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This data article makes available the informed computation of
the whole Protein Data Bank (PDB) to investigate diffraction
anisotropy on a large scale and to perform statistics. This data
has been investigated in detail in “X-ray diffraction reveals the
intrinsic difference in the physical properties of membrane and
soluble proteins” [1]. Diffraction anisotropy is traditionally
associated with absence of contacts in-between macromolecules
within the crystals in a given direction of space. There are
however many case that do not follow this empirical rule. To
investigate and sort out this discrepancy, we computed diffrac-
tion anisotropy for every entry of the PDB, and put them in
context of relevant metrics to compare X-ray diffraction in
reciprocal space to the crystal packing in real space. These
metrics were either extracted from PDB files when available
(resolution, space groups, cell parameters, solvent content), or
calculated using standard procedures (anisotropy, crystal con-
tacts, presence of ligands). More specifically, we separated
entries to compare soluble vs membrane proteins, and further
separated the later in subcategories according to their insertion
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in the membrane, function, or type of crystallization (Type I vs
Type II crystal packing). This informed database is being made
available to investigators in the raw and curated formats that
can be re-used for further downstream studies. This dataset is
useful to test ideas and to ascertain hypothesis based on sta-
tistical analysis.
& 2018 The Authors. Published by Elsevier Inc. This is an open

access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Biology

ore specific subject area
 Crystallography

ype of data
 Excel sheet document

ow data was acquired
 Advanced computation on Protein Data Bank [2] data

ata format
 Raw and curated

xperimental factors
 Each Protein Data Bank entry were retrieved for both experimental

diffraction data and deposited model, and further processed and clas-
sified according to biologically driven criterion.
xperimental features
 Separation between soluble and membrane proteins; membrane pro-
teins were further separated in different subclasses. For each entry,
diffraction anisotropy was calculated and compared to many para-
meters to investigate the cause of the phenomenon.
ata source location
 All entries were retrieved from the Protein Data Bank [2].

ata accessibility
 The data is made available as supplemental information of this article
D

Value of the data

� First broad analysis of the spread of diffraction anisotropy across the entire Protein Data Bank.
� Allows researchers to compare their anisotropy to all other available entries and better gage their data.
� These data set ground to challenge established ideas and to further investigate diffraction data

from macromolecule crystals.
1. Data

In these data, X-ray diffraction anisotropy is calculated for each entry of the Protein Data Bank and
put into perspective with relevant structural information, such as solvent content, resolution, crystal
contacts, space group, presence of ligands, etc., to investigate correlations. The aim of these data is to
investigate differences between soluble and membrane proteins, so these two types of proteins were
identified and separated. Membrane proteins were further separated into subclasses according to
their insertion in the membrane, fold, or function to link differences with biology.
2. Experimental design, materials and methods

2.1. Data mining and computation

As of February 24th, 2016, a local copy of the RCSB Protein Data Bank (PDB) was made including all
the deposited structures in PDB formatted coordinate files as well as all the crystallographic structure
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factors in mmCIF format. To this date, out of 115,888 available structures, 103,530 were solved by
X-ray crystallography and 92,995 related structure factors files were accessible. For further proces-
sing, these last were converted from mmCIF to CCP4 MTZ format with the sf-convert software version
1.204 (developed at RCSB and downloadable at http://deposit.pdb.org/software). By this mean, 92,930
structure factors files were successfully converted, while 65 were not due to various file format issues.
We then developed an automated Linux script in Bash programming language that sequentially
performed the following tasks for each of the PDB/MTZ couple of files obtained previously:

– Several data were directly extracted from the PDB file header: the most recent deposition/revision
year (PDB ‘REVDAT’ record), the resolution in angstrom (‘REMARK 2 RESOLUTION’ record), the
space group and the unit cell parameters (‘CRYST1’ record), the data collection temperature
(‘REMARK 200 TEMPERATURE’ record), all compounds/ligands sorted by their 3-letters hetID codes
(‘HETNAM’ records), as well as the list of terms relevant to the entry (‘KEYWDS’ record).

– In addition to these keywords and for each membrane proteins entries, we extracted the name of
the protein from the ‘Membrane proteins of known 3D structure’ database (http://blanco.biomol.
uci.edu/mpstruc/) leaded by S.H. White (University of California, Irvine).

