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1 Introduction

The strong cosmic censorship conjecture [1] asserts that, in some physically relevant class

of initial data for Einstein’s equation (e.g. smooth, complete, asymptotically flat), the

maximal Cauchy development is, generically, inextendible. In other words, classical physics

is predictable from the initial data. The Reissner-Nordström and Kerr solutions of the

vacuum Einstein equation (with vanishing cosmological constant Λ) admit Cauchy horizons.
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Consistency with the conjecture requires that such a Cauchy horizon is non-generic: it is

expected that, if the initial data is perturbed, then generically the resulting perturbed

spacetime will not admit a Cauchy horizon [2–5].

Making this conjecture precise is surprisingly subtle.1 Various arguments indicate that,

when the initial data is perturbed, the spacetime metric (and other fields) can be extended

continuously across a Cauchy horizon [7–10]. For the Kerr solution, this has been proved

recently [11]. So the “C0 formulation” of the strong cosmic censorship conjecture (where

“inextendible” means “inextendible with continuous metric”) is false. However, it has also

been argued that, generically, curvature invariants diverge at the Cauchy horizon, so the

extended spacetime cannot be C2 there [5]. Hence the C2 formulation of strong cosmic

censorship appears to be true.2 This is not the end of the story because the total tidal

distortion experienced by an observer crossing the Cauchy horizon can remain finite, so the

divergence in curvature might not be strong enough to destroy a macroscopic observer [8].

Therefore demanding a C2 metric appears to be too strong a requirement.

Ultimately, the question of whether or not an observer can cross the Cauchy horizon

depends on the equations of motion for the matter that the observer is made of. And of

course the observer will have an effect on the geometry determined by the Einstein equation.

This motivates formulating the strong cosmic censorship conjecture as the statement that

the maximal Cauchy development should be inextendible as a solution of the equations

of motion. Since the equations of motion are second order, one might think this implies

that the fields should be C2. However, one can still make sense of the equations of motion

with lower smoothness than this by considering weak solutions.3 Weak solutions have

important physical applications e.g. they describe shocks in a compressible perfect fluid.

For the vacuum Einstein equation, a weak solution must have locally square integrable

Christoffel symbols in some chart. This leads to Christodoulou’s formulation [13] of the

strong cosmic censorship conjecture, that, generically the maximal Cauchy development is

intextendible as a spacetime with locally square integrable Christoffel symbols. If this is

correct then, generically, one cannot extend beyond the Cauchy horizon consistently with

the classical equation of motion.

A popular toy model for studying strong cosmic censorship is a linear massless scalar

field. In this case, the analogue of the Christodoulou formulation of strong cosmic cen-

sorship is that, for generic smooth initial data, at the Cauchy horizon the scalar field will

not belong to the Sobolev space H1
loc of functions that are locally square integrable with

a locally square integrable gradient.4 More informally, the energy of the scalar field will

diverge at the Cauchy horizon. Here “energy” refers to the energy on a spacelike surface

1See ref. [6] for a more detailed discussion.
2This formulation of strong cosmic censorship has been proved for spherically symmetric solutions of

Einstein-Maxwell theory (with Λ = 0) coupled to a massless scalar field [12].
3Given a system of (quasilinear) second order partial differential equations, multiply each equation by

a smooth test function of compact support and integrate over spacetime, integrating by parts to eliminate

second derivatives of the fields. The fields constitute a weak solution if they satisfy this set of equations for

arbitrary test functions.
4A function is “locally square integrable” if it is square integrable when multipled by any smooth test

function of compact support.
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intersecting the Cauchy horizon, according to an observer with velocity normal to the sur-

face. This linear version of the Christodoulou formulation of the strong cosmic censorship

conjecture has been proved to be true for Reissner-Nordström [14] and Kerr [15] black holes

with Λ = 0.

The instability of the Cauchy horizon arises from a blue-shifting of perturbations en-

tering the black hole at late time. It was observed long ago that this effect is weaker for

Λ > 0 because there is a competing red-shifting of late time perturbations since such per-

turbations can disperse by falling across the cosmological horizon.5 This led to the claim

that the C2 version of strong cosmic censorship is violated for near-extremal Reissner-

Nordström-de Sitter (RNdS) [16] or Kerr-de Sitter (Kerr-dS) [17] black holes. However,

subsequent work [18] argued that this conclusion is invalid because it neglects backscatter-

ing of outgoing radiation just inside the event horizon. It was argued that, in the presence

of such outgoing radiation, the Cauchy horizon instability is still strong enough to ensure

that the C2 formulation of strong cosmic censorship is respected.6 Nevertheless, it has

been conjectured that the Christodoulou formulation would be violated for near-extremal

RNdS and Kerr-dS black holes [6]. As we have discussed above, this formulation seems

more relevant than the C2 formulation.

Interest in this topic has been revived by recent work of Cardoso et al. [19]. This

work considered linear massless scalar field perturbations of a RNdS black hole. It was

found that, for a near-extremal black hole, such perturbations have finite energy at the

Cauchy horizon and therefore violate the toy model of strong cosmic censorship discussed

above. Going beyond the toy model, one can consider the backreaction of the scalar field

on the geometry using nonlinear results of refs. [20–22]. Cardoso et al. argued that, at

the nonlinear level, such perturbations would respect the C2 formulation of strong cosmic

censorship but, for a near-extremal black hole, the Christodoulou formulation would be

violated, in agreement with the conjecture of ref. [6].

This raises the question of whether the same worrying behaviour is exhibited in the

more physical case of Kerr-dS black holes. Surprisingly, the answer appears to be negative:

ref. [23] argued that the Christodoulou formulation of strong cosmic censorship is respected

by gravitational (or massless scalar field) perturbations of such black holes, even close to

extremality. Thus the evidence suggests that, for Λ > 0, the Christodoulou formulation

of strong cosmic censorship is respected by the vacuum Einstein equation but not by the

Einstein-Maxwell-massless scalar field equations!7

Our discussion so far has concerned only perturbations arising from smooth initial data.

Very recently, Dafermos and Shlapentokh-Rothman (DSR) [25] have suggested a way of

rescuing strong cosmic censorship with Λ > 0, namely to consider initial perturbations

5For Λ < 0 one would expect the Cauchy horizon instability to be stronger than for Λ = 0 because

perturbations outside a black hole decay very slowly. It has been suggested that the C0 formulation of

strong cosmic censorship might be valid for Λ < 0 [11].
6There is a problem with this claim which we will discuss below.
7For massless scalar field perturbations, it has been argued that a near-extremal Kerr-Newman-dS black

hole respects strong cosmic censorship provided that it rotates sufficiently rapidly [24]. The latter condition

cannot be relaxed because the zero rotation limit gives RNdS, for which strong cosmic censorship is violated.
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which are not smooth. As discussed above, the equations of motion can be formulated

even with low differentiability. For linear massless scalar field perturbations of RNdS,

DSR proved that, generically, the solution at the Cauchy horizon is less regular (in the

sense of Sobolev spaces) than the initial data. Now there will be some minimum level of

regularity which is acceptable, either physically or mathematically, e.g. for finiteness of

energy or (in the nonlinear context) for local well-posedness of the initial value problem.

The DSR result suggests a “rough” (i.e. non-smooth) formulation of the strong cosmic

censorship conjecture: if one has an initial perturbation with the minimum acceptable

level of regularity then, generically, the perturbation at the Cauchy horizon will not have

this minimum acceptable regularity [25].

A lack of smoothness of the initial perturbation was already present, although not

noticed, in the earlier work of ref. [18]. As we will show in section 2, the argument of

ref. [18] overlooks a subtlety which implies that this argument only works for initial data

that is not C1 at the event horizon. Thus the work of ref. [18] does not establish that the

C2 formulation of strong cosmic censorship is respected, because the initial perturbation

does not belong to C2. Instead, as we will explain, the argument of ref. [18] is evidence in

favour of the rough version of strong cosmic censorship proposed by DSR.

In this paper, we will hammer a few more nails into the coffin of the smooth versions of

strong cosmic censorship for RNdS. We will study linearized electromagnetic and gravita-

tional perturbations of a RNdS black hole. Our results assume that the perturbation arises

from smooth initial data. We will show that, near extremality, Christodoulou’s formula-

tion of strong cosmic censorship is violated by such perturbations. This is analogous to

the massless scalar field results of ref. [19]. However, in contrast with that case, our results

show that, in pure Einstein-Maxwell theory, the C2 version of strong cosmic censorship is

also violated near extremality. In fact, generic perturbations arising from smooth initial

data can be arbitrarily smooth at the Cauchy horizon. More precisely, if one desires that ev-

ery perturbation arising from smooth initial data is Cr at the Cauchy horizon then this can

be achieved by taking the black hole to be close enough to extremality and large enough.

Hence, in pure Einstein-Maxwell theory with Λ > 0, not only are the Christodoulou and

C2 formulations of strong cosmic censorship violated (for smooth initial data), but so is

the Cr formulation for any r ≥ 2!

This paper is organized as follows. In section 2 we review the RNdS solution and

discuss the arguments of refs. [16, 18]. We will explain the connection between strong cos-

mic censorship and quasinormal modes of the RNdS solution. In sections 3–6 we discuss

linearized electromagnetic and gravitational perturbations of RNdS. We will study these

perturbations using the Kodama-Ishisbashi (KI) formalism [26]. In section 3 we deter-

mine the condition for a linearized gravitoelectromagnetic perturbation to be extendible

across the Cauchy horizon as a weak solution of the equations of motion. In section 4

we give the KI master equations and boundary conditions that we later solve analytically

and numerically. We also show that vector-type and scalar-type perturbations in RNdS

are isospectral, i.e. they have the same frequency spectrum. In section 5, we show that

RNdS gravitoelectromagnetic quasinormal modes fall into three familes, as in the case of

the quasinormal modes of a scalar field discussed in [19]. For all of them, there are regimes
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in the parameter space where we can derive some analytical approximations. We com-

pare them with the exact numerical data and this proves valuable to identify and classify

the quasinormal mode families. Finally, in section 6 we present our main results for the

spectral gap of gravitational and electromagnetic perturbations. Section 7 contains further

discussion of the implications of our results.

2 Background material

2.1 The Reissner-Nordström de Sitter solution

Consider Einstein-Maxwell theory with positive cosmological constant Λ. The action is

S ∝
∫
d4x
√
−g
(
R− 2Λ− F 2

)
where R is the Ricci scalar of the metric g and F = dA is

the Maxwell field strength associated to the potential 1-form A. We define the de Sitter

radius L by

Λ =
3

L2
. (2.1)

In static coordinates (t, r, θ, φ), the Reissner-Nordström de Sitter (RNdS) solution with

mass and charge parameters M and Q is

ds2 = −f dt2 +
dr2

f
+ r2dΩ2

2 , F = E0 dt ∧ dr (2.2)

with dΩ2
2 being the line element of a unit radius S2 (parametrized by θ and φ) and

f(r) = 1− r2

L2
− 2M

r
+
Q2

r2
, E0(r) =

Q

r2
. (2.3)

For an appropriate range of parameters the function f has 3 positive roots r− ≤ r+ ≤ rc
corresponding to the Cauchy horizon CH+, event horizon H+

R and cosmological horizon

H+
C respectively. We will denote the (positive) surface gravities associated to each of these

three horizons as κ−, κ+ and κc, respectively. For any non-extremal RNdS black hole it

can be shown that [18]

κ− > κ+ . (2.4)

The extremal configuration occurs when κ+ and κ− vanish. This happens when Q = Qext

where

Qext = r+

√
2y+ + 1√

3y2
+ + 2y+ + 1

, with y+ =
r+

rc
. (2.5)

When presenting many of our results and associated plots we will parametrize the RNdS

solution using the dimensionless parameters Q/Qext and y+.

The causal structure of a non-extremal RNdS black hole is shown in figure 1. Region

I is the region with r+ < r < rc between the event horizon and cosmological horizon, i.e.

the black hole exterior. Region II is the black hole interior, where r− < r < r+.

In region I we define the tortoise coordinate r∗ by

dr∗ =
dr

f
(2.6)
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Figure 1. Penrose diagram for Reissner-Nordström de Sitter. Region I is the black hole exterior

and region II the interior. The future event horizon is H+
R, the future cosmological horizon is H+

C ,

and CH+
L,R are the future Cauchy horizon. Σ is a Cauchy surface for regions I and II.

and we fix the constant of integration by imposing r∗ = 0 at r = (r+ + rc)/2. We then

define Eddington-Finkelstein coordinates in region I by u = t − r∗ and v = t + r∗. In

ingoing Eddington-Finkelstein coordinates (v, r, θ, φ) the metric takes the form

ds2 = −fdv2 + 2dvdr + r2dΩ2
2 . (2.7)

This metric can be analytically extended into region II so these coordinates cover regions

I and II of figure 1. We will also make use of Kruskal coordinates near the event horizon.

These are defined in region I by

U+ = −e−κ+u , V+ = eκ+v , (2.8)

and these coordinates also allow the metric to be analytically extended into region II (where

U+ > 0, V+ > 0) as well as two further regions not shown in figure 1. The future event

horizon H+
R is the surface U+ = 0. In region II, we have V+ = eκ+v and we define the

coordinate u in this region by

U+ = +e−κ+u . (2.9)

Note that u→ +∞ as we approach H+
R in either region I or region II. In region II we define

t and r∗ by u = t − r∗ and v = t + r∗. The coordinate r∗ ranges from −∞ at the event

horizons H+
L and H+

R to +∞ at the Cauchy horizons CH+
L and CH+

R (see figure 1).

In region II, the ingoing Eddington-Finkelstein coordinates are smooth at the “left”

component CH+
L of the Cauchy horizon. We will be interested in the “right” component

of the Cauchy horizon CH+
R. To introduce coordinates regular there, we use outgoing

– 6 –
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Eddington-Finkelstein coordinates (u, r, θ, φ). The metric is

ds2 = −fdu2 − 2dudr + r2dΩ2
2 . (2.10)

The Cauchy horizon CH+
R is the surface r = r− in these coordinates.

In region II, we define Kruskal coordinates near the Cauchy horizon as

U− = −eκ−u , V− = −e−κ−v , (2.11)

The Cauchy horizon CH+
R is the surface V− = 0 in these coordinates.

Finally, in region I, we define Kruskal coordinates at the cosmological horizon by

Uc = eκcu , Vc = −e−κcv . (2.12)

The future cosmological horizon H+
C is the surface Vc = 0.

2.2 The work of Moss et al.

Strong cosmic censorship for RNdS black holes was first studied by Moss and collaborators

in a series of papers. In this section we will review the arguments of Moss et al. presented in

refs. [16, 18, 27]. The analysis of [16] concluded that strong cosmic censorship is violated by

some RNdS black holes. However, this conclusion was modified in refs. [18, 27], resulting in

the revised conclusion of ref. [18] that in fact (the C2 version of) strong cosmic censorship

is never violated by RNdS black holes. We will explain why this latter conclusion is valid

only if one allows non-smooth initial data.

We will consider perturbations by a scalar field Φ although the results of Moss et al.

apply also to the case of coupled electromagnetic and gravitational perturbations, which

we will study later. One can prescribe initial data for the scalar field on the surface Σ of

figure 1 since this is a Cauchy surface for regions I and II. Equivalently, one can prescribe

(characteristic) initial data for the scalar field on the null surface H+
L ∪H− ∪H−c . We will

follow the latter approach. Given generic initial data for the scalar field, we want to know

how the field behaves at the Cauchy horizon CH+
R.

This problem was first investigated by Mellor and Moss (MM) [16]. Their results

(rederived below) indicate that the scalar field will fail to be C1 at the Cauchy horizon if

there exists a sufficiently slowly decaying quasinormal mode. More precisely, let α be the

spectral gap, i.e. the distance from the real axis in frequency space to the lowest (slowest

decaying) quasinormal frequency. Define

β =
α

κ−
. (2.13)

MM showed that if β < 1 then the scalar field fails to be C1 at CH+
R. When gravitational

backreaction is included, the blow-up of the derivatives of Φ at CH+
R is expected to cause a

blow up of curvature. Thus if β < 1 for all black holes then the C2 version of strong cosmic

censorship is expected to hold. However, by studying quasinormal modes, MM argued that

RNdS black holes with |Q| ≈ M have β > 1, so the scalar field is C1 at CH+
R, which is

evidence for a violation of the C2 version of strong cosmic censorship.

– 7 –
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MM modified this claim in ref. [27]. They were motivated by earlier work on a toy

model (null dust) [28] which suggested that the analysis of ref. [16] missed an important

effect arising from late-time ingoing radiation propagating along the cosmological horizon

H+
c . MM argued that, in the presence of such radiation, the scalar field will fail to be

C1 at CH+
R if β′ < 1 where β′ = min(α, κc)/κ−. Subsequently, Brady, Moss and Myers

(BMM) [18] argued that one must also include the effect of scattering of outgoing radiation

propagating near H+
R and in this case the scalar field will fail to be C1 at CH+

R if β′′ < 1

where β′′ = min(α, κ+, κc)/κ−. In view of (2.4), this gives β′′ < 1 for any non-extremal

RNdS black hole and so BMM concluded that the C2 version of strong cosmic censorship

is always respected.

