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Abstract:  9 

The World Bank reports that pavement networks carry more than 80% of a country’s total 10 

passenger-km and over 50% of freight ton-km, justifying the importance of efficiently 11 

maintaining pavements. Knowing the pavement condition is essential for efficiently deciding on 12 

maintenance programs. Current practice is predominantly manual with only 0.4% of inspections 13 

happening automatically. All methods in the literature aiming at automating condition 14 

assessment focus on two defects at most, or are too expensive for practical application. In this 15 

paper, we propose a low-cost method that automatically detects pavement defects simultaneously 16 

using parking camera video data. The types of defects addressed in this paper are two types of 17 

cracks, longitudinal and transverse, patches and potholes. The method uses the Semantic Texton 18 

Forests (STFs) algorithm as a supervised classifier on a calibrated region of interest (myROI), 19 

which is the area of the video frame depicting only the usable part of the pavement lane. It is 20 

validated using data collected from the local streets of Cambridge, UK. Based on the results of 21 

multiple experiments, the overall accuracy of the method is above 82%, with a precision of over 22 



91% for longitudinal cracks, over 81% for transverse cracks, over 88% for patches and over 76% 23 

for potholes. The duration for training and classifying spans from 25 minutes to 150 minutes, 24 

depending on the number of video frames used for each experiment. The contribution of this 25 

paper is dual: 1) an automated method for detecting several pavement defects at the same time, 26 

and 2) a method for calculating the region of interest within a video frame considering pavement 27 

manual guidelines.  28 
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INTRODUCTION 30 

The US Society of Civil Engineers and the UK Institution of Civil Engineers have each graded 31 

their country’s respective pavement infrastructure with a D, emphasizing the poor condition of 32 

existing pavements (ASCE 2013; ICE 2014). A survey held in the UK regarding the country’s 33 

infrastructure showed that 52% of UK businesses reported a deterioration of highways, and 77% 34 

expect the same trend for the near future (CBI and URS 2014). More than 85% of respondents 35 

believe that the bad quality of pavements is a consequence of the current maintenance 36 

procedures. A similar survey held two years earlier revealed that this is a concern for the 37 

citizens as well, as 43% identify the urgency of revising the currently-followed maintenance 38 

process (Audit Commission 2011).  39 

Pavement condition assessment is a prerequisite for efficiently designing, planning and 40 

deciding on maintenance programs. The initial requirements for an asset management system is 41 

to be aware of the existing assets, their status and the level of service they provide (NAMS 42 

Group 2006). The Department of Transport and Highways Agency in the UK report that current 43 

pavement condition data is insufficient and gaps exist in the collected information (National 44 

Audit Office 2014). Figure 1 shows a depiction of the current practice. The colored background 45 



boxes include the name of each step of the process. The white colored background boxes 46 

include the way that each method is performed, either automatically or manually. The steps of 47 

defect identification and assessment are mainly manual, however some road authorities own 48 

software for automatically detecting and assessing cracks. 49 

The aim of the process is to capture the longitudinal and transverse profiles of the 50 

pavement, the condition at its edges, and the texture of the surface. At first, inspectors are 51 

collecting raw data either automatically or manually. Automated data collection uses specialized 52 

vehicles that are mounted with laser scanners, pavement profilers, accelerometers, image and 53 

video cameras, and positioning systems (DfT 2011). Several US states own such vehicles for 54 

automatically detecting pavement data (Attoh-Okine and Adarkwa 2013; Liosatos 2013; Rami 55 

and Kim 2015; Richardson et al. 2015; Rick Miller 2015; Zhou et al. 2013). The number and 56 

type of sensors on those vehicles determine their purchase cost, which usually starts at 57 

approximately £500,000 (Werro 2013). The choice of sensors also drives the operational costs, 58 

which is between £20 and £40 per kilometer. Due to these high costs, the use of automated data 59 

collection is restricted to the primary pavement network and only once per year (MnDOT 2009).  60 

In the case of the UK, the primary road network constitutes almost 20% (major and ‘B’ 61 

roads correspond to 50,200 miles out of 245,800 (DfT 2015)) of the total pavement length.  62 

Inspectors are driving the primary network, for inspection purposes every week of the year. 63 

Hence, 52 times a year the primary network is inspected manually. In addition, automated 64 

inspection is applied on that part of the network only once a year. The above translates into 98% 65 

(52/53) of manual inspection and 2% (1/53) of automated inspection. As for the rest of the 66 

network, it is only inspected manually. So: a) Volume of manual inspection = 80% + 20%*98% 67 

= 99.6%, and b) Volume of automated inspection = 100 - 99.6 = 0.4% 68 



Accredited surveyors who either walk or drive (Dye Management Group, Inc 2015; 69 

PublicWorksTraining 2014; Rami and Kim 2015; UKPMS 2005) along the road perform the 70 

other 99.6% of inspections. Inspectors insert all gathered data into the road authority’s central 71 

database at the end of each inspection session. Such data includes images and descriptions of 72 

road defects encountered. “Before and after” images are required for repairs conducted on the 73 

spot along with a description of actions taken. The inspector is responsible for assigning a 74 

priority rating for repair based on the level of the defect’s severity, in case he/she cannot address 75 

the defect on the spot. Hence, the second and third steps of the assessment process happen at the 76 

same time when collecting data manually. Manual visual surveys are time consuming, laborious 77 

and inefficient considering the amount of network that inspectors need to cover, in conjunction 78 

with the multiple tasks that he/she has to perform. 79 

Technicians perform the second and third steps of the process for data collected using 80 

automated methods. Multiple screens are used to project video, images, and other sensor data in 81 

order for technicians to identify the defective areas and assess their level of severity (FHWA 82 

