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Abstract
Calculating polarizabilities of large clusters with first-principles techniques is challenging because
of the unfavorable scaling of computational cost with cluster size. To address this challenge, we
demonstrate that polarizabilities of large hydrogenated silicon clusters containing thousands of
atoms can be efficiently calculated with machine learning methods. Specifically, we construct
machine learning models based on the smooth overlap of atomic positions (SOAP) descriptor and
train the models using a database of calculated random-phase approximation polarizabilities for
clusters containing up to 110 silicon atoms. We first demonstrate the ability of the machine
learning models to fit the data and then assess their ability to predict cluster polarizabilities using
k-fold cross validation. Finally, we study the machine learning predictions for clusters that are too
large for explicit first-principles calculations and find that they accurately describe the dependence
of the polarizabilities on the ratio of hydrogen to silicon atoms and also predict a bulk limit that is
in good agreement with previous studies.

1. Introduction

Clusters and nanoparticles are used in a variety of scientific and industrial applications, including
optoelectronics [1], photocatalysis [2], medical imaging [3, 4] or single electron transistors [5]. Electronic
excitations often play a key role in these applications, but theoretical techniques for calculating
excited-state properties of materials, such as the first-principles GW/Bethe–Salpeter method, are typically
limited to very small systems. A key bottleneck of such excited-state calculations of clusters and
nanoparticles is the determination of the static polarizability which is often calculated using a
sum-over-states technique [6].

As an efficient alternative to first-principles techniques, machine learning (ML) based techniques have
been explored in recent years. For example, ML has been employed to efficiently represent potential energy
surfaces [7–10] or to predict electronic ground state densities [11–14]. Additionally, projects such as the
Materials Project [15] and the Open QuantumMaterials database [16, 17] have made an effort to make
first-principles data of a wide range of materials publicly available. A key ingredient in ML methods is a
descriptor which acts as a molecular fingerprint and encodes the structure and chemistry of a molecule. For
example, the smooth-overlap of atomic positions (SOAP) descriptor [18] has been widely used for the
comparison of different chemical environments of an atom. For this, the overlap of the corresponding
neighbourhood densities (constructed as a sum of Gaussians centered on atoms in the local environment) is
expressed in terms of the coefficients in a basis of spherical harmonics and radial basis functions [18]. Very
recently, several groups have also started to explore the applicability of ML approaches to calculate molecular
polarizabilities and dipole moments [19–22]. For example, Grisafi et al [20] introduced a symmetry
adapted variant of the SOAP descriptor [18] to predict polarizability tensors of molecules. Similarly,
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Wilkins and coworkers [19] used the symmetry-adapted SOAP kernel to predict polarizabilities
and first hyperpolarizabilities of small organic molecules with high accuracy. Recently, Veit et al [22] used a
combination of the symmetry adapted SOAP kernel and the scalar SOAP kernel to predict dipole
moments of small molecules with close to DFT accuracy. However, the applicability of ML approaches to
polarizabilities of clusters and nanoparticles, in particular the ability to make predictions about nanoparticles
too large for first-principles calculations remains largely unexplored.

To assess the performance of ML approaches for cluster polarizabilities, we focus in this work on
hydrogenated silicon clusters. These systems are well suited for this purpose because their polarizabilities
have been studied in detail with a variety of modelling techniques. For example, simple empirical models,
such as bond polarizability models, have been used to predict Raman spectra of silicon clusters in good
agreement with experiment [23]. Empirical models can be extended beyond the assumption of additivity of
atomic polarizabilities. A class of models that captures interactions between polarization centres are dipole
interaction models [24], which have been successfully applied to the construction of polarizable force fields
[25]. Highly accurate cluster polarizabilities can be obtained using ab initio approaches such as density
functional theory (DFT) [26–31], Møller–Plesset perturbation theory [31], coupled-cluster theory [31–33]
or the random phase approximation (RPA) [34–36]. For example, Mochizuki and Ågren [36] used the RPA
and the second-order polarization propagator approximation to calculate the polarizabilities of spherical
hydrogenated silicon clusters with up to 35 Si atoms and found that the polarizability per silicon atom
approaches the bulk limit from below. In contrast, for unhydrogenated silicon clusters Jackson and
coworkers found that the bulk value is approached from above as the size of the cluster increases [29, 30].
This behaviour was attributed to the presence of dangling bonds on the surface. Furthermore, it was
observed that the polarizability depends sensitively on the shape of the cluster [30, 35]. Jansik et al [35]
compared polarizabilities of three-dimensional (3D), two-dimensional (2D) and one-dimensional (1D)
hydrogenated silicon structures and found that the presence of π-bonds in 2D systems leads to a much
stronger increase in the polarizability as a function of cluster size when compared to 1D and 3D clusters [35].
A similar trend was observed when comparing prolate and compact clusters, with prolate structures showing
a significantly larger polarizability per silicon atom than compact structures [30].

