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Summary 

This thesis reports an experimental study of transport on a mesoscopic length­
scale in the localised regime of two-dimensional electron systems (2DES) with 
varying disorder. Devices with dimensions of a few microns were fabricated 
from modulation doped GaAs/ AlGaAs heterostructures, where the strength 
of disorder was tuned by changing the width of the undoped spacer layer 
separating the 2DES from the charged dopants, which are the main source 
of disorder in these systems. The main motivation of the experiments was 
to study the interplay between electron-electron interactions and short-range 
disorder at low electron densities, while avoiding the impact of long-range 
charge inhomogeneities that are usually present in this regime. 

Indeed, several new observations have been achieved with this approach: 
Chapter 5 reports an universal behaviour of hopping magnetoresistance, with 
evidence of the average hopping distance being equal to the average electron­
electron separation, and a quantisation of the hopping prefactor in units of 
the quantum of resistance h/e2

. Chapter 6 discusses the temperature de­
pendence of resistance. The main result is an apparent temperature driven 
metal-to-insulator transition with a crossover from activated transport at high 
temperatures to metallic transport at low temperatures. This observation per­
sists to resistivities of several hundred times the quantum of resistance. In 
chapter 7 a new kind of resistance oscillations is reported, which appear as 
a function of electron density when a strong perpendicular magnetic field is 
applied. A strongly amplified pick-up of the Shubnikov-de Haas oscillation and 
a modification of t he quantum Hall effect are reported in chapter 8. Further­
more, a new technique for measuring the electron density in mesoscopic 2DES 
is presented in chapter 4. 
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Chapter 1 

Introduction 

Ever since the first two--dimensional electron systems (2DES) were realised, 
they have been used extensively to investigate various theories and concepts 
of charge localisation. Anderson [1] and Mott [2 , 3] pioneered the theoreti­
cal understanding of localisation, preparing the way for the seminal work by 
Abrahams et al. [4] on the scaling theory of localisation. This theory predicts 
that in two dimensions, all electron states are localised at zero temperature in 
presence of even infinitely small disorder. 

These theoretical investigations were focusing on the single-particle localisa­
tion by disorder and did not take any significant electron-electron interactions 
into account. This was justified by early experimental studies of transport in 
2D, where an insulating phase was observed and it was found that the trans­
port behaviour could very well be described by a single-particle picture [5-7]. 

More recently, the focus has turned to the investigation of electron-electron 
interaction effects . A first success was the experimental observation of the 
Coulomb gap predicted by Efros and Shklovskii [8- 10]. However, the Coulomb 
gap is only a modification of the single-particle density of states and does 
not introduce a fundamental change to the ground state of a 2DES and, in 
particular, its insulating nature. 

In the limit of very strong interactions and weak or abse_nt disorder , the 
formation of a Wigner crystal is expected [11 , 12]. In this phase electrons are 
not localised by disorder, but by their mutual repulsion due to the Coulomb 
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force. The transition to the Wigner crystal is determined by the interaction 
parameter r5 = Ee/ EF, with Ee the Coulomb interaction energy between elec­
trons and EF their Fermi energy. For 2DES one finds r5 = 1/a13 ~ , with 
a13 the effective Bohr radius and n 5 the electron sheet density. Hence, with 
decreasing electron density, the strength of the Coulomb interaction relative 
to the kinetic energy of the electrons becomes larger, eventually leading to the 
formation of the Wigner crystal. Experimentally, indications of a crystalline 
electronic phase have been reported [13- 18] , the approach most ly being a min­
imisation of disorder and/ or application of a strong perpendicular magnetic 
field. However, conclusive evidence is still lacking. 

The intermediate regime, where both disorder and electron-electron inter­
actions are equally important , is very challenging to study theoretically and 
experimentally and is still not well understood. 

It is of particular interest if, in presence of moderate disorder and electron­
electron interactions, the scaling theory of localisation still holds. Despite a 
large amount of work, especially around a putative metal-insulator transition 
in 2D reported by Kravchenko et al. [19], this question is still controversial. 

On the other hand, moderate disorder might be able to enhance interaction 
effects. A possible mechanism is that the disorder quenches the kinetic energy 
of the electrons, effectively increasing the interaction parameter r 5 • This could 
lead to a stronger impact of electron-electron interactions at higher electron 
densities. Indeed, a possible formation of a Wigner crystal has been suggested 
in presence of disorder at much higher electron density than in the disorder­
free case [20]. 

This thesis presents a study of transport in 2D ES under systematic variation 
of the strength of both disorder and interactions. It is an attempt to fill the 
gap in experimental investigation of the regime of intermediate disorder and 
electron-electron interactions. The following section discusses the problems in 
previous investigations of this kind and introduces a new approach to overcome 
those problems: Mesoscopic two-dimensional electron systems in modulation 
doped GaAs/ AlGaAs heterojunctions. 
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1.1 Mesoscopic 2DES in Modulation Doped 

GaAs/ AlGaAs Heterostructures 

A crucial property of disorder is the characteristic lengt h-scale of its potential 
fluctuations. If the disorder is mainly long-range, the system becomes increas­
ingly inhomogeneous at low electron densit ies. This can lead to formation of 
puddles of electrons separated by depopulated areas, where transport occurs 
according to classical percolation laws, masking any possible interaction ef­
fects between electrons [21]. Such charge inhomogeneit ies have been known 
for a long time to have a large impact on transport, e.g. in Si-MOSFETs [22], 
high mobility modulation doped GaAs/ AlGaAs heterojunctions [23] and even 
undoped GaAs/ AlGaAs heterojunctions [24]. An experimental approach for 
investigating interaction effects in presence of disorder should minimise the 
effects of long-range disorder and focus on short-range fluctuations. 

In modulation doped GaAs/ AlGaAs heterojunctions, the disorder mainly 
comes from the remote charged ions in the doping layer, and the strengt h of 
disorder depends strongly on the width 6sp of the undoped spacer layer between 
2DES and doping layer. The possibility of changing the strength of disorder 
by varying 6sp provides a powerful tool in the investigation of disorder effects. 

In theoretical treatment , an ent irely random distribution of t he dopants is 
generally assumed, giving an uniform spectral density of the potential fluctu­
ations with only t he fluctuations of length-scale < 6sp exponentially damped 
in the 2DES [25]. However, recent imaging of the disorder landscape of 2DES 
suggests that the dominant length-scale in modulation doped GaAs/ AlGaAs 
heterojunctions is, in fact, greater than 0.5 µm » 6sp [26, 27]. This strongly 
indicates that in t hese systems long-range disorder dominates on a macroscopic 
length-scale. -

In consideration of this problem, the experimental approach used in t his 
PhD differs in two crucial ways from previous studies of charge localisation in 
2D: 

(1) Mesoscopic 2DES have been used, extending only over 0.5 µm to a few 
microns, thereby strongly reducing the impact of long-range disorder and al­
lowing a focus on the short-range fluctuations of order 6sp · This is shown 



Chapter 1. Introduction 

Ee 
EF-

Macroscopic 

AIGaAs 
Dopants + + ++ ++ ++ ++t Os 

2DES i p 

GaAs 

Figure 1.1: Schematic of dominant disorder on macroscopic and mesoscopic 

length-scale: While in a macroscopic device, long-range disorder leads to an 

inhomogeneous electron distribution, a mesoscopic device avoids or strongly 

reduces this problem. The mesoscopic 2DES is homogeneous and the domi­

nant disorder is of short length-scale. 

schematically in Fig. 1.1. 
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(2) Instead of outright minimisation, the strength of background potential fluc­
tuations has been tuned systematically by varying the spacer width. 
Furthermore, for a given spacer width the electron density and, therefore, in­
teraction parameter rs can be changed with a metallic topgate. 

A very simple, but nevertheless revealing experiment is shown in Fig. 1.2. 
It compares the conductivity <Y as a function of ns for a macroscopic device 
with dimensions W x L = 100 µm x 900 µm and a mesoscopic device (W x L = 

8 µm x 3 µm) from the same wafer. Here, the width W and length Lare the 
dimensions perpendicular and parallel to the current direction, respectively. 

One can immediately see that a sharp downturn of conductivity starts at 
n8 > 3 x 1010 cm-2 in the macroscopic device (Fig. 1.2 a) ). In the mesoscopic 
device (Fig. 1.2 b)) , the downturn occurs at much lower electron density. This 
allows for transport measurements in the mesoscopic device at almost t hree 
t imes lower densities, making a new regime of disorder and interaction strength 
accessible in transport experiments. 
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Figure 1.2: Conductivity CY as a function of electron density n 8 at T=300 mK 

for a macroscopic ( A 77Lc) and a mesoscopic ( A 77 a) device from the same 

wafer. The solid lines are fits of the percolation scaling relation CY ex ( ns -nc)'Y. 

The data from the macroscopic device shows excellent agreement, while the 

mesoscopic device shows a qualitatively different behaviour and, additionally, 

a freeze-out of transport at much lower n8 • 
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Furthermore, CY in the macroscopic device shows excellent classical perco­
lation- like scaling CJ ex: (ns - nc)'Y with nc ~ 1. 73 X 1010 cm-2 and 'Y rv 2.15 

(solid line in Fig. 1.2 a)). The value of 'Y is in reasonable agreement with 
the theoretical prediction of 4/3 and close to previously reported experimental 

values [24]. This confirms an inhomogeneity driven percolation transition in 
the macroscopic device. 

By contrast, for the mesoscopic device, fitting of a scaling expression was 
found to be difficult . An attempted fit is shown as the solid line in Fig. 1.2 b) 
with a poor agreement. The parameters in this fit are nc ~ 0.5 x 1010 cm-2 and 
'Y rv 2.4. However, they should not be considered physically meaningful, as the 
scaling relation is clearly not the right expression ·to describe the behaviour 

of CJ in the mesoscopic device. This disparity from the macroscopic device 
indicates a different localisation mechanism on a mesoscopic length-scale and 
raises hopes for attaining new insights into the nature of transport and locali­
sation from experiments in this regime. 
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In the remaining parts of this thesis,. I hope to convince the reader that the 
investigations of transport on a mesoscopic length-scale have, indeed, lead to 
the discovery of several exciting new phenomena in 2DES. 



Chapter 2 

Fundamentals: 2D Electron 

Systems in Semiconductors 

This chapter tries to give a summary of previous work on two-dimensional elec­
tron systems (2DES) that is of relevance for this thesis. It treats both theory 
and experiments. The theoretical discussions give a rather general overview on 
2DES with a focus on localisation and interaction effects, while more specific 
theory is included in the respective later chapters of the thesis. The exper­
iments described represent by no means a complete history of experimental 
work done on 2DES but are only meant to give the background necessary to 
put the results presented in the t hesis into perspective. 

2.1 General Considerations 

If electrons are confined in a narrow potential well, their motion in one di­
mension is restricted to discrete energy levels. If the separation between t hese 
energy levels is large compared to other relevant energies, in particular the 
thermal energy, the electrons will be frozen into the ground state and no mo­
tion in this dimension will be possible. If this is the case, one talks of a 
two-dimensional electron system. 

7 
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2.1.1 Energy Dispersion and Density of States 

The movement of an electron in such a 2DES can be modelled in a simple 
single particle picture: The dispersion · relation of an electron in a quantum 

. n2k2 

well without external field is E = En+ 2ml1 where En is the subband energy 
of the quantum well, k 11 the two dimensional electron wave vector, and m* 
the effective electron mass. The subband energy depends on the exact shape 
of the confining potential, e.g. for a square potential well with infinitely high 
walls the analytical solution is En = 8~~;2 with d the width of the well. 

In three dimensions the density of states (DOS) is given by N3D = m~. 

In two dimensions , the density of states changes drastically and becomes a 
constant N2D = ~: for any given subband. Taking all subbands into account, 
this leads to a step function as shown in Fig. 2.1 with the steps occurring at 
the subband energies En. In the limit of weak confinement and, hence, small 
energy quantisation, the step function approaches the 3D DOS. All experi­
ments presented in this thesis were carried out in the regime where only one 
subband was occupied. For this situation, the Fermi energy at T = 0 can easily 
be calculated from the DOS and one finds EF = nn

2
'!;" . Through the relation 

2 2 m 
EF = ~;; the Fermi wave number kp = j2rns is derived. The Fermi velocity 
Vp = !tkp/m* and the Fermi temperature TF = Ep/kB with kB the Boltzmann 
constant follow directly. 

Taking disorder and thermal broadening into account the perfect step func­
tion does not hold. It loses its sharpness with the DOS being reduced at 
energies just above the step and increased just below. This leads to a finite 
number of states even below the lowest subband energy. These states are 
called the band tail. While higher energy states can be extended and mobile, 
the states in the band tail will generally be localised. Localisation will be 
discussed in more detail in Sect. 2.3. Additional modifications to the density 
of states can a:rise from interaction effects between electrons, these will also be 
discussed later (Sect . 2.3.3). 

2.1.2 Mobility 

The mobility of an electron is defined asµ = eT /m* with e the .electron charge, 
m* the effective mass, and T scattering or momentum relaxation time of the 
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Figure 2.1: Density of states in two dimensions in a clean system at zero 

temperature. The black parabolic line indicates the DOS in a film of large 

thickness. 
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otherwise freely moving electron. In the Drude model this leads to the ex­
pression for the conductivity a= n;.::_~ 7 = n5 eµ. The mobility is an important 
quantity in the classification of 2DES, it is the most common way of specifying 
the quality of a 2DES. The scattering rate and, hence, the mobility depends 
strongly on the disorder. The lower the disorder, the higher the mobility. How­
ever , screening of the disorder potential by the electrons in the 2DES itself can 
hugely reduce the scattering and the mobility becomes a strongly electron 
density dependent quantity. For a comparison of wafers, the mobilities should 
therefore be compared at a constant electron density. 

There are various sources of disorder and, hence, scattering, the most im­
portant ones are listed in Sect. 2.2.3. If the different scattering processes are 
independent of each other, the total scattering time T can be calculated using 
Matthiessen's _rule [28]: 

(2.1) 

The mobility is only well defined in the regime of extended states, i.e. freely 
moving electrons that only scatter occasionally, leading to a well defined scat­
tering time T . In the localised regime, where most of the experiments in this 
thesis were done , it does not make much sense to talk about the electron mo­
bility since electrons are immobile and scattering can actually even increase 
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transport. Nevertheless, the mobility of a 2DES at higher ns can give an es­
timate of the strength of disorder that keeps its significance even in the low 

density regime. 

2.1.3 Interaction Parameter 

The interaction parameter is defined as r s = 1 / a13 -J7rns with a13 = 4
;:.

2
eEio 

the effective Bohr radius. This means that rs is the radius of a circle that 
encloses each electron if they were arranged in a hexagonal lattice in units of 
a13 . Another meaning of r 8 becomes clear when comparing the Fermi energy 
EF = 7r/i

2
:;is in two dimensions with the Coulomb interaction energy Ee = m 

e
2

4
vnsir. One can easily show that 
·71"EEQ 

1 Ee 
rs= =-aB-J7rns EF · 

(2.2) 

This means that r 8 gives a measure of the effective Coulomb interaction be-
tween electrons, i.e. the Coulomb energy compared to the Fermi and, hence, 
kinetic energy of the electrons. The proportionality of r 8 to 1/ .,Jn;,, therefore, 
means that Coulomb interaction effects should be stronger at lower electron 
densities. 

2.2 Modulation Doped GaAs/ AlGaAs 

IIeterostructures 

There are several ways of realising two-dimensional electron systems in semi­
conductors. Most widely used are silicon metal oxide semiconductor field effect 
transistors (Si-MOSFET) and GaAs/ AlGaAs heterostructures. The second 
approach was used in this work and in this section, its theoretical prerequi­
sites are given. 

2.2.1 Bandstructure 

The two semiconductors AlAs and GaAs are both arranged ·in a zincblende 
structure and they have a lattice mismatch of 0.2% at most. This enables the 
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growth of these two materials on top of each other with negligible strain. GaAs 

and AlAs have different band gaps and Egap of the alloy AlxGa1_xAs varies 

as [29] 

Egap = (1.42 + 1.25x) eV X < 0.45 (2.3) 

The fact that for x < 0.4 AlxGa1_xAs is a direct gap semiconductor simplifies 

both theoretical and experimental investigations. These properties enable the 

realisation of arbitrary potential shapes by varying the concentration of alu­

minium. With modern growth technologies such as molecular beam epitaxy 

(MBE), layer thickness and composition can be controlled almost perfectly. 

Two-dimensional electron systems (2DES) can be realised by bringing a bulk 

of GaAs in contact with a bulk of AlxGa1_xAs. Generally, an Al content of x = 
0.33 is used, providing a large conduction band offset but keeping the band gap 

direct. In modulation doped heterostructures the wide gap material AlGaAs is 

doped, but separated from the heterojunction by a spacer of undoped AlGaAs. 

In bulk-doping the dopants are distributed over an extended layer of AlGaAs. 

Alternatively, in 5-doping the dopants are deposited in one monolayer but 

may spread out into a few monolayers by diffusion. The most commonly used 

dopant is silicon. In order to keep the Fermi levels aligned, electrons diffuse 

from the doping layer to the narrow gap material GaAs. This leads to the 

formation of a positively charged layer in the AlGaAs side, which gives rise to 

a strong electric field causing a band tilting in the GaAs and the formation 

of a triangular potential well confining a two-dimensional electron system at 

the GaAs-AlGaAs interface. A schematic of a bandstructure of a 5-doped 

heterojunction is shown in Fig. 2.2. In 2DES formed at the heterointerface the 

electrons are free to move in the plane of the interface but are confined in the 

perpendicular direction. 

2.2.2 DX-Centres 

Silicon donor atoms in AlGaAs are not necessarily all positively charged. They 

can be in three different states, two shallow, hydrogenic donor states ( d+, 

d0
) and one deep donor state (DX-), called DX-centre (Fig. 2.2). The d 

states are the usual donor states, ionised ( d+) or in the neutral state with 

a loosely bound electron (d0
). A DX-centre is a d+ binding two electrons. 
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Figure 2.2: Band diagram of a 6-doped heterojunction of total depth dg and 

spacer width 6sp between doping layer and 2DES. Shallow (d) and deep (DX) 

donor states are indicated. 
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The "reaction" 2d0 --+ d+ + DX- is energetically favourable when it involves 

a defect formation with a Si-donor being displaced along the (111) direction 

away from the substitutional site [30-33] . These states lie in the AlxGa1_xAs 

band gap for x 2: 0.2. An important feature of DX-centres is the existence of 

a large barrier for the transition from and to the shallow states. This leads to 

an experimentally important property, namely a freeze-out temperature below 

which DX-centres can neither be formed, nor destroyed. Experimentally, this 

freeze-out temperature is found to be TDx ;::::; 130 K for x = 0.37 [33]. If the 

cooldown of the device is not too fast, one can assume that the vast majority 

of donors are either in the d+ or DX- state and no loosely bound electrons in 

d0 exist, which are prone to cause switching events resulting in experimental 

instabilities. An electrostatic change at low temperatures ( change of gate 

voltage) can alter this situation, e.g. applying a positive gate bias can lead 

to an accumulation of additional electrons in the dopant layer. These cannot 

be bound in DX-states anymore and flood the shallow donor states. On the 
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other hand, illumination after the cool-down can excite electrons out of the 
DX-centres, leading to photo-conductivity which is persistent since electrons 
cannot get trapped in DX-centres again. 

Depending on details of the heterostructure and gate voltage during the 
cooldown, a rather large number of donor electrons remain in the doping layer , 
forming DX-centres. This gives rise to an interesting property of the doping 
layer: Donor atoms are randomly distributed and, therefore, if all of them are 
ionised, cause a random background disorder potential in the 2DES. However , 
this need not be the case if donors are both in d+ and DX- states. Since DX­
centres are mobile at high temperatures they can rearrange themselves in order 
to minimise the electrostatic energy, thereby producing a degree of correlation 
of the charges in the doping layer and screening the disorder potential caused 
to some extent. Experimentally, this effect has been shown to lead to a strong 
enhancement of the mobility of two-dimensional electron syste~s [33]. The 
impact of remaining electrons in the dopant layer and possible correlations 
between them are further discussed in Sects. 3.3.3 and 9.2.1. 

2.2.3 Disorder 

Since the investigation of the interplay between disorder and electron-electron 
interactions forms a main part of this thesis, the sources and strength of dis­
order in GaAs/ AlGaAs heterostructures deserve a closer look. Disorder is 
represented by any disturbance of the periodic potential of the GaAs crystal 
in the 2DES. There are various effects that can cause such disturbances and 
the most important ones are: 

• Phonon scattering: Phonons are lattice vibrations that distort t he lattice 
and can· scatter electrons. This effect depends strongly on temperature 
and is not relevant at the low temperatures at which our experiment were 
carried out. 

• Surface roughness: The surface between GaAs and AlGaAs is not per­
fect ly flat. However , under good growth conditions very smooth surfaces 
can be achieved. Additionally, the closely matching lattice constants of 
GaAs and AlGaAs keep distortions arising from strain at the surface very 
small. 
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• Neutral impurities: A neutral impurity, such as Al in GaAs, distorts the 

lattice symmetry. In GaAs/ AlGaAs heterostructures, where the 2DES is 

in the GaAs, grown without any intentional Al, this effect is very small. 

Even if some aluminium atoms diffuse into the GaAs, their impact is 

small due to their charge neutrality. Neutral impurities can become an 

important source of disorder if the 2DEG is formed in AlGaAs or any 

other alloy. Due to the large number of randomly distributed substituting 

atoms, the lattice distortion can become strong in spite of the neutrality 
of the impurities. The electron scattering caused by this phenomenon is 

called alloy scattering. 

• Charged background impurities: During the growth process ionised donor 

and acceptor atoms are unintentionally incorporated into the otherwise 

undoped layers. Due to their charge, they can cause strong disturbance 

if they are close to the 2DES. However, in state-of-the-art MBE systems, 

the number of these impurities is so small ( estimated 1014cm-3), that 

their impact in negligible in doped heterostructures. 

• Charged donors in doping layer: Even though, in modulation doped 

heterostructures , the intentionally placed donors in the doping layer are 

separated from the 2DES, due to their number, they are the main source 

of disorder in the heterostructures used in this work [23, 33- 39]. 

The fact that the dominant source of disorder arises from the dopants in the 
doping layer provides a tool for a investigation of the influence of varying 

disorder strength on the properties of the 2DES: By varying the width bsp of the 

spacer layer , the degree of disorder in the 2DES can be varied systematically, 

a smaller spacer width leading to stronger disorder. 

Most theoretical [34- 36] and experimental [23, 37, 38] studies of disorder 

effects investigate the mobilities in the high density regime with extended 

electron wave functions, where the mobility proves to be a good measure of 

the influence of disorder, since the mobility is reduced with increased disorder 

scattering. Fig. 2.3 shows the effect of a varying spacer width in terms of the 

mobility in 6-doped heterostructures at constant electron and. doping density. 

A clear decrease in the mobility is seen as the spacer width is reduced. 



Chapter 2. Fundamentals: 2D Electron Systems in Semiconductors 15 

• • 
• 

,-... 
(/) 0.1 < • N 

E 
() 

u:, 
0 0.01 ..... 
~ • 

0 20 40 60 80 

5 (nm) 
sp 

Figure 2.3: Mobility as a function of spacer width 68p in &-doped heterostruc­

tures at constant electron density n 5 ;:::j 9 x 1010 cm-2 and doping concentration 

n6 ;:::j 2.5 x 1012 cm-2 . [Data provided by Dr. Arindam Ghosh] 

In this thesis, the focus is on the investigation of disorder in the localised 
and interacting regime of 2DES where the mobility is not a meaningful quan­
tity. However , the results of mobility investigations and, in particular, the 
dependence of µ on c5sp is relevant in the low density regime as well. It can 
be assumed that the relevant source of disorder comes from the doping layer 
as well and, hence, that the disorder strength strongly depends on the spacer 
width. In fact, experiments show that the influence of the spacer width be­
comes stronger with decreasing density within the extended regime [23]. Efros 
et al. studied theoretically the influence of the disorder arising from the dopant 
ions in both the linear and non-linear screening regime [39]. They considered 
that the unscreened potential arising from the dopant layer is damped expo­
nentially on a length scale R < 6sp but all harmonics with a wavelength greater 
than c5sp contribute similarly to the potential. This leads to a logarithmic diver­
gence of the bare mean square potential with system. size L, (F;) ex C log 2t, 
with C the average donor concentration. Electron screening removes this di­
vergence. In the linear screening regime, the electron concentration is large 
compared to the changes in concentration caused by the fluctuations of the 
bare potential. Under this condition, the screened potential is (F2

) ex C / c5;P 

I 
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with a much smaller prefactor than the unscreened case. If the electron den­
sity fluctuations are not small compare.d to the average ns, only wavelengths 
R » Re of the disorder are screened linearly. Here, Re = ,Jc /ns is the non­
linear screening length. Disorder on a length scale R « Re is screened poorly. 
In this regime, an analytical expression of the screened potential fluctuation is 
not given, but numerical calculations confirm the importance of b"sp· 

If correlations between charges in the doping layer exist , the donor concen­
tration C has to be replaced with an effective reduced concentration C', and 
long range fluctuations may be suppressed [25]. 

2.3 Single Particle Localisation in Weakly or 

Non-Interacting 2DES 

In the early stages of quantum mechanical studies of electronic behaviour in 
disordered crystals, electrons were generally assumed to be extended and trans­
port properties were calculated by considering the scattering of Bloch waves 
by impurities. However, it soon became clear that this was not adequate in 
case of strong disorder and a different treatment was required. 

2.3.1 Anderson Localisation and the Mobility Edge 

In 1958, considering three dimensional systems, Anderson pointed out that the 
electron wave function could be fundamentally different from a Bloch state if 
disorder was sufficiently large [1 J. He proposed that in very strong disorder 
the wave function become localised in that the envelope of the wave function 
decays exponentially from some point in space, i.e. Jw(r)J rv exp(Jr - r 0 J/~) 
with t the localisation length. 

He started from the assumption of randomly distri_buted sites with randomly 
distributed energies within a characteristic width W. Between the sites there 
is an interaction parameter v;j(rij) which transfers carriers from one site to 
the next . Anderson showed that if V ( r) falls off fast at large distances, and 
if the average value of V is small enough compared to W , wave functions are 
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localised exponentially (Fig. 2.4). More quantitatively, he derived a critical 
value for W /V above which no transport occurs at all. 
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Figure 2.4: Comparison of extended state with mean free path l (a) and 

localised wave function with localisation length ~ (b). [From Ref. [40]] 

The physical reason for this can be understood quite easily: On one hand, 
orbitals nearby in space with a significant wave function overlap, are gener­
ally very different in energy, so that admixture is small because of the large 
energy denominator. On the other hand, states that are close in energy are in 
general far apart in space, and have an exponentially small wave function over­
lap. Hence, in the strongly disordered limit , t he states will be exponentially 
localised. In fact, it turns out t hat it is much easier to establish the existence 
of localised states than extended ones, as will be discussed in later sections. 

Following Anderson's reasoning, one expects the states in the band tails 
to be localised , since these are states formed from localised orbitals bound 
in deep potential fluctuations. The states in the band centre have the best 
chance of being extended. Mott proposed that as a function of energy, the 
states must change their character from being localised to being extended [40]. 
The crit ical energy at which t his change occurs is called the mobility edge, 
marking the transition between a metal and an insulator. However, for the 
two dimensional case, the scaling theory of localisat ion discussed in the next 
section calls the existence of a metallic state into question and predicts that 
all states are localised. 
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2.3.2 Scaling Theory of Localisation 

This section roughly follows reference [40]. Scaling theory tries to understand 
localisation by looking at the behaviour of the dimensionless conductance g = 
G/(e2/n) as a function of system size L. For L » l, with Z the mean free path 
defined by the length over which the phase of the wave function fluctuates 
by about 2-?r, g(L) has two asymptotic forms depending on the microscopic 
disorder. For a metallic state, the size dependence of the conductance is given 
by Ohm's law 

(2.4) 

with d the dimension and <Y = ne2r / m derived by conventional transport 
theory. However, in the localised regime, transport occurs by an electron 
hopping from an occupied state to a unoccupied one with almost the same 
energy. In this case, for L » ~ (~ generally being larger than Z), a completely 
different, non-Ohmic scale dependence applies: 

g(L) rx exp(-L/~). (2.5) 

As L increases, g(L) evolves smoothly, eventually going over to either form (2.4) 
or (2.5), depending on the microscopic disorder. 

Abrahams et al. [4] argued that the logarithmic derivative of conductance 
/3 (g) = d ln g / d ln L is a function of g alone. The idea is that the change in 
effective disorder when the system becomes a little bigger is determined by its 
value at the previous length scale, the only measure of this effective disorder 
being the conductance. They derived the scaling curves for d=l, 2, and 3 
shown in Fig. 2.5. 

For the case of two dimensions, interpretation of the diagram leads to a 
surprising conclusion: No truly extended electronic states are possible! Since 
/3(g) < 0 an increase in L always leads to a decrease in /3, asymptotically 
approaching /3(g) rv ln(g / gc), with gc a characteristic dimensionless conduc­
tance. This asymptotic behaviour is equivalent to co.ndition (2.5) and predicts 
that for large enough L, even for small microscopic disorder, only localised 
behaviour is possible. 
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B = d.ln(t;j) ldLnl L > 

~----------

F igure 2.5: The scaling function (3(9) vs. the dimensionless conductance g 

for different dimensions. [From Ref. [40]] 

2.3.3 Fermi Glass and the Coulomb Gap 

The previous discussion leads us to the following picture for the ground state 
of a disordered, weakly or non-interacting 2DES: The disorder determines t he 
electron states, which, according to the scaling theory are all localised. The 
available states with energies below the Fermi energy are occupied, while states 
above the Fermi energy are empty. This leads to a random distribution of 
occupied, localised single-electron states. This state is called Fermi glass. 

Efros and Shklovskii showed that Coulomb interactions introduce a gap in 
the density of states at the Fermi level, the so-called Coulomb gap [8]. The 
qualitative reasoning for t his is as follows: Consider two states i and j which are 
occupied and unoccupied, respectively, in the ground state, i.e. Ei < Ep < Ej, 
with EF the Fermi energy. If the electron occupying state i is removed, the 
energy of state j is lowered by eij , the Coulomb energy arising on state j due 
to the presence of an electron in state i. If Ej - eij < Ei, it would now be 
energetically better for the electron to occupy state j, i.e. the energy of the 
system could be lowered by an electron moving from site i to j , which is a 
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contradiction since the system was assumed to be in t he ground state. This 
means that the separation in energy between two states above and below the 
Fermi energy must be larger than their Coulomb interaction energy, i.e. the 
density of states at t he Fermi level disappears. The introduction of a Coulomb 
gap does not alter the picture of single particle localisation. However, it has an 
influence on the low-temperature transport properties, which will be discussed 
in Sect. 2.6. 

2.4 Strongly Interacting 2DES in the Absence 

of Disorder 

Before moving on to the problem of strongly interacting electrons in the pres­
ence of background disorder, a summary of the case of complete absence of 
disorder is given. The advantage of studying disorder free systems is that they 
are less difficult (but by no means easy) to treat. The disadvantage, of course, 
is that t heir relevance for real systems is limited. 

2.4.1 Wigner Crystal 

Zero Magnetic Field 

As early as 1934, Wigner predicted that at low densities, electrons in a metal 
should form a crystal [11], which is now called Wigner crystal (WC). The 
physics behind this phenomenon is essentially the competition between the 
classical Coulomb repulsion and the quantum mechanical zero-point energy. 
On one hand, electrons can reduce their Coulomb energy by avoiding each other 
through the formation of a crystal with localised individual wave functions . On 
the other hand, localisation of the wave function inevitably leads to an increase 
of the kinetic energy because of Heisenberg's unce~tainty principle. Wigner 
showed that for low enough densities, the reduction in Coulomb energy wins 
over the increase in kinetic energy. . 

