Nguyen and Joty (2017) and use sections 00−13 of the WSJ for
training and 14−24 for testing (each section contains 100 documents); I also remove the
documents consisting of one sentence. Following pervious studies (Barzilay and Lapata,
2008; Elsner and Charniak, 2008), I create 20 permutations per document by randomly
shuffling its sentences, making sure to exclude duplicates2 or versions that happen to have
the same ordering of sentences as the original article. I also follow previous work and do
not account for paragraph boundaries in this corpus. The documents are annotated with
binary labels, where an original document is considered coherent and given a score of one
and each shuffled document is incoherent and assigned a zero score. As for tokenisation,
the available version of the WSJ dataset is already tokenised and sentence boundaries are
detected, so I leverage that. For training, I follow the same train-dev split of Tien Nguyen
and Joty (2017) which is a 9 : 1 split.3 All words are lowercased and, for the standard word
embeddings setup, I follow the traditional method of mapping the words that occur once
in the training data to a special unknown token < UNK > (Collobert et al., 2011). The
vocabulary training size (i.e., the number of unique tokens) is 30,048 word. The statistics
for the WSJ corpus are revealed in Table 4.1.

In order to evaluate model performance on the WSJ, I again follow previous work (Barzi-
lay and Lapata, 2008) and calculate the pairwise ranking accuracy (PRA) between an

1The counts are calculated after excluding documents with a single sentence.
2This means that very short documents might have less than 20 permutations.
3https://github.com/datienguyen/cnn_coherence/tree/master/data
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Yahoo Clinton Enron
Train Dev Test Train Dev Test Train Dev Test

#Documents 900 100 200 900 100 200 900 100 200
Avg #Sents 7.5 7.3 7.4 6.6 6.3 6.6 7.6 7.8 7.8
Avg #Paras 1.3 1.3 1.3 4.1 4.3 4.0 2.8 3.0 2.8

Avg Sent Len 20.8 20.5 21.7 27.8 28.7 28.2 24.1 24.4 24.4
Avg Para Len 6.1 5.7 5.7 2.3 2.2 2.3 3.3 3.2 3.3

Training Vocab Size 10,731 12,658 11,169
QWK 0.386 ± 0.009 0.250 ± 0.011 0.273 ± 0.011

Class Dist. (%) 45.2, 17.5, 37.2 28.6, 21.2, 50.2 30.0, 19.3, 50.6

Table 4.2: Statistics for the GCDC datasets. ‘Avg #Sents’ and ‘Avg #Paras’ represent the
average number of sentences and paragraphs in a document respectively. ‘Avg Sent Len’ is
the average number of words per sentence and ‘Avg Para Len’ is the average number of
sentences per paragraph. ‘Training Vocab Size’ represents the number of unique words
in the training set. QWK represents the agreement for expert annotators (mean and
standard deviation, calculated using leave-one-out resampling). The three numbers in
‘Class Dist.’ denote the percentage of the low, medium and high classes respectively, using
the consensus labels of expert annotations.

original text and its 20 permuted counterparts. Additionally, I use the more generalised
total pairwise ranking accuracy (TPRA) which supports a more rigorous evaluation by
verifying if a model can do more than comparing different distributions of the same set
of entities and can generalise better across various documents. TPRA also facilitates
assessing model susceptibility to text length (PRA only compares a document to its
different versions that are of the same length). For more details about PRA and TPRA,
see §2.7.

4.1.2 The Grammarly Corpus of Discourse Coherence - realistic
data

The Grammarly Corpus of Discourse Coherence (GCDC)4 is a dataset that contains emails
and online posts written by non-professional writers with varying degrees of proficiency and
care (Lai and Tetreault, 2018). Specifically, the dataset contains texts from four domains:
Yahoo online forum posts, emails from Hillary Clinton’s office, emails from Enron and
Yelp business reviews. As some of the reviews from the latter were removed by Yelp at
the time I developed my models, in addition to having a slight expert inter-annotator
QWK agreement (see Table 4.2), I evaluate my models on each of the first three domains
that exhibit fair agreement (for more details about the strength of agreement, see Landis
and Koch (1977)). Lai and Tetreault (2018) calculated agreement using leave-one-out
resampling (§2.7) and averaging the QWK values across 1,000 runs following Pavlick and
Tetreault (2016). Expert and untrained Amazon Mechanical Turk raters were asked to

4https://github.com/aylai/GCDC-corpus
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annotate each document with a score ∈ {1,2,3}, representing low, medium and high levels
of coherence respectively. The untrained inter-annotator agreement was quite low, and
therefore, I follow Lai and Tetreault (2018) and only use the expert annotations. These
annotations were done by three experts with “previous annotation experience” and no
solid instructions were provided. Lai and Tetreault (2018) described how they guided the
expert raters as follows: “We provided a high-level description of coherence but no detailed
rubric, as we wanted them to use their own judgment. We also provided examples of low,
medium, and high coherence along with a brief justification for each label.”

For my experiments, I particularly use the consensus rating of the expert scores as
calculated by Lai and Tetreault (2018) (by averaging the raters’ scores then thresholding the
mean coherence score: low ≤ 1.8< medium ≤ 2.2< high). The models are evaluated using
three-way classification accuracy to test their ability to predict the correct coherence class.
I use the same train and test sets as Lai and Tetreault (2018) and follow them by dividing
the training documents into train-dev splits with a 9 : 1 ratio. I use spaCy (Honnibal and
Johnson, 2015) for tokenisation and sentence boundary detection. The dataset is already
annotated with paragraph boundaries so I leverage that following Lai and Tetreault (2018),
and apply the paragraph equations in §3.1.3. Similar to the WSJ, all the tokens are
lowercased and words that occur once in the training data are represented with <UNK >.
Statistics for the three GCDC datasets I use are displayed in Table 4.2, and I show
examples from the Yahoo domain in Appendix A.

4.2 Previous neural models

In this section, I present previous neural coherence models that I compare my approach
to. Further details about the models are provided in §2.4.1

4.2.1 Local coherence

I compare my approach to the local coherence (LC) model (Li and Hovy, 2014), using an
LSTM sentence encoder (Li and Jurafsky, 2017). The LC model is depicted in Fig. 4.1
and its training hyperparameters are detailed in §4.3. First, the model builds sentence
embeddings by applying an LSTM (Eq. 2.2) and taking the hidden state of the last word
as the sentence vector. A window approach then applies a filter of weights ∈Rl×dim

s×dimc

over clique embeddings, produced by concatenating vectors of adjacent sentences, to
extract clique representations (Eq. 2.5), where l is a hyperparameter indicating the window
size, dims is the length of the sentence vector and dimc denotes the convolution output
size. Clique representations are scored by a linear operation followed by sigmoid. A clique
is assigned a score of 1 if it is coherent (i.e., its sentences are not shuffled) and 0 if it
is incoherent (i.e., its sentences are shuffled). The network optimises its parameters to
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Figure 4.1: The LC model architecture using a window of size 3. All hs representations
are computed the same way as hs1. The figure depicts the process of predicting the first
clique score, which is applied to all the cliques in the text. The output coherence score is
the average of all the clique scores and q is the number of cliques.

minimise the negative log-likelihood of the clique gold scores (yc), given the network’s
predicted scores (ŷc):

Llc = 1
q

q∑
k=1

[−yck log(ŷck)− (1−yck) log(1− ŷck)] (4.1)

where q is number of cliques in text. The final coherence score of a document is calculated
as the average of all of its clique scores (Li and Jurafsky, 2017):

ŷ = 1
q

q∑
k=1

ŷck (4.2)

This is in contrast to Li and Hovy (2014) who multiplied the estimated clique scores to
generate the overall document score. This means that if only one clique is misclassified as
incoherent and assigned a score of 0, the whole document is regarded as incoherent. I aim to
soften this assumption and use the average instead to facilitate modeling more fine-grained
degrees of coherence. I apply ‘valid’ convolution (Goodfellow et al., 2016, p. 343) where
q =m− l+1, m is the number of sentences and l is the window size. I evaluate the LC
model on both the WSJ and the GCDC.5 On the latter, the LC model achieved the highest
classification accuracy on Clinton and Enron datasets (Lai and Tetreault, 2018).

4.2.2 Neural EGrid

Neural EGrid models constitute a strong approach to compare my MTL model to as
they focus on subject-object-other roles for entities while being able to capture long-range

5For the WSJ, I implement, train and test the model, whereas for the GCDC, I report the results
of Lai and Tetreault (2018).
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transitions. This allows us to examine the advantage of predicting all GRs with MTL as
well as building sentence representations from all the words in input sentences, not just
entities. I utilise two EGrid models: CNN-EGridext (Tien Nguyen and Joty, 2017) and
CNN-EGridlex (Joty et al., 2018).

Extended CNN EGrid (CNN-EGridext) I leverage the CNN-EGridext which applies
a CNN followed by max pooling over EGrid text representations that are extended with
entity specific features. Training is achieved in a pairwise fashion where the network is
given a pair of document grids (a coherent one (gi) and its incoherent counterpart (gj))
and optimises the following margin/ranking objective that aims at maximising the margin
between coherent and incoherent documents:

Legrid(θ) =max{0,1−f(gi|θ) +f(gj |θ)} (4.3)

where θ is the model parameters. I use the public implementation by Tien Nguyen and Joty
(2017)6 and extract the EGrid representations using the Brown coherence toolkit (Elsner
and Charniak, 2011b).7

Lexicalised CNN EGrid (CNN-EGridlex) CNN-EGridlex uses the same framework
as CNN-EGridext, yet the core difference is that it integrates lexical information about
entities by representing each entity with its word embedding (specifically, Google pre-
trained embeddings (Mikolov et al., 2013c)) together with its subject-object-other role.
CNN-EGridlex also excludes the three entity-specific features used by CNN-EGridext. I
use the public code by Joty et al. (2018).8

Both EGrid models are well-suited for binary data as they are trained in a pairwise
fashion, where the input for the model consists of a pair of documents (a coherent document
and its incoherent counterpart). However, the available implementation of the models
needs to be modified to accommodate for the multiple classes in the realistic data, which
would be an interesting avenue for future work. In this thesis, I only utilise them in the
binary synthetic domain.

4.2.3 Local coherence discriminator

I use the local coherence discriminator (LCD) approach (Xu et al., 2019) which encodes
sentences and adds a discriminative layer over each sentence pair to distinguish between
coherent and incoherent pairs. The network also optimises a margin loss (Eq. 4.3), given
coherent and incoherent pairs of sentences. Since the training strategy of the LCD approach

6https://github.com/datienguyen/cnn_coherence/
7https://bitbucket.org/melsner/browncoherence
8https://ntunlpsg.github.io/project/coherence/n-coh-acl18/
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is pairwise, similar to the neural EGrid models, I only evaluate it on the WSJ. I use three
sentence encoders, as will be described next, and utilise the public implementation of Xu
et al. (2019).9

LCD with language modeling This model (LCD-L) uses an RNN language model
encoder. It is, overall, the best model proposed by Xu et al. (2019) and it achieves the
published state-of-the-art results on the WSJ using the PRA metric.

LCD with fastText I create a variant of the LCD model using fastText embed-
dings (Mikolov et al., 2018) (§2.3.2) that were proven to be efficient in various NLP
tasks (Joulin et al., 2016), even when used as bag-of-word baselines (Conneau et al., 2018).
The LCD-fastText model encodes each sentence by simply averaging the fastText vectors
of its words.

LCD with ELMo This version of the model builds sentence representations by averaging
the ELMo vectors of their words (LCD-ELMo). ELMo embeddings are created by taking
the last layer for each word representation (§3.1.1)

LCD with BERT Similarly, I encode sentences by averaging their BERT embeddings
(LCD-BERT), created as described in §3.1.1.

4.2.4 Paragraph sequence

Lai and Tetreault (2018) implemented the paragraph sequence (PARSEQ) model, which is
a hierarchical neural network consisting of three LSTMs to generate sentence, paragraph
and document representations. The network architecture is similar to my STL model; the
key difference is that I use a Bi-LSTM and aggregate the representations produced at
different network levels with attention. I compare my models to PARSEQ on the GCDC
as it achieved state-of-the-art results on Yahoo dataset.

4.3 Training and hyperparameters

I implement and train the models described in Sections 3.1, 3.2, 3.3 and 4.2.1, using Keras
v. 2.2.4 (Chollet et al., 2015); I use its default initialisation settings for network parameters.
All the non-contextualised models are initialised with GloVe embeddings and words that
do not exist in the pre-trained embedding space are initialised randomly with values drawn
from a normal distribution with mean = 0 and scale = 0.01. For regularisation, I apply
dropout (Hinton et al., 2012) with probability 0.5, which is a value typically used in

9https://github.com/BorealisAI/cross_domain_coherence
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Figure 4.2: PRA value (shown on the y-axis) for MTLGRs, MTLGRs+ELMo and
MTLGRs+BERT models with different α and β values, where β is shown on the x-
axis and α is shown in the legend. I report the results when α is fixed at 1 and β changes
and when α+β = 1.

literature (Baldi and Sadowski, 2013). Dropout is applied at two layers in any model;
the first is the word embeddings layer, and the second is the output of the convolutional
operation for the LC model or the output of the sentence Bi-LSTM for all the other models
(Eq. 3.1). For optimisation, I use RMSProp (Tieleman and Hinton, 2012) with the default
Keras values: learning rate = 0.001 and gradient moving average decay factor (rho) = 0.9.
I sort the input documents by length (i.e., the number of sentences in the document), and
create mini-batches of size 32. In order to unify the lengths of the sentences and documents
in the same mini-batch, I first calculate the maximum document length (dmax), as well
as the maximum sentence length (smax), in each mini-batch. I then pad any sentence of
length < smax with zero vectors of the dimensionality of the word embeddings (dw), and
pad any document of length < dmax with zero vectors ∈ Rsmax×dw . The same padding
technique is applied for paragraphs in the GCDC.

All the WSJ models are trained for 30 epochs and the GCDC ones for 20 epochs,
as they converge early. Performance is monitored on the development sets and, for the
final evaluation, I select the model that yields the highest PRA for the WSJ and highest
classification accuracy for the GCDC. I search for the optimal size of the hidden layers in
the space {100,200,300} and GloVe embeddings in {50,100,300}; tuning is done for each
dataset separately for the STL model, as the base model, then applied to the different
models that inherit from it.

As for the loss weights in MTL, since there are many possible combination of values, I
limit my tuning to two settings:

• I fix the main loss weight (α) at 1 and tune the auxiliary loss weight (β) using the
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dw
hw hs hp

α
βGloVe ELMo/BERT MTL MTL+ELMo/MTL+BERT

WSJ 50 1,024 100 100 - 0.7 1 0.3
Yahoo 300 1,024 100 100 100 1 1 0.1
Clinton 300 1,024 100 200 100 1 1 0.1
Enron 300 1,024 100 100 100 1 1 0.2

Table 4.3: Model hyperparameters: dw denotes the dimensionality of word embeddings
(1,024 is the default value for ELMo and BERTLARGE); the h hyperparameters refer to the
size of LSTM hidden layers with the superscripts w, s and p referring to word, sentence
and paragraph hidden layers respectively; α is the main loss weight and β the secondary
one. The values in the table are the final hyperparameters (where applicable) for all
STL and MTL models, with the exception of MTLGRs+POS where α = 0.8, β1 = 0.1 and
β2 = 0.1. MTL values are for both the GR and POS models.

values {0.1,0.2,0.3, 0.4,0.5}.

• I interpolate the α and β values in [0,1] with a step of 0.1 and the constraint
α+β = 1. This constraint is modified for the model that utilises two secondary
losses (MTLGRs+POS) to be: α+β1 +β2 = 1

In Fig. 4.2, I depict the change in performance (PRA) of the GR-based models (MTLGRs,
MTLGRs+ELMo and MTLGRs+BERT) on the WSJ dev set when the loss weights change.
Regarding the MTLGRs+POS model, the final weight values I use are: α = 0.8, β1 = 0.1
and β2 = 0.1. Table 4.3 summarises the best STL and MTL hyperparameter values used
for input and hidden layer dimensionality as well as weight losses.

As for the LC model, on the WSJ, I follow Li and Hovy (2014) and Li and Jurafsky
(2017) and set the size of the hidden layer to 100 and the window size to 3, while on
the GCDC I report the model results from Lai and Tetreault (2018) as I use their same
test set. Similarly, for the PARSEQ model on the GCDC, I report the results from Lai
and Tetreault (2018). Regarding the LCD and EGrid models, as mentioned earlier, I
use their available public implementations and the default hyperparameters described in
their respective papers. As for the concatenation models (ConcatGRs and ConcatPOS), the
embedding size for the syntactic feature is set to 50.

In order to reduce model variance, for all the models I run the WSJ experiments 5
times with different random initialisations and the GCDC ones 10 times (following Lai and
Tetreault (2018)), and average the predicted scores of the ensembles for the final evaluation.
Averaging ensemble predictions has been widely leveraged in deep learning approaches
and shown to reduce error rates committed by individual neural networks (Krizhevsky
et al., 2012; Sutskever et al., 2014; Taghipour and Ng, 2016).

Annotating the input words with their GRs, for the GR-based models, is achieved
using the Stanford Dependency Parser (v. 3.8) (Chen and Manning, 2014), where the
parser extracts 39 different GRs (of UD and their subtypes). All the GR-based models
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leverage the full set of extracted GRs, except for the MTLSOX model that only uses subject
and object roles. As for the POS-based models, I parse the input with the Stanford POS
tagger (v. 3.8) (Toutanova et al., 2003) that leverages the Penn Treebank tagset and
extract a total of 41 different tags. The full list of the extracted GRs and POS tags is
shown in Table 3.1.

4.4 Binary experiments

In this section, I present the baselines that I include in my binary experiments on the
WSJ and discuss the results of the different models. I also conduct a further analysis to
explicate the obtained results.

4.4.1 Baselines

For all the baselines introduced in this section, I use the hyperparameters and training
setup described in §4.3.

MTL with random syntactic labels The MTL framework optimises a main loss
function and an auxiliary one and assigns different weights to each function based on its
importance for the final prediction. This combination of losses might raise the question of
whether the model actually benefits from predicting syntactic labels, or the addition of the
auxiliary function works as a regularisation mechanism (i.e., a penalty on the main loss)
that boosts the performance. In order to further examine this question, I create a version
of MTLGRs and MTLPOS where I randomly shuffle the syntactic labels for each sentence,
thus each word will be mapped to an incorrect label. If the performance does not get
affected this would show that the auxiliary loss might just be regularising the network and
there is no value for learning the GR or POS labels; otherwise, the usefulness of learning
syntactic information could be validated. I refer to the models with randomised GRs and
POS tags as MTLGRs-rand and MTLPOS-rand respectively.

STL with untuned embeddings In the models that use standard embeddings, all the
parameters are tuned with back-propagation, where the error gradients are back-propagated
to the word embedding layer. Fine-tuning word representations is useful as it modifies the
input embedding space to be more tailored for the task. In order to examine the merit
of this, I create another setup of the STL model, trained on the WSJ, where I keep the
pre-trained GloVe representations fixed during training (I refer to it as STL (untuned
embed)), and compare it to the setup where I fine-tune the embeddings. Furthermore, to
better understand the effect of fine-tuning, I select a few finance-related terms from the
WSJ vocabulary and report, in Table 4.4, the most similar word to each term in both the
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Word Fine-tuned Untuned Freq
capital money central 6,268
bank agency banks 12,145
banks market bank 5,112
drop losses dropping 2,842
fall directors rise 2,354
store containers shop 1,894
properties third-quarter estate 1,134
bonds agreement bond 10,107
stocks dividend stock 8,070

Table 4.4: The table displays the most similar word in the fine-tuned and untuned
embedding space for the word in the left. The untuned space is fixed GloVe embeddings
of size 50, whereas the fine-tuned space is the result of initialising the STL model with the
GloVe embeddings and fine-tuning them by training the model on the WSJ. ‘Freq’ is the
frequency of the word in the training set.

fine-tuned and untuned spaces. Similarity between two words w1 and w2 is defined as the
cosine similarity between the two vectors representing these words as follows:

sim(w1,w2) = cos(θ) = ~w1 . ~w2
‖ ~w1‖ .‖ ~w2‖

(4.4)

where θ is the angle between the two vectors. In order to perform this analysis, I use
Gensim Python scripts (Řeh̊uřek and Sojka, 2010).

STL with averaged ELMo embeddings As explained in §3.1.1, I integrate ELMo
embeddings either by using the top layer in the three-layer representation or averaging
the three layers. I use the two techniques with the STL model on the WSJ and carry
on, in the rest of the experiments, with the top-layer approach as it achieves the higher
performance.

4.4.2 Results

The results for the binary discrimination task on the WSJ corpus are shown in Table 4.5.
Significance is calculated using a randomisation test (Yeh, 2000), with p-value< 0.01.10

We further explain the obtained PRA and TPRA results as follows.
10A randomisation test calculates the difference in accuracy (PRA or TPRA) of two systems, A and

B, if their predictions are randomly exchanged with a probability of 0.5. This process is repeated for R
iterations (we set R = 1,000) and in each iteration, if the absolute value of the difference between the
system accuracies after randomisation is greater than or equal the absolute value of the difference between
the system accuracies before randomisation, we increment a variable c by 1. The p-value is then calculated
as: p= c+1

R+1 .
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Model PRA TPRA r
Egrid CNNext 0.876 0.656 0.033
Egrid CNNlex 0.846 0.566 -0.030
LC 0.741 0.728 0.075
STL 0.877 0.893 0.225
STL (untuned embed) 0.768 0.781 0.069
ConcatGRs 0.896 0.908 0.226
ConcatPOS 0.895 0.904 0.222
MTLGRs-rand 0.911 0.920 0.195
MTLPOS-rand 0.919 0.928 0.167
MTLGRs 0.932 0.941 0.260
MTLPOS 0.934 0.942 0.223
MTLSOX 0.899 0.913 0.231
MTLGRs+POS 0.930 0.937 0.164
STL+ELMo 0.953 0.965 0.227
STL+ELMo-avg 0.948 0.960 0.217
MTLGRs+ELMo 0.960 0.969* 0.234
MTLPOS+ELMo 0.959 0.969* 0.227
STL+BERT 0.954 0.961 0.271
MTLGRs+BERT 0.961 0.968 0.239
MTLPOS+BERT 0.960 0.969* 0.257
LCD-L 0.945 0.870 0.313
LCD-fastText 0.940 0.843 0.184
LCD-ELMo 0.968 0.931 0.319
LCD-BERT 0.971* 0.922 0.339

Table 4.5: The middle column shows the results of the binary discrimination task on the
WSJ. * indicates significance (p-value < 0.01) over all the other models, except LCD-ELMo
for PRA and MTLGRs+BERT for TPRA, based on the randomisation test. The last
column shows the Pearson’s correlation r between the similarity of incoherent documents
to their original counterpart (calculated as will be discussed in §4.4.3.1), and the coherence
scores assigned to these incoherent documents.