2003; McTavish 2012; MnDOT 2009; Zhou et al. 2013). Image and camera data is mainly used 83 

as visual aid material to assist in the defect identification and assessment. The subjectivity of the 84 

technician inevitably affects the assessment results based on the level of his/her experience, 85 

even if well-written and reliable manuals are utilized during the assessment (Bianchini et al. 86 

2010). It is also nearly impossible to analyze the vast amounts of collected data, so only 10% is 87 

typically post-processed (MnDOT 2003). 88 

We conclude that the current pavement condition monitoring process is laborious, time 89 

consuming and subjective based on the limitations identified above. Hence, the aim of this paper 90 

is to present a method that is free of such limitations. The contributions of this paper are: 1) an 91 



automated method for simultaneously detecting longitudinal and transverse cracks, potholes and 92 

patches, and 2) a method for calculating the region of interest within a video frame taking into 93 

consideration the sizes of defects that inspectors are looking for according to pavement 94 

inspection manuals. The following section presents the current state of research for automated 95 

defect detection. The same section also discusses methods that are useful to this paper’s research 96 

objective. Section 3 details the proposed method for automatically detecting pavement defects 97 

simultaneously. Section 4 discusses the implementation process and the results from the 98 

validation of the proposed method. Finally, section 5 includes the conclusions derived from this 99 

piece of research along with a discussion regarding future work. 100 

BACKGROUND 101 

Research on pavement defect detection 102 

Research has focused on automating the detection of pavement defects, in order to overcome the 103 

limitations of the current practice. Figure 2 depicts the relevant current research in a three-104 

dimensional graph and table 1 provides a list of all relevant references. The papers found in the 105 

literature are categorized using three criteria: 1) type of defect (x-axis), 2) type of data used for 106 

analysis (y-axis), and 3) level of detail reached (z-axis). The subcategories of the z-axis are 107 

presence, detection, and measurement. Presence is the sub-category that includes methods, 108 

which answer the simple question of whether a defect exists in the given data or not. Detection 109 

is the sub-category of methods that identify the exact position of the defect within the data. 110 

Finally, measurement includes methods that are capable of providing the spatial measurements 111 

of the detected defect, such as the width and depth of a pothole.  112 



Many methods in the literature utilize 2D images as their input. A few have focused on 113 

differentiating images that depict pavement defects from those that do not. Several methods that 114 

focus on cracks have been proposed in the literature. Some have focused on offline or real-time 115 

crack detection. Efforts have been made for classifying the different crack types, such as 116 

alligator, longitudinal or transverse. Methods were also developed for estimating the depth of a 117 

pavement crack, and for automatically sealing them. A comparison study concluded that none 118 

are comprehensive and robust. 2D image-based methods that focus on other defects, such as 119 

patches and potholes also exist in the literature.  120 

Other methods based on 2D images use stereo vision to reconstruct the captured scene. 121 

Researchers initially tested this idea in the area of pavement reconstruction, and used it later to 122 

detect highway assets (Balali and Golparvar-Fard 2015; Uslu et al. 2011) such as guardrails and 123 

pavement markings. This method, although accurate, does not concentrate on pavement defects. 124 

Some researchers have used 3D reconstruction for understanding the pavement surface’s texture 125 

and for measuring the depth of potholes to calculate the necessary filling material. Others have 126 

applied it for the purpose of detecting and classifying cracks or for calculating the crack depth 127 

(Yu et al. 2007).  128 

Spatial data methods utilize range sensors to detect elevation defects such as rutting and 129 

shoving. These defects are not detectable in standalone images. The advantages of those methods 130 

are: 1) they are not disruptive, since the vehicle that carries the necessary equipment and 131 

performs the data collection can travel up to 100km/hr, and 2) they are insensitive to lighting 132 

conditions, which allows their application at any time of the day. These sensors are quite 133 

expensive though, which restricts their extensive/regular use in practice. 134 



Methods that use vehicle dynamic sensor data aim at either understanding the roughness 135 

of the pavement surface or estimating the pavement profile. An accelerometer is such a sensor 136 

and its advantage is the small storage it requires for saving the collected data, which allows easy 137 

real-time processing. However, it is necessary to calibrate the vehicle with the sensors so the 138 

results are possible to compare.  139 

In summary, no method addresses all, or even most, pavement defects simultaneously, as 140 

shown in the research cube by the empty “all defects” column. Such methods are necessary in 141 

order to address the limitations of current practice. Methods that focus on one or a few defects 142 

are appealing, but still require the manual detection of the rest. In other words, unless a method 143 

that automatically detects all types of defects at the same time is used, inspectors would need to 144 

assess the network manually. Having inspectors perform their job for some defects, while other 145 

are detected automatically invalidates the practical use of the method for cost reasons. Hence, 146 

current practice limitations remain. 147 

Machine learning for object detection 148 

Machine learning multi-classifier algorithms enable the simultaneous segmentation and 149 

recognition of several objects in images (Shotton et al. 2009; Uijlings et al. 2010; Zhang 2000). 150 

There are three different categories of such algorithms, and those are supervised, semi-151 

supervised and unsupervised. Supervised are the algorithms that use multiple manually annotated 152 

data/images to train themselves how to detect certain patterns. Training images typically depict 153 

several poses of the object(s) in interest, to cover all possible appearances. Such algorithms 154 

create a codebook of visual words during training, and each word corresponds to a region of the 155 

image. This is achieved with the extraction of feature descriptors using algorithms such as  SIFT 156 



(Scale Invariant Feature Transform) (Lowe 2004) and SURF (Speed-Up Robust Features) (Bay 157 

et al. 2008).  158 

During road condition assessment the aim is to identify road defects and distinguish them 159 

from each other. Thus, both the input and the output are known in advance. Road data is easy to 160 

find and collect, so there is no need to engage unsupervised training, which is usually meant for 161 

cases where data is insufficient or difficult to obtain. Another parameter of categorizing learning 162 

algorithms is by considering the way they are operating. This is with respect to whether they 163 

make a generalization based on the training data and build a rule for classifying new data, or 164 

whether they use all of the training data for every classification decision. The former is the so-165 

called eager learning, whereas the latter is named lazy learning. Lazy learning techniques require 166 

a large storage space and are quite slow while classifying data, and thus are not selected for the 167 

purpose of this paper. 168 

Artificial Neural Networks (ANNs) are a widely used family of classification algorithms 169 