We will show that the arguments of refs. [18, 27] are valid only for initial data which

is not smooth, in fact not even C1, at, respectively, the future cosmological horizon H+
C

or future event horizon H+
R. Hence this work cannot be regarded as evidence in favour of

the C2 version of strong cosmic censorship because the initial data is not in C2. However,

we will show that these arguments can be reinterpreted as evidence in favour of the rough

version of strong cosmic censorship proposed in ref. [25]. If one insists on smooth initial

data then the original conclusion of MM is still valid: it is simply the quasinormal modes

which determine whether or not strong cosmic censorship (in either the C2 or Christodoulou

formulation) is violated.

We will consider solutions which can be written as superpositions of mode solutions.

A mode solution has the separable form

Φ =
1

r
e−iωtR(r)Y`m(θ, φ) , (2.14)

where Y`m is a spherical harmonic. Substituting this into the wave equation or Klein

Gordon equation (if the field is massive) one finds that the function R satisfies an equation

of the form

− d2R

dr2
∗

+ V`(r)R = ω2R , (2.15)

where the potential V`(r) is independent of ω and vanishes exponentially fast as a function

of r∗ as r∗ → ±∞ in either region I or II.

We will start by considering solutions in region II. For real ω, by reformulating (2.15)

as an integral equation, one can define two linearly independent solutions with the following

behaviour as r∗ → −∞ in region II [4, 16, 25, 29]:8

Rout,+ ∼ eiωr∗ , Rin,+ ∼ e−iωr∗ . (2.16)

Rout,+ gives a scalar field solution Φ smooth on H+
L and Rin,+ gives a solution smooth on

H+
R (see figure 1). Similarly as r∗ →∞ we can define two linearly independent solutions by

Rout,− ∼ eiωr∗ , Rin,− ∼ e−iωr∗ , (2.17)

8We use the notation of ref. [25] although our mode functions differ from theirs by a factor of r. For us,

Rout,+ ∼ eiωr∗ means Rout,+ = eiωr∗R̂out,+ where R̂out,+ is a real analytic function of r for r− < r < rc
with R̂out,+(r+) = 1.

– 8 –
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and these give scalar field solutions that are smooth at CH+
R and CH+

L , respectively. We

can now write

Rout,+ = A(ω)Rout,− + B(ω)Rin,− , (2.18a)

Rin,+ = Ã(ω)Rin,− + B̃(ω)Rout,− , (2.18b)

where A and B are the transmission and reflection coefficients for fixed frequency scattering

of waves propagating out from H+
L and Ã, B̃ are the transmission and reflection coefficients

for scattering of waves propagating in from H+
R.

In region II, initial data can be specified on the characteristic hypersurface H+
L ∪H

+
R.

We assume that the data on H+
L is a wavepacket with Fourier transform Z(ω):

Φ|H+
L

=

∫
dωe−iωuZ(ω)Y`m(θ, φ) , (2.19)

and the data on H+
R is a wavepacket with Fourier transform Z̃(ω):

Φ|H+
R

=

∫
dωe−iωvZ̃(ω)Y`m(θ, φ) . (2.20)

It follows that the solution in region II is

Φ =

∫
dωe−iωt

[
Z(ω)Rout,+(ω, r) + Z̃(ω)Rin,+(ω, r)

]
Y`m(θ, φ)

= Φout + Φin (2.21)

where

Φout ≡
∫
dωe−iωt

[
Z(ω)A(ω) + Z̃(ω)B̃(ω)

]
Rout,−(ω, r)Y`m(θ, φ) , (2.22a)

Φin ≡
∫
dωe−iωt

[
Z(ω)B(ω) + Z̃(ω)Ã(ω)

]
Rin,−(ω, r)Y`m(θ, φ) . (2.22b)

These are, respectively, the parts of Φ that are outgoing and ingoing near the Cauchy

horizon. The outgoing part is smooth at CH+
R and the ingoing part is smooth at CH+

L . We

are interested in how smooth the ingoing part is at CH+
R where r∗ →∞ and we have

Φin ≈
∫
dω e−iωv

[
Z(ω)B(ω) + Z̃(ω)Ã(ω)

]
Y`m(θ, φ) (2.23)

and hence, taking a derivative w.r.t. the Kruskal coordinate V− that is smooth at CH+
R,

∂V−Φin ≈ eκ−v
∫
dωe−iωvF(ω)Y`m(θ, φ) (2.24)

where

F(ω) = −iω
[
Z(ω)B(ω) + Z̃(ω)Ã(ω)

]
. (2.25)

We now want to examine whether ∂V−Φ diverges at CH+
R, where v → ∞. To do this we

need to determine whether or not the integral decays faster than e−κ−v as v → ∞. To

– 9 –
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determine the decay of the integral, we can deform the contour of integration into a line

of constant Im(ω) in the lower half complex ω plane. How far we can deform the contour

depends on the analyticity properties of the quantity F(ω), which we will now investigate,

following [4, 16, 29].

First, to calculate B and Ã we proceed as follows. For functions f(r∗) and g(r∗) the

Wronskian is (a prime denotes a derivative w.r.t. r∗)

W [f, g] = f ′g − fg′ , (2.26)

and this is constant (in r) if f, g are solutions of (2.15). We now have

Ã(ω) =
W [Rin,+, Rout,−]

W [Rin,−, Rout,−]
= −W [Rin,+, Rout,−]

2iω
, (2.27)

where the latter expression follows from evaluating the Wronskian in the denominator at

r∗ →∞. Similarly,

B(ω) =
W [Rout,+, Rout,−]

W [Rin,−, Rout,−]
= −W [Rout,+, Rout,−]

2iω
. (2.28)

The analyticity properties of the solutions of the radial equation have been determined in

refs. [4, 25, 29]. The result is that Rin,+(ω, r) can be analytically continued to the complex

ω plane, except for simple poles at negative integer multiples of iκ+. Similarly, Rout,+ has

simple poles at positive integer multiples of iκ+ and Rout,− has simple poles at negative

integer multiples of iκ−. Using (2.4), it follows that, in the lower half-plane, the first pole

of Ã is at −iκ+ and the first pole of B is at −iκ−.

Consider first the case in which the wavepackets onH+
L andH+

R are compactly supported

in u and v respectively. Then Z(ω) and Z̃(ω) are entire functions. Using (2.4) it then

follows that we can deform our contour of integration to a line of constant Im(ω) in the

lower half-plane, until we hit a pole in Ã(ω) at ω = −iκ+. Now, if the wavepacket on

H+
R is generic then Z̃(−iκ+) 6= 0 and so this pole will also be a pole of F(ω) with residue

proportional to Z̃(−iκ+). Hence

∂V−Φin ∝ e(κ−−κ+)vZ̃(−iκ+) ∝ Z̃(−iκ+)(−V−)κ+/κ−−1 . (2.29)

Using (2.4), the above quantity diverges at CH+
R where v → ∞. Hence, for generic com-

pactly supported smooth initial data prescribed on H+
L ∪ H

+
R the solution will not be C1

at CH+
R, in apparent support of strong cosmic censorship.

It turns out that this argument is too quick because, in the problem of interest, we

are not free to prescribe the initial data on H+
R. Instead, this data is determined by the

solution outside the black hole, i.e. in region I. We will now review the argument of ref. [16]

that shows that in fact Z̃(−iκ+) vanishes, invalidating the above argument. This analysis

will reveal instead that the question of strong cosmic censorship depends on quasinormal

modes of the black hole.

– 10 –



J
H
E
P
1
0
(
2
0
1
8
)
0
0
1

First we need to define the mode functions in region I. We define two linearly indepen-

dent solutions Rin,+ and Rout,+ of equation (2.15) using exactly the same conditions (2.16)

as before except that now these conditions are being applied in region I instead of region

II. We define a second pair of linearly independent solutions Rin,c and Rout,c in region I in

terms of their behaviour at the cosmological horizon r∗ →∞

Rout,c ∼ eiωr∗ , Rin,c ∼ e−iωr∗ . (2.30)

We can expand Rin,+ in terms of these solutions as

Rin,+ =
1

T (ω)
Rin,c +

R(ω)

T (ω)
Rout,c . (2.31)

Here, T and R are the transmission and reflection coefficients for scattering of waves

incident from H−c . Similarly, we can write

Rout,c =
1

T̃ (ω)
Rout,+ +

R̃(ω)

T̃ (ω)
Rin,+ , (2.32)

where T̃ and R̃ are the transmission and reflection coefficients for waves progating out

of H−.

In region I, initial data can be specified on the characteristic hypersurface H− ∪ H−c .

We assume that the data on H− is a wavepacket with Fourier transform X(ω):

Φ|H− =

∫
dωe−iωuX(ω)Y`m(θ, φ) (2.33)

and the data on H−c is a wavepacket with Fourier transform X̃(ω):

Φ|H−
c

=

∫
dωe−iωvX̃(ω)Y`m(θ, φ) . (2.34)

It follows that the solution in region I is

Φ =

∫
dωe−iωt

[
X(ω)T̃ (ω)Rout,c(ω, r) + X̃(ω)T (ω)Rin,+(ω, r)

]
Y`m(θ, φ) (2.35)

=

∫
dωe−iωt

{
X(ω)Rout,+(ω, r) +

[
X̃(ω)T (ω) +X(ω)R̃(ω)

]
Rin,+(ω, r)

}
Y`m(θ, φ) .

We can now evaluate this on the event horizon H+
R, where r∗ → −∞. The first term

vanishes there provided our initial outgoing wavepacket on H− vanishes on the black hole

bifurcation sphere, as it must for the Fourier transform to be well-defined. This leaves

Φ|H+
R

=

∫
dωe−iωv

[
X̃(ω)T (ω) +X(ω)R̃(ω)

]
Y`m(θ, φ) (2.36)

so from (2.20) we can read off

Z̃(ω) = X̃(ω)T (ω) +X(ω)R̃(ω). (2.37)
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From (2.31) we obtain

T (ω) =
W [Rin,c, Rout,c]

W [Rin,+, Rout,c]
= − 2iω

W [Rin,+, Rout,c]
(2.38)

where in the final step we evaluated the numerator at r∗ →∞. Similarly,

R̃(ω) = −W [Rout,+, Rout,c]

W [Rin,+, Rout,c]
. (2.39)

Consider initial data which is compactly supported on H− andH−c (w.r.t. u, v respectively),

so X(ω) and X̃(ω) are entire functions. Recall that the analytic continuation of Rin,+ has

simple poles at negative integer multiples of iκ+. It follows that the analytic continuations

of T and R̃ have zeroes at these locations. Hence, for this initial data, Z̃(ω)(−iκ+) = 0,

as first explained by Mellor and Moss [16].

Recall that the behaviour of Φ near CH+
R is determined by the analyticity properties

of F(ω). From the above we have

F(ω) =
1

2
W [Rout,+, Rout,−]Z(ω) +

1

2
W [Rin,+, Rout,−]

(
X̃(ω)T (ω) +X(ω)R̃(ω)

)
(2.40)

=
1

2
W [Rout,+, Rout,−]Z(ω)− W [Rin,+, Rout,−]

2W [Rin,+, Rout,c]

(
2iωX̃(ω)+W [Rout,+, Rout,c]X(ω)

)
.

We start by considering the case in which the initial data on H+
L and H− are compactly

supported functions of u, and the initial data on H−c is a compactly supported function

of v, so Z(ω), X(ω) and X̃(ω) are entire functions. In the above expression, the mode

functions with poles in the lower half plane are Rin,+ (at negative integer multiples of iκ+),

Rout,− (at negative integer multiples of iκ−) and Rout,c (at negative integer multiples of

iκc). However, in F(ω) the poles associated to Rin,+ and Rout,c will cancel out in the ratios

of Wronskians. Therefore singularities of F(ω) in the lower half plane can only arise from

the poles in Rout,− and where

W [Rin,+, Rout,c] = 0 . (2.41)

This is the condition for Rin,+ and Rout,c to be linearly dependent, the defining condition

of a quasinormal mode. The corresponding values of ω are called quasinormal frequencies.

We see that, for compactly supported initial data, F(ω) is analytic in the lower half-plane

except for poles at quasinormal frequencies and at negative integer multiples of iκ−.

As discussed above, the spectral gap α is defined as the infimum (smallest value) of

−Im(ω) over all quasinormal modes. Deform the contour of integration in (2.24) the line

Im(ω) = −α + ε for arbitrarily small ε > 0. In other words, we push the contour of

integration down until just before it hits the “lowest” (i.e. slowest decaying) quasinormal

mode(s). In doing this we may pick up contributions from poles at multiples of −iκ− if these

lie closer to the real axis than the lowest quasinormal mode. However, the contribution from

such poles to the integral of (2.24) will have v-dependence e−nκ− (for positive integer n),

and the contribution to (2.24) will behave as e(1−n)κ−v = (−V−)n−1, which is smooth at

CH+
R. The non-smooth part of (2.24) arises from the integral along the new contour of
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integration. This integral decays as e−αv for large v. Hence the non-smooth part of (2.24)

is proportional to

e(κ−−α)v = (−V−)β−1 (2.42)

where β is defined in (2.13). If β < 1 then the scalar field is not C1 at the Cauchy horizon

CH+
R (where V− = 0). If β < 1/2 then it does not even have locally square integrable deriva-

tives, i.e. it does not have locally finite energy. On the other had, if β ≥ r for some positive

integer r then the above result is consistent with the scalar field being Cr at the Cauchy

horizon. So, for compactly supported initial data, the question of strong cosmic censorship

reduces to identifying the most slowly decaying quasinormal modes of the black hole [16].

We now investigate what happens when we relax the condition that the initial data on

H−c has compact support. For now we continue to assume compact support on H− and H−L .

Solutions arising from such initial data were first considered by Mellor and Moss [27]. They

argued that late time ingoing radiation propagating along H+
c will lead to an additional

pole in F(ω) at ω = −iκc. Their argument goes as follows. Assume that the wavepacket

on H−c is smooth at the cosmological bifurcation sphere Bc (Uc = Vc = 0). The wavepacket

must vanish there (otherwise it cannot be built as a superposition of modes as assumed

above). Demanding that it does so smoothly leads to the condition Φ ∝ Vc as Vc → 0 on

H−c (i.e. on Uc = 0), which implies Φ ∝ e−κcv for large v on H−c . This implies that the

Fourier transform X̃(ω) is analytic in the strip −iκc < Im(ω) ≤ 0 but X̃(ω) generically

has a simple pole at ω = −iκc. This is the basis of the claim in ref. [27] that F(ω) has a

pole at ω = −iκc. However, this claim is incorrect because, in (2.40), this pole in X̃(ω)

is cancelled by a corresponding pole in W [Rin,+, Rout,c] arising from the pole in Rout,c at

ω = −iκc. In other words, this pole is cancelled by a corresponding zero in the transmission

coefficient T (ω).9

We see that considering this data with non-compact support on H−c does not change

our conclusions above: it is still the quasinormal modes which determine whether or not

strong cosmic censorship is violated. However, in making this statement we have assumed

that our initial data is smooth at the cosmological bifurcation sphere. If we allow non-

smooth data, as advocated in ref. [25], then late-time ingoing radiation does lead to a new

effect. Consider Φ ∝ e−γκcv for large v on H−c , i.e. Φ ∝ V γ
c on H−c , with 0 < γ < 1. Clearly

such data is not differentiable at Vc = 0, but it has locally finite energy if γ > 1/2 since

this is the condition for the gradient of Φ to be locally square integrable. For such data,

X̃(ω) has a pole at ω = −iγκc and, in the expression for F(ω), this is not cancelled by a

zero of T (ω). Hence at CH+
R we have ∂V−ΦT ∝ e(κ−−γκc)v = (−V−)δ−1, where δ = γκc/κ−.

Locally finite energy at the Cauchy horizon requires δ > 1/2. If κc < 2κ− then we can

choose γ > 1/2 such that δ < 1/2.10 In other words, for a RNdS black hole with κc < 2κ−,

ingoing wavepackets with locally finite energy on H−c give solutions whose energy is not

9More generally, writing the initial data on H−
c as Φ = f(Vc) = f(e−κcv), for smooth f , taking the

Fourier transform and repeatedly integrating by parts one can see that X̃(ω) can have poles at negative

integer multiples of iκc. These are all cancelled by corresponding zeros in T (ω).
10More mathematically, the initial data is such that the solution initially belongs to H1

loc but the solution

at CH+
R does not belong to H1

loc.
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locally finite at CH+
R. However, we emphasize that such wavepackets are not smooth at

the cosmological bifurcation sphere.

