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ABSTRACT

Neural approaches to discourse coherence: modeling,

evaluation and application

Youmna Farag

Discourse coherence is an important aspect of text quality that refers to the way
different textual units relate to each other. In this thesis, I investigate neural approaches
to modeling discourse coherence. I present a multi-task neural network where the main
task is to predict a document-level coherence score and the secondary task is to learn
word-level syntactic features. Additionally, I examine the effect of using contextualised
word representations in single-task and multi-task setups. I evaluate my models on a
synthetic dataset where incoherent documents are created by shuffling the sentence order
in coherent original documents. The results show the efficacy of my multi-task learning
approach, particularly when enhanced with contextualised embeddings, achieving new
state-of-the-art results in ranking the coherent documents higher than the incoherent ones
(96.9%). Furthermore, I apply my approach to the realistic domain of people’s everyday
writing, such as emails and online posts, and further demonstrate its ability to capture
various degrees of coherence.

In order to further investigate the linguistic properties captured by coherence models,
I create two datasets that exhibit syntactic and semantic alterations. Evaluating different
models on these datasets reveals their ability to capture syntactic perturbations but their
inadequacy to detect semantic changes. I find that semantic alterations are instead captured
by models that first build sentence representations from averaged word embeddings, then
apply a set of linear transformations over input sentence pairs.

Finally, I present an application for coherence models in the pedagogical domain. T first
demonstrate that state-of-the-art neural approaches to automated essay scoring (AES) are
not robust to adversarially created, grammatical, but incoherent sequences of sentences.
Accordingly, I propose a framework for integrating and jointly training a coherence model
with a state-of-the-art neural AES system in order to enhance its ability to detect such
adversarial input. I show that this joint framework maintains a performance comparable
to the state-of-the-art AES system in predicting a holistic essay score while significantly

outperforming it in adversarial detection.
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CHAPTER 1

INTRODUCTION

In a written discourse, the writer’s aim is to be understood and convey their intended
meaning to their readers in an organised and well-formed manner. The readers, at the
other end, leverage the relations between discourse segments to make the connections and
inferences necessary for comprehension.! These relations that tie textual units together to
compose a meaningful content are what we refer to as discourse coherence. Coherence is,
therefore, a property of text that describes the way propositions are linked together to
facilitate a logical flow of information and form a meaningful unified whole as the discourse
unfolds. There are various aspects that contribute to discourse coherence, ranging from
overt linguistic devices realised at the surface of text, such as anaphoric references and
repetition of words (Halliday and Hasan, 1976; Morris and Hirst, 1991) to pragmatic
relations inferred by world knowledge (Levinson, 1983; Redeker, 1990). A discourse is
formed by intertwining these properties and not just relying on one type. A coherent
discourse is not a set of random sentences; these sentences are rather connected to represent
a certain idea/topic. For instance, the following example (a) is a coherent text from the
book ‘Outliers: The Story of Success’ (Gladwell, 2017, p. 77), whereas (b) is an incoherent
distracted text from a patient of schizophrenia (Iter et al., 2018):

(a) “One of the most widely used intelligence tests is something called Raven’s
Progressive Matrices. It requires no language skills or specific body of
acquired knowledge. It’s a measure of abstract reasoning skills. A typical
Raven’s test consists of forty-eight items, each one harder than the one before
it, and I(Q) is calculated based on how many items are answered correctly.”

(b) “When I was three years old, I made my first escape attempt. I had a
[unintelligible] sticker in the window. Like everybody listened to AM radio
in the sizties. They had a garage band down the street. I couldn’t understand

why the shoes were up on the wire. That means there was drug deal in the

I This also applies to spoken discourses, but I focus on written texts in the scope of this thesis.
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neighborhood.”

Coherence can be described as local or global; local coherence refers to the relatedness
between successive sentences, whereas global coherence looks at the structure and topic of
the discourse as a whole. According to Graesser et al. (1994), local coherence is achieved
when “conceptual connections relate the content of adjacent text constituents (i.e., a
phrase, proposition, or clause)”, while global coherence is achieved when “most or all of the
constituents can be linked together by one or more overarching themes”. Similarly, Van Dijk
(1980) defines local coherence in terms of “pairwise relations between sentences of a textual
sequence”, and global coherence by the notions of ‘idea’, ‘theme’, ‘gist’ and ‘upshot’ of a
discourse. Local coherence is, thereby, necessary to achieve global coherence (Marcu, 1997;
Barzilay and Lapata, 2005) and both levels are important to form a coherent discourse. For
instance, the previous example (a) exhibits the two levels, where local coherence between
successive sentences is realised by means such as referential pronouns (e.g., ‘i’ in the
second and third sentences) or semantic relations (e.g., the third sentence elaborates the
second.), while global coherence is achieved by focusing on one idea (i.e., Raven’s test).

This thesis contributes to research on discourse coherence from three perspectives:
modeling, evaluation and application. In the remainder of this chapter, I will give an
overview of these three directions and my work in relation to them, state my thesis aims

and present the structure of the thesis.

1.1 Coherence modeling

Since the 1970s, various theories have been proposed to explicate what makes a dis-
course coherent and study the relations between discourse elements, including lexico-
grammatical (Halliday and Hasan, 1976; Webber, 1988; Hoey, 2005), entity-based (Joshi
and Weinstein, 1981; Gordon et al., 1993; Grosz et al., 1995), psychological (Kintsch and
Van Dijk, 1978; Graesser et al., 1994; Givén, 1995), semantic (Hobbs, 1979; Redeker, 1990;
Sanders et al., 1992), pragmatic (Widdowson, 1978; Van Dijk, 1979; Lascarides and Asher,
1991) and structural (Danes, 1974; Grosz and Sidner, 1986; Mann and Thompson, 1988)
theories. Such studies have provided a foundational framework for coherence modeling
which aims to estimate text coherence with computational models. For instance, lexical
chains of semantically-related words occurring in consecutive sentences have been utilised
as a proxy for text coherence (Morris and Hirst, 1991; Barzilay and Elhadad, 1997; Silber
and McCoy, 2002; Somasundaran et al., 2014), inspired by the work of Halliday and Hasan
(1976) on lexical cohesion. Other models have leveraged the notion of semantic related-
ness between co-occurring words to measure the similarity between their encompassing
sentences, where a higher degree of similarity between neighbouring sentences indicates a