(Zhang 2000) and are based on the notion of perceptrons, consisting of a large number of units 170 

(neurons) connected in different patterns. Researchers have used ANN methods for road 171 

condition related problems such as crack detection (Wu et al. 2016; Xu et al. 2008), defects and 172 

road roughness reconstruction (Ngwangwa et al. 2010) and road profile estimation (Solhmirzaei 173 

et al. 2012). The main disadvantages of the ANN methods are: 1) they are quite slow and require 174 

much time for training, 2) designing the hidden layer and its nodes is difficult because an 175 

underestimate in the number of neurons can lead to poor results (Kotsiantis et al. 2007), and 3) 176 

they underperform in noisy data. 177 

Support Vector Machines (SVM) is another supervised classification method. The main 178 

idea of SVMs is to construct a set of hyperplanes for classifying data based on their distance 179 



from them (Wu et al. 2008). Usually, a range of potential settings are tested and cross validated 180 

to identify the best option in each problem. For that reason, SVMs have low speed in the training 181 

phase (Kotsiantis et al. 2007). On the other hand, the complexity of the model is unaffected from 182 

the number of features selected for the training phase and this constitutes a benefit of the method. 183 

They are very popular for binary classifications. However, they do not seem suitable for the 184 

classification of multiple defects. 185 

Superpixel algorithms are quite popular recently within the computer vision community 186 

for image segmentation applications. Such algorithms segment images into groups of pixels that 187 

are meaningful atomic regions. Many approaches exist in the literature (Felzenszwalb and 188 

Huttenlocher 2004; Levinshtein et al. 2009; Veksler et al. 2010), each one with its own 189 

advantages and limitations, and the characteristics of each application define which one is the 190 

best to be applied. However, some considerations/limitations that affect the quality of a 191 

superpixel algorithm are the following: 1) many parameters need to be tuned, which can result in 192 

lost time and poor performance, 2) providing the option to specify the amount of superpixels, 193 

which isn’t a characteristic of all such algorithms, and 3) providing the ability to control the 194 

compactness (compactness refers to a regular shape and size of the superpixels along with 195 

smooth boundaries (Schick et al. 2012)) of superpixels, which is desirable but not always 196 

possible (Achanta et al. 2012).  197 

Semantic Texton Forests (STFs) is a supervised learning algorithm (Johnson and Shotton 198 

2010) which uses kernel features instead of feature points during classifier training. STFs consist 199 

of randomized decision forests, which are classifiers formed by several decision trees (Geurts et 200 

al. 2006). Decision trees are trained using the bag of semantic textons that is created during 201 

training. At that phase, features are extracted using a squared patch of pixels with predefined 202 



dimensions. Additionally, randomly selected subsets of features are utilized to assign a class 203 

distribution and a binary function at each tree node. The class distribution represents the 204 

probability of the tree node. The binary function is formed using the raw pixel values. The 205 

advantage of this tactic is that it ensures greater speed and avoids over-fitting (Johnson and 206 

Shotton 2010). 207 

In general, there is no best learning technique (Kotsiantis et al. 2007; Wu et al. 2008). 208 

The No Free Lunch Theorems of Optimization (Wolpert and Macready 1997) show that a unique 209 

optimal method is impossible and the best technique always depends on the nature of the 210 

problem. Accuracy is a characteristic that is highly desirable for the aim of this paper. 211 

From image to world coordinates 212 

One of the types of data that inspectors collect when inspecting the pavement network is 213 

video of the lane and its surroundings. For those cases, it is useful to know the world coordinates 214 

of the objects depicted. This is achievable by projecting the objects in the video frame from the 215 

camera’s optical plane to the pavement plane. This process is known as Inverse Perspective 216 

Mapping (IPM) and it has seen application in pavement lane extraction (Aly 2008; Tapia-217 

Espinoza and Torres-Torriti 2013). IPM uses the pinhole camera model and the following 218 

assumptions in order to be constructed:  219 

a) The world coordinate system is fixed to the vehicle; {𝑥𝑤, 𝑦𝑤, 𝑧𝑤}, and  220 

b) The camera is positioned at the rear of the vehicle (in the middle) at a specific height ℎ from 221 

the ground and is tilted towards the pavement plane forming an angle 𝜃0 with an axis parallel to 222 

𝑥𝑤going through the focal point. 223 

Figure 3 depicts the IPM model and equations (1) and (2) (Tapia-Espinoza and Torres-224 

Torriti 2013) show how to calculate the x and y coordinates of a point P in the world using its 225 



position within the image. The image plane is assumed to be of size 𝑚 𝑥 𝑛 pixels.  The point p 226 

can be represented with the coordinate pair (𝑢, 𝑣) when considering the reference system of the 227 

camera, where 𝑢 and 𝑣  are the horizontal and vertical axes of the image sensor. It can also be 228 

represented with the pair (𝑟, 𝑐) of the standard image row-column. 229 

In conclusion, based on the state of research, although methods that automate the 230 

detection of defects do exist, those are restricted to just one or a couple of defects at a time. 231 

Hence, the necessity of applying laborious and time-consuming manual detection methods 232 

remain. Another limitation of current methods is that some require expensive sensors for data 233 

collection, which makes them unattractive for regular usage. On the other hand, methods that use 234 

cheap sensors, such as accelerometers, are restricted to the lowest level of detail (presence) 235 

which is not enough for practitioners. Given the limitations of the current practice and state of 236 

research, we consider the following question: How can we efficiently detect most pavement 237 

defects simultaneously? Our objective for this paper is to propose such an approach.  238 