Using contextualised embeddings From the results, we can see that adding contex-
tualised embeddings always significantly improves the performance over standard vectors;
the top PRA is 0.971 obtained by LCD-BERT and the top TPRA is 0.969 yielded by
MTLGRs+ELMo, MTLPOS+ELMo and MTLPOS+BERT. This further motivates the value
of using contextualised representations in downstream tasks due to their ability to capture
syntactic and semantic information. As for the comparison between ELMo and BERT,
we find that both embeddings perform closely when utilised in STL or MTL setups. The
exception is the significant difference between LCD-ELMo and LCD-BERT on the TPRA
metric (0.931 and 0.922 respectively). This could be explained by the fact that these LCD
models optimise a smaller number of parameters (only the final MLP layer) in comparison
to the other models, which makes the impact of the different contextualised models more
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notable. As for the different ELMo initialisation techniques, we can see that using the last
layer of ELMo (STL+ELMo) surpasses the averaging method (STL+ELMo-avg) and thus
I employ the former in all the ELMo-based approaches.

Using MTL We observe that incorporating syntactic information in an MTL fashion,
significantly boosts the performance of the models over their STL counterparts.11 This
also applies to the ELMo and BERT versions of MTLGRs and MTLPOS versus their
STL versions (STL+ELMo and STL+BERT), which suggests that despite the syntactic
information captured by contextualised embeddings, the models can still benefit from
learning syntactic properties as a secondary task. However, the impact of MTL becomes
smaller when ELMo or BERT are leveraged (e.g., PRA of STL vs. MTLGRs is 0.877 vs.
0.932 while STL+ELMo vs. MTLGRs+ELMo is 0.953 vs. 0.960, and STL+BERT vs.
MTLGRs+BERT is 0.954 vs. 0.961), further corroborating the value of contextualised
embeddings in capturing syntactic features.

Additionally, Table 4.5 reveals the superiority of MTLGRs and MTLPOS over ConcatGRs

and ConcatPOS. This demonstrates that learning syntactic labels within an MTL framework
facilitates building linguistically richer representations, in comparison to forcing these
labels as inputs. In addition, MTL limits syntactic parsing to training time. As for
the weights assigned to the main and auxiliary tasks in MTL, we can see in Fig. 4.2
that the relation between α and β on one hand and performance (PRA) on the other is
non-monotonic and the figure does not exhibit a consistent pattern; hence, it is important
to tune these weights to find balance between the tasks.

Moreover, we find that MTLGRs and MTLPOS perform significantly better than their
randomised versions (MTLGRs-rand and MTLPOS-rand), further validating the MTL
approach and demonstrating that useful features could be learned from grammatical and
POS labels. Nonetheless, the randomised models still yield a high performance (PRA for
MTLGRs-rand = 0.911 and for MTLPOS-rand = 0.919) and thus I recommend them as
strong baselines for MTL frameworks in NLP tasks.

In terms of the MTL GR-based models and their POS-based counterparts, we in-
terestingly find that they provide very close performance (even identical in some cases).
Furthermore, combining the two types of syntactic features in MTLGRs+POS doesn’t yield
any performance gains. This raises the question of whether the models learn complementary
features when leveraging different syntactic properties which I further investigate in §4.4.3.3.
We also observe that utilising the full set of GRs (MTLGRs) significantly outperforms
focusing on subject and object roles (MTLSOX) which I further discuss in §4.4.3.2.

11Statistical significance is calculated using randomisation test with p-value < 0.01.
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Fine-tuning standard word embeddings The value of fine-tuning the word embed-
dings is indicated by the substantial difference in performance between STL and its
untuned version. Table 4.4 gives a few examples that illustrate how the embedding space
gets shifted by fine-tuning. For example, the closest word to ‘capital’ is ‘money’ in the
fine-tuned space and ‘central’ in the untuned one, showing how the word gets closer to
its financial sense by fine-tuning. However, in other cases, fine-tuning pushes some words
towards semantically less related terms such as detecting ‘directors’ as the most similar
word to ‘fall’, in contrast to ‘rise’ in the untuned space.

Other neural models Table 4.5 also reveals that neural EGrid approaches under-
perform other hierarchical and LCD-based models. Specifically, they do not generalise
when documents are compared against counterparts from the whole test set (TPRA for
Egrid CNNext = 0.656 and for Egrid CNNlex = 0.566). This could be partly attributed
to the pairwise training strategy adopted by these models and their inability to compare
entity-transition patterns across different topics.

As for the LCD-based methods, the results demonstrate the efficacy of the approach with
different sentence encoders, particularly with contextualised embeddings. The highest PRA
value across all the models is 0.971 obtained by LCD-BERT, significantly surpassing Xu
et al.’s 2019 published state-of-the-art LCD-L approach. However, my MTL approach
(with or without contextualised embeddings) generalises better to TPRA metric. In general,
the PRA obtained by the LCD-based models suggest the effectiveness of the approach,
even LCD-fastText that simply averages fastText vectors. This family of models captures
local coherence by utilising a number of linear operations (concatenation, element-wise
difference, element-wise product and absolute value of element-wise difference) which
increases their expressive power and facilitates the learning of richer representations.
Furthermore, creating the incoherent examples by negative sampling enables the LCD-
based models to effectively learn from a large space of negative examples (§2.4.1). On the
other hand, the LC model that also captures local coherence, but using an LSTM sentence
encoder in a CNN network, significantly underperforms all LCD models. This shows that
focusing on local coherence can be effective based on the model architecture. In addition,
the comparatively low performance by LC could be attributed to the simplicity of the
approach: LC utilises no attention mechanism as the MTL and STL family of models do,
nor has expressive enough transformations or uses a sampling strategy as LCD models do.
Finally, the PRA of LCD-L (0.945) further attests to the conclusions by Xu et al. (2019)
that discriminative and generative approaches could be successfully utilised together for
coherence modeling; however, its relatively low TPRA (0.870) indicates the limitation of
the approach in comparing documents of different topics.
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4.4.3 Analysis

In this section, I further analyse the results above to have a better understanding of the
models.

4.4.3.1 Sensitivity to sentence order

Creating incoherent documents by distorting the sentence order in the original ones, would
result in incoherent texts; however, the permuted versions would vary in their degree of
incoherence. For instance, a random permutation might result in only one sentence being
out of place while another permutation might completely mess up the sentence order. A
robust coherence scoring system should be able to distinguish between the two cases and
capture variant levels of coherence. In order to assess that, I measure the correlation
between the scores predicted by the different models for incoherent documents and the
degree of similarity between these documents and their original version. I use Kendall’s
τ to estimate the degree of similarity between a permuted document and its original
counterpart (Lapata, 2006), as explained in §2.7. Lapata (2006) have also shown that
Kendall’s τ ranks correlate with human judgement of the overall text understandability
and coherence, which further motivates its usage to evaluate the sensitivity of models
to different ranks of (in)coherence. After calculating the Kendall’s τ scores (i.e., the
scores that indicate similarity to the original document), I calculate the linear relationship
between these scores and the coherence scores generated by the models by measuring
Pearson’s correlation coefficient (r) between the two variables;12 I report the results in
Table 4.5. The results show that most of the models have positive correlation with the
degree of similarity with the original text, demonstrating some potential to capture different
coherence levels. However, the exception to that are the EGrid models, STL (untuned
embed) and the LC, which agrees with their comparatively low performance in the binary
task (shown by their PRA and TPRA values). In other words, the models that perform
the poorest on the binary discrimination task achieve the lowest Pearson’s correlation with
the degree of similarity measure, which is indicative of their inability to model partial
coherence. The strongest correlation is yielded by LCD-BERT which achieves the highest
PRA as well. Despite the competitive performance of LCD-fastText and MTLGRs+POS,
there is a drop in their correlations in comparison to their family of models (LCD and
MTL respectively); however, it is not clear to us why this drop happens.

In order to further test the ability of models to capture more fine-grained coherence
ranks, it would be interesting in the future to train the models on multiple ranks that denote
their similarity to the original document (Feng and Hirst, 2012) or partially permuted

12Pearson’s r is the same measurement used by Lapata (2006) to estimate the relationship between the
Kendall’s τ scores and the human ratings that measure the (in)coherence of documents.
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Figure 4.3: F1 scores (on the y-axis) for subject and object predictions with the GR-based
models (MTLGRs, MTLSOX, MTLGRs+ELMo and MTLGRs+BERT) over the first 20
epochs of training (on the x-axis). The two graphs on the left depicts the scores of the four
models, the two in the middle are a close-up on the MTLGRs and MTLSOX scores, and
the two on the right are a close-up on the MTLGRs+ELMo and MTLGRs+BERT scores.
The graphs are based on the WSJ dev set.

documents (Moon et al., 2019).

4.4.3.2 Subject and object prediction

Table 4.5 shows that leveraging all GR types for MTL surpasses using a subset that only
focuses on salient roles (MTLSOX). Additionally, enhancing GR prediction with ELMo or
BERT vectors further improves the performance on the main task of coherence evaluation.
I further examine these results by investigating the performance of these models on the
secondary task of GR prediction and plot in Fig. 4.3 the F1 scores over the training epochs
for predicting the subject and object types using the GR-based approaches: MTLGRs,
MTLSOX, MTLGRs+ELMo and MTLGRs+BERT. I particularly analyse subject and object
roles as they are strong indicators of entity saliency (Grosz et al., 1995; Kameyama, 1998;
Barzilay and Lapata, 2008). From the figure, we find that the difference between the F1
scores (especially in object prediction) obtained by MTLGRs and MTLSOX (which could
be better seen in the two middle graphs in Fig. 4.3) indicates that learning to predict a
larger set of GR types boosts the predictive power of the model for the subject and object
types, corroborating the value of entity-based properties for coherence. Furthermore, it’s
obvious from the two leftmost graphs that using contextualised embeddings substantially
improves the model’s ability to identify subject and object roles due to the rich syntactic
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information carried by these embeddings. Finally, the rightmost graphs show that ELMo
has a better predictive power than BERT. I conjecture, however, that the layers leveraged
from ELMo (last layer) and BERT (layer 16) play an important role in determining their
ability to capture word-level features, and using different layers and interpolations might
lead to different results.

4.4.3.3 Attention visualisation

I further investigate the features learned by my models by analysing the attention weights
they calculate (awit in Eq. 3.2). We can think of each model as a reader who processes
a text sentence by sentence and focuses on certain parts of the discourse, as previously
discussed in §2.1.4. Examining the attention weights would help us understand what
the models focus on and the features that contribute the most to their final decision
(§2.6). Additionally, it will allow us to compare the various network setups and examine
whether relying on GRs, POS tags, ELMo/BERT vectors or just GloVe features impacts
the attention of the models, which is particularly helpful in the cases where models give
very similar results such as MTLGRs and MTLPOS. I conduct two types of analysis:
quantitative and qualitative, and the models I analyse are STL, MTLGRs, MTLPOS and
their ELMo and BERT versions. My analysis is performed on the coherent documents in
the dev set of the WSJ.

Quantitative analysis. For this analysis, I examine whether a model gives more atten-
tion to specific syntactic labels (GRs or POS tags), where the labels I analyse are the ones
extracted by the parser. To that end, I calculate two scores for each label: an importance
score (I) and a rank one (R).

The Importance (I) score for a label indicates its impact in determining the final
coherence score in terms of the attention weights given to this label. For example, if a
label is assigned I = 0.25, this means that the network gives 25% of its attention to this
label and hence it highly influences the final decision. I calculate the I score of label l for
each document d (I ld) in the dataset as follows:

I ld = 1
N

∑
t

awtld (4.5)

where awtld is the attention weight for the t-th word, in document d, annotated with the
target label l, and N is the number of sentences in d which also denotes the sum of
attention weights in d.13 In order to calculate the final I score for each label, I average

13I note that the sum of attention weights in d equals the number of sentences in d since the sum of
attention weights in each sentence is 1.
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the scores it obtains across the documents:

I l = 1
D

∑
d

I ld (4.6)

where D is the number of documents in the dataset. I calculate the I scores for all the
labels for each model and for the purpose of plotting and visualising the scores, I select
the 3 highest scoring labels for each model and plot the union set of these labels. I depict
two graphs for GRs and POS tags in Fig. 4.4 (a) and (c) respectively.

The Rank (R) score refers to the average number of times a label obtains the highest
attention weight in a sentence. The R score for label l (Rl) is simply calculated by:

Rl = number of times l gets the highest attention weight in a sentence
number of sentences in the dataset (4.7)

I plot the R scores for GRs and POS tags in Fig. 4.4 (b) and (d) respectively.
I first analyse the attention given by the models to GR labels as displayed in Fig. 4.4 (a)

and (b). We notice from the figures that the GR-based models (MTLGRs, MTLGRs+ELMo
and MTLGRs+BERT) assign the highest attention to words that appear as nominal
subjects (nsubj). Furthermore, we find that with MTLGRs and MTLGRs+ELMo, the
compound role comes second using I and R scores. I examine the WSJ training data and
find that around 24% of the appearances of the compound role (e.g., ‘asbestos’ in ‘The
asbestos fiber’) are followed by, and dependent on, a word labeled as nsubj, which means
that these GR-based approaches tend to focus on the subject and/or the nouns modifying
it. MTLPOS also assigns the highest scores to the nsubj role but with lower values than
the models that utilise GRs. On the other hand, the ELMo models MTLPOS+ELMo
and STL+ELMo give the highest importance to nsubj and root labels,14 but what is
striking is the rank they assign to the root role, which stands out clearly in Fig. 4.4
(b). As for MTLPOS+BERT, we can see that there is also focus on nsubj (it comes in
second place); however, the highest scoring label in Fig. 4.4 (a) and (b) is punct label for
punctuation marks. This could also be seen in the POS tag weights in Fig. 4.4 (c) and
(d), where MTLPOS+BERT gives attention to the ‘,’ tag higher than any other model.
While punctuation marks play an important role in discourse coherence (Dale, 1991a,b), I
conjecture that their role is, however, undermined in a synthetic corpus of well-written
sentences such as the WSJ (i.e., punctuation marks are not discriminative factors between
original and permuted documents). Therefore, it is not clear why MTLPOS+BERT attends
to punctuation marks. Finally, the STL and STL+BERT approaches seem to be the most
distracted ones, giving similar scores to different labels and giving attention to labels that
contribute the least to discourse coherence such as case labels (e.g., ‘of ’ in ‘A form of

14Root is usually the main verb.
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asbestos’). While this behavior is intuitive in STL as it does not incorporate syntactic
information, it is less expected in STL+BERT as it relies on BERT representations. In
general, the GR attention analysis demonstrates a trend to focus on the subject role,
particularly with the models that optimise a GR-based auxiliary loss. These results
conform with Centering theory that ranks subject entities as the most salient entities in
discourse.

I now investigate how the models attend to the different POS tags as depicted in Fig. 4.4
(c) and (d). The most striking result is the high importance and rank scores given to
the proper noun tag (NNP) by all the MTL models. This complies with the previously
discussed GR attention results as I find that, in the WSJ training data, around 39% of
the words labeled as nsubj or compound are also tagged as NNP. Additionally, the nature
of the WSJ also justifies the results since the articles are usually about real world entities
(e.g., persons or firms) that are realised with proper nouns and hence tagged as NNP. The
singular noun (NN ) tag also receives high attention, which is compatible with Centering
theory and the attentional state of discourse.15 We also find that MTLPOS+ELMo and
STL+ELMo give high attention (particularly rank scores) to the VBD tag (verb in past
tense) similar to their behaviour with GRs where they focus on the root of the sentence.

Qualitative analysis. I provide a qualitative analysis for what the models focus on
by visualising a few examples from the WSJ dev set. Each example I select consists
of two consecutive sentences from a coherent document, and visualisation is done by
colour-coding the words in each example based on the attention weight assigned to them.16

I depict the visualisation in Fig. 4.5 which includes the models discussed in the previous
quantitative analysis. If we think of the models as readers of text, as previously mentioned,
the highlighted words would constitute the salient parts that help make inferences while
processing the text. Each reader/model processes the text differently and thus builds
a different conceptual representation of it where the active parts vary from a model to
another, as we can see in Fig. 4.5. I interpret the qualitative results in the light of Centering
theory, yet I note that, in general, assessing the ability of the models to focus on salient
discourse parts could be subjective since there is no one rigid definition of saliency.

Figure 4.5 shows that the qualitative examples further support the quantitative results.
I will first start by discussing the MTL models (MTLGRs, and MTLPOS and their ELMo
and BERT versions) then move to the STL ones (STL, STL+ELMo and STL+BERT).
Regarding the MTL models, we can see that they focus on subject words and their
dependent compounds. For instance, in example (a), the subject in the first sentence is

15The plural noun (NNS) tag is probably given less attention than the singular one as the latter occurs
more than twice as much as the first in the training data.

16The weights here are aw
it, in Eq. 3.2, assigned to the t-th word in the i-th sentence, not the accumulative

I and R scores described in the quantitative analysis.
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Figure 4.5: Visualisation of models’ attention weights on the WSJ dev set. Words that
contribute the most to coherence scoring (i.e., those with high attention weights) are
coloured: the contribution of words decreases from dark red to lighter tones of orange. I
only colour the words that have weights higher than the median of the weights in their
encompassing sentence.
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‘Co.’ and in the second is ‘company’, both nominal subjects have dependent compounds:
‘Ralston’ , ‘Purina’, ‘St’ and ‘Louis’ and both subjects are co-referential constituting a
continue transition between the sentences.

Example (b), however, reveals a retain transition, where the direct object ‘jetliners’ is
referred to by the subject ‘aircraft’ in the second sentence, and in that case the models still
focus on the subjects and their compounds. The behaviour of attending to the subjects is
not consistent though as can be seen in example (c) which also exhibits a retain transition
and is ‘about’ a show by the NBC network. In this example, MTLGRs does not focus on
the subject in the first sentence, but highlights the name of the show (or part of it: ‘Nutt’)
as well as ‘hotel’ that is part of the show’s description, then moves the attention to the
subject ‘show’ in the second sentence, capturing the ‘aboutness’ of the text. On the same
example, MTLPOS seems to capture less salient information according to Centering theory.
As for the MTL ELMo/BERT approaches, they focus on the subject in the first sentence
yet exhibit different behaviours in the second where MTLPOS+ELMo and MTLGRs+BERT
give a high weight to the subject ‘show’, whereas MTLGRs+ELMo and MTLPOS+BERT
ignore it.

It is also interesting that MTLPOS+ELMo and STL+ELMo tend to focus on verbs (i.e.,
reported, earned, said, ordered and canceled), which agrees with my quantitative results:
they give the highest ranks to the root GR in Fig. 4.4 (b) and the VBD tag in Fig. 4.4 (d).
As for the STL models, they appear to be more distracted than their MTL versions and
less adhering to Centering theory. This postulates that learning syntactic properties of
input words help make the models more focused. In general, we find that the models that
achieve very similar performances in coherence modeling (Table 4.5) do not have identical
focus points in text, yet they exhibit some similarity in the patterns they capture which
potentially leads to similar predictions.

4.5 Realistic data experiments

In this section, I present the results of the three realistic GCDC datasets (§4.1.2) with
further analysis in the second half of the section. I compare my models to the LC model17

and the PARSEQ one as they are the highest performing models by Lai and Tetreault
(2018); I report their accuracies from Lai and Tetreault (2018).18 Nonetheless, I do not
evaluate the EGrid or LCD models on the GCDC as they employ a pairwise ranking
approach for optimisation and thus need modification to accommodate for the realistic
domain (see §4.2.2 and §4.2.3).

17Lai and Tetreault (2018) refer to it as Clique model.
18For the hyperparameters used for PARSEQ and LC, see Table 16 in ‘Supplementary Material’ in Lai

and Tetreault (2018).
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Model Accuracy
Yahoo Clinton Enron Avg.

LC 0.535 0.610 0.544 0.563
PARSEQ 0.549 0.602 0.532 0.561
STL 0.550 0.590 0.505 0.548
ConcatGRs 0.455 0.570 0.460 0.495
ConcatPOS 0.470 0.555 0.455 0.493
MTLGRs 0.560 0.620 0.560* 0.580
MTLPOS 0.535 0.590 0.545* 0.556
MTLSOX 0.505 0.585 0.510 0.533
MTLGRs+POS 0.565 0.610 0.560* 0.578
STL+ELMo 0.540 0.630* 0.525* 0.565
MTLGRs+ELMo 0.565 0.610 0.540* 0.571
MTLPOS+ELMo 0.550 0.610 0.545* 0.568
STL+BERT 0.550 0.630* 0.550* 0.576
MTLGRs+BERT 0.560 0.630* 0.525* 0.571
MTLPOS+BERT 0.565 0.635* 0.535* 0.578

Table 4.6: Model accuracy on the three-way classification task on the GCDC. * indicates
significance over STL with p-value < 0.01 using randomisation test. Avg. is the average
accuracy for the three datasets. Results for PARSEQ and LC are those reported in Lai
and Tetreault (2018) on the same data. Since Lai and Tetreault (2018) did not release
their predictions for those models, I was unable to calculate significance for them.

4.5.1 Results

The results of the realistic data are reported in Table 4.6. We can see from the table
that MTLGRs achieves the best overall performance (0.580) based on the average accuracy
of the three datasets. Furthermore, on individual datasets, we find that the highest
accuracy is obtained by MTLPOS+BERT (Yahoo and Clinton) and MTLGRs+POS (Yahoo
and Enron). In general, the models that leverage a GR, POS or both auxiliary loss
functions significantly outperform the STL baseline on at least one dataset. This further
demonstrates that my MTL approach generalises to tasks involving the prediction of
varying degrees of coherence in everyday writing. Moreover, we find that the models that
leverage contextualised embeddings (STL or MTL) also significantly exceed the STL model
on at least one dataset, further motivating the value of contextualised representations in
various domains. With MTL, I managed to achieve state-of-the-art results on the GCDC,
surpassing the best performing models published by Lai and Tetreault (2018): LC and
PARSEQ.