Next we consider relaxing the condition that the wavepacket on H+
L has compact

support. This was important in the argument of ref. [18] asserting that (the C2 version of)

strong cosmic censorship is respected for any RNdS black hole. Once again, we will first

consider the case of smooth initial data. On H+
L ∪H− (i.e. the line V+ = 0) we will assume

that the data vanishes at the bifurcation sphere B, i.e. at U+ = 0, (which is required for the

Fourier transforms Z(ω) and X(ω) to exist as functions) but has non-vanishing derivative

there, so for small U+ we have, for some constant k

Φ
∣∣
V+=0

≈ k U+ Y`m(θ, φ) . (2.43)

In region II this gives Φ|H+
L
≈ ke−κ+uY`m as u → ∞. Similarly in region I we have

Φ|H+
L
≈ −ke−κ+uY`m as u → ∞. It follows that Z(ω) and X(ω) both have poles at

ω = −iκ+, with equal and opposite residues. Hence it appears that F(ω) will have a pole

at ω = −iκ+ [18]. But we will now show that the poles in Z and X cancel out in the

expression for F(ω). First, note that if there is a pole at ω = −iκ+ in F then the residue

of this pole is proportional to

lim
ω→−iκ+

(
W [Rout,+, Rout,−] +

W [Rin,+, Rout,−]W [Rout,+, Rout,c]

W [Rin,+, Rout,c]

)
. (2.44)

Recall that Rin,+ has a simple pole at ω = −iκ+, i.e.

Rin,+(ω, r) =
h(r)

ω + iκ+
+ g(ω, r) (2.45)

where g(ω, r) is analytic at ω = −iκ+. The solution Rin,+ is obtained by converting (2.15)

to an integral equation, and solving by iteration [4, 29]. Indeed this is how one sees that it

has a simple pole at ω = −iκ+. One can also see from this procedure that the residue h(r)

can be expressed as a series in eκ+r∗ , and is proportional to eκ+r∗ as r∗ → −∞. Now, h(r)

must satisfy (2.15) with ω = −iκ+. But the solution of (2.15) with behaviour eκr∗ = eiωr∗

as r∗ → −∞ is Rout,+(−iκ+, r). Hence we have11

h(r) = cRout,+(−iκ+, r) (2.46)

for some constant of proportionality c. It turns out that c has opposite signs in regions I

and II because of the way we defined Rout,+. To see this, note that e−iωtRin,+ is smooth

at H+
R hence e−κ+th(r) should be smooth at H+

R. But in region I near H+
R we have

e−κ+tRout,+(−iκ+, r) ∼ e−κ+u = −U+ whereas in region II we have e−κ+tRout,+(−iκ+, r) ∼
e−κ+u = +U+. Hence smoothness implies that the constant c has equal magnitude but

opposite sign in regions I and II. It follows that, since the numerator is evaluated in region

II and the denominator in region I, we have

lim
ω→−iκ+

W [Rin,+, Rout,−]

W [Rin,+, Rout,c]
= −

(
W [Rout,+, Rout,−]

W [Rout,+, Rout,c]

)
ω=−iκ+

(2.47)

11At the special values ω = −inκ+ (n = 1, 2, 3, . . .), Rout,+ gives mode solutions that can be smoothly

extended through H+
R, proportional to Un+ near H+

R, and the second linearly independent solution of (2.15)

gives non-smooth mode solutions involving logU+.
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and so the residue (2.44) vanishes. Hence F(ω) does not have a pole at ω = −iκ+.

Similarly, it does not have a pole at any negative integer multiple of iκ+.12 Hence, once

again, we find that for smooth initial data, relaxing the condition of compact support does

not lead to anything new, in contrast to the claim of ref. [18].

The reason that the argument of ref. [18] fails is that the poles in Z and X at ω = −iκ+

cancelled out in F(ω). This cancellation arose because we assumed that the first derivative

of Φ was continuous at B, i.e. that the inital data is C1 there. In order to avoid such a

cancellation we have to consider initial data that is not C1, i.e. we have to consider rough

initial data, as proposed in ref. [25]. For example, consider initial data which vanishes

on H− and H−c , i.e. X(ω) = X̃(ω) = 0. It follows that the resulting solution will vanish

throughout region I. On H+
L we take initial data Φ|H+

L
∝ Uγ+ as U+ → 0+, where 0 < γ ≤ 1

and hence

∂U+Φ|V+=0 ∝ Uγ−1
+ for U+ > 0 , ∂U+Φ|V+=0 = 0 for U+ < 0 . (2.48)

Clearly our initial data is continuous, but not C1, at U+ = 0. The resulting solution will

fail to be C1 at U+ = 0, i.e. along the event horizon H+
R. In terms of u, our data behaves

as e−γκ+u as u→∞ on H+
L so Z(ω) has a pole at ω = −iγκ+ and hence, even for γ = 1,

F(ω) has a pole at the same location. It then follows that at CH+
R we have

∂V−Φ ∼ e(κ−−γκ+)v = (−V−)δ−1 (2.49)

where

δ = γ
κ+

κ−
, (2.50)

and hence from (2.4) we have

δ < γ . (2.51)

Comparing (2.48) and (2.49), we see that the solution at CH+
R is less smooth than the initial

data. In particular, the condition for the initial data to have locally square integrable first

derivatives (i.e. finite energy) is γ > 1/2 whereas the condition for the solution at CH+
R

to have locally square integrable first derivatives is δ > 1/2. For any non-extremal RNdS

black hole, we can choose our initial data so that γ > 1/2 but δ < 1/2. Hence one can find

an initial wavepacket with finite energy that has infinite energy at the Cauchy horizon.

So if we allow such rough initial data then the Christodoulou version of strong cosmic

censorship is respected, as argued in ref. [25].

Once one is prepared to contemplate non-smooth initial data, there is no reason to work

with wavepackets to show that this version of strong cosmic censorship is respected. One

can work just as well with an outgoing mode solution in region II with complex frequency

ω = ω1 − iγκ+ (as was done in ref. [25] for ingoing mode solutions in region I). In region

II, Rout,+ can be analytically continued to complex ω, as long as ω is not a positive integer

multiple of iκ+. These mode solutions behave as e−iωu near H+
R. Now

e−iωu = U
iω1/κ++γ
+ (2.52)

12One can argue as in footnote 9 that X(ω) and Z(ω) can have poles ω = −inκ+ for n = 1, 2, 3, . . .. Their

residues are related by a factor of (−1)n. This is cancelled by a corresponding factor of (−1)n relating the

constant c in regions I and II. The residue in F(ω) then vanishes exactly as for the n = 1 case.
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hence such modes vanish on H+
R (i.e. U+ = 0) if γ > 0. We extend the mode into region

I simply by taking it to vanish in region I, i.e. we take vanishing initial data on H− and

H−c . At the Cauchy horizon the reflected part of the mode behaves as

B(ω)e−iωv = B(ω1 − iγκ+)(−V−)iω1/κ−+δ (2.53)

with δ given by (2.50). As before, (2.4) implies that we can choose γ > 1/2 such that

δ < 1/2. The initial data then has locally finite energy but the energy diverges at the

Cauchy horizon.13

In summary, we have seen that the argument of ref. [18] does not support the strong

cosmic censorship conjecture for smooth initial data. However, a modification of this

argument can be viewed as supporting the strong cosmic censorship conjecture for rough

initial data formulated in ref. [25]: initial data with locally finite energy generically gives

a solution whose energy is not locally finite at the Cauchy horizon.

2.3 Recent work on strong cosmic censorship with Λ > 0

For smooth initial data, we have explained why the conclusion of ref. [16] remains valid and

so whether or not strong cosmic censorship is respected can decided by looking at quasinor-

mal modes. However, one deficiency of the above analysis is the assumption that the initial

data vanishes at the bifurcation spheres B and Bc. This assumption is required so that the

Fourier transforms Z(ω), X(ω) and X̃(ω) are functions, rather than distributions. This

assumption has been eliminated by more recent work in the mathematics literature [30],

which proves that, for any smooth initial data, if β > 1 then the scalar field is C1 at the

Cauchy horizon and if β > 1/2 then the scalar field has finite local energy at CH+
R.

The recent numerical study of ref. [19] showed that massless scalar field perturbations

of RNdS black holes always have β < 1 so generic scalar field perturbations are not C1

at the Cauchy horizon, which supports the C2 formulation of strong cosmic censorship for

the Einstein-Maxwell-massless scalar field theory. However, it was also found that near-

extremal RNdS black holes have β > 1/2 and so, for smooth initial data, the Christodoulou

version of strong cosmic censorship is violated in this theory.

Surprisingly, this conclusion does not hold for Kerr-dS black holes. Indeed, ref. [23]

showed that Kerr-dS black holes always have β < 1/2 and so, for smooth initial data,

the Christodoulou version of strong cosmic censorship is respected for such black holes in

Einstein gravity coupled to a massless scalar field. In fact, it was shown that the same result

holds for linearized gravitational perturbations so it was argued that the Christodoulou

version of strong cosmic censorship, with smooth initial data, is satisfied by the vacuum

Einstein equations.

Finally, we should mention the work of ref. [22]. This studies spherically symmetric

perturbations of RNdS in the nonlinear Einstein-Maxwell-scalar field system. For this

system, it is proved that the smoothness at CH+
R is determined by how fast perturbations

decay at late time along the event horizon H+
R. Since linear theory should be reliable for

determining the latter, this work provides justification for believing that nonlinear effects

will not invalidate the conclusions of a linear analysis of the behaviour near CH+
R.

13Of course one also has to check that B(ω1 − iγκ+) 6= 0 but one can probably prove as in ref. [25] that

B(ω) has only isolated zeros and hence one can ensure B(ω1 − iγκ+) 6= 0 by adjusting ω1 if necessary.
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3 Bound for weak solutions of linearized Einstein-Maxwell equations

As discussed previously, the spectral gap α is defined as the infimum (smallest value) of

−Im(ω) over all quasinormal frequencies ω. Defining β = α/κ− as in (2.13), we showed

above that if β < 1/2 then generic scalar field perturbations arising from smooth initial data

do not have locally square integrable derivatives (i.e. locally finite energy) at the Cauchy

horizon. What about gravitoelectromagnetic modes? What condition yields a linearized

gravitoelectromagnetic perturbation that constitutes a weak solution of the equations of

motion at the Cauchy horizon? Is the critical value still β = 1/2? In this section we will

show that the answer to the latter question is positive. The analysis is rather technical so

the reader may wish to skip to the summary in subsection 3.3.

Coupled linear gravitational and electromagnetic perturbations of RNdS can be stud-

ied using the Kodama-Ishisbashi (KI) formalism [26]. This formalism divides linearized

gravitoelectromagnetic perturbations into perturbations arising from vector spherical har-

monics and those arising from scalar spherical harmonics (there are no tensor spherical

harmonics in 4d). We will consider the vector sector first (subsection 3.1) and then the

scalar sector (subsection 3.2). The main conclusions are summarized in subsection 3.3.

3.1 Vector-type gravitoelectromagnetic perturbations of RNdS

Vector perturbations of the background (2.2) are described by [26]

δgab = 0 , δgai = rfaVi, δgij = − 2

kV
r2HTD(iVj) ; (3.1a)

δFab = 0, δFai = DaAVi, δFij = A (DiVj −DjVi) . (3.1b)

where fa, HT and A are functions of {xa} = {t, r}. Additionally, Dj is the covariant

derivative with respect to the unit S2 metric γij and Vi is a vector spherical harmonic, i.e.

a regular solution of (
42 + k2

V

)
Vi = 0 , DiV

i = 0 . (3.2)

Here, 42 ≡ γijDiDj and regularity requires that the eigenvalues k2
V are quantized as

k2
V = `v(`v + 1)− 1 , `v = 1, 2, 3, . . . (3.3)

The case `v = 1 (k2
V = 1) is special case since in this case Vi is a Killing vector on the S2

and thus D(iVj) = 0. Consequently, from (3.1) it follows that the metric components δgij
on S2 are not perturbed.

For `v > 1, all the information about the perturbations can be encoded in two gauge

invariant variables Ω and A. The latter was introduced in (3.1) while the former is defined

in terms of fa, HT via

1

r
εabD

bΩ = fa +
r

kV
DaHT , (3.4)
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where εab denotes the anti-symmetric tensor on the 2-dimensional orbit spacetime. These

two gauge invariant variables obey a coupled system of two master equations [26]14

r2Da

(
1

r2
DaΩ

)
−
k2
V − 1

r2
Ω =

4Q

r2
A , (3.5a)

DaD
aA− 1

r2

(
k2
V + 1 +

4Q2

r2

)
A = (k2

V − 1)
Q

r4
Ω . (3.5b)

Once we have solved (3.5), we can reconstruct the original metric perturbations (3.1a)

using the map [26]

ft(t, r) =
f

r
∂rΩ−

r

kV
∂tHT , fr(t, r) = − 1

rf
∂tΩ−

r

kV
∂rHT . (3.6)

This determines δgµν up to a gauge transformation (infinitesimal diffeomorphism) cor-

responding to HT . A convenient choice of gauge is HT = 0. Note that the Maxwell

perturbation is gauge invariant in the vector sector [26].

We will be interested in quasinormal modes, for which we have

Ω(t, r) = e−iωtΩω`(r) , A(t, r) = e−iωtAω`(r) (3.7)

where ` ≡ `v and the frequency ω is determined in terms of `v and a radial “overtone”

number n = 0, 1, 2, . . .. The quantized spectrum of frequencies is determined requiring that

the perturbations are ingoing at the future event horizon H+
R and outgoing at the future

cosmological horizon H+
c (see figure 1). In general, quasinormal frequencies are complex,

ω = ωR + iωI , with ωI < 0 so that quasinormal modes decay exponentially with time

outside the black hole.

For the regularity analysis at H+
R it is convenient to work in ingoing coordinates

(v, r, θ, φ) since they are regular both in regions I and II of figure 1. Then, a quasinormal

mode is an analytic function of these coordinates in region I and can be analytically contin-

ued into region II. In these ingoing coordinates, a quasinormal mode has time dependence

e−iωv, and thus it diverges as v → −∞, i.e. along the red line on figure 1. We will determine

the frequency spectrum of vector quasinormal modes in section 4.

As reviewed above, the behaviour at the Cauchy horizon CH+
R of a generic perturba-

tion arising from smooth initial data is determined by the lowest quasinormal mode [16].

Therefore we need to determine the smoothness at CH+
R of the metric and Maxwell pertur-

bations of our quasinormal modes. To do this, it is convenient to use outgoing coordinates

in the black hole interior. Converting (3.7) to these outgoing coordinates in region II yields

Ω(u, r) = e−iωuΩ̃ω`(r) , A(u, r) = e−iωuÃω`(r) , (3.8)

for some functions Ω̃ω` and Ãω`. A Frobenius analysis of (3.5) about the right Cauchy

horizon CH+
R, dictates that there is a pair {Ω(1),Ω(2)} of linearly independent solutions for

14In our conventions the parameter κ of [26] is equal to
√

2.
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Ω and another pair {A(1),A(2)} for A. These two pairs of linearly independent solutions

behave as

Ω(1) = e−iωuΩ̂
(1)
ω` (r) , Ω(2) = e−iωu(r − r−)iω/κ− Ω̂

(2)
ω` (r) ; (3.9a)

A(1) = e−iωuÂ(1)
ω` (r) , A(2) = e−iωu(r − r−)iω/κ− Â(2)

ω` (r) ; (3.9b)

where Ω̂(1,2) and Â(1,2) denote non-vanishing smooth functions at r = r−. The solutions

labelled (1) are outgoing at CH+
R. These are smooth at CH+

R. The solutions labelled (2)

are ingoing at CH+
R. These are not smooth at CH+

R. Our quasinormal mode will be a

superposition of the ingoing and outgoing solutions at CH+
R.

Given the behaviours (3.9) for the master variables, what is the corresponding be-

haviour of the metric and Maxwell perturbations at the Cauchy horizon? Again, we work

in outgoing coordinates {x̃µ} = {u, r, θ, φ} and write the metric perturbation in these

coordinates as δg̃µν . The KI formalism maintains covariance w.r.t. diffeomorphisms on

S2 and on the transverse 2d orbit space. Hence δg̃µν takes the same form as in (3.1a)

with fa replaced by the quantity f̃a obtained from fa by the 2d coordinate transformation

(t, r) → (u, r), and H̃T = HT . Choosing the gauge H̃T = 0, we find that the two linearly

independent solutions for f̃a have the following behaviour near Cauchy horizon

f̃ (1)
a = e−iωu

∑
j≥0

f̂ (1;j)
a (r−r−)j , f̃ (2)

a = e−iωu(r−r−)α̂a+iω/κ−
∑
j≥0

f̂ (2;j)
a (r−r−)j , (3.10)

where α̂a = {0,−1} for a = {u, r}, respectively, for constant coefficients f̂
(1;j)
a and f̂

(2;j)
a .

The behaviour at the Cauchy horizon of the Maxwell perturbation δF̃µν follow straightfor-

wardly from (3.1b) and (3.9b).

Note that the outgoing solutions f̃
(1)
a in (3.10) are smooth, but the ingoing solutions

f̃
(2)
a are not. This holds in the gauge H̃T = 0. We will now determine how much smoother

we can make the solution using a gauge transformation.