Tanatar and Ceperley used numerical methods to get a quantitative esti­
mate of the density at which the transition between the liquid and crystal 
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phase occurs [12]. They compared the ground state energies between a liquid 
and a solid phase using a fixed-node quantum Monte Carlo (FN-QMC) method 
and found that the solid phase has a lower energy for rs 2: 37 ± 5. For an ultra 
high mobility (7 x 105 cm2/Vs) two-dimensional hole system, a metal insulator 
transition was later observed at r8 = 35.1 ± 0.9 and interpreted as the melting 
point of a Wigner crystal [15]. 

In QMC simulations the algorithm is fed with a guiding wave function 
( GWF) that should be as close as possible to the ground state of the system. 
The GWF is then projected onto the true ground state of the system. A serious 
challenge in this approach for fermions is the "fermion sign problem", which 
leads to an exponential decrease of the signal-to-noise ratio with increasing 
system size or decreasing temperature (see e.g. Refs. [41, 42]). A way to 
tackle this problem is the FN-QMC approach which applies the restriction to 
the algorithm that the sign of the wave function and, hence, its nodal structure 
remain unchanged. The disadvantage is that in calculations as reported in 
Ref. [12] , where the energies of a liquid and a solid state are compared, one 
might overlook a third phase with even lower energy, which has a different 
nodal structure than either of the two GWFs. 

Finite Magnetic Field 

It was first pointed out by Lozovik and Yudson in 1975 t hat a strong perpen­
dicular magnetic field might lead to crystallisation of a 2DES at much higher 
electron densities than it would be the case in zero field [43]. Their reasoning 
was that a crystal is stable when the amplitude A0 of the zero-point oscillations 
of the electrons fulfils the criterion Ao ;S 1 a0 with I an empirical constant and 
a0 the lattice constant. The effect of a strong perpendicular magnetic field 
is to limit A0 to the magnetic length ZB = Jn/ eB 1_, thereby stabilising the 
crystal. This simple picture is instructive, but otherwise mainly of historical 
importance, since it does not take the fractional quantum Hall effect (FQHE) 
state into account , which was discovered several year:s after publication of this 
work and changes the situation significantly. 

To get a quantitative estimate for the field at which crystallisation for a 
given electron density occurs, one has to compare the energy of the WC (Ewe) 
with that of the FQHE liquid (EL) proposed by Laughlin [44]. This was done 
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by Levesque et al. [45]. They calculated EL to a very small error with a Monte 
Carlo method and compared it with a Hartree-Fock approximation of Ewe­
It was found that the WC state has a lower energy than the FQHE state for 
v < 1/9, where v = f~B_j_ is the Landau ievel filling factor (see Sect. 4.1.3). An 
improvement of this estimate was calculated soon after that, using EL from 
Ref. [45] but a more accurate variational approach for Ewe, which included 
particle correlations. This revealed the condition v ;S 1/7. This value should 
be essentially exact, with the caveat that disorder is not taken into account. 
However, in the meantime experimental evidence of FQHE states at z; < 1/7 
has been found, which is not entirely understood [46]. Nevertheless, it is widely 
assumed that a Wigner crystal is formed at sufficiently low filling factor and 
between FQHE states. 

2.4.2 More Exotic Phases 

Katomeris et al. and Nemeth et al. performed exact diagonalisation calcula­
tions for N = 3 and 4 electrons on a two-dimensional 6 x 6 square lattice with 
periodic boundary conditions and nearest neighbour hopping [47, 48]. They 
found that for an intermediate range of Ts a phase that is neither fully crys­
talline nor liquid is formed. Of N particles, N - l were forming a nearly solid 
assembly, while the remaining particle was delocalised. The range in which 
this new phase was formed, was 10 < Ts < 28 for N = 4, and 6 < Ts < 180 
for N = 3. For the case of N = 4, the influence of disorder was studied by 
introducing perturbations in the form of a certain randomness of the substrate 
lattice sites. Weak disorder did not qualitatively change the situation, but in 
stronger disorder, a phase with localised and delocalised electrons coexisting 
was no longer observed. The authors proposed that the observed phase coex­
istence was the mesoscopic trace of the supersolid phase proposed by Andreev 
and Lifshitz [49], which will be discussed in some more detail in Sect . 6.2.1. Of 
course, the extremely small number of electrons makes the relevance of these 
calculation in macroscopic systems debatable. However, the work nevertheless 
gives some indication that phases other than Wigner crystal and Fermi liquid 
might exist in clean or low disorder. 2DES. 
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Waintal et al. chose a different approach to study intermediate phases [42, 
50]: They used FN-QMC but apart from the usual crystalline (localised or­
bitals) and liquid-like (plane waves) GWF, they also investigated a hybrid 
phase built from the Bloch states of a triangular lattice, i.e. it is liquid-like 
in that it is made from plane waves but it has the symmetry of a Wigner 
crystal. This intermediate phase showed a lower energy than both liquid and 
crystalline phase for rs > 31.5±0.5 up to the largest value studied (rs = 70). A 
physical interpretation of this hybrid phase is not straightforward. While the 
advantage over a crystalline phase can be understood quite easily in terms of a 
reduction in kinetic energy due to the delocalised nature, the advantage over a 
liquid phase is more intricate, but is related to the change in symmetry of the 
wave function. The work establishes the existence of an intermediate phase, 
but does not allow very deep insight into the nature of the phase. However, 
it is clear that the hybrid phase cannot be directly associated with the super­
solid phase discussed above, as no discrepancy between number of electrons 
and lattice sites was observed. This does not mean that, in principle, an in­
commensurate crystal phase with an even lower energy cannot exist, although 
the author of Ref. [42] states that he tried to find such a GWF without success. 

Spivak et al. [51, 52] argue that in a clean (i.e. disorder free) 2DES adjacent 
to a ground plane, a direct transition from a Wigner crystal to Fermi liquid is 
forbidden at zero temperature and that an intermediate phase with coexistence 
of spatially separated liquid and crystal always occurs. This phenomenon 
arises from the tendency for phase separation originating from the first-order 
phase transition between Fermi liquid and Wigner crystal as a function of 
n8 • While in neutral systems a first-order transition favours a global phase 
separation, this is not possible in charged systems due to the large Coulomb 
energy associated with a non-uniform distribution of electron density. A 2DES 
with a ground plane is, in some way, intermediate between those two cases 
because over distances larger than the separation between 2D ES and metallic 
plane the Coulomb interaction only has dipole character. 

The authors argue that in this case, phase separation still occurs, but t hat 
the surface energy of minority phase droplets of large enough radius is negative. 
This property leads to the existence of various intermediate phases. Starting 
from a Wigner crystal at lowest densities, with increasing ns the system is 
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predicted to exhibit both striped and bubble phases, with varying fractions 
of Fermi liquid and Wigner crystal, eventually turning into pure Fermi liquid 
phase. All the intermediate phases are expected to be conducting: This is quite 
clear if the Wigner crystal is the minority phase, where conduction occurs in 
the liquid phase. It also seems comprehensible that in a phase with large 
stripes of WC separated by small stripes of FL, conduction can still occur 
along the direction of those stripes. The case of small FL droplets embedded 
in a WC is more intricate. However, Ref. [51] argues that, unlike a pure 
Wigner crystal, such a phase is not pinned by small disorder and can bypass 
obstacles. In principle, this should allow electrical conductance through sliding 
of the entire crystal. An interesting observation is that due to a difference 
in spin entropy between liquid and crystal phase, in a certain temperature 
range an increase in temperature stabilises the crystal phase relative to the 
liquid one, which means that the high resistance WC fraction increases on 
cost of the low resistance FL. This could lead to an increase in resistance 
with increasing temperature, i.e. a metallic temperature dependence. This 
effect will be discussed in more detail in Sect. 6.2.1. Refs. [51, 52] discuss 
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Figt:ire 2.6: Charge density wave patterns: (a) Stripe pattern (Re is the 

cyclotron radius). (b) Bubble patterns. ( c) Wigner crystal ( one cyclotron 

orbit is shown). [From Ref. [53]] 

in particular the MOSFET, where charge neutrality is enforced by a metallic 
gate, as an example for which their predictions could be relevant, under the 
reservation that any real device will have a finite amount of disorder. Despite 
this, their reasoning should be qualitatively correct for the case of a gated 
AlGaAs heterojunction as well. 

Many of their conclusions were later generalised to the case of any Coulomb 
interacting system, without the condition of a nearby ground plane [54]. In 
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particular, the requirement for existence of intermediate phases between liquid 
and crystal was confirmed. In a recent work these results were confirmed fur­
ther, also including screening effects [55]. However, it was pointed out that the 
phase separation may only occur in an extremely narrow range around a criti­
cal density and at very low temperatures, making an experimental observation 
highly unlikely. 

Nevertheless, there have been some experimental observations, which were 
interpreted as evidence of a state of crystal/liquid phase coexistence: A linear 
rather than exponential insulating temperature dependence in ultra high mo­
bility two-dimensional hole gases (2DHG) in the strongly interacting regime 
up to rs = 80 [56], and an oscillatory behaviour of the magnetoresistance in the 
insulating phases in the vicinity of the v = 1/3 filling factor in high mobility 
2DHG [57]. While these are doubtless rather interesting experiments, I do not 
believe they are convincing evidence of a solid/liquid phase coexistence. 

Stripe and bubble phases have also been suggested in a quite different con­
text [53]: They were proposed as ground state configuration in 2DES at weak 
magnetic fields with N » 1 lower Landau levels completely filled and the up­
per level partially filled (for a brief discussion of Landau levels (LL) and the 
quantum Hall effect see Sect. 4.1.2). Hartree-Fock approximations were used 
to predict these charge density wave states under the condition that electron­
electron interactions do not destroy the Landau quantisation, which was shown 
to be the case for r8 ,:S 1. At high occupation of the highest LL, a charged 
density wave formed of stripes occurs, which turns into a bubble phase as the 
occupation is lowered. Further reduction reduces the number of electrons in 
each bubble until only one electron per "bubble" is left (see Fig. 2.6). This 
state is indistinguishable from a Wigner crystal. The driving force behind the 
aggregation of particles in domains is the reduction in exchange energy while 
the charge density variations ( which are not energetically favourable) are not 
too large ( of order 20%). 

It should be noted that in form of the fractional quantum Hall effect (FQHE) 
a strongly correlated electronic phase in two dimensions in presence of strong 
perpendicular magnetic fields was discovered and has been studied extensively 
both experimentally and theoretically [44, 58, 59] . While a short description 
of the integer quantum Hall effect [60, 61] is given in Sect. 4.1.3, a discussion 
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of the FQHE is beyond the scope of this thesis because experiments presented 
here were not carried out in the FQHE regime. 

2.5 Strongly Interacting Disordered 2DES 

Let us now discuss the two-dimensional electron system in the regime of strong 
interaction but in presence of a finite amount of disorder. This is a theoretically 
extremely challenging problem, but it has the considerable advantage that it 
can actually describe real systems. At first sight , it may seem self-evident that 
disorder and electron-electron interactions always compete with each other, 
an increase in disorder reducing the effect of interactions between electrons. 
However, while very strong disorder certainly overrules interaction effects, it 
turns out that a moderate amount of disorder can actually enhance electron­
electron interactions. Intuitively, this may be explained by a tendency of the 
disorder to quench the motion of the particles, thereby effectively increasing 
the strength of Coulomb energy between charge carriers compared to their 
kinetic energy. 

2.5.1 Crystalline Phases 

Chui and Tanatar studied the influence of impurities on the fluid-solid transi­
tion in 2DES at B = 0 and T = 0, using perturbation calculations and Monte 
Carlo simulations [20]. Their approach, with a disorder potential arising from 
surface roughness and positively charged impurities at a distance of 10 nm from 
the 2DES, was aimed at modelling a Si-MOSFET. Despite this, their findings 
may well be relevant to other systems such as GaAs/ AlGaAs heterostructures. 
They found evidence of a crystal formation at an interaction parameter as low 
as r8 ~ 7.5, compared to rs ~ 37 in the pure case. At higher density, electrons 
were found to relax around the impurities and "screen" them out. On the other 
hand, at r8 much larger than 7.5 the system became amorphous, leaving only 
a certain window of electron density where the crystalline phase exists. The 
physical interpretation for the stabilisat ion of a crystalline phase by impurities 
given by the authors is that the solid can adjust to the impurities more easily. 
The reduction of the impurity energies in the solid phase makes up for the 
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higher energy in the solid compared to the fluid. It should be noted that no 
attempt was made to optimise the disorder to minimise the transition density. 
This means that in optimal disorder the crystalline phase might persist to even 
higher electron densities. 

Various authors have studied the effect of pinning centres on a Wigner 
crystal, generally starting with the assumption of a WC phase and investigating 
how pinning affects the stability and other properties of the phase [62- 68]. 

A very simple model was used by Eguiluz et al. [62]: They assumed the exis­
tence of a WC and introduced pinning centres at certain lattice sites. This was 
implemented with a harmonic coupling between electrons, but also a harmonic 
"pinning" of some randomly chosen electrons to their lattice sites. Their nu­
merical calculations revealed the existence of a sharp low frequency gap .6..pin in 
the phonon spectrum of the WC and a reduction of the mean square deviation 
(MSD) of the electrons from their lattice sites. The quenching of the MSD 
was particularly strong under application of perpendicular magnetic field, but 
the magnitude of the pinning gap decreased with increasing B-field. Both the 
existence of the pinning gap and the MSD reduction persisted at finite tem­
peratures. It was concluded that pinning centres considerably aid the stability 
of a 2D electron crystal at T ,:S 1 K. 

A different implementation of disorder was used by Chitra et al. [67, 68]. 
In their model, disorder was represented by a weak random potential with 
correlation length Tf « ~ (~ the localisation length of the electrons, which is in 
turn assumed « a0 , the lattice constant). In heterojunctions, such a disorder 
potential is expected to be present due to interface roughness. Long range 
disorder arising from distant dopants is not taken into account in this model. 
Variational calculations confirmed the existence of a pinning gap in zero [68] 
and finite [67] magnetic field. Related to the pinning gap (but not identical), 
a pinning frequency wp was calculated with an enhanced AC conductivity of 
the WC expected at resonance, which should be experimentally observable. 

The pinning effect of remote charged donors was studied by Chui [64] with 
variational and numerical methods with good agreement between the two cal­
culations. An explicit expression for the pinning gap was given: 

* J\ 2 _ 0.09n,5a5e2 

m upin - r3 ' 
EEousp 

(2.6) 
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with n8 the doping concentration and 6sp the spacer width. A common at­
tribute of all these pinning studies is the assumption of an essentially classical 
crystal where individual electrons are so strongly localised that they can be 
treated as single particles. This is reasonable in the case of ultra low densities , 
or very high perpendicular fields, where f « a0 . 

A completely different approach was chosen by Fukuyama and Lee [69]. 
They started from the assumption of a sinusoidal charge density wave (CDW) 
and examined the effect of random impurity centres, focusing on the phase 
of the CDW. They predicted a vanishing DC conductivity, but finite AC 
conductivity with a peak at the pinning mode wp. This is in agreement 
with Refs. [67, 68] (which were actually published more than twenty years 
later). However, details disagree and in particular, a qualitatively different 
B-dependence of wP was found in Ref. [68]. 

The temperature driven melting of a two-dimensional crystal is complicated 
enough in absence of disorder. A large amount of work has been put into 
studying the details of this transition (see e.g. Refs. [70]) , but a detailed 
discussion of this problem is beyond the scope of this thesis. For the melting 
temperature, numerically TMelt ex: 1/rs was calculated for the classical Wigner 
crystal [71], while for the quantum regime TMelt ex: 1/r; was proposed [51]. 
Disorder is expected to have a strong impact on the melting temperature, in 
particular, the pinning gap in the phonon spectrum discussed above, might 
increase TMelt· I am unaware of any quantitative studies of TMelt in disordered 
classical or quantum crystals. 

Experimentally, a 2D Wigner crystal has been observed on the surface of 
liquid helium [72]. For semiconductor based 2DES such conclusive evidence is 
still lacking, but some indications of a crystalline phase have been observed: 
Through transport experiments in high perpendicular magnetic fields in ultra 
clean electron-_ [13, 14] and hole-systems [15] or electron bilayer systems [16]. 
In a different approach, microwave absorption was used to detect the pinning 
mode of a Wigner crystal in low disorder and high fields [18, 73]. It is an 
interesting fact that two crucial discoveries in semiconductor physics were first 
incorrectly interpreted as evidence of a CDW state, namely the single electron 
transistor [74] and the fractional quantum Hall effect [58]. 
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2.5.2 Other Phases 

As seen previously, there are two regimes of strongly localised 2DES which 
are, at least theoretically, relatively well understood, namely when either the 
energy scale of the disorder is much larger than the interaction energy (Fermi 
glass), or vice versa (Wigner crystal). Qualitatively, one can imagine what hap­
pens, when starting from a Wigner crystal, disorder with increasing strength 
is introduced or the interaction strength is reduced. At first , the electrons 
will be moved slightly out of their positions and defects such as vacancies and 
interstitials will be introduced. Such a solid, where electrons are localised due 
to electron-electron interactions, but the long range order of a crystal is miss­
ing, is called a Wigner glass. Moving further in disorder/ interaction space, 
the 2DES will eventually end up as the Fermi glass described in Sect. 2.3.3. 
However, despite extensive work, no full theory for the intermediate regime 
is available. Below, a summary of theoretical and some experimental work in 
this field is given. 

Cha and Fertig [75] studied what happens to a two-dimensional crystal when 
slowly varying disorder with increasing strength is introduced. They proposed 
a phase transition at a critical disorder strength. Below the critical point, the 
number of dislocations which are energetically favourable vanishes in a finite 
size crystal. Above the critical point, the number of dislocations diverges in 
an infinite size system. This was interpreted as a zero temperature phase 
transition between crystal and non-crystal. 

Thakur and Neilson [76] proposed a "frozen electron solid" in presence of 
strong electron-electron interaction. In this state, electrons are localised due to 
exchange-correlation effects, i.e. not simply by disorder. The state is not crys­
talline but shows a liquid-like short-range order. What distinguishes it from a 
liquid is that the electrons cannot move. They are frozen in a metastable state, 
i.e. it is not the ground state of the system. In view of the metallic tempera­
ture dependence described in Chapt. 6, it is of particular interest whether the 
scaling theory described in Sect. 2.3.2, which prohibits a truly metallic ground 
state in 2D, holds up in the presence of electron-electron interactions. There 
has been a great deal of theoretical and experimental work in this direction, es­
pecially after the observation of an apparent metal-insulator transition in two 
dimensions [19]. An overview of the relevant work will be gi~en in Chapt. 6 
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with a special focus on its relevance to the experimental results of this thesis. 

2.6 Transport Properties 

At low densities in strongly disordered 2DES where electrons are localised in 
potential traps, transport occurs by hopping between those traps. This means 
that electrons jump between two trap sites under absorption or emission of a 
phonon of the energy corresponding to the energy difference between the two 
sites. At relatively high temperatures , these jumps are between sites close to 
each other, as there are many phonons available and there is a high probability 
that a phonon matches the energy difference between the sites. This process 
is called nearest neighbour hopping (NNH) and leads to a simple activated 
transport behaviour 

p(T) = Po exp(Eo/kBT), (2.7) 

with kB the Boltzmann constant. When the temperature gets lower, the prob­
ability increases of the electron hopping to a site further away in space but 
closer in energy. Therefore, the average hopping distance depends on tem­
perature and becomes longer at lower T. This effect is called variable range 
hopping (VRH) . These two transport mechanisms are schematically shown in 
Fig. 2.7. 

Figure 2. 7: Schematic representation of nearest neighbour hopping (red 

arrow) and variable range hopping (green arrow) trapped in conduction band 

minima. 
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Mott first derived a law of transport in the VRH regime under the assump­
tion of a constant density of states at the Fermi level [3]. He predicted a 
temperature dependence of resistivity of the form 

(2.8) 

in two dimensions. The existence of a Coulomb gap in the density of states 
at the Fermi level (discussed in Sect. 2.3.3), modifies this law, leading to the 
Coulomb gap or Efros-Shklovskii (ES) hopping law [8] 

(2.9) 

Experimentally, both Mott and ES hopping have been observed, mainly in 
strongly disordered 2DES. For instance, in silicon MOSFETs Mott hopping 
was reported in Ref. [6] and ES hopping in Ref. [9] . In GaAs/ AlGaAs het­
erojunctions Mott hopping was observed in a 5-doped wafer with a spacer of 
only two monolayers [7]. In comparable wafers, both Mott and ES hopping 
were reported [10]: While the non-interacting Mott law was found to be valid 
at high electron densities, a crossover to the ES law was observed when the 
electron density was reduced. 

Not much is known about transport in a Wigner crystal. It is generally 
assumed that the WC is pinned by the disorder, which prevents a sliding of 
the crystal as a whole, unless a large voltage is applied that can depin it. 
Shklovskii argued that the pinning of the crystal leads to a finite density of 
charged localised states near the Fermi level, which leads to an ES hopping 
behaviour of transport [77]. 

Transport could also occur by hopping of localised point defects such as 
vacancies or interstitials , which would also lead to an insulating behaviour 
with nearest neighbour or variable range hopping. However, as discussed in 
detail in Sect . 6.2.1, in a crystal with strong zero point fluctuations of the elec­
trons, a delocalisation of defects could be possible, with a qualitative change in 
transport where the resistance might decrease with 0-ecreasing temperature. 

I 
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Mott first derived a law of transport in the VRH regime under the assump­
tion of a constant density of states at the Fermi level [3]. He predicted a 
temperature dependence of resistivity of the form 

(2.8) 

in two dimensions. The existence of a Coulomb gap in the density of states 
at the Fermi level (discussed in Sect. 2.3.3), modifies this law, leading to the 
Coulomb gap or Efros-Shklovskii (ES) hopping law [8] 

(2.9) 

Experimentally, both Mott and ES hopping have been observed , mainly in 
strongly disordered 2DES. For instance, in silicon MOSFETs Mott hopping 
was reported in Ref. [6] and ES hopping in Ref. [9] . In GaAs/ AlGaAs het­
erojunctions Mott hopping was observed in a 5-doped wafer with a spacer of 
only two monolayers [7]. In comparable wafers , both Mott and ES hopping 
were reported [10] : While the non-interacting Mott law was found to be valid 
at high electron densities, a crossover to the ES law was observed when the 
electron density was reduced. 

Not much is known about transport in a Wigner crystal. It is generally 
assumed that the WC is pinned by the disorder, which prevents a sliding of 
the crystal as a whole, unless a large voltage is applied that can depin it. 
Shklovskii argued that the pinning of the crystal leads to a finite density of 
charged localised states near the Fermi level, which leads to an ES hopping 
behaviour of transport [77]. 

Transport could also occur by hopping of localised point defects such as 
vacancies or interstitials, which would also lead to an insulating behaviour 
with nearest neighbour or variable range hopping. However, as discussed in 
detail in Sect. 6.2.1, in a crystal with strong zero point fluctuations of the elec­
trons, a delocalisation of defects could be possible, with a qualitative change in 
transport where t he resistance might decrease wit h decreasing temperature. 

I 

11 



Chapter 3 

Devices and Experimental 

Techniques 

3.1 Devices 

This section discusses t he design and fabrication of the devices that were used 
in the experiments. The design is simple, but required some optimisation pro­
cess, chiefly to find the optimal device dimensions. The fabrication itself was 
done in straight-forward standard optical and e-beam lithography, and does 
not present any original research work. Therefore, the discussion is kept very 
short. 

A list of devices with relevant geometry and wafer parameters is given in 
App. A. 

3.1.1 VVafers 

The GaAs/ AlGaAs heterostructures were grown in· our group by molecular 
beam epitaxy (MBE) on top of a substrate made of a GaAs single crystal. 
Most of the wafers used were 5-doped, i.e. the dopants were restricted to 
a few atomic monolayers, as opposed to bulk-doping, where the dopants are 
distributed in a thicker layer of AlGaAs, typically a few tens of nanometres. 

32 
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The advantage of 5-doping is t hat it gives a well defined distance between 
2DES and dopants, making the spacer width 6sp a good quantity to classify 
the disorder strength in the 2DES. In all electron systems, Si-dopants were 
used. The layer sequence for a typical 5-doped wafer (A2678) is shown in 
Fig. 3.1. The wafers used had spacer widths 6sp = 20 - 80 and mobilities 
µ = 0.6 - 1.8 x 106 cm-2 /Vs in the dark as cooled down. 

Surface /Topgate 

50 nm GaAs 

200 nm Alo_33Gao_77As 

0.556 nm GaAs 

Si 2.5 · 1012 cm-2 (Doping layer) 

0.556 nm GaAs 

40 nm Alo.33Gao_77As (Spacer) 

1000 nm GaAs 

50 nm Al0_33Gao_77As 

50 nm GaAs 

Substrate: (100) GaAs semi-insulating 

Figure 3.1: Layer sequence for a typical 6-doped wafer (A2678), with spacer 

b"sp=40 nm and total depth of the 2DES dg=290 nm from the surface. 

3.1.2 Geometry 

All devices consist of a small Hall bar mesa with one or several gate fin­
gers crossing the mesa between the voltage probes, as schematically shown in 
Fig. 3.2 a). Since the measurements were done in the low density regime under 
the gate, transport would always be dominated by ~he active area under the 
gate, of dimensions W x L . The dimensions were optimised to allow for the 
advantage of mesoscopic dimensions while still being large enough to form a 
two dimensional system. The width was W = 8 µm in all Ci:l,ses, while the 
length varied between 0.5 - 4 µm. 
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a) 

Figure 3.2: a) Schematic of a Hall bar geometry with a gate finger across 

(golden area). Grey areas labeled Ii,2 and Vi-4 indicate Ohmic contacts used 

for current and voltage probes, respectively. b) Optical microscope image of 

a chip wit two full devices. c) Optical microscope image of the mesa with an 

optically defined gate of width W ~ 3 µm. d) Optical microscope image of 

the mesa with t hree e-beam defined gates of width W ~ 0.5, 1 and 2 µm. The 

large gates leading away from the mesa were done optically with the leftmost 

and rightmost pair being unused but kept grounded during experiments. 

34 
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3.1.3 Fabrication 

The first step of the processing is to cleave the wafer into pieces. Usually, 
a large enough piece is cleaved to make several devices on it. This increases 
the probability to get at least one working sample. After the cleaving, one 
has a 2DEG which extends laterally over the whole chip. For our devices a 
Hall bar mesa was fabricated by optical lithography: A photoresist (Shipley 
1813) layer is deposited on the sample surface, baked and then brought into 
contact with a chrome on glass mask on a mask aligner. The mask contains the 
pattern of the mesa structure which is projected to the sample by exposure 
to UV light . The development in MF319 removes the photoresist where it 
has been exposed. A wet etching procedure with a 1:8:160 H2S04 :H20 2 :H20 
solution etches the sample where it is not protected by the photoresist anymore. 
Usually, the etching time was adjusted to etch a few tens of nanometres below 
the GaAs/ AlGaAs interface where the 2DES is formed. This defines the Hall 
bar structure on the 2DES. 

In the next step, Ohmic contacts to the 2DEG are produced. Again, pho­
toresist is spun on the sample and exposed with a different mask. This time 
the mask has to be aligned carefully to match the mesa pattern on the chip. 
After developing, a AuGeNi alloy is evaporated to the sample surface. After 
that, the resist is removed. The evaporated AuGeNi peels off where the resist 
was not already developed. This process in known as "lift-off". Now the sam­
ple is annealed at a temperature of 430° C. In this step the AuGeNi melts and 
diffuses into the GaAs to the 2DEG. Since germanium is an-dopant in GaAs, 
the annealing produces a conducting spike which contacts the 2DEG. The com­
position of AuGeNi is optimised for several factors: Melting temperature of 
the alloy, good diffusion into the GaAs and a surface that allows bonding. Due 
to the large depth of the 2DES under the surface, a large amount of AuGeNi 
( > 100 nm) was-used and the annealing time was extended from the standard 
80 s to 120 s. 

In a procedure very similar to the Ohmics processing, a frontgate is pro­
duced. Instead of AuGeNi a layer of NiCr (""' 20 nm) and subsequently a layer 
of gold (""' 100 nm) are evaporated, with the NiCr layer being necessary be­
cause gold does not stick well on GaAs. Because the topgate is. not alloyed, a 
Schottky barrier is formed between topgate and sample. The minimum width 
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of gates that could be fabricated with optical lithography was rv 1 - 2 µm, the 
fundamental limit being the wavelength of light . For even smaller dimensions , 
electron-beam ( e-beam) lithography was used with the advantage of a much 
smaller wavelength. The procedure is analogous to the optical gate fabrication, 
except that a different resist (PMMA) and developer (5:15:1 MIBK:IPA:MEK) 
were used and the exposure is done by direct "writing" with an electron beam. 
The exposure was done by David Anderson. The e-beam resist is thinner than 
the photoresist, which makes the lift-off process after evaporation difficult if 
the metal layer is too thick. Therefore, the evaporation thickness was limited 
to rv 25 nm NiCr and 15 nm Au in this process. Because e-beam lithography is 
suitable only for small features , the bonding pads of the gates and their leads 
to the actual gates were done optically in another step, which required very 
careful alignment of the mask with thee-beam gates. The optical gates were 
designed to overlap slightly with the mesa, since the e-beam gates are very 
likely to break at the steep step at the mesa edge because of their thinness. 

Finally, the sample is cleaved into small chips with only one or two devices, 
which are fixed on a chip carrier and connected to its contacts by gold wires. 
The chip carrier can be plugged into the sample holder of the cryostat probe 
or directly soldered to its wiring loom. 

3.2 Cryogenic Systems 

In order to observe quantum effects the devices have to be cooled to low tem­
peratures. A temperature of 4.2 K can be reached by simply dipping the device 
into a liquid helium dewar. 

For lower temperatures, more sophisticated systems have to be used. T 2:; 
1 K can be reached quite easily in 4He-cryostats. By pumping on the surface 
of liquid helium in a small reservoir ( called 1 K pot) , the boiling point of the 
helium and, hence, the temperature in the reservoir can be lowered. 

The limiting factor of pumped 4He is that it be~omes superfluid at T = 
2.2 K, which makes pumping very difficult. This problem can be overcome by 
using 3He, which becomes superfluid only at about 1 mK. Unfortunately, 3He 
is very expensive and to reduce the amount of 3He needed, a sorbtion pump 
rather than a rotary pump is used in most cases. This is essentially a cylinder 
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containing a material with a huge surface area, called the sorb. When the sorb 
is cooled to 4.2 K, it absorbs most of the 3He gas, reducing the pressure and, 
hence, boiling point of the 3He liquid. A temperature of T ~ 300 mK can be 
achieved in such systems. When all the 3He has evaporated, the sorb is heated 
up, releasing the captured helium, which is then liquefied with help of a 1 K 
pot and collected in the 3He reservoir. These systems are relatively easy to run 
and have the advantage that the 3He can be kept in a completely closed circuit , 
which greatly reduces the risk of losing any of the 3He. The disadvantage is , 
that they do not run continuously and the 3He has to be re-liquefied every 
24 - 48 h. The majority of experiments presented in this thesis were carried 
out in a 3He-system. 

For continuous running and much lower temperatures, a dilution- refriger­
ator or "fridge" can be used. It uses a 3He/4He mixture, which separates into 
a 4He-rich and a 3He-rich phase at low temperatures. The cooling arises from 
evaporation of 3He across the phase boundary from the 3He-rich to the 4He-rich 
phase in the mixing chamber. The 3He is then pumped out with a big pump 
(rotary or diffusion) through the still (basically a reservoir with large surface 
to enhance the evaporation rate) and continuously returned into the mixing 
chamber after being liquefied by a 1 K pot and pre-cooled by heat exchang­
ers with the still. In our experiments, two different dilution-refrigerators were 
used. In Fridge I, the device was directly immersed in the mixing chamber, 
while in Fridge III the device was separated from the mixing chamber through 
a cold finger which lead the device into the centre of the magnet. Here, the 
cooling of the device occurs through the wiring which is thermally anchored 
to the mixing chamber. Only two measurement presented in this thesis were 
done in Fridge I (Figs. 4.8 and 7.10), while all the other measurements at 
T < 300 mK were done in Fridge III. . 