Interestingly, we observe that MTLSOX and the concatenation models (ConcatGRs

and ConcatPOS) do not generalise to the more realistic domain. Specifically, there is
a substantial drop in the performance of the concatenation models compared to their
performance on the WSJ. This could be attributed partly to the performance of the
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Model Low Medium High Macro-F1
Yahoo Clinton Enron Yahoo Clinton Enron Yahoo Clinton Enron Yahoo Clinton Enron

STL 0.643 0.250 0.444 0.0 0.0 0.0 0.576 0.731 0.643 0.406 0.327 0.362
MTLGRs 0.642 0.441 0.586 0.0 0.0 0.235 0.603 0.743 0.653 0.415 0.395 0.491
MTLPOS 0.623 0.324 0.537 0.0 0.047 0.0 0.555 0.739 0.675 0.392 0.370 0.404
MTLGRs+POS 0.632 0.379 0.578 0.0 0.010 0.0 0.626 0.747 0.675 0.419 0.409 0.417
STL+ELMo 0.629 0.509 0.526 0.0 0.0 0.068 0.561 0.769 0.640 0.396 0.426 0.411
MTLGRs+ELMo 0.660 0.439 0.571 0.0 0.0 0.076 0.585 0.752 0.652 0.415 0.397 0.415
MTLPOS+ELMo 0.642 0.431 0.551 0.0 0.0 0.038 0.567 0.751 0.655 0.403 0.394 0.415
STL+BERT 0.628 0.494 0.505 0.0 0.0 0.037 0.597 0.761 0.674 0.408 0.418 0.405
MTLGRs+BERT 0.655 0.484 0.477 0.0 0.0 0.0 0.594 0.775 0.658 0.416 0.420 0.378
MTLPOS+BERT 0.655 0.513 0.452 0.0 0.050 0.0 0.605 0.785 0.661 0.420 0.449 0.371

Table 4.7: The ‘Low’, ‘Medium’ and ‘High’ columns represent the F1-scores per class
and the ‘Macro-F1’ represents the macro-averaged F1-score; scores are calculated across
the GCDC datasets. The selected models are my best models based on the three-way
classification accuracy reported in Table 4.6.

syntactic parser19 and partly to the nature of the GCDC dataset in terms of the properties
of (in)coherence it exhibits compared to the WSJ articles. MTL gives the model more
flexibility and control with respect to the features it learns (with the tuned α and β values)
in order to enhance performance on the main task, in contrast to the concatenation models
where the GRs and POS tags are forced directly as input to the model, yielding the worst
performance across all the GCDC datasets.

Although the evaluation metric employed on realistic data is different from the binary
task, we notice that the numbers obtained on this dataset are quite low compared to
those on the WSJ. Assessing varying degrees of coherence is a more challenging task;
the discrepancy in coherence between different documents is less pronounced than when
randomly shuffling sentences in a coherent document. This is also shown by the ‘fair’ human
agreement reported in Table 4.2 which indicates the subjectivity of judging coherence in
everyday writing. In addition, the GCDC is a noisy domain that includes grammatical
and spelling mistakes and different styles of writing as could be seen in Appendix A. This
makes the syntactic parsers more susceptible to committing errors which might negatively
affect the models that use syntactic features, particularly if the features are concatenated
with input word vectors. Finally, the GCDC datasets are small in size (900 documents
for training distributed on three classes), resulting in a low representation for each class
which makes it harder for the models to learn useful discourse-related features. I next
investigate the performance per class and further analyse the realistic data results.
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4.5.2 Analysis

4.5.2.1 Performance per class

I report in Table 4.7 the F1-scores for the three coherence classes: low, medium and
high. I also report the averaged macro-F1 score calculated as the arithmetic mean of the
per-class F1-scores. Investigating individual class performance is useful to get a closer look
into the behaviour of the models and examine where they fall short. The striking result
revealed by Table 4.7 is that the models fail to assess documents of medium coherence,
which can be explained by the small number of training examples representing this class,
in comparison to the other classes (Table 4.2). Additionally, assessing texts of medium
coherence is challenging and it is even hard for expert annotators to reach “acceptable
levels of agreement” on this middle class (Burstein et al., 2013). I further investigate the
ability of the models to capture different coherent levels in §4.5.2.3.

4.5.2.2 Transfer learning

I employ transfer learning to tackle the data scarcity problem in the GCDC domain; I
particularly leverage sequential adaptation where a model is trained first on a related
source task then fine-tuned on the target task (Mou et al., 2016; Min et al., 2017; Chung
et al., 2018). I use the WSJ as the source domain and the GCDC as the target one. This
choice of source domain is motivated by the similarity of the source and target tasks (both
are coherence assessment), and the high performance obtained by the different MTL and
ELMo/BERT-based approaches on the WSJ. Furthermore, the sensitivity of the models
to sentence order (§4.4.3.1) suggests that leveraging the parameters learned from this
source domain might provide a further boost in the target domain. I apply two main steps
for transfer learning: (1) training a neural network on the WSJ binary domain and (2)
using the resulting pre-trained parameters to initialise the GCDC network and fine-tune
it to perform the coherence multi-class prediction task. For simplicity, I exclude from
the parameter transfer any layer that has a different size between the two domains. This
includes the input word embedding layer and its associated Bi-LSTM layer (Eq. 3.1), the
final prediction layer (Eq. 3.7) and the layers associated with paragraph representations
since they do not exist in the WSJ model (Eqs. 3.3 and 3.4). Accordingly, the transferred
weights are the ones associated with building sentence and document representations
(Eqs. 3.2, 3.5 and 3.6). I apply transfer learning to the model that achieves the highest
average accuracy: MTLGRs and report the results in Table 4.8.

From Table 4.8, we can see that transfer learning from the WSJ domain to the GCDC
one does not help. The three-way classification accuracy drops on Yahoo and Enron

19Parsers are traditionally trained on the Penn Treebank and thus can be more accurate with datasets
like the WSJ.
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Three-way Classification F1-scores

Model Accuracy for All Classes Low Medium High Macro-F1
Yahoo Clinton Enron Yahoo Clinton Enron Yahoo Clinton Enron Yahoo Clinton Enron Yahoo Clinton Enron

MTLGRs 0.560 0.620 0.560 0.642 0.441 0.586 0.0 0.0 0.235 0.603 0.743 0.653 0.415 0.395 0.491
MTLGRs+TL 0.545 0.630 0.520 0.631 0.470 0.487 0.0 0.051 0.0 0.573 0.760 0.649 0.401 0.427 0.378

Table 4.8: A comparison between MTLGRs with no pre-training and when it is pre-trained
on the WSJ then fine-tuned on GCDC (MTLGRs+TL (transfer learning)). The ‘Three-way
Classification’ column displays the overall three-way classification accuracy for each dataset,
similar to Table 4.6, while the rest of the columns detail the F1-scores for each class and
macro-averaged F1-score similar to Table 4.7.

texts, while there is a minor 1% increase on Clinton emails. A similar result is observed
from the F1-scores that denote the per class performance. I ascribe that to the different
idiosyncrasies of the two domains in terms of coherence features and style. The incoherent
documents in the WSJ are synthetically created and thus exhibit rough entity shifts,
whereas the (in)coherence features in everyday writing are less pronounced. Moreover,
the WSJ is a formal domain with a style specific to news articles, while the GCDC is
less formal and less constrained in style. In the future, I would like to investigate more
transfer learning approaches such as adaptive learning rates (Howard and Ruder, 2018), or
partially fine-tuning the pre-trained network (Chung et al., 2018), instead of fine-tuning
all the transferred parameters. I would also like to conduct cross-domain experiments
between the different GCDC domains.

4.5.2.3 Ranking coherence

Three-way classification accuracy, that I have used so far, might not well-represent the
levels of coherence that exist in the data, especially that the gold labels are the consensus
labels that average the raters’ scores and use thresholding to map the resulting mean score
to a coherence class (§4.1.2). To remedy this, I follow another evaluation setup by Lai
and Tetreault (2018) and measure the Spearman’s rank correlation coefficient (ρ) between
the predicted scores and the gold ones, calculated by averaging the raters’ scores with no
thresholding. The resulting gold labels are more fine-grained, which allows us to address
the low representation of the medium class in the corpus. In this experimental setup, the
network hyperparameters and architecture stays the same, except for the output layer as it
should predict one label via regression, instead of three. To that end, Eq. 3.7 changes to:

ŷ =W d hd (4.8)

where W d ∈ Rdim
d×1 and dimd is the length of hd. The loss function optimises the MSE

following Eq. 3.9 but only between the gold score and the predicted one, instead of
three classes. The best model I leverage for testing is the one that achieves the highest
Spearman’s correlation on the dev set. For this experiment, I test the strongest models
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Model Spearman (ρ)
Yahoo Clinton Enron Avg.

LC 0.474 0.474 0.416 0.454
PARSEQ 0.519 0.448 0.454 0.473
STL 0.435 0.399 0.444 0.426
MTLGRs 0.445 0.409 0.453 0.435
MTLPOS 0.445 0.423 0.459 0.442
MTLGRs+POS 0.443 0.416 0.456 0.438
STL+ELMo 0.508 0.496 0.519 0.507
MTLGRs+ELMo 0.465 0.528 0.526 0.506
MTLPOS+ELMo 0.460 0.539 0.479 0.492
STL+BERT 0.551 0.562 0.550 0.554
MTLGRs+BERT 0.524 0.606 0.504 0.544
MTLPOS+BERT 0.522 0.586 0.502 0.536

Table 4.9: Spearman’s rank correlation coefficient (ρ) on the GCDC. Avg. is the average ρ
for the three datasets; applying Fisher transformation (§2.7) had no/very negligible effect
so I simply take the average. Results for PARSEQ and LC are those reported by Lai and
Tetreault (2018) on the same data.

on the three-way classification task according to Table 4.6. I calculate the Spearman’s
correlation between the predicted labels and the ground-truth ones and report the results
in Table 4.9. The results show that, overall, BERT-based models have the highest predictive
power, followed by ELMo-based models. Unlike the WSJ domain, the difference between
ELMo and BERT is more notable and their encoded features are better manifested in
this task. In general, the results of the contextualised-based models on classification
(Table 4.6) as well as ranking (Table 4.9) further demonstrate their ability to capture
varying degrees of coherence, in both STL and MTL frameworks. Nonetheless, despite the
relatively high performance of the MTLGRs and MTLGRs+POS models on the classification
task, their performance drops on the ranking task, in comparison to the other models.
This discrepancy between the two tasks motivates further research to explore the methods
utilised to annotate coherence data and the metrics used for evaluation.

4.5.2.4 Attention visualisation

Similar to my analysis in §4.4.3.3, I visualise the attention weights of the models trained
on Yahoo posts. I select Yahoo for my analysis as it has the highest inter-rater agreement
(Table 4.2).

Quantitative analysis. I calculate the importance and rank scores for GRs and POS
tags and plot them in Fig. 4.6. First, I analyse the attention scores for the GR labels
(Fig. 4.6 (a) and (b)). We find that, similar to the WSJ, MTLGRs and MTLPOS give the
highest focus to the subject role. However, they also give high attention to less salient roles
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such as the case label, as revealed in Fig. 4.6 (a). On the other hand, STL seems to give
distracted importance scores, but gives the highest rank the punct role. A similar behaviour
is also observed with the three BERT models. As mentioned in §4.4.3.3, punctuation
marks can play an important role in discourse structure which could explicate why many
contextualised models attend to them. Regarding ELMo models, MTLGRs+ELMo focuses
on punctuation marks, whereas MTLPOS+ELMo assigns more weight to nominal modifiers
(nmod)20 and direct objects (dobj), and STL+ELMo does not exhibit any striking attention
patterns.

As for the POS scores (Fig. 4.6 (c) and (d)), we find that the high attention given by
MTLGRs and MTLPOS to subject and case GRs, translates to high attention to personal
pronouns (PRP) and preposition/subordinating conjunction (IN ) tags. On the other hand,
the STL model and BERT models are less focused, with the first giving a high rank score
to the “.” tag. Regarding ELMo models, MTLGRs+ELMo also seems less focused and
assigns the highest rank to the “.” tag, whereas MTLPOS+ELMo and STL+ELMo (more
notably the first) attends to the NN tag.

Qualitative analysis. I further conduct a qualitative analysis and display in Fig. 4.7
the attention weights of the first three sentences from a document, from Yahoo dev set,
that is annotated with a high coherence class. The analysis reveals that, in contrast to the
WSJ, the highlighted words do not exhibit specific patterns and thus it is harder to tell
what coherence features are captured. For instance, MTLGRs on the WSJ tends to focus
more on nouns specifically subjects and their associated compounds (Fig. 4.5), while in
the example in Fig. 4.7 the highest attention is assigned to prepositions and determiners.
The only interesting observation is that STL+ELMo and STL+BERT highlight ‘bench
warrant’ in the first and third sentences, which captures the ‘aboutness’ of text.

In general, the quantitive and qualitative analysis on Yahoo posts postulates the
premise that with realistic data, coherence features are less pronounced and it is hard to
associate them with what the models focus on. Additionally, as mentioned earlier, the
WSJ articles exhibit some regularities in style that the models can pick up on, whereas
everyday writing has a more free style and thereby it is more challenging to identify its
coherence properties. The small size of the dataset also adds to this challenge as there
are not enough features to learn from. Attention visualisation could be more helpful in a
constrained synthetic domain than in a more realistic one. Furthermore, the attention
given by many models to punctuation marks motivates further investigation to explicate
the role they play in discriminating between texts of different coherence levels, which is an
interesting direction for future work. I finally note that in texts written by non-professional
writers such as online posts or emails, syntactic parsers are more susceptible to committing

20E.g., ‘nature’ in “Everything follows from the true nature of things.”
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errors which, again, makes the visualisation analysis less informative than the formal WSJ
domain.

A bench warrant is a order given by the judge that presides over a case to law enforcement officers . 
The order is to find and arrest a suspect at first sight . 
A bench warrant is and can be sworn at anytime prior to or during a trial .
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Figure 4.7: Visualisation of models’ attention weights on Yahoo dev set. Words that
contribute the most to coherence scoring (i.e., those with high attention weights) are
coloured: the contribution of words decreases from dark red to lighter tones of orange. I
only colour the words that have weights higher than the median of the weights in their
encompassing sentence.

4.6 Summary

In this chapter, I have compared my MTL approach (that utilises GRs or POS tags) to other
strong neural benchmarks including: a model with the same architecture that only performs
the single task of coherence scoring (STL), a local coherence model (LC), models that feed
syntactic properties as input to the network (Concat models) and models that incorporate
two auxiliary functions to learn both GR and POS labels (MTLGRs+POS). Furthermore, I
enhanced my STL and MTL approaches with contextualised word embeddings (ELMo or
BERT) and compared them to standard pre-trained embeddings. I applied my experiments
to two domains of coherence assessment: a binary domain where the model ranks a well-
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written document against its noisy counterparts constructed by shuffling the sentences in
the original document, and a realistic domain that consists of texts representing everyday
writing with various coherence degrees.

As for the binary domain, I compared my approaches to existing state-of-the-art
models trained in a pairwise fashion that either leverage entity grids in a neural framework
(CNN-EGridext and CNN-EGridlex) or apply a local discrimination approach that either
has a generative backend model (LCD-L) or average word representations (LCD with
fastText, ELMo or BERT). My results showed the efficacy of MTL, particularly using
contextualised embeddings, and the power of the LCD approach, also using contextualised
embeddings. My MTL approach with BERT or ELMo achieves state-of-the-art TPRA
in binary coherence assessment, while LCD-BERT yields state-of-the-art PRA on the
same task. The results also showed that utilising the whole set of GRs (MTLGRs) as
auxiliary labels outperforms only focusing on subject and object roles (MTLSOX), and that
leveraging both GRs and POS tags together (MTLGRs+POS) does not have an advantage
over using them separately.

Regarding the realistic data domain, the best overall performance is obtained by
the GR-based models (MTLGRs and MTLGRs+POS) when the task is cast as multi-class
classification. However, we observe that using BERT embeddings (with MTL or STL)
yields the strongest and most consistent performance on multi-class classification or ranking
where the task becomes a regression problem evaluated with Spearman’s rank correlation
coefficient. Furthermore, we find that all the models fail to capture documents of medium
coherence level.

I backed my results with further analysis and investigated the features the models
focus on. My analysis revealed some consistent patterns on the synthetic data as we
find that the MTL-based models tend to focus on words that appear as subjects, further
corroborating Centering theory of coherence. On the other hand, in the realistic domain,
analysing the attention weights was less insightful. The general discrepancy of the
performance in the synthetic domain vs. the realistic one as well as the findings revealed
by attention visualisation can be attributed to the nature of the two domains. Synthetic
data exhibits rough shifts and distorted syntactic patterns while (in)coherence features are
less pronounced in realistic data. Additionally, the size of the realistic training data and
the low representation of coherence classes contribute to the drop in performance. This
warrants further research to curate more representative data and investigate the utilised
annotation criteria.
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Chapter 5

Evaluation of discourse coherence

As previously discussed in Chapter 2, different theories have been proposed to describe
the properties that contribute to discourse coherence and some have been translated to
computational models for empirical evaluation such as entity-based approaches (Barzilay
and Lapata, 2008; Filippova and Strube, 2007; Burstein et al., 2010; Elsner and Char-
niak, 2011b; Guinaudeau and Strube, 2013), probabilistic models that focus on syntactic
patterns (Louis and Nenkova, 2012) or topic shifts (Barzilay and Lee, 2004), modeling
rhetorical relations (Mann and Thompson, 1988; Lin et al., 2011; Feng et al., 2014) and
capturing semantic relatedness between sentences (Lapata and Barzilay, 2005; Soricut and
Marcu, 2006; Somasundaran et al., 2014). More recently, neural networks have been popu-
lar in coherence modeling either by leveraging EGrid representations of text (Tien Nguyen
and Joty, 2017; Joty et al., 2018) or automatically learning useful representations in an end-
to-end fashion (Li and Jurafsky, 2017; Logeswaran et al., 2018; Farag and Yannakoudakis,
2019; Xu et al., 2019; Moon et al., 2019). In Chapter 4, I have shown that my MTL
approach and other state-of-the-art coherence models can efficiently discriminate between
coherent and incoherent texts, particularly when enhanced with contextualised embeddings.
I have also attempted to interpret model performance with visualisation (§4.4.3.3 and
§4.5.2.4) to investigate the salient features they focus on. Nonetheless, in a complex task
like coherence assessment, interpretability is challenging as there are many contributing
textual and inferential factors, which motivated me to conduct further investigation to
understand the linguistic features captured by the models.

The high performance obtained by previous neural approaches, in addition to my
models, has rendered the coherence binary discrimination task solved. As a result, work on
coherence modeling has focused on more challenging tasks such as recovering the correct
sentence order (Logeswaran et al., 2018; Cui et al., 2018; Oh et al., 2019), evaluation on
realistic data (Lai and Tetreault, 2018; Farag and Yannakoudakis, 2019) and open-domain
models of coherence (Li and Jurafsky, 2017; Xu et al., 2019). However, less attention
has been directed to investigating what the models actually learn, which is needed to
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provide insight into how to frame the task and improve the models. Li and Jurafsky (2017)
conducted a qualitative analysis by testing their models on a few examples that exhibit
different coherence features, with the aim of establishing a direction for future research
that examines the strengths and shortcomings of coherence models. This inspired me to
create an evaluation framework to investigate the linguistic features learned by coherence
models. I hypothesise that the models are able to capture certain syntactic patterns that
occur in coherent documents, while failing to identify other semantic and topical aspects
of text. This idea is motivated by the work of Louis and Nenkova (2012) who analysed
the syntactic patterns that co-occur in the WSJ, as will be discussed in §5.1.

In this chapter, I present an evaluation framework for systematically investigating
how well current models of coherence can capture aspects of text implicated in discourse
organisation. I analyse the ability of the models to capture certain inter-sentential
properties with respect to model architecture and pre-training domain. My evaluation
framework consists of two main evaluation tasks:

• I compile a large-scale dataset on which I apply syntactic and semantic perturbations
and test the ability of coherence models to detect them. I leverage this dataset by:
(1) directly evaluating the pre-trained coherence models on the test portion of the
dataset or (2) using the latent representations of the pre-trained coherence models
to train a classifier and then evaluate it on the test split of the data, in order to
adapt the models to the new test domain.

• I carefully create a more-controlled smaller-scale dataset from the news domain,
similar to the WSJ, and conduct an error analysis to systematically assess the
sensitivity of the models to changes in relevant syntactic or semantic patterns.

I evaluate a wide range of state-of-the-art neural approaches pre-trained on standard
synthetic data (the WSJ). I want my choice for the pre-trained models to cover high
performing approaches that exhibit architectural and algorithmic diversity. Therefore, I
evaluate the 6 main MTL models (MTLGRs, MTLPOS, MTLGRs+ELMo, MTLPOS+ELMo,
MTLGRs+BERT and MTLPOS+BERT), the 4 LCD models (LCD-L, LCD-fastText, LCD-
ELMo and LCD-BERT), the STL models (STL, STL+ELMo and STL+BERT), the
best performing EGrid model (EGrid CNNext) and the LC model. I further extend my
experiments to models pre-trained on the Yahoo dataset to investigate the impact of
pre-training on a realistic domain. I note that this chapter is based on a long paper
published in the 1st Workshop on Computational Approaches to Discourse (CODI 2020)
(Farag et al., 2020).1 I hope that this work will provide a platform for coherence evaluation
and will be extended to examine more coherence-related phenomena.

1The datasets presented in this chapter are available at https://github.com/Youmna-H/
coherence-analysis.
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I note that Chen et al. (2019) presented a set of discourse-aware tasks to test the ability
of sentence encoders to capture the surrounding context of sentences. The tasks included
predicting a sentence position and whether a sentence pair is in the correct order. They
also utilised discourse-aware training objectives such as predicting neighbouring sentences
given a sentence and the title of the section or document the sentence belongs to. My
work differs from theirs in that I focus on evaluating models that are built and trained to
capture discourse coherence rather than general purpose sentence encoders. I also focus on
semantic and syntactic inter-sentential properties that I further control in my small-scale
test set to help pinpoint the features captured by the models.

The rest of the chapter is organised as follows. In §5.1, I explain the syntactic structure
of text and its impact on the organization of discourse. In §5.2, I present the large-scale
dataset, and discuss the performance of the coherence models when directly evaluated
on it, or when further fine-tuned. In §5.3, I introduce the controlled small-scale test set,
detail how its examples are crafted and discuss how the models perform on these examples.
Finally, in §5.4, I conclude the chapter by summarising my findings.

5.1 Syntactic structure

Syntax, or syntactic structure, refers to word order and how words and phrases are arranged
to form sentences in a language. Grammatical productions define a finite set of rules that
describes the syntax of a language and are used to generate all possible sentences in that
language. For instance, the sentence: “Mary likes reading” can be generated by the rules:

S -> NP VP NNP -> Mary
NP -> NNP VBZ -> likes
VP -> V NP NN -> reading
V -> VBZ
NP -> NN

A battery of data-driven studies have investigated the exhibition and influence of
syntactic patterns in discourse. Some research has focused on syntactic consistency
in spoken dialogues (Reitter et al., 2006; Pietsch et al., 2012), while other examined
the syntactic repetitions in corpus data such as the WSJ (Dubey et al., 2005; Cheung
and Penn, 2010b). They all showed that syntactic structures tend to be reused in
consecutive utterances/sentences. In contrast to these studies that focus on the repetition
of syntactic constructions, Louis and Nenkova (2012) examined whether different syntactic
structures tend to appear together in adjacent sentences. They analyzed the grammatical
production rules that co-occur in consecutive sentences in Section 0 of the WSJ in
a total of 1,727 sentence pairs. They found that there are 197 unique productions
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forming 38,809 production pairs among which 1,168 appear significantly more often
than chance and 172 occur significantly less. Their analysis revealed that the pair
S→ NP-SBJ VP | NP-SBJ→ PRP is the most frequent one with 290 occurrences, where
the first sentence introduces a subject and predicate and the subject is pronominalised in
the second sentence. They also found that some of the co-occurring productions involve
numbers and quantities which could be attributed to the financial nature of the WSJ.