In the vector sector, an infinitesimal gauge vector ξ has a harmonic decomposition

ξa = 0 , ξi = e−iωurL(r)Vi . (3.11)

Under such gauge transformation the metric perturbation transforms according to

δg̃µν → δg̃µν = δg̃µν − 2∇(µξν) , (3.12)

and the Maxwell perturbation δF̃ is invariant: see (3.1b) and recall that A is, by construc-

tion, a gauge invariant variable.

We now assume

L(r) =
∑
k≥0

L(k)(r − r−)iω/κ−+k (3.13)

and we want to choose the coefficients L(k) to make (3.10) as smooth as possible at r = r−.

We find that L(0) can be chosen to set f̂
(2;0)
r = 0 in (3.10). We can then choose L(1) to

set f̂
(2;1)
r = 0. But this choice then dictates that f̃

(2)
u and H̃

(2)
T behave as (r − r−)iω/κ−

because the gauge parameters L(k) with k ≥ 2 do not appear at this order. Altogether, we
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can find a gauge where the two linearly independent gravitoelectromagnetic solutions at

the Cauchy horizon have the leading behaviour

f̃ (1)
a = e−iωuf̂ (1)

a (r) , f̃ (2)
a = e−iωu(r − r−)αa+iω/κ− f̂ (2)

a (r) ; (3.14a)

H̃
(1)
T = e−iωuĤ

(1)
T (r) , H̃

(2)
T = e−iωu(r − r−)iω/κ−Ĥ

(2)
T (r) ; (3.14b)

δF̃
(1)
ai = e−iωuδF̂

(1)
ai (r), δF̃

(2)
ai = e−iωu(r − r−)−αa+iω/κ−δF̂

(2)
ai (r) ; (3.14c)

δF̃
(1)
ij = e−iωuδF̂

(1)
ij (r), δF̃

(2)
ij = e−iωu(r − r−)iω/κ−δF̂

(2)
ij (r) (3.14d)

where αa = {0, 1} for a = {u, r}, respectively and f̂a, ĤT and δF̂ai, δF̂ij are functions that

are smooth at r = r− (recall that δF̃ab components are not excited in the vector sector;

see (3.1)).

At CH+
R, our gravitoelectromagnetic quasinormal mode is some linear combination of

the smooth outgoing solution (1) and the non-smooth ingoing solution (2). There is no

reason for the coefficients in this linear combination to vanish. Therefore, the regularity of

the quasinormal mode is determined by the ingoing solutions.

For the vacuum Einstein equation, the regularity of the metric required for a weak

solution is that the Christoffel symbols should be square integrable in some chart [13]. By

linearizing this condition, or by considering second order perturbation theory [23], the cor-

responding condition for a linearized metric perturbation to constitute a weak solution is

that, in some gauge, the perturbation, and its first derivatives, should be locally square inte-

grable, i.e. the perturbation should belong to the Sobolev space H1
loc. In Einstein-Maxwell

theory, the corresponding statement is that, in some gauge, the metric perturbation should

belong to H1
loc and the Maxwell field strength perturbation should be locally square inte-

grable (i.e. belong to L2
loc).

From (3.14) we see that we can reach a gauge for which the least smooth components

of the metric perturbation behave as δg̃(2) ∼ (r − r−)p with p = iω/κ−. Hence ∂rδg̃
(2) ∼

(r − r−)p−1, which is square integrable if, and only if, 2(γ − 1) > −1 where γ = Re(p).

Similarly, (3.14) shows that the least smooth components of the Maxwell field strength

perturbation behave as δF̃ (2) ∼ (r − r−)p−1 (again with p = iω/κ−). Once again this is

locally square integrable if, and only if, 2(γ − 1) > −1 (again with γ = Re(p)). Hence, the

condition for a vector-type gravitoelectromagnetic quasinormal mode to constitute a weak

solution at the Cauchy horizon is γ > 1/2, i.e.

− Im(ω)

κ−
>

1

2
. (3.15)

The above analysis shows that this condition is sufficient for the mode to constitute a

weak solution at the Cauchy horizon. We believe it is also a necessary condition, and this

can probably be proved along similiar lines to the argument in ref. [23], exploiting gauge

invariance of the KI variables. However, since we are mainly interested in violation of

strong cosmic censorship, we will not perform such an analysis here.

The above analysis was for the case `v > 1. For the special case `v = 1, the field HT is

not defined since D(iVj) = 0. It follows that the two quantities defined by the r.h.s. of (3.4)
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are no longer gauge invariant (and thus, neither is Ω). There is a single gauge invariant

quantity (denoted by F 1 = εabrDa (fb/r) in (4.8) of [26]) and the map that reconstructs

δgµν and δFµν from the gauge invariant quantity is (necessarily) different from the one

described above for the ` > 1 case: in the end of the day A is the only dynamical field

although it still obeys the wave equation (3.5b) (with k2
V = 1) [26]. We have done this

analysis and gravitoelectromagnetic field reconstruction15 and we find that the condition

for a `v = 1 vector-type gravitoelectromagnetic quasinormal mode to constitute a weak

solution at the Cauchy horizon is still given by (3.15).

3.2 Scalar-type gravitoelectromagnetic perturbations of RNdS

Scalar perturbations of the background (2.2) take the form [26]

δgab = fabS, δgai = rfaSi, δgij = 2r2 (HLγijS +HTSij) , (3.16a)

δFab = [E −Dc(E0X
c)] εabS, δFai = εab

(
rEb + kSE0X

b
)

Si , δFij = 0, (3.16b)

with fab, fa, HT , HL, E and Eb being functions of {xa} = {t, r} and εab is the anti-symmetric

unit tensor. Moreover, E0 = Q/r2 was introduced in (2.3) and we have defined

Xa =
r

kS

(
fa +

r

kS
DaHT

)
. (3.17)

The scalar spherical harmonics S, and the associated scalar-type vector harmonic Si and

traceless scalar-type tensor harmonic Sij are defined by (note that S i
i = 0)

(DiD
i + k2

S)S = 0 , Si = − 1

kS
DiS , Sij =

1

k2
S

DiDjS +
1

2
γijS . (3.18)

The eigenvalues are quantized as

k2
S = `s(`s + 1) `s = 1, 2, 3, . . . . (3.19)

Harmonics with `s = 0 are non dynamical — they correspond to variations of the black hole

parameters M,Q. Harmonics with `s = 1 are special because Sij vanishes for these harmon-

ics. For now we assume `s > 1 and comment on the case `s = 1 at the end of this section.

Gauge invariant variables for the scalar perturbations are E , Ea — already introduced

in (3.16) — and, for `s > 1, F and Fab defined as [26]

F = HL +
1

2
HT +

1

r
XaD

ar , Fab = fab +DaXb +DbXa , (3.20)

The Bianchi identity requires that F b
a is traceless,

F a
a = 0 . (3.21)

The equations of motion imply that the gauge invariant quantities E and Ea can be

expressed in terms of a single KI master variable A as

E = − 1

kS
Dc(rEc) , Ea =

kS
r
DaA . (3.22)

15The reader can find the full details in the discussions (4.8)–(4.15) and (4.31)–(4.33) of [26].

– 21 –



J
H
E
P
1
0
(
2
0
1
8
)
0
0
1

On the other hand, introducing

X = F tt − 2F , Y = Frr − 2F , Z = Frt , (3.23)

a second gauge invariant master variable Φ can be defined as [26]

Φ =
2Z/(iω)− r(X + Y )

H
, with H = k2

S − 2 + 6M/r − 4Q2/r2 , (3.24)

where here and henceforward, we assume that all perturbed quantities Q(t, r) have the

Fourier decomposition Q(t, r) = e−iωtQ(r) with ω being the associated frequency.

The KI master variables Φ and A obey the following coupled system of equations [26]

f(fΦ′)′ + (ω2 − VS)Φ = SΦ(Φ,A) , (3.25a)

DaD
aA− 1

r2

(
k2
S +

8Q2f/r2

H

)
A =

Q

r3

(
4H2 − 2PZ

8H
Φ + fr∂rΦ

)
, (3.25b)

where f is defined in (2.3). The potential VS and source term SΦ(Φ,A) are lengthy expres-

sions given in equations (5.42)–(5.44) of [26]. The auxiliary quantity PZ is given in (C.8)

of [26].

Given a solution of the above equations we will need to reconstruct the metric and

Maxwell field perturbations in terms of the master variables Φ and A. For that, we first

write the variables X, Y and Z in terms of Φ and A and their derivatives as [26]

X =
1

r

[(
ω2r2

f
− PX0

16H2

)
Φ +

PX1

4H
r∂rΦ

]
+ 2E0

(
PXA
2H2

A− 4rf

H
∂rA

)
,

Y =
1

r

[(
−ω

2r2

f
− PY 0

16H2

)
Φ +

PY 1

4H
r∂rΦ

]
+ 2E0

(
PY A
2H2
A+

4rf

H
∂rA

)
, (3.26)

Z = iω

(
PZ
4H

Φ− fr∂rΦ− 8E0
rf

H
A
)
,

where the coefficients PX0, PX1, PXA, PY 0, PY 1, PY A and PZ are functions of r that can be

found in equations (C.4)–(C.10) and (C.11)–(C.16) of [26]. It follows from the equations

of motion, including the Bianchi identity (3.21), that fab and HL can be written as a

function of X,Y, Z (i.e. of Φ,A, their radial first derivative and ω) and of fa, HT and their

radial derivatives. To simplify our task (and without prejudice since we will consider gauge

transformations later) we can fix the gauge as

fa = 0, HT = 0 . (3.27)

Then, the metric functions fab and HL depend only on X,Y, Z. That is to say, via (3.26)

and the Bianchi identity (3.21) they can be written solely in terms of the master variables

Φ,A and their radial derivative as

ftt =
f

2
(X − Y ) , ftr = −iω Z

f
, frr =

X − Y
2f

, HL =
X + Y

4
. (3.28)

We will find the frequency spectrum of scalar quasinormal modes in section 4. But first

we must discuss the behaviour of the scalar-type perturbations at the Cauchy horizon CH+
R.
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The discussion of regularity at this null hypersurface proceeds very similarly to the vector

sector case. Namely, the master variables Ω and A for the scalar quasinormal modes also

admit the Fourier decomposition (3.7) and, when analytically continued into region II and

converted to outgoing coordinates, these master variables also behave as (3.8). Moreover, a

Frobenius analysis of (3.25) around CH+
R, dictates that there is a pair {Ω(1),Ω(2)} of linearly

independent solutions for Ω and another pair {A(1),A(2)} for A. These two pairs of linearly

independent solutions still behave as described in (3.9) (with the identification ` ≡ `s).
Given these behaviours for the KI scalar master variables Ω and A, we can now find the

behaviour of the metric and Maxwell perturbations for the outgoing and ingoing modes near

CH+
R. Just as we did for vector-type perturbations, in region II we transform to outgoing

coordinates {x̃µ} = {u, r, θ, φ} in which the metric perturbation δg̃ab takes the same form

as in (3.16), with fa replaced by the quantity f̃a obtained from fa via the coordinate

transformation from (t, r) to (u, r), fab is similarly replaced by f̃ab, but H̃L = HL and

H̃T = HT are unchanged. Similarly, the Maxwell perturbation δF̃µν is written in terms of

Ẽa and Ẽ = E .

Choosing the gauge (3.27) (which translates into f̃a = 0, H̃T = 0), we find that the

outgoing (smooth) and ingoing (non-smooth) solutions for f̃ab, H̃L, Ẽ and Ẽa have, respec-

tively, the following expansions about the Cauchy horizon:

f̃
(1)
ab = e−iωu

∑
j≥0

f̂
(1;j)
ab (r−r−)j+γ̂ab , f̃

(2)
ab = e−iωu

∑
j≥0

f̂
(2;j)
ab (r−r−)j+α̂ab+iω/κ− ; (3.29a)

H̃
(1)
L = e−iωu

∑
j≥0

Ĥ
(1;j)
L (r−r−)j , H̃

(2)
L = e−iωu

∑
j≥0

Ĥ
(2;j)
L (r−r−)j+iω/κ− ; (3.29b)

Ẽ(1) = e−iωu
∑
j≥0

Ê(1;j)(r−r−)j , Ẽ(2) = e−iωu
∑
j≥0

Ê(2;j)(r−r−)j+iω/κ− ; (3.29c)

Ẽ(1)
a = e−iωu

∑
j≥0

Ê(1;j)
a (r−r−)j , Ẽ(2)

a = e−iωu
∑
j≥0

Ê(2;j)
a (r−r−)j+ε̂a+iω/κ− ; (3.29d)

where γ̂ab = {0, 0,−1} for ab = {uu, ur, rr}, α̂ab = {0,−1,−2} for ab = {uu, ur, rr} and

ε̂a = {−1, 0} for a = {u, r}, respectively, and f̂
(1;j)
ab , etc are constants that depend on ω

and `s.

The behaviour (3.29) is valid in the particular gauge f̃a = 0, H̃T = 0. Even the outgoing

solution (1) is not regular at the Cauchy horizon in this gauge (due to the component

f̃
(1)
rr ). We will now show that we can make the outgoing solution smooth, and the ingoing

solutions smoother at the Cauchy horizon with a gauge transformation. In the scalar sector,

an infinitesimal gauge vector ξ has the harmonic decomposition

ξa = e−iωuPa(r)S , ξi = e−iωurL(r)Si . (3.30)

Under such gauge transformation the metric and Maxwell perturbations transform

according to

δg̃µν → δg̃µν = δg̃µν−2∇(µξν) , δF̃µν → δF̃µν = δF̃µν−ξα∇αFµν+2Fα[µ∇ν]ξ
α . (3.31)
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We assume the following expansions for the functions appearing in the gauge transformation

Pa(r) =
∑
k≥0

[
N (k)
a + N̄ (k)

a log(r − r−)
]

(r − r−)k +
∑
k≥0

P (k)
a (r − r−)iω/κ−+k−1 (3.32a)

L(r) =
∑
k≥0

[
M (k)
a + M̄ (k)

a log(r − r−)
]

(r − r−)k +
∑
k≥0

L(k)(r − r−)iω/κ−+k (3.32b)

and we now try to choose the constants {N (k)
a , N̄

(k)
a , P

(k)
a ,M (k), M̄

(k)
a , L(k)} to eliminate as

much as we can the leading terms in (3.29) that are responsible for the lack of smoothness

at the Cauchy horizon. Consider first the ingoing solution (labelled by superscript (2)). We

find that a choice of P
(0)
a (with P

(0)
u = 0), P

(1)
a and L(0) allows us to set

f̂ (2;0)
rr = f̂ (2;1)

rr = f̂ (2;0)
ur = 0, (3.33)

and also to eliminate the leading term, proportional to (r − r−)iω/κ−−1, in f̃
(2)
r (note that

f̃
(2)
a becomes non-zero as a result of the gauge transformation; the term (r− r−)iω/κ−−1 in

f̃
(2)
r has a contribution due to P

(0)
r and another due to L(0)). We can now choose P

(2)
a and

L(1) to set

f̂ (2;2)
rr = f̂ (2;1)

ur = 0 (3.34)

and to eliminate the term proportional to (r − r−)iω/κ− in f̃
(2)
r . But this choice then

dictates that the leading term of f̃
(2)
uu , f̃

(2)
u and H̃

(2)
L,T is (r − r−)iω/κ− because these terms

in these quantities do not depend on the higher order gauge parameters and we have no

more gauge freedom to avoid such powers.

Consider now the outgoing solution (labelled by superscript (1)) in (3.29). With a choice

of gauge parameters {N (k)
a , N̄

(k)
a ,M (k), M̄

(k)
a } we must be able to eliminate the non-smooth

terms f̂
(1;j)
rr and Ẽ(1)

u in (3.29) that are unphysical and just due to our ‘bad’ choice of gauge

f̃a = 0, H̃T = 0. A choice of N̄
(0)
a , N̄

(1)
a and M̄ (0), M̄ (1) (with N̄

(0)
u = N̄

(1)
r = M̄ (0) = 0)

allows to set

f̂ (1;0)
rr = 0 (3.35)

and also to eliminate all the terms (r − r−)0 log(r − r−) that typically appear in the fields

f̃
(1)
ab , f̃

(1)
a , H̃

(1)
L,T and δF̃

(1)
ab , δF̃

(1)
ai as a result of the gauge transformation. We have now the

freedom to choose N
(0)
a , N

(1)
a and M (0) = 0 to set

f̂ (1;1)
rr = f̂ (1;0)

ur = Ĥ
(1;0)
L = 0 (3.36)

and to eliminate the term proportional to (r − r−)0 in f̃
(1)
r and H̃

(1)
T (these fields become

non-zero as a result of the gauge transformation). But with this choice it follows that the

leading term of f̃
(1)
uu and f̃

(1)
u is (r − r−)0 since these terms do not depend on the higher

order gauge parameters, i.e. we have no further gauge freedom to eliminate such terms.