more coherent text (Foltz et al., 1998; Higgins et al., 2004; Yannakoudakis and Briscoe,
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2012). Theories that describe discourse structure have also been translated into coherence
assessment models. For instance, Lin et al. (2011), Feng et al. (2014) and Mesgar and
Strube (2015) computationally estimated coherence by leveraging the semantic/rhetorical
relations between text parts as described by Rhetorical Structure Theory (RST; Mann
and Thompson, 1988), and Louis and Nenkova (2012) modeled the intentional discourse
structure (Grosz and Sidner, 1986) that defines a discourse in terms of the communicative
purposes of its segments. Furthermore, Centering theory (Grosz et al., 1995) has been
the basis of a plethora of coherence models (Miltsakaki and Kukich, 2000; Karamanis,
2001; Hasler, 2004; Karamanis et al., 2004; Rus and Niraula, 2012a); it focuses on the
distribution and realisation of entities across sentences, deriving from the premise that
sentences should be about the same entities to form a coherent discourse. The Entity
Grid (EGrid) model (Barzilay and Lapata, 2005, 2008) is one of the key coherence models
that spurred from Centering theory; it creates an abstract representation of text that
tracks entity distribution and the transition of the syntactic roles entities take across
sentences. The EGrid approach has been adapted and further enhanced in numerous
coherence models (Elsner et al., 2007; Filippova and Strube, 2007; Burstein et al., 2010;
Cheung and Penn, 2010a; Elsner and Charniak, 2011b; Feng and Hirst, 2012; Guinaudeau
and Strube, 2013).

More recently, and with the advancement of deep learning in Natural Language Process-
ing (NLP), neural networks have been adopted in coherence modeling and outperformed
traditional statistical models. A few approaches operate on structured text by incorpo-
rating EGrid representations of text as input to a neural model (Tien Nguyen and Joty,
2017; Joty et al., 2018). Other approaches are end-to-end with some focusing on capturing
global context (Li and Jurafsky, 2017; Logeswaran et al., 2018; Cui et al., 2018; Bohn
et al., 2019; Kumar et al., 2020a) and others focusing on capturing local coherence (Li and
Hovy, 2014; Cui et al., 2017; Mesgar and Strube, 2018; Xu et al., 2019). In contrast to
previous methods that focused on one aspect of coherence (e.g., lexical features, rhetorical
relations or entity distribution), and in many cases relied on handcrafted features or
external tools (i.e., parsers), neural end-to-end approaches take advantage of the ability of
neural networks to automatically learn relevant features from unstructured text. They
capture discourse-related properties by only utilising input word representations that are
initialised from semantically-rich pre-trained spaces, either standard (Mikolov et al., 2013c;
Zou et al., 2013; Pennington et al., 2014; Mikolov et al., 2018) or contextualised (Peters
et al., 2018; Devlin et al., 2019) as will be explained in §2.3.2. I further discuss different
traditional and neural approaches for discourse coherence in the next chapter.

In this thesis, I extend this line of work and propose a neural Multi-Task Learning
(MTL) approach to coherence modeling. MTL has been widely leveraged in machine

learning models, where a model exploits training signals from related tasks to enhance
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its performance on its main task (Caruana, 1997; Ruder, 2017). My MTL model is a
hierarchical neural network that learns to predict a document-level coherence score (at
the network’s top layers) along with word-level syntactic information (at the bottom
layers), taking advantage of inductive transfer between the two tasks. My choice of
the word-level auxiliary task is inspired by previous studies that have utilised syntactic
properties in coherence modeling as indicators of entity salience by using grammatical
roles (GRs) (Grosz et al., 1995; Barzilay and Lapata, 2008), or the intentional structure
of discourse by using Part-of-Speech (POS) tags (Louis and Nenkova, 2012), as will be
detailed in Chapter 3. In contrast to neural EGrid approaches, MTL limits the use of
syntactic parsers to training time as syntactic labels are learned and not fed as input

features, which facilitates generalisation to new test sets.

1.2 Coherence evaluation

Barzilay and Lapata (2005, 2008) presented coherence evaluation as a binary task where a
model should discriminate between coherent and incoherent documents. To that end, they
proposed creating synthetic datasets, where the sentences in source coherent documents
are shuffled to construct incoherent texts with the underlying assumption that the sentence
order in an original document is more coherent than its permuted versions. Consequently,
evaluation is carried out in a pairwise fashion, where a coherence model should be able to
rank a coherent source document higher than its noisy counterparts. The news domain has
become a ubiquitous source for creating coherence datasets. Barzilay and Lapata (2005,
2008) created two datasets of news articles about earthquakes and aviation accidents,
while Elsner and Charniak (2008) proposed to use the Wall Street Journal (WSJ) portion
of the Penn Treebank; these datasets have been widely adopted in coherence modeling
research.

Leveraging synthetic data has become dominant in coherence modeling as it is easy to
create and upscale. Nonetheless, there have been some attempts to create more realistic
data, annotated by humans. For instance, there have been efforts in the pedagogical
domain to assess coherence quality in student essays and test how strongly models agree
with human graders (Higgins et al., 2004; Burstein et al., 2010; Crossley and McNamara,
2011; Burstein et al., 2013; Somasundaran et al., 2014). More recently, Lai and Tetreault
(2018) released a dataset for coherence assessment of texts written by non-professional
writers in everyday contexts (e.g., Yahoo posts and emails from Hillary Clinton’s office
and Enron). The dataset is annotated by human judges with three degrees of coherence:
low, medium and high.

In this thesis, I follow previous work and train and evaluate my coherence models
on synthetic data (WSJ) (Elsner and Charniak, 2008) as well as data from realistic

18



domains (Lai and Tetreault, 2018). Furthermore, I extend my evaluation and develop a
framework to investigate the linguistic features learned by neural coherence approaches.
Predicting an overall coherence score for a document, whether in a binary domain or with
multiple levels of coherence, does not tell much about what the models actually learn. This
is particularly problematic in deep learning where neural networks are hard to interpret,
and becomes even more challenging in a complex task like coherence assessment where
many factors contribute to the coherence of a discourse (as will be elaborated in §2.1).
Attempting to pinpoint the linguistic phenomena captured by neural discourse models and
creating datasets that facilitate this has been a neglected area of research, which motivated
me to devise datasets that exhibit syntactic and semantic alterations and examine the
ability of the models to detect them.