As discussed in §2.2.2, the syntax of a sentence could be used as a proxy for its
communicative goal and each sentence type has distinguishable syntax (e.g., questions
or definitions). This is further demonstrated by Cocco et al. (2011) who discovered a
significant relationship between the POS tags that appear in a sentence and its linguistic
type such as narration, dialogue, or explanation in French short stories. As the syntax
of a sentence plays a key role in conveying its communicative goal and, in turn, the
intentional structure of discourse, a sequence of sentences in a coherent text is expected
to exhibit syntactic regularities. This might suggest that models memorise that certain
syntactic patterns occur in coherent documents, and thus are able to distinguish them
from incoherent permuted versions where those patterns are broken. While syntax is
important in coherence modeling, semantics also plays an inherent role that should not be
overlooked by the models. For example, the following sentence pairs both have the same
syntactic structure but the choice of words makes (a) more plausible and coherent.

(a) Mary likes reading. She buys many books.

(b) Mary likes reading. She eats many cupcakes.

RNNs and syntax RNNs have been a popular approach to capture syntax, particularly
their enhanced variations, such as LSTMs, that are more capable of modeling long-
distance grammatical dependencies. Many efforts have been devoted to test the ability of
RNNs to learn syntactic structures (Linzen et al., 2016; Blevins et al., 2018; Gulordava
et al., 2018; Wilcox et al., 2019). For instance, in the task of predicting subject-verb
number agreement (Bock and Miller, 1991), where models need to capture syntactic
dependencies, Linzen et al. (2016) found that LSTMs attain promising results even with
multiple words (attractors) occurring between the verb and its subject.2 On the same
task, Kuncoro et al. (2018) showed that the performance of LSTMs can be significantly
enhanced by increasing their capacity to address the problem of multiple attractors. More
interestinly, they found that there are no performance gains from providing LSTMs with
syntactic annotations (e.g., phrase-structure tree annotations). Gulordava et al. (2018)
demonstrated that an RNN language model is capable of capturing long-distance number
agreement even in nonsensical sentences where a sentence is grammatical but does not
make sense (e.g., the popular linguistics sentence “Colorless green ideas sleep furiously.”

2Error rates, however, get higher when increasing the number of attractors.
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(Chomsky, 1957, p. 15)). They, thereby, showed that RNNs can learn syntactic structures
with no recourse to semantic or lexical cues.

On the other hand, Marvin and Linzen (2018) showed that LSTMs are very effective in
capturing simple structures for subject-verb number agreement, yet they fail to detect more
complex constructions, indicating that their performance is dependent on the nature of the
leveraged data. Additionally, other models were proven to be more capable of capturing
subject-verb agreement such as recurrent neural network grammars (RNNGs) (Dyer et al.,
2016; Kuncoro et al., 2018) or BERT (Goldberg, 2019), showing that there is more room
for improvement over sequential RNNs.

All this shows that RNN-based architectures are able to encapsulate syntactic informa-
tion, but they have their limitations. I conjecture that in a dataset like the WSJ, even
with its complex structures, the repetition of syntactic patterns might give the models a
straightforward signal to discriminate between the intact patterns and the shuffled ones.
However, this needs empirical investigation as will be detailed in the rest of this chapter.

5.2 Cloze Coherence Dataset

I devise a large-scale dataset of coherent and incoherent instances, where the coherent
examples are intact well-written texts and the incoherent ones are the result of applying
syntactic or semantic perturbations to the coherent examples. I refer to this dataset as
the Cloze Coherence Dataset (CCD). I first start by explaining how the coherent instances
are created then move on to the incoherent ones.

5.2.1 Coherent examples

Ideally, I want the coherent cases to consist of two short sentences3 that are coreferential
and exhibit a rhetorical relation, where these properties are removed in the incoherent
counterparts. Furthermore, the examples should be self-contained, meaning that they do
not reference or rely on any outer textual context to be interpreted. I find that narrative
texts are good candidates to satisfy this criteria, and hence, create my coherent examples
from the ROCStories Cloze dataset (Mostafazadeh et al., 2016). This dataset contains
short stories of 5 sentences, written by Amazon Mechanical Turk workers and exhibit a
sequence of causal or temporal events that have a shared protagonist. A story usually
starts by introducing a protagonist in the first sentence, then subsequent sentences describe
events that happen to them in a logical / rhetorically plausible manner. The dataset was
designed for common-sense reasoning by testing the ability of machine learning models to
select a plausible ending for the story out of two alternative endings. Here, my goal is not

3I want to specifically test for coherence so I avoid complex linguistic structures.
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Type of reference Example
Pronominal Reference Rich was a musician. He made a few hit songs.
Proper Name Dan’s parents were overweight. Dan was overweight as well.
Nominal Substitution My dog hates his treats. I decided to go buy some new ones.

Demonstrative Reference My daughter wants to take her toddler to the Enchanted Village.
This is a puppet show featuring early 20th century figurines.

Table 5.1: Examples of first two sentences extracted from the ROCStories Cloze dataset
to demonstrate different reference types, with the referring word underlined.

to challenge the models to select the right ending but rather to capture inter-sentential
relations and coherence-related features. That is why I only select the first two sentences
in the stories to compose the coherent examples in my dataset.

I first investigate the validity of creating the coherent instances from the first two
sentences and whether those instances exhibit the aforementioned properties of being self-
contained, rhetorically related and coreferential. Selecting the first two sentences should
result in self-contained examples since there is no preceding context they refer to, and no
cataphoric relations to consequent sentences. As for the rhetorical relations, Mostafazadeh
et al. (2016) conducted a temporal analysis to investigate the logical order of the events
presented in a story. They created two datasets: the first by selecting 50 good stories
written by the top workers and the second by randomly choosing other 50 stories from the
dataset (random stories). They then shuffled the sentences in each story in the two sets,
and asked five annotators to reorder them. They took the majority ordering of the five
crowd workers for each story and found that for the good stories, 100% of the majority
ordering agrees with the original order and with the random stories the percentage becomes
86%. More specifically, they found that the annotators place the first sentence in its correct
position 98.8% of the times in the good stories and 95.6% in the random ones, whereas
the percentage of correctly placing the second sentence in the good stories is 97.6% and
in the random ones 86%. These percentages suggest that the stories are presented in a
commonsensical temporal manner with logical links between consecutive sentences, further
strengthening the validity of this dataset.

As for the coreferential relations between the two sentences in each extracted pair, I
examine them by gathering some statistics. I initially used spaCy (Honnibal and Johnson,
2015) and the Stanford coreference resolution system (Clark and Manning, 2016) to find if
both sentences contain mentions of the same entity, but found their performance unreliable
for the purposes of this experiment after manual inspection. Therefore, I adopt a heuristic
approach by simply counting the number of second sentences that contain at least one
third person pronoun (either personal or possessive) and find that they constitute 80% of
the examples. Third person pronouns anaphorically refers to preceding items in text, which
could occur in the same sentence or the previous one (i.e., the first sentence). I, therefore,
randomly select, and manually inspect, 500 examples that contain third person pronouns
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Figure 5.1: The distribution of sentence length in the coherent examples in the CCD. The
blue colour refers to the first sentence and the green to the second one in the examples.
The average sentence length, regardless of its position = 10.4 with standard deviation (std)
= 2.5.

in their second sentence and find that in 95% of them the referenced entity appears in the
first sentence. Furthermore, third person pronouns are not the only coreferential relations
in the examples. For instance, I find that 90% of the second sentences contain a personal
or possessive pronoun (whether it is first, second or third person), which could also signal
coreference, e.g., ‘I was walking to school. Since I wasn’t looking at my feet I stepped
on a rock.’ There are also other coreferential devices such as: demonstrative references
(e.g., ‘this’ and ‘there’), ‘the’ + noun, proper names or nominal substitutions (e.g., ‘one’ or
‘ones’) to name a few (§2.1.1), so the true proportion of coreferential pairs will be higher.
This further strengthens my hypothesis that the first two sentences are coherently tied
up, thus constituting good examples for my experiments. Table 5.1 shows examples of
different referential relations in the dataset. The examples in the table reveal cohesive ties
between the sentences in addition to semantic relations (e.g., in the third example there is
a causal relation between the two sentences).

For the train/dev/test splits, I follow the same division as Mostafazadeh et al. (2016);
I exclude some examples with erroneous sentence boundaries,4 yielding 97,903 examples
for training, 1,871 for development, and 1,871 for testing, with training vocabulary size
= 29,596 tokens. Each example contains two sentences that represent a coherent pair.
Figure 5.1 depicts the sentence length distribution in my extracted dataset.

5.2.2 Incoherent examples

I want to create the incoherent examples in a way that would test the susceptibility of
the models to syntactic or semantic alterations. To that end, I follow one of two methods:

4The training stories are in CSV format (separating sentences by comma delimiters) and I parse them
using the Python CSV parser. I exclude the stories where the parser fails to detect 5 sentences.
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(1) corrupt the syntactic pattern in each coherent pair (2) change the semantic relation
between the sentences. This results in two datasets explained as follows.

cloze swap I swap the two sentences in each pair which mostly breaks the coreference
relation between them, and/or breaks the rhetorical relation (e.g., temporal or causal) by
reversing the event sequence. I refer to this dataset as cloze swap. This dataset constitutes
examples of corrupted syntactic patterns; i.e., affecting the grammatical productions that
co-occur in coherent texts (§5.1). Additionally, it is a balanced dataset of coherent and
incoherent examples since the incoherent instances are simply created by swapping the
sentences in the coherent ones.

cloze rand The aim of this dataset is to change the semantic relation between the two
sentences to produce an incoherent pair. To that end, I keep the first sentence intact and
randomly choose a second unrelated sentence from the dataset.5 I refer to this dataset
as cloze rand. For each coherent pair, I compose one incoherent random version to
keep the data balanced as with cloze swap. One problem that might arise is that the
randomly-created pair might still be coherent, so I address this by the following:

• I find that around 70% of the second sentences in the corpus start with a pronoun
(either personal or possessive), which as mentioned earlier refers to an entity in the
previous sentence. I, therefore, constrain the random selection of the second sentence
so that it does not start with the same word as the second sentence in the original
pair. I also extend this constraint and do not select a sentence that starts with the
pronoun ‘he’ if the original starts with ‘she’ and vice-versa.6

• The previous point describes a heuristic way of creating the incoherent pairs in which
I attempt to break the continuity between the two sentences to make the resulting
pair less coherent than the original intact one. While the random selection would
most likely result in an implausible pair and applying the previous constraint will
further help with that, it is still not guaranteed that the incoherent pair will be
less coherent than the original one. That is why I use human evaluation to further
assess the validity of the dataset in addition to setting the upper-bound performance
on the task. I randomly select 100 coherent examples from the test set along with
their randomly-generated counterparts and ask two annotators, with high English
proficiency levels, to rank them based on which pair they think is more coherent.
The annotators were particularly instructed to “rank each pair of examples according

5This is similar to the next sentence prediction task on which BERT is pre-trained (Devlin et al., 2019).
Here, the random sentence is selected only from the second sentences of the other pairs in the dataset,
and not from the sentences in other positions.

6I do not find instances of ‘they’ used as a third-person singular pronoun.
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Coherent example Incoherent example from cloze swap Incoherent example from cloze rand
Tyrese joined a new gym. The
membership allows him to work
out for a year.

The membership allows him to work
out for a year. Tyrese joined a new
gym.

Tyrese joined a new gym. As chil-
dren they hated being dressed alike.

Jasmine doesn’t know how to
play the guitar. She asked her
dad to take her to guitar class.

She asked her dad to take her to
guitar class. Jasmine doesn’t know
how to play the guitar.

Jasmine doesn’t know how to play
the guitar. May thought her milk
was no good.

I wanted to play an old game one
day. When I looked in the game’s
case the CD was missing.

When I looked in the game’s case
the CD was missing. I wanted to
play an old game one day.

I wanted to play an old game one
day. Jason pressed the buzzer since
he knew the answer.

Table 5.2: Coherent and incoherent pairs from the cloze swap and cloze rand datasets.

to what they see as more coherent, plausible and could be a logical sequence in a
story”; they could either choose one example to be more coherent or mark both
examples as equally (in)coherent. The average human performance on the task is
94.5%,7 showing a high agreement between the human annotators and my annotation
method. I also measure the inter-annotator agreement, by calculating QWK between
the two annotators,8 and find it equals to 84.5%, indicating an ‘almost perfect’
agreement (Landis and Koch, 1977).

• While a synthetically generated example will most probably be less plausible than
its original version, it still could be coherent with respect to the dataset as a whole.
I address this by limiting the final evaluation to PRA where I only rank a coherent
example against its incoherent version and I do not employ TPRA where coherent
examples are compared to all the incoherent ones in the dataset.

Table 5.2 shows a few examples from the cloze swap and cloze rand datasets. By adding
the incoherent examples, the final size of each dataset becomes 195,806 for training, 3,742
for dev and 3,742 for testing. The coherent examples are labeled with a score = 1 and the
incoherent ones are given a zero score.

5.2.3 Experiments

Direct evaluation I evaluate the models listed at the beginning of the chapter directly on
the two CCD test sets (cloze swap and cloze rand); the models are pre-trained on the WSJ
as explained in Chapter 4. I also test MTL-GR-based models (MTLGRs, MTLGRs+ELMo,
MTLGRs+BERT) pre-trained on Yahoo posts to investigate the effect of pre-training
domains. These models achieved, overall, high performance on the WSJ and GCDC
datasets and I select the Yahoo domain as it has the highest inter-rater agreement in the
GCDC (Table 4.2). In order to evaluate Yahoo models with PRA, I use their variants

7One annotator scored 96% and the other 93%.
8I note that each pair could be annotated by the judges with one of three possible classes: the

first example in the pair is more coherent than the second, it is a tie (i.e., both examples are equally
(in)coherent), or the second example is more coherent than the first.
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presented in §4.5.2.3 that exploit a final regression layer to predict a real-valued score. I
do not employ the multi-class prediction models as it will be difficult to rank the examples
if both the coherent and incoherent texts were assigned the same class in evaluation.
Throughout this chapter, any use of Yahoo models refers to the ranking models.

Fine-tuned evaluation The test CCD domain is different from the training one (WSJ
or Yahoo). For instance, around 52% of the CCD vocabulary is out of the WSJ training
documents. In addition, the average sentence length in the CCD is 10, while the average
sentence length in the WSJ is 24. Therefore, in order to further investigate domain shift
effects, I fine-tune the pre-trained models on each of the cloze swap and cloze rand training
sets and re-evaluate performance on the respective test sets. Specifically, each example in
the training set is fed to the pre-trained coherence model (pre-trained on WSJ or Yahoo)
and the pre-prediction representation of the model (which is further explained at the end
of this section) is subsequently fed to an MLP classifier that is fine-tuned to discriminate
between coherent and incoherent representations. The MLP classifier is fine-tuned over the
representations extracted for the dev set and finally tested on the test sets of the CCD.9

Training and testing are done for cloze swap and cloze rand separately.
I use a regression MLP layer with size 100, followed by a sigmoid and minimise the

MSE between the gold labels (0 or 1) and the predicted scores. For optimisation, I use
Adam (Kingma and Ba, 2015) with L2 regularisation where the penalty rate is tuned on the
dev set using the values {0.00001,0.0001,0.001,0.01}; then, the best value is automatically
used for testing (Conneau and Kiela, 2018). I also train the classifier using early stopping,
where I stop training if the accuracy (PRA) on the dev set does not increase for 5 epochs,
while also setting the maximum number of epochs to 200. I use mini-batches of size 64.

This evaluation setup examines the transferability of the model output representations
to a new domain. It is also efficient since I only fine-tune the MLP layer and not the
whole coherence model. My aim in this chapter is to create a fast and efficient evaluation
framework for neural discourse models as a further examination step after the models are
developed and tuned on their respective datasets, and not to provide a new dataset to
train and test the models from scratch.

I now describe how I extract the pre-prediction layer from each model. For the MTL
and STL models, it is the document vector produced by Eq. 3.6, whereas for the LCD-
based models, it is vector O in Eq. 2.9. With regard to the LC model, the pre-prediction
representation is the clique embedding resulting from applying a window approach to
the two sentences (the output of Eq. 2.5). Finally, for the EGrid approach, I first use
the Brown coherence toolkit to represent each input sentence pair as an EGrid matrix.

9This is similar to how probing tasks are utilised to investigate different linguistic properties of text (Shi
et al., 2016; Adi et al., 2017; Conneau et al., 2018; Ettinger et al., 2018; Hewitt and Manning, 2019; Liu
et al., 2019b).
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Model Direct Fine-tuned
cloze swap cloze rand cloze swap cloze rand

MTLGRs 0.693 0.513 0.888 0.657
MTLGRs+ELMo 0.818 0.521 0.920 0.665
MTLGRs+BERT 0.735 0.533 0.885 0.542
MTLPOS 0.692 0.527 0.898 0.633
MTLPOS+ELMo 0.803 0.531 0.920 0.641
MTLPOS+BERT 0.763 0.523 0.897 0.563
STL 0.742 0.485 0.835 0.537
STL+ELMo 0.786 0.500 0.919 0.647
STL+BERT 0.753 0.525 0.847 0.561
LC 0.707 0.505 0.763 0.513
LCD-L 0.745 0.545 0.884 0.652
LCD-fastText 0.748 0.821 0.948 0.939
LCD-ELMo 0.750 0.680 0.957 0.923
LCD-BERT 0.754 0.710 0.967 0.948
CNN-EGridext 0.846 0.534 0.881 0.688
MTLGRs (Yahoo) 0.599 0.498 0.660 0.499
MTLGRs+ELMo (Yahoo) 0.613 0.528 0.783 0.529
MTLGRs+BERT (Yahoo) 0.553 0.504 0.591 0.514

Table 5.3: The PRA values of evaluating the models on the large-scale CCD test sets
either directly or with fine-tuning. All the models are pre-trained on the WSJ, except the
last three which are pre-trained on Yahoo.

I then input the matrix to the pre-trained CNN-EGridext model, and extract the vector
resulting from max-pooling the feature maps and feed it to the MLP classifier (see §4.2.2
and Equation 3 in Tien Nguyen and Joty (2017)).

5.2.4 Results

The PRA results of testing the pre-trained coherence models (either directly or with fine-
tuning) on the two CCD test sets are displayed in Table 5.3. All the models are pre-trained
on the WSJ dataset, except for the last three which are pre-trained on Yahoo posts. As a
general observation, we find that, even though cloze swap and cloze rand are from the
same domain, which is different than the training one, the difference in performance on
the two test sets is substantial. This indicates that the models are capable of capturing
syntactic corruptions more efficiently than semantic ones, even with no fine-tuning (with
the exception of LCD-fastText). We also notice that fine-tuning boosts the discriminative
power of the models. I further analyse these results from two perspectives: the model
architecture and pre-training domain.

Model architecture Looking at the performance of RNN-based models (the first 11
in Table 5.3) on cloze swap with direct evaluation, we find that the models are fairly

109



able to distinguish the intact examples from the noisy ones, showing their robustness to
syntactic corruptions. The sequence-based architecture of the models and its sensitivity to
order allow them to pick up on the signal given by misordered syntactic constructions,
further supporting the evidence from literature regarding the ability of RNNs to capture
syntax (Linzen et al., 2016; Kuncoro et al., 2018; Gulordava et al., 2018; Wilcox et al.,
2019). The cloze swap test data is different from the training WSJ one, which means that
the models are able to capture surface syntactic patterns with no recourse to semantic or
lexical cues, enabling them to generalise to new domains. This observation is similar to
the one obtained by Gulordava et al. (2018) who found that an RNN language model is
able to capture long-distance number agreement even in nonsensical sentences that are
grammatical but not meaningful.

Nonetheless, all the RNN models fail to detect semantic alterations when directly
evaluated on cloze rand, giving a performance close to random (50%), despite the fact that
cloze rand is from the same domain as cloze swap. Although fine-tuning generally improves
performance on cloze rand, performance remains poor relative to the one obtained on
cloze swap and even stays close to chance with some models (e.g., STL and LC). The
maximum PRA yielded by RNN-based models with fine-tuning on cloze rand is 0.665 by
MTLGRs+ELMo. Semantic corruptions are indeed more challenging to detect and require
deeper understanding of natural language. It is, therefore, expected that the models
will attain accuracies lower than the ones yielded on cloze swap. However, obtaining
accuracies close to random with direct evaluation reveals the models’ inability to identify
semantic relations, even when enhanced with contextualised embeddings that are capable
of capturing semantic features.

On the other hand, non-sequential models that build sentence representations by
averaging their word vectors (LCD-fastText, LCD-ELMo and LCD-BERT) perform on
par with their RNN counterpart (LCD-L) on cloze swap, using direct evaluation, yet
there is a substantial improvement of their performance on cloze rand over all the other
models. What is more surprising is the superior performance of LCD-fastText in detecting
semantic perturbations (PRA = 0.821). This suggests that a simple averaging method
can be more powerful than sophisticated sequential models in representing sentence
meaning. Furthermore, the linear transformations applied by LCD models to sentence
pairs help increase the expressive power of the models and facilitate the learning of richer
representations. Additionally, LCD-fastText, LCD-ELMo and LCD-BERT are significantly
boosted with fine-tuning on the two test sets. The highest PRA is achieved by LCD-BERT
on cloze swap and cloze rand (0.967 and 0.948 respectively), with the latter being on par
with human performance (0.945), further motivating the transferability of the approach.

The comparison between sequential and non-sequential models can be better illustrated
by looking at the performance of LCD-ELMo or LCD-BERT on cloze rand (direct or
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fine-tuned) vs. the RNN-based methods that also use ELMo or BERT. The difference in the
performance of the two approaches suggests that it is not only contextualized embeddings
that impact performance, but also the architectural decision of how to build higher
representations from these embeddings. This also agrees with the findings of Conneau
et al. (2017) who illustrated how encoding methods impact model transferability to other
tasks, even if the encoders were pre-trained on the same data.

Interestingly, we find that the best model on cloze swap with direct evaluation is
CNN-EGridext, with 0.846 accuracy. This could be explained by the fact that the used
EGrids do not account for pronouns, while pronouns are widely used in the dataset to tie
the sentences (§5.2.1). On closer inspection, I find that 67% of the coherent grids do not
contain a subject entity in the second sentence as the subject is usually a pronoun, which
gives the model a straightforward signal to discriminate between coherent and incoherent
examples. However, the performance of CNN-EGridext on cloze rand is close to random,
similar to the RNN-based models.