3.3 Low-Temperature Measurements 

3.3.1 Four-Probe Lock-in Measurements 

All measurements were done with lock-in amplifiers . Their working principle 
is that the measurements are done at a low frequency AC excitation and that 

1, 
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the signal is only measured at this frequency, while noise signals at frequencies 
other than the reference signal are rejected. This greatly reduces the noise 
problem, but various other measures to reduce noise have to be taken, never­
theless. The biggest source of noise are all electrical and electronic instruments 
(including the measurement instruments themselves!) of which there are in­
evitably countless in any physics laboratory. It is practically impossible to 
eliminate the noise sources, so the best thing one can do is try to protect the 
measurement system from it as much as possible. Most effectively, this is done 
by keeping the cryostat in a screened room (i.e. a Faraday cage). Any noise 
prone instruments are kept outside this room and electrical connections are 
led through low-pass filters which keep any high frequency noise out. 

The following pages describe the measurement set-ups and noise reduction 
measures for the two systems that were mainly used for the experiments. 

3He-Cryostat (Heliox) 

The Heliox is not in a screened room, but with the use of all-analogue lock-ins 
and an optimum set-up with coaxial cables both in- and outside the cryostat, 
an excellent noise level could be achieved. 

It was found that a constant current set-up yielded best results, which is 
schematically shown in Fig. 3.3. In such a set-up, a resistor R1 is connected 
after AC voltage source Vex- If R1 is much larger than the resistance of the 
device (e.g. R1 = 1 GD), the current will be constant Iex = Vex/ R1. The device 
resistance R = ~ V / Iex can then be deduced from the measured voltage drop 
~ V between appropriate voltage probes for Hall- or longitudinal resistance. 
For calibration of the current, the voltage drop was first measured across a 
known resistor Re in series with the device and of a resistance similar to the 
one to be measured. The excitation voltage was then adjusted to give the 
correct current· and subsequently, the voltage probes were removed from the 
resistor and connected to the device. 

111 
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Reference Signal 

.-----. Constant 
___ R_L ___ Current lex 

Lock-in 
Amplifier 

R~ l 
V- V+ 

/- Sample /+ I 

Figure 3.3: Four-probe set-up with constant current. The part in light grey 

was only used for the high-resistance set-up described in the text. 

39 

For high resistance measurements (;S 1.5 MO) a small current lex = 100 pA 
was used to avoid Joule heating (see also Sect. 3.3.2) and to make sure that 
measurements were in the linear response regime. For measurements in the 
quantum Hall regime, a larger current had to be used to achieve a reasonably 
measurable voltage, so the current was increased to Iex = 5 nA in this case. 
For all measurements a frequency of Dex= 7.3 Hz was used. 

Fridge III 

Fridge III is in a screened room. Here, an analogue oscillator and digital lock­
ins were used, but all instruments were kept outside the screened room and 
connections were appropriately filtered when entering. 

In this system, a constant voltage set-up was found to give the best mea­
surements, as shown schematically in Fig. 3.4. The excitation voltage v:x is 
taken across a voltage divider ( e.g. x 10-4

) to provide a small constant AC­
voltage Vex- If the resistance R of the sample is large compared to the rest of 
the system, R can be deduced as R = Vex/ lout, where lout is the current flow 
through the device measured by the lock-in. However, in large magnetic fields , 
the contact resistance of the Ohmics can become large. Therefore, the voltage 
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drop .6. V across the device was measured simultaneously with a second lock-in, 
and the sample resistance was calculated as R = .6. V / lout, which eliminates 
the contact resistance. The signals were amplified with a voltage pre-amplifier 
( x 103) and current pre-amplifier ( x 107), respectively. A capacitor CB ~ 40 µF 
was connected between the fridge and the current pre-amplifier to block a DC­
offset caused by the current preamp. A small excitation voltage Vex = 5 µ V at 
a frequency Oex = 84 Hz was used. 

Reference Signal 

V'ex 

Lock-in 
Amplifier 

V-Preamp t----, 

V- V+ 
/- Sample /+ 

Figure 3.4: Four-probe set-up with constant voltage. 

High Resistance Set-Up 

.... 
C: -~ ·- .... I :,: 
~ a. 
u E _g <.( 

0. 
E 
ro 
~ 
a. 
-!. 

It is problematic to measure very large resistances with the described set­
ups , since the measured resistance should always be much smaller than the 
input impedan~e of the lock-in amplifiers. If this is not the case, a part of 
the excitation current will pass trough the lock-in, leading to an error in the 
measurement. Therefore, the measured device resistance was generally limited 
to R ;S 2 MO. In some cases it was required to measure to higher resistances. 
In these measurements, a slightly different four-probe constant current set-up 
was used. A resistor Rp ~ 2 MO with known resistance is connected in parallel 
to the device as shown in Fig. 3.3. This means that the lock-in never measures 
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a resistance larger than Rp even when the device resistance is much larger. The 
device resistance can then be determined through the relation R = ~: ~tv; f: . 
In principle, this allows to measure arbitrarily high resistances, however, the 
larger R gets, the worse the sensitivity gets. Even at relatively small R, the 
precision is not as good as in a direct measurement. Therefore, this set-up was 
only used when a very accurate determination of the absolute value of R was 
not required and the measured range was limited to R ;S 10 MO. 

Resistance vs. Resistivity 

A short note to clarify the use of the terms resistance and resistivity throughout 
this thesis. The measurements reveal the absolute resistance R of the device. 
Under the assumption that the resistance is dominated by the area under the 
gate, the resistivity p can then be deduced as p = R x W / L with W and L the 
device dimensions as defined in Fig. 3.2 a). 

3.3.2 Temperature Control 

Cryostat Temperature 

In both systems, the cryostat temperatures were measured with Ru02 ther­
mometers. It is well known that the resistance of these thermometers can drift 
with time, bringing an error to the calibration. However, this error is expected 
to be relatively small ( < 20 mK according to Ref. [78]) and not relevant in our 
measurements where the change in temperature is much more important than 
the absolute temperature to a very high precision. Also, Ru0 2 thermometers 
work quite well even at high magnetic fields, which is not the case for more 
precise thermometers, such as Ge resistors. This advantage and, more impor­
tantly, the lack . of available Ge thermometers in the used cryostats, are the 
reasons why Ru02 thermometers were used. 

In Fridge III, the Ru02 thermometer is at the mixing chamber which is at 
a significant distance from the device. Therefore, the ·sample temperature can 
be higher than the measured temperature in the mixing chamber. In order 
to ensure that there was no big discrepancy, a commercial Coulomb blockade 
thermometer ( CBT) was placed in the sample space along with the device 
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in one cooldown. The measured t emperature was TcBT ,.-.., 70 mK at a base 
temperature in the mixing chamber of TMc ,.-.., 60 mK, determined with the 
Ru02 thermometer. This is a reasonably small deviation and the difference 
relative to the absolute temperature is expected to become smaller with higher 
t emperatures. 

The t emperature control was then performed with standard PID feedback 
controllers. The heat was either applied directly to the mixing chamber (Fridge 
III) , the 3He-pot (Heliox at T ,<: 2 K) or to the sorb (Heliox at T ;S 1.8 K). 
Heating the sorb reduces its pumping power, which increases the pressure in 
the 3He-pot and, hence, its temperature. 

Electron Temperature 

If a 2DES is heated appreciably, e.g. by Joule heating through a current flow, 
the thermal equilibrium between the electron system and the phonon system 
can collapse. An effective electron temperature Te is then observed, which 
could be considerably higher than the lattice temperature TL . 

In view of the saturation of the t emperature dependence of resistance dis­
cussed in Chapt. 6 (e.g. Fig. 6.11), it is important to make sure that the 
electron temperature actually agrees with the measured cryostat temperature. 
Otherwise, t he saturation of resistance could be explained simply by electron 
heating and a saturation of Te. It seems unlikely that such a saturation should 
be so similar for two different cryostats with different cooling power and com­
pletely different measurement set-ups. Nevertheless, a discussion of electron 
heating in our experiments is appropriate. 

Electron heating can arise from the intentionally induced current that is 
unavoidable whilst performing measurements, as well as from unintentional 
currents induced by noise. As described in Sect. 3.3.1, great care was taken to 
reduce the noise to a minimum, and very small excitation currents or voltages 
were used. A quick check for significant heating effects can be done by chang­
ing Iex!Vex within a certain range around the plann~d value and check if the 
measured resistance remains the same. This also ensures that measurements 
are conducted in the linear response regime. 

The electron temperature can be directly measured through the damp­
ing of Shubnikov-de Haas-oscillations. The temperature dependence of SdH-
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oscillations can be expressed as [21] 

f:j_p 

Po 
(3.1) 

with T the quantum scattering time, f:j_p the amplitude of the oscillations and 
p0 the average between minimum and maximum value of one oscillation. Note 
that T is the only unknown in the formula. If the electron temperature does 
not agree with the measured cryostat temperature, a good fit of Eq. (3.1) is 
not possible. In particular, a saturation of Te at lowest cryostat temperatures 
can be easily detected with this method. 
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Figure 3.5: Damping of SdH-oscillations with fits of Eq. (3.1). In both 

Heliox a) and Fridge III b) a good fit is possible and no sign of a saturation 

of the electron temperature is observed. 

Fig. 3.5 shows the damping of SdH...,oscillations with fits of Eq. (3.1) for both 
the Heliox and _Fridge III. In neither case any sign of a saturation of electron 
temperature can be detected. The measurements were done in mesoscopic 
devices with the gate voltage kept at Vg = 0. One could argue that a possible 
Joule heating would be stronger in a smaller area and at higher resistance. 
However, while SdH oscillations cannot be measured in the localised regime 
for obvious reasons, there are other indicators that suggest that a saturation of 
electron temperature does not occur even in the localised regime and that the 
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observed saturation of the temperature dependence of resistivity is not caused 
by such an effect. 

Most importantly, as discussed in Chapt. 6, in many cases the resistance 
did not just saturate, but showed a turnaround with a decreasing resistance 
towards lowest temperatures (e.g. Fig. 6.2). After a sharp downturn, the tem­
perature dependence seems to flatten at lowest Tin Fig. 6.2 as well. However, 
this impression arises from the 1/ T-scale and a look at Fig. 6.1 c) confirms 
that the resistance continues to drop down to base temperature. This non­
monotonic behaviour of the temperature practically rules out a saturation of 
electron temperature. 

An additional argument against Joule heating is, that it depends strongly 
on the resistance. Hence, if the saturation of resistance was caused by Joule 
heating, the saturation temperature should strongly depend on the resistance. 
For a constant current set-up, t he Joule heating power is PJ = RI;x , i.e. it 
is proportional to the resistance. By contrast , in a constant voltage set-up, 
PJ = ~~/ R, i.e. an inverse proportional relation to resistance and opposite 
trend. Despite this, as discussed in Chapt. 6, no significant change in satura­
tion temperature was often observed over ranges in resistance of an order of 
magnitude or more. 

3.3.3 Slow Cooldown Technique 

It was found that for a good stability of the device, a slow cooldown technique 
was vital. In all successful experiments, devices were cooled down from room 
temperature to 4 K in at least 12 h, but preferably ,2: 24 h. 

This could be related to the DX-centres discussed in Sect. 2.2.2. In a 
very fast cooldown, some of the remaining electrons in the dopant layer may 
not have t ime to form DX-centres. They would then form shallow d0-states, 
which are much.less stable than DX-centres at low temperatures and can move 
around, leading to switching events and instability of the device. 

Additionally, the remaining electrons in the dop3:nt layer could rearrange 
t hemselves in order minimise the electrostatic energy. This would lead to a cor­
related charge distribution compared to the completely random distribution of 
the donor atoms. Correlations should be strongest at lowest temperatures, but 
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below the freeze-out temperature of the DX-centres no rearrangement of the 
charges is possible. Therefore, the crucial temperature for formation of charge 
correlations is just above the freeze-out temperature, i.e. T ~ TDx ~ 130 K. 
Since the movement of charges gets slower and slower as TDx is approached, 
it is particularly important to cool down slowly in this temperature range, to 
give the electrons enough time for redistribution. 

Theoretically, charge correlations have been predicted to suppress long­
range fluctuations of the 2DES disorder potential [25] and experimentally, an 
enhanced mobility ascribed to charge correlations in the doping layer has been 
reported [79]. In our case, a suppression of the long-range disorder could 
further reduce the effect of charge inhomogeneities at low electron densities, 
enhancing the effect of the mesoscopic device dimensions. 

In order for correlation effects to be strong, a significant number of electrons 
must remain in the dopant layer. We define the filling factor T/ = 1 - nct+ / n 0 , 

with O :=:; T/ :=:; 1, where nct+ and n 0 are the density of d+ states and total 
density of dopants, respectively. A simple electrostatic calculation gives a 
way to estimate T/ experimentally. The total charge density of the dopant 
layer nQ = nct+ - nDx, can be calculated as nQ = ~ (Vs - V0 ), with d0 the 
distance between sample surface and doping layer , Vs the Schottky barrier 
between topgate and GaAs and Vo the depletion voltage which can be measured 
experimentally [80]. The filling factor can then be immediately determined as 
T/ = 1/2(1 - nQ/n0) . Indeed, with T/ = 0.2 - 0.4, the filling factors in all of our 
devices were in a regime were correlation effects are expected to be strong. 

· The effect of possible charge correlations in the doping layer is further dis­
cussed in connection to biased cooldowns in Sect. 9.2.1. 
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Chapter 4 

Measurement of Electron 

Density in Mesoscopic 2DES 

As will become clear in later chapters, an important part of the experiments 
presented in this thesis is the measurement of the electron density as a function 
of the applied gate bias. First of all, the electron density provides a measure of 
the effective Coulomb interactions in the 2DES through the interaction param­
eter rs ex 1/ -Ins (see Sect. 2.1.3). But apart from that, many of the interesting 
transport phenomena could not have been understood without knowing the 
electron density. 

This chapter describes a new technique for measuring the electron density 
in mesoscopic 2DES based on the reflection of edge states at the gate in the 
quantum Hall regime. The physics behind it has been known for a long time 
and it has been used for density estimates in quantum point contacts. However, 
to my knowledge it had never been systematically applied for electron density 
measurements in 2DESs. 
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4.1 Theoretical Background 

4.1.1 Tuning the Electron Density 

In order to control the electron density in the 2DEG a frontgate is used. By 
application of a voltage to this gate the electron sheet density ns can be tuned. 
A relation between gate voltage and sheet density can be derived in a simple 
model [80]: The electron gas forms a slab of finite thickness and electron sheet 
density n8 • A voltage Vg applied between the front gate and the electron gas 
induces a surface charge a-g on the front gate surface. The surface charge can 
be related to the gate voltage through the capacitance C0 . With dg being the 
separation between the front gate and the front side boundary of the electron 
slab, one obtains a-g = EEoVg/dg. Charge conservation demands 

(4.1) 

where nq is a contribution from the charged donor atoms. This model neglects 
any quantum corrections that might change the effective electrical depth of 
the 2DEG [80], but it generally agrees very well with the observed result in 
structures like the ones used in our experiments. 

4.1.2 2DEG in a Magnetic Field 

The following derivation follows Ref. [61], where a more detailed description 
can be found. It is assumed that only one subband (SB) is occupied. A strong 
magnetic field BJ_ perpendicular to the 2DEG causes the electrons to move 
in cyclotron orbits. This leads to a formation of discrete energy levels, called 
Landau levels (LL) , with energies 

n = 0, l, 2, ... , (4.2) 

with E0 the energy of the lowest SB, the Lande factor g , the cyclotron frequency 
We = e,!f and the Bohr magneton µB . It can be sh·own that the degeneracy 
per unit area of the LLs is 

(4.3) 
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Note that this value is proportional to the magnetic field , but independent of 
any material constants like effective mass etc. The density of states (DOS) 
changes from a constant in 2D to a series of delta peaks. In high magnetic 
fields, the degeneracy of the LLs is high and therefore all the electrons are in 
the lowest LL. As the B -field decreases , the energetic position of the LL and 
therefore the Fermi energy decreases. At some point the degeneracy of the LL 
gets lower than the constant number of electrons and the next higher LL starts 
being populated and the Fermi energy makes a jump upward. This results in 
a zigzag behaviour of the Fermi energy as shown in Fig. 4.1 a) and gives rise 
to dramatic changes of the DOS D(Ep). This has remarkable consequence 
for many physical properties, particularly for the electric resistance as will be 
explained in the following two sections. 

a) b) Mobility edge 

! 
E states 

n=2 

n=O 

0 B E 

Figure 4.1: a) Fermi energy as a function of magnetic field. [From Ref. [81]] 

b) Broadened Landau level with localised and extended states. 

4.1.3 Quantum Hall Effect 

This is a very brief overview of the phenomenon called integer quantum Hall 
effect (IQHE). Consider a rectangular 2DEG of dimensions Lx and Ly in the 
x- and y-direction. A current Ix is applied in the x-direction. We define the 
longitudinal and transverse 2D resistivity coefficients, Pxx and Pxy, by Ex = 
Pxxlx and Ey = Pxylx , where Jx is a 2D current density defined as Jx =Ix/Ly. 
The classical predictions for these two coefficients are [82] : 

m * B J_ 
Pxx = - -

2
- , Pxy = --, (4.4) n5e T n5 e 
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with T the scattering time, i.e. Px:x is independent of B 1.. and Pxy increases 
linearly with B 1... However, the experimental results at low temperatures are 
very different, as can be seen in Fig. A. The Hall resistivity Pxy increases in 
steps at high fields. · The values of Pxy along t he horizontal portions are very 
constant at values related to the fundamental constants h and e by 

h 25812.SD 
Pxy = -~ = -

ie i 
(4.5) 

where i is an integer. The value of these plateaux can be explained with the 
LLs described in Sect. 4.1.2 [61]. We define t he filling factor v as the number of 
occupied LLs below the Fermi energy. N1 from Eq. ( 4.3) being the degeneracy 
per area of the LLs and n 5 t he electron sheet density, the filling factor can be 
expressed as 

ns ns 
V = N1 = fiB1... (4.6) 

At certain magnetic fields, v has an integer value and the classical Hall resis­
tivity Eq. ( 4.4) is 

B 1.. B 1.. l h 
Pxy = - = e B '1 e2 . ( 4. 7) en5 evh 1.. v 

This explains the value of the plateaux but not why there are plateaux at all. 
So far t he Landau levels have been considered as delta peaks. However, tak­

ing electron scattering at impurit ies into account, the LLs are broadened. In a 
magnetic field electrons can be localised at impurit ies if t he cyclotron radius is 
smaller t han the distance between t he impurities. Numerical simulations show 
that the extended states are in the center of the LLs and the localised states 
at the edge [61]. This is schematically shown in Fig. 4.1 b) . The edge between 
localised and extended states is sometimes referred to as t he mobility edge. An 
analysis of the width of the Px:x peaks in the limit of zero temperature shows 
that only a few percent of the states of a LL are not localised [83]. Only the 
extended states can carry a current, whereas all the states contribute to the 
degeneracy of the LLs. Hence, neither the Hall resistance Pxy nor the magne­
toresistance change, as long as the Fermi energy is . in the range of localised 
states. 

,I 
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Figure 4.2: a) Quantum Hall plateaux and b) Shubnikov-de Haas oscilla­
tions. [From Ref. [61]] 

4.1.4 Shubnikov-de Haas Oscillations 

Not only the Hall resistance but also the longitudinal resistance of a 2DEG 
behaves very differently from classical predictions: Classically the longitudinal 
resistance Pxx is independent of a magnetic field (Eq. ( 4.4) ), but in Fig. A it 
shows an oscillatory behaviour, the so called Shubnikov-de Haas (SdH) oscil­
lations. The resistance disappears in the range where the Hall resistance is 
constant , but shows distinct peaks when the Hall resistance jumps from one 
plateau to another. This can again be explained with LLs. As long as the 
Fermi energy lies between two LLs, the lower of these two LLs is completely 
filled and there are no free states where electrons could be scattered into. A 
scattering process would have to excite the electron to the next higher LL, 
which is obviously not possible for elastic scattering. Therefore any scatter­
ing is suppressed and the resistance disappears. Onl:y when the Fermi energy 
coincides with the energy of a LL, t here are empty states in the LL and scat­
tering is possible. Without any broadening of the LL the peaks in Pxx would 
be delta shaped, but if the LLs are broadened the SdH peaks get broadened 
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as well. When the spin splitting of the LL, which is f:j.E = gµ8 B according to 
Eq. ( 4. 2), is larger than the broadened width of the extended states of the LLs 
( see Fig. 4.1 b)), the spin splitting can· be observed in the magnetoresistance 
as two separate peaks. But in low magnetic fields , where the spin splitting 
of the LL is small, the two LLs merge and behave like one LL with double 
degeneracy. Here, only even filling factors are observed. In this regime the 
SdH oscillations are periodic in 1 / B .l · 

4.1.5 Edge State Picture 

In this section a brief introduction to the edge state picture of the quantum 
Hall effect is given. In Eq. ( 4.2) the energy eigenvalues for electrons in a 2DEG 
applied to a perpendicular magnetic field were given. This result is true in the 
case where the potential in the plane of the 2DEG vanishes. However, near the 
edges of the sample there will be a non-vanishing potential. This causes an in­
crease of the energy eigenvalues and an upward bend of the Landau levels. In a 
naive one-electron picture, this would lead to a simple crossing of the LLs with 
the Fermi level, as shown in Fig. 4.3 b) and a stepwise decrease of the electron 
density near the sample edge (Fig. 4.3 c)). Since for transport, the states near 
the Fermi level are important, this results in narrow current carrying states 
along the edges, called edge states, shown in Fig. 4.3 a). Chklovskii et al. 
showed that in reality, the behaviour is not that simple [84] . They argued that 
the electron density at an etched or gated edge of a 2DEG in a GaAs/ AlGaAs 
heterostructure is dominated by the electrostatics of the distribution of charges 
in donor layer, surface and gate. The smooth decrease of electron density at 
the edges can only be weakly modified by a magnetic field as shown in Fig. 4.3 
f) . The self-consistent electrostatic potential increases stepwise, and strips of 
compressible and incompressible liquid are formed (Fig. 4.3 e)). This leads to a 
quite different picture of the edge states, with extended compressible strips that 
can carry a current, separated by narrow incompressible strips (Fig. 4.3 d)). 
For the density measurements discussed in this chapter, the exact structure 
of the edge states should not matter as long as they remain one-dimensional 
and, hence, t he Landauer-Buttiker formalism can be applied ( discussed in the 
following paragraphs) . However, it may be relevant to the experimental results 
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presented in Chapt. 8. 
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Figure 4.3: a)-c) One-electron picture of edge states with a smooth effective 
potential and stepped electron distribution. d)-f) Self-consistent electrostatic 
picture with a stepped effective potential and smooth electron distribution. 
[From Ref. [84]] 

The current fed into the edge states belonging to one Landau quantum 
number is given by 

(4.8) 
where the longitudinal velocity Vnk and the density of states D(E) cancel out 
because of the one-dimensional nature of the edge states. In analogy to the 
classical skipping orbits at the two edges, the longitudinal velocit ies are in 
opposite directions at t he two edges. 

Transport in one-dimensional channels was treated by Biittiker [85]. He 
treated not only many channels but also the influence of many contacts. The 
basis of his formula is the conservation of current. He treats different contacts 
on an equal footing , Le. current contacts and potential probes are equivalent. 
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The law of current conservation is applied to all the contacts simultaneously. 
The result ing formula for the current in the contact i is 

J. = !!_ ((N - r· ·)·µ· - ~ t· ·µ·) I · h 11 I 6 IJ J , 

j 

(4.9) 

with N the number of channels , rii the sum of t he reflection coefficients from 
contact i to contact i , µi t he electrochemical potential in contact i, and tij the 
sum of the transmission coefficients from contact j to contact i. For the quan­
tum Hall effect one assumes that the transmission coefficients at the edges for 
the different edge channels are unity while the backscattering (i.e. scattering 
from one edge to the other) is suppressed. Under these assumptions, t he Hall 

a) b) 5 
g~te 

6 

source 

"' poter>tio.C 
probes 

Figure 4.4: a) Hall bar geometry in a magnetic field applied perpendicular 

to the plane with two Landau levels occupied. b) Hall bar geometry with a 

gate finger across it. [From Ref. [86]] 

resistance for the geometry shown in Fig. 4.4 a) with two edge states can be 
calculated: 

R _ µ3 - µ5 _ !!__ 
35 - el - 2e2 ' 

(4.10) 

since I = 2;(µ1 - µ5) and ]3 = 0 = 2/;(µ3 - µ1). 
The edge state model of the quantum Hall effect provides a powerful tool for 
the calculation of the resistance in a Hall bar with a gate finger across as shown 
in Fig. 4.4 b). As shown in Sect. 4.1.1 the carrier density under the gate can be 
changed. Therefore, in a magnetic field , the filling factor in this region can be 
changed as well and the Hall bar sample will contain regions of different filling 
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factors . As described above, the filling factor can be related to the number of 
occupied edge states. Hence, the number of edge states under the gate can be 
decreased. The edge states which exist in the adjacent undisturbed regions of 
the 2DEG, but are missing in the gate region, are reflected at the gate. 

Within the edge state picture it is possible to calculate the resistance be­
tween the potential contacts 3 and 4 in Fig. 4.4 b): 

R34 = µ3 - µ4 = !!_ (! -2-) , 
el e2 v v0 

(4.11) 

where v and v0 are the filling factors under the gate and in the rest of the 
Hall bar, respectively. In measurements on gated Hall bars in a magnetic field 
corresponding to an integer filling factor in the ungated region, plateaux in the 
resistance as a function of gate voltage have been observed at the predicted 
values [87, 88]. 

4.2 Measuring the Electron Density 

4.2.1 Conventional Method 

As seen in the previous section, the electron sheet density of a 2DEG can be 
calculated from the 1/ B ..L-periodic SdH-oscillations of the resistivity namely 

2e 
( 4.12) nsctH = h..6.(-1 ) , 

B1. 

where ..6.(}J is the period of the SdH-oscillations in the regime where the spin 
splitting is not resolved. At low magnetic fields the Hall resistivity increases 
linearly with B..L: 

( 4.13) 

This relation gives us an easy way of determining the electron sheet density 
from the slope of Pxy in this linear range. The densities nH and nsctH are equal 
if only one energy subband of the 2DEG is occupied. 
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4.2.2 New Technique for Small Active Areas 

These conventional density measurements cannot be used if the active region 
of the device is very small. An alternative technique based on the edge state 
picture described in Sect. 4.1.5 comes to our aid if the sample is similar to the 
one shown in Fig. 4.4 b) . To measure the density under the gate, a perpen­
dicular magnetic field is set to a value that corresponds to an integer filling 
factor in the ungated region. These values of magnetic field can be determined 
by standard Shubnikov-de Haas measurements when the gate voltage is set to 
zero. Then the resistance is measured as a function of the gate voltage Vg, 
which leads to plateaux at the values of R34 = e~ (1/v - 1/v0 ) (Eq. (4.11)), 
provided t he contacts are close to ideal with no reflection and perfect trans­
mission. V9 at the center of these plateaux then corresponds to an electron 
density ns = eB1_v /h, while the width of the plateau represents t he maximum 
uncertainty. 

4.3 Experimental Results 

In Sect. 4.1, the theoretical background for an alternative electron density 
measurement technique based on the reflection of edge states was given. In 
the following, this technique is used to measure the gate voltage dependence 
of the electron density of a for mesoscopic 2DES as described in Sect. 3.1. In 
these devices conventional Shubnikov-de Haas measurements cannot be done. 

4.3.1 Measurements at Vg = 0 

In a first step the electron density in the ungated region of the device is mea­
sured in a conv~ntional Shubnikov-de Haas measurement . This is done by 
measuring the transverse and longitudinal resistance as a function of the mag­
netic field at zero gate voltage. Such a measurement is shown in Fig. 4.5. A 
beating of the SdH oscillation can be seen, which is explained by a difference 
in electron density underneath and away from the gate , i.e. a slight depletion 
under the gate even at Vg=O. 

Now the positions of several minima in the Shubnikov-de Haas oscillations 
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Figure 4.5: (Device A 78f T=300 mK) a) Longitudinal magnetoresistance 

with Shubnikov-de Haas oscillations. A beating of the oscillation can be seen, 

which comes from superposition of SdH under the gate, where the density is 

reduced even at Vg = 0. The minima at low v show a negative resistance. 

This is a measurement artefact, which can explained by one of the contacts 

used for the voltage probes getting a very high resistaRce in higher magnetic 

fields. This does not affect the SdH periodicity and does, hence, not have any 

impact on the density measurement. b) Hall resistance of the same sample. 
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are determined. The positions of the minima in Rxx determines the magnetic 
fields of the integer filling factors used in t he second stage of t he experiment 
which will be described below. An alternative method to determine integer 
filling factors is by doing a Fourier analysis of the SdH oscillations, which ex­
tracts their periodicity in l/B.1_. Via the relation nsdH = h.6.f~) (Eq. (4.12)), 

BJ_ 

the electron density can be measured, leading to the B-fields for integer fill-
ing factors according to Eq. (4.6). In fact, this method proved more reliable 
and was used in most cases. In some devices, particularly when the electron 
density was low or the zero gate voltage depletion was strong, SdH oscillations 
where difficult to measure. In these cases, t he electron density could be deter­
mined by a measurement of the Hall resistance at low fields, where it is not 
quantised, using Eq. ( 4.4). This method is less precise, since it depends on the 
actual measured value of the resistance, while the analysis of SdH oscillations 
is unaffected by a possible error of the resistance. Also, if several subbands 
are occupied , the Hall analysis gives the sum of the densities of all subbands, 
whereas the SdH analysis measures each subband separately. However, the 
second point is unimportant in our case, since only one subband is expected to 
be occupied in all devices used in this thesis. For t he device shown in Fig. 4.5 
(A 78f), a direct comparison between Hall- and SdH-density can be made. It 
reveals nsdH = 2.075 x 1011 cm-2 and nHall = 2.11 x 1011 cm-2 giving difference 
of< 2%. 

4.3.2 Gate Voltage Dependence of the Electron Density 

After determining the B-field values at filling factors v0=4, 6, 8, 10 and 12 in 
the ungated region of the Hall bar, t he measurements for the density under the 
gate could be done. T he longitudinal resistance of the Hall bar was measured 
as a function of gate voltage at each of the magnetic fields corresponding to 
the filling factor in the ungated region given above. A summary of the results 
is shown in Fig. 4.6 a) , while b) and c) show details of measurements at two 
magnetic fields. 
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Figure 4.6: (Device A 78f; T=300 mK) a) Longitudinal resistance as a func­

tion of gate voltage at magnetic fields corresponding to integer filling factors 

vo = 4, 6, 8, 10 and 12 in the ungated region of the device. b), c) Examples of 

the plateaux used to find the position of integer filling factors under the gate. 

Clear plateaux are visible at even filling factors and the agreement of the 
resistance at the plateaux with the expected values R = l / v0 -1 / v with v0 < v 
when plotted in _units of h/ e2 is excellent. In some cases, a series resistance 
had to be subtracted to get a good agreement, but in the sample shown, this 
was not necessary. The Vg at the centre of these plateaux corresponds to an 
electron density of n5 = eB JY / h. 

The results of these measurements are shown in Fig. 4. 7. The electron 
density shows an almost perfectly linear dependence on the gate voltage. The 
slope is approximately C = 23.5 x 1010 cm-2v-1 which agrees very well with 
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Figure 4. 7: Gate voltage dependence of the electron density determined 

from the plateaux positions in the measurement shown in Fig. 4.6. 

the theoretically predicted value of C0 = ~dff = 24.6x 1010 cm-2v-1 (Eq. (4.1)). ge 

Including Odd Filling Factors 

In the data shown so far only even filling factors were taken into account in 
the analysis. This is because at the temperature of 300 mK, where a large part 
of the data presented in this thesis was taken, odd filling factors could not 
usually be resolved. 