1.3 Coherence application

Coherence is an inherent property of discourse quality and thus modeling it has various
NLP applications. For example, in the domain of mental health, measuring discourse
incoherence could help detect symptoms of illnesses that cause disorder in language such
as schizophrenia, Alzheimer’s disease and mild strokes (Elvevag et al., 2007; Ditman and
Kuperberg, 2010; Bedi et al., 2015; Barker et al., 2017; Iter et al., 2018; Paulino et al., 2018).
Furthermore, in the pedagogical domain, evaluating coherence in student essays has gained
much attention as it is an important dimension of writing competence (Miltsakaki and
Kukich, 2000; Higgins and Burstein, 2007; Burstein et al., 2010; Rus and Niraula, 2012b;
Yannakoudakis and Briscoe, 2012; Somasundaran et al., 2014; Feng et al., 2014; Palma and
Atkinson, 2018; Tay et al., 2018; Nadeem et al., 2019). Additionally, coherence approaches
have been widely employed in readability assessment since coherence is strongly associated
with readability, where the more coherent a text is, the easier it is to read (Graesser
et al., 2004; Crossley et al., 2007; Barzilay and Lapata, 2008; Pitler and Nenkova, 2008;
Li and Hovy, 2014; Mesgar and Strube, 2015, 2016; Xia et al., 2016). This is useful
in pedagogy as measuring the difficulty of reading a text helps teachers select reading
comprehension tasks based on students’ abilities. In addition, coherence modeling has
been frequently paired with information insertion and information ordering tasks. In
information insertion, a sentence is pulled out of a text and the model is tasked with
inserting it back in its original place (Chen et al., 2007; Elsner and Charniak, 2008, 2011b;
Guinaudeau and Strube, 2013; Tien Nguyen and Joty, 2017); this is useful in community
edited web resources such as Wikipedia that require continuous update and insertion of
new information (Chen et al., 2007). In information ordering, a model is asked to organise
a given set of sentences to form a coherent text (Lapata, 2003; Barzilay and Lee, 2004;
Bollegala et al., 2006; Gong et al., 2016; Li and Jurafsky, 2017; Cui et al., 2018; Logeswaran
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et al., 2018; Yin et al., 2019a; Wang and Wan, 2019; Oh et al., 2019; Kumar et al., 2020a),
which has utility in text generation applications such as ordering the sentences produced
by multi-document summarisers (Lapata, 2003). Accordingly, coherence modeling has
been leveraged in summarisation tasks, either by rating the coherence of human or machine
generated summaries (Barzilay and Lapata, 2008; Pitler et al., 2010; Feng and Hirst,
2012; Zhang et al., 2015; Tien Nguyen and Joty, 2017), or generating coherent summaries
for documents (Barzilay and Elhadad, 1997, 2002; Barzilay and Lee, 2004; Barzilay and
McKeown, 2005; Parveen and Strube, 2015; Koto et al., 2019). It has also been integrated
in other text generation tasks such as machine translation (Meyer et al., 2012; Hardmeier,
2014; Smith et al., 2016b; Joty et al., 2017; Born et al., 2017; Bawden et al., 2018)
and story generation (McIntyre and Lapata, 2010; Clark et al., 2018). Other coherence
applications include authorship attribution (Feng and Hirst, 2014; Ferracane et al., 2017),
information retrieval (Petersen et al., 2015), text segmentation (Wang et al., 2017a; Glavas
and Somasundaran, 2020), question answering (Verberne et al., 2007) and conversation
thread disentanglement and reconstruction (Elsner and Charniak, 2011a; Joty et al., 2018).

This wide variety of discourse coherence applications is my main motivation to con-
tribute to discourse coherence research. As an application to coherence modeling, I apply
my coherence models to the pedagogical domain and show that integrating them to a
state-of-the-art neural Automated Essay Scoring (AES) model enhances its ability to
capture discourse-related features. More concretely, I demonstrate that state-of-the-art
AES is not well-suited to capturing adversarial input of grammatical but incoherent
sequences of sentences. To address this problem, I propose a framework for integrating
and jointly training coherence models with a state-of-the-art AES model. I show that this
joint learning approach can effectively capture adversarial input, further contributing to

the development of an approach that strengthens AES validity.

1.4 Thesis aims

This thesis contributes to the work on discourse coherence and its main aims are as follows:

o Develop a neural model to assess text coherence; the model leverages syntactic
features relevant to discourse coherence efficiently as the features are only extracted
for training data. This is achieved by training the model in an MTL fashion,
where the model learns to predict a document-level coherence score (as the main
task) together with word-level syntactic information (as an auxiliary task), taking

advantage of inductive transfer between the two tasks.
o Compare the effect of using GRs or POS tags as the labels of the auxiliary task.

« Investigate the value of initialising the model with contextualised embeddings and

20



whether the features learned from these embeddings are complementary to the

auxiliary syntactic labels leveraged by MTL.

Validate the MTL approach by creating other variants to the model that: perform
the single task of predicting a document-level coherence score and/or incorporate

the syntactic information in different fashions.

Compare the MTL approach to state-of-the-art neural models that are either end-
to-end or operate on EGrid representations of text, where the grids are required at

both training and test times.

Evaluate coherence models on the standard binary discrimination task of synthetic
data where the model should rank a coherent document higher than its permuted
counterparts, in addition to a stricter evaluation setting in which the model is tested
on its ability to rank coherent documents higher than any incoherent/permuted

document in the dataset, and not just its own permuted versions.

Evaluate coherence models on the realistic domains of everyday writing (e.g., online

posts and emails) that reflect varying degrees of coherence.

Inspect the features the models focus on using visualisation techniques and examine

quantitatively and qualitatively their biases towards certain syntactic labels.

Create an evaluation framework for systematically investigating the syntactic and se-
mantic features that neural coherence models learn and analysing the inter-sentential
properties they capture with respect to model architecture and pre-training domain.
This helps understand the models and therefore, provide insight into how to frame

the task of coherence modeling and further improve the models.

Demonstrate empirically that state-of-the-art approaches to AES are not robust
against adversarially crafted essays of grammatical but incoherent sequences of

sentences.

Build a neural network that strengthens AES validity by capturing adversarial essays
as well as achieving a competitive performance to state-of-the-art AES models in
predicting a holistic essay score. The network jointly trains a coherence model and
a neural AES system; I experiment with plugging different coherence models into
the joint framework and investigate different parameter sharing setups between the

coherence and AES models.