It is also obvious that the models are further enhanced by integrating contextualised
embeddings as they help mitigate the out-of-domain problem; for instance, the second
highest PRA on cloze swap direct evaluation is 0.818 by MTLGRs+ELMo, whereas its basic
version (MTLGRs) scores 0.693. Finally, regarding the integration of syntactic features in
training (MTLGRs and MTLPOS), we find that with direct evaluation they surprisingly do
worse than STL on cloze swap. However, with further fine-tuning, they surpass the STL
model on both cloze swap and cloze rand. This suggests that the latent representations
of the syntactic models carry useful discourse-relevant information that enhances the
discriminative power of the MLP classifier.

Pre-training domain I now move to examining the effect of the pre-training domain
by comparing the same models when trained on synthetic WSJ and the realistic Yahoo
domain. The results of pre-training with Yahoo are displayed in the last three rows
of Table 5.3. Regarding performance on cloze swap with direct evaluation, we find that
when the models are pre-trained on Yahoo they perform substantially worse than when
pre-trained on the WSJ.10 With fine-tuning, WSJ models remain substantially better than
their Yahoo counterparts on cloze swap. This shows that the pre-training domain impacts
the ability of models to capture linguistic information. I conjecture that the nature of
the synthetic WSJ training data with its syntactic regularities that are corrupted in the
incoherent documents lends itself to the models built to capture sequential information.
Such models are able to memorise these patterns and thereby discriminate between an
intact text and an unordered one. In contrast, in the realistic domain, the difference

10As a further investigation into the realistic domain, I directly evaluate MTLGRs+ELMo pre-trained
on Enron emails. The model obtains 0.616 on cloze swap and 0.505 on cloze rand, which is very close to
the Yahoo results.
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between the syntactic structures of coherent documents vs. less coherent ones is less
pronounced, giving a weaker signal to the models and thus leading to a lower performance
(as discussed earlier in §4.5.1). Finally, as for cloze rand, as expected, pre-training on
Yahoo also performs close to chance, even when the models are fine-tuned.

5.3 Controlled Linguistic Alterations Dataset

In the previous section, I created a large-scale out-of-domain corpus to investigate what
coherence approaches learn. I compiled two datasets, the first exhibits broken syntactic
patterns and the second contains semantic/rhetorical corruptions. As further examination,
in this section, I carry out a systematic error analysis and manually craft a dataset,
from a domain similar to the WSJ, of controlled linguistic alterations (CLAD) and test
the sensitivity of the models to these alterations. The idea is to create a test set with
a few coherent well-written examples, apply minor perturbations to them and observe
the changes in the predictions of the different models. This dataset applies black-box
adversarial evaluation (§2.6) to test the robustness of the models to adversarial examples,
where we do not have access to model parameters. It is also inspired by the work of Zhu et al.
(2018) who investigated the effect of applying systematic syntactic and semantic changes
to sentences on the degree of similarity between their respective sentence embeddings,
in order to test the ability of different sentence encoders to encapsulate semantic and
syntactic features.

5.3.1 Dataset

The CLAD includes 30 examples, consisting of two sentences each. Specifically, I extract the
sentence pairs from business and financial articles published in the BBC, the Independent
and Financial Times in the year 2019, resulting in examples close to the WSJ domain. The
selection of the pairs that form the original coherent examples is achieved in a controlled
way for the purpose of my evaluation. More concretely, I choose sentence pairs where
the subject of the first sentence is pronominalized in the second, and the second sentence
begins with this pronoun. This way, the style of the examples is constrained to be similar
to a frequently occurring pattern in the WSJ (“S→ NP-SBJ VP | NP-SBJ→ PRP”) as
described earlier in §5.1. I also select the examples so that they are self-contained and
do not reference an outer context. The average sentence length of the examples is 24.2
which is close the training WSJ domain. I note that there will still be some variation
from the WSJ, especially that the selected articles are much newer and are likely to have
different entities. However, I conjecture that this deviation will still not have much impact
on my evaluation, which is further elaborated in the results I present later. In addition,
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Original
A government paper on Monday found UK and EU firms would be faced with a “a significant new and ongoing
administrative burden” in the event of a no-deal Brexit. It found large firms importing and exporting at scale
would need to fill in form taking one hour 45 minutes on average and cost £28 per form for each load imported.

Swap
It found large firms importing and exporting at scale would need to fill in forms taking one hour 45 minutes on
average and cost £28 per form for each load imported. A government paper on Monday found UK and EU firms
would be faced with a “a significant new and ongoing administrative burden” in the event of a no-deal Brexit.

Prefix
Insertion

More specifically, it found large firms importing and exporting at scale would need to fill in forms taking one
hour 45 minutes on average and cost £28 per form for each load imported. A government paper on Monday
found UK and EU firms would be faced with a “a significant new and ongoing administrative burden” in the
event of a no-deal Brexit.

Lexical
Substitution

The paper found large firms importing and exporting at scale would need to fill in forms taking one hour 45
minutes on average and cost £28 per form for each load imported. A government paper on Monday found UK
and EU firms would be faced with a “a significant new and ongoing administrative burden” in the event
of a no-deal Brexit.

Random

1- A government paper on Monday found UK and EU firms would be faced with a “a significant new and ongoing
administrative burden” in the event of a no-deal Brexit. She spent over a decade at Swiss investment bank UBS
before joining the UK Treasury’s council of economic advisers in 1999.
2- Lady Vadera was born in Uganda and moved to the UK as a teenager. It found large firms importing and
exporting at scale would need to fill in forms taking one hour 45 minutes on average and cost £28 per form for
each load imported.

Lexical
Perturbations

A government paper on Monday found UK and EU firms would be faced with a “a significant new and ongoing
administrative burden” in the event of a no-deal Brexit. It found large firms importing and exporting at scale
would need to fill in cups taking one hour 45 minutes on average and cost £28 per cup for each load imported.

Corrupt
Pronoun

A government paper on Monday found UK and EU firms would be faced with a “a significant new and ongoing
administrative burden” in the event of a no-deal Brexit. He found large firms importing and exporting at scale
would need to fill in forms taking one hour 45 minutes on average and cost £28 per form for each load imported.

Table 5.4: An example from CLAD showing the different methods of creating incoherent
examples from the original one in the first row. For ‘Random’ I create two instances: 1-
the first sentence is unchanged while the second is randomly selected from other examples,
and 2- the first sentence is randomly selected while the second is kept intact.

this makes the test set more expandable, giving future researchers the flexibility to add
more examples from the large financial domain.

In order to create the incoherent texts, I apply a set of linguistic changes to the 30
original examples, and thereby each change results in a small test set of coherent and
incoherent pairs. The changes are classified as syntactic or semantic and are carefully
chosen in order to systematically examine model performance. The following describes
how the incoherent instances are constructed and Table 5.4 shows an example; for more
examples see Appendix B.

Syntactic datasets The syntactic changes aim at corrupting sentence order while
preserving the meaning each sentence conveys. I apply three changes:

• Swap. I simply swap the two sentences in each example, the same way I created
cloze swap.

• Prefix Insertion. I also swap the two sentences but insert a prefix phrase in the
second one. I analyze the WSJ training data and find that the average number of
times the first sentence in a document starts with a pronoun is 0.02 (and never with
‘he’ or ‘she’) which is significantly less than the average number of times a sentence
starts with a pronoun (regardless of its position) which is 0.07. This difference is
not maintained in the shuffled documents so might give a signal to the models to
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detect that a swapped pair that starts with a pronoun is less coherent. In order to
examine if such positional information plays a role in prediction, I insert a phrase,
before the subject pronoun after swapping the sentences, that does not change the
propositional content (e.g., ‘More specifically’, ‘However’, etc.). I observe whether
this insertion will change the prediction of the model.

• Lexical Substitution. I swap the two sentences but replace the subject pronoun
in the second one with ‘the + a general noun’ that substitutes the subject in the
first sentence (e.g., ‘the company’, ‘the woman’, etc.). This setup should also test
whether models rely on pronouns as indicators for sentence order, especially that
pronominalizing subjects in subsequent utterances is a common pattern in the
training data.

Semantic datasets In contrast to the syntactic datasets, the semantic ones aim at
maintaining the main syntactic patterns but perform semantic alterations that would
result in a nonsensical discourse.

• Random. Similar to cloze rand, I keep the first sentence intact and select a second
random sentence from the dataset. I constrain the selection so that the subject
pronoun is different from the subject pronoun in the original sentence.11 I create
another random pair with the same constraint yet this time I replace the first sentence
and keep the second intact. Thus each original example will be compared with two
examples alleviating the impact that the language model probabilities of sentences
might have on the final score.

• Lexical Perturbation. I investigate the robustness of the models to minor lexical
changes that result in incoherent meaning, by replacing one word in either of the
two sentences (if the word is repeated, I change that too). I choose a replacement
word from the training vocabulary of the WSJ with the same part-of-speech tag.

• Corrupt Pronoun. I replace the subject pronoun in the second sentence with
another pronoun that cannot reference anything in the first sentence. I also replace
any other relevant pronouns in the second sentence to make it grammatical (e.g.,
replacing the possessive pronouns referring to the subject pronoun to reflect the
change). With this method, I test whether the models are capable of resolving
coreferences or just rely on syntactic patterns.

11I also take into account that some subjects could be referred to by ‘he’, ‘she’ or ‘they’ and thus factor
that into the selection.
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Dataset Swap Prefix Lexical Random Lexical Corrupt All TPRAInsertion Substitution Perturbations Pronoun
# Comparisons 30 30 30 60 30 30 210 6,300
MTLGRs 0.900 0.833 0.833 0.566 0.566 0.700 0.709 0.699
MTLGRs+ELMo 0.966 0.933 0.966 0.466 0.500 0.666 0.709 0.682
MTLGRs+BERT 0.933 0.966 0.933 0.450 0.466 0.533 0.676 0.713
MTLPOS 0.833 0.766 0.800 0.483 0.633 0.500 0.642 0.642
MTLPOS+ELMo 0.933 0.866 0.866 0.483 0.433 0.500 0.652 0.666
MTLPOS+BERT 0.833 0.900 0.866 0.500 0.533 0.466 0.657 0.682
STL 0.833 0.766 0.800 0.500 0.466 0.633 0.642 0.618
STL-ELMo 0.900 0.933 0.900 0.566 0.566 0.533 0.709 0.701
STL-BERT 0.900 0.900 0.900 0.516 0.633 0.633 0.714 0.716
LC 0.800 0.766 0.866 0.516 0.500 0.533 0.642 0.660
LCD-L 0.933 0.866 0.833 0.616 0.533 0.600 0.714 0.691
LCD-fastText 0.800 0.800 0.766 0.783 0.733 0.800 0.780 0.676
LCD-ELMo 0.933 0.933 0.800 0.833 0.666 0.666 0.809 0.777
LCD-BERT 0.866 0.933 0.866 0.783 0.800 0.766 0.828 0.722
CNN-EGridext 0.833 0.800 0.766 0.716 0.533 0.566 0.704 0.658
MTLGRs (Yahoo) 0.500 0.433 0500 0.500 0.500 0.433 0.480 0.486
MTLGRs+ELMo (Yahoo) 0.533 0.533 0.566 0.450 0.533 0.500 0.509 0.497
MTLGRs+BERT (Yahoo) 0.466 0.500 0.500 0.483 0.533 0.633 0.514 0.524

Table 5.5: Results on the CLAD for the different models. All models are trained on
the WSJ, except for the last three rows trained on Yahoo. # comparisons refers to the
number of measured pairwise rankings between coherent and incoherent documents. “All”
is the ranking accuracy when comparing each coherent example against its incoherent
versions across all the datasets. “TPRA” refers to the ranking accuracy when comparing
the coherent examples against all the incoherent ones in the whole dataset, not just their
noisy counterparts.

5.3.2 Results

Similar to the direct evaluation presented in §5.2.3, I test the coherence models on the
CLAD and report the results in Table 5.5. The table displays the PRA of each syntactic
or semantic dataset, by comparing each coherent document with its noisy version in
this particular dataset. I also report the “All” results of ranking the coherent examples
against their incoherent versions but across all the datasets (i.e., the original example
in Table 5.4 will be compared with the rest of the examples in the table, and that will be
done for each coherent text in the dataset). Additionally, I perform comparisons across
different examples by calculating TPRA which ranks the coherent examples against all
the incoherent ones in the whole dataset, not just their noisy versions.

Due to the small size of the dataset, I analyse the main noticeable trends and not
the subtle differences in performance. Overall, the results on the CLAD agrees with
the CCD results. We find that all the WSJ models are able to detect syntactic broken
patterns; they manage to capture the swap examples even in the cases where a prefix is
inserted or the subject pronoun is substituted with a lexical item in the reversed pair.
The performance on Prefix Insertion and Lexical Substitution further indicates that the
models are capable of capturing the relevant syntactic patterns and do not rely solely on
pronouns or positional features. However, performance drops when evaluated against the
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semantic examples which suggests that the models fail to detect topical or rhetorical shifts
and unresolved references. More specifically, on the Random dataset, RNN-based models
perform close to chance, despite the fact that the examples are close to the WSJ domain.
For instance, MTLGRs+ELMo is the strongest model on the syntactic datasets, close to
100%, but yields 0.466 on the Random dataset. The same model achieves the second best
performance on cloze swap with direct evaluation (0.818) which increases to 0.920 with
fine-tuning, in addition to its high performance on the WSJ (0.960 in Table 4.5). All
these results suggest that the model might be memorising relevant syntactic patterns and
therefore is able to recognise when these patterns are broken, while paying less attention
to the underlying meaning. The architecture of the model and the nature of its training
domain motivates such behaviour.

On the other hand, the averaging models (LCD-fastText, LCD-ELMo and LCD-BERT)
are the only models with a relatively satisfying performance on the Random dataset. This
is further validated when comparing them to their RNN counterpart (LCD-L) or other
ELMo or BERT based models, further corroborating the role of sentence composition
methods. We also observe that the CNN-EGridext model surpasses other RNN-based
models on the random dataset. The reason could be that the entities in the two sentences
of an example are different, resulting in a sparser grid; for instance in the original example
in Table 5.4, ‘firms’ is mentioned in the two sentences, while in the two Random examples,
it is only mentioned in one.

Regarding the performance on Lexical Perturbations, the models are not sensitive
to minor lexical changes even if they result in implausible meaning. This outcome is
expected due to the difficulty of the task as it requires a deeper understanding of meaning.
LCD-BERT followed by LCD-fastText, however, better capture these lexical intricacies
and provide more promising performance. Furthermore, these two models also outperform
other more complex approaches on the corrupt pronoun pairs further demonstrating
some ability to resolve pronominal reference. Nonetheless, with a more comprehensive
evaluation (TPRA), where all the coherent examples are ranked against the incoherent
ones in the whole dataset, the performance of LCD-fastText drops unlike the one yielded
when the comparison is done between versions of the same example (All = 0.780 vs. TPRA
= 0.676). The LCD ELMo and BERT models are better at generalisation with the highest
TPRA (0.777) yielded by LCD-ELMo, which further indicates the power of contextualised
embeddings.

I finally shed light on the effect of the pre-training domain. We can see that the models
pre-trained on Yahoo fail on all the datasets, providing a close to random performance.
This is expected since the test examples are from a domain different from Yahoo posts.
Furthermore, realistic data is different from synthetic one; in the latter, there are prominent
syntactic regularities in the coherent articles that are corrupted in the shuffled documents,
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yet in the realistic domain such syntactic features are less pronounced. This makes it more
challenging for Yahoo models to detect the swapped examples.

5.4 Summary

I have presented an evaluation framework for discourse coherence models that consists
of two main datasets of sentence pairs. The first is a large-scale dataset, from a short
stories domain, that exhibits syntactic or semantic corruptions on which I directly evaluate
the pre-trained coherence models, or allow further fine-tuning using their pre-prediction
layer to adapt to the new test domain. The evaluation on this dataset reveals that
RNN-based coherence models memorise syntactic patterns that co-occur in coherent
texts yet fall short in capturing semantic aspects that play a key role in discourse, even
though both the syntactic and semantic test examples are from the same domain. With
further fine-tuning, the models are substantially boosted, yet the gap in performance
on the syntactic corruptions and the semantic ones still holds. Furthermore, adding
contextualised embeddings to models improves their performance. On the other hand,
semantic relations are better captured by approaches that encode sentences by averaging
their word representations, then apply a suite of linear transformations over sentence pairs
to increase the expressive power of the models (the LCD models). These models are,
overall, more transferable than my hierarchical approach. With regard to the effect of the
pre-training domain, when the models are pre-trained on the WSJ they perform consistently
better than when pre-trained on Yahoo posts, with or without fine-tuning. This could be
attributed to the nature of these domains; the WSJ is a synthetic dataset where coherent
documents exhibit syntactic regularities that are corrupted in their incoherent versions,
giving a straightforward signal to the models built to capture sequential information.

The second dataset I create is a small-scale one of controlled linguistic alterations to
systematically examine the susceptibility of the models to changes in syntax or semantics.
I select the examples for this dataset from the financial domain, close to the WSJ one. I
evaluate different coherence models on this test data and reach the same conclusion as in
the case of the large-scale dataset: RNN-based models are able to detect broken syntactic
patterns but fail to model semantic or rhetorical features. Their ability to capture syntax
still remains when subject pronouns are substituted with general nouns or a prefix phrase
is inserted, indicating that they do not rely on positional features. These models are also
not sensitive to minor lexical perturbations nor can resolve pronouns. On the other hand,
the LCD models that average word vectors are again more capable of capturing semantic
relations. As for evaluation after pre-training on Yahoo, we find that the models fail at
both syntactic or semantic tasks, which is expected as the test examples are close to the
WSJ domain but different from the Yahoo one.
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In this chapter, I aim to provide an evaluation setup for discourse models that researchers
could leverage to test and better understand their models. Furthermore, my dataset of
controlled linguistic alterations provides a framework that could be further extended to
include more examples following my same constraints or create new constraints to examine
other aspects of discourse coherence.
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Chapter 6

Application of coherence models

In this chapter, I investigate applications for discourse coherence models; I specifically
focus on the learner domain and examine the efficacy of integrating my coherence models
to neural Automated Essay Scoring (AES) systems. I demonstrate that state-of-the-
art approaches to AES are not well-suited to capturing adversarially crafted input of
grammatical but incoherent sequences of sentences. Therefore, I propose a framework
for combining and jointly training a discourse model with a state-of-the-art neural AES
system in order to enhance its ability to capture connectedness features between sentences.
I first evaluate the integration of the local coherence (LC) model (§2.4.1 and §4.2.1) in
the joint framework, with different parameter sharing setups, and experimentally examine
its effectiveness on both the AES task and the task of flagging adversarial input. I
then assess the impact of leveraging MTL-based approaches by incorporating MTLGRs,
MTLGRs+ELMo or MTLGRs+BERT as the discourse component in the framework. The
experiments show that my joint learning (JL) framework can efficiently detect adversarial
input while maintaining a high performance in predicting a holistic essay score.

The chapter is structured as follows. In §6.1, I discuss previous AES models and
focus on the systems that model discourse coherence. In §6.2, I explain how adversarial
evaluation has been used to validate AES systems. Next in §6.3, I present the AES dataset
I utilise for my experiments and detail the evaluation metrics I leverage. In §6.4, §6.5 and
§6.6, I explain the used AES systems, coherence models and joint learning framework that
combines both respectively. After that, in §6.7, I detail my experimental setup and then
present my results and analysis in §6.8. Finally, in §6.9, I conclude and summarise the
chapter. I note that this chapter is based on a long paper published in the 16th Conference
of the North American Chapter of the Association for Computational Linguistics (NAACL
2018) (Farag et al., 2018).
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6.1 Approaches to automated essay scoring

In this section, I give a brief overview about existing AES approaches (traditional or
neural) with special focus on the approaches that model discourse coherence.

6.1.1 Traditional approaches

The task of AES focuses on automatically analysing the quality of writing and assigning
a holistic score to essays. Traditionally, AES models have exploited a wide range of
manually-tuned linguistic features that are associated with writing competence (Burstein
et al., 2003; Rudner et al., 2006; Yannakoudakis et al., 2011; Shermis and Hammer,
2012; Williamson et al., 2012; Andersen et al., 2013; Chen and He, 2013; Phandi et al.,
2015; Zupanc and Bosnić, 2017). Some approaches relied on shallow textual features
as “proxies” for writing quality such as length and counts of POS tags (Page, 1968), or
word ngrams and number of verbs (Rudner and Liang, 2002). Other systems exploited
deeper features such as: properties related to grammar, style, discourse and lexical
complexity (Attali and Burstein, 2006), semantic similarity between train and test essays
using LSA (Landauer, 2003), or syntactic and lexical features (e.g., phrase structure rules
and lexical ngrams) (Yannakoudakis et al., 2011).

Coherence in traditional AES models As discourse coherence is an important di-
mension in writing quality, a large body of AES research has been devoted to modeling
coherence and organisation in student essays. For instance, Centering theory was com-
putationally utilised to assess essays by using rough entity shifts as a proxy for the level
of incoherence (Miltsakaki and Kukich, 2000) or leveraging the continuity concept of
the theory (Rus and Niraula, 2012b). Other work exploited EGrid representations of
essays (Burstein et al., 2010; Palma and Atkinson, 2018). Essays were also assessed
by tracking their topic development via topic chains that model organisation in writ-
ing (Rahimi et al., 2015) or via HMMs (Liu et al., 2013). Furthermore, estimating semantic
similarity between different text parts, inspired by LSA, was widely employed to approxi-
mate writing coherence (Higgins et al., 2004; Higgins and Burstein, 2007; Yannakoudakis
and Briscoe, 2012; Palma and Atkinson, 2018). Other models utilised lexical chains of
semantically-related words (Somasundaran et al., 2014) or RST relations (Feng et al.,
2014; Huang et al., 2018).

6.1.2 Neural approaches

More recently, advances in deep learning have shown the efficacy of end-to-end neural
approaches on the task of AES (Alikaniotis et al., 2016; Taghipour and Ng, 2016; Dong
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and Zhang, 2016; Dong et al., 2017; Riordan et al., 2017; Farag et al., 2017; Wang et al.,
2018; Zhang and Litman, 2018). Much of this research has focused on the Automated
Student Assessment Prize (ASAP) dataset (as will be discussed in §6.3.1) and showed the
superiority of neural models over traditional feature-engineered systems is this domain
of student essays. For instance, Alikaniotis et al. (2016) developed a deep Bi-LSTM
network, augmented with score-specific word embeddings that capture usage information
for words. Taghipour and Ng (2016) investigated various recurrent and convolutional
architectures and found that an LSTM layer followed by a Mean over Time operation
achieves the best results, as will be explained in §6.4. Dong and Zhang (2016) showed that
a two-layer CNN outperformed other baselines (e.g., Bayesian Linear Ridge Regression)
on both in-domain and domain-adaptation experiments on the ASAP essays. Dong et al.
(2017), generated sentence representations using a CNN followed by attention pooling
in a prompt-independent fashion, whereas Zhang and Litman (2018) showed that a co-
attention mechanism between the prompts and the essays responding to them surpasses
the prompt-independent approach.