In the present work, we explore the ability of machine learning models based on the SOAP [18]
descriptor to describe and predict static polarizabilities of hydrogenated silicon clusters calculated from RPA
static density-density response functions. We chose the SOAP descriptor due it its widespread use for a
variety of atomic scale regression tasks and its systematic nature. Previous work [19, 20] has already
demonstrated the ability to predict isotropic scalar polarizabilities and also the full polarizability tensor using
SOAP and generalizations thereof. The symmetry-adapted SOAP descriptor has also been used successfully
in conjunction with physical insights [22] to predict molecular dipole moments. Furthermore, we note that
SOAP is a generic 3-body descriptor of the neighbour density that obeys rotational and permutational
symmetries [37], and as such encompasses simpler descriptors such as RDFs and ADFs [38–40] (which are
particular projections of the neighbour density), and in the limit of no basis truncation equivalent to other
3-body descriptors such as Behler-Parrinello Atom Centered Symmetry Functions [41] and the FCHL [42]
descriptors. To generate a data set, we first calculate scalar isotropic polarizabilities of a set of clusters
containing between 10 and 110 silicon atoms using the RPA. We then investigate the ability of the ML
approach to reproduce the calculated polarizabilities and find that almost perfect agreement can be obtained
when the size of the local chemical environments is sufficiently large to contain the whole cluster.
Importantly, the ML models already describe the qualitative behaviour of the average polarizability per atom
if the local environment only contains nearest neighbour atoms. These findings establish the fittability of
RPA scalar polarizabilities using local SOAP descriptors which—in contrast to mean-field DFT data—has
not been explored to date. Next, we study the ability of ML to predict polarizabilities of clusters. Interestingly,
we find that the predictive power of ML is strongest when the size of the chemical environment is relatively
small. These insights enable the reliable prediction of polarizabilities of large clusters which are difficult to
calculate with standard first-principles techniques and constitute a first step towards efficient ML approaches
for excited-state properties of materials.

2. Methods

2.1. Random phase approximation polarizabilities
Scalar polarizabilities of molecules and clusters were calculated within the RPA in a linear response
framework. The RPA was chosen because it is known to give an accurate description of the dielectric
properties of bulk silicon [43]. The polarizability tensor αij relates the induced dipole moment with
Cartesian components µi to the applied static electric field Ej according to
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µi =
∑
j

αijEj. (1)

To obtain an expression for αij, we express µi in terms of the induced electronic charge density∆ρ(r) via

µi =−e

ˆ
dr∆ρ(r)ri, (2)

where e denotes the proton charge and ri is the Cartesian component of the position vector. The induced
charge density is determined by the interacting density-density response function χ(r,r ′) according to

∆ρ(r) = e
∑
j

Ej

ˆ
dr ′χ(r,r ′)r ′j , (3)

where we used that the potential associated with the applied electric field is given by V(r) = e
∑

jEjrj.
Combining these equations yields

αij =−e2
ˆ

drdr ′χ(r,r ′)rir
′
j . (4)

Finally, the scalar polarizability α is obtained by dividing the trace of αij by three.
To evaluate equation (4) the interacting density-density response function must be determined. In the

RPA χ obeys the Dyson equation

χ(r,r ′) = χ0(r,r
′) (5)

+

ˆ
dr1dr2 χ0(r,r1)v(r1 − r2)χ(r2,r ′), (6)

where v(r− r ′) denotes the Coulomb interaction and χ0 is the non-interacting density-density response
function given by [44, 45]

χ0(r,r
′) =

∑
ij

fi(1− fj)

ϵi − ϵj
(7)

×
[
ϕ∗
i (r)ϕj(r)ϕ

∗
j (r

′)ϕi(r
′)+ c.c.

]
, (8)

where f i denotes an occupancy factor and ϕi and ϵi denote Kohn–Sham orbitals and eigenvalues, respectively.
Note that the summation ranges over both occupied and unoccupied states resulting in the well-known
difficulties of converging such sum-over-states expressions. To numerically calculate scalar polarizabilities,
we employ a plane-wave/pseudopotential approach. Specifically, the BerkeleyGW programme package
[46, 47] is used to calculate χGG ′ where G and G ′ denote reciprocal lattice vectors of the periodically
repeated supercell. Note that interactions between images are avoided by using a truncated Coulomb
interaction. The interacting density-density response function in real space is then given by

χ(r,r ′) =
1

V

∑
G,G ′

eiG·rχG,G ′e−iG ′·r ′ , (9)

where V= L3 denotes the volume of the cubic supercell, with L being the side length. Finally, the scalar
polarizability is found to be

α=
e2

3V

∑
i

∑
G,G ′

χG,G ′∆G,i∆
∗
G ′,i, (10)

with

∆G,x =

{
L4

2 δGx,0δGy,0δGz,0 if Gx = 0,
L3

iGx
δGy,0δGz,0 otherwise,

(11)

and similar expressions for∆G,y and∆G,z.
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Finally, we note that other—more efficient—approaches than the one described above exist for the
calculation of the static scalar polarizability, such as the finite field method [48]. However, our ultimate
interest is in applying ML techniques to accelerate excited-state calculations and these methods require the
full interacting density-density response function which cannot easily be obtained with other methods.