After these gauge transformations, the electromagnetic fields δF̃
(1)
ab , δF̃

(1)
ai also behave as

(r − r−)0.
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Altogether, our analysis shows that we can find a gauge where the two linearly inde-

pendent gravitoelectromagnetic solutions at the Cauchy horizon have the leading behaviour

f̃ (1)
a = e−iωu(r − r−)αa f̂ (1)

a (r), f̃ (2)
a = e−iωu(r − r−)αa+iω/κ− f̂ (2)

a (r) ; (3.37a)

f̃
(1)
ab = e−iωu(r − r−)αab f̂

(1)
ab (r), f̃

(2)
ab = e−iωu(r − r−)αab+iω/κ− f̂

(2)
ab (r) ; (3.37b)

H̃
(1)
L,T = e−iωu(r − r−)Ĥ

(1)
L,T (r), H̃

(2)
L,T = e−iωu(r − r−)iω/κ−Ĥ

(2)
L,T (r) ; (3.37c)

δF̃
(1)
ab = e−iωuδF̂

(1)
ab (r), δF̃

(2)
ab = e−iωu(r − r−)−1+iω/κ−δF̂

(2)
ab (r) ; (3.37d)

δF̃
(1)
ai = e−iωuδF̂

(1)
ai (r), δF̃

(2)
ai = e−iωu(r − r−)−αa+iω/κ−δF̂

(2)
ai (r) ; (3.37e)

where αa = {0, 1} for a = {u, r} (respectively) and αab = {0, 1, 1} for ab = {uu, ur, rr}
(respectively), and f̂a, f̂ab, ĤL,T and δF̂ab, δF̂ai are smooth functions that depend on ω and

`s (recall that δF̃ij is not excited in the scalar sector; see (3.16)). Note that the outgoing

solution is manifestly smooth at the Cauchy horizon.

As explained above, for a weak solution we need the metric perturbation and its first

derivative to be locally square integrable, and the Maxwell field strength perturbation to

be locally square integrable. Using the above results, we can repeat the argument we

used for vector-type perturbations to see that the condition for a scalar-type quasinormal

mode to be extendible as a weak solution across the Cauchy horizon is exactly the same

condition (3.15) that we obtained for vector-type perturbations.

Finally, in this section we have so far assumed `s > 1. Harmonics with `s = 1 are

special because Sij vanishes for these harmonics; as a consequence, the field HT is not

defined. It follows that, for `s = 1, the fields F and Fab defined in (3.20) are no longer

gauge invariant [26]. Additionally, the Bianchi identity no longer implies (3.21) and it turns

out that only the electromagnetic field is dynamical [26]. For our purposes, a pragmatic way

to deal with this `s = 1 case, as suggested in [26], is to impose (3.21) as a gauge condition

and then fix a residual gauge freedoom at our convenience.16 We can then reconstruct the

gravitoelectromagnetic fields δgµν and δFµν in this particular gauge following steps similar

to those described above for the `s > 1. Finally, we add again gauge transformations to

make our solutions smoother. In the end of the day, we find that the condition for a `s = 1

scalar-type gravitoelectromagnetic quasinormal mode to constitute a weak solution at the

Cauchy horizon is still given by (3.15).

3.3 Conclusions

We have shown that the condition for a linearized gravitoelectromagnetic mode solution

to be extendible as a weak solution across the Cauchy horizon is (3.15). We define β

in terms of the spectral gap α as in (2.13). If β < 1/2 then there exists a quasinormal

mode which violates (3.15). One can add an arbitrary multiple of this quasinormal mode

to any other linear perturbation. Hence if β < 1/2 then a generic linear perturbation

cannot be extended as a weak solution across the Cauchy horizon. So if β < 1/2 then the

Christodoulou formulation of strong cosmic censorship is respected.

16For further details see the discussions below (5.8) and (5.28) and, specially, appendix D of [26].
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Conversely, if β > 1/2 then all quasinormal modes respect (3.15). Since the behaviour

at the Cauchy horizon is determined by the slowest decaying quasinormal mode, in this case,

any linearized gravitoelectromagnetic perturbation arising from smooth initial data can be

extended across CH+
R as a weak solution of the equation of motion, so the Christodoulou

version of strong cosmic censorship is violated for smooth initial data.

Finally, we can consider extendibility in Cr. By this we mean that there exists a gauge

so that, at CH+
R, the metric is Cr and the Maxwell field strength is Cr−1 (so the Maxwell

potential is Cr in some gauge). It is easy to see from the above analysis that a quasinormal

mode is extendible in Cr across CH+
R if −Im(ω)/κ− ≥ r. Thus, in Einstein-Maxwell theory,

the Cr version of strong cosmic censorship is respected if β < r and violated if β > r.

4 Computing the gravitoelectromagnetic quasinormal modes

In this section, we first discuss (subsection 4.1) the Kodama-Ishisbashi (KI) master equa-

tions [26] and boundary conditions of the quasinormal mode problem that we later solve

analytically and numerically. We will also prove that vector-type and scalar-type modes of

RNdS have the same frequency spectrum, i.e. they are isospectral (subsection 4.2).

4.1 Master equations and boundary conditions

4.1.1 Vector-type modes

The vector equations (3.5) describe a pair of coupled ODEs for the gauge invariant variables

Ω and A. They can be rewritten as a pair of two decoupled ODEs for a pair of master vari-

ables Φ±. These are linear combinations of the original gauge invariant variables, namely

Φ± = a±r
−1Ω + b±A (4.1)

where a± and b± are functions of M,Q, ` given in equations (4.35)–(4.36) of [26]. Un-

der (4.1), (3.5) tranform into the KI vector master equations

f
(
f Φ′±

)′
+
(
ω2 − Vv±

)
Φ± = 0 , (4.2)

where the potentials are given by

Vv± =
f

r2

[
k2
V + 1 +

4Q2

r2
+

1

r

(
−3M ±

√
9M2 + 4(k2

V − 1)Q2

)]
. (4.3)

When Q = 0, Φ− and Φ+ are simply proportional to Ω and A, respectively. Thus, in the

neutral limit, Φ− and Φ+ represent, respectively, the gravitational and electromagnetic

modes of the Schwarzschild black hole. Note that Φ+ modes have `V = 1, 2, 3 . . . whereas

Φ− modes have `V = 2, 3, 4, . . ..

Vector quasinormal modes are solutions of (4.2) that obey ingoing boundary conditions

at the black hole horizon and outgoing boundary conditions at the cosmological horizon.

More concretely, at the black hole horizon r = r+ a Frobenius analysis yields the expansion

Φ(r) = (r − r+)
± iω

2κ+

+∞∑
n=0

(r − r+)n Φ(n,+) (4.4)
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where Φ is either Φ+ or Φ−. Regularity at the event horizon, which follows from demanding

a smooth expansion in ingoing coordinates (v, r, θ, φ) around H+
R, requires that we discard

the solution with the positive sign. Similarly, a Frobenius expansion at the cosmological

horizon r = rc yields the two possible solutions

Φ(r) = (rc − r)±
iω
2κc

+∞∑
n=0

(rc − r)n Φ(n,c) , (4.5)

and imposing outgoing boundary conditions at the cosmological horizon HcR requires that

we discard the irregular solution with plus sign. We are thus lead to introduce the field

redefinition:

Φ±(r) = (r − r+)
− iω

2κ+ (rc − r)−
iω
2κc Φ̃±(r) (4.6)

where Φ̃±(r) is a smooth function at r = r+ and at r = rc. This effectively imposes

the desired boundary conditions since our numerical method can only search for smooth

functions Φ̃±(r).

Inserting (4.6) into (4.2) we get a pair of decoupled ODEs for Φ̃±. Each of these ODEs

is quadratic in the frequency ω. That is to say, for each ` we have to solve a quadratic

eigenvalue problem to find the eigenvalue ω and the associated eigenfunction Φ̃− (or ω and

Φ̃+). The boundary conditions for Φ̃±(r) follow directly from doing a Taylor expansion of

the master equation about the black hole and cosmological horizons. These reveals that at

both horizons we have a Robin boundary condition, i.e. of the type

Q+,1(ω)Φ̃′±(r+) = Q+,0(ω)Φ̃±(r+) , Qc,1(ω)Φ̃′±(rc) = Qc,0(ω)Φ̃±(rc) , (4.7)

where Q+,1,Q+,0,Qc,1 and Qc,0 are known functions which are at most second order poly-

nomials in ω.

It is also convenient to use a radial coordinate whose range is independent of the black

hole parameters. We define

y =
r − r+

rc − r+
, (4.8)

such that y ∈ [0, 1] with y = 0 (y = 1) corresponding to the event (cosmological) horizon.17

The resulting equation for Φ̃− (or Φ̃+) can now be solved using a pseudospectral

grid discretization (with the methods reviewed in [31]) as a standard quadratic eigenvalue

problem or employing a Newton-Raphson algorithm. In the former method one writes

the equation as a quadratic eigenvalue problem for the frequency ω, which is then solved

using Mathematica’s built-in routine Eigensystem. More details of this method and the

discretization scheme can be found e.g. in [32]. The second method is based on an ap-

plication of the Newton-Raphson root-finding algorithm, and is detailed in [31, 33]. The

advantage of the first method is that it gives all modes simultaneously. The second method

computes a single mode at a time, and only when a seed is known that is sufficiently close

to the true answer. However, this method is much quicker as both the size of the grid and

numerical precision increases, and can be used to push the numerics to extreme regions of

the parameter space.

17Note that in later sections we will often work with a quantity y+ ≡ r+/rc. We emphasize that this is

not related to the coordinate y.
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4.1.2 Scalar-type modes

The pair of coupled ODEs (3.25) for the scalar gauge invariant variables Φ and A can be

rewritten as a pair of two decoupled ODEs for a pair of scalar master variables Φ±. The

latter are given by the linear combinations

Φ± = a±Φ + b±A (4.9)

where a± and b± are functions of M,Q, ` given in equations (5.57)–(5.58) of [26]. Insert-

ing (4.9) into (3.25) yields the KI scalar master equations

f
(
f Φ′±

)′
+
(
ω2 − Vs±

)
Φ± = 0 , (4.10)

where the potentials Vs± are given by equations (5.60)–(5.63) of [26]. When Q = 0,

Φ− is proportional to Φ and Φ+ is proportional to A. Hence, in the neutral limit, Φ−
and Φ+ represent, respectively, the gravitational and electromagnetic scalar modes of the

Schwarzschild black hole. Note that Φ+ modes have `S = 1, 2, 3 . . . whereas Φ− modes

have `S = 2, 3, 4, . . ..

Scalar quasinormal modes are solutions of (4.10) that obey ingoing boundary con-

ditions at the black hole horizon and outgoing boundary conditions at the cosmological

horizon. The analysis of these boundary conditions is very much similar to the one done

for the KI vector sector. In fact equations (4.4) to (4.7) and the subsequent discussion

apply without change to the scalar sector of perturbations.

4.2 Isospectrality

As discussed in previous sections, gravitoelectromagnetic perturbations of RNdS black

holes come in two classes: vector-type and scalar-type. Although they obey two seemingly

distinct equations of motion, it turns out they have the same quasinormal mode spectra.

For this reason, the spectrum of quasinormal modes of RNdS black holes is said to be

isospectral. This is a classical result in the context of asymptotically flat RN black holes,

which was first uncovered by Chandrasekhar in [34]. It turns out the same result applies

in the context of RNdS black holes, but with more involved algebra.

Just as in [34], we start by noting that the scalar potential Vs±(r) — introduced

in (4.10) — can be written in the following compact manner

Vs±(r) = β±f(r)
dF̌±(r)

dr
+ β2

±F̌±(r)2 + κ̃ F̌±(r) , (4.11)

where

β± = 3M ∓
√

9M2 + 4Q2 (`− 1)(`+ 2) , (4.12a)

κ̃ = (`− 1)(`+ 2) [(`− 1)(`+ 2) + 2] , (4.12b)

F̌±(r) =
f(r)

r [(`− 1)(`+ 2) r + β±]
, (4.12c)

and f(r) is given in (2.3). Rather remarkably, the vector potential (4.3) takes a similar form

Vv±(r) = −β±f(r)
dF̌±(r)

dr
+ β2

±F̌±(r)2 + κ̃ F̌±(r) , (4.13)

with the same quantities defined in (4.12).
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Because of this simple relation between the scalar and vector potentials, one can relate

solutions of the vector equation to solutions of the scalar equation (and vice versa), via

the map

Φs±(r) =
1

κ̃+ 2 i ω β±

[(
κ̃+ 2β2

±F±(r)
)

Φv±(r) + 2β± f(r)
dΦv±(r)

dr

]
, (4.14a)

Φv±(r) =
1

κ̃− 2 i ω β±

[(
κ̃+ 2β2

±F±(r)
)

Φs±(r)− 2β± f(r)
dΦs±(r)

dr

]
, (4.14b)

where, momentarily, we added the subscripts s and v to distinguish between scalar and

vector perturbations.

Maps between solutions might not take physical solutions into physical solutions since

one has to check that the maps preserve the relevant boundary conditions. This is the case

(i.e. the map (4.14) preserves the boundary conditions) for asymptotically flat RN black

holes and RNdS black holes, but it is not the case for RN black holes with anti de-Sitter

boundary conditions [35]. For this reason isospectrality occurs in the former two cases, but

not in the latter. Note that the differential map (4.14) alone is not enough to guarantee

that the critical β bound (3.15) found for vector-type modes also holds for scalar-type

perturbations, since the two types of metric perturbations are orthogonal to each other.

For this reason, in section 3 we had to do the analysis that finds the bound (3.15) for

the vector and scalar-type of perturbations independently. We concluded that it turns out

that (3.15) holds for both sectors.

5 Classifying the families of quasinormal modes and analytical results

Cardoso et al. found that massless scalar field quasinormal modes of RNdS can be classified

into three families [19]. We find that the same is true for gravitoelectromagnetic quasinor-

mal modes. The three families are 1) “photon sphere” modes, 2) “de Sitter” modes and 3)

“near-extremal” modes. The “photon sphere” modes are identified in the geometric optics

limit, `� 1, and are related to the properties of the unstable circular photon orbits in the

equatorial plane of the black hole background (subsection 5.1).

The de Sitter modes reduce, when M and Q vanish, to the gravitational and elec-

tromagnetic quasinormal modes of de Sitter spacetime (subsection 5.2). Finally, the

“near-extremal” modes have their wavefunction peaked near the horizon and an approx-

imate expression for these modes (strictly valid in the extremal limit) can be obtained

analysing the perturbations in the near-horizon geometry of a near-extremal RNdS black

hole (subsection 5.3).

In the previous section 4.2 we found that the spectra of vector-type and scalar-type

of quasinormal modes is isospectral. It follows that for each family of modes we just have

to consider two sectors (not four) of perturbations corresponding to perturbations for each

of the gauge invariant variables Φ− and Φ+. As a test of our numerical code, we did

several checks (i.e. for different black holes) that the frequency eingenvalues of the vector-

type equation of motion are indeed the same as those that solve the scalar-type equation

of motion.
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In this section we will obtain approximate analytical expressions for the three families

of modes (that are valid at least in a certain region of the RNdS parameter space). Then we

compare these analytical results with the exact data that results from our numerical search

of the frequency spectra in the full RNdS parameter space 0 ≤ y+ ≤ 1 and 0 < Q/Qext ≤ 1.

5.1 Photon sphere family of modes and its geometric optics limit

In this subsection we will find an analytical expression for the photon sphere quasinormal

modes in the geometric optics limit, i.e. in the WKB limit ` → ∞. We find that this

analytical expression gives an imaginary part of the frequency that matches very well the

numerical results even for ` = 1 (the real part is not such a good approximation for low

`). Our geometric optics results are independent of the spin of the perturbing field and so

they should agree with the geometric optics results for massless scalar field photon sphere

modes in ref. [19].

Consider a null geodesic xµ(τ) of a RNdS black hole. By spherical symmetry there

is no loss of generality in assuming that the geodesic is confined to the equatorial plane

θ = π/2. There are conserved quantities associated to the Killing fields K = ∂/∂t and

χ = ∂/∂φ:

e ≡ −Kµẋ
µ and j ≡ χµẋµ , (5.1)

where the dot represents derivative with respect to the affine parameter τ . This gives

ṫ =
e

f
, φ̇ =

j

r2
. (5.2)

The radial motion is governed by

ṙ2 + V (r; b) = 0 , (5.3)

where

V (r; b) =
j2

b2

[
b2

r2

(
1− r2

L2
− 2M

r
+
Q2

r2

)
− 1

]
. (5.4)

and we have defined the geodesic impact parameter as

b ≡ j

e
. (5.5)

Now, we want to find the photon sphere, where null particles are trapped on unstable

circular orbits. This occurs for values r = rs and b = bs such that

V (rs, bs) = 0 and ∂rV (r, b)|r=rs,b=bs = 0. (5.6)

This gives

rs =
1

2

(√
9M2 − 8Q2 + 3M

)
and bs(rs) =

Lr2
s√

L2 (rs(rs − 2M) +Q2)− r4
s

, (5.7)

where we can check that r+ ≤ rs ≤ rc.
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The orbital angular velocity (Kepler frequency) of our null circular photon orbit can

now be computed using (5.2), (5.5) and (5.7) yielding

Ωc ≡
φ̇

ṫ
=

1

bs
. (5.8)

We now have to compute the largest Lyapunov exponent λL, measured in units of t,

associated with perturbations of an unstable circular photon orbit r(τ) = rs. This is done

considering perturbations r(τ) = rs + δr(τ) of the radial geodesic equation (5.3). Small

deviations obey the linearized equation

δr′(t)−
√
r2
s − 2Q2

bsrs
δr(t) = 0 (5.9)

which has solution

δr(t) = C eλLt with λL =

√
r2
s − 2Q2

bsrs
(5.10)

being the desired (largest) Lyapunov exponent. Note that C is an integration constant and

the unstable photon orbit parameters rs and bs are given in terms of the RNdS parameters

{L,M,Q} by (5.7).