21



1.5 Thesis structure

The rest of the thesis is structured as follows. In Chapter 2, I put my work in context and
give a background about various theories that explain discourse coherence, traditional and
neural approaches to coherence modeling and different neural encoders used to generate
text representations. In the same chapter, I also give an overview about MTL, highlight a
few approaches used to interpret neural models and present the evaluation metrics I use.
In Chapter 3, I present my MTL approach. I first describe my hierarchical model that
performs the single-task of predicting a document-level coherence score then detail how it
is enhanced with: auxiliary functions to predict word-level syntactic properties (GRs or
POS tags) and/or contextualised word embeddings. I also discuss different approaches
to incorporating syntactic information to further validate my MTL approach. Chapter 4
discusses my experimental results in coherence modeling. I present the two domains
I leverage, i.e., synthetic binary data and realistic data, explain the training setup for
my experiments and report the results of evaluating my models on the two domains in
comparison to previous state-of-the-art approaches. Furthermore, I explicate the model
performance with further analysis and visualisation techniques to understand what features
the models focus on. Next, in Chapter 5, I introduce my evaluation framework for discourse
models and detail the two datasets I create to better understand the models. The chapter
includes results and analysis of evaluating a wide variety of neural approaches with this
framework. After that in Chapter 6, I propose my joint learning framework for AES that
is robust to adversarial input. I explain how a neural AES model can be integrated with
different discourse models in this framework and present the results of evaluating the AES
and the joint learning models on predicting holistic essay scores in addition to flagging
adversarial essays. I also investigate the effect of incorporating contextualised embeddings
into the evaluated models. Finally, I conclude the thesis in Chapter 7 with a summary of

my work and outline possible directions for future research.
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CHAPTER 2

BACKGROUND

2.1 Theories and frameworks of coherence

Due to the key role coherence plays in defining a meaningful readable discourse, numerous
studies have focused on investigating the features that contribute to discourse coherence. In
this section, I summarise some of these theories that later formed the basis for computational

models.

2.1.1 Cohesion

Cohesion is defined in terms of the lexical and grammatical devices that link text elements
to one another. According to Halliday and Hasan (1976), cohesion determines whether
a set of sentences has a ‘texture’ that gives it “the property of being a text”; i.e., when
the interpretation of a textual unit is dependent on another. Cohesion leverages explicit
linguistic cues identified at the surface of text which either connect elements in the same
sentence (intra-sentential) or across sentences (inter-sentential). Halliday and Hasan (1976)

classify the cohesive relations that signal coherence in text into 5 categories:

o Reference, which includes personal (e.g., he, she) and demonstrative (e.g., this, that)
pronouns and comparatives (e.g., same, fewer). Both the referenced item and its

anaphora (referencing word) refer to the same entity in the real world, example:
(1.a) Mary went shopping. She bought a sweater.

o Substitution, which occurs when an entity appearing in a sentence is substituted in
the next for another that has the same structural function. The substituting item
could be nominal (e.g., one, the same), verbal (e.g., do, do so) or clausal (e.g., so,

not), example:

(1.b) John bought a blue sweater. Mary bought a pink one.
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o FEllipsis, which occurs when an entity in a sentence is the same as a previous one

and is deleted, example:

(1.c) Mary was the first person to leave the party. John was the second

< persotr to leave the partv>.

o Conjunction, which includes conjunctive phrases (i.e., discourse markers or connec-
tives) that may be additive (e.g., furthermore, moreover), adversative (e.g., however,
nevertheless), causal (e.g., therefore, thus) or temporal (e.g., afterwards, next),

example:
(1.d) John studied hard for the exam. However, he failed.

o Lexical cohesion, which depends on the selection of vocabulary. It could be realised
via reiteration by repeating the same word or using a synonym / superordinate /
subordinate / general noun, or via collocation by using semantically related words

that often co-occur, example:

(1.e) John went to the park. The park was empty. (reiteration by repeti-
tion)

(1.f) The weather is nice today. It is sunny. (collocation)

Reference, substitution and ellipsis can be classified as types of grammatical cohesion, while
conjunction can be classified as a combination of both grammatical and lexical cohesion.

Although, cohesive ties are indicators of text coherence and readability (Haviland and
Clark, 1974; McCulley, 1985; Haberlandt, 1982; McNamara, 2001; Duran et al., 2007;
Crossley and McNamara, 2016), cohesion does not necessarily entail coherence (Carrell,
1982; Brown and Yule, 1983; Giora, 1985). I elaborate this with an example from Hobbs
(1979):

(2) John took a train from Paris to Istanbul. He likes spinach.

Even though the second sentence contains a pronoun (he) that refers to an entity in the
first (John), the text is not coherent. This takes us to another level of coherence achieved

by semantic/pragmatic relations.

2.1.2 Coherence relations

Not all discourse relations can be expressed in terms of explicit cohesive ties and some can
be defined as “the relationship between the illocutionary acts which propositions, not always
overtly linked, are being used to perform.” (Widdowson, 1978, p. 28). Following Hobbs
(1979), I refer to these relations as Coherence Relations; they are analogous to Halliday

and Hasan’s 1976 ‘conjunctive relations’ but could also be implicit without recourse to
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discourse connectives. They can be categorised into different types that have been widely
studied in the literature, including temporal, elaborative, causal, justification, and contrast
relations (Hobbs, 1979; van Dijk and Kintsch, 1983; Mann and Thompson, 1988; Hovy,
1990; Sanders et al., 1992; Lascarides and Asher, 1993; Graesser et al., 1994; Kehler and
Kehler, 2002).

Coherence relations can be semantic or pragmatic. Semantic relations link the under-
lying meaning of propositions. For example, if I change (2) to “John took a train from
Paris to Istanbul. He hates planes.”, it becomes more coherent because of the causality
relation introduced between the two sentences. Semantic relations could be implicit or

signalled by cohesive devices; examples:

(3.a) Sally is crying. Nanny has thrown out the time-worn teddy bear. (from Re-
deker (1990))

(3.b) Sally is crying. That is because nanny has thrown out the time-worn
teddy bear.

In (3.a), we understand the causal connection between the two sentences without an
explicit connective, while in (3.b) the causal connection is made explicit by leveraging
the conjunctive phrase ‘That is because’ In contrast, pragmatic relations need world
knowledge and context understanding to be inferred. Levinson (1983) defines pragmatics
as “the study of relations between language and context that are basic to an account of
language understanding”. Implicatures, for instance, are a form of pragmatics in which
there is discrepancy between what is said and what is implied (Grice, 1975). Consider this

example:
(4.a) There is a big party next week. Mary has to work.

It is implied that Mary will not be able to go to the party, although the text does not

mention it. Other examples of pragmatics include irony:
(4.b) No one attended John’s birthday party. He is very popular.

Moreover, if it is established in example (2) that Istanbul is famous for its spinach, the
example becomes more plausible. Pragmatic relations are, therefore, more challenging
to capture and require better understanding of the external situational model of text.
For a more detailed account of the distinction between semantic and pragmatic relations,
I refer the reader to the work of Widdowson (1978), Van Dijk (1979, 1980), Schiffrin
(1987), Redeker (1990) and Sanders et al. (1992).