2.2. Environment descriptors
The ability to assess the similarity of different chemical environments plays a key role in machine learning of
material properties. In this work, we use the SOAP approach [18] where the environment of atom i is
described by the set of neighbourhood densities

ρνi (r) =
Nν∑
i̸=j

e−γν(r−rij)2 , (12)

where ν denotes a specific element that is present in the atom’s environment with Nν being the number of
such atoms up to a given cut-off radius rcut. In addition, γν is a hyperparameter describing the size of the
neighbour atom.

The similarity of two chemical environments described by the neighbourhood densities ρi = {ρνi }ν and
ρj = {ρjν}ν can be measured by the kernel [49]

k(ρi,ρj) =

ˆ
dR̂

∣∣∣∣∑
ν

ˆ
drρνi (r)ρ

ν
j (R̂r)

∣∣∣∣2, (13)

where R̂ denotes a rotation matrix. To evaluate the kernel integral, the angular dependence of the
neighbourhood densities is expanded in a basis of spherical harmonics Ylm and the radial part in a set of
orthogonal radial basis functions gn(r) according to

ρνi (r) =
∑
nlm

cνi,nlmgn(r)Ylm(r̂), (14)

where cνi,nlm is an expansion coefficient. Here, l ranges from zero to a cut-off value lmax andm ranges from−l
to l. As radial basis functions, the modified spherical Bessel functions of the first kind are used and n ranges
from zero to a cut-off value nmax.

The similarity kernel equation (13) has the appealing property that the integrals can be carried out
analytically yielding [18]

k(ρi,ρj) =
∑
ν⩽ν ′

∑
nn ′l

dν,ν
′

i,nn ′ld
ν,ν ′

j,nn ′l (15)

dν,ν
′

i,nn ′l =
∑
m

cνi,nlm(c
ν ′

i,n ′lm)
∗. (16)

From the above expressions, it can be seen that the set of coefficients {dν,ν
′

i,nn ′l} plays the role of a descriptor
vector di for the environment of atom i. In practice, we calculate the descriptor vectors using the Quippy
software package [50]. The kernel matrix k(ρi,ρj) is then calculated according to

k(ρi,ρj) = di · dj. (17)

Finally, we note that the sensitivity of the kernel to differences between atomic environments can be
increased by defining the effective SOAP kernel [18, 49]

K(ρi,ρj) =

(
k(ρi,ρj)√

k(ρi,ρi)k(ρj,ρj)

)ϵ

. (18)

In this work, we use ϵ= 2.
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2.3. Learning cluster polarizabilities
The SOAP descriptor allows the comparison of different environments of a given atom. However, the
polarizability is calculated for an entire molecule or cluster consisting of many atoms. To harness the SOAP
approach for the prediction of cluster polarizabilities, it is therefore necessary to relate atomic properties to
cluster properties. One way to achieve this is by expressing the polarizability αI of cluster I as the sum of
atomic contributions αi [49] according to

αI =

NI∑
i=1

αi, (19)

where N I denotes the total number of atoms in the cluster. While the atomic contributions can provide some
valuable intuition about the dielectric response of complex clusters, it is important to stress that these
quantities are not directly measurable and should be interpreted with care [51].

Using standard kernel ridge regression, the atomic polarizabilities can be expressed as

αi =

Ntrain∑
j

Kijζj, (20)

where Ntrain denotes the total number of atoms in the training set (i.e. the total number of atoms contained
in all training set clusters), ζ j is a coefficient obtained from training the SOAP model, and Kij ≡ K(ρi,ρj).
Inserting equation (20) into equation (19) yields

αI =

NI∑
i

Ntrain∑
j

Kijζj =

Ntrain∑
j

K sum
I,j ζj, (21)

where we defined the sum kernel K sum
I,j =

∑NI

i Kij.
Determining the coefficients ζ j is difficult as the fit to the calculated cluster polarizabilities is strongly

underdetermined (as the number of coefficients is the total number of atoms of all clusters in the training
set). To make progress, the number of coefficients must be reduced. Intuitively, this should be possible as the
atomic environments of many atoms in the training set are very similar. Practically, this sparsification is
achieved by means of a singular value decomposition (SVD) of the descriptor matrix D whose rows contain
the descriptor vectors from equation (16). Specifically, D is expressed as

D= UΣVT, (22)

where U and VT contain the right and left singular vectors, respectively, andΣ is a diagonal matrix
containing the singular values. If many environments in D are similar, only a few singular values will have
large magnitudes. We only retain those singular values which are larger than a given threshold and use the
corresponding left singular vectors (which form a matrix Ṽ) as a new basis to represent D.