However, at very low temperatures in a dilution refrigerator, odd filling 
factors can be resolved, providing additional density points and improving the 
precision and reliability of the density measurement method described in this 
chapter. Fig. 4.8 shows a density measurement done in a dilution refrigerator, 
where the sample was immersed in the mixing chamber at a temperature of 
30 mK. The sample was illuminated with a LED prim to the measurement. 
Therefore, the electron density was particularly high, leading to an increase 
of the magnetic field where a given filling factor occurred. This lead to an 
excellent resolution of odd filling factors under the gate, even when the filling 
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factor in the ungated part of the device was high. Odd filling factors were 
also observed in other devices without illumination at dilution refrigerator 
temperatures, although not usually as clearly. Fig. 4.8 a) shows a gate sweep 
at BJ_ =1.28 T, which corresponds to v0 = 10. No correction due to series 
resistance was done in this measurement. Very clear plateaux are visible at 
v=2, 4, and 6, but also at the odd filling factors v=3 and 5. 

In Fig. 4.8 b) the measured densities are plotted as a function of gate voltage. 
The obtained slope is C = 64.75 x 1010 cm-2v-1 comparing to the theoretical 
value of C0 = 79 x 1010 cm-2v-1 . The deviation of rv 20% is still reasonably 
low. In the plot, a distinction between data points achieved from even and odd 
filling factors is made. As expected, no systematic difference between even and 
odd filling factors can be observed. 

Experimental Error 

As discussed above, the error bars given in Figs. 4. 7 and 4.8 b) are determined 
by the width of the plateaux in the density measurement. Using these error 
bars an estimate for the error in the final density function determined by the 
linear fit to the data points can be made. This is done simply by tilting the fit 
as far as possible away from the best fit without leaving the boundaries given by 
the error bars. This provides extreme values for the slope C and the depletion 
voltage Vo. Such an estimate is shown in Fig. 4.9 (red line) . Together with the 
best fit, it provides a density ns = 23.5~~:~ x (Vg - 0.8054~8:8~~) x 1010 cm-2

. 

However, a simple look at the quality of the linear fit suggests that these 
boundaries hugely overestimate the error. If the actual errors of the density 
points were as large as the error bars suggest, a scattering around the linear 
fit of the same order would be expected, at least if the error was random. A 
more realistic, if slightly vague, error estimate can be done by simply trying 
out, how far the best fit might be bent without deviating unreasonably far 
from the data points. This is shown in the blue lines in Fig. 4.9 and provides 
the reduced errors ns = 23.5 ± 0.53 x (Vg - 0.8054 ± ~.0079) x 1010 cm-2

. 

A systematic error in the analysis, e.g. an asymmetry of the plateaux with 
respect to the precise position of the integer filling factor cannot be completely 
ruled out. Such an error would lie within the boundaries given in the first error 
estimate, but not necessarily in the second, smaller estimate. However, such 
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Figure 4.8: a) Longitudinal resistance as a function of gate voltage at mag­

netic fields corresponding to integer filling factor vo= 10 ( B .1_ = 1.28T) in t he 

ungated region of the device, at T = 30 mK. P lateaux at both even and odd 

filling factors can be clearly observed. b) Densities obtained from v0=14, 12, 

10, 8, 6, and 4, distinguishing between even and odd· filling factors v under 

the gate. No systematic deviation between even and odd is observed. (Device 

A77b) . 
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Figure 4.9: The same data as in Fig. 4.7, but apart from the best linear 

fit (black line), the maximum deviation from the best fit that still fits within 

t he error bars (red lines), and a maximum deviation based on eye judgement 

(blue lines) are given. 

a systematic error would be unlikely to be independent of magnetic field and 
electron density or even/ odd filling factor. Hence, if t he error was large, a 
deviation from linearity would be expected. As discussed above, this is not 
the case even when both even and odd filling factors are included. 

Another error comes from the measured density nsdH in the ungated part of 
the device. If n~dH = C x nsdH then n~ = C x ns , where n' and n are the mea­
sured and actual electron density, respectively. This error does not lead to a 
non-linearity of the measured density and is, hence, harder to detect. However, 
the error coming from the Fourier analysis of t he SdH-oscillations is generally 
expected to be rather small. Also, since no offset in the depletion voltage Vo 
is caused, extrapolation of the measured densities to the low density regime 
does not increase the relative error , making it less serious for our purpose. 
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Chapter 5 

Magnetoresistance of Hopping 

Transport 

This chapter discusses magnetoresistance (MR) measurements in the hopping 
regime of 2DES. It presents the first detailed study of this kind in mesoscopic 
high mobility 2DES. 

In Sect. 5.2, the average hopping distance Thop is analysed as a function of 
electron density. Surprisingly, it is found that Thop ~Tee = 1/ ,Jn;, the average 
electron-electron separation. This is strong evidence that electron-electron 
interactions play an important role in transport. A quantitative analysis in 
terms of transport mediated by defects in an interaction induced electron solid 
1s given; 

Sect. 5.3 treats the hopping prefactor R8 as defined in Eqs. (5 .1) and (5.3) . 
It is found that this prefactor decreases exponentially with increasing n8 at low 
densities, but saturates at higher densities and forms plateaux at the univer­
sal values h/e2 _and h/2e2

. The universality occurs in resistance rather than 
resistivity and is independent of gate length and, within a window, spacer 
width. The result is interpreted as additional evidence of a strongly corre­
lated electron phase, where hopping is assisted by -electron-electron rather 
than electron-phonon interactions. 

Sect. 5.4 presents other aspects of the MR, in particular the low and high 
field limits. The results are discussed in consideration of the findings in 
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Chapter 5. Magnetoresistance of Hopping Transport 64 

Sects. 5.2 and 5.3 and some further support to the conclusions of these sections 
is given. 

5.1 Theoretical Background 

Hopping transport, where electrons tunnel between states near in space and 
energy, is determined by the wave function overlap and the availability of an 
energy transfer mechanism, which allows for electrons to absorb or emit the 
energy difference of the states between which it tunnels. While the second 
term has most impact on the T-dependence of transport (Chapt. 6), it is the 
first term that dominates the magnetoresistance. 

A magnetic field B 1_ perpendicular to the plane of the 2DES increases the 
confinement of the electrons by effectively producing a harmonic potential of 
the form V(r) = n2r 2 /8m* li with lB = Jn/eB1_ the magnetic length. In a 
weak B1_ such that lB »(,the hydrogenic wave function of a localised electron 
'l/J(r) ex exp(-r/() (( the localisation length) changes to 'l/J(r) ex exp(-r/(­
r3(/24li) which reduces the wave function overlap and, hence, the tunnelling 
probability. This leads to a magnetoresistance of the form [89, 90] 

p(T, B1_) = pB(T) exp(aBi) , (5.1) 

with 

(5.2) 

Here, rhop is the average distance between trap sites and the model dependent 
constant C ;::::; 1 - 1.5 depends on the number of bonds in the random resistor 
network, i.e. the number of available states an electron can hop to with non­
negligible probability. For the MR prefactor one finds 

(5.3) 

with Et the energy mismatch between electronic sta~es and p = l for nearest 
neighbour hopping (NNH) and p = l/3 or p = 1/2 for variable range hopping 
(VRH) without or with a Coulomb gap, respectively (see Sect. 2.6). 
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v,(r) 

E 

Figure 5.1: Schematic of hopping between localised electron states in a 

random disorder potential. 

In a strong magnetic field such that ZB « ~, the electron wave function 
becomes a Gaussian 'I/J(r) ex: exp(-r2 /4Zi). In this case, the magnetoresistance 
is [90] 

p(T, B_L) = p~(T) exp(f3BJ_), (5.4) 

with 

(5.5) 

5.2 Density Dependent Hopping Distance 

5.2.1 Overview 

Expression (5.1) has been confirmed experimentally for hopping transport in 
the impurity band in the inversion layer of sodium-doped Si-MOSFET [91] as 
well as in layers of Si donors in GaAs [17]. Here, it is shown that an exponen­
tial Bi-dependence also occurs in the strongly localised regime of mesoscopic 
modulation-doped GaAs/ AlGaAs heterostructures, which are much less disor­
dered. 

Fig. 5.2 shows the MR in low perpendicular field for devices from four differ­
ent modulation-doped heterojunctions including 5-doped wafers with 65p=20, 
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Figure 5.2: Resistivity p in logarithmic scale versus El (perpendicular) 

for four devices from different wafers with 65p varying from 20 nm to 60 nm, 

including both 6- and bulk-doped heterostructures. All measurements were 

taken at T = 300 mK. The densities for each data set are given in units of 

1010 cm-2 . A ·clear exponential Bi-dependence is observed over up to more 

than one order of magnitude in resistivity. The slopes of the linear fits reveal 

the coefficient a in the exponential, the y-intercept gives the MR prefactor 

PB [92]. 
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40 and 60 nm and one bulk-doped wafer with 6sp=40 nm. Device dimensions 
are L x W rv 2- 3 µm x 8 µm. Measurements are restricted to electron densities 
where t he minimum resistivity is ,2:: 2h/ e2

, in order to ensure that electrons 
are localised. In this regime, all devices· show a MR according to Eq. (5.1) 
with an exponential Bi-dependence of p over up to more than one order of 
magnitude in resistance. This strongly suggests that transport, indeed occurs 
by hopping and an analysis of the data in the framework described in Sect. 5.1 
is adequate. Alternative transport mechanisms will be discussed in Sect. 5.5. 

5.2.2 Analysis 

This section focuses on the analysis of the coefficient a in the exponential, 
which is determined by the slope of the linear fits to the resistivity in logarith­
mic scale vs. Bi as shown in Fig. 5.2. A first striking observation is that the 
slope a depends strongly on electron density and decreases with increasing ns 
for all devices. According to Eq. (5.2), a contains two parameters that may 
not be constant, namely Thop and~- The localisation length~ is proportional 
to a, hence, if the n5-dependence of a was caused by a change in~' the local­
isation length would have to decrease with increasing electron density. Such 
a behaviour is completely unexpected: In a non-interacting scenario, in the 
regime of very low densities, where localisation is completely determined by 
trapping of individual electrons by local minima in the background disorder 
potential, one would expect a ~ independent of electron density. With increas­
ing density, stronger screening of the disorder potential can lead to an increase 
in ~ ( e.g. Ref. [93]) , but it is certainly not expected to decrease as the observed 
behaviour of a would suggest. 

The other possible explanation is a decrease in the average hopping distance 
rhop with increa$ing n5 • However, again, a single-particle picture fails to explain 
why this should happen. In the low density limit, the hopping distance should 
be independent of the electron density. With increasing ns, some of the trap 
sites might get screened, or occupied and, hence, unavailable. This would lead 
to a larger hopping distance with increasing electron density, again leading to 
the opposite trend than experimentally observed. 
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independent of disorder strength. b) The same data as a), but on a log-log 
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An understanding of the n5-dependence of a requires a more quantitative 
analysis. In Fig. 5.3 a), a is shown as a function of electron density for five 
devices made from four different wafers (Osp = 20 - 60nm). Remarkably, a 

from different samples are strongly correlated with the magnitude apparently 
only determined by ns and following an universal function, independent of 
disorder. At stronger disorder (e.g. A07a), localisation occurs at lower ns, 
resulting in a lower a, while at lower disorder ( e.g. C67b) localisation occurs 
at higher ns, yielding a larger magnitude of a. 

As discussed above, a single-particle picture of transport and localisation 
fails to explain the qualitative density dependence of a for individual devices. 
The strong correlation of a from sample to sample gives further evidence of this 
finding. It makes a purely disorder associated origin of rhop clearly unlikely. 
For example, taking rhop ;::::::; Osp ( the shortest disorder length-scale expected 
in the 2DES, see Sect. 2.2.3) would lead to distinct sets of a for wafers with 
different Ow On the other hand, the wide range of doping concentrations, 
compensations of the dopants, and the use of both bulk- and 5-doped wafers 
excludes a possible distinct length-scale within the doping layer as the origin of 
rhop· However, in the context of strong electron-electron correlations, another 
relevant length-scale is ree"' 1/ .Jns. It is the nearest neighbour separation of 
the electrons assuming they are arranged on a square lattice. For simplicity, ree 

is referred to as mean electron-electron separation and its physical implications 
are discussed below. 

In case of tunnelling events over a mean electron-electron separation, i.e. 
rh~p;::::::; ree, Eq. (5.2) describes both absolute magnitude and the n 5-dependence 
of a quantitatively. Using rhop;::::::; 1/ .Jns, Eq. (5 .2) leads to a ex: n-;

312
, which 

is observed experimentally (solid line in Fig. 5.3 b)). Allowing for sample-to­
sample variation, it was found that a = (1. 7 ±0.5) x 1021 /n~/2 T-2 from which, 
using Eq. (5.2), one obtains ( = 9.0±2.6 nm. This value is close to the effective 
Bohr radius a~ in GaAs (;::::::;10.5nm). Here, a value of C = l was assumed, 
which cannot be rigorously justified. However, the theoretical predictions all 
lie within a deviation of 50% from C = l, and using, any other value would 
not qualitatively alter the picture. 

In a summary of the analysis so far, we have seen that a is only determined 
by the electron density and not disorder. This behaviour can be quantitatively 
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described over nearly one order of magnitude in n5 and two orders of magnitude 
in a by assuming hopping transport with a constant localisation length ~ ~ at 
and a density dependent hopping length Thop ~ Tee· 

5.2.3 Discussion 

In the following, the physical scenarios that could lead to an electron separation­
dependent hopping transport are discussed. It is evident that any explanation 
of the finding that Thop ~ Tee, must take significant electron-electron interac­
tions into account. A natural explanation is that of a self-localised electron 
solid as discussed in Sect. 2.5. This may be anything from a strongly disordered 
electron glass to a disorder stabilised, pinned Wigner crystal with high regu­
larity. For a strongly disordered ES, there is no well defined nearest-neighbour 
separation, but electrons will try to avoid each other and generally would not 
be much closer than Tee· This condition also restricts the hopping path and, as 
Fig. 5.4 a) shows schematically, it seems reasonable that the closest available 
sites an electron can hop to, will be O[ree] away. 

For the case of a pinned Wigner crystal a more quantitative discussion 
is possible. Here, transport would occur by hopping of point defects such 
as interstitials or vacancies. The WC is arranged in a hexagonal lattice with 
lattice constant a0 = 1.07 / ,Jn;,. The hopping distance of a vacancy is Thop = a0 , 

while that of a interstitial is slightly shorter, Thop = 0.87 x a0 = 0.93/ ,Jn;,. 
Both values lie well within t he error margin of the measured Thop· This means 
that transport mediated by defects in a WC could explain the observed n 5-

dependence of Thop very well. 
Formation of a Wigner crystal in presence of optimal disorder has , indeed, 

been suggested at T5 ~ 7.5 (see Sect. 2.5.1 and [20]), which is not very far 
from the range of Ts ~ 2.7 - 6.5 in which the unusual hopping behaviour was 
observed experimentally. The results described here do not allow for a definite 
conclusion about t he degree of order between the localised electrons. However, 
the results obtained from the temperature dependence in the same regime 
suggest, that a rather strong ordering might be present. This is presented 
in Chapt. 6, where a more detailed discussion of the motion of defects in an 
electron solid is also given. 
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a) b) 

Figure 5.4: a) Schematic illustration of hopping in a Wigner glass. Two 

possible hopping events over the distances rhop and r~op are indicated. b) 

Hopping of defects in a Wigner crystal over the distance rhop (interstitial) 

and rhop (vacancy). The lattice constant of the hexagonal crystal is indicated 

as ao. 
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The interpretation above assumes a constant or weakly changing localisation 
length~ ~ aB and a wave function of the form 1/J(r) ex exp(-r/~). The 
success of the analysis, in particular, the clear exponential Bi-dependence of p 

and the sample-to-sample consistency justify these assumptions. The intricate 
interplay of confinement arising from the magnetic potential, disorder potential 
and electron-electron interactions is expected to determine 1/J ( r). However, 
how this could lead to an universal localisation length ~ ~ aB is presently not 
understood. 

5.3 Universality and Quantisation of Hopping 

Pref actor 

The hopping prefactor PB as defined in Eq. (5 .1) reveals independent informa­
tion about rhop and~ which allows for a verification of the results discussed in 
Sect. 5.2. 
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If those findings were true, i.e. rhop ~ 1/ ,Jn; and~~ aB, the electron den­
sity dependence of the prefactor should be PB(ns) ex exp(2/ ,Jn;a1i), according 
to Eq. (5.3). Fig. 5.5 a) shows PB as a function of ree for various devices with 
spacer width Osp = 20 - 60 nm. As the solid lines confirm, in the low density/ 
high resistivity regime, PB follows the expected behaviour in a satisfactory 
manner despite some scatter of the data points. This is a good check of con­
sistency with the results discussed above. However, at lower n5 , PB deviates 
from the exponential behaviour and saturates to a weaker r ee-dependence. The 
saturation value is found to be PB rv 1 - 2h/ e2 for all devices. 

A striking observation becomes clear in Fig. 5.5 b), where the same data as 
in a) is plotted in terms of absolute resistance R = p x L/W: The saturation 
value turns out to be the universal value of RB ~ h/2e2 for all devices. 

In order to verify this surprising result, a set of devices from the same 
wafer and mesa width W, but varying gate length L was measured. This 
leads to a different ratio between PB and RB for each device. Fig. 5.6 shows 
a direct comparison of the obtained hopping prefactors in terms of resistance 
(a)) and resistivity (b)). While RB exhibits a practically coinciding saturation, 
PB varies strongly in its absolute saturation value. This results confirms that 
the saturation value is, indeed, universal in resistance rather than resistivity. 

In Fig. 5. 7, Rs is again plotted for four devices, all from different wafers . 
The gate voltage where the first deviation from t he exponential behaviour oc­
curs has been subtracted in the x-axis in order to get a better representation 
of the data. Here, another observation becomes clear: Apart from the sat­
uration at RB ~ h/2e2 another plateau is formed at lower electron density 
at RB ~ h/e2

. In other words , RB is quantised in units of the quantum of 
resistance h/2e2

. In some cases, further features were observed at higher re­
sistances. However, they were not clear enough to be assigned to a certain 
quantisation value. On the other hand, in the regime of higher ns , where 
lower resistance plateaux might be expected, strong localisation and hopping 
transport break down, making an analysis of the hopping prefactor impossible. 

According to Eq. (5.3) , RB should depend on temperature exponentially. 
However, as Fig. 5.8 shows, RB is virtually temperature independent between 
300 mK and 1.2 K. This is most likely related to the saturation in the tempera­
ture dependence of resistance at low T discussed in Chapt. 6. There, it is shown 
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that the (saturated) low-temperature behaviour may be expiained as thermally 
assisted tunnelling between nearest neighbour states with the average energy 
difference between states Et~ kBT. This means that exp(Et/kBT)P ~ 1 and, 
hence, Eq. (5.3) becomes 

PB~ Po exp(2rhop/~) , (5.6) 

which explains the temperature independence of PB· In this situation, PB 
is equal to the hopping prefactor Pt in exponential temperature dependence 
p(T) = Pt exp(Et/kBT)P, which has been investigated for the case where 
Et » kBT. Experimentally, an universal value of Pt rv h/ e2 was observed 
in macroscopic 2DES in silicon [9] or at Pt rv h/ e2 and Pt ':::: h/2e2 in AlGaAs 
heterostructures with very small spacer 65p = 0.6nm [10]. 

If the tunnelling is assisted by electron-phonon scattering, a prefactor Pt » 
h/e2 is expected [95] . However, it had long been suggested that hopping as-
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applies to both panels. Devices are C67a and C67b. 
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that the (saturated) low-temperature behaviour may be explained as thermally 
assisted tunnelling between nearest neighbour states with the average energy 
difference between states Et « kBT. T his means that exp(Et/kBT)P ~ 1 and, 
hence, Eq. (5.3) becomes 

(5.6) 

which explains the temperature independence of PB · In this situation, PB 
is equal to t he hopping prefactor Pt in exponential temperature dependence 
p(T) = Pt exp(Et/kBT)P , which has been investigated for the case where 
Et » kBT. Experimentally, an universal value of Pt rv h/e 2 was observed 
in macroscopic 2DES in silicon [9] or at Pt S::' h/ e2 and Pt rv h/2e2 in AlGaAs 
heterostructures with very small spacer 6sp = 0.6 nm [10]. 

If the tunnelling is assisted by electron-phonon scattering, a prefactor Pt » 
h/e2 is expected [95]. However, it had long been suggested that hopping as-
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Figure 5. 7: RB for devices from four different wafers showing a quantisation 

with plateaux at the values RB ~ h/2e2 and h/ e2 . For better representation, 

the gate voltage Vs, where deviation from exponential behaviour first occurs 

for each device, has been subtracted from the absolute value of gate voltage 
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sisted by electron-electron scattering may lead to a prefactor rv h/ e2 [95]. A 
theoretical justification was not given in Ref. [95] , but the reasoning must 
be that the coupling in electron-electron scattering is much stronger than in 
electron-phonon scattering, since phonons are essentially vibrations on un­
charged atoms. 

Recent theoretical work has , indeed, predicted a prefactor Pt ~ h/ e2 in hop­
ping transport assisted by excitations of strongly overlapping localised electron 
states [96]. Calculations for scattering between electrons ( or charged defects) 
and lattice vibrations in an electron solid were not done, but a similar result 
would not be unexpected [96]. However, a quantisation at h/e2 and h/2e2 is 
not predicted in this theory. Nevertheless , the experimental results described 
in this section provide further evideilce of a strongly interacting electronic 
phase or possibly even a electron solid. 
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Figure 5.8: Magnetoresistance prefactor RB at the temperatures T = 
300 mK and T = 1.2 K for device A 78e. RB is virtually temperature inde­

pendent within this temperature range [94]. 
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Despite all this, the question remains, why the saturation is universal in 
resistance rather than resistivity. The apparent insensit ivity to the length 
of the gate may be explained by a correlated hopping, leading to a length­
independence if the device is smaller t han the correlation length, which may 
be true in mesoscopic devices. Even in t his case one would expect a dependence 
on the width of the device. A systematic investigation of the dependence of PB 
or RB on mesa width was not done, but it seems an unlikely coincidence t hat 
it is the choice of a width of 8 µm that leads to the observed saturation value. 
The independence on device width could possibly be explained by formation of 
some kind of qu~si one-dimensional stripe as dominating transport path, be it 
caused by disorder or a fundamental interaction effect [51- 53]. However, this 
would by no means explain the observation fully, in fact , it would be difficult to 
account for many other observations described in this thesis in such a picture. 
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5.4 Other Aspects of Magnetoresistance 

5.4.1 Low Field Negative Magnetoresistance 

The devices under investigation generally showed a clear negative magnetore­
sistance at lowest fields (see Sect. 5.4.3 for exceptions). This is shown for a set 
of four devices in Fig. 5.9, where a linear rather than quadratic E ..1-scale was 
chosen in order to highlight the low-field part of the data. Tripathi and Ken­
nett (TK) have discussed negative MR in insulators , which has been studied 
in literature in two contexts [97]. One possible origin of negative MR is the 
suppression of destructive interference between different trajectories between 
starting and final point of a hopping event. This has been predicted to lead to a 
linear negative MR [p(E..1)-p(O)J ex IE..11 or quadratic MR [p(E..1)-p(O)J ex El 
depending on the strength of the field [97]. The other mechanism, which 
would be relevant in the droplet picture proposed by TK (see discussion in 
Sect. 5.5), arises from an increase of the wave function overlap between ad­
jacent electron droplets. This model also predicts a quadratic negative MR 
[p(E..1) - p(O)] ex El, However, the magnetoresistance observed here, does not 
seem to follow any of these predictions. As Fig. 5.10 shows, in device C67b, 
a rather clear El-dependence of the conductivity o- = 1/ p is observed, i.e. a 
negative magnetoresistance of the form [p( E _L) - p( 0)] ex E-;__ 2

. The author is 
unaware of any theoretical work that predicts such a behaviour. 

Another aspect of the negative MR is the position Emin in magnetic field of 
the. resistance minimum. In all cases a slight increase in the position of this 
minimum with increasing electron density is observed (Fig. 5.9). This could 
be explained simply by the observed decrease in a, which would mean that a 
higher magnetic field is required for the exponential increase in resistance to 
become dominant over the negative MR. However, we note that in all devices 
the minimum occurs at approximately Emin ~ hn5 / e (indicated by arrows in 
Fig. 5.9), which corresponds to a Landau level filling factor v = hn5 / E1_e ~ 1. 
Best agreement occurs at lowest densities, while larger deviations are generally 
observed at higher n 5 • In view of the finding that both a and PB are determined 
by ree, this observation has a interesting physical interpretation. Namely, it 
means that there is one magnetic flux quantum </>o within an area of r;8 • This 
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Figure 5.9: The same data as F ig. 5.2, but on a linear B1_-scale which 

highlights t he low-field parts of the data. A strong negative MR is observed in 

· all devices with t he magnetic field at which t he minimum in resistivity occurs 

increasing with increasing n 8 • Arrows indicate B1_ = hn8 /e {=;> v = 1 [92]. 
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suggests that the negative MR may be related to the destruction of interference 
in a loop of area r;8 • Indeed, this is the expected area of the smallest loop 
of a defect undergoing a random walk in an electron solid. This observation 
supports the picture of transport mediated by defects in an ES. 

In conclusion of this section, an interesting low field, MR has been observed, 
but a good understanding of the behaviour would require further experimental 
and theoretical investigations which are beyond the scope of this thesis. 

11 

lj 

,I 

I .I. 

Iii 
,I 



Chapter 5. Magnetoresistance of Hopping Transport 

0.050 n,=0.81 

0.045 

0.040 

0.035 

- 0.030 0.77 ..c: --N 0.025 (I) .._.. 
0.75 b 0.020 

0.015 

0.010 0.7 

0.005 
0.000 0.005 0.010 0.015 0.020 0.025 

B 2(T2
) 

j_ 

Figure 5.10: Low field magnetocondivity O" = I / p of device C67b on a 

Bf-scale. The solid lines are linear fits , demonstrating a clear quadratic 

B ..L -dependence of G and, hence, a negative magnetoresistivity of the form 

[p(B.1) - p(O)] ex: B-;_2
. 

5.4.2 High Field Magnetoresistance 

79 

As discussed in Sect. 5.1 , at high magnetic fields the exponential Bf-depen-
. dence of p should turn into a exponential B .1 -dependence. In this regime, 
relations (5.4) and (5.5) provide another way of estimating the average hopping 
distance rhop· This estimate is independent of the zero field localisation length, 
because it is done in the regime where the localisation is dominated by the 
magnetic confinement. 

Indeed, an exponential B .1 -dependence at high fields was observed in many 
devices. One example is shown in Fig. 5.11 a). The onset of B _1_-dependence 
occurs at B.1 ~ 2.5 T , a value that is roughly independent of electron density. 
The high field behaviour of magnetoresistance is expected for ZB ~ r This 
means that the observed transition field , which corresponds to ZB ~ 1.5 x 
a8, is lower than the expected value for a localisation length ~ ~ a8. This 
would suggest that the zero field localisat ion length is in fact larger than a8, 
contradicting the conclusion of Sect. 5.2. However , the deviation is not so 

i I 

:I , 
ii I 

r 



Chapter 5. Magnetoresistance of Hopping 'Iransport 

b) 
100 • C' = 0.4 r = r 

hop ee 

• C'=0.1 
80 

E 60 
C 

-g- 40 
._" 

20 

2 3 4 5 6 o.--~~~~~~~~~~ 

BJT) 
0 20 40 60 80 100 

r
00

(nm) 

Figure 5.11: a) High field magnetoresistance, showing a exponential B 1_­

dependence above a critical value. The solid lines are linear fits to the data 

and their slopes correspond to {3. Electron densities are indicated in units of 

1010 cm-2 . b) Values of Thop as a function of Tee as extracted from /3 using 

Eq. (5.5). While using the theoretically predicted C' ~ 0.4, leads to the 

relation Thop S::! 0.5 x Tee, the best agreement Thop S::! Tee is found for C' ~ 0.1. 

The proportionality between Thop and Tee is nicely confirmed. (Device A77a) 
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strong that a definite statement could be made. The weak n8-dependence gives 
some confirmation of an approximately constant localisation length, since a 
strong change in ( should lead to a change in the threshold where the magnetic 
length becomes dominant over the localisation length. 

As Fig. 5 .11 a) shows, the coefficient f3, which corresponds to the slope of the 
linear fits , follows qualitatively the behaviour that is expected from the analysis 
of a, i.e . f3 decreases with increasing density as expected if rhop "-' ree· A more 
quantitative analysis is shown in Fig. 5.11 b), where rhop has been calculated 
using relation (5.5) and plotted as a function of ree· The choice of C' gives some 
uncertainty for rhop· Following Ref. [90] one would expect C' ~ 0.4 x C = 0.4. 
As Fig. 5.11 b) shows, using this value leads to a rho~'"'-' 0.5 x ree· For a good 
agreement, rhop rv ree, one has to use C' = 0.1. These deviations lie within the 
uncertainty of C'. While for a good quantitative confirmation (or rejection) of 
the equality rhop c:,,, ree, a better estimate of C' would be desirable, the results 
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in Fig. 5.11 b) nevertheless nicely confirm that rhop is proportional to ree, a 
finding that is independent of the value C' or any other unknown variables. 

One has to add at this point, that device A77a was the only one that 
showed such a clear linear r 88-dependence of rhop. Most other devices did show 
a rough agreement with rhop rv ree in trend and absolute magnitude, but rhop 

deduced from (3 often showed strong oscillations. These oscillations may be 
related to the strong resistance oscillations occurring at high magnetic fields 
in mesoscopic devices, as discussed in Cha pt. 7. Indeed, device A 77a showed 
unusually weak oscillations. In view of this limited reproducibility, one should 
not overrate the results presented in this section. 

5.4.3 Very Strong or Weak Disorder Devices 

In strongly disordered macroscopic 2D systems hopping magnetoresistance of 
the form of Eq. (5.1) was first observed in the impurity band formed at the 
inversion layer of sodium-doped MOSFETs [91]. Later, the same was achieved 
in hopping transport within 5-doping layers in GaAs [17]. In this case, a good 
agreement with the theoretical prediction for the coefficient a (Eq. (5.2)) was 
found, assuming the localisation length to be ( ~ aB and rhop ~ 1/ ~ ' 
with N0 the dopant concentration. This is in contrast to the results for high 
mobility mesoscopic devices discussed in Sect. 5.2, where a was found to be 
independent of disorder and only determined by n 8 • 

In case of very weak disorder, i.e. Osp = 80 nm (Device T46a), the low field 
magnetoresistance appears to be qualitatively different from the more disor­
dered devices discussed in the previous sections of this chapter. An exponential 
Bi-dependence of resistance appears only at very low fields and is not very 
clear (Fig. 5.12). When trying to fit Eq.(5.1) to the data nevertheless, no clear 
trend in the slope (i.e. a) is observed. Also, a negative magnetoresistance at 
smallest B is absent in most cases. This result shows that finding the right 
amount of disorder is crucial in experiments performed for this thesis. In the 
suggested picture of transport through hopping of defects in a disorder sta­
bilised electron solid, one could explain the different behaviour of MR by the 
absence of the electron solid because the disorder is too weak to stabilise the 
solid phase. Alternatively, it could be that the phase still exists, but that the 
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Figure 5.12: Low field magnetoresistance in a low disorder device with spacer 

width 68p=80 nm (Device T46a). An exponential Bi-dependence appears only 

at very low fields, if at all. The slope a does not show the clear decreasing 

trend with increasing electron density as it does in the more disordered cases. 

Electron densities in the legend are in units of 1010 cm-2 [94]. 
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upper limit in magnetic field of the exponential Bi-dependence is very low. 
This could be due to a larger localisation length or a different wave function 
from the one used to derive Eq. (5.1). More generally, t he different behaviour 
of the low disorder case may be explained by a different appearance of the 
same physical scenario , or by a different transport or localisation mechanism 
altogether. 