Coherence in neural AES models Efforts have also been directed to building more
discourse-aware neural AES models (Tay et al., 2018; Mesgar and Strube, 2018; Liu et al.,
2019a; Mim et al., 2019; Nadeem et al., 2019). For instance, Tay et al. (2018) trained an
LSTM network to predict a holistic essay score by generating coherence features between
different essay parts. A coherence feature is learned between two hidden vectors at different
time steps of the LSTM, separated by a window of a pre-defined size, by computing a
bilinear product between the vectors. By doing so, the model learns semantic relationships
between snapshots from the essay. The final prediction layer averages the LSTM hidden
states and concatenates the output with the generated coherence features to predict the
overall score. Mesgar and Strube (2018) generated neural coherence vectors (§2.4.1) and
combined them with feature vectors generated by open-source AES models to train a
regression model to predict the final essay scores. The work of Nadeem et al. (2019) also
integrated learning coherence-related properties as a pre-training task to AES, which will
be further discussed in §6.4.

6.2 Evaluation against adversarial input

In §2.6, I discussed that machine learning models could be tricked with adversarial input
which motivates the importance of adversarial training and evaluation to these models.
Several studies have focused, specifically, on testing the robustness of AES engines against
subversions by writers who may exploit their knowledge about the workings of the systems
to maximize their scores (Powers et al., 2002; Yannakoudakis et al., 2011; Lochbaum
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et al., 2013; Bejar et al., 2014; Higgins and Heilman, 2014; Zhang et al., 2016; Yoon et al.,
2018). This testing is imperative to ensure the validity of a system before deployment,
especially in high-stakes assessment. For instance, Powers et al. (2002) asked writing
experts to write essays to trick the e-rater system (v1) (Burstein et al., 1998), after
briefing them on how the system works.1 The participants managed to fool the system into
assigning higher-than-deserved grades, most notably by simply repeating a few well-written
paragraphs several times. Yannakoudakis et al. (2011) and Yannakoudakis and Briscoe
(2012) created and used an adversarial dataset of well-written texts and their random
sentence permutations, which they released in the public domain, together with the grades
assigned by a human expert to each piece of text. Yannakoudakis and Briscoe (2012)
succeeded in capturing such adversarial input by measuring semantic similarity between
sentences; however, their test data is quite small, consisting of 12 scripts in total. Higgins
and Heilman (2014) demonstrated the susceptibility of AES systems to gaming strategies
including padding an essay with: multiple copies of the same essay, random words from the
prompt or random academic words. Furthermore, there have been attempts to empirically
address adversarial inputs by incorporating pre-assessment techniques that flag texts
that could potentially fool the system. Some of these techniques focused on capturing
shallow features such as essay length (too long or too short), repetitions of words and
sentences or repeating the prompt (Attali and Burstein, 2006; Zhang et al., 2016; Yoon
et al., 2018). Other approaches addressed the detection of off-topic responses (Higgins
et al., 2006; Louis and Higgins, 2010; Persing and Ng, 2014; Rei and Cummins, 2016; Li
et al., 2017). More recently and subsequent to my work here, Kumar et al. (2020b) created
a framework for generating adversarial input by applying a wide variety of syntactic and
semantic changes to ASAP essays to lower their quality, and demonstrated the inadequacy
of state-of-the-art neural AES approaches to capture such adversaries. They showed that
adversarial detection could be marginally improved by adversarial training; however, they
did not test the effect of adversarial training on the main task of predicting holistic essay
scores.

I extend this line of work and examine the robustness of state-of-the-art neural AES
models to adversarially crafted input and specifically focus on input related to local
coherence; that is, grammatical but incoherent sequences of sentences. I demonstrate that
neural models are vulnerable to such input and thereby propose an approach to enhance
their ability to detect adversarial incoherent texts.

1E-rater relies on a wide variety of features associated with structure (e.g., syntactic features),
organisation (e.g., discourse features) and content (e.g., vocabulary related features).
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Prompt Size of ASAP Vocab Avg # Avg Sent Score Synthetic (Adversarial) Dataset Combined
Original Dataset Size Sents Length Range Threshold #Selected High-Scoring Essays Total Size Dataset Size

1 1,783 16,312 22 18 2−12 10 472 5,192 3,671
2 1,800 15,074 20 21 1−6 5 82 902 2,128
3 1,726 6,658 6 19 0−3 3 407 4,477 3,354
4 1,772 5,078 4 22 0−3 3 244 2,684 2,748
5 1,805 5,273 6 21 0−4 4 258 2,838 2,837
6 1,800 5,737 7 22 0−4 4 367 4,037 3,268
7 1,569 10,625 12 16 0−30 23 179 1,969 2,285
8 723 12,660 34 20 0−60 45 72 792 1,011

Table 6.1: Statistics for each dataset per prompt. For the synthetic dataset, the high
scoring ASAP essays are selected based on the indicated score threshold (inclusive) and
“Total Size” refers to the number of the ASAP essays selected + their 10 permutations.
The combined dataset refers to the original dataset + 4 permutations from the synthetic
data for each high scoring essay. ‘Vocab Size’ refers to the number of unique words.

6.3 Dataset and evaluation

6.3.1 Dataset

Before I elucidate my joint learning approach, I describe, in this section, the dataset used
in my experiments and explain the creation of adversarial examples. I use the Automated
Student Assessment Prize (ASAP) dataset created in 2012 for an AES competition by
Kaggle and sponsored by the Hewlett Foundation.2 The dataset contains 12,976 essays
written by students ranging from Grade 7 to Grade 10 in response to 8 different prompts. I
follow the ASAP data split by Taghipour and Ng (2016),3 and apply 5-fold cross validation
in all the experiments using their same train/dev/test splits, where in each fold, 60%
of the essays are used for training, 20% for development and 20% for testing. For each
prompt, the test predictions across the 5 folds are aggregated and evaluated together. I
refer to this dataset as original ASAP dataset.

In order to create adversarial input, for each prompt, I select high-scoring original
essays (based on a pre-defined score threshold, Table 6.1) that are assumed coherent, and
create 10 permutations per essay by randomly shuffling its sentences. The reason why I
limit my selection in adversarial creation to high-scoring essays is two-fold. First, my aim
is to evaluate the models against essays written in “bad faith”, that is, sets of well-formed
sentences that have been rote-learned and re-produced in an attempt to maximise the
assigned score in the knowledge that an automated system is not checking for coherence.
Second, poorly-written essays could be highly incoherent and therefore it is unreliable
to teach the model to rank them higher than adversarial texts created by permuting
well-written essays. I refer to the set of essays that contains the adversarial examples
along with their original counterparts as adversarial or synthetic dataset. I note that in
the synthetic data I keep the same train/dev/test splits as the original one and coherent

2https://www.kaggle.com/c/asap-aes
3https://github.com/nusnlp/nea/tree/master/data
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essays are assigned a score of one while incoherent essays are given a zero score.
Finally, in order for the joint learning setup to learn from both original and adversarial

essays, I augment the original ASAP dataset with a subset of the synthetic essays, and refer
to the resulting dataset as combined dataset. Specifically, I randomly select 4 permutations
per essay to include in the combined set.4 In this dataset, adversarial essays are annotated
with the lowest possible score in the score range of their respective prompts (zero in most
prompts).

More concisely, I end up with 3 versions of the dataset: ASAP original, synthetic and
combined; the statistics for the 3 datasets are detailed in Table 6.1.5 The combined data
is only leveraged for training but, at test time, I only evaluate on original and synthetic
test sets. I do not evaluate a combined test set as I believe that this requires human
annotations for the adversarial essays, because an incoherent essay with well-formed
sentences may be graded higher than a poorly-written essay that is kept intact without
shuffling. This assumption was further proven by the expert grading of the outlier texts
compiled by Yannakoudakis et al. (2011). However, it is guaranteed that those adversarial
essays are of lower quality than their original counterparts and hence I restrict adversarial
evaluation to comparisons between synthetic essays and their original versions.

6.3.2 Evaluation

I test the performance on the original ASAP dataset using Quadratic Weighted Kappa
(QWK). I focus on QWK as it is the official evaluation metric for the ASAP competition,6

but also report Pearson’s and Spearman’s correlation coefficients in Appendix C. I report
the QWK score for each prompt and also the average QWK across all prompts after
applying Fisher transformation (§2.7) to show the overall performance of each model as
recommended by the ASAP competition. As for synthetic data evaluation, similar to
previous chapters, I utilise PRA and TPRA to rank the essays in the test data, I report
both values per prompt as well as their average value across prompts. For more details
about the used evaluation metrics, see §2.7. I note that, during training, scores are mapped
to a range between 0 and 1 (similarly to Taghipour and Ng (2016)), and then scaled back
to their original range during evaluation.

4This is primarily done to keep the data balanced: initial experiments showed that training with all 10
permutations per essay harms AES performance, but has negligible effect on adversarial input detection.

5My combined and synthetic datasets are available at https://github.com/Youmna-H/Coherence_AES
6https://www.kaggle.com/c/asap-aes/overview/evaluation
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Figure 6.1: The LSTM AES model by Taghipour and Ng (2016) (LSTMT&N).

6.4 Neural AES models

In this section, I describe the AES models I use in my work; all the models learn to predict
a holistic essay score that indicates its quality. AES models are typically trained and
tested on original data.

LSTMT&N Taghipour and Ng (2016) trained and evaluated an LSTM model on the
ASAP original dataset; I refer to their model as LSTMT&N. The model performs the
task of predicting a holistic score for an essay from its sequence of words as can be seen
in Fig. 6.1. Each word in an input essay is initialised from a pre-trained embedding space
and then a one-layer LSTM7 is exploited to encode the sequence of word representations
(wt). Subsequently, a Mean over Time operation is applied to simply average the hidden
representations (hwt ∈ Rdim

w , where dimw is a hyperparameter) of the LSTM8 to produce
an essay vector (d) that is scored by a linear transformation followed by a sigmoid function.9

The following equations explain how the model scores input essays:

hwt = LSTM(wt,hwt−1)

d= 1
n

n∑
t=1

hwt

ŷ esy = σ(W d.d)

(6.1)

where W d ∈ Rdim
w is a learned weight and n is the number of words in the essay. The

network optimises the MSE loss between the predicted scores and the ground-truth ones:

Lesy = 1
N

N∑
i=1

(yesyi − ŷ
esy
i )2 (6.2)

7Unidirectional LSTM outperformed Bi-LSTM (Taghipour and Ng, 2016).
8For the detailed LSTM equations, see Eq. 2.2.
9I note that the authors achieved a bit higher results when averaging ensemble results of their LSTM

model together with CNN models. I use their main LSTM model which, for the purposes of my experiments,
does not affect my conclusions.
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where N is the number of training essays. We can see from the above description and
from Fig. 6.1 that LSTMT&N ignores sentence boundaries and thus might be agnostic to
discourse-related features, as will be verified in §6.8.

LSTMT&N+ELMo I extend LSTMT&N and create another version of the model where
I initialise the input words with ELMo vectors. Following my approach in §3.1.1, I only
take the top layer in the triple-layer ELMo representation.

LSTMT&N+BERT Similarly, I create a version of LSTMT&N by leveraging BERT
embeddings, following §3.1.1.

LSTMT&N-comb The three aforementioned LSTMT&N-based models are trained on the
original ASAP essays, following Taghipour and Ng (2016). Nevertheless, I train a version
of LSTMT&N on the combined dataset (i.e., on both original and synthetic essays). I use
this approach in order to test the performance when the model sees adversarial examples
during training.

NLI-DM-BCA The LSTMT&N model is designed to encode the input essay as a
sequence of words, with no explicit modeling for discourse features or sentence interactions.
It would be interesting to test a more discourse-aware state-of-the-art AES system, and
therefore, I evaluate the model by Nadeem et al. (2019). They adopted a hierarchical
LSTM with bidirectional context and attention (BCA) (Nadeem and Ostendorf, 2018).
BCA employs an LSTM to generate sentence representations from words then a second
LSTM over the sentence vectors to construct a document representation. The first LSTM
generates word hidden representations (hwit, for the tth word in the ith sentence), in addition
to a “look-back” and “look-ahead” context vectors conditioned on preceding and subsequent
sentences respectively. The “look-back” vector is constructed by using context attention
over the preceding sentence:

α(i−1)t(wit) =
exp(hwit Wα hw(i−1)t)∑
t′ exp(hwit Wα hw(i−1)t′)

c(i−1)(wit) =
∑
t′
α(i−1)t′(wit)hw(i−1)t′

(6.3)
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where Wα is a bilinear weight matrix. Similarly, the “look-ahead” vector is calculated by
using context attention over the subsequent sentence.

α(i+1)t(wit) =
exp(hwit Wα hw(i+1)t)∑
t′ exp(hwit Wα hw(i+1)t′)

c(i+1)(wit) =
∑
t′
α(i+1)t′(wit)hw(i+1)t′

(6.4)

The final word representation is the concatenation of the context vectors and the LSTM
output: [c(i−1)(wit),hwit, c(i+1)(wit)]. Word representations are then aggregated with atten-
tion to compose sentence representations and, in turn, sentence vectors are processed with
an LSTM followed by attention to generate a document vector (similar to my method
in §3.1.2 and §3.1.4). Furthermore, Nadeem et al. (2019) incorporated two pre-training
auxiliary tasks to their BCA model. The first task involves predicting Natural Language
Inference (NLI) labels for adjacent sentence pairs, and the second, which is coherence-
related, predicts the category of discourse markers (DM) connecting each sentence pair
(categories include justification, opposition and time relation). The sentence pairs for
the DM task were extracted from books from www.smashwords.com, where the second
sentence in each pair starts with a discourse marker. They used 87 markers that are
mapped to 7 categories. Examples of markers with their categories are: ‘nonetheless’ and
‘however’ for opposition, ‘for example’ and ‘in other words’ for justification and ‘meanwhile’
and ‘simultaneously’ for time relations.

Finally, after pre-training the BCA model on the two tasks, the model is trained
to perform essay scoring while fixing the pre-training task-specific word-level attention
weights; this model is referred to as NLI-DM-BCA. The resulting AES system aims at
capturing discourse features of text by attending to previous and next contexts as well as
leveraging the DM pre-training task. The NLI-DM-BCA was trained and evaluated only
on prompts 1 and 2 of the ASAP dataset as they are persuasive essays that could benefit
from discourse modeling, in addition to TOEFL essays (Blanchard et al., 2013).

6.5 Coherence models

I now present the coherence models I leverage and plug later in my joint learning framework.
Coherence models are typically trained and tested on synthetic data.

LC I use the LC model detailed in §2.4.1 and §4.2.1. I conjecture that the model has an
advantage and could learn complementary features to LSTMT&N as it looks locally into
neighbouring sentences while LSTMT&N models the whole essay as one sequence, giving a
more global representation of text.
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MTLGRs I leverage the model described in §3.2.1. As shown in §4.4.2, MTLGRs

is efficient in selecting maximally coherent sentence orderings from sets of candidate
permutations.

MTLGRs+ELMo I use the MTLGRs model bootstrapped with ELMo vectors as elab-
orated in §3.1.1, which has further enhanced MTL performance in binary coherence
assessment (§4.4.2).

MTLGRs+BERT Similarly, I utilise the MTLGRs model initialised with BERT vectors
(§3.1.1) which has also boosted the performance of MTL in the binary coherence evaluation
task.

I note that other approaches have proven their efficacy in modeling coherence such as
the LCD-based ones. However, my aim is to show that supporting neural AES systems
with coherence modeling could strengthen their ability to detect adversarial incoherent
examples, and not to exhaustively plug all the coherence models into the joint framework
to determine which model works best. Furthermore, the public implementation of the
LCD models is in PyTorch while the one for LSTMT&N is in Keras which requires re-
implementing one of the models in the other library to facilitate their integration, which
would be an interesting avenue for future work.

6.6 Joint learning

In this section, I describe my joint learning (JL) approach that combines an AES model
with a coherence one. I also present different variations of the approach.

6.6.1 Approach

My main goal is to build a robust AES system that is able to correctly flag adversarial
input while maintaining a high performance on essay scoring. To that end, I propose a
joint learning (JL) approach that predicts a holistic essay score in addition to flagging
outlier incoherent essays by integrating a coherence model with a state-of-the-art neural
AES system. For the AES component, I leverage the LSTMT&N and its ELMo and BERT
versions, whereas for the coherence component I plug the four coherence models presented
in §6.5 which results in four joint models:

• JL with LSTMT&N and LC (JL-LC)

• JL with LSTMT&N and MTLGRs (JL-MTLGRs)

• JL with LSTMT&N+ELMo and MTLGRs+ELMo (JL-MTLGRs+ELMo)
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Figure 6.2: The JL framework for scoring essays as well as detecting adversarial input. The
AES model is the one depicted in Fig. 6.1, and the coherence model in Fig. 4.1 or Fig. 3.2.

• JL with LSTMT&N+BERT and MTLGRs+BERT (JL-MTLGRs+BERT)

Training the AES and coherence models in the joint framework is straightforward. For
the non-contextualised frameworks (JL-LC and JL-MTLGRs), I keep the architectures of
the AES and coherence models intact and train them as before but, allow them to share
the word embedding layer. More specifically, starting from the same word representations,
the joint model branches into an AES model that predicts an essay score (ŷ esy) and a
coherence model that predicts a coherence score (ŷ coh). Fig. 6.2 provides an illustration
for the framework. As for the JL-MTLGRs+ELMo and JL-MTLGRs+BERT models, the
same framework is applied and the word embeddings are shared but kept frozen and not
updated during training since they are contextualised. Accordingly, each network tunes
its own set of independent parameters.

Annotation The JL framework uses the combined dataset for training which is an
aggregate of both the ASAP original essays and the adversarial ones (§6.3.1). Each essay
is annotated with an essay score (y esy) and a coherence score (y coh). During training, for
the ASAP original essays, I assume that both the gold essay and coherence scores are the
same and equal to the gold ASAP scores. This is not too strict an assumption, as overall
scores of writing competence tend to correlate highly with overall coherence (Crossley and
McNamara, 2010, 2011). For the synthetic essays, I set the “gold” coherence scores to
zero, and the “gold” essay scores to those of their original non-permuted counterparts in
the ASAP dataset. The intuition is as follows: firstly, if we set the “gold” essay scores of
synthetic essays to zero, this might bias the model into over-predicting zeros; secondly, my
approach reinforces the inability of LSTMT&N to detect adversarial input, and forces the
overall network to rely on the coherence branch to identify such input.
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Adversarial detection The two sub-networks are trained together and the error gradi-
ents are back-propagated to the shared word embedding layer (in the non-contextualised
models). In order to detect whether an essay is adversarial, I further augment the system
with an adversarial text detection component that simply captures adversarial input based
on the difference between the predicted essay and coherence scores. Specifically, I use the
development set to learn a threshold10 for this difference, and flag an essay as adversarial
if the difference is larger than the threshold. For simplicity, I empirically calculate the
threshold as the average difference between the predicted essay and coherence scores in
the synthetic data of the development set:

threshold = 1
M

M∑
i=1

(ŷesyi − ŷcohi ) (6.5)

where M is the number of synthetic essays in the development set. For the final evaluation,
the essays flagged as outliers by the model are assigned the minimum score in the
respective prompt (most likely zero score) while the ones that pass the filter are assigned
their predicted essay score as the final holistic score (ŷesyi ).11

The description of my JL network indicates that the framework, in essence, performs
MTL with two tasks: predicting an essay score and a coherence one, and the network
leverages both scores to generate the final grade that is to be evaluated. Nonetheless, I
use the expression ‘joint learning’ (JL) to describe this model to avoid confusion with my
MTL models for coherence assessment.

6.6.2 Variations of parameter sharing

The JL models that use standard word embeddings allow sharing these embeddings between
the AES and coherence sub-networks. In order to further validate this approach, I create
two other variants of JL-LC, which is the benchmark JL model, with different parameter
sharing setups as follows.

JL with no word embedding sharing (JL-LCno layer sharing) In order to assess
the value of sharing the word embedding layer, I create a version of the JL-LC model in
which the two sub-models are trained separately without sharing the first layer of word
representations. More concretely, each sub-network will have its own word embedding
matrix that is only fine-tuned by this sub-network.12

10I note that this threshold is different than the one in Table 6.1.
11This is similar to the product of experts approach (Hinton, 2002) used by Karimi Mahabadi et al.

(2020) for debiasing by combining the predictions of two models: a base model that learns the actual task
and a bias-only one that learns dataset biases and helps the base model reduce its biases.

12See §3.1.1 for more details about retrieving word representations from an embedding matrix.
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JL with LSTM sharing (JL-LClstm sharing) I build a version of JL-LC where the
sub-models share more parameters besides word embeddings. Specifically, since both
sub-networks apply an LSTM over input word vectors, I allow them to share their LSTM
weights (Eq. 2.2). In other words, the same LSTM parameters are leveraged and optimised
by both sub-networks. In the LSTMT&N branch, LSTM is applied over the sequence
of words in the entire essay, whereas in the LC branch, it is applied over the sequence
of words in each sentence separately. With this approach, I hope to facilitate learning
better LSTM parameters that encode relations between words across the entire essay (via
LSTMT&N) while also focusing on individual sentence representations (via LC). Further
techniques for parameter sharing such as soft sharing (§2.5) are to be explored in future
work.

6.7 Experiments

In this section, I detail my experimental setup that assesses the performance of models
on essay scoring and adversarial detection. For preprocessing, all essays are lowercased
and tokenised using the NLTK tokeniser.13 All non-contextualised models are initalised
with pre-trained word embeddings (Zou et al., 2013) following Taghipour and Ng (2016).
As previously mentioned in §6.3.2, during training with original or combined sets, essay
scores are normalised to the range [0,1] and the predicted scores are then scaled back to
the original score range to measure QWK.

for training score = (gold score− low)/(high− low)

for evaluation score = predicted score× (high− low) + low

where low and high are the minimum and maximum possible scores for the prompt that
is being evaluated. For adversarial evaluation, since I perform ranking between intact and
noisy essays, applying the score transformation is not important so I keep the predicted
scores in the range [0,1]. Training and testing are carried out for each prompt separately
using 5-fold cross validation and the final evaluation is done over the test portions of the 5
folds together.

Coherence models As mentioned in §6.5, I leverage the LC, MTLGRs, MTLGRs+ELMo
and MTLGRs+BERT coherence models; I also include EGrid CNNext as a baseline. For all
the models, I follow the same hyperparameter and training setup used earlier for the WSJ
(§4.3). The models are trained on synthetic ASAP essays and evaluated on the synthetic
test set. For evaluation, I select the models with the highest PRA value on the dev set. I

13https://www.nltk.org/
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report PRA and TPRA values in Table 6.2.