The elements of the SOAP kernel K̃ corresponding to this new set of effective descriptors are obtained by
projecting the descriptors di onto the rows ṽj of the truncated matrix of singular vectors Ṽ according to

K̃ij = di · ṽj. (23)

Next, the effective sum kernel K̃sum can be calculated using equation (21), but now the number of
coefficients ζ i is equal to the number of singular vectors whose singular values exceed the threshold. Finally,
the vector of coefficients ζ is obtained from [49]

ζ =
[
ṼTṼ+(K̃sum)TΛ−1K̃sum

]−1
(K̃sum)TΛ−1α, (24)

whereΛ= λI with λ being a regularization parameter and α denotes the vector of calculated cluster
polarizabilities.

Alternatively, the cluster polarizability can be expressed as the number of silicon atoms multiplied by
their average polarizability αav (note that in this definition αav also contains the smaller contribution from
the hydrogen atoms)

α= NSiα
av
Si . (25)
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To calculate the average polarizability, we average the SOAP kernel matrix over environments belonging
to pairs of clusters [51]

Kav
IJ =

1

NINJ

NI∑
i

NJ∑
j

Kij. (26)

Using kernel ridge regression, the average polarizability of the silicon atoms in a given cluster is expressed
as

αav
Si =

ntrain∑
J

Kav
J ζJ, (27)

where ntrain denotes the number of clusters in the training set and the vector of coefficients ζ J is determined
by

ζ = (Kav +Λ)−1 αav, (28)

where αav is the vector containing the average polarizabilities per atom of the training set clusters. As a
consequence of the averaging, no additional sparsification procedure is required as in the case of the sum
kernel.

This method has the advantage that the average polarizability can be written as a sum of atomic
contributions, which allows one to assign polarizabilities to individual atoms. This can be achieved by
omitting the average over the index i in equation (26), which yields a prediction for each silicon atom in a
cluster

It is interesting to note that the polarizability obtained from the average kernel can also be expressed as a
sum of atomic contributions given by

αi =
1

NJ

ntrain∑
J

NJ∑
j

KijζJ. (29)

Apart from the scaling factor 1/NJ, the last equation is very similar to equation (20) of the sum kernel
approach, with the additional constraint that the coefficients ζ j on atoms in a cluster J are all equal,
ζj = ζJ ∀j ∈ J. The effect of the scaling factor is that while the sum kernel is extensive (its magnitude scales
with the number of atoms in the cluster), the average kernel is intensive, independent of system size. As a
consequence of this, large clusters get more heavily weighted in the solution of the least squares problem,
equation (24), compared with that for the average kernel.

Finally, we also use the ‘coherent average’ kernel (denoted ‘coh’), which is obtained as follows. Rather
than computing a SOAP descriptor for each atomic environment, as in equation (15), we take the spherical
harmonic coefficients cνnlm and average them first to obtain, for cluster I

c̄νI,nlm =
1

NI

NI∑
i=1

cνi,nlm, (30)

and then square these to form the averaged descriptor vector d̄I with components,

d̄ν,ν
′

I,nn ′l =
∑
m

c̄νI,nlm(̄c
ν ′

I,n ′lm)
∗, (31)

and the coherent (unnormalized) kernel between clusters I and J as

kcoh(I, J) = d̄I · d̄J. (32)

2.4. Physical models
We also use two simple physical-based models to fit the calculated RPA polarizabilities. In the first approach,
the cluster polarizability is assumed to be proportional to the number of silicon atoms NSi in the cluster, i.e.

α= αav
SiNSi, (33)
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with αav
Si denoting the average polarizability per silicon atom (again, any contributions from hydrogen

atoms is included in αav
Si in this definition). In contrast to the SOAP fitting with the average kernel, the

average polarizability is assumed to be the same for all clusters.
The second model is a bond polarizability approach where the cluster polarizability is expressed as a sum

of contributions from Si–Si bonds and Si–H bonds according to

α= αSi−SiNSi−Si +αSi−HNSi−H, (34)

where αSi−H and αSi−Si are the polarizabilities of Si–H and Si–Si bonds, respectively, and NSi−Si and NSi−H

are the number of Si–Si and Si–H hydrogen bonds, respectively. While this model explicitly includes the
contribution of the hydrogen atoms, it is also assumed that the bond polarizabilities are independent of the
cluster size and shape.