5.5 Alternative Interpretations 

5.5.1 Direct Tunnelling 

In view of the mesoscopic dimensions of the devices, one may ask if transport 
could actually occur by direct tunnelling between the conducting Fermi seas 
on either side of the gate. However , apart from the fact that it is not obvious 
how this could explain the observations described in this chapter ( or the other 
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chapters of this thesis), there are several reasons that make direct tunnelling 
a very unlikely transport mechanism through the gate. 

First of all, the author is unaware of observation of direct tunnelling in 
comparable systems with tunnelling lengths in the order of microns as it would 
have to be the case in the devices with gate lengths of up to L ~ 4 µm. 
The tunnelling probability becomes extremely small over such distances, as it 
decreases exponentially with tunnelling length. Additionally, from the density 
measurements, we know that the area under the gate is by no means completely 
depleted, but that hundreds to thousands of electrons remain in the gated area 
even in the smallest devices at lowest densities. It seems obvious that it is more 
likely for electrons to jump in and out of the localised area rather than going 
across it in a single tunnelling event. 

The observed exponential increase with a perpendicular magnetic field is 
strong evidence that wave function overlap plays a critical role in transport. 
This is not expected in direct tunnelling. It would, of course, be expected in 
tunnelling via a few impurities states. However, in this case, resonance peaks 
should occur as a function of gate voltage, when the energy of the impurity 
state is aligned with the Fermi energy in the leads [98]. No sign of such resonant 
tunnelling has been observed in any device. 

5.5.2 Hopping between Electron Droplets 

As briefly mentioned in Sect. 5.4.1, TK have suggested an alternative mecha­
nism to explain the magnetoresistance described in Sect. 5.2 [97]. They con­
sidered formation of electron droplets at minima in the disorder potential in 
the non-linear screening regime of o-doped GaAs/ AlGaAs 2DES. They pro­
vide detailed calculations of droplet radius, inter-droplet distance and droplet 
localisation length for a range of electron densities similar to those where ex­
periments presented here were carried out . It is argued that the number of 
electrons in a droplet (~ 6), depends only weakly on the average electron den­
sity and that extra electrons are accommodated by increasing the density of 
droplets. This means that the separation between droplet centres decreases 
with increasing n 5 • 
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The calculation of the suppression of the tunnelling probability between 
droplets caused by shrinking of the localisation length in a perpendicular mag­
netic field leads to a magnetoresistance of the form of Eq. (5.1) with 

(5.7) 

where A is only weakly dependent on n5 • This is in qualitative agreement with 
the observed n 5-dependence of a. A depends on the doping concentration as 
nt4, which means that device C67b should exhibit a approximately 0.4 times 
smaller than other devices at the same electron density. Such a deviation is 
not observed experimentally, but it might be within the experimental error 
margin. It would be interesting to know a dependence of A on spacer width, 
however, these values cannot be extracted easily from the work of TK. 

A numerical estimate of A for the case of Osp = 50 nm is given by TK. They 
find a deviation of more than 1.5 orders of magnitude from the observed value 
at ns = 1010 cm- 2

. The error gets slightly smaller at higher densities, but stays 
above one order of magnitude. The authors state that including effects of par­
tial ionisation of the dopants make the agreement even worse. This means that 
the error should be even larger, since devices used here are generally highly 
compensated, as discussed in Sect. 3.3.3. In view of this large quantitative 
discrepancy between theory and experiment, the author doubts that the pic­
ture suggested by TK is the correct description of the experimental results. 
Nevertheless, it should not be completely dismissed, as a better estimate of 
some of the quantities involved may (or may not) lead to a better agreement. 

The transport picture introduced by TK has also been extended to explain 
magnetic field induced resistance oscillations and the T-dependence of resis­
tance [99]. This will be discussed in the concerning chapters ( 6 and 7). 
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Chapter 6 

Temperature Dependence of 

Resistivity 

This chapter discusses the temperature dependence of resistivity in the strongly 
localised regime of mesoscopic 2DES. An unexpected behaviour is reported 
where at higher temperatures the resistivity increases exponentially with 1/ T 
as expected, but flattens or even reverses as the temperature is lowered further. 
This indicates a temperature driven insulator-to-metal transition, with an in­
sulating phase at high and a metallic phase at low T. The phenomenon persists 
even when the resistivity of the system greatly exceeds the quantum of resistiv­
ity h/e2

. This is an unprecedented observation in 2D, which is fundamentally 
different from any previously reported putative metal-insulator transitions. 

In the following, the terms "metallic" will be used for a positive temper­
ature coefficient of resistivity dp / dT > 0 and "saturated" for the weak, but 
non-metallic T-dependence, as opposed to "insulating" for an exponential be­
haviour. It should be noted that the denotations "metallic" , or "insulating" as 
used in t his chapter cannot be identified with a metallic or insulating ground 
state, respectively: An insulating ground state is defined through a diverging 
resistance as T approaches absolute zero, while the resistance of a metallic 
ground state remains finite at T = 0, but need not show a metallic behaviour 
as defined above. 
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6.1 Comparison of Macroscopic and Mesoscopic 

Devices 

Figs. 6.1 a)-c) show typical temperature traces for one macroscopic device 
and two mesoscopic ones with approximately the same resistivity at lowest 
temperature. All the devices had the same spacer width Osp=40 nm. The 
macroscopic device shows the expected exponential behaviour down to the 
lowest temperatures. By contrast , the mesoscopic devices show an exponential 
behaviour only at high T , followed by a range where the resistivity increases 
only slowly or even decreases as the temperature is lowered. 

25 20 
Macroscopic b) 

20 .- c) 
A77Lc ..... 20 • • • • • • • • • 15 15 • 

18 • -"' Q) 

:C: 10 
"IS: 

16 
5 10 

Mesoscopic I Mesoscopic II 
0 A78e 

14 
A78d 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 
T(K) T(K) T(K) 

Figure 6.1: Comparison of temperature dependence of resistivity for two 

mesoscopic devices (W = 8 µm, L = 2, 0.5 µm for device I and II, respec­

tively) with a macroscopic device (100 µm x 900 µm) from wafers with the 

same spacer width ( 40 nm) in the same regime of resistivity at lowest tem­

peratures. While a clear saturation or downturn of t he resistivity at lowest T 

occurs in the mesoscopic devices, the macroscopic device shows an exponen­

tial increase to the lowest t emperature. The solid lines are fits of the form 

p = po exp [Eo / kBT], the shaded areas mark a deviation from this insulating 

behaviour [92] . 
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For best representation, the comparison in Fig. 6.1 is done between meso­
scopic and macroscopic devices from different wafers, although with the same 
spacer width. However, a direct comparison between a macroscopic and a 
mesoscopic device from th.e same wafer showed qualitatively the same result. 
Also, because the localisation transition in mesoscopic devices occurs at much 
lower densities, the mesoscopic devices shown have much lower densities at 
the same resistivity. But again, a comparison at the same density with both 
devices in the localised regime ( this is only possible over a very limited density 
range) confirmed the qualitatively different behaviour between macroscopic 
and mesoscopic 2DES. 

6.2 Metallic and Saturated Behaviour 

Let us start the discussion with the most striking behaviour of the tempera­
ture dependence, namely the case where the strongly insulating state at higher 
temperature turns into the opposite and becomes metallic. Figs. 6.2 and 6.3 
show device A78d which exhibited a particularly strong metallic behaviour. In 
Fig. 6.2 the resistivity is shown as a function of inverse temperature 1/T at four 
different densities. At all densities, the systems shows an insulator-like acti­
vated transport at higher temperature, but a metallic behaviour appears below 
a crossover temperature T0 , indicating a temperature-driven insulator-to-metal 
transition. This behaviour is observed over approximately three orders of mag­
nitude of resistivity and up to p ~ 800 x h/ e2

• The reduction in resistivity 
between the temperature where p is maximum and base temperature is usu­
ally about 10 % with extreme values of 5 % and 20 %. As Fig. 6.3 shows, a 
non-monotonic T-dependence with a decrease in resistance at lowest T persists 
continuously over the entire accessible n 8-range in the localised regime. 

This was not the case in all measured devices. In most cases, metallic 
behaviour occurred only at certain electron densities. The extent of metallic­
ity varied from device to device but also between different cooldowns of the 
same device. However, more that 50 % of the mesoscopic devices with spacer 
width 20 nm ::::; 6sp ::::; 60 nm showed metallic behaviour at certain ranges of 
n8 • Please note that all these mesoscopic devices did show a .low-T satura­
tion where metallicity was absent. Examples of devices with 6sp = 20 - 60 nm 
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Figure 6.2: Resistivity as a function of inverse temperature at B=O for device 

A 78d at four different densities, which are indicated by arrows in Fig. 6.3. 

At all densit ies the strongly insulating (activated) temperature dependence 

at higher densities is followed by a decrease in resistance below a crossover 

temperature Te (indicated by arrow in b)) . The solid lines are fits of Eq. ( 6.3) 

to the data. 
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showing metallic _behaviour at low or zero magnetic field are given in Fig. 6.4. 
Characteristics are very similar to the data shown in Fig. 6.2, with all devices 
showing a strongly insulating regime it higher T before turning to metallic 
behaviour below a crossover temperature Te~ 0. 7 - 1:5 K. 

Fig. 6.5 shows an overview of the occurrence of metallic and saturated be­
haviour as a function of electron density for four different devices from three 
different wafers with spacer widths bsp = 20-60 nm. In order to distinguish be-
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Figure 6.3: Resistivity as a function of electron density for device A 78d 

at three different temperatures ( B=O). The resistivity at T = 500 mK is 

higher than at both T = 4 K and T = 60 mK, implying a non-monotonic 

temperature dependence of resistance at all densities. The resistivity ranges 

from less than 10 x h/e2 to almost 1000 x h/e2, i.e. over approximately 

two orders of magnitude. The arrows indicate the positions in density of the 

respective panels in Fig. 6.2. 
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tween metallic and saturated low temperature behaviour, the slope dp~~~dT was 
determined by linearly fitting the resistivity locally around T ~ 400 - 500 mK. 
A positive value ( colour coded yellow to red) indicates a metallic behaviour, 
while a negative coefficient (blue) can be attributed to a saturated behaviour. 
The choice of T ~ 400 - 500 mK as reference temperature is somewhat arbi­
trary, being the lowest temperature to give a reliable result in the 3He system 
with a base temperature of TBase ~ 300mK. However, it gives a good quantity 
to distinguish between metallic and saturated behaviour: Whenever metal­
licity was observed, dp~~~dT was negative in this temperature range, since 
Te 2:, 500 mK in all cases and a turnaround from a metallic back to insulating 
behaviour at very lowest temperature never occurred. The quantity is mainly 
meant to discern the metallic and saturated behaviour rather the quantifying 
the "degree of metallicity". 
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Figure 6.4: Metallic behaviour of three devices with 65p = 20 - 60 nm, all at 

low or zero magnetic field. Characteristics are very similar in all cases, with 

. a strongly insulating behaviour at high temperature and metallic behaviour 

below a crossover temperature Te ~ 0. 7-1.5 K. The solid lines are fits of (6.3) 

to the data. The extracted values of the temperature exponent 'Y are a) 1.66 

b) 2.62 c) 1.83 d) 2.68, confirming the result that 'Y ('..) 2 [92]. 

A good example of saturated behaviour with a very clear transition from 
activated to weakly temperature dependent regime is shown in Fig. 6.6. The 
transition temperature T* cannot be defined as unambiguously as in the case 
of metallic behaviour, where Te is easily determined by the temperature of 
maximum resistivity. T* can only be slight ly vaguely defined as a temperature 
between fully activated and clearly saturated regime, which is usually a range 
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Figure 6.5: Comparison of "metallicity" ( defined as dp~~i)dT at T ~ 
400- 500 mK) for four different devices from three different wafers with spacer 

widths 6sp = 20 - 60 nm. A metallic state shows positive values while a neg­
ative value can be assigned to a saturated behaviour. The mesa width is 

W = 8 µm for all devices, while the gate length L is indicated in the graph [92]. 
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of a few hundred mK. However, one can say that T*, like Te, always lies 
within the range 500 mK;S T* ;S 2 K. In fact, T* and Te seem strongly related. 
As Fig. 6.5 shows, transitions between metallic and saturated regime often 
occurred as a function of electron density. This changeover does not seem to 
happen through a shift of Te to a temperature below TBase of the cryostat. 
Rather than th?'t , at the transition density, the crossover temperature just 
seems to continuously change from Te to T *. 

While a strong perpendicular magnetic field seemed to slightly shift T * 
towards lower temperatures (see Sect. 6.3), a clear trend of T * with changing 
spacer width or device dimension could not be established from the available 
data. 
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Figure 6.6: Activated (high T) and saturated (low T) behaviour for device 

A 78e at B = O T (ns= 0.61, 0.71, 0.83 and 0.95x 1010 cm-2
1 starting with highest 

resistivity). The solid lines are fits of the form p(T) = Pb exp(Eb/kBT). The 

shaded area corresponds to the transition between the two regimes, i.e. the 

range of T* [94]. 

6.2.1 Discussion 

"Conventional" Metal-Insulator Transition 

92 

At this point, a brief discussion of the apparent metal-insulator transition 
(MIT) first reported by Kravchenko et al. [100] is appropriate (it is in the 
following referred to as "conventional" MIT). The observation, reported in Si­
MOSFET's as well as GaAs/ AlGaAs based 2D electron and hole gases, pro­
voked a large amount of work of both experimental and theoretical nature [19]. 
Briefly summarised, the experimental observation was that in the interacting 
regime of 2DES, a crossover from an insulating temperature dependence at 
low densities to a metallic T-dependence at high densities occurred at a criti­
cal density (see Fig. 6.7). The transition occurred at~ resistivity in the order 
of the quantum of resistance h/ e2 and the metallic behaviour persisted to the 
lowest accessible temperatures. The claims of this observation to be the signa­
ture of a metallic ground state in 2D have always been controversial. Recently, 
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Figure 6. 7: Apparent metal-insulator transition in a Si-MOSFET. [From 

Ref. [19]] 
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a change in the sign of dp/dT was observed at ultra low temperatures in the 
putative metallic state [101], which strongly supports the notion that it is not 
a sign of a true metallic ground state. 

The metallic behaviour reported in this thesis cannot be explained as a 
variation of the conventional MIT, as it is crucially different in several aspects: 
(1) The conventional MIT at zero magnetic field shows the metallic phase at 
higher electron densities but always crosses over to an insulating phase below a 
critical density, i.e. it is a density-driven metal-to-insulator transition. This is 
qualitatively different from the behaviour observed here, where in some cases 
a continuous metallic phase was seen down to the lowest electron densities, 
but in other cases a repeated transition between metallic and insulating (but 
saturated) behaviour occurred. 
(2) Even though rather strong non-monotonic T-dependence (i.e. insulating at 
high T and metallic at low T) has been reported in context of the conventional 
MIT [102], this is not a common feature, and in most cases, the T-dependence 
was found to be either insulating or metallic over the whole temperature range 
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(see Fig. 6.7). By contrast, in the case presented here, the strongly insulating 
(activated) behaviour at higher temperatures is an intrinsic property of the 
observation and the insulator-to-metal transition appears to be temperature­
driven. A temperature-driven transition from activated to metallic behaviour 
in two-dimensions in 2D has not been previously reported to my knowledge. 
(3) The conventional MIT occurs at a resistivity scale set by p ,...._, h/ e2 and the 
metallic phase is never observed above a resistivity of a few times h/ e2

. This is 
in complete contrast to the metallic behaviour reported here, which was only 
observed at p > h/e2 and persisted to resistivities as high asp~ 800 x h/e2

. 

Many possible theoretical explanations have been proposed for the conven­
tional MIT, such as renormalisation group calculations predicting a quantum 
critical point separating a metallic from an insulating phase in disordered in­
teracting 2DES [103], a percolation transition in a network of quantum point 
contacts [104], or a temperature dependent screening of the scattering by im­
purities [105]. These theories are, of course, not aimed at explaining the ob­
servations described in this thesis, and in most cases cannot be applied these 
results, the main reason being that the theories do not apply to the strongly 
localised regime (p » h/e2

). Work done in relation to the conventional MIT 
that nevertheless may be of relevance to this thesis will be discussed later. 

Quantum Diffusion of Defects in an Electron Solid 

In Chapt. 5 it was shown that results of magnetoresistance measurements can 
be . interpreted as evidence of an electron solid in which · transport occurs by 
movement of charged defects such as vacancies or interstitials. Here, it is 
shown that this picture may provide a consistent explanation for the unusual 
temperature dependence of resistivity described above. The mechanism that 
may lead to a metallic temperature dependence is that of a delocalisation of 
defects in a quantum solid (QS). 

The quantum behaviour of defects in a solid was first discussed by An­
dreev and Lifshitz (AL) for the case of atomic crystals [49]. They pointed 
out that quantum mechanics requires the existence of zero-point vibrations of 
the lattice, i.e. vibrations that remain at zero temperature and, therefore, do 
not violate the periodicity of the crystal. If these zero-point vibrations are 
large compared to the lattice constant a0 , quantum mechanical effects become 
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important, i.e. it is a quantum solid. A numerical measure of the relative 
magnitude of zero-point vibrations is given by the parameter 

A= h/aovrru, (6.1) 

where m is the mass of an atom and E the characteristic interaction energy 
between the atoms. This parameter is small for most crystals, but there are 
exceptions such as solid helium with A> 1. 

Classically, defects such as vacancies, interstitials or impurities are localised. 
However, due to the finiteness of A and the degeneracy of the energies of 
defects under translation by a lattice constant, which lead to the possibility 
of quantum tunnelling, a delocalisation of the defects is possible. The finite 
time t a defect spends at a certain lattice site leads to a finite bandwidth 
W of the defect energy, which can be quantified as W rv n/t according to the 
Heisenberg uncertainty principle. The bandwidth becomes important when the 
perfect periodicity of the crystal is disturbed by an external disorder potential: 
If the misalignment Em between energies of adjacent defects is larger than 
the bandwidth, a coherent tunnelling between those states (i.e. tunnelling 
not involving absorption or emission of a phonon) is not possible anymore 
and delocalisation of the defects is suppressed. This is schematically shown in 
Fig. 6.8 a). Fig. 6.8 b) shows the situation where W > Em and a delocalisation 
of defects is possible. 

With increasing bandwidth, W /2 can, in principle, become larger than the 
defect energy Ed itself. This means that the band minimum Ed becomes neg­
ative. One could imagine that this would lead to a melting of the crystal. 
However , AL conjectured that only a reorganisation of the crystal's ground 
state might occur. This new ground state must contain defects, but has to 
be perfectly periodic. Hence, AL proposed an incommensurate crystal where 
the number of crystal lattice sites is unequal to the number of atoms, or in 
other words, the defects are completely delocalised and form so called "defec­
tons". According to AL this crystal possesses the property of quantum fluidity 
even at zero temperature, i.e. it can flow around obstacles and would not be 
pinned by a small amount of disorder. It is, therefore , sometimes referred to 
as supersolid. 

AL also qualitatively discussed the temperature dependence of the move­
ment of defects in a quantum solid. At very low temperature the defectons can 
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Figure 6.8: Schematic of defect energies and bandwidths in a quantum 

solid: a) The misalignment Em between adjacent defect states is larger than 

the bandwidth W of the defect energies. Coherent tunnelling suppressed. 

b) The misalignment Em between adjacent defect states is smaller than the 

bandwidth W of the defect energies. Coherent tunnelling is possible. c) The 

band minimum Ed is negative and the crystal must either melt or become 

incommensurate. 

move practically freely, only occasionally undergoing collisions with phonons, 
which reduce the mobility. For this regime, they predicted a temperature 
dependence of the diffusion coefficient D ex y-9 . With increasing temper­
ature, the defecton-phonon collision frequency increases and there comes a 
point when, during the time a defect spends on a fixed site, it is able to reach 
equilibrium with t he lattice. Under such conditions, one must talk about a 
localised defect undergoing a random walk with a step equal to the lattice 
period a0 , a process which is practically temperature independent. With the 
temperature increasing even further, the probability of a defect being thermally 
excited across the energy barrier become larger , and eventually, this will be 
the dominant transport mechanism, leading to a classical activated transport. 

A more quantitative theory for quantum diffusio~ of defects in quantum 
crystals such as solid helium was done by Pushkarov [106]. He predicted a 
temperature dependence of the diffusion coefficient D of the form 

(6.2) 



Chapter 6. Temperature Dependence of Resistivity 97 

Here, the second term comes from the classical activated diffusion. The first 
term consists of a temperature independent D0 arising from impurity scattering 
and a power law temperature dependent part. The coefficient of the power 
law is predicted as 'Y = 9 in the case of strong defecton-phonon scattering, but 
'Y = 2 if defecton-defecton collisions are the dominant scattering mechanism. 

As discussed in Sect. 2.4.2, some theoretical work has been done on the 
possibility of delocalised defects in two-dimensional electron systems [47, 48]. 
A transport mechanism was not touched on in this work, not to speak of 
its temperature dependence. However, given that defects in an electron solid 
are charged quasi-particles which can carry a current, one can conclude that 
the atomic diffusion in Eq. (6 .2) is analogous to the inverse resistance in an 
electronic QS. Hence, Eq. (6.2) can be rewritten as 

(6.3) 

Indeed, this equation can be fitted very well to the data with metallic be­
haviour , as shown in Figs. 6.2 and 6.4. Fig. 6.4 shows fits to the data from 
three different devices (from different wafers , bsp = 20 - 60 nm) at the electron 
density where metallicity was strongest for each device. Fig. 6.2 shows four 
different densities of device A 78d, which showed metallicity over the whole 
measured density range. The quality of the fits is excellent over the entire 
temperature range for all instances. 

In Fig. 6.9, some of the parameters extracted from the fits for device A 78d at 
various electron densities are shown. Panel a) shows the residual resistivity p0 

extrapolated to zero temperature. The value is finite, but p0 » h/ e2
. This is 

very unusual, since a finite p0 is only expected for a metal, but for conventional 
metals p0 ~ h/ e2 is generally observed. For an insulator p0 is infinite. 

The exponent 'Y of the power law temperature dependence is shown in 
Fig. 6.9 b). Over a wide range of densities 'Y rv 2, a result confirmed by 
the fits for other devices shown in Fig. 6.4 with the extracted values of 'Y given 
in the figure caption. According to Ref. [106], this suggests inter-quasiparticle 
scattering as dominant relaxation mechanism. For the case of diffusion of 
impurities in solid He, 'Y = 9 was confirmed experimentally [106]. It is not 
entirely surprising t hat in an electronic solid, defecton-defecton scattering is 
stronger, since in t his case the quasiparticles are charged. Also, in a Wigner 
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Figure 6.9: Physical quantities extracted from data fits to Eq. (6.3) for 

device A 78d as shown in Fig. 6.2: a) Po represents the resistivity extrapolated 

to T = 0. While for an insulating state, po is infinite, for a metal a finite po ~ 

h/e2 is usually observed. Here, surprisingly, po» h/e2 but finite for all n 8 • b) 

The temperature exponent is found to be"/,...., 2 over a wide density range. c) 

Temperature Te at which the resistivity is maximal. It shows a non-monotonic 

density-dependence with a maximum value Te ~ 1.5 K at an intermediate 

· density. Te marks the transition temperature between the insulating an the 

metallic phase, and, hence, defines a phase diagram in T - n 8 space. 
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crystal the pinning gap at low frequencies in the phonon spectrum ( discussed in 
Sect. 2.5.1) may strongly suppress phonon scattering at lowest temperatures. 
The quantitative estimate for the pinning gap given by Eq. (2.6) reveals an 
energy scale > 100 K for typical experimental parameters. This would suggest 
that the phonons in the electron solid are , indeed, frozen out. However, the 
value seems rather high and it is unclear if the calculations done for a classical 
Wigner crystal are valid for a quantum solid. 
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The strong deviations from I rv 2 at lowest electron densities may be ex­
plained by a stronger disorder scattering, which could mask the T 2-dependence. 
One should also keep in mind that at the very lowest electron densities, only 
a few hundred electrons are left in the active area of the device. The number 
of defects must naturally be even smaller than the number of electrons. This 
could lead to statistical deviations from the value expected for a very large 
number of particles. 

The n8-dependence of Te, the temperature where the resistance is maximum, 
is shown in Fig. 6.9 c). It shows a non-monotonic behaviour T ~ 0.7 - 1.5K 
with a maximum at intermediate electron density. Phenomenologically, Te 
indicates the crossover temperature between insulating and metallic state and 
defines a phase diagram in T - ns space. The n 8-dependence of Te is not well 
understood at present. As seen in Fig. 6.5, density driven transitions between 
metallic and saturated behaviour were often observed, which may be attributed 
to the interplay between electron density and disorder topology as discussed 
below. Similarly, the relative contributions of the activated and the T 2 part 
of conduction could vary with density due to disorder effects and the observed 
n 5-dependence of Te may be coincidental. 

The activation energy for device A 78d was found to be E0 ~ 1 - 6 K with 
a trend of decreasing E0 with increasing n 5 but rather strong scattering ( not 
shown), which can be attributed to the lack of sufficient high temperature 
data points in this measurement. A more detailed discussion of the activation 
energies is given in Sect. 6.4.1. 

We have now seen t hat quantum diffusion of defects can adequately describe 
the metallic behaviour, and also the transition to activated transport at higher 
temperatures. But how does the appearance of saturated T-dependence fit into 
this picture? 

As discussed above, in a system with finite disorder a delocalisation of de­
fects can only occur if the misalignment between defect energies is smaller than 
t he defect bandwidth (Fig. 6.8 b)). In the opposite case (Fig. 6.8 a) ), defects 
remain localised and transport can either occur by activation across the energy 
barrier Eb, or by incoherent tunnelling, where the energy difference Et between 
the band edges is overcome by emission or absorption of a phonon. T his is 
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Figure 6.10: Schematic of two component transport with activation across 

the energy barrier (blue) and phonon assisted tunnelling (green). 

shown schematically in Fig. 6.10 where the bandwidth has been neglected. In 
this situation, one can expect a two component form of resistivity 

In our situation the difference between energy levels Et is expected to be very 
small and, hence, Eb ~ Et. If Pb « Pt, which is also a realistic assumption, 
the first term will dominate at high temperatures and the second one at low 
temperatures. Indeed, Eq. (6.4) can be fitted very well to the data of satu­
rated behaviour as Fig. 6.11 shows for two devices at a few electron densities. 
These fits were done for several devices at various densities and several mag­
netic fields, and they all showed a similar agreement (not shown). The energy 
difference in the tunnelling process was usually very small (Et/kB < 10 mK) 
and in almost all cases Et « kBTBase· This explains the practically temper­
ature independent behaviour of p at low T, but also the apparent absence of 
variable-range hopping (VRH) as suggested by result of hopping magnetoresis­
tance (Chapt. 5). One would still expect a transition to VRH at T « Et/kB , 
however, such low temperatures are not experimentally accessible. 

The duality between saturated and metallic behaviour can now be under­
stood as follows: At any given electron density, the background disorder will 
most likely suppress the delocalisation of defects in certain areas . As n5 is 
changed, the electron lattice changes · relative to the disorder and metallic re­
gions can become non-metallic or vice versa. If a significant part of the device 
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Figure 6.11: Fits of Eq. (6.4) to data with saturated behaviour at B = 
0, showing a very good agreement. Similar agreement was observed in all 

cases were fits were done. Devices: a) A 78e, b) C67b. Electron densities are 

indicated in units of 1010 cm-2 [92]. 
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is metallic and, in particular, a connection from source to drain exists, metallic 
temperature dependence is observed. On the other hand, if the device is mostly 
non-metallic, a saturated behaviour will persist. Wit~ this in mind, it is not 
surprising that the shortest device showed a continuous metallic behaviour , as 
it is most likely that a metallic path is formed across the device in this case. 
However, one cannot exclude this correlation to be a coincidence and more 
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devices of various sizes would have to be measured to draw any conclusions in 
this direction. 

Finally, one has to consider if the formation of such a quantum solid in the 
systems used here is realistic at all. As discussed in Sect. 2.5, the theoretical 
treatment of 2DES in the strongly interacting regime in presence of disorder is 
extremely difficult. However , it is generally agreed that disorder can enhance 
interaction effects. In particular, the formation of a Wigner crystal at rs as low 
as 7.5 has been predicted in presence of disorder [20] as compared to rs ~ 37 
in the pure case [12]. A variation of the disorder parameters may well lead to a 
further reduction of r8 where Wigner crystallisation is possible. Therefore, an 
electron solid formation in the density region where experiments were carried 
out for this thesis (rs ~ 4 - 6) does not seem too far fetched. 

On the other hand, it can easily be shown that the magnitude of zero-point 
fluctuations relative to the lattice constant expressed by the parameter A as 
defined in Eq. (6.1) is A~ 2~ for a WC, using the effective mass m* in 
GaAs and the Coulomb energy between electrons separated by r ee ~ 1/ ,Jns for 
E. For rs ~ 4-6, A~ 1.4-1.8, while for rs > 37, where a we might be formed 
in a very clean system, A ;S 0.6. This could explain why a quantum diffusion 
is more likely to be observed in the approach used here than in other attempts 
of WC investigation where a minimisation of disorder and maximisation of rs 
is generally pursued. Another factor is the size: Even if metallic regions were 
formed, it is much less likely that they percolate from source to drain in a 
macroscopic device than in a mesoscopic one. 

The origin of the defects could be manifold. In a situation where the defect 
band minimum is negative (schematic in Fig. 6.8 c), the zero-point defects are 
an intrinsic property of the 2DES ground state. However, even if this con­
dition is not fulfilled , defects may be created thermally, through disorder, or 
when the gate is swept and electrons have to rearrange as the density changes. 
These defects could, nevertheless, delocalise if the bandwidth is large enough 
(situation as in Fig. 6.8 b). In fact, recent experiments in solid 4He show that 
the signatures of a possible supersolid phase in these systems are strongly en­
hanced when the helium is cooled extremely fast, which leads to a strongly 
disordered, glassy solid [107, 108]. This may be another reason why such a 
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phase is more likely to be observed in the systems used here, but not in ultra 
clean 2DES. 

An exciting question is whether defects , be they created spontaneously or by 
an external influence, really remain delocalised at arbitrarily low temperatures. 
This would mean that, if our interpretation was correct, a truly metallic phase 
in 2D exists, in contradiction to the scaling theory of localisation [4]. The finite 
disorder could eventually lead to an Anderson localisation of all defects [109] , 
but it is by no means obvious that this has to be the case [110]. 

Tunnelling Between Disorder Induced Electron Puddles 

As discussed in the context of magnetoresistance in Sect. 5.5, Tripathi and 
Kennett (TK, Refs. [97, 99]) have developed a theory based on electron pud­
dle formation to explain several aspects of the results presented in this thesis. 
In their picture, transport occurs by tunnelling of electrons between those pud­
dles, which are formed due to disorder in the non-linear screening regime at 
low electron densities. If these puddles are small enough, and the tunnelling 
probability is small, Coulomb blockade effects should become important . The 
primary impetus for putting this effect forward comes from the resistance os­
cillations described in Chapt. 7, which have been associated with Coulomb 
blockade oscillations by TK. This will be discussed in detail in the respective 
chapter. 