Structure of coherence relations Due to the importance of coherence relations in
forming a meaningful discourse, research efforts have been devoted to formalising how

they are structured and organised in text. One of the prominent theories that describes
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discourse structure is Rhetorical Structure Theory (RST) (Mann and Thompson, 1988),
where a text is represented in a hierarchical fashion (as a tree) in which every discourse
unit (tree node) is rhetorically related to other units in the text. Rhetorical relations
have various types such as temporal, cause, elaboration, contrast and condition. They can
also be semantic or pragmatic, and explicit (i.e., signalled by discourse connectives) or
implicit. In order to facilitate the utilisation of RST, Carlson et al. (2001) released the
RST Discourse Treebank (RST-DT) corpus which consists of WSJ articles annotated with
rhetorical relations. RST-DT has been widely used in discourse parsing and coherence
modeling.

There are other theories that formalise coherence relations such as Discourse Lexicalized
Tree Adjoining Grammar (D-LTAG) (Webber et al., 2003) that defines relations in local
contexts instead of representing the whole text as a tree. In D-LTAG, a discourse
connective forms a predicate that takes two arguments (Argl and Arg2). Prasad et al.
(2008) adopted the D-LTAG approach to annotate a portion of the WSJ and create the
Penn Discourse Treebank (PDTB). Example from the PDTB is “[Third-quarter sales in
Europe were exceptionally strong,|ag1 boosted by promotional programs and new products

— [although]connective [Weaker foreign currencies reduced the company’s earnings]syg2.”

2.1.3 Discourse structure theory

Grosz and Sidner (1986) describe discourse structure as three interacting components:

1. Linguistic structure: a discourse is divided into segments and each segment consists
of a group of topically related propositions. Local coherence ties the propositions
in the same segment, while global coherence exists between segments in the same

discourse.

2. Attentional structure: at any given point in a discourse, there is a space of entities
that constitute its center of attention and this space changes, according to a set of

transition rules (§2.1.4), as the discourse unfolds.

3. Intentional structure: each proposition has a communicative goal that contributes to
achieve the overall discourse purpose. Discourse intentions and their relations form

the overall rationale of text.

The intentional structure, therefore, captures the purposes of the discourse segments
identified by the linguistic structure, and the attentional structure abstracts the focus of

attention and models how it changes throughout the discourse.

26



2.1.4 Centering theory

Centering theory (Grosz et al., 1995) is one of the fundamental entity-based theories that
postulate the idea that a coherent discourse is ‘about’ the same entities (Chafe, 1976; Joshi
and Weinstein, 1981; Prince, 1981; Grosz et al., 1983; Gordon et al., 1993).1 The theory
describes how entities are distributed and realised across discourse units, thereby capturing
the attentional state of discourse structure. More concretely, at any given point in a
discourse, there is a salient entity that constitutes the focus of the discourse at that point.
The notion of salience has been promoted by psychological studies of discourse (van Dijk and
Kintsch, 1983; Givon, 1992); it describes the discourse elements that are more accessible in
the memory of the reader/hearer, and therefore have a more prominent role in determining
discourse coherence. In other words, as a reader/hearer processes a sentence/utterance,
they build a mental representation of it in their memory in which some parts are more active
than others and thus more anticipated to be encountered in the next sentences/utterances
— these parts could be described as salient. Centering theory ranks the salience of entities
according to their grammatical roles (GRs), where more prominent roles correspond to
higher degrees of salience (e.g., subject > object > indirect object > others); this premise
has been adopted by many entity-based theories (Brennan et al., 1987; Walker et al., 1994;
Grosz et al., 1995; Kameyama, 1998). Other research has determined saliency based on
other factors such as cognitive accessibility or familiarity (Prince, 1981; Gundel et al.,
1993; Kameyama, 1998; Strube and Hahn, 1999), frequency (Barzilay and Lapata, 2008)
or the surface positions of words (Gernsbacher and Hargreaves, 1988; Rambow, 1993).2
According to Centering theory, texts in which the same centers of attention are
maintained in consecutive sentences are more coherent than those with repeated shifts

from one entity to the other. I borrow two examples from Grosz et al. (1995):

(a) (S1) John went to his favorite music store to buy a piano.
S2) He had frequented the store for many years.

)
(52)
(S3) He was excited that he could finally buy a piano.
(S4) He arrived just as the store was closing for the day.

(b) (S1) John went to his favorite music store to buy a piano.
(S2) It was a store John had frequented for many years.
(S3) He was excited that he could finally buy a piano.

(S4) It was closing just as John arrived.

LCentering theory was initially proposed in 1986 by Grosz, B. J., Joshi, A. K., and Weinstein, S and
widely circulated as a manuscript, then published in 1995.
2The surface positions of words is more useful in languages with free(r) word order such as German.
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Cy(Si) = Cp(Si-1) , .
or undefined Cy(S;—1) Co(5) 7 C(Si-1)
Cp(Si) =C) Continue Smooth-Shift
Cyp(S:) # Cp Retain Rough-Shift

Table 2.1: Entity transitions in Centering theory.

Grosz et al. (1995) argue that example (a) is intuitively more coherent than (b) based
on how the two entities (‘John’ and ‘store’) are introduced and realised. In (a), ‘John’
continues to be the focus of attention across all utterances while (b) keeps alternating focus
between ‘John” and ‘store’. More formally, each sentence S; evokes a set of forward-looking
centers (C'ys) and one backward-looking center (Cp). In S;, the Cys are ranked by salience,
according to their grammatical roles (subject > object > indirect object > others), and
the highest-ranked C is the preferred center (Cp). The highest-ranked element of S;_1
that is realised in S; constitutes Cj(S;).> There are 4 possible types of entity transitions
across sentences; they are ranked from more coherent to less as: {continue, retain,
smooth-shift, rough-shift} which I define in Table 2.1. For instance, in example (a)
there is a continue transition between S1 and S2 as the center of attention is maintained;
i.e., “John’ which is the subject and hence most salient entity in S1 continues to have the
same role in S2 via pronominalisation. In contrast, the transition between S1 and S2 in
example (b) is a retain one as the center of attention changes from ‘John’ in S1 to ‘store’

in S2 (via the pronoun ‘It’).

2.2 Traditional approaches to coherence modeling

In this section, I give an overview of coherence approaches that translate some of the

aforementioned theories into computational models, using statistical NLP methods.

2.2.1 Semantic relatedness

Numerous coherence approaches were inspired by lexical cohesion that captures coherence
in terms of repetition of words or using semantically related terms across text. I focus
on two main approaches: lezical chains (Morris and Hirst, 1991) and Latent Semantic
Analysis (LSA) (Landauer and Dumais, 1997).