AES models For LSTMT&N, I replicate and evaluate the model of Taghipour and Ng
(2016) using their publicly available code.14 The model is trained on original ASAP essays
and tested on both the original test set using QWK (Table 6.3) and adversarial test set using
PRA and TPRA metrics (Table 6.2). I create two other versions of the model where input
words are initialised with ELMo or BERT (LSTMT&N+ELMo and LSTMT&N+BERT).
Finally, I train a version of LSTMT&N on combined training essays (LSTMT&N-comb),
where the adversarial texts are labeled with the minimum score according to the addressed
prompt. For all these AES systems, I select the model that achieves the highest QWK on
the dev set.

Regarding the NLI-DM-BCA model, Nadeem et al. (2019) have kindly tested their
pre-trained model on my adversarial test set for prompts 1 and 2, since they only focus on
these two prompts in their paper. I, therefore, limit the evaluation of NLI-DM-BCA to
these prompts which should be indicative of performance on other prompts. For QWK on
original essays, I report the values on the two prompts from Nadeem et al. (2019). I note
that their model was trained on original essays only with no adversarial examples.

JL models For all the JL-based models, I implement the frameworks described in §6.6,
where each framework combines a coherence model with an AES one, keeping the same
hyperparameters as in the individual models. The thresholds for adversarial detection are
estimated according to Eq. 6.5 and reported in Appendix D. The models are trained on
the combined training set, and tested on both the adversarial test set (Table 6.2) and the
original test set (Table 6.3).

6.8 Results

In this section, I present my results and analysis. Table 6.2 reveals the performance on
adversarial detection using PRA and TPRA metrics, while Table 6.3 shows essay scoring
results using QWK. I also summarise the average results in Table 6.4.

Coherence Models From Table 6.2, we can see, as expected, that the coherence models,
that are trained on synthetic data only, surpass the other AES and joint models trained
on original or combined datasets. Coherence models achieve average PRA > 90% with the
highest performance obtained by MTLGRs+ELMo and MTLGRs+BERT (≈ 98%). The
only exception is EGrid CNNext with PRA = 72.6% suggesting the inadequacy of modeling
entity transitions in learner domain in comparison to other neural coherence models that

14https://github.com/nusnlp/nea
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Model Training Data PRA
1 2 3 4 5 6 7 8 Avg

EGrid CNNext Synthetic 0.780 0.536 0.879 0.888 0.781 0.894 0.549 0.502 0.726
LC Synthetic 0.960 0.978 0.944 0.965 0.943 0.964 0.887 0.934 0.946
MTLGRs Synthetic 0.988 0.985 0.949 0.927 0.957 0.976 0.949 0.975 0.963
MTLGRs+ELMo Synthetic 0.998 0.991 0.984 0.976 0.987 0.996 0.969 0.966 0.983
MTLGRs+BERT Synthetic 0.995 0.980 0.981 0.977 0.986 0.995 0.979 0.962 0.982
LSTMT&N Original 0.232 0.215 0.338 0.561 0.483 0.599 0.502 0.511 0.430
LSTMT&N-comb Combined 0.995 0.990 0.967 0.945 0.967 0.984 0.910 0.690 0.931
LSTMT&N+ELMo Original 0.651 0.692 0.277 0.651 0.403 0.345 0.520 0.758 0.537
LSTMT&N+BERT Original 0.472 0.441 0.307 0.631 0.456 0.483 0.424 0.386 0.450
NLI-DM-BCA Original 0.218 0.147 - - - - - - -
JL-LC Combined 0.932 0.791 0.728 0.683 0.736− 0.834+ 0.663+ 0.838+ 0.775
JL-LCno layer sharing Combined 0.917 0.750 0.742 0.718 0.815 0.785 0.553 0.712 0.749
JL-LClstm sharing Combined 0.944+ 0.845+ 0.864+ 0.807+ 0.905+ 0.908+ 0.591+ 0.309− 0.771
JL-MTLGRs Combined 0.961 0.802 0.828 0.760 0.846 0.877 0.644 0.673 0.798
JL-MTLGRs+ELMo Combined 0.927 0.542 0.852 0.759 0.875 0.892 0.807 0.595 0.781
JL-MTLGRs+BERT Combined 0.889 0.775 0.837 0.766 0.857 0.855 0.706 0.611 0.787

Model Training Data TPRA
1 2 3 4 5 6 7 8 Avg

EGrid CNNext Synthetic 0.626 0.530 0.821 0.821 0.713 0.821 0.514 0.495 0.667
LC Synthetic 0.571 0.636 0.729 0.867 0.704 0.881 0.544 0.583 0.689
MTLGRs Synthetic 0.986 0.981 0.951 0.925 0.962 0.976 0.950 0.972 0.962
MTLGRs+ELMo Synthetic 0.997 0.949 0.983 0.971 0.975 0.990 0.943 0.955 0.970
MTLGRs+BERT Synthetic 0.990 0.937 0.985 0.977 0.987 0.993 0.969 0.931 0.971
LSTMT&N Original 0.394 0.387 0.459 0.514 0.497 0.538 0.498 0.502 0.473
LSTMT&N-comb Combined 0.982 0.967 0.946 0.929 0.964 0.974 0.845 0.529 0.892
LSTMT&N+ELMo Original 0.507 0.517 0.475 0.531 0.491 0.475 0.500 0.510 0.500
LSTMT&N+BERT Original 0.500 0.500 0.474 0.532 0.498 0.499 0.497 0.498 0.499
NLI-DM-BCA Original 0.377 0.281 - - - - - - -
JL-LC Combined 0.933 0.791 0.730 0.690 0.737− 0.834+ 0.666+ 0.838+ 0.777
JL-LCno layer sharing Combined 0.918 0.750 0.745 0.724 0.815 0.786 0.571 0.717 0.753
JL-LClstm sharing Combined 0.944+ 0.845+ 0.865+ 0.812+ 0.906+ 0.908+ 0.591 0.326− 0.774
JL-MTLGRs Combined 0.961 0.802 0.831 0.764 0.848 0.877 0.654 0.677 0.801
JL-MTLGRs+ELMo Combined 0.927 0.559 0.852 0.757 0.876 0.892 0.810 0.603 0.784
JL-MTLGRs+BERT Combined 0.891 0.767 0.837 0.768 0.858 0.856 0.711 0.621 0.788

Table 6.2: Results on the ASAP synthetic test set; the top half reports PRA and the
bottom reports TPRA. Each half is horizontally divided into three partitions to visually
discriminate between coherence models, AES models and JL models, in that order. For
each model I display the training dataset, PRA or TPRA across the 8 prompts and in the
final column I report the average across all the prompts. The superscripts + and - are
added to indicate significantly better or worse (respectively) results of LSTMT&N+ELMo,
LSTMT&N+BERT, JL-LC and JL-LClstm sharing compared to their base models (LSTMT&N
for the first two and JL-LCno layer sharing for the last two). Significance is calculated with
a randomisation test for p-value< 0.01.

learn from all essay words. This is further supported by the notable drop of the PRA
performance of EGrid CNNext on the learner domain vs. its obtained PRA on the news
domain (87.6%), whereas all the other coherence models herein have improved over the
news domain, most notably the LC model (see WSJ results in Table 4.5). Looking at
the TPRA metric of the coherence models in Table 6.2, we find that the MTL approach
outperforms all other models, particularly when enhanced with ELMo or BERT (average
TPRA≈ 97%), while LC and EGrid CNNext do not generalise well and fall short when
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Model Training Data QWK
1 2 3 4 5 6 7 8 Avg.

LSTMT&N Original 0.746 0.667 0.681 0.799 0.804 0.822 0.803 0.591 0.748
LSTMT&N-comb Combined 0.575 0.533 0.428 0.597 0.608 0.478 0.514 -0.183 0.462
LSTMT&N+ELMo Original 0.805+ 0.642 0.655 0.757− 0.761− 0.782− 0.769− 0.690+ 0.737
LSTMT&N+BERT Original 0.813+ 0.650 0.660 0.763− 0.772− 0.786− 0.789 0.727+ 0.750
NLI-DM-BCA Original 0.800 0.671 - - - - - - -
JL-LC Combined 0.769 0.648+ 0.681 0.790 0.806 0.806 0.791 0.506− 0.737
JL-LCno layer sharing Combined 0.759 0.577 0.683 0.796 0.814 0.801 0.783 0.551 0.733
JL-LClstm sharing Combined 0.782+ 0.601 0.661− 0.789 0.799 0.798 0.743− 0.529 0.724
JL-MTLGRs Combined 0.775 0.609 0.670 0.763 0.794 0.810 0.759 0.627 0.733
JL-MTLGRs+ELMo Combined 0.785 0.635 0.635 0.754 0.781 0.772 0.756 0.676 0.729
JL-MTLGRs+BERT Combined 0.794 0.642 0.624 0.752 0.767 0.780 0.777 0.720 0.737

Table 6.3: Results on the ASAP original test set of AES models (in the top half) and JL
models (in the bottom half). For each model I display the training dataset, QWK across
the 8 prompts and in the final column I report the average across all the prompts after
applying Fisher transformation (§2.7). The results of NLI-DM-BCA are those reported
by Nadeem et al. (2019). The superscripts + and - are added to indicate significantly
better or worse (respectively) results of LSTMT&N+ELMo, LSTMT&N+BERT, JL-LC
and JL-LClstm sharing compared to their base models (LSTMT&N for the first two and JL-
LCno layer sharing for the last two). JL-LC and the other JL MTL-based models are double-
underlined or single-underlined if they are significantly better or worse (respectively) than
their LSTMT&N counterpart (JL-LC and JL-MTLGRs vs. LSTMT&N, JL-MTLGRs+ELMo
vs. LSTMT&N+ELMo and JL-MTLGRs+BERT vs. LSTMT&N+BERT). Significance is
calculated with a randomisation test for p-value< 0.01.

comparing coherent documents against all permuted ones in the test set, not just their
incoherent counterparts. The superiority of my MTL-based models over the LC and EGrid
CNNext ones is in line with my findings in Chapter 4.

AES Models Regarding the state-of-the-art AES models, we find that despite their
strong performance in essay scoring, they fail to capture adversarial essays. For instance,
LSTMT&N, LSTMT&N+ELMo and LSTMT&N+BERT achieve an average QWK of 0.748,
0.737 and 0.750 respectively on the task of grading original essays (Table 6.3); however,
their performance drastically drops close to chance on adversarial essay detection as shown
in Table 6.2. Similarly, NLI-DM-BCA achieves outstanding performance on prompts 1 and
2 relative to the other models in Table 6.3, while yielding the poorest results in flagging
outlier essays on these prompts, despite being a discourse-aware model. Even though NLI-
DM-BCA is only evaluated on prompts 1 and 2, its performance on these prompts gives us
an idea of its overall adequacy for essay scoring and adversarial identification. Furthermore,
PRA and TPRA for NLI-DM-BCA are much lower than chance; this is because a large
number of its predictions are ties; i.e., an original essay and its shuffled version are assigned
the same grade, which is marked as an incorrect prediction with the pairwise evaluation
measures. Nevertheless, I note that LSTMT&N, LSTMT&N+ELMo, LSTMT&N+BERT
and NLI-DM-BCA are strictly trained on original essays and they only see adversarial
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examples during testing. When LSTMT&N is trained on the combined dataset of original
and adversarial essays (i.e., LSTMT&N-comb), its performance significantly increases on
adversarial detection (PRA= 0.931 and TPRA= 0.892), yet significantly drops on essay
scoring (QWK= 0.462). It would be interesting to evaluate the NLI-DM-BCA model
when trained on the combined dataset, which I leave to future work. In summary, the
results show that current stat-of-the-art AES systems are not well-suited at capturing
adversarially-crafted input of grammatical albeit incoherent sequences of sentences, which
needs to be addressed to ensure the validity of these systems.

I now analyse the performance when utilising contextualised embeddings for essay scor-
ing in Table 6.3. When LSTMT&N is initialised with BERT vectors (LSTMT&N+BERT),
it achieves the best overall performance (average QWK = 0.750), yet performs closely
to its base LSTMT&N model that uses standard vectors (average QWK = 0.748). We
notice that while LSTMT&N+BERT significantly outperforms LSTMT&N on two prompts
(1 and 8), the latter significantly outperforms the former on three prompts (4, 5 and 6).
As for LSTMT&N+ELMo, overall, it performs slightly worse than LSTMT&N (average
QWK = 0.737), but with a significant improvement on prompts 1 and 8, and a significant
drop on prompts 4, 5, 6 and 7. Additionally, we notice that prompt 8 is the prompt that
gains the most from adding ELMo or BERT (with ≈ 10% improvement with ELMo and
≈ 13% with BERT), which could be attributed to the small size of its data (723 essays)
and the ability of contextualised embeddings to help with low-resource tasks. Regarding
the prompts where there is a significant drop with contextualised vectors, it is not clear
why this happens but, a good investigation starting point is to examine other approaches
to creating ELMo or BERT embeddings (i.e., use different combinations of layers). For
instance, Reimers and Gurevych (2019) explored different combining methods for ELMo
layers for the task of detecting arguments in persuasive essays, and found that learning a
weighted average of the two lowest layers achieves the best performance and outperforms
calculating a weighted average of the three layers (Peters et al., 2018) or leveraging the
top layer (Peters et al., 2017), which I use throughout this thesis. Since my aim is not to
build a state-of-the-art AES system or to find the best contextualised embeddings for the
task, I leave this investigation to future work.

JL Models Moving to JL analysis, my aim is to investigate the efficacy of the JL
approach on essay scoring (Table 6.3) as well as identifying adversarial input (Table 6.2).
As for the latter task, the results show that the JL models significantly outperform other
AES models, with the exception of LSTMT&N-comb that is trained on combined data yet
completely fails at essay scoring. JL models, on the other hand, are capable of capturing
adversarial essays, while maintaining competitive performance on essay scoring as reported
in Table 6.3. For better visualisation of the performance on both tasks, I plot in Fig. 6.3
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Figure 6.3: The graph represents the performance of the models on essay scoring (QWK on
the y-axis) and adversarial detection (PRA on the x-axis). The JL models are represented
by triangles and the AES ones by circles.

the PRA and QWK values achieved by the models. The figure reveals that the JL models
(represented by triangles) achieve high performance on essay scoring and adversarial
detection, whereas the AES models (represented by circles) either succeed in essay scoring
but fail in adversarial detection (LSTMT&N, LSTMT&N+ELMo and LSTMT&N+BERT) or
vice versa (LSTMT&N-comb). The LSTMT&N-comb and JL comparison further supports
my hypothesis that forcing the JL models to rely on the coherence branch for adversarial
input detection contributes to building more reliable AES systems. We need something
more than just training a state-of-the-art AES model (in my case, LSTMT&N) on both
original and synthetic data.

In order to investigate the value of parameter sharing, I compare the basic JL-
LCno layer sharing, that does not allow any parameter sharing between the two sub-networks,
with its counterparts: JL-LC that shares the word embedding layer and JL-LClstm sharing

that shares both the word embedding and word LSTM layers. We find that, on adversarial
detection, JL-LC outperforms JL-LCno layer sharing on both PRA and TPRA measures,
with a significant improvement on three prompts (6, 7 and 8) but also a significant drop on
prompt 5. On the other hand, JL-LClstm sharing also, overall, surpasses JL-LCno layer sharing,
with a constant significant increase on the first 7 prompts (with the exception of TPRA
on prompt 7 where the increase is not significant), yet a drastic drop on prompt 8 (the
prompt with the lowest representation). As for the performance on essay assessment,
by looking at average QWK, we find that JL-LC and JL-LClstm sharing perform closely
to the base JL-LCno layer sharing. On closer inspection, we find that JL-LC significantly
outperforms JL-LCno layer sharing on prompt 2 and significantly underperforms it on prompt
8, while JL-LClstm sharing significantly outperforms JL-LCno layer sharing on prompt 1 but
underperforms it on prompts 3 and 7. In summary, the comparison between JL-LC models
suggests that adversarial detection benefits more from parameter sharing while this sharing
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Model Synthetic Test Original Test
PRA TPRA QWK Error

LSTMT&N 0.430 0.473 0.748 -
LSTMT&N-comb 0.931 0.892 0.462 -
LSTMT&N+ELMo 0.537 0.500 0.737 -
LSTMT&N+BERT 0.450 0.499 0.750 -
JL-LC 0.775 0.777 0.737 0.38%
JL-LCno layer sharing 0.749 0.753 0.733 0.64%
JL-LClstm sharing 0.771 0.774 0.724 0.43%
JL-MTLGRs 0.820 0.822 0.733 0.36%
JL-MTLGRs+ELMo 0.779 0.782 0.729 0.56%
JL-MTLGRs+BERT 0.787 0.788 0.737 0.54%

Table 6.4: Summary of average PRA and TPRA on the synthetic test set and average
QWK on the original test set. The last column reports the average percentage error of
flagging an original essay as adversarial in the original test set.

has a modest effect on essay scoring.
I now compare my JL approach to the LSTMT&N one on essay scoring using QWK (Ta-

ble 6.3). More concretely, I compare each JL approach with its LSTMT&N counterpart, that
is: JL-LC and JL-MTLGRs vs. LSTMT&N, JL-MTLGRs+ELMo vs. LSTMT&N+ELMo,
and JL-MTLGRs+BERT vs. LSTMT&N +BERT. I find that there is a minor drop in
the overall performance (average QWK) of every JL model vs. its AES counterpart. By
examining QWK on each prompt, we find that JL-LC performs closely to LSTMT&N

on the first 7 prompts, but significantly underperforms it on prompt 8. On the other
hand, JL-MTLGRs and JL-MTLGRs+BERT perform closely to their AES counterparts on
5 prompts but perform significantly worse on the other 3. Finally, JL-MTLGRs+ELMo is
close to LSTMT&N+ELMo on 5 prompts, significantly outperforms it on prompt 5 and
significantly underperforms it on prompts 1 and 7.

In general, JL models maintain competitive performance relative to the LSTM-based
AES systems on most of the prompts in the task of predicting a holistic score for essays,
while significantly boosting the performance on adversarial detection on all prompts.
Among the JL family of models, JL-LC provides the most stable performance on essay
scoring, in comparison to its AES counterpart and only drops significantly on prompt
8, which has the lowest data representation in the ASAP dataset. Nevertheless, overall,
all JL models (JL-LC and the ones that use MTL) perform competitively with their
AES counterparts on essay scoring, drop on maximum 3 prompts out of 8 and could
potentially achieve a significant increase (JL-MTLGRs+ELMo on prompt 5). Therefore,
the JL framework is a promising approach to more reliable and robust essay scoring
systems.

Further Analysis Ideally, no essays in the ASAP original data should be flagged as
adversarial as they were not written to trick the system. I, therefore, calculate the number
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of original texts incorrectly detected as adversarial, and report the average error across
prompts for all JL models in Table 6.4. We find that the error percentage is quite small
(< 0.65% for all the models), particularly with JL-LC and JL-MTLGRs (the latter has the
lowest error of 0.36%). This small error further promotes JL as a reliable approach to
essay scoring.

Finally, I investigate both the essay and coherence scores predicted by the JL models for
the permuted and original essays in the synthetic dataset and depict the scores for prompts
1 and 8 in Fig. 6.4. I select prompt 1 as it has the highest overall results in adversarial
detection and 8 as it has the lowest, for JL models (Table 6.2). The Figure shows a large
difference between predicted essay and coherence scores on adversarial essays, for all the
JL models (1./8. b, d, f and h), where the models predict high essay scores for permuted
texts (as a result of my training and annotation strategy), but low coherence scores (as
predicted by the coherence sub-network). For highly scored ASAP original essays (1./8. a,
c, e and g), the predictions are less varied and positively contribute to the performance
of my proposed JL approach. This distinction between essay and coherence scores for
original and adversarial essays show the efficacy of my JL approach and the ability of the
adversarial detection component to discriminate between coherent and adversarial essays
based on their predicted coherence and essay scores (Fig. 6.2). Furthermore, the results
motivate my annotation strategy, where for original essays, I assume that coherence scores
are equal to essay scores, whereas for synthetic essays, I assume coherence scores to be
equal to the lowest possible score and essay scores to be those of their original counterparts.

6.9 Summary

In this chapter, I have demonstrated that state-of-the-art approaches to AES are not well-
suited to capturing adversarially crafted input of grammatical but incoherent sequences
of sentences. I, therefore, have developed a JL framework that combines a neural AES
model with a coherence one to simultaneously predict a holistic score for essays and flag
adversarial incoherent input. My JL approach significantly enhances the ability of the
AES system to detect adversarial input while maintaining a competitive performance in
predicting a holistic essay score, providing a promising research direction that ensures
the validity of AES systems. This is particularly true for the JL-LC framework that
integrates the state-of-the-art LSTMT&N AES model with a local coherence (LC) model
as the network branch that checks for coherence. I found that JL-LC performs closely to
LSTMT&N on essay scoring on all the ASAP prompts, with the exception of prompt 8 that
has the smallest number of essays. I have also studied the effect of adding contextualised
embeddings to LSTMT&N and found that they are helpful with low-resource prompts
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Prompt 1

Prompt 8

Figure 6.4: Predictions of the JL models on the synthetic test set for prompts 1 (first
two rows) and prompt 8 (last two rows). I show results for JL-LC, JL-MTLGRs, JL-
MTLGRs+ELMo and JL-MTLGRs+BERT. The upper graphs for each prompt ((a), (c),
(e) and (g)) show the predicted essay and coherence scores on original essays, whereas the
bottom ones ((b), (d), (f) and (h)) show the predicted scores for highly scored original
ASAP essays (y-axis represents scores). The blue circles represent essay scores, and the
red crosses represent coherence scores. All predicted scores are mapped to their original
scoring scale.

(i.e., prompt 8) but, overall, they do not provide further gains over standard embeddings.
This motivates examining other approaches to building contextualised embeddings such
as interpolating different layers of the embeddings. Furthermore, I investigated the effect
of sharing different layer parameters in my JL-LC framework and found that adversarial
detection benefits from parameter sharing while this sharing has a small effect in essay
scoring. The overall best parameter sharing setup is achieved when the word embedding
layer is shared between the two JL sub-networks.
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Chapter 7

Conclusion

7.1 Summary and findings

This thesis contributes to the research on discourse coherence from three perspectives:
modeling, evaluation and application.

Modeling In Chapter 3, I presented my neural discriminative approach to coherence
modeling. I proposed a hierarchical neural network where a Bi-LSTM with attention was
utilised to build textual representations at different levels of the network. The network
is trained in an MTL fashion where the network predicts a document-level coherence
score at its output layer (the main task) together with word-level syntactic properties at
lower layers (the auxiliary task), exploiting the hierarchical inductive transfer between
the two tasks. MTL is an efficient learning approach as the use of syntactic parsers is
limited to training time. I examined two types of syntactic properties: GRs and POS
tags. Furthermore, I investigated the impact of initialising the model with contextualised
embeddings (ELMo or BERT). Moreover, to validate my MTL approach, I compared
it to STL where the same hierarchical network only performs one task of predicting a
coherence score without leveraging syntactic information. I also compared it to the same
network that incorporates syntactic features in different fashions such as concatenating
them to input word vectors, only predicting subject and object roles as the secondary task
or combining two auxiliary objectives: one for GRs and the other for POS tags.