PROPOSED SOLUTION 239 

There are three main parts of the research question that the authors are concentrating their focus. 240 

One is the key word “efficiently”, next is “most pavement defects”, and last is “simultaneously”. 241 

In order to meet the objective of proposing an efficient solution, the authors aim to propose an 242 

approach that is both low-cost and automated. Such a method could not only be appealing to 243 

practitioners, but also easily and widely adopted. For that reason, the proposed method (figure 4 244 

depicts a diagram of the overall vision of this research) utilizes parking cameras. 245 

The idea of using such a sensor originates from the motivation of transforming everyday 246 

road users into ubiquitous pavement condition reporters. Parking cameras already exist in many 247 

cars, and they are gradually becoming a standardized feature, so there is no additional equipment 248 



cost required. It is also worth mentioning that all cars in the USA are mandated to have such a 249 

sensor installed by 2018 (NHTSA 2014).  250 

One camera is not enough for capturing all pavement defects, and those related to the z-251 

axis of the road (e.g. depressions and rutting) are particularly susceptible to this limitation. The 252 

proposed solution utilizes an additional sensor to account for this limitation, allowing detection 253 

of most defect types. Specifically, a vehicle dynamic sensor is used, which is capable of 254 

capturing defects such as pavement elevations and depressions. Additionally, a GPS device 255 

assists in the geo-tagging of all collected data in order to provide the location information of 256 

detected defects. The suggested sensors are low-cost, providing a significantly cheaper 257 

automated way of collecting data in comparison to current practice. Finally, after the detection of 258 

defects, the solution includes the automatic assessment of their severity. Both defect detection 259 

and assessment are proposed to be fully automated in contradiction to the mainly-manual current 260 

practice. The proposed system does not require any lightning support since it is designed for use 261 

under daytime fair weather conditions, which is consistent with the current practice. 262 

This paper’s scope is limited to the detection and classification of surface defects, 263 

defining how parking camera feeds are used in support of the overall solution. The black-dotted 264 

rectangle in Figure 4 provides a visual indication of how this paper’s scope fits within the 265 

framework of the larger solution. For that step of the overall vision, we hypothesize that applying 266 

a supervised learning algorithm can detect several defects occurring in video frames in a more 267 

efficient way than standalone algorithms. In particular, we propose the use of Semantic Texton 268 

Forests (Johnson and Shotton 2010). The scope is restricted to the following pavement defects: 269 

longitudinal and transverse cracks, patches and potholes. However, this method can address 270 

additional defects (if trained accordingly) to cover them all when combined with vehicle 271 



dynamic sensor data. The method proposed in this paper automates the first and second steps of 272 

the pavement condition assessment which can be seen in figure 1.  273 

RESEARCH METHODOLOGY 274 

Pavement defects’ multi-classifier 275 

The flowchart of figure 5 depicts the research activities followed for testing the 276 

hypothesis of this paper. We initially collect pavement video data, and then process each frame 277 

separately to prepare the ground truth. This step is performed manually and it is necessary for the 278 

following step of the methodology. Ground truth video frame data include the following 279 

metadata: 1) whether they are defective, 2) the type(s) of defects they include, and 3) the location 280 

of each defect within the frame (coordinates of a polygon surrounding the defect). Once a 281 

defective frame is prepared, we save two copies for training and testing purposes. One copy is 282 

the plain image of the video frame and the other is a blank copy of the frame showing the 283 

designated defective areas. The part of the frame that corresponds to areas other than defects is 284 

marked as void. The first and second columns of figure 9 are examples of such copies. A specific 285 

color represents each defect (see table 2).  286 

The parameters that affect the performance of the method are set before the training step. 287 

During training, the algorithm “learns” how to detect each defect. Video frames are randomly 288 

selected from the previously prepared ground truth data. Only a portion of the ground truth data 289 

is used in this step and the rest is used in the following one. At this stage, the plain image copy 290 

facilitates the identification of the characteristic features of each defect, and the copy marked 291 

with the designated defective areas directs the algorithm to search in the right part of the image. 292 

STFs perform segmentation based on bag of semantic textons that groups decision trees and act 293 

directly on the video frame pixels. Textons and priors are used as features for labeling pixels.  294 



After the training stage, we apply the trained STFs to the rest of the video frames (the 295 

ones that have not been used in the previous stage) in order to test their performance. Both 296 

training and testing are fully automated and don’t need any human intervention. The outcome of 297 

the process is segmented versions of the testing video frames produced by the algorithm. Last, 298 

we calculate the statistics by comparing the results of the STFs with the ground truth to measure 299 

the applicability of the algorithm and compare the combinations of parameters that affect its 300 

performance. 301 

Finding the Region of Interest 302 

Parking cameras have wide angles of view, usually greater than 90 degrees, both horizontally 303 

and vertically. For this reason, each video frame depicts more than just the travelled pavement 304 

lane. Surroundings such as the sky, following vehicles, trees, etc. are also depicted (see example 305 

in figure 6). 306 

Since this study focuses on detecting specific types of pavement defects, the useful part 307 

of the video frame is that which depicts the pavement lane only. We are naming this area myROI 308 

(my Region of Interest), an example of which can be seen in figure 6. In order to calculate this 309 

region, the following are used: 1) Equations of IPM, 2) Camera’s position and specifications 310 

(image analysis and lens’ angles of view), 3) Pavement lane width, which is the other component 311 

for calculating the side boundaries of myROI, and 4) Inspection guidelines, which uses the sizes 312 

of defects that inspectors are looking for to define the upper bound of myROI. 313 

First, the image coordinates are mapped to world coordinates using the equations of IPM. 314 