TK have discussed the temperature dependence of resistance in the regime 
where Coulomb blockade effects are important. They predicted a resistance of 
the form 

Here, the exponential term comes from the energy difference E0 between the 
Fermi energy in the leads and the lowest available energy state in the dot, de­
termined by the level spacing and charging energy. Eq oscillates as a function 
of gate voltage between zero at resonance and some maximum value. G0 de­
pends on the symmetry of the tunnelling barriers and has a maximum value of 
e2 

/ h. The second term is a phenomenological expression arising from resonant 
cotunnelling (a and care non-negative parameters) , i.e. an event where one 
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electron tunnels out of the puddle but is simultaneously replaced by another 
electron tunnelling in. This process is of second order in the small tunnelling 
probability. It is expected to be small and important only at very low tem­
peratures. In t he case of transport through a string of puddles, the situation 
conjectured for mesoscopic systems by TK, the total cotunnelling probability is 
the product of the probability for each individual puddle, and is even smaller. 
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Figure 6.12: Fits of Eq. (6.5) to data with saturated behaviour at B = 0, 

showing equally good agreement as Eq. (6.4) presented in Fig. 6.11 . Similar 

agreement was observed in all cases were fits were done. Devices: a) A78e, b) 

C67b. Electron densities are indicated in units of 1010 cm-2 in the legends [92] . 
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Fig. 6.12 shows the same data as Fig. 6.11, but this time fits were done with 
Eq. (6.5) , showing equally good results. Similar agreement was observed in all 
cases were fits were done (not shown). The successful fitting of two rather 
different expressions suggests that the good agreement might be fortuitous 
in either case. The condition G0 ;S e2 /h is fulfilled in all cases and Gcot « 
G0 generally, even though in some cases Gcot ,::::; G0 . TK do not give any 
numerical value for the weight of the cotunnelling conduction compared to the 
thermally assisted tunnelling other than stating that the cotunnelling term is 
expected to be important only at very low temperatures. It seems therefore 
somewhat surprising that the cotunnelling term should become significant at 
temperatures as high as 1 K in experiments carried out for this thesis. 

However, the main problem in TK's theory is that in cannot explain the 
metallic low-temperature behaviour. Eq. (6.5) cannot lead to a positive tem­
perature coefficient of resistance dR/ dT > 0. In the Coulomb blockade regime 
an insulating behaviour with diverging resistance as T ---+ 0 always occurs. 
A decreasing resistance with decreasing temperature is only possible in the 
regime of resonant tunnelling, due to the diminishing thermal broadening of 
the resonance [111]. However, this could only lead to metallic behaviour in 
a narrow region around resonance. Therefore, it cannot possibly explain the 
occurrence of a metallic phase over a large range of gate voltage/electron den­
sity as observed in device A78d (Fig. 6.3). These considerations exclude a 
resonance effect in one or several quantum dots as origin of the metallic tem­
perature dependence. 

Other Possible Scenarios 

One possible explanation for a metallic temperature dependence has been pro­
posed by Spivak et al. [51 , 52] on the basis of the Pomeranchuk effect for a 
state of coexistence between Fermi liquid and Wigner crystal as discussed in 
Sect. 2.4.2. The spin entropy of the WC is larger than the entropy of the liquid. 
Therefore, the fraction of WC grows with increasing te~perature. Since the 
resistivity of the WC is much larger than that of the liquid, the resistance of 
the system must increase with increasing temperature. If the temperature gets 
higher than the melting temperature of the WC, the process is re.versed and 
with a further increase in temperature, the resistance should decrease again. 
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This qualitatively agrees with the experimental observation. The effect should 
be suppressed by a magnetic field strong enough to polarise the spins, as ob­
served experimentally (see. Sect. 6.3). However, t here are several points that 
speak against this scenario. First of all, due to the existence of the liquid 
phase, the overall resistivity would be expected to be rather low, in the order 
of h/ e2 and certainly not several hundred times h/ e2

. Also, hopping transport 
and the observation that rhop ~ ree, is not expected in this picture. Finally, 
the proposed phase coexistence should only occur in a very narrow range of ns 
around the critical density [55] and can, hence, not explain the experimental 
observation of continuous or re-entrant metallicity over a large range of n6 • 

Some attempts have been made to investigate if Coulomb interactions be­
tween electrons could, at least to some amount, overcome the localisation 
arising from disorder. For reviews see Refs. [40] and [19]. Two cases may be 
particularly relevant to the work described in this chapter and will be discussed 
in some more detail in the next two paragraphs. 

Shepelyansky suggested that a pair of interacting (repulsive or attractive) 
particles can propagate coherently on a distance much larger than the one­
particle localisation length in a random potential [112] . Details of transport 
or its temperature dependence are not given in those works. However, one 
could imagine that a pair or more complex many-body state is formed only 
below a certain critical temperature, much like in the case of Cooper-pairs 
in a superconductor. This could possibly lead to a sudden delocalisation and 
increase in conduction below this temperature as experimentally observed, 
with the critical temperature the experimentally observed Te. At present, this 
is only a conjecture and more theoretical work would be required to clarify if 
such a mechanism could, indeed, lead to t he observed temperature dependence 
of resistance. 

Basko et al. have recently studied the question if electron-electron inter­
actions could lead to hopping conductance in absence of any phonon-electron 
interactions and if so, whether such a transport mechanism could lead to a 
finite conductivity at T =O [109]. T hey concluded that many body effects 
could lead to a "metallic" phase where conduction is finite even in the absence 
of electron-phonon interactions. However, such a phase only exists above a 
critical temperature Tc, below which the conductivity is strictly zero without 

F 
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electron-phonon interactions. This is, of course, exactly the opposite t emper­
ature dependence of conductivity than observed in the experiments, especially 
since even for the "metallic" phase, a decrease of conductance with decreasing 
temperature is predicted. Nevertheless, the work is of interest to the observed 
results as it considers a different transport mechanism from the standard hop­
ping transport in the localised regime. Similar to the scenario described in the 
last paragraph, it may be the case that at high enough temperatures (T > Te) , 
strong phonon effects start dominating over the many-body hopping. This 
could lead to a single-particle transport at high t emperature, crossing over to 
a - possibly metallic - many-body transport at low T. 

More generally, for many of the phases discussed in Sects. 2.5 and 2.4, pos­
sible transport mechanisms have not been studied and a behaviour as reported 
in this chapter can neither be predicted nor ruled out. 

6.3 Perpendicular Magnetic Field 

6.3.1 Overview 

Application of a magnetic field perpendicular to the plane of the 2DES has a 
dramatic effect on the metallic behaviour: At large enough B 1_, the metallicity 
is completely suppressed. While low fields B 1_ ;S 1 T have relatively little effect 
or in some cases even strengthen the metallicity, a clear metallic behaviour 
was never observed at B 1_ .2:, 1.5 T. Enough low field data is not available 
for a definite statement , but it should be noted that suppression of metallic 
behaviour seems to start in approximately the same range of B 1_ where the 
low field negative magnetoresistance turns into exponential positive MR (see 
Sect. 5.4.1). 

The suppression of metallicity can best be demonstrated wit h device A 78d 
where the whole localised regime with resistivity p ~ 3 - 800 x h/ e2 ( corre­
sponding to n 5 = 0.9 - 1.7 x 1010 cm-2) showed strong metallic behaviour at 
B1_ = 0. When a field B1_ = 1.5 T was applied, the same range of resistivity 
(ns = 1.3 - 2.6 x 1010 cm-2

) showed no metallic behaviour, whatsoever, but 
a strong saturation still occurred at lowest temperatures. An example of this 
is shown in Fig. 6.13 . . For the electron density n5 ,.__, 1.63 x 1010 cm-2 , the 
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temperature dependence of resistivity is compared between B1_ = 0 (inset) 
and B1_ = 1.5 T (red). Because of the exponential rise of p with Bi, the re­
sistivity at B1_ = 1.5 T is much larger than at zero field. Therefore, one could 
argue that the qualitatively different behaviour simply arises from compar­
ing two different regimes of resistivity / localisation. However, this argument 
can easily be refuted by comparing two measurements with approximately the 
same resistivity at TBase· This is also shown Fig. 6.13, comparing two sets 
of data with p(TBase) ~ 200 x h/e2 at B1_ = 0 (blue) and B1_ = 1.5T (red). 
Naturally, in this comparison, the electron density at B 1_ = 1.5 T is higher 
(ns rv 1.63 x 1010 cm-2 ) than at zero field (ns ,..__, 0.98 X 1010 cm-2). 

The development under magnetic field is rather difficult to analyse quan­
titatively or even qualitatively. First of all, it is difficult to quantify the 
"strength" of saturation. One way of quantification would be through the 
fitting of Eq. (6.4). One could use the low temperature activation energy Et 
as a measure i.e. assign the smallest Et to strongest saturation. However, the 
error in Et is large because the temperature range of saturated behaviour is 
relatively small and even more so the resistivity range, which is natural as the 
resistivity changes weakly. Therefore, the best quantitative statement one can 
make about Et is that it is generally a few tens of mK, with the distribution 
within this range appearing more or less random. Another way of quantify­
ing the behaviour of saturation would be through the temperature T* where 
the transition between activated and saturated behaviour occurs. However, 
as mentioned above (Sect. 6.2), this does not give a well defined tempera­
ture, but a temperature range. Because of this limitation, only a qualitative 
discussion seems reasonably possible. Fig. 6.14 shows the temperature de­
pendence of two devices at B 1_ =0, 1.5, and 3 T where n5 has been chosen so 
that p(TBase) ~ 200 x h/ e2 at all fields. It seems quite clear that the satura­
tion transition loses its sharpness with increasing magnetic field and the total 
change in resistivity between TBase ~ 300 mK and TMa:x ::'. 4.6 K gets larger at 
higher fields. Nevertheless, a sub-exponential dependence of p on 1/T remains 
at lowest T. In fact, as Fig. 6.15 shows, the qualitative behaviour of activated 
behaviour at high temperature and saturation at low T persists to fields as 
high as 8 T. 

, I 
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Figure 6.13: Comparison of temperature dependence at zero and finite 

perpendicular magnetic field B 1- for device A 78d: The red data is at n 5 ~ 

1.63 x 1010 cm-2 and B 1- = 1.5 T. The inset shows the same n 5 at zero field. 

The blue data is also at B 1- = 0, but, here, a density has been chosen where 

p(TBa.se) is approximately the same as for the red data. The zero field data 

shows strong metallicity in both cases, while metallicity is completely sup­

pressed at finite magnetic field but a clear saturation remains. The solid 

lines are fits of Eq. (6.3) for metallic and Eq. (6.4) for saturated behaviour, 

respectively. 

6.3.2 Discussion 

The suppression of the metallic behaviour can be readily explained in the pic­
ture of quantum diffusion in an electron solid. First of all, the perpendicular 
magnetic field reduces the wave function overlap between different states re­
sulting in a suppression of the tunnelling probability. Since the bandwidth of 
the defect energy is inverse proportional to the tunnelling time, the bandwidth 
is expected to be reduced by a strong B1_ . Hence, application of a strong per-
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Figure 6.14: Comparison of data with p(TBase) ~ 200 x h/ e2 at B _1 =0, 1.5 

and 3 T for two different devices. T he saturation appears to get weaker with 

increasing field, but a clear sub-exponential dependence of p on 1/T remains. 

Densities in the:) legend are given in units of 1010 cm-2 [92]. 

110 

pendicular magnetic field can easily drive the system from a situation with 
an overlap of defect energies (schematic Figs. 6.8 b) arid c)) to one where the 
bandwidth is too small to overcome the disorder induced difference in adjacent 
defect energies (Fig. 6.8a)). This would lead to the observed transition from 
metallic transport to weakly temperature dependent non-coherent tunnelling 
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Figure 6.15: Activated and saturated behaviour for device A78d at B1_ =8 T. 

transport. 

More generally, a perpendicular magnetic field is well known to confine 
charged particles within a length scale ZB = Jn/eB1_ (the magnetic length). 
For B1_ =1.5 T , ZB ~ 20 nm, which means ZB ~ Tee for B1_ > 1.5 T and it is not 
surprising that a delocalisation over a distance > ZB cannot occur. The mag­
netic confinement cannot only explain the suppression of defect delocalisation 
in the framework of quantum diffusion, but of any kind of low temperature 
delocalisation mechanism. 

6.4 Activation Energies 

The discussion of the temperature dependence so far has been focused on the 
low temperature range. This section looks at the high temperature part where 
a strongly insulating T-dependence was always observed. 

A behaviour . 

p(T) = Po exp([Eo/kBTJP) (6.6) 

with p=l, 1/2, or 1/3 is a reasonable assumption, as this is the expected be­
haviour for transport in t he strongly localised regime of 2DES (see Sect. 2.6). 
From this relation one can extract information about the activation energies 
involved. However, one should first check if the temperature dependence re­
ally is exponential. For this purpose, the resistivity as a function of 1/T is 
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compared with a linear and a logarithmic p-axis in Fig. 6.16. The linear fit on 
the logarit hmic scale clearly confirms the exponential dependence on 1/ T. On 
the linear scale, a linear fit in not possible. Other possible relations such as 
a power law dependence or linear or exponential T dependence ( rather than 
1/T) where also investigated but did not lead to a satisfactory result . 

An absolutely unequivocal confirmation of the exponential dependence on 
1/T is hindered by the fact that, due to the saturation at low T , the temper­
ature and resistivity range in which the strongly insulating behaviour is ob­
served, is limited. For definite confirmation of an exponential law, one would 
ideally be able to fit over several orders of magnitude in resistivity, which is 
not possible in our case. For the same reason, it is difficult to definitely de­
termine the exact exponential behaviour, i.e. the coefficient p in Eq. (6.6). 
Determining p=l, 1/2, or 1/3, would distinguish between nearest-neighbour, 
Efros-Shklovskii , and Mott hopping. While the nearest-neighbour hopping 
(NNH) expression seems to agree best, the Efros-Shklovskii or Mott hopping 
relation fits are only marginally worse. 

From available results, one can conclude that a simple activated behaviour, 
hinting at NNH, is the most likely mechanism, but VRH cannot be entirely 
ruled out in this regime. With increasing electron density ( decreasing resis­
tivity) , the resistivity range often became so small that even a distinction 
between exponential or sub-exponential dependence on 1/T became difficult. 
However, no signs of a qualitative change in the high-T range was observed 
and an exponential behaviour was assumed to persist. 

Activation energies were determined by fitting the expression (6.6) with 
p = 1 to the high temperature part of the data, as shown in Figs. 6.6 and 6.16 
b). This approach was preferred over fitting more complicated expressions 
because it is the most general one and does not assume any specific model. 
Eqs. (6.4) and (6.5) both have an activated high T behaviour and fits of those 
expressions revealed similar activation energies. 

Unfortunately, the generality of the expression has a drawback, namely that 
it does not retrieve much information about the origin of the activation energy. 
For example, in t he picture of transport through defects in an electron solid, E0 

could be ident ified with the height of the energy barrier between defect states 
as well as the difference between defect energies. This is shown schematically 
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Figure 6 .16: Comparison of temperature dependence of resistivity between 

linear a) and logarithmic b) y-axis. The x-axis is 1/T in both cases. An 

exponential dependence of p on 1/T is confirmed by the linear fit (solid line) 

in b). Device A78e, B = 0 [94]. 

in Fig. 6.10. For both transport mechanisms, a simple activated behaviour 
is expected, with E0 identifiable with Eb or Et, respectively. Additionally, 
the thermal creation of defects could play a role, where creation of charge 
carriers could again lead to an activated behaviour of resistivity, but here with 
the activation energy E0 = Ed, the energy required to create a defect. The 
situation where electrons are localised at disorder traps as single electron or 
electron puddles, is essentially the same, except that the defect creation process 
is absent. E0 could be the height of the energy barrier between impurity 
states ( essentially, activation to the mobility edge), as well as the average 
energy separation between nearest neighbour trap sites. Again, in both cases, 
a simple activated transport law is expected as long as the temperature is high 
enough to avoid VRH. 

Figs. 6.17 a) and b) show the dependence of the activation energies E0 on 
both electron density and perpendicular magnetic field for two devices with 
08p= 40 and 60 nm, respectively. Two clear trends can· be spotted immediately: 
Firstly, E0 decreases with increasing ns , mostly monotonically. Secondly, while 
E0 decreases at most densities for a low B .1 ;S 1 T, it increases significantly as 
a stronger B .1 is applied. 

11 
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A discussion of the n8 - and B _1_ -dependence of the activation energies is 
difficult because, as shown above, there are many different mechanism that 
might show an activated behaviour. On one hand, each of these mechanisms 
might show a different reaction when the electron densities or the magnetic 
field are changed. On the other hand, completely different scenarios could 
lead to a similar behaviour. In the following sections, an attempt is made 
to discuss which of the physical scenarios could lead to the experimentally 
observed behaviour when n8 and B _1_ are varied. 

6.4.1 Electron Density Dependence of E0 

Single-Particle Localised 2DES 

In single-particle disorder localised 2DES, the qualitative behaviour E0 can be 
explained if it is the activation energy required for the electron to escape the 
trap site, i.e. E0 = Eb. At higher electron density, trap sites with smaller 
binding energy will be filled and, hence, the energy required to excite them 
will be smaller. If the density of states is a constant function of energy, one 
would expect E0 to decrease linearly with n8 . The n8-dependence of E0 in 
Fig. 6.17 appears to be stronger than linear, hinting at a decreasing density 
of states with decreasing energy, which is, indeed, expected in the band tail. 
A decreasing density of states would also lead to an increase of Et with de­
creasing n 8 , since this means, by definition, that the energy separation between 
neighbouring states gets larger. Hence, the qualitative behaviour of E0 can be 
well explained in a single-particle localisation picture, however, as discussed in 
other places, there are several other experimental results that are not compat­
ible with this model. 

Electron Puddles 

In the case of hopping between puddles as put forward by TK, one would 
expect E0 to oscillate between zero and a few Kelvin due to Coulomb blockade, 
with the effect becoming more pronounced with increasing magnetic field [99] . 
This is clearly not observed, a fact that will be discussed further in Chapt. 7. 
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However, if Coulomb blockade is ignored, the qualitative behaviour on Ea 

can be explained. For the situation Ea = Eb , the barrier height is expected to 
increase with decreasing n 8 , which decreases the energy of the highest occupied 
level in the puddle relative to the barrier height . If Ea = Et one can expect 
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However, if Coulomb blockade is ignored, the qualitative behaviour on E0 

can be explained. For the situation E0 = Eb , the barrier height is expected to 
increase with decreasing ns , which decreases the energy of the highest occupied 
level in the puddle relative to the barrier height . If E 0 = Et one can expect 
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a better disorder screening at higher ns to reduce the confinement and, hence, 
level separation in the puddles. This effectively increases the density of states 
at the Fermi energy, thereby reducing Et. 

Defects in an Electron Solid 

The situation of defect transport in a electron solid is very difficult to discuss 
even qualitatively. For Ea = Ed , i.e. the case of thermal creation of defects, 
a calculation has been done by Cockayne and Elser [113]. They proposed the 
energy of a point defect in a Wigner crystal to be Ed = Cc/rs + Czpv/r:12 + 
0[1/r;J with the first term the change in Coulomb energy and the second 
term the change of zero-point vibrational energy. Cc is positive and Czpv is 
negative, which means that Ed decreases with increasing electron density at 
large enough n8 , as observed. These calculation ignored disorder and are only 
of limited validity. 

For Ea = Et , the density of defect states in space is proportional to n 8 • 

Assuming a random scattering in the energy of the defect states, the density of 
states in energy will change in the same fashion as in space. This could explain 
the observed trend. However , if the activated part at high temperature was, 
indeed, arising from phonon assisted tunnelling between nearest neighbours, 
rather than activation across the barrier, the low temperature behaviour with 
saturation or metallicity could not be explained anymore, which was the main 
reason for introducing the picture of defect transport in an electron solid in 
the first place. 

Unfortunately, the case which is considered most likely, namely Ea = Eb is 
the most difficult to discuss and no literature is available about the height of 
the energy barrier between defect states compared to their energy. The situa­
tion is fundamentally different from the case of simple localisation in potential 
minima arising from disorder, since, here, the traps are arising from the elec­
trons themselves and change with electron density. The probable presence of 
strong quantum mechanical effects and the additional influence of the external 
disorder potential may lead to a complex behaviour of Eb on which the author 
would not like to speculate. In conclusion, the observed n 8-dependence of Ea 
can neither support, nor refute the proposed transport mechanis.m of quantum 
diffusion in an electron solid. 

1111 
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Plateaux and Dips 

A close look at Fig. 6.17 reveals a formation of plateaux or even dips in E0 as 
function of n 8 • This will be discussed in more details in Chapt. 7, in particular 
the plateaux. Nevertheless, a remark on the dips should be made here. The 
dips, clearest visible on the logarithmic scale in the insets, only occur at low 
magnetic fields and they always coincide with pockets of metallic behaviour. 
While this could have a physical origin, it is most likely an artefact, arising 
from a strong metallic transport component even in the insulating range. This 
would effectively lower the slope of the "exponential" part and reduce E0 . 

Indeed, for the strong minimum marked by an arrow in the inset to Fig. 6.17 
a), if Eq. (6.3) is used to fit the data, the activation energy never falls below 
Eo ~ 0.8K. 

6.4.2 B-Field Dependence of E0 

It is illustrative to have a look at the influence of a perpendicular magnetic 
field in a disorder free 2DES. The magnetic confinement can be expressed as 
an effective parabolic potential [81] 

v; = _1 ( e B..1T)

2 

B 2m* 2 (6.7) 

where T is the distance in the plane of the 2DES. This means that an electron 
travelling over distance Thop must overcome a magnetic barrier that increases 
quadratically with Thop and B ..1 . This magnetic barrier immediately explains 
the increase with B..1 for E0 = Eb, i.e. activation across a potential barrier. 
Eq. ( 6. 7) gives a quantitative estimate of t he expected additional energy barrier 
if the hopping distance is known. 

In Chapt. 5 a hopping distance of Tee ~ 1/ ,Jn';, was observed. For t he 
density regime shown in Fig. 6.17, Tee ~ 70 - 140 nm. This would correspond 
to a magnetic barrier EB ~ 20 - 170 K at B ..1 =1.5 T or even EB ~ 170 -
670 K for B..1 = 3 T. This is, of course, much larger than any of t he observed 
activation energies. The large discrepancy could be explained if the hopping 
distance is much smaller, for example, the observed difference of /J..E0 = 1-2 K 
between B ..1 = 1.5 T and B ..1 =3 T would suggest Thop < 10 nm. This seems rather 
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small. However, another possible scenario is that disorder reduces the effective 
magnetic barrier. For the case of point scatterers along the hopping path, it 
has been shown that the magnetic barrier is strongly suppressed because it is 
"reset" at every scattering event [114]. This is schematically shown in Fig. 6.18. 
A more complex disorder potential may have a similar effect and could explain 
the relatively small change in Ea with increasing B1_. The considerat ions in 
this paragraph should apply to all the localisation pictures discussed above, 
as long as the dominant transport mechanism is activation across a potential 
barrier between localised states. 

r 

Figure 6.18: Magnetic confinement potential without scatterers (dotted line) 

and with scatterers ( solid lines). 

In the case where transport occurs by phonon assisted tunnelling and Ea = 
Et , the activation energy depends on the energies of the localised states them­
selves and not on the barrier height between them. In a clean 2DES a perpen­
dicular magnetic field changes the density of states from a constant into a set of 
equispaced delta peaks, broadened by moderate disorder (see Sect. 4.1.2) . This 
is not directly applicable to the strongly localised regime, but the magnetic 
confinement will still have an impact on the energies of the localised states. 
The change in energy would be expected to be in the order of the cyclotron 
energy !iwc/2 (rv 10 K for B 1_ = l T) , which is the level spacing in a harmonic 
potential of the form ( 6. 7). However, to determine Et , the crucial thing is 
how the energy levels of different localised states change relative to each other. 
It is not clear how a magnetic field would affect the average energy difference 
between localised states in a complex system as a disordered interacting 2DES. 
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In Fig. 6.17, one can see that for both devices above a certain electron 
density, E0 actually decreases when B1. is increased from Oto 0.5 and 0.7T, 
respectively. This observation may be related to the negative magnetoresis­
tance discussed in Sect. 5.4.1 , which occurred over a similar range in B1. and 
was assigned to interference effects. It is not clear how this could affect the 
activation energies, in particular since interference effects are not expected to 
be strong in the high temperature range where the activated behaviour was 
observed. 
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Chapter 7 

Magnetic Field Induced 

Resistance Oscillations 

This chapter discusses strong oscillations in the resistivity of localised meso­
scopic 2DES that appear as a function of electron density and are induced 
when a strong perpendicular magnetic field is applied. Oscillations of this 
kind have not been previously reported in literature. 

Importantly, the positions of peaks and troughs do not change with changing 
magnetic field. A possible universality of the positions of peaks is discussed, 
where peaks occur favourably at integer and half-integer values of r8 • 

Scenarios that could cause such a behaviour are discussed, in consideration 
of the results presented in other chapters. 

7 .1 Overview 

Fig. 7.1 gives an overview of the magnetically induced resistance oscillations for 
four devices with spacer width 68p= 20, 40, 60 and 80 nm at T ~ 300 mK. The 
dimensions of all the devices shown in this figure are L x W ~ 2 - 3 µm x 8 µm. 

With decreasing ns , the devices with intermediate disorder (Fig. 7.1 b) and 
c) with 65p=40 and 60 nm) exhibit a monotonic increase of resistivity with 
weak features at zero field (thick black lines). However, when a perpendicular 
magnetic field is applied, oscillations emerge with peaks that become more 
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Figure 7.1: Overview of magnetic field induced resistance oscillation for 

devices from four different wafers- While at zero magnetic field ( thick black 

lines) the resistivity increases mostly monotonically with decreasing ns, peaks 

appear in a magnetic field, becoming more pronounced as B 1_ gets stronger. 

All measurements at T ~ 300 mK. 

a) A07b (Jsp = 20nm), B1_ = 0- 3T, b.B1_ = 0_05T. b) A78e (Jsp = 40nm), 

B1_ = 0- 4T, b.B1_ = 0.05T. c) C67b (Jsp = 60nm), B1_ = O; 0.92 - 6.7T, 

b.B1_ = 0_08T: d) T46a (Jsp = 80nm), B 1_ = 0 - 9.6T, b.B1_ = 0.3 T [92]. 

pronounced with increasing B1_. The device with strongest disorder (Fig. 7.1 
a) with 6sp=20 nm) shows one strong and one weaker ·peak even at zero field. 
As B 1_ increases , the peaks are suppressed at first , but then b ecome stronger 
again, eventually becoming much clearer than at B 1_ = 0. In all cases, the 
peak position in ns remains practically unchanged as B 1_ increases over ranges 
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of up to several Tesla. 

The device with weakest disorder (Fig. 7.1 d) with 6sp=80 nm) shows a 
rather different behaviour, where peaks are absent up to BJ_ as large as 9.6 T , 
apart from one weak feature, Note that devices with 65p=80 nm also showed a 
qualitatively different behaviour of low field magnetoresistance (Chapt. 5) and 
temperature dependence ( Chapt. 6) than devices with 65p=20-60 nm. 

Devices made from the 40 nm b"-doped wafer A2678 generally were most 
stable and displayed strongest oscillations (as well as most interesting T­
dependence, as discussed in Chapt . 6). Therefore, a second device from this 
wafer (A78f, L x W rv 4µmx8µm) is shown in Fig. 7.2 in several cooldowns. 
Fig. 7.2 a) was taken at T rv 300mK. Fig. 7.2 b) is at T ~ 300mK as well, 
but in a different cooldown. Here, a different measurement set-up was used, 
that allowed to measure higher resistances, at cost of a lower accuracy ( see 
Sect. 3.3.1 for details). It seems like the oscillations might become weaker 
again with increasing field in the very high resistivity regime, a trend that was 
never observed for p ;S 200 x h/e2

. Finally, Fig.7.2 c) shows a measurement 
in a different cryostat at T -::::'. 70 mK. It exhibits the strongest oscillations 
of any device. The obvious reason for this would be the lower temperature. 
However , a different measurement of the same device showed only a very weak 
dampening of the oscillations at low n5 and low BJ_ , respectively, when the 
temperature was increased from T rv55 mK to 300 mK (not shown). A strong 
T-dependence of the oscillations was only observed at very high fields B J_ ,2: 7 T 
and small r5 ;S 3.5. This observation is in agreement with the saturation of 
the temperature dependence of resistivity at low temperatUres as discussed in 
Chapt. 6, which was also weakened at high magnetic fields . 

7.2 Universality in ns or rs? 

When comparing the electron densities at which the peaks occur in Figs. 7.2 
a)-c), one can observe a striking similarity. In particular at low densities a 
correlation between different cooldowns is observed both in spacing between 
the peaks and their actual positions. A first peak appears at n 5 ~ 1010 cm-2 

followed by a series of peaks in the approximate separation of t:m5 ~ 0.2 x 
1010 cm-2 , although the peaks in a) seem to be slightly shifted towards higher 
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Figure 7.2: Overview of magnetic field induced resistance oscillations in 

different cooldowns for device A 78£. 

a) B1_ = 0 - 7T, D..B1_ = 0.1 T, T ~ 300mK. b) Different cooldown but 

same temperature T ~ 300 mK, measured to higher resistance in a different 

set-up (see Sect . 3.3.1). B1_ = 0 - 8T, D..B1_ = 0.125T c) Measurement 

at lower temperature T ~ 70mK in a different cryostat. B1_ = 0 - 7.5T, 

b..B1_ = 0.15 T. 
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densit ies. Remarkably, a clear correlation of peak position exists also to a 
different device from the same wafer (Fig. 7.1 b)) and to some extent even 
to a device from a different wafer (Fig. 7.1 c)). In particular, in all devices a 
strong single or double peak is observed at n 8 = 1.8 ± 0.1 x 1010 cm-2 . Even 
the low disorder device in Fig. 7.1 d) shows a feature at this density, which 
does not display any other peaks at all. The observation of a strong feature 
around n 8 = 1.8 x 1010 cm-2 was confirmed in all measured devices, including 
the ones not shown here. 

The correlation between different cooldowns, different devices and even 
different wafers raises the question of what distinguishes particular densities 
where the peaks occur and if there may be a more appropriate quantity than ns 
to express a possible universality in peak position and separation. In Chapt. 5 
we have seen that certain properties of magnetoresistance were determined 
only by ree rv 1/ ..Jn; for a wide range of devices and wafers. Also, resistance 
oscillations periodic in 1/ ..Jn; have been reported before in 2DES of similar 
dimensions to the ones used here, although for the case of much stronger disor­
der in the impurity band of GaAs [115]. In fact, when the periodicity observed 
in Ref. [115] is expressed in terms of r8 = 1/ a~~' ones finds 6.r8 ~ 1/2. 

In view of this, it is instructive to look at the observed oscillations as a 
function of r 8 rather than n 8 • A first observation is that the density n 8 = 
1.8 x 1010 cm- 2 , which appears to be somehow distinct, corresponds to an 
integral value of r8 ~ 4. In Fig. 7.3 four devices made from wafers with 
6sp = 20, 40 and 60 nm are shown on a r 8-scale (these measurements are 
also shown in Figs. 7.1 and 7.2 but on a n8-scale). Indeed, for all devices, a 
periodicity of~ 1/2 is observed between the strongest peaks, except for device 
A07b (Fig. 7.3 a) ) , where the two peaks are separated by about 0.9. Also, in 
device A78f (Fig. 7.3 d)) , the frequency seems to double at r8 :s; 4, but t his 
could also be interpreted as a change to double peaks with t he same frequency. 
With some good will , one can even assign the positions of the peaks to integral 
and half integral values of rs, starting from r8 = 5.5 in Figs. 7.3 b)-d). 