Lexical chains A lexical chain is a sequence of semantically-related words that occurs
in a span of text. For example, in the following paragraph from Morris and Hirst (1991),

the underlined words form a lexical chain.

3This description of centers follows Brennan et al. (1987).
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“In front of me lay a virgin crescent cut out of pine bush. A dozen houses were

going up, in various stages of construction, surrounded by hummocks of dry

earth and stands of precariously tall trees nude halfway up their trunks. They

were the kind of trees you might see in the mountains.”

There are various ways to determine the candidate words for a chain including leverag-
ing knowledge-bases such as thesauri (Morris and Hirst, 1991) or WordNet (Hirst et al.,
1998), distributional co-occurrence of words (Marathe and Hirst, 2010), or topic-based
models (Remus and Biemann, 2013). The strength of a chain could be estimated by a
few properties such as length or degree of relatedness between words (Morris and Hirst,
1991; Barzilay and Elhadad, 1997; Hirst et al., 1998). A coherent text is expected to
have strong chains. Accordingly, lexical chains were used to evaluate coherence in student
essays (Somasundaran et al., 2014; Rahimi et al., 2015) and machine generated sum-
maries (Lapata and Barzilay, 2005). They have also been leveraged in text summarisation
since strong chains correspond to important parts of text that need to be extracted for
the summary (Barzilay and Elhadad, 1997; Brunn et al., 2001; Silber and McCoy, 2002;
Li et al., 2007; Ercan and Cicekli, 2008; Berker and Giingor, 2012; Lynn et al., 2018), as
well as text segmentation tasks by capturing the linguistic structure of discourse and its
topically related segments (Manabu and Takeo, 1994; Galley et al., 2003; Stokes et al.,
2004; Marathe and Hirst, 2010; Tatar et al., 2013).

Latent Semantic Analysis (LSA) Spurring from the distributional hypothesis that
words with similar meanings occur in similar contexts (Harris, 1954; Firth, 1957), LSA
aims to capture the meaning of each word by constructing a matrix that represents its co-
occurring words, then reducing its dimensionality to a vector via dimensionality reduction
techniques (e.g., singular value decomposition (Berry et al., 1995)). A sentence vector is
then generated by calculating the mean of the vectors of its words. Therefore, two sentences
that contain semantically-related words are expected to have similar vectors. Foltz et al.
(1998) adopted LSA to estimate local coherence by measuring the semantic similarity
between adjacent sentences, where similarity is defined as the cosine similarity between
their respective vectors. The overall document coherence is then computed by averaging
its local similarity scores. LSA, and other semantic similarity methods that inherit from
it, have been used to assess student writing quality (Wiemer-Hastings and Graesser,
2000; Landauer, 2003; Higgins et al., 2004; Higgins and Burstein, 2007; Yannakoudakis
and Briscoe, 2012; Palma and Atkinson, 2018). The mental health domain has also
leveraged LSA to assess discourses by patients who suffer from disordered speech, such
as schizophrenia patients, and locate where the abrupt topic shifts occur (Elvevag et al.,

2007; Bedi et al., 2015; Tter et al., 2018).
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2.2.2 Probabilistic models

Probabilistic models derive from the underlying premise that we can predict the probability
of a sentence, or generate it, based on its surrounding context. The overall coherence of
a document is then approximated by combining the probabilities of all of its sentences.
I categorise traditional probabilistic models into models that utilise lexical features or

syntactic ones.

Lexicalised models Lapata (2003) estimated the probability of a sentence based on
its previous sentence. They represented sentences as a set of features including verbs,
nouns and grammatical dependencies, and calculated the probability of two sentences
occurring consecutively using the cartesian product of their features. Barzilay and Lee
(2004) approximated the probability of transitioning from one topic to another using
a domain-specific content model, specifically a Hidden Markov Model (HMM), where
each state corresponds to a distinct topic. In this model, a high transition probability
corresponds to a more coherent text. Soricut and Marcu (2006) captured local coherence by
adopting the IBM translation approach (Brown et al., 1993) that estimates the probability
of a word appearing in a sentence conditioned on the words from its previous sentence.
This is based on the idea that using certain words in a sentence triggers the usage of other
words in the following sentences. Other probabilistic models rely on capturing coreference
information. For instance, Elsner and Charniak (2008) created a discourse-new model
that estimated the coherence of a document based on the type of mentions of its noun

phrases (i.e., if it is a first mention or a subsequent one).

Syntax-based models The aforementioned probabilistic models are lexicalised, but
unlexicalised generative models were also adopted. Louis and Nenkova (2012) proposed to
capture the intentional structure of discourse (§2.1.3) using syntactic patterns, where the
syntax of a sentence is represented by nodes at a specific level in its parse tree or a sequence
of POS tags. They argued that sentences with similar syntactic structures are likely to
have similar communicative goals that contribute to the purpose of the whole discourse.
In other words, each sentence type (e.g., questions or definitions) has distinguishable
syntax and therefore syntax could be used as a proxy for discourse intentions. In order to
verify this hypothesis, they examined the grammatical production rules that co-occur in
adjacent sentences in the WSJ and found that certain patterns often co-occur (further
details are provided in §5.1). Louis and Nenkova (2012) estimated local coherence in terms
of the probabilities of pairs of syntactic items occurring in adjacent sentences. They also
implemented a global HMM-based coherence model where each state corresponds to similar
syntactic constructions, thus presumably represents a discourse communicative goal, and

transitions between states model the syntactic regularities of the discourse. Accordingly,
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coherent texts in a specific domain that are expected to exhibit similar syntactic patterns
should have similar transition probabilities that discriminate them from incoherent texts
where those patterns are broken. The HMM-based approach surpassed the lexicalised
content model of Barzilay and Lee (2004) and the EGrid model of Barzilay and Lapata
(2008) that will be presented in the next section.

2.2.3 Entity-based methods

Entity-based approaches capture coherence by modeling the distribution and realisation of
entities as a discourse unfolds. Some approaches directly translate Centering theory (§2.1.4)
into a computational framework to evaluate local coherence. For example, Miltsakaki
and Kukich (2000) manually annotated a corpus of student essays with entity transitions
and found that rough shifts could be used as a proxy for essay incoherence. Furthermore,
incorporating rough shifts in the e-rater essay scoring system (Burstein et al., 1998)
significantly improved its performance. Rus and Niraula (2012b) on the other hand
automatically detected the continue transitions of Centering theory and leveraged them
to capture local coherence in student texts. Their method significantly correlated with

human judgments for coherence.