The characteristics that are used at this step are the camera’s position and specifications. Then 315 

the real world distance that is represented by consecutive video frame rows is calculated. This 316 

information is then used, along with the size of defects that need to be reported based on 317 



pavement defect manuals and the width of the road that is being inspected, in order to calculate 318 

the vertices of myROI.  319 

IMPLEMENTATION & RESULTS 320 

Experimental setup 321 

We collected data using two cameras: an HP Elite Webcam, chosen to simulate a low-322 

resolution parking camera, and a Point Grey Blackfly 05S2M-CS that meets the standards of 323 

parking cameras available in the market. Research on commercially available parking cameras 324 

and car manufacturers’ websites highlighted the specifications required to simulate existing 325 

parking camera models. Parking cameras typically have low resolution (maximum 0.4MP) and 326 

wide angles of view. Compared to the HP Elite, the Blackfly has higher resolution and a wider 327 

horizontal angle of view. Table 3 includes both cameras’ specifications. We mounted the 328 

cameras on the test vehicle in a position consistent with car manufacturer specifications; that is 329 

on the rear of the vehicle above or below the sign plate (see figure 7). Some vehicles have the 330 

parking camera close to the trunk handle. However, we chose to position it below the sign plate. 331 

The collected videos were saved locally to the laptop used in the field. The ground truth was 332 

prepared afterwards in the office. 333 

We used four metrics to measure the performance of the algorithm. Two metrics, overall 334 

and average accuracies, correspond to the overall performance of STFs, and the other two, 335 

average precision and area under curve, correspond to the performance of STFs in respect to 336 

each defect. The total proportion of correctly detected pixels corresponds to the overall accuracy 337 

(OA). Average accuracy (AA) refers to the average proportion of correctly detected pixels per 338 

defect. Average precision (AP) is the fraction of correctly detected pixels (True Positive, TP) 339 

over the sum of correctly and incorrectly detected pixels (False Positive, FP). The area formed 340 



when we plot TP versus FP represents the area under the curve (AuC). Good performance 341 

corresponds to high AuC.  342 

Many parameters affect the performance of STFs, so several parameter combinations 343 

were tested. Specifically, the parameters changed at each test were the patch pixel size and the 344 

maximum depth that a tree can reach during the training of the algorithm. Tables 4 - 7 345 

summarize the parameter combinations of each test, along with the produced results.  346 

We performed the first round of tests (table 4) using the data collected with the HP 347 

camera. The ground truth was marked using four categories (one for each defect). In the second 348 

round of tests (table 5), which was performed using the same dataset, an additional category 349 

called “healthy pavement” was added in the ground truth data. The third round of tests (table 6) 350 

was performed using the data collected with the PG camera and the ground truth was prepared 351 

using 5 categories (4 defects and healthy pavement). Finally, we performed the last round of tests 352 

(table 7) using the data collected with the PG camera, and considering the calculated myROI. 353 

myROI was calculated using MATLAB (see figure 8). The parameters were: 1) Camera 354 

resolution - 800 x 500 pixels. As shown in figure 7, we did not position the camera in the middle 355 

of the car, but slightly left from its center (~5cm). 2) Lane width - 2.4m, and 3) Detection of 356 

transverse cracks greater than 3.175mm. All copies of video frames (both plain image and image 357 

with designated defective areas) produced during the ground truth preparation of the previous 358 

round of tests were cropped using the above calculated myROI and used for this round of tests. 359 

In summary, the control variables tested through our experiments were: 1) Image color: 360 

color or monochrome, 2) Number of categories in ground truth data: 4 or 5, 3) STFs parameters: 361 

Patch pixel size and maximum tree depth, and 4) Use of myROI.  362 



We collected data twice from the local streets of Cambridge, UK. Data collection was 363 

performed during daytime and the weather was sunny, cloudy or slightly rainy. The vehicle’s 364 

speed was 10-15km/hr. Unexpected vibrations of the vehicle were minimal due to the low speed 365 

and did not affect the quality of the data. We saved the video data locally and post-processed it 366 

using a desktop computer (Intel Core i7 @ 3.4 GHz, 8GB Ram). The method was implemented 367 

using C# in the Visual Studio .NET framework. Right-click options and keyboard selection 368 

functions were created in order to facilitate the step of preparing the ground truth and improve 369 

the efficiency of the process. A pop-up menu was created for inserting the values of the 370 

parameters that were tested. 371 

Results 372 

In the first round of experiments, the OA ranged between 0.69 and 0.79, and AA ranged 373 

from 0.55 to 0.73. In the second round of experiments, where the additional category of healthy 374 

pavement was used in the preparation of the ground truth data, the OA increased to between 0.86 375 

and 0.89. AA still remained quite low, ranging from 0.56 to 0.67. The computational cost for 376 

both rounds of experiments varied from 23 to 35 minutes. The algorithm performed better in the 377 

third round of experiments, where we used the data collected from the PG camera. OA was 378 

above 0.74 in all tests and the AA never fell below 0.7. In the final round of experiments, we 379 

considered myROI and the results were further improved. OA ranged between 0.80 and 0.88 and 380 

AA ranged between 0.71 and 0.8. The third column of figure 9 shows some examples of the 381 

derived results. The first row corresponds to an example from the first round of experiments, the 382 

second row to the second round of experiments etc. The computational cost for the third and 383 

fourth rounds of experiments varied from 120 to 150 minutes. The third and fourth round 384 

experiments were performed 5 times each in order to ensure repeatability due to the fact that 385 



video frames are randomly selected both in training and in testing. The results shown in tables 6-386 