At this point, one should have a look at how strong, an impact a possible 
error in the electron density measurements would have on r8 • It is crucial 
to know if the error in r8 is small enough to actually allow for a statement 
about the peak position to a precision smaller than 1/2. T he density mea-
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Figure 7.3: Oscillations for various devices with Osp = 20 - 60 nm on a rs 

rather than ns scale. In all cases, the separation between strong peaks appears 

to be flrs ,::j 1/2, at least at lowest densities. One can even make out a possible 

trend of peaks appearing at half integral values of r 6 or double peaks in d) 

at r 6 = 3.5 and 4. In particular, all the measurement show a broad single or 

double feature at rs ,::j 4. 

a) A07b (Osp = 20nm), B1_ = 0- 3T, tlB1_ = 0.05T (same measurement as 

Fig. 7.1 a)). b) A78e (Osp = 40nm), B 1_ = 0- 4T, tlB1_ = 0.05T (same as 

Fig. 7.1 b)). c) C67b (Osp = 60nm) , B1_ = O; 0.92 - 6.7T, tlB1_ = 0.08T 

(same as Fig. 7.1 c)). d) A78f (Osp = 40nm), B 1_ = 0 - ·7.5T, tlB1_ = 0.15T 

(same as Fig. 7.2 c) ) [92] . 
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surement technique used in our experiments and a way of estimating its error 
are discussed in Chapt. 4. The relative error increases with decreasing ns, 
leading to a larger error at large r 5 • The periodicity is, of course, less affected. 
For all devices from wafer A2678 an excellent density measurement could be 
done. Nevertheless, an error of r~rr ~ 0.35 has to be expected at r5 = 5.5 or 
r~rr ~ 0.15 at r s = 4, an estimate which applies to the measurements shown 
in Fig. 7.3 b) and d) . The measurement in Fig. 7.3 c) has a slightly larger 
error margin with r~rr ~ 0.5 at r5 = 5.5 and r~rr ~ 0.3 at r5 = 4. Fig. 7.3 a) 
has the largest uncertainty with r~rr > 0.5 even at r5 = 4. Such a large error 
could even explain the deviation from a 1/2 separation between the two peaks 
in this measurement. 

In view of the relatively large error at high r 5 , one should not overestimate 
the importance of the apparent coincidence of peaks with integral and half­
integral values of r 5 • However , at relatively low r5 the error is reasonably small, 
and the appearance of a strong peak at a universal value of r5 ~ 4 may be 
real. 

An attempt at a more quantitative analysis of the peak positions is shown in 
Fig. 7.4. In a), the positions of clear peaks in terms of r5 have been determined 
and are presented in a histogram for 10 devices from five different wafers ( 5-
doped with 6sp = 20, 40, 60 and 80 nm and bulk-doped with 65p = 40 nm) 
with gate dimensions L x W rv 0.5 - 4 µm x 8 µm. In order to avoid too large 
an influence of a single device, each device was only analysed once, even when 
data from several cooldowns was available. Also, only measurements were used 
where at least a range of r5 = 3.5 - 5 was available. This makes sure that a 
peak in the histogram does not arise from t he availability of data from more 
devices within this range. The histogram in Fig. 7.4 a) shows a relatively 
uniform distribution in that there is no overall trend of increase or decrease 
of peak density with increasing r 5 • The latter would be expected , if the peaks 
where distributed uniformly in n 5 rather than r 5 • However, a clear maximum 
is observed around r5 ~ 4 and a weaker one at r5 ~ 5. The decrease in number 
of peaks for r5 > 5 must arise from t he lack of available data due to pinch-off 
of transport in some of the devices at such low electron densities . 

Fig. 7.4 b) shows a histogram of the measured separation in r5 between 
adjacent peaks. It exhibits a clear, if rather broad, maximum at D:..r5 ~ 0.4 -
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0.5. If the peak separation is expressed in terms of ns, a sharp peak appears 

around 6.n8 ~ 0.2 but apart from that, there is a scattering of the distribution 

over quite a large range. This gives some evidence that the peaks may, indeed, 

be evenly spaced in rs with a periodicity of approximately 1/2. 

The problem in the experimental confirmation of a possible universality in 

the peak position in rs is twofold. First of all, as discussed above, the error in 

measuring the electron density might be, in some cases, as large as the peak 

separation. In additions, there is also a more fundamental problem: An uni­

versality in peak position in rs, independent of (mesoscopic) device dimensions 

and disorder strength within a certain window would, undoubtedly, suggest a 

fundamental origin of the observed resistance oscillations. However, it is also 

clear that disorder does play an important role. This is expressed in the differ­

ence of the strength of the peaks between different cooldowns and also by the 

fact that the oscillations practically disappear in a very low disorder device 

with 6sp = 80 nm. The local disorder topology could lead to a deviation of 

the peaks from their fundamental position. For example, even though it is 

believed that the electron distribution is homogeneous on the length scale of 

our device dimensions, some fluctuations may, nevertheless, occur, inhibiting 

a perfectly well defined peak position. 

In conclusion, some evidence of a universality of peak position in terms of 

rs and a periodicity of 6.rs ~ 0.5 has been given. The available results do not 

allow for a definite conclusion in this direction. Nevertheless, due to the far 

reaching implications that a universality in such a fundamental quantity as rs 

would have, I believe that the observation deserves the attention it was given 

in this section. 

7.3 Temperature Dependence of Oscillations 

Fig. 7.5 a) shows the temperature dependence of oscilla_tions at B..l = 2 T for 

device A 78e in a temperature range T = 0.3-4.6 K. One can see that the peaks 

are damped rather quickly and have disappeared at T ~ 2 K. It is interesting 

to directly compare the temperature dependence of peaks and troughs. This 

is done in Figs. 7.5 b) and c) , where the resistivity is plotted versus inverse 
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temperature 1/T for two pairs of adjacent minima and maxima. Interestingly, 
in both cases the activated part at high temperatures is only shifted in its resis­
tivity, but the slopes and, hence, activation energies, are virtually unchanged 
between peak and trough. However , while in the minima, the saturation sets 
in at T ~ 2 K transport remains activated down to T < l K at position of the 
maxima. This observation clearly suggests a common origin of the oscillations 
and the saturated temperature dependence. The appearance of the oscillations 
seems to be caused by a shift in the saturation temperature and they disappear 
at a temperature where the behaviour is activated at all densities. 

Qualitatively, a similar behaviour was observed in all investigated tempera­
ture dependences, even though the activation energy did not always remain en­
tirely constant. The latter will be discussed in some more details in Sect. 7.3.2. 
As discussed in Sect. 6.3, the saturation tends to get weaker at high magnetic 
fields. In agreement with this, the peaks seem to become more sensitive to 
temperature changes at high fields . However, it is hard to quantify this effect, 
partly due to a lack of available data, but mainly because with increasing B .1_ 
the low density peaks get pinched-off and new peaks appear at higher densi­
ties. Therefore, one would have to compare not only different fields, but also 
different electron densities, which makes a quantitative analysis difficult . 

7.3.1 Connection to Metallic Behaviour 

In the previous section, a possible relation between the saturated temperature 
dependence and the resistance oscillations was discussed.· On the other hand, 
as discussed in Chapt. 6, a close connection between saturated and metallic 
behaviour of resistance must be assumed. It suggests itself that the resistance 
oscillations may also be connected to the metallic behaviour. A problem is, of 
course, that the. metallicity gets suppressed in strong perpendicular magnetic 
fields, while the resistance oscillations are induced by such a field. Therefore, 
one has to investigate intermediate fields, where a possible metallic behaviour 
is not yet suppressed, but oscillations are already appearing. 

A nice example is shown in Fig. 7.6 for device C67b, which displayed clear 
oscillations at a low perpendicular field B.1_ = 0.5 T, but also very strong 
metallic pockets. In a), one can clearly see a non-monotonic behaviour of the 
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Figure 7.5: a) Temperature dependence of oscillations at B 1. = 2 T for de­
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comparing pairs of minima/maxima as indicated in a). The solid lines are 
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(i .e. activation energy) remains practically unchanged between adjacent min­

imum and maximum, the saturation sets in at much higher temperatures at 

the minima [94j. 
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temperature dependence of resistivity in t he two minima that are marked with 
arrows. The resistivity as a function of inverse temperature 1/T is shown for 
these two troughs in Figs. b) and c), in comparison with the adjacent peak, 
also marked by arrows. The activated parts exhibit a very similar behaviour 

I 

[

1

1 

I I 

II 

I:[, 
I 



Chapter 7. Magnetic Field Induced Resistance Oscillations 

a) 12.5 

10.0 

NQ) 7.5 

s 
c:,_ 

b) 8 

7 

6 

3 

Max1 

Min2 Max2 

T=4.7 K 

0.90 0.95 1.00 1.05 1.10 1.15 

• Mil'}1 
• Max1 

n (1010 cm-2
) 

s 

c) 

N 
Q) 

3 

5, 2.5 
c:,_ 

• Min2 
• Max2 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

1/T(K-1) 1/T(K-1) 

Figure 7.6: a) Temperature dependence of oscillations at BJ_ =0.5 T for de­

vice C67b, T=0.3-4.7K. b) and c) Resistivity versus inverse temperature 1/T 

comparing pairs of minima/maxima as indicated in a). The solid lines are 

exponential fits to the activated parts on the T-dependence. As can be seen 

even under close inspection of a), a clear metallic behaviour occurs in the 

minima, while at the maxima a saturated but non-metallic T-dependence is 

observed. 
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to those shown in Fig. 7.5, with the activation energies virtually unchanged 
between adjacent minimum and maximum. However, while the T-dependence 
of the maxima only saturates, that of the minima turns into a clear metallic 
behaviour. Device A 78e also showed a metallic pocket at BJ_ = 0 in the ap-
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proximate position of minimum "Minl" as indicated in Fig. 7.5 a) and another 
one at a different magnetically induced trough. However, in this case, the os­
cillations were very weakly pronounced at the lowest fields. The observation of 
a coincidence between metallic behaviour with troughs gives further support 
to the conjecture that the origin of the magnetically induced oscillations is 
related to the saturated and metallic temperature dependence as discussed in 
Chapt. 6. 

The two devices discussed so far in this section are the ones presented in the 
top two panels of Fig. 6.5. The lower two panels show much broader ranges of 
metallic behaviour. It should be noted that those two devices did not exhibit 
any magnetically induced oscillations in the range shown. 

7.3.2 Activation Energies 

In Sect. 6.4 the electron density and magnetic field dependence of the activation 
energies extracted from the high temperature exponential T-dependence was 
discussed. A general trend of decreasing activation energies with increasing ns 

was observed. However, the decrease was not entirely steady, with plateaux 
or even dips formed at some densities. Here, this observation is revisited in 
connection with the resistance oscillations that are the topic of this chapter. 

Fig. 7. 7 shows the activation energies E0 again for two devices from different 
wafers, but this time in direct comparison to the resistance oscillations of 
the respective device. A connection between resistance oscillations and the 
plateaux in the activation can immediately be seen, particularly clearly at 
the high field activation energies for device A78e (panel a)) . E0 is virtually 
unchanged between a trough in resistance and the next peak in direction of 
increasing n 5 • Device C67b shows a qualitatively similar behaviour, but the 
plateaux are not as pronounced. This is not surprising since the oscillations 
themselves are also much weaker in this case. 

The activation energies at low but finite field (BJ_= 0.7 and 0.5T, respec­
tively) show weak oscillations rather than plateaux. Both devices also showed 
strong metallic behaviour at these magnetic fields at some electron densities. 
As discussed in Sect. 6.4, the oscillations may be assigned to artefacts arising 
from a metallic component of transport impacting on the insulating trans-
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port . On the other hand, it cannot be ruled out that the plateaux at higher 
fields arise from an oscillatory behaviour of E0 on a strongly decreasing back­
ground. However, the broad horizontal characteristics of the plateaux make 
this unlikely. 

7.4 Discussion 

7.4.1 Magnetically Induced Coulomb Blockade Oscilla-

tions 

Tripathi and Kenneth (TK, Refs. [97, 99]) have put forward a model to explain 
the behaviour of magnetoresistance and temperature dependence as presented 
in Chapts. 5 and 6 but also the resistance oscillations that appear at high 
fields, which they attribute to magnetic field induced Coulomb blockade oscil­
lations. In this section, this picture is critically discussed and compared with 
the experimental data. 

Brief Introduction to Coulomb Blockade Oscillations 

The following short introduction to Coulomb blockade is based on the review 
articles Refs. [111, 116, 117]. 

Consider an isolated island of electrons separated from a source and drain 

by tunnelling barriers and separated from a metallic gate by a distance dg. 
Because the island is isolated, the number of electrons Ne must be integral. 
For a current to flow through the island, an electron or a hole have to be added 
to the island. However, due to Coulomb repulsion, adding an electron costs 
an energy Ee = e2 /2C ( C the capacitance between island and the universe). 
This energy becomes large for a small island and, hence, small capacitance. 

This causes a gap in the tunnelling density of states of width e2 
/ C as shown 

schematically in Fig. 7.8 a). 

The electrostatic energy of the island with charge Q is E = -QVg + Q2 /2C 
which can be rewritten as E = ( Q - Q0 )

2 /2C within an additive constant, 
with Q0 = CVg . For any given Vg, Q will be adapted in order to minimise 
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a) 

Figure 7.8: Schematic diagram of the Coulomb blockade effect. 

a) The charging energy e2 
/ C blocks the tunnelling of an electron into the 

island (strictly at T = 0) , the system is in the Coulomb blockade regime. 

b) The highest unoccupied level in the island is aligned with the chemical 

potential in the leads (µs,D) and the Coulomb blockade is lifted. 

b.E is the energy level spacing arising from confinement of the electrons . 

E by tunnelling of electrons in or out of the island, with Q limited to integer 
multiples of e. When Q0 = Ne, an integer number of electrons minimises E 
and for current to flow an activation energy E0ax = e2 /2C is required. This 
situation is called Coulomb blockade regime and is schematically shown in 
Fig. 7.8 a). However , when Q0 = (N + 1/2)e, the state with Q = Ne and that 
with Q = (N + l)e are degenerate and the Coulomb blockade is lifted (Fig. 7.8 
b)). This effect leads to peaks in the conductance as the gate voltage is swept, 
with periodicity .6.. Vg = e /C. The activation energy E0 varies between O and 
E0ax over one p~riod. 

In very small islands ( also called quantum dots) , the energy level spacing 
.6..E arising from the confinement of the electrons may become comparable to 
the charging energy. Taking this into account , the periodicity changes to 

.6..Vg = e/C + .6..E/e, (7.1) 

and the maximum activation energy becomes E0ax = ~ ( e2 
/ C + b.E). 
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Coulomb Blockade Oscillations in Disordered 2DES 

TK propose that electron puddles formed at minima of the screened disorder 
potential should be considered as charged islands in which Coulomb block­
ade effects may be important. For Coulomb blockade to occur, the tunnelling 
rate between puddles has to be small enough to ensure charge quantisation on 
the puddles. Since the tunnelling rate between puddles decreases exponentially 
with El (see Sect. 5.5) one can expect that Coulomb blockade oscillations may 
be induced by a strong perpendicular magnetic field. According to TK, in a 
situation of many droplets, the activation energies should be distributed ran­
domly in the interval [O,EoaxL changing with gate voltage. This should lead 
to a behaviour of resistance comparable to that observed in our mesoscopic 
devices. With increasing device dimensions and a large number of droplets, 
there will be some with arbitrarily low activation energy, giving rise to variable 
range hopping, which would explain the absence of the oscillation in macro­
scopic devices. 

While this proposal is convincing in its simplicity and ability to explain 
several (but not all) other aspects of transport in the systems used in this 
thesis, there are a number of issues of both qualitative and quantitative nature. 

The shape of the conductance peaks as a function of E0 and Vg, which are 
linearly related, can be derived as [111] 

G = Go Go= gse
2 

f1fr 
cosh2(--1}Q__) ' 4hkBT f1 +fr' 2kBT 

(7.2) 

where G0 is the peak conductance with tunnelling rates f 1,r with left and right 
neighbours and g5 the spin degeneracy. An attempt to fit this expression to 
several conductance peaks (o- = 1/ p) is shown in Fig. 7.9. Note that Eq. (7.2) 
applies to the minima in resistance or maxima in conductance, respectively. 
The assumption E0 ex (Vg - Vo) was made, with V0 the position of the peak 
maximum. The agreement of the fits is rather poor. This can partly be 
explained by t he asymmetry of the peak shapes. This could arise from an 
asymmetric change in the tunnelling barriers , leading 'to a Vg-dependent G0 . 

Such a change would not be surprising in the picture of TK where the quantum 
dots are not expected to be very symmetric and the tunnelling barriers are not 
decoupled from the main gate, as it would be the case in a lithographically 
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defined quantum dot. However, even in the cases where the peaks are relatively 
symmetric, the agreement with the fits is not good and it seem like the peak 
shape is qualitatively different from that predicted by Eq. (7.2). 
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Figure 7.9: Fit of Coulomb blockade expression Eq. (7.2) to conductance 

peaks (a= 1/ p) for device A78f at various magnetic fields. 

a) B..1_=0.4T, T =300mK. b) B..1_ = 1 T, T =300mK. c) B..1_ = 0.45T, T =65mK. 

d) B..1_=1.35T, r = 65mK. 

TK also estimated the involved energy scales. For the case of of Osp = 50 nm, 
they calculated an energy level spacing of D..E ~ 6 K and an effective charging 
energy E!ff ~ 4.4 K, taking a depolarising effect from surrounding droplets 
into account. This gives a total maximum activation energy Effax = D..E + 
E!ff ~ 10 K. According to Eq. (7.1) one gets a periodicity of Coulomb blockade 
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oscillations in gate voltage ~ Vg = 2E0ax / e ~ 2 m V. With a droplet diameter 
of 30 nm and separation of similar order ( as estimated by TK), one would 
expect transport to occur through many droplets in parallel and in series. 
This should lead to an ev~n shorter periodicity of oscillation. In fact, since 
the activation energies of the droplets should be distributed randomly in the 
interval [O, E0ax], one would expect a random distribution of peaks/troughs 
with average separation <2 m V. This is in strong contrast to the experimental 
observation of rather regularly spaced peaks/troughs, with an usual separation 
~Vg ~ 10 - 20mV. 

The magnetic confinement arising from a strong perpendicular magnetic 
field also has an impact on the energy levels in the puddles. A rough estimate 
of the energy scales can be given as riwc/2 ~ 10 K at B .1 = 1 T or 80 K at 
B .1 = 8 T [99]. One can see that this is of the order of or larger than ~E and 
E~ff. Hence, the Coulomb blockade oscillations should strongly depend on the 
magnetic field, which is, again, opposite to the observation that the peak and 
trough positions are virtually unchanged over ranges of up to several Tesla. 

Finally, the picture of TK would predict the activation energies extracted 
from the high temperature activated part of the temperature dependence to 
be oscillatory in the interval [O, E0ax] with a disappearing E0 in the resistance 
minima. While the activation energies at low fields show a weak oscillatory 
behaviour in some cases (although E0 = 0 is never observed), the behaviour 
at higher fields, where resistance oscillations are strong, does not show oscil­
lations but merely a formation of plateaux (Fig. 7. 7). 

Overall, while the scenario proposed by TK does give a qualitative de­
scription of some of our observations, the various qualitative and quantitative 
disagreements suggest that it does not fully explain the phenomenon. 

However, in . some cases a transport behaviour was observed that seems 
to agree better with TK's picture of puddle formation: Fig. 7.10 a) shows the 
resistivity as function of gate voltage at various magnetic fields for device A 78f 
in a "bad" cooldown. Here, a top loading fridge was used, where a controlled 
slow cooldown is very difficult to achieve and where there might also have 
been a grounding problem during the cooldown. This might have prevented a 
smoothing of the disorder potential due to redistribution of remaining electrons 
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in the dopant layer, leading to a strongly inhomogeneous electron distribution 
even on a short length scale (see also Sect. 3.3.3). Note that T K do not take 
incomplete ionisation or correlations in the dopant layer into account. Hence, 
a device after a "bad" cooldown .might be closer to the situation described by 
their theory. 
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Figure 7.10: a) Resistivity with increasing magnetic field BJ_= 0 - 2.7T for 

device A78f in a "bad" cooldown. Note that t his measurement, while looking 

messy, is entirely reproducible. (T=25 mK) 

b )-d) Fit of Coulorr_ib blockade expression Eq. (7.2) to conductance peaks 

indicated by arrows in a). The agreement is significantly better than in a 

"good" cooldown. b) B J_ = 1 T , c) B J_ = 1.6 T, d) B J_ = 2.7T. 

Indeed, the behaviour shown in Fig. 7.10 a) agrees better with TK's pre­
dictions in several respects. This data, while looking a bit messy, was entirely 
reproducible. Individual p vs. Vg traces at constant field generally show an ir-
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regular appearance of peaks, which could be explained by uncorrelated change 
between Coulomb blockade and resonance of various puddles. However, in 
some cases, a rather regular set of oscillations occurs, which could be caused 
by a single dot dominating transport over a certain range of gate voltage. 
Three of these traces are highlighted in Fig. 7.10 a). The periodicity of these 
oscillations is approximately 3 - 10 m V which is much closer to the expected 
value ~ Vg ~ 2 m V. Fitting of expression (7.2) to conduction peaks in this 
case was much more successful (but still not perfect) as shown in Figs. 7.10 
b )-d). As the magnetic field is increased stepwise, the oscillations change in a 
seemingly random manner, which could be explained by the change in the dot 
energy levels by a change in the strength of magnetic confinement. 

7.4.2 Alternative Explanations 

Here, some alternative explanations of the discussed resistance oscillations 
are presented. They are mainly qualitative and in some cases speculative 
due to lack of a good theoretical understanding of interacting disordered two­
dimensional electron systems. 

Interference or Quantum Hall Effect 

It is highly unlikely that any effect related to the quantum Hall effect or an 
interference effect is the cause of the resistance oscillations. Both effects would 
have to depend strongly on magnetic field. If e.g. the resistance peaks were 
arising from some kind of coherent backscattering, the area enclosed by the 
involved loops would have to be so small that the change in magnetic flux </>« 
</>o = h/2e (</>0 , the flux quantum) over the range of magnetic field where the 
peak position remains unchanged. For a change of ~B .L =4 T, this means that 
the loop areas would have to be much smaller than 5 x 10-16 m-2 , corresponding 
to a circle of radius 12 nm, which seems unrealistic. Similarly, if the peaks were 
related to a certain quantum Hall filling factor, a change in magnetic field from 
B .L = 1 to 5 T would require the electron density to change by a factor of 5 
in order to keep the filling factor constant, which can be ruled out from the 
experimental observation. 
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Commensurability of an Electron Solid 

If the electrons are forming a crystal, there could be a commensurability effect 
between the lattice constant of the solid with another length scale of the device. 
As the electron density changes, the lattice would repeatedly change in and 
out of commensurability with strong impact on the ordering of the crystal. 
There could, for example, be a trend for the crystal to remain commensurate 
over a small range of electron density by introduction of defects rather than 
change of the lattice constant , followed by a sudden reorganisation and change 
to the next commensurate lattice constant. Any such commensurability effect 
could be enhanced by an increased sturdiness of the solid due to the localising 
effect of the magnetic field. 

A possible length-scale could be the width of the device, e.g. the width 
being a multiple of the lattice constant. For this case, a rough quantitative 
estimate can be made: Let us assume for simplicity that the lattice constant 
is ree = 1/-Jn;. At a width of 8 µm the commensurate state of 100 lattice 
constants fitting into the width corresponds to r ee = 80 nm, which is a typical 
value for our experiments. The change in r ee to reach the next commensurate 
state is 6.r ee < 1 nm, which is more than an order of magnitude smaller than 
the usual observation of 6.r ee ;2'.; 10 nm. An uncertainty in the width or a 
different lattice geometry cannot explain such a large discrepancy. Hence, this 
kind of commensurability is unlikely to explain the observation. 

A different origin of the commensurability could be with the background dis­
order. Such an effect would be particularly strong if there was some regularity 
in the disorder. In fact, due to the incomplete ionisation of the dopants, acer­
tain degree of correlation in the disorder potential is possible (see Sects. 2.2.2, 
3.3.3 and 9.2.1). Indeed, some evidence of an ordering in the background 
potential with possible formation of an antidot array with a separation of ap­
proximately 0.5 - Q.6 µm has been found in devices similar to the ones used 
here [118] . When doing a similar estimate of commensurability conditions as 
above, but compared to a length scale of 0.6 µm , one gets 6.ree "' 5 - 20 nm 
for a realistic range of r ee "' 50 - 120 nm with largest 6.r ~e at largest r ee· This 
is in much better quantitative agreement with the observed behaviour. Even 
if the background potential is completely irregular, due to the finite size of the 
device, there could be certain electron densities where the electron lattice is 
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in better or worse "agreement" with the background disorder. This could still 
lead to resistance oscillations, even though in t his case t hey would probably 
be quite irregularly spaced. 

A third possible length-scale could be the lattice constant of the GaAs 
itself, which is a0 (GaAs) = 5.65A [28]. In this case, one would expect a 
commensurability to arise from the latt ice constant of the electron solid being 
an integer multiple of the lattice constant of GaAs. This would lead to a 
periodicity D..ree rv a0 (GaAs), which is much smaller than the observed value. 
Therefore, this kind of commensurability can be practically ruled out. 

In view of the idea of quantum diffusion and defect delocalisation ( discussed 
mainly in Chapt . 6), another closely related explanation is possible. The tran­
sitions between metallic and non-metallic phase were interpreted as changes 
between ordered and disordered states of an electron crystal, enabling and sup­
pressing defect delocalisation, respectively. Also, in Sect. 7.3.l of t his chapter , 
a possible connection between metallic behaviour of temperature dependence 
and minima in the resistance oscillations was presented. One could imagine 
that the metallic phase is much less affected by a perpendicular magnetic field, 
leading to the appearance of trough in t he resistance oscillations. The change 
of disorder of the crystal could, of course, be related to the commensurability 
effects discussed above. 

More Exotic Scenarios 

In Sect. 2.4.2 theoretical predictions of several exotic phases of interacting 
2DES were mentioned, including striped or bubble phases or a coexistence be­
tween Wigner crystal and Fermi liquid. Not much is known about the trans­
port behaviour in such phases, but density driven transitions of the phase, e.g. 
changes in bubble size, changes from bubble to stripe phase or vice versa, may 
well lead to sudden changes in the resistivity of the system. Of course, there 
could be something completely new which nobody has thought of ( or someone 
has, but I have not heard of). 

None of the scenarios discussed here give a good explanation of a possible 
universality in T5 and the observations discussed in Sect. 7.2 have to be left 
unexplained, for now at least. 

I I 



Chapter 8 

Amplified SdH-Oscillations and 

Modified Hall Resistance 

This chapter presents experimental results that concern the Shubnikov-de Haas 
oscillations and the quantum Hall effect in small Hall bars. They were discov­
ered along the way and seem not immediately connected to the main focus of 
the thesis, which is transport on a mesoscopic length-scale in the low-density 
regime. However, the discussion introduces some ideas that suggest that the 
observations may be more closely related to the mesoscopic low-density 2DES 
than one would think at first sight. 

It was observed that the low-field magnetoresistance in the high resistance 
regime under the gate, picked up the SdH-oscillations of the ungated part of 
the device and reproduced them with a strongly amplified amplitude, which 
cannot be explained as a simple series resistance effect. Furthermore, the Hall 
resistance in the quantum Hall regime, which should not be affected by the 
presence of a gate in the middle of the Hall bar, showed strong modifications 
when the gate was swept into the low-density regime. 

To the author's knowledge, neither of the observations have been previously 
reported. The finding was not investigated with priority and therefore, this 
chapter should be viewed as presentation of preliminary results. Accordingly, 
the discussion is kept short and only some ideas for possible direction of the 
interpretation are given. 
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8.1 SdH-Like Oscillations 

8.1.1 Overview 

In Chapt. 5 the magnetoresistance in the localised regime of mesoscopic 2DES 
was discussed in detail. One observation that was not presented was that the 
low field MR often had very clear oscillations superimposed on it. One example 
is shown in Fig.8.1 for several gate voltages, but similar behaviour was observed 
in many devices. While the amplitude of the oscillations decreases rapidly with 
increasing gate voltage (increasing electron density) , the position of peaks and 
troughs is perfectly unaffected by the change in Vg. 

The oscillations are clearly periodic in the inverse of the perpendicular mag­
netic field 1/ BJ_. In fact, it turns out that they are almost perfectly in sync 
with the Shubnikov-de Haas oscillations in the ungated part of the device. 
These can, of course, be measured when the gate voltage is set to 0. A com­
parison between the normal SdH-oscillations (blue) and their equivalent in the 
high resistance regime (red) , in the following called SdH-like oscillations, is 
shown in Fig. 8.1 b). A clear correlation between the two is observed, but the 
SdH-like oscillations are slightly shifted towards smaller BJ_. 

The most obvious explanation of the observation is that the four-probe 
resistance measurement simply picks up the normal SdH-oscillations from the 
ungated part of the device as a series resistance. However, this cannot be the 
case: The amplitude of the SdH-oscillations is at most 0.06 kn, but that of 
the SdH-like oscillations is up to 0.2 Mn, i.e. more than 3 orders of magnitude 
larger. 

8.1.2 Vg-Dependence 

The amplitude l::lR of the SdH-like oscillations is strongest at lowest gate 
voltage (lowest density under the gate) and becomes very small at higher gate 
voltage. This is shown for two devices in Fig. 8.2. Both devices show an 
overall decreasing trend with increasing Vg , but while device A 77a shows a 
mostly monotonic decrease, C67b shows a strong peak at intermediate gate 
voltages. 

This peak becomes eyen clearer, when the data is presented in terms of 
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Figure 8.1: SdH-like oscillations in device C67b at T=300 mK. 

a) Comparison of oscillations at various gate voltages (Vg = - 0.152 --t 

-0.149 V) . While the oscillations get weaker with lowering electron densi­

ties under the gate, the periodicity is completely unaffected. b) Comparison 

between SdH-like oscillations at Vg = -0.152 V with the SdH oscillations at 

Vg = 0. A clear correlation between the two is observed, even though peaks 

and troughs are shifted slightly towards higher B 1_ in the SdH-like oscillations. 

The maximum amplitude of the SdH-like oscillations is ~ 0.2 MO compared 

to ~ 0.06 kO in normal SdH oscillations, ruling out a simple series resistance 

effect. 
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Figure 8.2: Gate voltage dependence of the amplitude b..R of SdH-like os­

cillations at T =300 mK. 

a) C67b, BJ_~ 0.33 T ("filling factor" v = 10). b) A77a, BJ_~ 0.46 T ("filling 

factor" v = 14). 

relative amplitude 6.R/ R as shown in Fig. 8.3, where 6.R/ R is actually signif­
icantly larger at intermediate gate voltages than at the lowest Vg. The figure 
also includes the Vg-dependence of the longitudinal resistance at various fixed 
magnetic fields, showing the resistance oscillations discussed in Chapt. 7. 

Interestingly, the peak in 6.R/ R seems to be approximately situated be­
tween two peaks in Rxx(Vg). The peak 6.R/ R starts approximately at the 
position of one peak in Rxx and ends approximately at the next following 
Rxx-minimum. It should be noted, that device A77a, which shows a more 
monotonic behaviour of 6.R also did not show any strong peaks in Rxx (Vg) . 
These observations give some evidence that the strength of the SdH-like oscil­
lations might be rela~ed to the resistance oscillations. However, for a definite 
statement, more data would be required. 

8.1.3 T-Dependence 

The temperature dependence of the SdH-like oscillations in device C67b for 
a range of T = 0.3 - 2.1 K is shown in Fig. 8.4 a). The oscillations are 
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Figure 8.3: Gate voltage dependence of the amplitude .6.R/ R of SdH-like 

oscillations at T=300 mK for device C67b, compared to magnetic field induced 

resistance oscillations (see Chapt. 7). 

damped quickly and by T = 1.5 K they have practically disappeared. The 
temperature dependence of the relative amplitude !1R/ R at "filling factor" 
v = 8 (B1- rv 0.41 T) is shown in Fig. 8.4 b). As discussed in Sect. 3.3.2, the 
temperature dependence of normal SdH-oscillations should follow Eq. (3.1). 
The solid line in Fig. 8.4 b) represents an attempt to fit this expression to the 
T-dependence of SdH-like oscillations. Clearly the agreement is poor and the 
damping in the data seems to be faster than predicted by Eq. (3.1). 

For comparison, the T-dependence of the real SdH-oscillations in the same 
device and at the same filling factor is shown in Fig. 8.4 c). Here, a fit of 
Eq. (3.1) produces an excellent result. This direct comparison confirms that the 
temperature dependence of the SdH-like oscillations is qualitatively different 
from that of the normal SdH-oscillations. 