In a hydrogenated silicon cluster with only sp3 bonding, the number of Si–Si bonds and Si–H bonds can
be expressed in terms of the number of silicon and hydrogen atoms. In particular, NSi−Si is given by
(4NSi −NH)/2, and NSi−H is equal to NH. Substituting these expressions into equation (34) yields

α=
4NSi −NH

2
αSi−Si +NHαSi−H. (35)

Dividing both sides by NSi yields the polarizability per silicon atom

α

NSi
= 2αSi−Si +

(
αSi−H − αSi−Si

2

) NH

NSi
. (36)

Interestingly, this shows that the polarizability per silicon atom is a function of the ratio of hydrogen and
silicon atoms only.

2.5. Generation of clusters
To generate atomic structures of hydrogenated silicon clusters we follow a similar procedure as Barnard and
Wilson [52] who carve spherical clusters from a perfect silicon crystal, terminate the dangling bonds on the
surface with hydrogen atoms and then relax the atomic positions using DFT. Unfortunately, this approach
only yields very few clusters with 100 or less silicon atoms. Because of the relatively large computational cost
associated with the RPA polarizability calculations, we instead use the following approach to generate
clusters: starting from the spherical Si123H100 cluster, we remove silicon atoms from the surface, terminating
any dangling bonds with hydrogen atoms and relax the structure with DFT. In this way, a set of 100
hydrogenated silicon clusters containing between 10 and 110 Si atoms is obtained for which RPA
polarizabilities are calculated. In addition, we include the spherical clusters with less than 123 Si atoms from
Barnard and Wilson [52].

2.6. Computational details
The plane-wave/pseudopotential DFT code Quantum Espresso [53, 54] was used to obtain Kohn–Sham
energies ϵn and wavefunctions ϕn(r). We employed the PBE exchange-correlation functional,
norm-conserving pseudopotentials from the original Quantum Espresso Pseudopotential library [53, 54]
and a plane-wave cut-off of 65 Ry. The clusters were placed in a cubic unit cell with sufficient vacuum to
avoid interactions between periodically repeated images. Next, cluster polarizabilities were calculated with
BerkeleyGW [46, 47] using a plane-wave cutoff of 6 Ry and a truncated Coulomb interaction. A total of 600
Kohn–Sham states were included in the summation for χ which was found to be sufficient to converge the
scalar polarizabilities. SOAP descriptors were constructed with lmax = 9 and nmax = 20 and γν = 2.0 for
rcut ⩽ 10.0 Å and γν = 0.5 for rcut > 10.0 Å. In all calculations, we only study local environments of silicon
atoms. As all hydrogen atoms are bonded to silicon atoms, their contribution to the cluster polarizabilities
can be captured indirectly through their influence on the silicon atoms.

3. Results and discussion

3.1. Fitting polarizabilities
Figure 1(a) shows the RPA polarizabilities of the hydrogenated silicon clusters as function of the number of
silicon atoms in the cluster. We observe that the polarizability exhibits a linear behaviour which suggests that
the Si atoms provide the dominant contribution.

Deviations from the linear behaviour become explicit when the cluster polarizability is divided by the
number of silicon atoms, see figure 1(b). For clusters containing more than 80 Si atoms, the polarizability per
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Figure 1. (a) RPA scalar polarizability α of hydrogenated silicon clusters versus number of silicon atoms NSi. The polarizability
increases approximately linearly with NSi. (b) RPA polarizability divided by NSi shows deviations from linearity.

silicon atom decreases. Interestingly, α/NSi increases for cluster between 70 and 80 silicon atoms, but
decreases again for clusters between 40 and 70 silicon atoms. For clusters with less than 40 Si atoms, there is a
significant amount of scatter in the polarizabilities but overall α/NSi tends to increase with increasing
number of Si atoms. Overall, the polarizability per silicon atom has an M-like shape as function of the
number of silicon atoms.

For very large clusters, α/NSi should converge to the atomic RPA polarizability of bulk silicon which is
3.77 Å3 (determined using the Clausius–Mossotti relation using a bulk dielectric constant of 12.2 [43]). This
explains the observed decrease of α/NSi for NSi > 80. Note that in our results the bulk value is not
approached from below because we have not removed the hydrogen contributions from the cluster
polarizabilities [35, 36].