I evaluated and analysed the performance of the models in Chapter 4. The models were
tested on two domains of discourse coherence: a) a binary synthetic domain where coherent
WSJ articles were compared to their noisy counterparts, created by randomly shuffling
their sentences and b) the realistic domain of everyday writing (forum posts and emails),
where the documents were annotated with low, medium or high levels of coherence. In the
synthetic domain, I used two evaluation metrics: PRA that ranks an original coherent text
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against its permuted versions and TPRA which is a stricter measurement that compares
each coherent text against all the incoherent documents in the dataset. In addition, I
compared MTL to state-of-the-art neural coherence models. Specifically, I included models
that leverage a CNN operating on EGrid representations of text, a model that captures
local coherence (LC) by scoring local text cliques and a local coherence discriminator
(LCD) that encodes sentences then adds a discriminative layer over each sentence pair
to distinguish between coherent and incoherent pairs. For LCD, I experimented with
four different encoders: a generative RNN language model that is the current published
state-of-the-art on the WSJ, and averaged fastText, ELMo or BERT embeddings.

My experiments showed the efficacy of MTL in the synthetic domain, with a significant
boost when enhanced with contextualised embeddings. MTL (with GRs or POS tags)
+ ELMo or BERT achieved state-of-the-art results on the TPRA metric (96.9%), while
LCD-BERT yielded state-of-the-art PRA (97.1%) but performed significantly worse on
TPRA (92.2%). Furthermore, there was a substantial improvement of MTL over STL
or models that leverage syntactic features either by concatenating them to input word
vectors, solely focusing on subject and object prediction in MTL, or using random/wrong
syntactic labels as the gold labels for the auxiliary objective in MTL. The superiority of
MTL over such models further demonstrates the strength of the approach. However, my
empirical evaluation revealed that there is negligible difference between utilising GRs or
POS tags as secondary labels and no performance gains from combining both types of
syntactic labels; the discrepancy between initialising with ELMo or BERT embeddings is
also negligible. With further analysis and by visualising attention weights, I found that
MTL models tend to focus on subject words, particularly when they utilise a GR-based
objective, corroborating Centering theory and reflecting the nature of the dataset.

On close inspection to the results on the synthetic domain, I found that high performing
models exhibit some ability to capture partial coherence, which could be better examined
in a realistic domain of writing. I, therefore, extended my evaluation to a more realistic
dataset that exhibits various degrees of coherence and compared MTL to the published
state-of-the-art models on this dataset: LC and a hierarchical LSTM (with no attention).
When I tested the models on identifying discrete classes of coherence, I found that MTL
with a GR auxiliary (MTLGRs) achieved the best overall performance measured as the
average accuracy (58.0%) over the three realistic datasets: Yahoo, Clinton and Enron.
Nonetheless, even the strongest models failed at recognising texts of medium coherence level.
This could be attributed to the small size of the dataset and the difficulty and subjectivity
of assessing various degrees of coherence in comparison to binary data, particularly with
medium level documents that are more difficult for humans to agree on. These results
were also supported by attention visualisation that suggested that coherence features are
less pronounced in realistic data.
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Additionally, applying transfer learning from the WSJ to the realistic domain negatively
affected the performance on Yahoo and Enron and only achieved a 1% gain on Clinton,
which could be explained by the different natures of the source and target domains. Finally,
for a less strict evaluation, I conducted experiments where I cast the task as a ranking
one and used Spearman’s correlation for evaluation. With this new setup, BERT-based
models yielded the best performance followed by ELMo, while MTLGRs fell behind further
showing the ability of contextualised embeddings to capture more fine-grained ranks.
Unlike synthetic data, the superiority of BERT over ELMo is more noticeable in the
realistic domain. Assessing synthetically created documents is more straightforward and
potentially less effective in highlighting the difference between different contextualised
embeddings as they all have the power to solve the task.

Evaluation In Chapter 5, I proposed an evaluation framework to investigate the linguistic
aspects implicated in discourse organisation that coherence models capture. To that end,
I devised two datasets: (1) CCD which is a large-scale out-of-training-domain dataset that
examines the robustness of models against semantic and syntactic changes that result in
less coherent texts and (2) CLAD which is a small-scale test dataset of more controlled
semantic and syntactic perturbations from a domain similar to the WSJ. The results on
both datasets revealed that RNN-based models tended to memorise syntactic patterns
that co-occur in coherent texts but were unable to capture other semantic or rhetorical
features. The models benefited from further fine-tuning on the CCD, yet there was still a
substantial gap between their ability to detect syntactic corruptions vs. semantic ones.
On the other hand, the LCD approach that utilises a sentence encoder that averages word
representations was more able to detect semantic properties. Additionally, results on the
CLAD showed that the models did not rely on positional features if the main syntactic
construction was maintained. The results also illustrated that RNN models were not
sensitive to minor lexical perturbations nor could they resolve pronouns, whereas LCD-
BERT achieved the most promising results on these problems. My evaluation, specifically
on syntactic tasks, revealed that on both the CCD and CLAD, pre-training the models on
the WSJ consistently outperformed pre-training on the realistic domain (Yahoo). This
could be attributed to the nature of these domains; the WSJ exhibits syntactic regularities
in its original documents that are broken in the shuffled ones, enabling the model to
capture syntax.

Application In Chapter 6, I presented an application for coherence models in the
pedagogical domain. I first demonstrated that state-of-the-art neural approaches to AES
(even discourse-aware ones) are vulnerable to adversarially crafted input of grammatical
but incoherent sequences of sentences. Accordingly, I proposed a framework for integrating
and jointly training a discourse model with a state-of-the-art neural AES system in order
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to enhance its ability to detect such adversarial input; the framework is trained on a
combination of original essays and adversarial ones. I experimented with integrating an
LSTM-based AES system with four coherence models: LC, MTLGRs, MTLGRs+ELMo
and MTLGRs+BERT. My joint learning approach significantly enhanced the ability of
the AES system to flag adversarial input while maintaining a competent performance in
predicting a holistic essay score, contributing to the development of an approach that
strengthens the validity of neural AES models. In particular, utilising the LC model as the
coherence branch in the framework significantly improved the ability of the AES system
to detect adversarial input on all the prompts, as well we maintaining a high performance
at holistic score prediction across all the prompts, with the exception of prompt 8 that
has the smallest number of essays. I also experimented with different parameter sharing
setups for joint learning with LC, and observed that parameter sharing was useful for
adversarial detection, but had a small effect in essay scoring, and that the overall best
setup shared the word embedding layer between the two sub-networks (AES and LC).
Finally, the experiments in Chapter 6 revealed that using contextualised embeddings did
not yield further gains over standard embeddings except with low-resource prompts.

7.2 Future work

The work presented in this thesis inspires various directions for future research as follows.

Datasets My findings in Chapter 5 demonstrated the ability of neural coherence models
to capture syntactic patterns while falling short in understanding the underlying semantics.
This motivates the revision of the traditional methods used to create artificial coherence
datasets. For example, instead of just permuting the sentence order in coherent texts,
the noisy examples could be generated by maintaining the main syntactic patterns while
changing semantics, in a way similar to the random examples in the CLAD (§5.3) or
cloze rand dataset (§5.2.2). Generating synthetic examples from multiple documents
would be a good starting point. A similar approach was adopted by Wang et al. (2017b)
who created a dataset of text pairs from different documents to train a neural network
to rank semantic coherence between text segments for topic segmentation. The network
was trained to rank text pairs from the same paragraph higher than pairs that are from
different paragraphs but belong to the same document which in turn should be scored
higher than pairs extracted from different documents. I can create artificial documents
from multiple sources and constrain the creation process to preserve the main syntactic
structure of the original document. This way, models could be forced to focus on semantic
properties and their capacity to capture meaning will be tested.

Furthermore, my analysis in §4.4.3.1 suggests some ability for the models to capture
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partial orderings which I want to further investigate in the future. This will be achieved
with one of two training approaches:

• Instead of labeling the incoherent documents with zero, we annotate them with their
Kendall’s τ score that indicates their similarity to the original documents and train
the models to predict these multiple ranks (Feng and Hirst, 2012).

• We apply local partial permutations to the documents to create different levels of
incoherence (Moon et al., 2019).

These approaches will however require human annotations (even on a sample of documents)
to ensure their validity.

Investigating new methods to create and annotate artificial data is not the only direction
that would benefit coherence modeling research. The fair human agreement on the GCDC
(Table 4.2) motivates further investigation with regards to how to address data annotation
in the realistic domain. The fair agreement was probably due to the general guidelines
given to the annotators in addition to the subjectivity of the task. Future work might
thus investigate how to improve the data annotation process in order to raise inter-rater
agreement.

MTL auxiliary functions In this thesis, I presented two types of auxiliary functions
for coherence assessment: GR prediction spurred by Centering theory and POS tags
prediction to model intentional discourse structure. In the future, it would be interesting
to examine other coherence-relevant auxiliary tasks in my MTL approach. Particularly,
I want to predict coherence/rhetorical relations between textual units. As I mentioned
in §2.5, Jernite et al. (2017) used a similar auxiliary objective that detects the type of
explicit coherence relation between two sentences. This was achieved by selecting pairs of
sentences, where the second sentence starts with one of pre-defined phrases belonging to
specific discourse categories, removing these phrases, and training the model to predict the
category of the removed phrases. They did not however, test their approach on coherence
assessment. I could thus leverage their auxiliary function in my MTL framework and
extend it to exploit implicit coherence relations. The WSJ corpus is a good candidate to
use as it has released rhetorical relation annotations (RST-DT) (Carlson et al., 2001).

Transfer learning and parameter sharing In this thesis, I leveraged transfer learning
and particularly hard parameter sharing between different tasks and domains. In §4.5.2.2, I
conducted an experiment where I pre-trained a neural network on the WSJ then fine-tuned
it on the GCDC. In Chapter 6, I investigated word embedding and/or LSTM sharing
between the sub-networks in the joint learning framework to perform essay scoring and
adversarial detection. I would like to examine other transfer learning and parameter
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sharing approaches such as adaptive learning rates (Howard and Ruder, 2018), or soft
parameter sharing (Ruder, 2017). I would also like to conduct cross-domain experiments
between the different GCDC datasets.

Other sentence encoders I have focused in this thesis on evaluating and analysing
RNN-based approaches (STL and MTL and their variations, LCD-L and LC) and comparing
them to other neural entity-grid approaches or models that average word vectors. It would
be interesting to study other sentence encoders such as transformer networks and compare
their performance and the features they capture to sequential models. It is also worth
investigating the effect of fine-tuning pre-trained contextualised encoders to be more
task-specific; i.e., fine-tuning ELMo and BERT models in LCD or MTL models instead
of just leveraging one untuned layer from their pre-trained representations. My work
has also focused on discriminative approaches and I would like to apply my framework
in Chapter 5 on the generative approaches discussed in §2.4.2 and observe how they differ
from discriminative models. Finally, I only focused on models that do not use pairwise
training strategy in the GCDC experiments, but in the future, I would like to adapt the
LCD and neural EGrid models to multi-class prediction tasks.

Adversarial training As for my work in Chapter 6 on adversarial detection, I would
like first to train discourse-aware models (e.g., NLI-DM-BCA) on the combined dataset
and observe the change in their performance on essay scoring and adversarial identification.
Furthermore, I am interested to investigate new ways of selecting the threshold value used
in the adversarial detector of the joint learning model (§6.6) such as learning this threshold
automatically while training the network, as a network parameter, then applying it at
test time. Finally, I would like to evaluate my joint learning approach on the adversarial
examples generated by Kumar et al. (2020b) (given that they publish their dataset).
I expect it will fail on the examples that include perturbations not directly related to
coherence (such as grammatical errors); however, it would be interesting to test it on
discourse-related examples such as adding random sentences from leader speeches or song
lyrics to student responses.

Application in other domains Finally, I would like to explore other domains for
discourse coherence. In §1.3, I referred to the utility of coherence models in the mental
health domain, such as detecting schizophrenic discourses. I would like to extend my
models to this domain as it is an important real-life application to discourse models.
My research will particularly focus on adapting the models to this low-resource task
as data collection is expensive in this field, which is why neural approaches have been
under-investigated in this domain.
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Appendix A

Examples from Yahoo posts

score Example

low

The Airplane, without it we wouldn’t have military aircraft, Leonardo De
Vinci came up with the oringinal flying machine, which made that during the
Renaissance period, not sure why he made it, but he did. The Wright Brothers,
made a plane that worked and are the ones recognized for inventing it. The
year for that is 1901. I would like to see some sort of machine that you can put
on your head and whatever image you are seeing can be projected, I think it
would be great for the law, because even if a person is lying they will still be
thinking of it and the law would be able to see that.

medium

Having a free press is one of the greatest freedoms in the world. That said,
we have to remember that the press is staffed by human beings, who aren’t
perfect. As such, the public should be more responsible in gathering facts from
multiple sources. Fines could be levied for the most serious of breaches, but I
think for the most part, media outlets do a good job of policing their own. To
Dan Rather’s credit, he did say that he did not purposely report bad facts, but
failed to follow up on the story to see if it had any creditbility and promptly
resigned. I believe that news anchors are pushed to report news as fast as
possible because in this world of 24/7 reporting, news has become even more
ratings driven and the pressure to get one up on the competition is immense.

high

My husband and I lived together for a year and a half before we decided to
get married, and we only decided to then because of the legalities involved
after I became pregnant. If two people love one another, they don’t need the
government or a religious organization to sanction the relationship, and since
50% of American marriages end in divorce anyway, I think it’s silly for people
to hang onto a tradition that we’ve clearly out-lived. If getting married makes
you happy, go for it. But I never felt like I needed a marriage certificate to
validate my relationship with my husband–and it’s been twenty years since
we originally moved in together. What’s absolutely terrifying to me is that
many states are passing laws preventing couples from cohabitating without
marriage. If we aren’t careful, the christian right will have us all living in
Victorian England again...perish the thought!

Table A.1: Examples from Yahoo Posts.
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Appendix B

Examples from the CLAD

Original Sterling is now 0.7% lower against the dollar, after Downing Street told the media that a Brexit deal was “essentially impossible”.
It’s trading at $1.2207 against the dollar, and down 0.74% against the euro at €1.1122.

Swap It’s trading at $1.2207 against the dollar, and down 0.74% against the euro at €1.1122.
Sterling is now 0.7% lower against the dollar, after Downing Street told the media that a Brexit deal was “essentially impossible”.

Prefix
Insertion

In specific, it’s trading at $1.2207 against the dollar, and down 0.74% against the euro at €1.1122.
Sterling is now 0.7% lower against the dollar, after Downing Street told the media that a Brexit deal was “essentially impossible”.

Lexical
Substitution

The currency is trading at $1.2207 against the dollar, and down 0.74% against the euro at €1.1122.
Sterling is now 0.7% lower against the dollar, after Downing Street told the media that a Brexit deal was “essentially impossible”.

Random

1- Sterling is now 0.7% lower against the dollar, after Downing Street told the media that a Brexit deal was “essentially impossible”.
They can include a combination of up to seven different plastics as well as metal, and many hangers end up in landfill where they can
take up to 1,000 years to break down, according to hanger recycling company First Mile.
2- Current plastic hangers are hard to recycle because of how they are made.
It’s trading at $1.2207 against the dollar, and down 0.74% against the euro at €1.1122.

Lexical
Perturbations

Sterling is now 0.7% lower against the dollar, after Downing Street told the media that a Brexit deal was “essentially impossible”.
It’s looking at $1.2207 against the dollar, and down 0.74% against the euro at €1.1122.

Corrupt
Pronoun

Sterling is now 0.7% lower against the dollar, after Downing Street told the media that a Brexit deal was “essentially impossible”.
He’s trading at $1.2207 against the dollar, and down 0.74% against the euro at €1.1122.

Original Regional sales manager Kevin Navette is currently abroad, but he has been blocked by Vodafone from using his work phone.
He told the BBC that he has been charged £3,000 and his service stopped working on Sunday.

Swap He told the BBC that he has been charged £3,000 and his service stopped working on Sunday.
Regional sales manager Kevin Navette is currently abroad, but he has been blocked by Vodafone from using his work phone.

Prefix
Insertion

On Tuesday, he told the BBC that he has been charged £3,000 and his service stopped working on Sunday.
Regional sales manager Kevin Navette is currently abroad, but he has been blocked by Vodafone from using his work phone.

Lexical
Substitution

The man told the BBC that he has been charged £3,000 and his service stopped working on Sunday.
Regional sales manager Kevin Navette is currently abroad, but he has been blocked by Vodafone from using his work phone.

Random

1- Regional sales manager Kevin Navette is currently abroad, but he has been blocked by Vodafone from using his work phone.
It says it is ”committed” to its relationship with the Post Office because customers will still be able to deposit cash.
2- Barclays has promised to freeze last-in-town and remote branch closures for two years.
He told the BBC that he has been charged £3,000 and his service stopped working on Sunday.

Lexical
Perturbations

Regional sales manager Kevin Navette is currently abroad, but he has been blocked by Vodafone from using his work phone.
He told the BBC that he has been charged £3,000 and his car stopped working on Sunday.

Corrupt
Pronoun

Regional sales manager Kevin Navette is currently abroad, but he has been blocked by Vodafone from using his work phone.
We told the BBC that we have been charged £3,000 and our service stopped working on Sunday.

Original American Airlines is extending cancellations of Boeing 737 Max flights until January as regulators continue to review proposed
software changes to the grounded plane. It expects to gradually resume Max flights from 16 January 2020.

Swap It expects to gradually resume Max flights from 16 January 2020. American Airlines is extending cancellations of Boeing 737 Max
flights until January as regulators continue to review proposed software changes to the grounded plane.

Prefix
Insertion

However, it expects to gradually resume Max flights from 16 January 2020. American Airlines is extending cancellations of Boeing
737 Max flights until January as regulators continue to review proposed software changes to the grounded plane.

Lexical
Substitution

The airline expects to gradually resume Max flights from 16 January 2020. American Airlines is extending cancellations of Boeing
737 Max flights until January as regulators continue to review proposed software changes to the grounded plane.

Random

1- American Airlines is extending cancellations of Boeing 737 Max flights until January as regulators continue to review proposed
software changes to the grounded plane. She is also the youngest recipient of the prize.
2- Prof Esther Duflo is only the second woman to win the Nobel prize in economics since it began in 1969.
It expects to gradually resume Max flights from 16 January 2020.

Lexical
Perturbations

American Airlines is extending cancellations of Boeing 737 Max flights until January as regulators continue to review proposed
software changes to the grounded plane. It expects to gradually resume Max lessons from 16 January 2020.

Corrupt
Pronoun

American Airlines is extending cancellations of Boeing 737 Max flights until January as regulators continue to review proposed
software changes to the grounded plane. He expects to gradually resume Max flights from 16 January 2020.

Table B.1: Examples from the CLAD.
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Appendix C

Pearson’s and Spearman’s
correlations for the ASAP
dataset

Model Training Data Pearson (r)
1 2 3 4 5 6 7 8 Avg

LSTMT&N Original 0.775 0.719 0.719 0.828 0.846 0.855 0.812 0.623 0.782
LSTMT&N-comb Combined 0.640 0.661 0.541 0.701 0.710 0.553 0.542 -0.446 0.524
LSTMT&N+ELMo Original 0.827 0.700 0.713 0.800 0.807 0.830 0.775 0.707 0.774
LSTMT&N+BERT Original 0.840 0.714 0.712 0.800 0.818 0.831 0.791 0.737 0.785
JL-LC Combined 0.782 0.693 0.710 0.818 0.839 0.846 0.796 0.567 0.768
JL-LCno layer sharing Combined 0.783 0.658 0.712 0.823 0.843 0.840 0.789 0.581 0.766
JL-LClstm sharing Combined 0.805 0.666 0.694 0.818 0.841 0.837 0.755 0.558 0.760
JL-MTLGRs Combined 0.816 0.687 0.704 0.815 0.842 0.837 0.770 0.673 0.775
JL-MTLGRs+ELMo Combined 0.816 0.717 0.680 0.795 0.813 0.807 0.766 0.703 0.766
JL-MTLGRs+BERT Combined 0.825 0.711 0.674 0.798 0.800 0.824 0.781 0.738 0.773

Model Training Data Spearman (ρ)
1 2 3 4 5 6 7 8 Avg

LSTMT&N Original 0.732 0.687 0.719 0.835 0.848 0.839 0.804 0.605 0.770
LSTMT&N-comb Combined 0.720 0.678 0.619 0.716 0.753 0.678 0.622 -0.455 0.588
LSTMT&N+ELMo Original 0.821 0.706 0.713 0.801 0.813 0.814 0.792 0.703 0.774
LSTMT&N+BERT Original 0.835 0.716 0.712 0.804 0.819 0.809 0.801 0.734 0.782
JL-LC Combined 0.753 0.663 0.710 0.824 0.843 0.826 0.785 0.539 0.756
JL-LCno layer sharing Combined 0.747 0.637 0.710 0.830 0.847 0.819 0.782 0.558 0.754
JL-LClstm sharing Combined 0.773 0.639 0.695 0.825 0.843 0.814 0.745 0.531 0.747
JL-MTLGRs Combined 0.812 0.701 0.706 0.823 0.846 0.826 0.786 0.667 0.778
JL-MTLGRs+ELMo Combined 0.808 0.727 0.681 0.799 0.816 0.784 0.782 0.691 0.765
JL-MTLGRs+BERT Combined 0.817 0.707 0.673 0.801 0.803 0.803 0.791 0.731 0.770

Table C.1: Results on the ASAP original test set; the first half reports Pearson’s (r) and
the second reports Spearman’s (ρ) correlations. Each half is horizontally divided into two
partitions to visually discriminate between AES models and joint models, in that order.
For each model, I display the training dataset and Pearson or Spearman across the 8
prompts. In the final column, I report the average across all the prompts after applying
Fisher transformation (§2.7).
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Appendix D

Thresholds for adversarial
detection

Prompt 1 2 3 4 5 6 7 8
Score Range 2-12 1-6 0-3 0-3 0-4 0-4 0-30 0-60
JL-LC 7 3 2.5 2.5 3.5 3.5 15 30
JL-LCno layer sharing 7 2.5 2.5 2.5 3.5 3.5 15 20
JL-LClstm sharing 7 3 2.5 2.5 3 3.5 15 30
JL-MTLGRs 7 3 2.5 2.5 3.5 3.5 20 40
JL-MTLGRs+ELMo 7 2 2.5 2.5 3.5 3.5 15 30
JL-MTLGRs+BERT 7 2.5 2.5 2 3.5 3.5 19 17

Table D.1: Thresholds for adversarial detection fine-tuned for each model on each prompt.
The model flags an essay as adversarial if the difference between the predicted essay score
and coherence score is greater than or equals this threshold.
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