Entity Grid (EGrid) Barzilay and Lapata (2005, 2008) built an unlexicalised model
that captures local coherence by abstracting entity transitions in adjacent sentences; they
referred to their model as Entity Grid (EGrid) representation. The grid is a matrix where
rows represent sentences and columns refer to entities (which are the head nouns of NPs).
Each cell a; ; denotes the grammatical role of the 4t entity in the " sentence and can
take one of four values: subject ‘S’, object ‘O’, any other role ‘X’ or ‘-’ if it does not
appear in the sentence. Fig. 2.1 shows an EGrid from Barzilay and Lapata (2008). Entity
transitions are extracted from this grid according to a predefined length; for example, if the
transition length is set to 2, there are 16 possible entity transitions (e.g., {S,S}, {O, X},
{X,—},...etc.). Transition probabilities are then calculated from the EGrid to produce
a feature vector for the text. For instance, in Fig. 2.1, the probability of the transition
{S,—} =0.08 (there are 75 transitions in the grid and {S,—} occurs 6 times). A feature
vector of length 16 will be generated by doing this calculation for each transition type,
which Barzilay and Lapata (2008) used to train a Support Vector Machine (SVM; Vapnik,
1995) to discriminate between transitions in coherent documents vs. incoherent shuffled
ones. Furthermore, Barzilay and Lapata (2008) investigated the impact of coreference
(i.e., mapping coreferential entities to the same entity), salience (determined by entity
frequency) and syntax (by creating another setup agnostic to syntax with only present
(‘X7) or absent (‘—") values for cells) and found that their impact is domain dependent.

They applied their EGrid model on the tasks of ranking coherent documents against
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Figure 2.1: EGrid example from Barzilay and Lapata (2008). The left hand side displays
a text with grammatical annotations for entities and the right hand side depicts the grid
representation for the text where cells correspond to grammatical roles (subjects (S),
objects (O), or neither (X)), or (-) if the entity does not appear in the sentence.

their incoherent permuted versions, evaluating the coherence of summaries and readability
assessment.

The EGrid has become a de facto coherence model that was further extended and
widely adopted in discourse-related applications. Elsner and Charniak (2008) were able to
significantly improve their discourse-new model (§2.2.2) by incorporating EGrid transition
probabilities. Elsner and Charniak (2011b) extended EGrids with entity-specific features
such as: whether an entity has a proper mention (i.e., is realised by a proper noun),
whether it has a singular mention, its Named Entity label and number of modifiers, in
addition to other coreference domain-specific features. They also expanded the definition of
entities to include non-head mentions in NPs. Their enhanced EGrid version outperformed
the basic one in coherence discrimination and sentence insertion tasks. Guinaudeau and
Strube (2013) adapted EGrids in a graph-based framework where there are two sets of
nodes: sentences and entities. An entity is linked to the sentence it appears in via an edge
weighted by its grammatical role, and entity transitions between sentences are modeled
by a projection graph, where two sentences are connected if they share the same entity.
EGrids were also combined with HMM generative approaches in order to capture both
local and global coherence via log-linear models (Soricut and Marcu, 2006) or learning local
and global features jointly (Elsner et al., 2007). Other models extended the EGrids with
semantic relatedness features between entities that do not necessarily entail coreference,
where semantic relations are extracted from knowledge bases (Filippova and Strube,
2007; Zhang et al., 2015). EGrids were also adapted to other languages; Cheung and
Penn (2010a) substituted grammatical roles with topological fields that capture high-level
clausal structure in German and showed that this approach further boosts performance on

detecting permuted texts.
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2.2.4 Coherence relation models

Discourse research has also exploited coherence/rhetorical relations (§2.1.2) in computa-
tional models for coherence assessment. Lin et al. (2011) leveraged the PDTB coherence
relations to build a matrix representation of text with rows corresponding to sentences and
columns to terms that take role as an argument in the predicate-argument style relations.
In the matrix, a cell a; ; corresponds to the coherence relation type and argument in which
term 7 takes part in sentence j; e.g., if a term is part of Argl in a comparison relation the
cell will be annotated with ‘Comp.Argl’. Similar to Barzilay and Lapata (2008), coherence
is calculated based on the probability of the relation/argument transitions in the matrix.
They were able to gain further improvements in coherence ranking by combining their
model features with EGrid features. PDTB-style discourse relations were also utilised in
graph-based models (Guinaudeau and Strube, 2013) and combined with entity graphs
for readability assessment (Mesgar and Strube, 2015). Feng et al. (2014) adopted an
approach similar to Lin et al. (2011) but using RST relations and proved their efficacy
over PDTB relations and EGrids in coherence ranking and detecting organisation in
student essays. RST-based models have been utilised in various domains such as coherence
ranking in Brazilian Portuguese texts (Dias et al., 2014) and assessing coherence in student
writing (Burstein et al., 2013; Huang et al., 2018).

2.3 Deep learning representations

In the previous section, I gave an overview of traditional approaches to coherence modeling
that spurred from different discourse theories and frameworks. Before moving to describing
neural coherence approaches, I present, in this section, methods leveraged by neural
coherence models (and neural networks in general) to encode textual units such as words

or sentences.

2.3.1 Neural encoders

A large number of popular architectures have been used in NLP deep learning models to
encode representations of linguistic units. I here discuss three main approaches that are

referred to throughout this thesis.

Recurrent Neural Networks (RNN) RNNs (Elman, 1990) are designed to model
sequential information and therefore are well-suited for NLP. An RNN processes a sequence
(of characters, words, sentences, etc.) element by element and applies the same functions
to each element at each time step (¢). The model calculates a hidden representation (hy)

at each time step using the input element at this step (z;) and the hidden representation
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of the previous element (hy_1):
ht :tanh(U~xt+W~ht_1+b) (21)

where U € R¥*4 and W e R4 are weight matrices and b € R? is a bias vector; k is
the length of the input vector z; and d is a hyperparameter indicating the size of the
hidden layer. Traditionally, the initial hidden representation used at the first time step
(hi=o) is initialised with zeros. Despite their ability to capture sequential information,
in practice, RNNs struggle with modeling long-term dependencies. Therefore, enhanced
models have been introduced to solve this problem such as Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Cho
et al., 2014). I focus on LSTM in my work.