8.1.4 Discussion 

The edge state picture of the quantum Hall effect ( discussed in Sect. 4.1.5) 
could give a possible explanation of the SdH-like oscillations, or at least a 
direction for a possible explanation. 
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Figure 8.4: a) Temperature dependence of SdH-like oscillations in device 

C67b at Vg =-0.15 V. At T = l.5 K the oscillations disappear almost completely. 

b) Temperature dependence of relative amplitude 6.R/ R of SdH-like oscilla­

tions at "filling factor" v = 8 (BJ_ S::: 0.41 T), indicated by arrow in a). The 

solid line is an attempted fit of Eq. (3.1). No good agreement is found and 

the temperature dependence seems to be stronger than that of normal SdH­

oscillations. c) Temperature dependence of relative amplitude for normal 

SdH-oscillations in same device at the same filling factor. The fit of Eq. (3.1) 

is in much better agreement. 
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Unfortunately, in both devices where SdH-like oscillations were investigated, 
a reliable density measurement was not possible. However, one can safely as­
sume that in the regime of gate voltage and magnetic field where the oscilla­
tions were observed, the electron density was low enough for most , if not all, 
edge states to be reflected at the gate. In all cases, the 2DES under the gate 
was localised with a resistivity p > h/e2

. In this case, even when the filling 
factor v > l , edge states cannot really exist under the gate. In such a situa­
tion the charge carriers travel along the width of the gate in the edge states. 
Transport across the gate occurs by hopping of electrons out of the edge states, 
into and through the localised 2DES under the gate and into the edge states 
on the other side. As the magnetic field is swept upwards , the filling factor 
in the ungated part and, hence, the number of edge states decreases and the 
current along the gate will now be carried among fewer edge states. It seems 
likely that transport across the gate, while dominated by the resistance of the 
localised 2DES, will be affected by these repeated changes in the edge states. 
This could lead to a situation where the total resistance in dominated by the 
localised 2DES but modulated by changes in the leads. 

The non-monotonic dependence of the amplitude of the SdH-like oscillations 
on gate voltage suggests that the gate cannot be viewed just as a simple non­
interacting barrier in our case and that the oscillations are affected by the state 
of the 2DES under the gate as well as by the 2DEG in the ungated part of the 
device. 

A possible scenario how this could happen might be related to the work of 
Freyn et al. [119], who studied the transmission itsl2 of an interacting scat­
terer connected to one dimensional leads of non-interacting electrons. They 
found that the transmission of an interacting scatterer is non-local and depends 
on the non-interacting measurement probes. When the phase of the Friedel 
oscillations in the leads was changed, itsl2 varied significantly. This effect dis­
appeared when the interactions in the scatterer were switched off. While these 
results cannot be directly applied to the observation describe here, the sys­
tems do have a close similarity to the model studied by Freyn et al., the main 
difference being that both leads and "scatterer" (the localised 2DES under the 
gate) are two-dimensional. The changes occurring in the leads due to quantum 
Hall effects may have a similar impact on the transport across the localised 
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2DES, if the latter is strongly interacting. 

8. 2 Modification of Hall Resistance 

8.2.1 Overview 

When measuring the gate voltage dependence of the Hall resistance Rxy on 

either side of the gate, another unexpected effect occurred. At Vg = 0 the ex­

pected behaviour of the Hall resistance was seen, with a linear B ..L -dependence 

at low fields and formation of Hall plateaux at higher field. However, at neg­

ative enough gate voltages, a strong modulation of the Hall resistance in the 

quantum Hall regime was observed. Note that it was made sure that the gate 

never pinched off too much and the excitation current remained constant at 

all times. In order to avoid heating, but still get a reasonable measurement 

signal, a current Iex=300 pA was used. 

As shown in Fig. 8.5, the Hall resistance showed strong oscillations. These 

oscillations were correlated to the quantum Hall effect, with one period cor­

responding to a change in v by two ( odd v were not resolved). Interestingly, 

the sign of the oscillations depended on the configuration of the current and 

voltage probes in the four-probe constant current set-up. To explain this, a 

schematic of the device with numbered current and voltage probes is shown in 

Fig. 8.6. Assume that the current probes I+ and L are connected to I 1 and 

I2 , respectively. When the voltage probes V+ and V_ were connected to V1 

and 11:3, i.e. on the side of I+, an increase of Rxy was observed at the position 

where a quantum Hall plateau was expected and a dip was seen at the risers 

between two plateaux. 

When V+ and V_ were connected to Vi and "4, i.e. on the side of L, the sign 

of the total measured Rxy remained the same, as expected. However, the mod­

ulation of the Hall resistance now showed the exact opposite behaviour, with a 

dip where a plateau is expected and a peak in place of the risers. Qualitatively 

the same behaviour was observed in both devices that were investigated for 

these modulations of Hall resistance. 

Fig. 8.7 shows the deviation more clearly. Here, b..Rxy = Rxy - RxyCVg = 0) 

at various gate voltages is shown as a function of the perpendicular magnetic 
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Figure 8.5: Modification of Hall resistance Rxy at various gate voltages 

(Vg = -0.143 -t -0.13V) for device A77a at T = 300mK. Two different 

combinations of current and voltage probes in the four-probe measurement 

are shown (see Fig. 8.6 for labelling) , with one of them offset by +1 kD. The 

Hall resistance at Vg = 0 is included in the main graph (red lines) but also 

shown in the insets. While the Hall resistance at V9 = 0 exhibits t he ex­

pected behaviour, at strong negative gate voltage, strong oscillations appear. 

T he phase of the oscillations depends on the side on which t he resistance is 

measured: If Rxy is measured on the I+-side, it is increased at the plateaux 

positions and suppressed at the risers. The opposite is observed when the 

Hall probes are on the L -side. 
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V1 

Figure 8.6: Schematic of a Hall bar device with current and voltage probes 

and gate. 

field , i.e. the Hall resistance at zero gate voltage has been subtracted from 
the measured Hall resistance when a large negative gate bias was applied. It 
shows very clear oscillations of varying amplitude, but sharp crossing points 
with the magnetic fields where llRxy = 0 almost identical for all gate voltages. 

8.2.2 Vg-Dependence 

An interesting observation is that, while at a fixed magnetic field , the sign 
of llRxy is opposite on opposite sides of the gate, the amplitude is strongly 
correlated. In Fig. 8.8, llRxy is shown as a function of gate voltage for three 
different magnetic fields in two different devices. In each panel, llRxy measured 
with voltage probes on one side of the gate is compared to -llRxy measured 
with voltage probes on the other side. In all cases, but most clearly in Fig. 8.8 
c), the relative changes of llRxy are very similar on opposite sides, even though 
the absolute values are different. 

This behaviour makes it very unlikely, that the modification of the Hall 
resistance is caused by device details on either side, such as an asymmetry 
between Hall probes, which could cause a pick-up of longitudinal resistance 
and, hence, a superposition of SdH-oscillations on the Hall resistance. While 
it is unclear why such an effect should be enhanced by application of a gate 
voltage, it seems inconceivable how it could lead to the same, strongly non-
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Figure 8 . 7: Deviation of Hall resistance 6..Rxy = Rxy-Rxy (Vg = 0) at various 

gate voltages (Vg = (-0.143)- (-0.13) V) in device A77a in the measurement 

configuration I+ - L/V+ - V_ = Ii - I 2/Vi - \7.i. 

monotonic, Vg-dependence (with opposite sign) on both sides of the gate. 
It seems more likely that the observation is related to transport under the 

gate itself, which is common to both sides. Additional support to this idea 
comes from the comparison of gate voltage dependence of D..Rxy with the mag­
netically induced resistance oscillations discussed in Chapt . 7. 

This is shown in Fig. 8.9, where the resistance oscillations are plotted in 
the same graph as D..Rxy for device C67b. A clear connection between the 
two seemingly independent quantities is observed. At t he positions of the two 
strong peaks in longit udinal resistance, D..Rxy shows rather sharp dips and a 
weaker one at the position of a t hird, less pronounced peak. Device A 77a, 
which shows a smoother Vg-dependence of D..R (see Fig. 8.8 a) and b)), also 
did not show any strong magnetically induced resistance oscillations. 

8.2.3 T-Dependence 

The temperature dependence of the modified Hall resistance is summarised 
in Fig. 8.10. Panel a) shows the measured Hall resistance at Vg = 0 and 
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Figure 8.8: Comparison of deviation of Hall resistance f;j.Rxy = Rxy -

Rxy(Vg = 0) as a function of gate voltage at fixed magnetic field for two dif­

ferent configurations of current and voltage probes. Three different instances 

are shown, in each case, the sign of f;j.Rxy has been changed for one of the two 

measurements for clarity. In all cases, a clear correlation between the f;j.Rxy 

measured on opposite sides of the gate is observed. 

a) Device A77a at BJ.::::::! 0.47T (riser between v = 14 and v = 12) . b) Device 

A77a at BJ.::::::! 0.51 T (plateau at v = 12). c) Device C67b.at BJ.::::::! 0.434T 

(riser between v = 8 and v = 6) 
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Figure 8.9: Comparison of deviation of Hall resistance b.Rxy = Rxy -

Rxy(Vg = 0) for device C67b compared to magnetic field induced resistance 

oscillations (see Chapt. 7). Minima in b.Rxy seem to coincide with maxima 

of the resistance oscillations. 

Vg = 0.143 V at two different temperatures T=0.3 K and T=l.l K. At base 
temperature, a very clear deviation of lr,xy is observed between the two gate 
voltages. At T=l.lK (offset by +lkS1), the difference has practically disap­
peared, but quantum Hall plateaux are still discernible at higher magnetic 
fields. This already suggests that the temperature dependence of the modified 
Hall resistance is stronger than that of the QHE itself. 

Figs. 8.10 b) and c) show the temperature dependence of i:).lr,xy at a fixed 
magnetic field. In b) both axes are linear. At first sight, the T-dependence 
looks similar to what one would expect for SdH-oscillations. However, an at­
tempted fit of Eq. (3.1) gives a very poor agreement, with a much stronger 
T-dependence observed experimentally than predicted theoretically. This sup­
ports the notion that' the phenomenon cannot arise from a longitudinal resis­
tance component picked up in the supposedly transverse resistance. 

Panel c) shows the same data as b) , but on a log(!).Rxy) - 1/T-scale. In 
this representation, a striking similarity with the temperature dependence of 
the longitudinal resistance in the high resistivity regime becomes apparent 
(see Chapt. 6) : A strong increase of!).~ (possibly exponential) is observed 



Chapter 8. Amplified SdH-Oscillations and Modified Hall Resistance 156 

a) 
7 -- V =-0.143 V 

g 

-- V =O 
6 g 

3 

2 

0.2 0 .3 0 .4 0.5 0 .6 0.7 

B)T ) 

b) c) 0.7 

0.5 • • • 
• • • 

0.4 

c o.3 ~ 0.1 
~ ; 1. Cl::'.;:-
;l 0.2 ;l 

0.1 
• • • • 

0.0 • 0.01 
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.5 1.0 1.5 2 .0 2.5 3.0 3.5 

T(K) 1/T(K1
) 

Figure 8.10: a) Comparison of Hall resistance for device C67b at Vg = 

-0.143 V and O for two temperatures. At T=300 mK, a strong modulation is 

observed when a gate voltage is applied. At T =l.1 K (offset by +lkD), the 

difference has practically disappeared, but quantum Hall plateaux are still 

discernible. b) Temperature dependence of flRxy = Rxy - Rxy(Vg = 0) for 

device A77a at the plateau at B1_ ~ 0.45 T. An attempted fit of Eq. (3.1) 

shows very poor agreement. c) Same data as in b), but on logarithmic scale 

vs . 1/T. The T-dependence shows remarkable similarity to t he one of the 

longitudinal resistivity in the strongly localised regime under the gate (see 

Chapt. 6). 
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at high temperatures, followed by a flattening and weaker T-dependence at 
lowest temperatures. This observation further highlights the possible connec­
tion between the modification of Hall resistance and transport in the strongly 
localised 2DES under the gate. 

8.2.4 Discussion 

Komiyama et al. [120] studied transport in the QHE regime in the presence of 
a non-equilibrium population of edge states, i.e. a difference in the chemical 
potential between edge states. For a configuration as used here (i.e. a Hall bar 
with a potential barrier), with two edge states, they predicted a correction to 
the Hall resistance 

(8.1) 

The coefficients a, {3 and 'Y are defined as follows: a = (TlG -T2c) / (TlG + T2c), 
with Tic the transmission probability of the ith edge state across the potential 
barrier, is a measure of the non-equilibrium caused by the gate when the edge 
states travel along it . 'Y = (T1v -T2v )/(T1v + T2v ), with Tlv the transmission 
probability for the ith edge state of the contact into which the edge states 
are injected after travelling along the gate. Hence, 'Y is large for non-ideal 
contacts where there can be a difference between the transmission of edge 
states, but disappears in ideal contacts. Finally, {3 = exp(-L/l), with L the 
length between the gate and the voltage probes and l the equilibration length 
between edge states. 

This theory gives a possible approach for the explanation for the observation 
under the conditions that the transmission across the gate is not identical for all 
edge states, the voltage probe ohmics are not ideal and that the equilibration 
length between edge states is large compared to the distance between gate and 
voltage probe ohmics. 

The equilibration length in high mobility GaAs/ AlGaAs heterostructures 
was estimated as several hundred µm in Ref. [120], although they were in­
vestigating larger fields but also higher temperature's. In the devices used 
for here, the voltage probes were approximately 200 µm away from the gate, 
which should be well within the equilibration length. The devices were never 
illuminated, which could be a reason for non-ideal contacts. It is not clear in 
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detail, how the 2DES under the gate will influence the transmission rates for 
different edge states. However, it is quite likely that there will be some impact 
and that an interacting, or otherwise "interesting" 2DES will show a different 
behaviour than a simple non-interacting potential barrier. 

The theory of Komiyama et al. does not give a full explanation of the 
observed modulation of the Hall resistance. In particular it does not explain the 
alteration of the Hall resistance between the quantum Hall plateaux. However, 
it does present an interesting starting point. 

8.3 Common Origin? 

In this Chapter, the SdH-like oscillations and the modification of Hall resis­
tance have been discussed as completely independent phenomena. This is not 
necessarily the case. In fact, it is rather likely that they have a common ori­
gin, since both of them seem to be related to the quantum Hall effect, be it 
through Landau levels or, more specifically, edge states. For each of the ob­
servations, an idea was given for a possible explanation. It may be that one 
of these approaches could actually explain both observations, even though it 
is not immediately clear how. Another possibility is that both ideas could be 
combined into one theory, which is not that far fetched as both are related to 
the edge state picture of the quantum Hall effect in presence of a non-trivial 
potential barrier. In particular, they are both linked to the transmission of 
edge states across t his barrier. Of course, at this preliminary stage, it also 
cannot be ruled out that there is a completely different explanation for either 
or both of the observations. 



Chapter 9 

Conclusions and Outlook 

9.1 Conclusions 

This thesis presents, above all, an extensive study of transport on a mesoscopic 
length-scale in the low density regime of 2DES at varying disorder in modula­
tion doped GaAs/ AlGaAs heterostructures. The main focus is on the various 
aspects of magnetoresistance and temperature dependence of transport. 

While a better understanding of transport on a small length-scale in 2D, 
which had been surprisingly neglected in high mobility systems, would have 
been a valid incentive by itself, the primary motivation for this work was to 
study the influence of short-range disorder on 2DES while avoiding the impact 
of long-range charge inhomogeneities that occur at low electron densities on a 
macroscopic length-scale. 

Chapter 4 introduces a technique for measuring the electron density in meso­
scopic electron syste~s. It does not present much new physical insight , but is 
a prerequisite for a useful analysis of many of the other experiments. 

Chapter 8 describes two interesting observations that are closely related to 
the quantum Hall effect in the high density 2DEG on either side of the gate 
that defines the mesoscopic 2DES. At present, it is not entirely understood to 
what extent their origin is linked to the localised 2DES. 
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The main results are discussed in Chapters 5, 6 and 7. Each of them presents 
a fundamentally new observation, which has not been previously reported and 
was made possible due to the new approach used in experiments carried out 
for this thesis. 

Chapter 5 focuses on the low field magnetoresistance and finds evidence, 
that the average hopping distance of charge carriers equals the average electron­
electron separation. It also presents an universality and quantisation of the 
magnetoresistance prefactor. 

Chapter 6 presents, perhaps, the most far reaching observation: The sudden 
breakdown of the insulating transport behaviour below a certain temperature 
seems to contradict what was assumed to be known about the (putatively) 
strongly localised regime of 2DES and even raises questions regarding its sup­
posedly insulating ground state. 

Finally, chapter 7 shows a strongly enhanced resistivity at certain densi­
ties when a strong perpendicular magnetic field is applied. While the origin 
of these resistance oscillations is not very well understood, it is certainly an 
exciting observation that warrants further investigations. 

For all observations, possible scenarios were discussed, with the focus on 
interaction effects and a possible formation of an electron ( quantum) solid, 
which could nicely explain many of the results. However, due to the complexity 
of the system, I would like to point out that it is absolutely possible, that 
completely different interpretation might turn out to be true. 

Irrespective of the interpretation, I believe that the results presented in 
this thesis represent a significant contribution to the understanding of the na­
ture of transport and localisation in presence of disorder and electron-electron 
interactions in two-dimensional electron systems. 

9.2 Outlook 

The results in this thesis were achieved entirely through transport measure­
ments. There are still a few interesting further transport experiments that 
could be done, as discussed in Sect . 9.2.1 with some preliminary results. How­
ever, it seems likely that for really new further insight , one will have to move 
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on to different approaches. A few suggestions are given in Sect. 9.2.2. 

9.2.1 Further 'Iransport Experiments 

There are some very simple extensions to the measurements already done. 
One possibility would be a systematic investigation of the size of 2DES at 
which the interesting observations occur. On one hand, it is clear that they 
are absent in macroscopic devices with dimensions of hundreds of microns, 
but appear at dimensions of a few microns. However, intermediate sizes have 
not been investigated, which could reveal information about the length-scales 
involved. On the other hand, at even smaller dimensions, a transition to 
direct tunnelling across the gate is expected, which should show a qualitatively 
different behaviour. Devices with gate length as small as 100 nm have been 
fabricated during this PhD, but have not been measured. 

It would also be interesting to see if the metallic and saturated behaviour 
reported in Chapt. 6 persist to lower temperatures than those accessible in our 
cryogenic systems. Therefore, experiments in an ultra-cold systems would be 
desirable. Of course, one can never rigorously prove the existence of a metallic 
ground state by just measuring the temperature dependence of resistance to 
very low temperature, since an insulating behaviour could always set in at 
even lower T. Nevertheless, experiments reaching significantly less that 60 mK 
could shed further light on t he question if the drop in resistance is just a 
phenomenon appearing at an intermediate temperature range, or not. 

Furthermore, application of an in-plane magnetic field could reveal useful 
information. It has been shown that a perpendicular field can suppress the 
metallic phase (Chapt. 6) or induce resistance oscillations (Chapt. 7) . Trying 
to reproduce these observations with an in-plane field could give insight on the 
origin of these observations, e.g. if they are orbital, interference- or spin-effects. 

Hole Systems 

Some preliminary experiments were done with hole gases. Holes have a signifi­
cantly larger effective mass in GaAs than electrons (m"';jm; ~ 7). This means 
that at the same carrier density, the interaction parameter r 5 is much larger 
for holes than for electrons, and interaction effects are expected to be stronger 
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in hole systems. However, the main motivation for trying to reproduce the 
experiments from the electron systems with hole systems, was the possible 
universality in rs of the peak positions and periodicity of the oscillations dis­
cussed in Sect. 7.2. A comparison with hole systems could give further insight 
if there exists an universality in rs or n5 • 
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Figure 9.1: Resistance as a function of gate voltage at stepwise increasing 

perpendicular magnetic field (B ..1 = 0 - 12 T , 6-B ..1 = 1 T) in a beryllium 

doped hole gas. Some indications of magnetically induced resistance peaks are 

observed (arrows) , but a clear observation is hindered by the poor stability. 

T=300 mK, device A55a. 

Devices of ident ical geometry to those in electron systems were fabricated 
for beryllium 5-doped heterostructers with spacers 6sr= 20, 40 and 60 nm. How­
ever , they turned out to be very unstable, with very strong switching events as 
the gate voltage was swept, an example is shown in Fig. 9.1. The switching is 
most likely caused by rearrangements of charges in the dopant layer , possibly 
enhanced because the stable DX-centres cannot form in p-type devices. When 
applying a strong perpendicular magnetic field, some signs of peak formation 
were observed, marked by arrows in Fig. 9.1, which did not move with changing 
magnetic field. However , the overall instability of the device made it difficult to 
unambiguously identify the peaks. Furthermore, a density measurement with 
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the method described in Chapt. 4 was not possible, which is not surprising as 
t he large effective mass reduces the Landau level spacing and makes it harder 
to resolve the quantum Hall plateaux. Therefore, a determination of positions 
in ns of these peaks was not possible. 

Some devices with Si 5-doped hole systems, where a (311) oriented substrate 
was used in growth, were fabricated as well,but they were even less stable, and 
most likely overdoped. It would be interesting to see if silicon or carbon doped 
hole systems could be optimised to a satisfactory stability, but it was decided 
not to pursue this direction for the moment. 

Biased Cooldowns 

As mentioned briefly in Sects. 2.2.2 and 3.3.3, the remaining electrons in the 
dopant layer may play an important role in the experiments performed for this 
thesis. Correlation effects between electrons in the dopant layers have been 
predicted to reduce the long range disorder [25], which could be important for 
reducing the effect of long-range inhomogeneities of the 2DES. Monte Carlo 
calculations even predicted the formation of a Wigner-like crystal of the elec­
trons in the doping layer although without long-range order [121 , 122]. These 
calculations did not take DX-centres into account, which would reduce the 
probability of a long-range order because of their high freeze-out temperature. 
Nevertheless, if some kind of ordering was present in the dopant layer, t his 
could have a strong impact in the 2DES. In particular it could lead to com­
mensurability effects with a possible electron solid in the 2DES. In Sect. 7.4.2, 
this has been suggested as one possible explanation of the resistance oscilla­
tions discussed in Chapt. 7. 

A way of investigating the importance of the remaining electrons in the 
dopant layer would be to change the filling factor rJ = l - nd+ / n 5, which 
should change the degree of suppression of the long-range disorder as well 
as the length-scale of a putative ordering. It has been demonstrated that 
application of a gate bias on the topgate during the c_ooldown can change the 
filling factor with a negative bias reducing rJ [79]. 

An attempt to reproduce these experiments for mesoscopic device dimen­
sions was done with device A 78f, shown in Fig. 9. 2 ( unbiased cooldowns of this 
device are shown in Fig. 7.2) . A bias VB = - 1 V worked without problems, 
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Figure 9.2: Biased cooldown experiments with device A 78£. 

a) and b): Resistance oscillations in stepwise increasing perpendicular mag­

netic field. For cooldown bias VB = -1 V, r5 = 4 is indicated by an arrow. 

For VB ::; -2 V, a reliable density measurement was not possible. c) Repro­

ducibility gate sweeps at constant field B 1. = 0. Strong switching and an 

overall drift is observed, making any reasonable measurement impossible. 
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but only lead to a small change of the filling factor to rJ ~ 0.37, from rJ ~ 0.42 
at VB = 0. A peak at approximately r5 = 4 was still observed. At VB = -2 V 
(rJ ~ 0.32), som~ instabilities were observed (two shifts can be seen in Fig. 9.2 
b)) and an electron density measurement failed, making a comparison of peak 
positions impossible. At VB ::; - 3 V, the device became completely unstable, 
as shown in Fig. 9.2 c). 

It is not entirely clear what caused these problems, but they made a useful 
analysis of varying rJ impossible. It was decides not to cont inue t hese biased 
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cooldown experiments. 

9.2.2 Different Experimental Approaches 

Compressibility Measurements 

The compressibility, defined as K-1 = n;fJµ/ ons, gives direct information 
about the density of states at the chemical potential µ . It would be very in­
teresting to investigate the compressibility in mesoscopic devices as a function 
of electron density and compare it between metallic and saturated phase as 
discussed in Chapt. 6 or between peaks and troughs discussed in Chapt. 7. 

For such an investigation, a design would have to be found, where transport 
over mesoscopic dimensions and the compressibility could be measured in the 
same device. A possibility for measuring the local compressibility in a small 
area is to use the sensitivity of a single-electron transistor (SET) to potential 
changes in its vicinity, a technique which has been used previously [123, 124]. 
Since the SET would have to be fabricated on the surface of t he wafer, the 
mesoscopic 2DES could not be defined with a topgate anymore. A possible 
way around this problem would be to use a patterned backgate instead of 
the topgate. This would lead to a device equivalent to the ones used in the 
experiments described in this thesis, but with the surface left free for a SET. 

Imaging 

The sensitivity of SETs to variations in the electrical potential has also been 
applied for imaging, where an SET was fabricated on the tip of a scanning 
probe microscope (SPM) and used as an extremely sensitive electrometer [125-
127]. These experiments focused on the localised states in the quantum Hall 
regime, where some evidence of a charge ordering was reported. It suggests it ­
self that similar imaging could reveal important information about the nat ure 
of localisation in our devices. Again, it would be particularly interesting to see 
if there is a qualitative difference in the charge arrangement between differ­
ent behaviours of the temperature dependence of resistance ( Chapt. 6) or the 
magnetoresistance (Chapt. 7). In particular, one might be able to determine 
if these changes are caused by a change of behaviour of t he whole 2DES or in 
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some dominating path between the leads. 
The sample design would have to be similar to the one discussed above for 

the compressibility measurements, since those scanning probe measurement 
could, of course, not be done through a topgate. A patterned backgate would 
remove this problem. 

A quite different approach would be to apply a technique developed by 
Topinka et al. [128, 129], who measured the conductance of a quantum point 
contact (QPC) while raster scanning a negatively charged SPM tip in the leads 
to the QPC. As briefly discussed in Sect. 8.1.4, a strongly interacting potential 
barrier might be much more sensitive to modification at the Fermi energy in 
the leads, which could be caused by the charged SPM tip. It would, therefore, 
be interesting to see if the resistivity of the mesoscopic 2DES is sensitive to a 
SPM tip in the leads, and if so, how the sensitivity depends on the electron 
density. 

An advantage of this experiment is that it could be done with topgated 
devices used in this thesis, since, here, the scanning happens in the ungated 
part of the device. Therefore, the challenging task of fabricating patterned 
backgated devices could be avoided. 

Noise Measurements 

Shot noise arises from the quantisation of charge which results in small current 
fluctuations on a short time-scale. Measurements of this noise can reveal infor­
mation that is not available through simple conductance measurements [130]. 
It can determine the charge and statistics of the ( quasi-)particles relevant for 
transport and is generally more sensitive to electron-electron interactions than 
the average conductance. 

In the mesoscopic 2DES used in this thesis, noise measurements could reveal 
information on the nature of the charge carriers, which is of particular interest 
in view of the picture of quantum diffusion of defects intn?duced in Sect. 6.2.1. 
On the other hand, a possible correlated hopping of electrons would also be 
expected to have a strong impact on the noise. While the SET measurements 
proposed above require very low operating temperatures, noise ex:periments 
could also be done at relatively high temperatures T ;2'.: 1 K, which would 
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allow an investigation of the transition from activated to saturated/metallic 
transport observed around 1 K (Chapt. 6). Initial experiments could be done 
on a device design identical to the ones already used. 

Thermal Conductivity 

Another property that might reveal information about the 2DES additional to 
simple transport measurements is the thermal conductance. Topgated devices 
could be used for this, however some additional features would have to be 
fabricated. One could start from a design similar to the one used previously, 
but add a heater on one side of the gate and some kind of "thermometer" on 
both sides. The heater could, for example, be a relatively high resistance metal 
evaporated in a suitable pattern on the surface, which would be insulated from 
the 2DES. Application of a relatively large current would heat up the side of 
the device where the heater is placed. To measure the local temperature one 
could use QPCs, which have a strongly temperature dependent conductance 
in the regime near pinch-off and could be calibrated against the cryostat tem­
perature. The thermal conductance could then be determined as a function of 
gate voltage from the measured temperature gradient between the two sides 
of the gate. 

L 



Appendix A 

Sample List 

The following table contains a list of devices used in this thesis and their rel­
evant properties. 

• Wafer: The first letter in the wafer number determines the growth cham-
ber. 

• b5p: Spacer width between doping layer and 2DES. 

• dg: Total depth of the 2DES from the surface. 

• n5 : Electron density as cooled down in the dark, determined in wafer 
assessment on macroscopic devices. 

• µ: Mobility as cooled down in the dark, determined in wafer assessment 
on macroscopic devices. 

• n8: Doping concentrat ion. 

• L x W : Gate dimensions. 
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Device Wafer Osp(nm) dg (nm) n.~ (cm-2
) µ (cm2/Vs) 

A07a A2407 20 120 2.9x10 11 0.6x106 

A07b A2407 20 120 2.9x10 11 0.6x106 

A55a A2855 20 · 120 2.35X1011 0.23X106 

A77a A2677 40 90 l.7x10 11 0.97xl06 

A77b A2677 40 90 l.7Xl0 11 0.97X I 06 

A77Lc A2677 40 90 J.7xl0 11 0.97Xl06 

A78d A2678 40 290 2.lx1011 l.8xl 06 

A78e A2678 40 290 2.1x10 11 l.8Xl06 

A78f A2678 40 290 2.1 x10 11 J.8X 106 

C67a C2367 60 290 I.03x10 11 1.2x 106 

C67b C2367 60 290 J.03x)OII J.2x I 06 

T46a T546 80 300 0.8x10 11 0.9x106 

n6 (cm-2
) 

LxW 
(µm xµm) 

2.5X1012 2x8 

2.5x1012 3x8 

2.5x1012 4x8 

- 3x8 

- 3x8 

- 900xlOO 

2.5x10 12 1.5, 1, 0.5 
x8 

2.5xl012 2x8 

2.5x10 12 4x8 

0.7x1012 2, 1, 0.5 
x8 

0.7X 1012 3x8 

J.9xl0 12 3x8 

Description 

Si o-doped 20 electron system 
Fabricated by Dr. Arindam Ghosh 
Si o-doped 2D electron system 
Fabricated by Dr. Arindam Ghosh 
Beryllium o-doped 2D hole system 

Si bulk-doped 20 electron system 
18 3 · n6 =2xlO cm- over a range of 40 

nm 
Si bulk-doped 20 electron system 
n1, =2xl0 18cm-3 over a range of 40 
nm 
Si bulk-doped 20 electron system 
n,1=2x10 18cm-3 over a range of 40 
nm 
Si 6-doped 20 electron system 
Fabricated by Dr. Arindam Ghosh 
Si o-doped 2D electron system 
Fabricated by Dr. Arindam Ghosh 
Si a-doped 2D electron system 

Si 6-doped 2D electron system 

Si 6-doped 2D electron system 

Si o-doped 2D electron system 
Fabricated by Dr. Arindam Ghosh 
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Appendix B 

Abbreviations 

2D Two dimensions/ two-dimensional 
2DEG Two-dimensional electron gas 
2DES Two-dimensional electron system 
2DHG Two-dimensional hole gas 
AL Andreev and Lifshitz (Ref. [49]) 
CBT Coulomb blockade thermometer 
DOS Density of states 

ES Electron solid 

FL Fermi Liquid 

FN-QMC Fixed node quantum Monte Carlo 
FQHE Fractional quantum Hall effect 
GWF Guiding wave function 
IQHE Integer quantum Hall effect 
LL Landau level 

MBE Molecular beam epitaxy 
MIT Metal-insulator transition 
MOSFET Metaloxidesemiconductor field-effect transistor 
MSD Mean square deviation 

NNH Nearest-neighbour hopping 
QMC Quantum Monte Carlo 
QPC Quantum point contact 
QS Quantum solid 
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Appendix B. Abbreviations 

SB Subband 

SdH Shubnikov-de Haas 

SET Single-electron transistor 

SPM Scanning probe microscope 

TK Tripathi and Kenneth (Refs. [97, 99]) 
VRH Variable-range hopping 

WC Wigner crystal 

WG Wigner glass 
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