7 constitute the average values and variance of the results produced from all the runs of the 387 

experiments.  388 

Tables 4-7 also show the performance of each defect individually on each test run. The 389 

best results are highlighted in each table. Several successful combinations can accurately detect 390 

longitudinal cracks. However, the best combinations are: 1) monochrome videos - 5 categories - 391 

patch pixel size of 11, and max tree depths 12 & 14, and 2) monochrome videos - 5 categories - 392 

use of myROI - patch pixel size of 9, and max tree depths 10 & 15. For transverse cracks the best 393 

combination is: monochrome videos - 5 categories - patch pixel size of 13, and max tree depths 394 

of 10 & 14. For patches, the best combination is: monochrome videos - 5 categories - use of 395 

myROI - patch pixel size of 11, and max tree depths of 10 & 14. Finally, the best combinations 396 

for detecting potholes are:  1) colored videos - 5 categories - patch pixel size of 15, and max tree 397 

depths of 10 & 14, and 2) colored videos - 5 categories - patch pixel size of 13, and max tree 398 

depths of 12 & 16. However, the following combination is worth mentioning due to its high 399 

performance: monochrome videos - 5 categories - use of myROI - patch pixel size of 15, and 400 

max tree depths of 10 & 14. 401 

Tables 8-11 show the confusion matrix for segmentation of each defect. The confusion 402 

matrices correspond to the best performing combination of parameters based on the OA and AA. 403 

For the first round of experiments the average accuracy for region segmentation is 59%. In the 404 

second round of experiment, the average accuracy increases to 60%. In the third round of 405 

experiment the average region segmentation accuracy is 72%, and in the final round of 406 

experiments it is 74%. 407 

CONCLUSIONS & FUTURE WORK 408 



The current practice in pavement condition monitoring suffers from limitations such as 409 

subjectivity and time consumption. Multiple research efforts have focused on automating this 410 

task. However, all proposed methods focus on only one or a couple of defects. Even if 411 

automated methods exist for detecting some defects, the remaining defect types need to be 412 

detected manually, and the limitations and issues of the current practice remain. 413 

In this paper, we tested the application of Semantic Texton Forests, a supervised learning 414 

algorithm, to detect several pavement defects in video frames. STFs was selected due to the 415 

multiple features it uses for segmentation, which are texture, layout and context. Superpixel 416 

algorithms were rejected because of the existing concerns regarding controlling the amount of 417 

superpixels and their compactness. Each pavement defect has its own size, which varies 418 

significantly, so it would have been very challenging or even impossible to decide on a 419 

“universal” superpixel shape and/or size to ensure compactness.  420 

The main challenge was the preparation of the ground truth which was manual. 421 

However, the several options built in the platform for this step made it easy and quick. The idea 422 

is to test the usage of parking cameras for potentially crowdsourcing the task of pavement 423 

monitoring to everyday pavement users. We used a camera that follows vehicle manufacturer 424 

standards for parking cameras in the experiments. Several combinations of parameters, such as 425 

the patch pixel size and the max tree depth, were tested. Those parameters affect the 426 

performance of the algorithm. The built-in pop up menu for inserting the parameters affected the 427 

applicability of the method positively, since it provides a friendly user interface. Additionally, 428 

we applied the theory of Inverse Perspective Mapping for isolating the pavement lane in the 429 

video frame and restricting the application of the algorithm in that area only, while considering 430 

the size of each defect that inspectors are looking for. 431 



The initial results of the experiments with the HP camera were quite low. This is 432 

probably due to the low resolution of the camera and the restricted information that such a 433 

camera can capture. Additionally, in that round of experiments the detection of the transverse 434 

crack was very low. This is explained by the smaller sample that was available in the data in 435 

comparison to the other defects. This shows that more samples are necessary for the algorithm to 436 

“learn” the object.  437 

The additional information of healthy pavement in the ground truth data resulted in an 438 

improvement of the performance. This shows that the use of more categories is beneficial to the 439 

improvement of the algorithm’s performance. The performance of the algorithm was even better 440 

on the data collected with the PG camera, which follows parking camera standards. This is due to 441 

the higher camera resolution. Those data also allowed the creation of a larger database. The 442 

database with the HP camera consists of 230 video frames, whereas the second one includes 546 443 

video frames. Finally, we derived even better results when we considered myROI. This is 444 

because the algorithm was restricted to the area were defects are expected to be found. In regards 445 

to each defect detection individually, different combinations of the control variables are 446 

achieving the best performing results.  447 

The method was slower in the experiments using the PG camera data. The difference can 448 

be explained due to the following reasons: 1) the database created with the PG camera was 449 

almost double the size of that created with the HP camera, and 2) the image resolution of the 450 

second database is higher than the first, which means that the total number of pixels is much 451 

bigger. The performance gain can be viewed in the results that the method produced. In the 452 

initial experiments the overall accuracy varies from 69% to 79%, whereas in the final 453 

experiments it improved up to 85%. The same holds for the segmentation of each region in the 454 



video frame, which has an accuracy of 59% in the first round of experiments and increases to 455 

74% in the last one. The initial dataset proved the practicability of low-resolution cameras for the 456 

automation pavement defects. The second dataset and the produced results show the applicability 457 

of the method. 458 

The results show that the method performs well under fair weather. STFs uses texture as 459 

one of the features for segmentation and this assists in the differentiation amongst the different 460 

defects. For example potholes are coarser than patches and the can be detected even in direct 461 

sunlight. Intensity values are also incorporated in the segmentation. Even if asphalt is already 462 

dark, the defects’ intensities are usually darker and the difference assists the detection as well. 463 

Also, the results show that the method performs well when data is collected in low speeds. 464 

Hence, the concept of using parking cameras for detecting pavement defects is proved. In order 465 

though for this framework to be applied commercially, it should be tested in higher speeds and 466 

that consists part of our future work.    467 

To conclude, STFs perform well for the detection of surface pavement defects. However, 468 

other defects such as rutting, depressions and elevations also need to be incorporated for a fully 469 

automated pavement condition monitoring method. These defects are related to the z-axis of the 470 

road profile and could be detected in vehicle dynamic sensor data as suggested in the proposed 471 

solution.  The type and number of the sensors needed to capture this type of information needs to 472 

be investigated. The same holds for the positioning of those sensors on or within the vehicle. The 473 

measurement of the detected defects is also necessary for their evaluation. Although the scope of 474 

this paper is restricted to the level of detection, it could be extended to the next level of detail. 475 