LSTM extends the vanilla RNN model by adding a mechanism to control what the
network should remember or forget, in the long term, at each time step. This is achieved
by calculating a cell state (¢;) that represents the network memory at ¢, a ‘forget gate
layer’ (f;) to control what to keep from the previous cell state (¢;—1), an ‘input gate layer’
(it) to decide what values to update in ¢; and an ‘output gate layer’ (o;) to decide what

parts of ¢; to output:

it =0 (xe-Up+hi—1- Wi+ b;)

fe=0(xt-Up+hi—1-Wp+by)

or =0(x¢-Up+hi—1-Wo+bo) (2.2)
ct =ct—1 O fr+tanh(xy-Ue+hi—1 - We+be) © 1y

hy =tanh(c;) © oy

where U € RF¥*4 1/ € R and b € R? are the network’s learned parameters; o is the
sigmoid function, ® is the Hadamard product and c;—g and h;—g are initialized with zero

vectors. Equations 2.2 could be abstracted as:
ht = LSTM(CL‘t, ht—l) (23)

Equations 2.1 and 2.2 encode the hidden vectors based on their previous context,
ignoring what comes next. This problem is addressed by applying Bidirectional RNNs
that, in addition to the previous context, build a hidden representation at ¢t based on the
hidden representation at the next time step (t+1). This will result in two vectors for ¢
encoding its left and right contexts, which could then be concatenated or aggregated by

other functions such as averaging of multiplication. For instance in a Bidirectional LSTM
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(Bi-LSTM), h; could be calculated by:

B = LSTM (x4, hu—)
T = LSTM (w1, hear) (2.4)
ht = [h’t ; E]

Convolutional Neural Network (CNN) CNN (LeCun et al., 1998) is a neural ar-
chitecture that extracts local features from input; it was initially proposed for image
processing then successfully imported to NLP (Collobert and Weston, 2008; Kim, 2014).
The key function in a CNN is convolution that slides a filter of weights over windows of
local context to extract local features. More concretely, a filter W € RF*! slides over the
input text x € RF*™ and at each location, an element-wise multiplication between W and
a window of size [ in z is applied. The resulting matrix is then summed up to indicate
feature h; for this window, where k is the vector dimensionality of an input feature (e.g.,
character, word,...etc), [ is the filter length and n is the input length. The convolution

operation could be followed by a non-linearity:
hi = tanh([zi; ..z % W) (2.5)

Here, i € {1,...,n—1+1} and * is the linear convolutional operation. The local features
extracted at different positions (h;) form a feature map. Multiple filters could be applied
to extract various feature maps. In order to highlight the important features and extract
global features from the local ones, a max pooling operation is applied to each feature
map to select the highest-value feature(s). Other pooling operations could also be applied
such as average or L2 norm (Goodfellow et al., 2016, p. 335). Unlike RNNs, pooling allows
CNNs to become transitional invariant, which means that they are not sensitive to the
order of input features except locally (in the window where the convolutional filter is

applied).

Transformer Recently, a transformer model (Vaswani et al., 2017) was proposed to
learn the relations between input features using a self-attention mechanism. A transformer
encoder consists of Multi-Head Attention followed by a feed forward layer, where each
attention head aims to measure the importance of each word in relation to the words in
the input sequence. A transformer decoder has the same architecture as the encoder with
an extra encoder-decoder attention layer. An attention head first maps each input feature
4 (e.g., word) to three vectors: query € R% key € R% and value € R% by multiplying 2,
with learned weight matrices Wy, W}, and W,,. The vectors for the whole input sequence
x could be compacted in matrices () for query, K for key and V for value. () and K are

then used to calculate a score between each two input features (including a feature and
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itself) and attention is calculated by multiplying this score to the value vector:

. QKT

Attention(Q, K, V) = SOftmam(ﬁ)V (2.6)
An input feature will, therefore, have a number of output vectors representing its relation
with each input feature and these vectors are then added to form one vector per feature.
With multiple attention heads that use different sets of query, key and value vectors, the
encoder calculates multiple representations per input feature which are concatenated and
multiplied with a learned weight, then fed to a feed forward layer to produce the final
output. In contrast to recurrent networks, a transformer computes the output vectors at
different input positions in parallel and the execution of the multiple heads is also achieved

in parallel, resulting in a more time-efficient model.

2.3.2 Word representations

Most NLP tasks fundamentally process words, and therefore researchers have devoted
much attention to investigating how to represent them. Initialising word representa-
tions/embeddings from pre-trained spaces that capture aspects of their syntax and seman-
tics has become the standard initialisation method for input words in neural networks.
The idea is to pre-train word embeddings on an unsupervised task using large unlabelled
corpora to capture their distributional properties, then use them to initialise the network.
This allows bootstrapping networks from a semantically-rich space, which is particularly
useful in low-resource tasks, instead of initialising word vectors randomly or as one-hot
vectors. We next discuss the two main types of embeddings in the literature: standard

and contextualised.

Standard word embeddings. In standard embeddings, each word in the pre-trained
space is represented by a single context-independent vector. For instance, the word play
in “I play football” and in “Yesterday I watched a play” is mapped to the same vector,
regardless of the different syntactic categories it belongs to. Throughout this thesis, I
refer to the context-independent word embeddings as standard word embeddings. These
embeddings are used to initialise neural networks for downstream tasks, and could either
be kept constant during training, or fine-tuned to be more task-specific.

There is a wide-range of approaches to building distributional word embeddings; LSA
is one of the early approaches that relies on word co-occurrence and dimensionality
reduction techniques. Afterwards, neural models have been widely adopted to learn such
representations (Bengio et al., 2003; Mikolov et al., 2011; Huang et al., 2012). Mikolov
et al. (2013a) proposed word2vec models that either employ Continuous Bag-of-Words

approach to predict a center/target word based on its context, or Continuous Skip-gram
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approach to predict the surrounding context given the target word. Mikolov et al. (2013c)
released pre-trained embeddings that have become ubiquitous in NLP tasks and were
trained as a Skip-gram model on a corpus of Google News articles that contain around
100B words.* Another widely-used set of pre-trained embeddings are the Global Vectors
(GloVe) (Pennington et al., 2014) trained on Wikipedia articles;> GloVe models word co-
occurrences, similar to LSA, but using a matrix factorisation method that leverages the log
probability of co-occurrences. Other embeddings rely on word position information (Mnih
and Kavukcuoglu, 2013), subword properties (Bojanowski et al., 2017) or idiomatic
phrases (Mikolov et al., 2013c), or combine all these approaches in one model, such as
fastText embeddings® (Mikolov et al., 2018) that are pre-trained on the Common Crawl
corpus of 600B tokens.” Cross-lingual word embeddings have also been proposed to transfer
knowledge across different languages (Zou et al., 2013; Gouws et al., 2015; Luong et al.,
2015).

Contextualised word embeddings. Instead of r