Finally, one can reconstruct the spectrum of the photon sphere family of quasinormal

modes with `� 1 using [36–44]

ωWKB ≈ `Ωc − i
(
n+

1

2

)
λL , (5.11)

where n = 0, 1, 2, . . . is the radial overtone. Note that this geometric optics/WKB approx-

imation is universal in the sense that it is blind the particular sector of perturbations we

look at. That is, it is expected to be a good approximation to both photon sphere modes

Φ± (or for a massless scalar field [19]).

Note that, at this order, Im(ωWKB) is independent of ` (assuming ` � 1) while

Re(ωWKB) does depend on `. One might wonder whether next-to-leading order correc-

tions to this result might change significantly (5.11), especially near extremality. However,

the corrections to Im(ω) are of order 1/` so, for any fixed background, the corrections to

Im(ω) can be made arbitrarily small by taking ` sufficiently large.18 So the WKB results

for Im(ω) should be reliable for sufficiently large `.

We can now analyse −Im(ωWKB)/κ−. In the left panel of figure 2 we plot this quan-

tity for n = 0 (which yields the smallest value) as a function of the horizon radii ratio

y+ = r+/rc and charge ratio Q/Qext. Over most of the RNdS moduli space we have

−Im(ωWKB)/κ− < 1/2. Since we expect our result for to be exact as ` → ∞, we must

therefore have β < 1/2 over most of the RNdS moduli space [19]. Thus the Christodoulou

version of strong cosmic censorship is respected by most RNdS black holes. However, for

any fixed y+, there is always a critical value for Q/Qext (close to extremality) above which

−Im(ωWKB)/κ− > 1/2. So there is the possibility of a violation of strong cosmic censorship

by near-extremal RNdS black holes.

18In fact for vanishing Λ the corrections to Im(ωWKB) are O(1/`2) [43] and we expect that the same is

true with Λ > 0.
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Figure 2. Left panel: photon sphere quasinormal modes in the geometric optics/WKB approx-

imation as a function of charge ratio Q/Qext and y+ = r+/rc for n = 0. The yellow plane is

−Im(ω)/κ− = 1/2. Right panel: WKB prediction for −Im(ω)/κ− compared with numerical results

for Φ− photon sphere modes. The curves are for y+ = 0.1 (top), y+ = 0.4 (middle) and y+ = 0.8

(bottom). The dashed blue lines are the n = 0 geometric optics/WKB prediction −Im(ωWKB)/κ−.

The red disks, black filled squares, green filled diamonds are the numerical results for ` = 2, n = 0.

The empty orange marks (circles, squares, diamonds) are the numerical results for ` = 10, n = 0.

We will now compare the WKB prediction with our numerical results for the quasi-

normal frequencies of photon sphere modes. In the right panel of figure 2 we compare the

n = 0 WKB result with our numerical results for −Im(ω)/κ− for the Φ− photon sphere

quasinormal modes (with n = 0). From the plot we see that, when ` = 10, the WKB

prediction is in excellent agreement with our numerical results. In fact even for ` = 2

the plot shows that the WKB prediction is in very good agreement with our numerical

results. This agreement extends to other values of y+ not shown in the plot. Note that, as

expected, the agreement is very good for the imaginary part of the frequency but not so

good for the real part (not shown in the plot). As a check of our numerical computations

we have also confirmed that we reproduce some (the ones we searched for in our tests) of

the quasinormal frequencies listed in [16] (note that this reference only computed what we

call photon sphere modes).

Recall that to compute β defined in (2.13) we need to determine the spectral gap α. To

determine α we need to find the slowest decaying quasinormal mode, i.e. the one with the

smallest value of −Im(ω). We will now discuss which of the photon sphere modes has the

smallest value of −Im(ω). There are two types of photon sphere modes: one corresponding

to Φ− and another to Φ+. Our numerical results indicate that, for each type, the lower `

and n modes dominate. Therefore the slowest decaying photon sphere mode must be one

of the following (with n = 0): (1) Φ−, ` = 2, or (2) Φ+, ` = 1.

Which of these two modes decays most slowly? For most of the black hole parameter

space we find that the Φ+ modes with ` = 1 decay most slowly. To illustrate this, in the left

panel of figure 3 we plot −Im(ω)/κ− vs Q/Qext at fixed y+ for Φ+ modes with ` = 1 (and
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Figure 3. Photon sphere modes for modes Φ+ with ` = 1 (filled marks: disks, squares, diamonds)

and Φ− with ` = 2 (empty orange marks: circles, squares, diamonds). The dashed blue curves

are the WKB predictions. Left panel: the three curves are for y+ = 0.1 (top), y+ = 0.4 (middle)

and y+ = 0.8 (bottom). Note that the empty marks here are the filled marks in figure 2. Right

panel: the black filled/empty squares describe solutions with Q/Qext = 0.7992, while the green

filled/empty diamonds represent the numerical results for Q/Qext = 0.8991.

n = 0) and Φ− modes with ` = 2 (and n = 0). We see that Φ+ modes with ` = 1 typically

have lower −Im(ω)/κ− (for fixed background parameters) than Φ− modes with ` = 2.

However, there are small islands in the parameter space where the opposite occurs: see

curve y+ = 0.1 (red disks/circles) for Q/Qext . 0.9. A similar conclusion is reached from

the right panel of figure 3. Here we plot the same modes but this time for RNdS with fixed

Q and varying y+. We see that typically the Φ+, ` = 1 modes dominate over the Φ−, ` = 2

modes. However, for small y+ there is a crossover and the ` = 2 modes become dominant.

These crossovers will not be a problem for our purposes. For each RNdS black hole

we will compute numerically the two types (Φ±) of photon sphere quasinormal mode and

then pick the one with lowest −Im(ω). This can then be compared with the results from

the other families (dS and near-extremal) of quasinormal modes in order to calculate the

spectral gap.

5.2 de Sitter family of modes

In the de Sitter limit, M = 0, Q = 0, the master equations for Φ+ and Φ− are the same.

To find the spectrum, we just need to take (4.2) or (4.10) and set M = 0, Q = 0. Using

the radial coordinate (4.8) this yields the master equation(
1− y2

)
Φ′′±(y)− 2yΦ′±(y) +

(
ω̃2

1− y2
− `(`+ 1)

y2

)
Φ±(y) = 0 , (5.12)

where we have introduced the dimensionless frequency ω̃ = ω rc (with rc = L for the dS

solution). Note that ` = 1, 2, 3, . . . for electromagnetic modes Φ+ and ` = 2, 3, 4, . . . for

gravitational modes Φ−.
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The general solution of (5.12) is

Φ± = Ay`+1
(
1− y2

)− iω̃
2

2F1

(
1

2
(`− iω̃ + 1),

1

2
(`− iω̃ + 2),

3

2
+ `; y2

)
+B y−`

(
1− y2

)− iω̃
2

2F1

(
1

2
(−`− iω̃),

1

2
(−`− iω̃ + 1),

1

2
− `; y2

)
(5.13)

for arbitrary amplitudes A and B, with 2F1(a, b, c; z) being the Gaussian Hypergeometric

function. At the origin this solution behaves as Φ±
∣∣
y=0
≈ Ay`+1 +B y−` and regularity at

y = 0 thus requires that we set B = 0. On the other hand, a Taylor expansion about the

cosmological horizon y = 1 yields

Φ±
∣∣
y=1
'
i Aπ Γ

(
`+ 3

2

)
sinh(πω̃)

(
2
iω̃
2 (1− y)

iω̃
2 /Γ(1 + iω̃)

Γ
(

1
2 [`+ 1− iω̃]

)
Γ
(

1
2 [`+ 2− iω̃]

)
− 2−

iω̃
2 (1− y)−

iω̃
2 /Γ(1− iω̃)

Γ
(

1
2 [`+ 1 + iω̃]

)
Γ
(

1
2 [`+ 2 + iω̃]

)) . (5.14)

Requiring outgoing boundary conditions demands that we discard the (1 − y)i
ω̃
2 solu-

tion. This can be done using the property Γ(−n) = ∞, n ∈ N0, i.e. requiring that

Γ
(

1
2 [`+ 1− iω̃]

)
= Γ(−n) or Γ

(
1
2 [`+ 2− iω̃]

)
= Γ(−n) with n = 0, 1, 2, . . .. The for-

mer condition embraces the latter and quantizes the Φ± quasinormal mode frequencies of

de Sitter as

de Sitter: ω rc
∣∣
dS

= −i(1 + `+ 2n) , for n = 0, 1, 2, . . . (5.15)

with ` = 1, 2, 3, · · · for Φ+ modes and at ` = 2, 3, · · · for Φ− modes.

So far we have restricted our attention to the dS limit (M = 0 = Q) of the RNdS

solution. Naturally, RNdS has quasinormal modes Φ± that in the dS limit reduce to (5.15).

These are what we call the dS family of RNdS quasinormal modes. Numerically we find

that these modes have purely imaginary frequencies and their wavefunctions are localized

near the cosmological horizon.

Figure 4 shows some numerical results for the dS family of modes. For concreteness we

do this illustration for modes Φ− with {`, n} = {2, 0}. In the left panel we fix Q/Qext and

we plot the imaginary part of the frequency Im(ω rc) as a function of the dimensionless ratio

y+ = r+/rc. By definition, dS quasinormal frequencies must approach (5.15) as y+ → 0 and

this is indeed the case (see red diamond). Note that the frequency changes substantially

with y+. However, if we instead fix y+ and vary Q then we find that the frequency does not

change that much as Q/Qext increases from 0 up to 1. This is illustrated in the right panel

of figure 4. This is similar to what was found for massless scalar field quasinormal modes

in ref. [19]. In particular, note that the result (5.15) works well for any small (y+ � 1)

black hole, independently of Q.

Ultimately we will be interested in the ratio −Im(ω)/κ−. In the left panel of figure 5, we

plot this quantity for the modes displayed in the right panel of figure 4. This plot illustrates

that for the dS family, −Im(ω)/κ− can attain large values well above 1/2 or 1. The reason
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Figure 4. de Sitter gravitoelectromagnetic mode Φ− with ` = 2 and n = 0. Left panel: de Sitter

frequency Im(ω rc) as a function of y+ at fixed Q/Qext = 0.5. The red diamond at y+ = 0 is the

analytical de Sitter gravitational quasinormal mode frequency ω rc = −3 i. Right panel: imaginary

part of the frequency as a function of Q/Qext for fixed y+ = 0.01 (green squares), y+ = 0.05 (brown

diamonds) and y+ = 0.1 (black disks).
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Figure 5. Left panel: de Sitter gravitoelectromagnetic mode Φ− with ` = 2 and n = 0: −Im(ω)/κ−
as a function of Q/Qext for fixed y+ = 0.01 (green squares), y+ = 0.05 (brown diamonds) and

y+ = 0.1 (black disks). Right panel: the ratio between the frequency Im(ωdS) of de Sitter mode

of the left panel with y+ = 0.01 and the imaginary part of the geometric optics WKB frequency

prediction (5.11) for the photon sphere modes of the same black holes. We see that, for a small

black hole, −Im(ωdS) is smaller than −Im(ωWKB) for the full range of Q/Qext..
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we choose to display data with small y+ is because this is the region where the slowest

decaying quasinormal modes belong to the dS family (as will be clear later, in figure 8).

For a small black hole, we can compare our analytical formula (5.15) for the slowest

decaying (` = 1, n = 0) de Sitter modes with our WKB prediction (5.11) for the photon

sphere modes. The latter is strictly valid for ` � 1 but we found it worked well even for

small `. We find that in this small black hole limit, the de Sitter modes always decay more

slowly than the WKB prediction for the photon sphere modes. This is illustrated in the

right panel of figure 5 for the black hole family with y+ = 0.01 (the same green square

solutions shown in the left panel of the same figure). Thus for small black holes the ` = 1,

n = 0 de Sitter mode is the slowest decaying mode belonging to either the de Sitter or

photon sphere families.

5.3 Near-extremal family of modes and its near-horizon limit

The third family of quasinormal modes for RNdS black holes is called the near-extremal

family since these modes are continuously connected to modes that can be identified in the

near-horizon limit of the (near-)extremal RNdS solution, i.e. as r− → r+. The analytical

analysis of the near-extremal modes of this subsection (and the near-Nariai modes of the

next one) is very much inspired by ideas from appendix A of [45] and [46, 47]. This family

of near-extremal modes is also present in the case of massless scalar field perturbations of

a RNdS black hole [19].

In this subsection we will first perform an approximate analytical calculation of the

near-extremal quasinormal modes using the near-horizon limit. We will then compare this

to numerical results for these modes.

It is convenient to define the dimensionless quantities

x = 1− r

r+
, and σ ≡ 1− r−

r+
, (5.16)

where σ ≥ 0 vanishes at extremality. The idea is to use the manifest SL(2,R) symmetry

of the AdS2 × S2 near horizon geometry of an extremal RNdS black hole to simplify

our calculation. The modes we seek, in the near extremal limit, are supported near the

black hole horizon. So the limit we want to take has to accomplish two things: approach

extremality, and zoom in near the black hole horizon. This can be achieved by sending

σ → 0 while keeping z = x/σ fixed. We can anticipate that ω will vanish linearly as σ, so

we define ω rc = δ̃ω σ and solve for δ̃ω in what follows.

We set

Φ± = f̂±(z) , z =
x

σ
, (5.17)

and expand (4.2) — or (4.10) since the vector-type and scalar-type modes are isospectral

— to leading order in σ. The resulting equation takes a simple form

(1− z)z
d2

dz2
f̂±(z) + (1− 2 z)

d

dz
f̂±(z) +

[
ϕ̂2

z(1− z)
+ η̂±

]
f̂±(z) = 0 , (5.18)
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where we defined

ϕ̂ = y+Ξ δ̃ω ,

η̂± = 1 + Ξ`(`+ 1)±
√

[1 + Ξ`(`+ 1)]2 − Ξ2(`+ 2)(`+ 1)`(`− 1) (5.19)

Ξ =
1 + 2y+ + 3y2

+

(1− y+) (1 + 3y+)
.

Note that ϕ̂ depends on δ̃ω, but η̂± does not. The expression for η̂± is easily shown to be

real, and it is then manifestly positive. This will play an important role in what follows.

Equation (5.18) can be readily solved in terms of Gaussian Hypergometric functions

2F1 via the following combination

f̂±(z) = Ĉ
(1)
± z−i ϕ̂(1− z)iϕ̂2F1

(
a

(1)
± , a

(2)
± ; 1− 2 i ϕ̂ ; z

)
+ Ĉ

(2)
± zi ϕ̂(1− z)iϕ̂2F1

(
a

(1)
± + 2 i ϕ̂, a

(2)
± + 2 i ϕ̂ ; 1 + 2 i ϕ̂ ; z

)
, (5.20)

where Ĉ
(1)
± and Ĉ

(2)
± are integration constants to be fixed via boundary conditions and

a
(1)
± =

1

2
−
√

1

4
+ η̂± , (5.21a)

a
(2)
± =

1

2
+

√
1

4
+ η̂± . (5.21b)

We want to impose ingoing boundary conditions at the event horizon, i.e. regularity in

ingoing Eddington-Finkelstein coordinates. This is equivalent to setting Ĉ
(2)
± = 0.

Next we need to impose a boundary condition at large −z. In principle this should be

done by matching to a solution that is outgoing at the cosmological horizon. But we will

follow the simpler approach of simply demanding that the solution vanishes at large −z.

This can be motivated by the observation that near-extremal modes are highly localized

near the event horizon and are therefore very small at large −z. Ultimately the justification

for this boundary condition is that it gives quasinormal frequencies that match very well

our numerical results.