To understand these findings, we first compare our results to two physical-based models: a model in
which the cluster polarizability is assumed to be proportional to the number of Si atoms (denoted the linear
NSi model) and a bond polarizability model (see Methods). The parameters of both models were fitted to the
calculated RPA data using a least squares optimization. The results are shown in figure 2(a). While the linear
NSi model cannot capture any dependence of α/NSi on the number of silicon atoms, the bond polarizability
model correctly describes several key features. In particular, it shows a decreasing trend for large clusters and
a minimum near NSi = 70. For small clusters, the bond polarizability model predicts an increase in
polarizability as the number of Si atoms is reduced in disagreement with the RPA data. Interestingly, the bond
polarizability model also features a significant scatter for small clusters. As discussed in the methods section,
α/NSi in the bond polarizability model only depends on the ratio of hydrogen and silicon atoms NH/NSi

suggesting that this parameter is an important effective descriptor of the hydrogenated silicon clusters.
While the bond polarizability model captures several features, we note that neither of the two physical

models can capture the full M-shape of the polarizability per Si atom in figure 2(a). Furthermore, from the
least square fits of the linear NSi model to the RPA data, we find αav

Si = 4.29 Å3. This is significantly larger
than the RPA value in bulk Si of 3.77 Å3. The parameters of the bond polarizability model are found to be
αSi−Si = 1.98 Å3 and αSi−H = 1.32 Å3. As the polarizability per Si atom is 2αSi−Si, the predicted bulk value is
3.96 Å3 which is in better agreement with RPA results.
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Figure 2. Comparison of α/NSi (cluster polarizability divided by the number of silicon atoms) from RPA calculations (blue dots)
with fits from various models. (a) The black line shows the optimal fit for the linear NSi model, see equation (33). Orange
triangles denote results from the bond polarizability model, see equation (34). (b) Results obtained using SOAP with the sum
kernel (green squares), the average kernel (red squares) and the coherent kernel (black crosses). A cut-off of 2.5 Å was employed.
(c) Same as (b) but with a cut-off of 20 Å.

The above analysis demonstrates that both physical-based models have several shortcomings. This is a
consequence of two factors: (a) their parameters do not depend on the properties of the local chemical
environment, i.e. bond lengths or bond angles. In particular for small clusters, significant atomic relaxations
occur resulting in changes to the bond polarizabilites compared to the larger clusters which are not captured
by the bond polarizability model. (b) The models do not capture the effects of interactions between the
polarizable units. As a consequence, they cannot distinguish between clusters containing the same numbers
of Si and H atoms and do not capture the dependence of the polarizability on the cluster shape. To overcome
these problems, we now explore the ability of machine learning models to describe the polarizabilities of Si
clusters.

Figures 2(b) and (c) show the results from the machine learning model using both the sum kernel, the
average kernel and the coherent kernel (see methods). The real space cutoff that determines the size of the
chemical environment of each atom is rc = 2.5 Å in figure 2(b) and rc = 20 Å in figure 2(c). In the fit, the
regularization parameter λ was kept small (10−15 for the sum kernel model and 10−12 for the average and
coherent kernels) in order to allow as much flexibility in the parameters as possible. For the smaller cut-off
(where only nearest neighbour atoms are included in the local environment), all three kernels provide an
improved description compared to the physical-based models. Specifically, they capture the M-shape of
α/NSi as function of NSi and also reproduce the scatter for smaller clusters. The coherent kernel is slightly
better than the averaged kernel, and significant deviations from the calculated polarizabilities are only
observed for the smallest cluster sizes when the sum kernel is used. When rc is increased to 20 Å, the
agreement between the ML models and the calculated polarizabilities is significantly improved. In particular,
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Figure 3. Average mean absolute error (MAE) of α/NSi (the cluster polarizability divided by the number of silicon atoms) from
various machine learning models and physical-based models versus the cut-off radius rcut that determines the size of the local
chemical environment. Optimal regularization parameters were determined using five-fold cross-validation. Error bars indicate
the standard error of the average MAE across the five training and validation sets used in the cross validation procedure.

the results from the average and the coherent kernel are in almost perfect agreement with the data, while the
sum kernel results show small deviations for smaller clusters. The good results obtained for the short cutoff
indicate that polarizabilities are dominated by local chemical effects. However, long-range interactions also
influence polarizabilities and this is captured when the cutoff radius is increased.