However, it would be necessary to eliminate the distortion that wide angles are causing. The 476 

method is still practical, since it can direct inspectors to the spots where defects should be further 477 



investigated and save the time of searching for them. Another interesting research problem is the 478 

transfer of the collected data from the ‘inspection’ vehicle(s) to the pavement maintenance 479 

authority. Hence, our future work will be directed towards these additional problems.  480 
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Table 2 Pavement defect and its representative color in the ground truth data 779 

Type of defect Color 

Longitudinal crack Red 

Transverse crack Blue 

Patch Yellow 

Pothole 

Healthy pavement 

Pink 

Grey 

Void Black 

 780 
Table 3 Specifications of cameras used for collecting data 781 

 HP Elite Autofocus 

Webcam 

Point Grey Blackfly 

05S2M-CS 

Image resolution 640 x 480 800 x 500 

Horizontal angle of view ~50
ο
 133

o
 

Frame rate per second 30 50 

Color RGB Monochrome 

 782 

Table 4 Tested parameters and results of STFs (data captured by HP camera using 4 categories) 783 

  
  

Test 

1 

Test 

2 

Test 

3 

Test 

4 

Test 

5 

Test 

6 

Test 

7 

Test 

8 

 

Box size 15 11 13 9 17 15 15 15 

  

Max tree 

depth 

10 & 

14 

10 & 

14 

10 & 

14 

10 & 

14 

10 & 

14 

11 & 

13 

12 & 

16 

15 & 

16 

 

Ov.Acc. 0.78 0.69 0.73 0.78 0.76 0.78 0.78 0.79 

  Av.Acc 0.64 0.55 0.73 0.62 0.60 0.60 0.64 0.65 

Longitudinal 

crack 

Av.Pr. 0.95 0.95 0.95 0.97 0.96 0.96 0.90 0.96 

AuC 0.86 0.80 0.80 0.90 0.90 0.90 0.90 0.89 

Transverse 

crack 

Av.Pr. 0.20 0.04 0.01 0.28 0.02 0.27 0.35 0.01 

AuC 0.85 0.76 0.26 0.73 0.68 0.93 0.75 0.29 

Patch 
Av.Pr. 0.75 0.86 0.68 0.81 0.80 0.69 0.62 0.84 

AuC 0.88 0.91 0.81 0.92 0.88 0.86 0.80 0.92 

Pothole 
Av.Pr. 0.89 0.99 0.84 0.90 0.90 0.82 0.81 0.92 

AuC 0.96 0.99 0.95 0.96 0.96 0.90 0.96 0.96 

 784 
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 786 
 787 
 788 
 789 
 790 
 791 



Table 5 Tested parameters and results of STFs (data captured by HP camera using 5 categories) 792 

  
  

Test 

1 

Test 

2 

Test 

3 

Test 

4 

Test 

5 

Test 

6 

Test 

7 

Test 

8 

 

Box size 15 11 13 9 17 13 13 13 

  

Max tree 

depth 

10 & 

14 

10 & 

14 

10 & 

14 

10 & 

14 

10 & 

14 

11 & 

13 

12 & 

16 

15 & 

16 

 

Ov.Acc. 0.84 0.87 0.89 0.87 0.86 0.89 0.86 0.89 

  Av.Acc 0.64 0.65 0.56 0.60 0.60 0.60 0.58 0.57 

Longitudinal 

crack 

Av.Pr. 0.95 0.95 0.92 0.97 0.96 0.96 0.96 0.96 

AuC 1.00 0.76 0.85 0.56 0.87 0.85 0.75 0.62 

Transverse 

crack 

Av.Pr. 1.00 0.77 0.77 0.53 0.02 0.78 0.04 0.53 

AuC 1.00 0.97 0.97 0.96 0.19 0.98 0.69 0.87 

Patch 
Av.Pr. 0.75 0.86 0.80 0.75 0.69 0.79 0.72 0.63 

AuC 0.85 0.93 0.89 0.82 0.85 0.89 0.83 0.81 

Pothole 
Av.Pr. 1.00 0.76 0.98 0.96 0.92 0.99 1.00 0.93 

AuC 1.00 0.94 0.99 0.99 0.96 0.99 1.00 0.96 

Healthy 

pavement 

Av.Pr. 0.97 0.99 0.98 0.98 0.98 0.98 0.96 0.97 

AuC 0.07 0.60 0.21 0.19 0.38 0.43 0.10 0.32 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

 800 

 801 

 802 



Table 6 Tested parameters and results of STFs (data captured by PG camera using 5 categories) 803 

    
  

Test 

1 

Test 

2 

Test 

3 

Test 

4 

Test 

5 

Test 

6 

Test 

7 

Test 

8 

  

Box size 15 11 9 13 17 11 11 11 

    

Max tree 

depth 

10 & 

14 

10 & 

14 

10 & 

14 

10 & 

14 

10 & 

14 

11 & 

13 

12 & 

16 

15 & 

16 

A
v
er

ag
e 

v
al

u
es

 

 