At large negative values of z, we get

f̂±(z)≈−e
−πϕ̂
√
−z

Ĉ
(1)
± Γ(1−2iϕ̂)

×

(−1)
√

1+4η̂±Γ
(√

1+4η̂±

)
Γ
(
a

(2)
±

)
Γ
(
b
(2)
±

) (−z)
1
2

√
1+4η̂±

[
1−

a
(1)
±
2

1

(−z)
+O(z−2)

]
+

(−1)−
√

1+4η̂±Γ
(
−
√

1+4η̂±

)
Γ
(
a

(1)
±

)
Γ
(
b
(1)
±

) (−z)−
1
2

√
1+4η̂±

[
1−

a
(2)
±
2

1

(−z)
+O(z−2)

] , (5.22)

where

b
(1)
± = a

(1)
± − 2iϕ̂ , (5.23a)

b
(2)
± = a

(2)
± − 2iϕ̂ . (5.23b)
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The expansion (5.22) diverges at large positive values of (−z) because of the term pro-

portional to (−z)
1
2

√
1+4η̃± . This can be avoided if we set of the Gamma functions in the

denominator to have a pole, which occurs for Γ(−n), with n ∈ N0 = {0, 1, 2, . . .}. In

particular, we quantize the frequency by demanding

b
(2)
± = −n , (5.24)

with n ∈ N0. This equation can be readily solved for δ̃ω and hence for ω:

ω rc = −i (1− y+)(1 + 3 y+)

2 y+ (1 + 2 y2
+ + 3 y2

+)
(a

(2)
± + n)σ , (5.25)

which simplifies considerably when written in terms of κ−:

ω

κ−
= −i

(
n+

1

2
+

√
1

4
+ η̂±

)
, (5.26)

where η̂± is defined in (5.19). Note that these quasinormal frequencies are purely imaginary

and that they all have −Im(ω)/κ− > 1/2. Which of these modes decays most slowly?

The imaginary part of the frequency increases with overtone number n so consider the

fundamental (n = 0) modes. For given `, we have η̂− < η̂+, so the Φ− modes decay more

slowly than the Φ+ modes. It can also be checked that, for any y+, η̂± is an increasing

function of `. It follows that the slowest decaying modes covered by the above analysis are

either the Φ− modes with ` = 2 or the Φ+ modes with ` = 1 (as there are no Φ− modes

with ` = 1). It is easy to show from (5.26) that it is always the Φ− modes with ` = 2 which

decay the most slowly.

The above calculation is, at best, valid only in the near-extremal limit, σ � 1, and for

small frequencies, |ω rc| � 1. In the derivation of (5.26) we have only used the properties

of the RNdS near-horizon geometry but no use of the full geometry or its far region was

made. So we might question the validity of this approximation. To address this question, in

figure 6 we compare (5.26) with the exact numerical data for the quasinormal mode family

(with purely imaginary frequency) that we henceforth call the near-extremal modes. For

illustrative purposes, we do this for the Φ− mode with ` = 2 and radial overtone n = 0.

In the left panel of figure 6, we fix Q/Qext = 0.999 and we plot −Im(ω)/κ− as a function

of y+. Since we are very close to extremality we expect that (5.26) should be a good

approximation. This is indeed what we find. The red dots representing the numerical

data agree very well with the green curve corresponding to (5.26). On the other hand, as

expected, the analytical approximation (5.26) becomes increasingly poor as we move away

from extremality, i.e. as Q/Qext moves further away from unity. This is illustrated in the

right panel of figure 6, where we fix y+ = 0.5 and see that the prediction (5.25) (green

dashed curve) is an excellent approximation when Q ≈ Qext but quickly becomes a bad

approximation as Q decreases.

The validity of the approximation that leads to (5.26) was also tested in the following

way. The fact that we just use the near-horizon geometry to get (5.26) suggests that these

quasinormal modes have to be localized near the event horizon and very quickly decay away
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Figure 6. Near-extremal modes for the gravitoelectromagnetic mode Φ− with ` = 2 and n = 0.

In both plots, the dashed green line is the analytical prediction (5.26), or (5.25), and the red dots

are our numerical results. Left panel: −Im(ω)/κ− as a function of y+ for near-extremal modes at

fixed Q/Qext = 0.999. The dashed blue curve is the WKB prediction (5.11) for the photon sphere

modes (also with Q/Qext = 0.999). This WKB blue curve continues to increase monotonically

as y+ decreases. Right panel: Im(ω rc) as a function of Q/Qext for near-extremal modes at fixed

y+ = 1/2. The dashed blue curve is again the WKB prediction (5.11) for the photon sphere modes.

We see that for a wide range of charge Q the photon sphere modes decay more slowly than the

near-extremal modes but, above a critical charge ratio of Q/Qext ∼ 0.98, the opposite happens.

from it. Our numerical results confirm that this is the case: the numerical near-extremal

mode wavefunctions are indeed localized near the event horizon, r = r+, becoming more

localized as extremality is approached.

In summary, we find that the analytical prediction (5.25) works very well for near-

extremal modes of near-extremal black holes. It is interesting to compare this analytical

prediction, for the dominant Φ−, ` = 2 modes, to the extremal limit of our WKB pre-

diction (5.11) for the photon sphere modes. This comparison is shown in the left panel

of figure 6 for Q/Qext = 0.999. If we go even closer to extremality then the blue curve

moves to the right, and −Im(ωWKB)/κ− diverges in the extremal limit. Thus we see that,

sufficiently close to extremality, the near-extremal modes always decay more slowly than

the WKB prediction for the photon sphere modes. Thus, to the extent that the WKB

prediction is valid at small ` (and, as we have seen, it seems to work well), our analytical

results predict that, in a neighbourhood of extremality, the Φ−, ` = 2 near-extremal modes

should be the slowest decaying modes belonging to either the near-extremal or photon

sphere families. This is further illustrated in the right panel of figure 6 where we are at

fixed y+ = 0.5 and vary Q/Qext: as we approach extremality, there is a critical value of the

charge ratio above which the near-extremal modes indeed become more slowly decaying

than the WKB photon sphere modes.

We can also compare the near-extremal family of modes to the de Sitter family. For

the slowest decaying de Sitter modes, we see from figure 4 (right panel) that Im(ωrc) does
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not vary much as we approach extremality. It follows that −Im(ω)/κ− diverges for the de

Sitter modes as we approach extremality. This ratio remains finite for the near-extremal

modes, hence the near-extremal modes decay more slowly than the de Sitter modes in a

neighbourhood of extremality.

In summary, a combination of analytical and numerical calculations indicates that, in

a neighbourhood of extremality, the slowest decaying quasinormal mode across all families

is the Φ− near-extremal mode with ` = 2 and n = 0. Furthermore, we have an analytical

prediction from (5.25) for the frequency of this mode. Hence (5.25) gives us an analytical

prediction for the behaviour of β as we approach extremality. This is the green curve in

the left panel of figure 6. We will discuss the implications of this below.

5.4 Nariai modes

RNdS black holes have three horizons, r−, r+ and rc. In the previous subsection we con-

sidered the extremal limit where r− → r+. There is however another interesting limit —

the Nariai limit — which occurs when r+ → rc. The surface gravity remains non-zero in

this limit. It is natural to wonder wether there is a fourth family of RNdS quasinormal

modes that reduce to Nariai quasinormal modes in this limit.

For massless scalar field perturbations, the results of ref. [19] suggest that these “Nariai

modes” are a subset of photon sphere modes, rather than constituting a distinct fourth fam-

ily of modes. In the appendix, we will show that this is indeed the case for gravitoelectro-

magnetic modes. Therefore we do not need to consider the Narai modes as a distinct family.

6 Results

As explained above, for each type of perturbation (Φ+ or Φ−) we expect quasinormal modes

to fall into three families (dS, photon sphere and near-extremal). Furthermore, from the

discussion above, we expect that the slowest decaying quasinormal modes for each family

and each type of perturbation to be given by the modes with the lowest allowed value

of ` for that type of perturbation (this will be illustrated later in table 1 for a particular

black hole). Therefore our numerical calculations of quasinormal modes have focused on

the two gravitoelectromagnetic sectors {Φ−, ` = 2} and {Φ+, ` = 1} since other sectors are

expected to give more rapidly decaying modes.

As an example of how we classify the quasinormal modes emerging from our numerical

calculations, we will consider the family of “lukewarm” RNdS black holes [48, 49]. This is

the 1-parameter subfamily of RNdS black holes that are in thermal equilibrium since the

temperature of the event and cosmological horizons are the same i.e. κ+ = κc.
19 It turns

out that this is equivalent to M = |Q| [48]. For a lukewarm hole

Q

Qext
=

1

1 + y+

√
3y2

+ + 2y+ + 1

1 + 2y+
(6.1)

19Lukewarm black hole are in thermal equilibrium but not in full thermodynamic equilibrium because

the chemical potential of the two horizons is not the same.
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Figure 7. Results for the Φ− quasinormal modes with ` = 2 for lukewarm RNdS black holes.

Left panel: the filled marks identify the fundamental (n = 0) modes of the three families, namely

photon sphere (black disks), near-extremal (red diamonds), and de Sitter (blue squares). The black

circles represent the next 15 photon sphere overtones (n = 1, · · · , 15) and the 16 blue dotted lines

represent the WKB approximation Im (ωWKB) (n), n = 0, · · · , 15, for the photon sphere modes

(valid for ` � 1). The red diamond (in the de Sitter curve) represents the n = 0 pure de Sitter

frequency Im(ω rc)|dS = −3. The green triangle (in the near-extremal curve) represents the n = 0

analytical approximation Im(ω rc)|NE = −2 in the limit where Q = Qext, which for lukewarm RNdS

occurs when y+ → 0. Right panel: the three families of fundamental (n = 0) quasinormal modes.

Here we plot −Im(ω)/κ− against Q/Qext. The colour code is the same as for the left panel.

with Q/Qext = 1/
√

2 ∼ 0.707 for y+ = 1 and Q/Qext = 1 for y+ = 0. We have discretized

the lukewarm RNdS family with a numerical grid of 100 points for 0 ≤ y+ ≤ 1, and we

searched for the full spectra of frequencies solving each one of the relevant two perturbation

equations as a quadratic eigenvalue problem for ω2. To evaluate the numerical convergence

of our results we then took the frequency spectrum of each lukewarm solution and inserted

it as a seed in a Newton-Raphson code, and we progressively increased the number of grid

points along the radial direction 0 ≤ y ≤ 1 — see (4.8) — until we got the desired accuracy

for the quasinormal frequency.

As an example, in the left panel of figure 7 we give our results for the imaginary

part of the frequency for the Φ− modes with ` = 2. The black disks are the fundamental

(n = 0) photon sphere modes. This identification emerges from the fact that they match

the geometric optics/WKB approximation (5.11) for Im(ωWKB) (blue dotted line). These

modes also have Re(ω rc) 6= 0 which distinguishes them from the purely imaginary dS and

near-extremal modes. In the same figure, below this n = 0 photon sphere curve, we identify

a total of 15 more curves with black circles. From the left/top to the right/bottom these

are the photon sphere overtones n = 1, 2, · · · , 15. This identification follows from: 1) the

fact that they match the geometric optics/WKB approximation (5.11) (see the associated

15 blue dashed curves20), and 2) the number of radial zeros in the real and imaginary parts

20Note that, as expected, the WKB approximation becomes less accurate for higher overtones. It is

however remarkable that the `� 1 approximation (5.11) is so accurate for ` = 2.
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of the associated eigenvectors increases by one unit as n increases by one unit. For clarity

of our presentation we decided not to plot the photon sphere modes with n ≥ 16. From

the figure the reader can however understand that these accumulate on the right side of

the plot.21

Also on the left panel of figure 7 we also see a line of red diamonds. This is the fun-

damental (n = 0) near-extremal mode of the lukewarm RNdS family.22 This identification

emerges from the fact that: 1) these frequencies are purely imaginary, 2) they converge

to Im(ω rc)|NE = −2 in the lukewarm extremal limit y+ → 0 (see the green triangle), as

dictated by the analytical analysis (5.26), and 3) the eigenvectors of these modes (real

functions) are very localized near the event horizon.

Also on the left panel of figure 7 there is a curve of blue squares. This is the n = 0

de Sitter family of modes because: 1) these modes are purely imaginary, 2) they converge

to Im(ω rc)|dS = −3 as y+ → 0 (see the red diamond), in agreement with the analytical

analysis (5.15), and 3) the eigenvectors of these modes (real functions) are very much

localized near the cosmological horizon.23

To conclude our analysis of the left panel of figure 7, the numerical solution of the

quadratic eigenvalue problem gives the full spectrum of eigenfrequencies and associated

eigenvectors. We have identified each family of modes that appears in the spectrum using

the information discussed in section 5. All the numerical data fits in one of the three classes

of modes (de Sitter, photon sphere or near-extremal). Still in the lukewarm family of RNdS,

we did a similar analysis for the other relevant sector of perturbations, {Φ+, ` = 1}, with

similar results.

Recall, that we are studying the quasinormal spectra of RNdS to find the spectral

gap α in order to calculate β defined by (2.13). To calculate α we need to determine

the slowest decaying quasinormal mode across the two types of perturbation (i.e. Φ+ and

Φ−) in all three families of quasinormal modes. We can illustrate this with the lukewarm

family of RNdS black holes. Focus first on the sector of perturbations {Φ−, ` = 2} already

studied in the left panel of figure 7. Clearly, for our purposes, it is enough to compare

the leading (n = 0) overtone −Im(ω)/κ− for the three families of modes. This is done in

the right panel of figure 7. We see that for lukewarm black holes and in the {Φ−, ` = 2}
sector, photon sphere modes have the lowest −Im(ω)/κ− for Q/Qext . 0.955. However,

for 0.955 . Q/Qext ≤ 1 the slowest decaying modes are the near-extremal ones. The de

Sitter modes are irrelevant for the spectral gap discussion of lukewarm black holes. This

analysis still does not identify β for the lukewarm family. For that, we have to repeat the

analogue of the right panel of figure 7 for the other sector {Φ+, ` = 1} of perturbations

and β is then the minimum of −Im(ω)/κ− over the two sectors of quasinormal modes.

Moving away from the lukewarm family, we will now describe our results for the full

moduli space of RNdS black holes. We have spanned the full parameter space 0 ≤ y+ ≤ 1

and 0 ≤ Q/Qext ≤ 1 using a numerical grid with 100 points along y+ and another 100

21Without much effort, i.e. without increasing the resolution beyond the value required to have the

accuracy desired for the leading overtones, we were able to capture the first ∼40 photon sphere overtones.
22The higher, n ≥ 1, near-extremal overtones have lower Im(ω rc) and are not shown.
23The higher, n ≥ 1, de Sitter overtones have lower Im(ω rc) and are not shown.
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Figure 8. Value of β for RNdS black holes. Left panel. In region A the dS family dominates

(i.e. the slowest decaying quasinormal mode is a dS mode), in region B the photon sphere family

dominates, and in region C the near-extremal family dominates. The red dashed curve corresponds

to the critical value of β = 1/2. Above this line one has β > 1/2 so the Christodoulou formulation

of strong cosmic censorship is violated for smooth initial data. The black dashed dotted line

corresponds to lukewarm black holes. Right panel. β against r+/rc for different values of Q/Qext.

The discontinuities in the derivatives of these curves occur across the boundaries of the different

regions A,B,C. Note that β > 2 sufficiently close to extremality, and large near-extremal black

holes can have arbitrarily large β. The black curve is the analytical prediction for near-extremal

modes and the black disks correspond to lukewarm black holes.

points along Q/Qext. That is to say, we have computed the {Φ+, ` = 1} and {Φ−, ` = 2}
quasinormal modes for a total of 104 RNdS black holes. Where necessary we further

zoomed in a particular region of parameter space, e.g. near Q/Qext ∼ 1 and/or y+ ∼ 0

or y+ ∼ 1. Again, all the numerical modes were identified as belonging to one the three

families of modes (de Sitter, photon sphere or near-extremal). It is in this sense that we

are confident that, for each of the 104 RNdS black holes that we studied, the frequency

spectra of quasinormal modes belongs to one of the three families discussed in section 5

and no fourth family exists.

Our main results for the spectral gap are presented in figure 8. In the left panel we

show a density plot where we plot β = α/κ− as a function of the horizon ratio y+ = r+/rc
and charge ratio Q/Qext. We identify three regions A,B,C separated by three black curves.

In region A the spectral gap is dominated by the de Sitter modes. That is, in this region,

the slowest decaying quasinormal mode is a de Sitter mode. This region A extends all the

way down to Q→ 0, i.e. de Sitter modes dominate the region of parameter space described

by very small values of y+. On the other hand, in region B it is the photon sphere modes

that dominate. Finally, in region C, i.e. in a band of parameter space around extremality

Q/Qext ∼ 1, it is the near-extremal modes that dominate.