3.2. Predicting polarizabilities
Up to this point, we only considered the ability of the SOAP approach to fit the calculated cluster
polarizabilities. To investigate SOAP’s capacity to predict polarizabilities of clusters that it was not trained on,
we use k-fold cross validation [55]. In this procedure, the clusters in the data set are randomly assigned to
five sub-sets. Next, four sub-sets are used to train the ML approach and the fifth sub-set is used as the test set.
This is done five times with each sub-set acting as test set once. We optimize the regularization parameter λ
to minimize the mean average error (MAE). The optimal parameters are listed in the appendix. The resulting
MAE and its standard deviation as function of rcut are shown in figure 3(a). The average kernel and the
coherent kernel yield very similar results and are compared in figure 3(b). Strikingly, the sum kernel model
produces the largest MAE for the test set among all methods. In particular, the test set MAE is significantly
larger than the training set MAE indicating poor capacity to predict polarizabilities. In contrast, the average
kernel model yields the smallest test set MAE which is only slightly worse than the training set error. The
coherent kernel model yields slightly worse predictions than the average kernel, with the biggest difference
between the two occurring at rcut = 5.0 Å. The MAE of the two physical-based models lies between those of
the sum kernel and the average kernel. The different performances of the sum kernel and the average kernels
originate from the different training procedures: the sum kernel model is trained on total cluster
polarizabilities, while the average kernel is trained on the average polarizability per silicon atom, see
equation (28). As a consequence, the sum kernel model is biased towards more accurate predictions for large
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Figure 4.Matrix elements of the average SOAP kernel Kav
IJ , see equation (26), for cut-offs rcut of 5.0 Å (a) and 17.5 Å (b). Note the

rapid decay of the matrix elements along rows and columns when a large cut-off radius is used.

clusters and is less accurate for small clusters. This can also be seen in figure 2(c) which shows that the quality
of the sum kernel fit improves for larger clusters. This has been observed before by Stocker et al [56] who
argued that the intensive average kernel has the advantage of equally weighting small and large molecules,
which is beneficial when learning quantities over a large range of cluster sizes. Interestingly, the average
kernel performs somewhat better than the coherent kernel suggesting that a model of the cluster
polarizability that can be expressed as a sum of atomic contributions constitutes a better representation of
the system’s dielectric response.

Figure 3 also shows that the minimum test set MAE for the average kernel and the coherent kernel is
obtained around rcut = 12.5 Å, while for the sum kernel the minimum is achieved for rcut = 15.0 Å.
Interestingly, neither kernel benefits significantly from increasing rcut beyond 5 Å. To understand this
finding, we compare the elements of the average kernel matrix for rcut = 5.0 Å and rcut = 17.5 Å, see figure 4.
For the smaller cutoff, the kernel matrix decays slowly along the rows and columns of the kernel matrix. In
contrast, the decay is significantly more pronounced for the larger cutoff suggesting that a smaller cutoff
facilitates the recognition of similar chemical environments in clusters of different size. This is not surprising
because for large cutoffs the chemical environment contains a significant amount of vacuum for small
clusters, but not for large clusters.

Next, we explore the ability of the ML approach to predict polarizabilities of large clusters based on a
training set of small clusters. For this, we train the average kernel on the 60, 70 or 80 smallest clusters and
then predict the polarizabilities of the remaining large clusters in the data set. Figure 5 shows the resulting
test set MAE as function of the cutoff radius. All curves exhibit a minimum at small cut-offs near rcut = 5 Å
and the smallest MAE is obtained for the largest training set. For the smaller training sets (nt = 60 or 70) the
MAE increases rapidly as the cutoff is increased, while for the largest training set the increase is mild (and
another minimum is found at rcut = 17.5 Å). Similar to our findings in the k-fold cross validation, this shows
that it is not beneficial to increase the cut-off radius beyond a certain value.
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Figure 5. Average kernel test set error as a function of SOAP cut-off. The smallest nt clusters were included in the training set for
each curve. The test set consists of the remaining 100− nt clusters.

Figure 6. Comparison of RPA results for α/NSi (cluster polarizability divided by the number of silicon atoms) and training and
test set predictions of the average kernel model. The training set consists of the (a) nt = 60, (b) nt = 70 and (c) nt = 80 smallest
clusters and the test set contains the remaning 100− nt large clusters.

Figures 6(a)–(c) compare the predictions of the average kernel with rcut = 5 Å with the calculated RPA
polarizabilities per silicon atom. For all three training set sizes, the ML model captures the qualitative trends.
For nt = 60, the average kernel correctly predicts the increase of α/NSi at NSi = 70 and also the decrease
starting at NSi = 80. While the ML models underestimate the polarizabilities per Si atom for large clusters
when nt = 60 and nt = 70, good quantitative agreement is achieved for nt = 80.
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Figure 7. Cluster polarizability divided by the number of silicon atoms for all clusters of Silicon Quantum Dot database [52] from
the average SOAP kernel model with rcut = 5.0 Å.

Figure 8. Atomic polarizabilities of the Si2109H604 cluster obtained from the SOAP average kernel method. Shown is a cross
section through the center of the cluster. (a) Atomic polarizabilities when only silicon chemical environments are used. (b)
Atomic polarizabilities when both silicon and hydrogen chemical environments are used. For hydrogen environments rcut = 1.6 Å
was used and for silicon environments rcut = 5.0 Å was used. Large dots represent silicon atoms and small dots represent
hydrogen atoms.