Ov.Acc. 0.83 0.84 0.82 0.82 0.82 0.82 0.84 0.86 

  Av.Acc 0.74 0.76 0.74 0.72 0.76 0.74 0.74 0.72 

Longitudinal 

crack 

Av.Pr. 0.93 0.94 0.94 0.92 0.93 0.95 0.94 0.92 

AuC 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.96 

Transverse 

crack 

Av.Pr. 0.84 0.73 0.83 0.86 0.81 0.83 0.85 0.85 

AuC 0.95 0.94 0.97 0.93 0.94 0.93 0.94 0.94 

Patch 
Av.Pr. 0.96 0.94 0.94 0.95 0.96 0.95 0.96 0.96 

AuC 0.94 0.92 0.93 0.93 0.92 0.91 0.95 0.95 

Pothole 
Av.Pr. 0.84 0.82 0.82 0.77 0.79 0.81 0.81 0.76 

AuC 0.93 0.92 0.93 0.92 0.90 0.91 0.95 0.89 

Healthy 

pavement 

Av.Pr. 0.97 0.97 0.97 0.98 0.98 0.92 0.98 0.96 

AuC 0.65 0.62 0.60 0.69 0.65 0.66 0.70 0.55 

V
ar

ia
n
ce

 

  Ov.Acc. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Av.Acc. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Longitudinal 

crack 

Av.Pr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AuC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Transverse 

crack 

Av.Pr. 0.00 0.01 0.01 0.01 0.02 0.02 0.01 0.01 

AuC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Patch 
Av.Pr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AuC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pothole 
Av.Pr. 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 

AuC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Healthy 

pavement 

Av.Pr. 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

AuC 0.02 0.01 0.03 0.01 0.01 0.03 0.02 0.02 
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Table 7 Tested parameters and results of STFs (data captured by PG camera using 5 categories 812 
and myROI) 813 

    
  

Test 

1 

Test 

2 

Test 

3 

Test 

4 

Test 

5 

Test 

6 

Test 

7 

Test 

8 

  

Box size 15 13 11 17 9 9 9 9 

    

Max tree 

depth 

10 & 

14 

10 & 

14 

10 & 

14 

10 & 

14 

10 & 

14 

11 & 

13 

10 & 

15 

12 & 

14 

A
v
er

ag
e 

v
al

u
es

 

 

Ov.Acc. 0.83 0.83 0.83 0.83 0.83 0.83 0.85 0.84 

  Av.Acc 0.75 0.73 0.74 0.74 0.74 0.75 0.74 0.73 

Longitudinal 

crack 

Av.Pr. 0.92 0.91 0.92 0.90 0.92 0.91 0.92 0.93 

AuC 0.95 0.94 0.96 0.94 0.96 0.96 0.96 0.96 

Transverse 

crack 

Av.Pr. 0.89 0.92 0.83 0.83 0.81 0.82 0.83 0.87 

AuC 0.95 0.98 0.94 0.95 0.93 0.89 0.95 0.95 

Patch 
Av.Pr. 0.88 0.90 0.88 0.88 0.91 0.91 0.89 0.88 

AuC 0.89 0.89 0.88 0.87 0.90 0.90 0.88 0.87 

Pothole 
Av.Pr. 0.71 0.71 0.66 0.66 0.62 0.62 0.68 0.56 

AuC 0.90 0.92 0.83 0.93 0.90 0.89 0.93 0.87 

Healthy 

pavement 

Av.Pr. 0.96 0.87 0.96 0.98 0.96 0.96 0.97 0.97 

AuC 0.67 0.62 0.59 0.66 0.54 0.48 0.62 0.66 

V
ar

ia
n
ce

 

  Ov.Acc. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
Av.Acc. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Longitudinal 

crack 

Av.Pr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AuC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Transverse 

crack 

Av.Pr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AuC 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

Patch 
Av.Pr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AuC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pothole 
Av.Pr. 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.01 

AuC 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 

Healthy 

pavement 

Av.Pr. 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 

AuC 0.01 0.03 0.04 0.01 0.03 0.03 0.02 0.01 

 814 

 815 

 816 

 817 



Table 8 Confusion matrix for 2D segmentation of defects (data captured with HP camera using 4 818 
categories - results from test 1) 819 

 
Longitudinal 

crack 

Transverse 

crack 
Patch Pothole 

 Longitudinal 

crack 
0.80 0.00 0.17 0.00 

Transverse 

crack 
0.67 0.02 0.12 0.00 

Patch 0.21 0.00 0.78 0.00 

Pothole 0.06 0.00 0.20 0.74 

 820 

Table 9 Confusion matrix for 2D segmentation of defects (data captured with HP camera using 5 821 
categories - results from test 6) 822 

 
Longitudinal 

crack 

Transverse 

crack 
Patch Pothole 

Healthy 

pavement 

 Longitudinal 

crack 
0.28 0.01 0.05 0.00 0.66 

Transverse 

crack 
0.00 0.71 0.00 0.05 0.24 

Patch 0.14 0.00 0.44 0.03 0.39 

Pothole 0.06 0.00 0.06 0.66 0.23 

Healthy 

pavement 
0.04 0.01 0.03 0.00 0.92 

 823 

Table 10 Confusion matrix for 2D segmentation of defects (data captured with PG camera using 824 
5 categories - results from test 8) 825 

 
Longitudinal 

crack 

Transverse 

crack 
Patch Pothole 

Healthy 

pavement 

 Longitudinal 

crack 
0.69 0.01 0.01 0.00 0.29 

Transverse 

crack 
0.02 0.63 0.01 0.00 0.34 

Patch 0.02 0.01 0.61 0.00 0.36 

Pothole 0.06 0.00 0.03 0.78 0.13 

Healthy 

pavement 
0.03 0.02 0.05 0.00 0.91 

 826 



Table 11 Confusion matrix for 2D segmentation of defects (data captured with PG camera using 827 
5 categories and myROI - results from test 7) 828 

 
Longitudinal 

crack 

Transverse 

crack 
Patch Pothole 

Healthy 

pavement 

 Longitudinal 

crack 
0.75 0.01 0.02 0.00 0.22 

Transverse 

crack 
0.02 0.63 0.01 0.00 0.34 

Patch 0.02 0.01 0.63 0.00 0.34 

Pothole 0.05 0.00 0.04 0.80 0.11 

Healthy 

pavement 
0.02 0.02 0.07 0.00 0.89 

 829 