The left panel of figure 8, also shows a red dashed curve. This curve identifies solutions

with β = 1/2 and, above it, we have a region of parameter space near extremality where
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` 1 2

sector Φ+ Φ+ Φ−

NE −0.294455 i −0.397250 i −0.200374 i

PS 1.90727− 0.34830 i 3.10274− 0.35888 i 1.85991− 0.36246 i

dS −1.62849 i −2.44384 i −2.49383 i

` 3 4

sector Φ+ Φ− Φ+ Φ−

NE −0.499491 i −0.303216 i −0.601530 i −0.405476 i

PS 4.24555− 0.36316 i 3.05802− 0.36729 i 5.36805− 0.36530 i 4.20146− 0.36923 i

dS −3.25871 i −3.28702 i −4.07350 i −4.09286 i

Table 1. Gravitoelectromagnetic quasinormal mode frequencies ω rc of a RNdS black hole with

y+ = 0.2 and Q/Qext = 0.98. The rows of the table(s) refer to the near-extremal (NE), photon

sphere (PS) and de Sitter (dS) families of modes. Only the fundamental (n = 0) mode is shown in

each case. Our analytical near-horizon calculation (5.25) gives ω rc|NE = −0.280281 i (` = 1, Φ+),

ω rc|NE = −0.378483 i (` = 2, Φ+) and ω rc|NE = −0.191033 i (` = 2, Φ−), ω rc|NE = −0.476091 i

(` = 3, Φ+), ω rc|NE = −0.289223 i (` = 3, Φ−), ω rc|NE = −0.573483 i (` = 4, Φ+) and ω rc|NE =

−0.386826 i (` = 4, Φ−) for the NE modes. Our WKB calculation (5.11) (valid for large `) yields

Im(ω rc)|WKB = −0.370369 for the PS modes. For reference, the de Sitter frequency (5.15) — valid

strictly for y+ = 0 and Q = 0 — yields ω rc|dS = −2 i (` = 1), ω rc|dS = −3 i (` = 2), ω rc|dS = −4 i

(` = 3) and ω rc|dS = −5 i (` = 4).

the solutions have β > 1/2 (see also the density plot legend). It follows from the discussion

of section 3.3 that, in this region, the Christodoulou version of strong cosmic censorship is

violated (for smooth initial data) by gravitoelectromagnetic perturbations.

These results are similar to the results for massless scalar field perturbations presented

in ref. [19]. However, there is an important qualitative difference between our results and

the results for massless scalar field perturbations. In the massless scalar case one always

has β < 1 [19]. But in our case we can have β > 1. This is apparent in the right

panel of figure 8, which plots β against y+ for different values of Q/Qext. The black curve

corresponds to the analytical prediction (5.26) for near-extremal modes Φ− with n = 0 and

` = 2. From the discussion at the end of section 5.3 we expect this analytical prediction

to be reliable as we approach extremality. Our plot shows that this analytical result does

indeed give an accurate prediction for the value of β close to extremality. From the plot

we see that, not only that do near-extremal black holes have β > 1/2, but in fact they

have β > 2, which implies (section 3.3) that the C2 version of strong cosmic censorship is

violated for smooth initial data. In fact, for any r, by taking y+ large enough we can find

a near-extremal black hole for which β > r (the appropriate value of y+ can be determined

from (5.26)). Hence, for any r, the Cr version of strong cosmic censorship is violated for

smooth initial data.

Finally, in table 1 we present detailed numerical results for a particular near-extremal

black hole which violates the C2 version of strong cosmic censorship. For this particular

example we have computed not just the {Φ+, ` = 1} and the {Φ−, ` = 2} modes but also
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the {Φ+, ` = 2}modes and both types of mode with ` = 3, 4. From the table we see that the

slowest decaying mode for this particular black hole is the {Φ−, ` = 2} mode, in agreement

with the discussion at the end of section 5.3. This black hole has κ−rc = 0.098005 and so

β = 0.200374/0.098005 = 2.04.

7 Discussion

7.1 Taking the rough with the smooth

We have reviewed the reason why quasinormal modes determine the behaviour at the

Cauchy horizon of linear perturbations arising from smooth initial data. By calculating

the gravitoelectromagnetic quasinormal modes of RNdS black holes we have shown that,

the Christodoulou and C2 formulations of strong cosmic censorship are always violated

close to extremality, and, for any r, the Cr formulation is violated close to extremality for

a sufficiently large black hole. Thus gravitoelectromagnetic perturbations exhibit a much

worse violation of strong cosmic censorship than the massless scalar field perturbations

considered in ref. [19].

We emphasize that this violation of strong cosmic censorship in Einstein-Maxwell the-

ory does not occur in pure Einstein gravity. Ref. [23] showed that any non-extremal Kerr-dS

black hole has slowly decaying photon sphere gravitational quasinormal modes which en-

sure that the Christodoulou version of strong cosmic censorship is respected for smooth

initial data.

As we have discussed above, Dafermos and Shlapentokh-Rothman (DSR) have shown

that one can rescue strong cosmic censorship for RNdS black holes at the expense of

considering rough initial data [25]. We have explained how a lack of smoothness of the

initial data is also required to make sense of the older argument of ref. [18] in favour of

strong cosmic censorship.

What are we to make of this? Should we allow rough initial data? In physics we often

assume that it is sufficient to work with smooth initial data. However, in some theories,

smooth initial data can lead to a rough solution. For example, a shock can form in a

compressible perfect fluid. Once we accept the existence of shocks, it is natural to weaken

the regularity of our initial data to allow for shocks present initially. So for a fluid it is

natural to allow rough initial data. However, in Einstein-Maxwell (-scalar field) theory,

if we start with smooth initial data then the solution will remain smooth throughout the

domain of dependence of this data. Shocks do not form dynamically. So we are not forced

to consider rough initial data.

On the other hand, rough initial data can be approximated by a sequence of smooth

initial data labelled by an integer n, and all with the same energy as the rough data. The

sequence of smooth solutions arising from such data will be close to the rough solution in

a region of spacetime that becomes larger as n→∞, and approaches the Cauchy horizon

in this limit (this follows from Cauchy stability of the equations of motion). DSR’s rough

version of strong cosmic censorship indicates that one can find a sequence such that the

energy at the Cauchy horizon diverges as n → ∞. Hence, even for smooth perturbations,

the energy at the Cauchy horizon is not bounded by the initial energy. Even if the energy
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of a smooth perturbation does not diverge at the Cauchy horizon, it can still become

arbitrarily large there.

Maybe for some reason one would want the initial data not just to have finite energy

but also that the first k derivatives are square integrable, i.e. the initial data has finite Hk

norm. For example, such a condition might arise from the requirement that the leading

higher derivative corrections to the equations of motion are negligible initially. DSR’s rough

version of strong cosmic censorship implies that there exist smooth initial data whose Hk

norm on a spacelike surface intersecting the Cauchy horizon is not bounded by the Hk norm

of the initial data. This suggests that generic smooth initial data for which the leading

higher derivative corrections are negligible will give a solution for which the leading higher

derivative corrections become large near the Cauchy horizon. This does seem to capture

the physics of the strong cosmic censorship hypothesis, namely that there is always a

breakdown of effective field theory at a Cauchy horizon.

7.2 Comments on quantum effects

The analysis of this paper has been entirely classical. In this section we will discuss the role

of Hawking radiation [50] in enforcing strong cosmic censorship. Recall that the behaviour

at the Cauchy horizon is determined by the late-time behaviour of the black hole solution.

So we need to discuss the effects of Hawking radiation on this late time behaviour. In

de Sitter spacetime, we have to account for Hawking radiation both from the black hole

horizon and from the cosmological horizon [51].

Consider first pure Einstein-Maxwell theory. In this case there are no charged particles

and so Hawking radiation cannot change the charge of the black hole. If the black hole has a

higher temperature than the cosmological horizon then it will radiate photons and gravitons

and its temperature will decrease. If it has a lower temperature than the cosmological

horizon then it will absorb photons and gravitons emitted by the cosmological horizon and

the black hole temperature will increase. Thus Hawking radiation will drive the black hole

towards a lukewarm solution for which the black hole and the cosmological horizon have

equal temperatures, i.e. κ+ = κc [48].

We can approximate the late time solution as a (slightly perturbed) lukewarm solution

and the behaviour near the Cauchy horizon will be determined by the behaviour near

the Cauchy horizon of a lukewarm black hole. Figure 8 (right panel) shows that small

lukewarm black holes have 1/2 < β < 2 and so (in pure Einstein-Maxwell theory) they

violate the Christodoulou formulation of strong cosmic censorship (for smooth initial data)

but not the C2 formulation. Thus it appears that Hawking radiation does not rescue the

Christodoulou version of strong cosmic censorship in pure Einstein-Maxwell theory.

However, there is another way in which quantum effects can influence the geometry,

namely via vacuum polarization. At late time, one would expect the quantum state of

fields outside the black hole to approach the Hartle-Hawking state in the lukewarm black

holes background. In this state, the results of calculations in a 2d toy model [52] (with

conformally coupled quantum fields) indicate that 〈Tµν〉 diverges at the Cauchy horizon.

This divergence is proportional to (−V−)−2, which is not locally integrable at the Cauchy

horizon hence one cannot make sense of the semi-classical Einstein equation Gµν = 8π〈Tµν〉
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there, even in the sense of weak solutions. This suggests that quantum effects may rescue

strong cosmic censorship. It would be interesting to confirm this with a calculation of 〈Tµν〉
in the Hartle-Hawking state near the Cauchy horizon of a lukewarm black hole.

Of course, in the real world there exist charged particles e.g. electrons, that an elec-

trically charged RNdS black hole can emit as Hawking radiation, and thereby decrease

its charge. If the radiation of charged particles is rapid compared to the radiation of un-

charged particles then the black hole will first lose most of its charge, and then evaporate

away completely. If the radiation of charged particles is slow compared to the radiation

of uncharged particles then the latter would tend to push the black hole onto the luke-

warm family of solutions as above. The emission of charged particles would then cause the

charge gradually to decrease whilst remaining within the lukewarm family. But ultimately

the black hole would evaporate away completely. Note that this conclusion does not depend

on the mass of the charged particles. This is because, unlike in flat spacetime, particles of

any mass can escape the black hole by tunnelling through the potential barrier separating

the event horizon from the cosmological horizon. In other words, the mass of the particle

is redshifted away at the cosmological horizon.

It seems that Hawking radiation of charged particles will ensure that strong cosmic cen-

sorship is respected. However, one could also imagine a magnetically charged RNdS hole,

perhaps formed by pair creation in de Sitter spacetime [48]. By performing an electromag-

netic duality rotation, our results on gravitoelectromagnetic perturbations of electrically

charged RNdS holes map to identical results for magnetically charged holes. If there are

no magnetically charged particles then such black holes will evolve via Hawking radiation

to lukewarm holes, which will behave as discussed above.
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A Nariai modes

In this appendix we will consider quasinormal modes which are continuously connected to

quasinormal modes of the Nariai solution, i.e. the r+ → rc limit of RNdS. To explore the

Nariai limit, we introduce the dimensionless quantities

X =
rc − r
rc

, δ =
rc − r+

rc
, µ =

Q

r+
, ω̃ = ω rc . (A.1)

We are interested in low frequency perturbations ω̃ → 0 in the near-horizon limit about

the cosmological horizon, X → 0, of near-Nariai solutions, δ → 0. The second relation

in (A.1) can be used to express y+ as a function of δ, y+ = 1− δ.
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The procedure described in section 5.3 also applies to the current Nariai analysis as

long as we do the identifications x → X and σ → δ in these formulas. We want modes

that are regular at X = 0 (which corresponds to have outgoing boundary conditions at

the cosmological horizon in the full geometry) and the condition that the solutions should

decay at large X quantizes the frequencies. The latter condition is poorly motivated but

it gives results that agree well with our numerics.

Recall, from section 4.2, that the vector-type and scalar-type sectors of perturbations

are isopectral in the Nariai limit. We find that the near-Nariai frequency spectrum is

given by

ω rc
∣∣
Nariai

'

1

4

(
2µ2 − 1

)√4`(`+ 1)− 5 + 10µ2 + 4s
√

4µ2 (µ2 + `2 + `− 1) + 1

1− 2µ2

− 1

4
i
(
1− 2µ2

)
(2n+ 1)

 rc − r+

rc
+O

((rc − r+

rc

)2
)
, (A.2)

where n ∈ N0 is the overtone of the mode with angular quantum number ` and s = ±1 for

the modes Φ±, respectively. Note that ω rc
∣∣
Nariai

→ 0 as r+ → rc, i.e. as y+ → 1.

The frequencies (A.2) of near-Nariai modes have a real and imaginary part. This

analytical approximation is strictly valid in the near-Nariai limit, δ � 1 (i.e. y+ → 1),

Q � Qext and for small frequencies, |ω rc| � 1. So what are these modes? Do they

represent a fourth family of modes in RNdS?

To answer this question we attempted different strategies. In one of them we fix the

black hole parameters and the quantum number ` and we solve the perturbation master

equation as an eigenvalue problem to find the frequencies that are allowed in the back-

ground. After identifying the frequencies — including the first few overtones n ≥ 0 — that

describe the 1) de Sitter, the 2) photon sphere and 3) near-extremal modes we do not find

evidence of a new fourth family of modes. In a second approach, we use a Newton-Raphson

algorithm whereby we give directly (A.2) as a seed (in a region of parameter space, i.e.

y+ ∼ 1, where it is a good approximation). Again, such a code does not converge to

a new fourth family of modes. Instead, this Newton-Raphson code always converges for

the family of modes that we have already identified as being the photon sphere of modes.

Moreover, this happens not only when we search for the leading radial overtone, n = 0 in

the seed (A.2), but also for the first few other overtones that we attempted (n = 1, 2, 3).

We consider that our experiments give good evidence to support the claim that there

is no fourth family of quasinormal modes that can be associated to a Nariai origin. Instead,

the Nariai frequencies simply give a good approximate description of photon sphere modes

in the limit where y+ → 1. These conclusions are best illustrated in figure 9. In the

left panel, we fix y+ = 0.99 and the dashed orange curve describes the analytical Nariai

expression (A.2) prediction whereas the dashed blue line is the WKB prediction (5.11)

for the photon sphere modes. The black diamonds represent the outcome of our Newton-

Raphson search when we give the Nariai frequency (A.2) as a seed. Both the near-Nariai

and WKB photon sphere predictions agree very well with the numerical data although,

as expected, the near-Nariai result works less well at large Q/Qext. In the right panel of

– 48 –



J
H
E
P
1
0
(
2
0
1
8
)
0
0
1

◆

◆
◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
��� ��� ��� ��� ��� ���

����

����

����

����

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
���� ���� ���� ���� ����

�����

�����

�����

�����

�����

�����

�����

Figure 9. Photon sphere family of modes Φ− with ` = 2, n = 0 and the Nariai limit. In both

plots, the dashed orange line refers to the Nariai analytical prediction (A.2) for −Im(ωNariai)/κ−
(with ` = 2, n = 0), while the dotted blue curve is the analytical photon sphere prediction (5.11) for

−Im(ωWKB)/κ− (with n = 0). Left panel: −Im(ω)/κ− as a function of Q/Qext at fixed y+ = 0.99,

i.e. r+ = 0.99 rc. Right panel: −Im(ω)/κ− as a function of y+ at fixed Q/Qext = 0.4995. Note that,

as expected, the Nariai analytical prediction is a good approximation only near y+ ∼ 1. It seems to

describe the y+ ∼ 1 limit of the photon sphere modes (black diamonds and WKB dotted blue line).

figure 9, we fix Q/Qext and vary y+. Again, the black diamonds represent the outcome

of our Newton-Raphson search when we give the Nariai frequency (A.2) as a seed. As

expected, the near-Nariai prediction (A.2) is very good for 1 − y+ � 1 but quickly gets

worst as y+ decreases. The black diamonds turn out to be exactly the photon sphere modes

that we had already found in an independent analysis. This is confirmed by the agreement

with the WKB prediction (5.11). The results presented in this plot are qualitatively the

same for any other value of the charge ratio Q/Qext (and we did a fine-tunned search which

spanned the full interval 0 < Q/Qext < 1).

Analysis similar to the one displayed in figure 10 further reinforce our conclusion. In

this figure, we take Q/Qext =0.0999 and we focus our attention in the interval 0.98<y+<1,

i.e. very close to the Nariai limit y+ → 1. We display the modes we obtain with a Newton-

Raphson search when we give analytical Nariai expression (A.2) as a seed. In the left panel

we plot the imaginary part of the frequency, while in the right panel we plot the real part of

the frequency. The left panel exemplifies again what we already know: as discussed in the

previous cases, both the WKB expression (blue dotted curve) and the Nariai expression

(orange dashed curve) give good approximations for Im(ω rc) when y+ ∼ 1 and as we move

away from the Nariai limit, the analytical expression (A.2) starts being a less good approx-

imation. On the other hand, the right panel of figure 10 shows that the analytical Nariai

expression (A.2) yields an approximation for the real part of the frequency that is actually

even better than the WKB approximation (5.11), as long as 1−y+ � 1. However, we would

expect that including higher order terms in 1/` would improve the accuracy of the WKB

prediction, which is already remarkably accurate given that we are working with ` = 2.
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Figure 10. Photon sphere family of modes Φ− with ` = 2, n = 0 and the Nariai limit for RNdS

black holes with Q/Qext = 0.0999. In both plots, the dashed orange line refers to the Nariai

analytical prediction (A.2) for ` = 2, n = 0, while the dotted blue curve is the analytical geometric

optics/WKB photon sphere prediction (5.11) for ` = 2, n = 0. Left panel: Im(ω rc) as a function of

y+ close to the Nariai limit y+ ∼ 1. Right panel: Re(ω rc) as a function of y+ close to the Nariai

limit y+ ∼ 1.

To conclude, we have shown that the Nariai result (A.2) simply describes the photon

sphere family of quasinormal modes in the y+ → 1 limit. In the case of a massless scalar

field perturbation of RNdS, the analysis of [19] reached the same conclusion.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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