Finally, we train the average kernel model on the entire data set (using rcut = 5 Å) and predict the average
polarizabilities of the entire Silicon Quantum Dot data set containing clusters with up to 3000 silicon atoms
[52]. The results are shown in figure 7. It can be observed that the polarizability per Si atom converges slowly
to its bulk limit as NSi increases and there is significant scatter in the results. The scatter in α/NSi reflects
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the different NH/NSi ratios and different environments present in the clusters. To understand the slow
convergence to the bulk value, note that the number of silicon atoms scales with the cluster volume, while the
number of hydrogen atoms is roughly proportional to the surface area. This suggests that α/NSi should be

proportional to the inverse radius of the cluster or, equivalently, to 1/N1/3
Si . Indeed, figure 7 shows that the

ML predictions are well described by the function a+ b/N1/3
Si with a= 3.89 Å3 and b= 1.55 obtained from a

least-squares fit. The value of a agrees well with the RPA atomic polarizability of bulk silicon of 3.77 Å3 [43].
Additional insights can be obtained by analyzing the atomic polarizabilities obtained from the SOAP

average kernel method, see equation (29). Figure 8 shows the atomic polarizabilities of a Si2109H604 cluster. In
figure 8(a) only local chemical environments of silicon atoms are considered (and the effect of the hydrogen
atoms is captured indirectly through their influence on the silicon chemical environments). Silicon atoms in
the center of the cluster have a polarizability of 3.76 Å3, in excellent agreement with value extracted from
bulk calculations of 3.77 Å3 [43]. The polarizability of the silicon atoms in the two surface layers is larger,
sometimes as large as 5 Å3. The reason for this increase is that the surface silicon atoms are bonded to
hydrogen atoms and their atomic polarizability is effectively the sum of the silicon and hydrogen
contributions. To disentangle contributions from silicon and hydrogen atoms to the cluster polarizability,
figure 8 shows the atomic polarizabilities from a calculation that explicitly takes chemical environments of
hydrogen atoms into account. Interestingly, the results suggest that the atomic polarizability of subsurface
silicon atoms is larger than the bulk value, but the polarizability of surface silicon atoms (which are bonded
to hydrogens) is smaller. The average atomic polarizability of the silicon atoms is found to be 3.63 Å3. This is
in agreement with the results of Mochizuki et al [36], who predicted that the bulk limit of the silicon atomic
polarizability is approached from below.

4. Conclusions

In this work, we have demonstrated that machine learning models based on the SOAP descriptor can be used
to accurately and efficiently predict polarizabilities of large hydrogenated silicon clusters. Using the random
phase approximation, we calculated the polarizabilities of a set of hydrogenated silicon clusters containing
between 10 and 110 silicon atoms. We then assessed the ability of three machine learning models (one using
the sum kernel, one using the average kernel and one the coherent kernel) to fit the calculated polarizabilities
and find that all three models perform well when the local environment includes nearest neighbour atoms
only. Increasing the size of the environment improves the quality of the fit. Next, we investigated the ability of
the machine learning models to predict polarizabilities of clusters that are not in the training set. Using
k-fold cross validation, we find that the average kernel performs significantly better than the sum kernel and
that the predictions only weakly depend on the size of the chemical environment. We also tested the
predictive power of the average kernel when it is trained on small clusters only and find that quantitative
accuracy can be achieved if the training set is sufficiently large. Finally, we use the average kernel approach to
predict the polarizabilities of hydrogenated silicon atoms with up to 3000 silicon atoms and find that the
results approach the correct bulk limit. The ability to efficiently calculate polarizabilities of large clusters
paves the way towards using machine learning for excited-state properties of these systems. For example, the
static density-density response function (from which the polarizability is calculated) is a key ingredient for
calculating quasiparticle properties within the GW approach (typically when used in conjunction with a
generalized plasmon-pole model) and also for calculating optical properties by solving the Bethe–Salpeter
equation. Symmetry-adapted kernel regression could be used to straightforwardly generalise our models to
predict the full polarisability tensor [20].
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Appendix

Table 1. Regularization paramaters λav and λsum determined from k-fold cross validation [55] at different cut-off radii rcut.

rcut (Å) λav λsum λcoh

2.5 10−8 10−8 10−8

5.0 10−5 0.0001 10−6

7.5 10−5 0.01 10−5

10.0 0.0001 0.01 0.0001
12.5 10−5 10−6 10−5

15.0 10−5 10−5 10−5

17.5 0.0001 0.001 0.0001
20.0 0.0001 0.001 0.0001
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