– When available, the solvent content (in percent) was also retrieved (‘REMARK 280 SOLVENT
CONTENT’ record). If not, it was calculated using the program matthews_coef from the CCP4
software suite version 7.0 [3].

– When applicable, the percentages of four classes of protein secondary structure elements (helices,
strands, turns and coils) were calculated using the program mkdssp version 2.2.7 included in CCP4.

– A crystal contacts ratio value was determined by dividing the number of crystal contacts in the unit-
cell (computed using ncont from CCP4 with a maximum distance cutoff of 4.0 Å) by the total
number of atoms, including heteroatoms and solvent (i.e. all ‘ATOM’ and ‘HETATM’ PDB records).

– We employed the ‘UCLA Diffraction Anisotropy Server’ [4] script that we modified to take advantage
of the last available revisions of CCP4. Thus, for each PDB entry, the anisotropic delta-B value was
computed with Phaser [5] both using amplitude and intensity data, when available. Furthermore,
the resolution limits at which F/σ(F) drops below 3.0 was determined using the program Truncate
from CCP4, this for each of the 3 principle axes of the anisotropic ellipsoid. A ‘delta_res’ value was
then deducted by subtracting the lowest resolution limit to the highest one. In addition, the Wilson
B-factor was computed with Phaser using amplitude and intensity data, when available. A ratio
between the previously calculated anisotropic delta-B value and this Wilson B-factor was then
deducted, both with amplitude and intensity data when available. Finally, the total number of
reflections was extracted from the structure factors file as well as the number of reflections that
were rejected during the anisotropy correction cycles performed by Phaser, this allowing us to
determine the percentage of rejected reflection during this process.

Thus, from the starting set constituted by 92,930 entries, we were able to compute 92,218 aniso_b
based on amplitude data, 26,319 based on intensities and 92,154 delta_res values. The differences
came from the fact that a number of structure factor files did not contain intensity data and/or
accurate information (i.e. missing or null σ(F), σ(I) values, etc.).

All these data were joined, sorted by PDB entry code and imported in an Excel 2013 (Microsoft
Corporation) spreadsheet.

2.2. Curation

For reasons described in [6] and the behavior of anisotropy over the years (Fig S6D in ref [6]), we
decided to only retain structures obtained after 2005 in order to compare entries of similar difficulty
levels and susceptible to have comparable anisotropic behavior. Also, in order to compare reasonably
well-behaved structures, only data diffracting to less than or equal to 5 Å resolution were kept, and
anisotropic delta-B values on amplitudes above 150 Å2 were rejected. In addition, all crystal contacts
ratio over 1 were removed from the analysis. Thus, our final dataset consisted of 76,458 entries with
74,928 and 1411 calculated anisotropic delta-B values on amplitudes (soluble and membrane proteins,
respectively); and 23,125 and 487 values on intensities.

http://deposit.pdb.org/software
http://blanco.biomol.uci.edu/mpstruc/
http://blanco.biomol.uci.edu/mpstruc/
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2.3. Subsets extraction

From this curated database, 13 subsets were then extracted based on distinct structural or
biological criteria. These last derived from the classification provided by the ‘Membrane proteins
of known 3D structure’ database (http://blanco.biomol.uci.edu/mpstruc/). These subsets are:
soluble proteins; membrane proteins; membrane proteins structures solved in detergents, lipidic
cubic phase (extracted as described by M. Caffrey [7]) or bicelles; α-helical or β-barrel trans-
membrane proteins; monotopic membrane proteins; membrane ATPase, electron-transfer,
channel, receptor and transporter proteins. Finally, two other subsets (embedded membrane
proteins and proteins with extramembranous domains) were extracted based on visual inspection
of their spatial arrangements information, visualized using the ‘Orientations of Proteins in
Membranes’ (OPM) database [8].

2.4. Code availability

The present database is generated using an automated Linux Bash script we developed (tested on
CentOS 7.x). This last is available with no restrictions upon request to the corresponding author. It can
be executed on any Linux distribution as long as the CCP4 software suite version 7.0 (or superior) is
installed. Moreover, a local copy of the PDB is also required: this includes all the deposited structures
in PDB formatted coordinate files as well as all the crystallographic structure factors in mmCIF format
to be converted in MTZ format. An additional Linux Bash script performing these file mirroring and
conversion steps is available upon demand as well.
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Supplementary Materials

- ANISOTROPY_RAW.xlsx.
Contains all data in raw format, non curated and non subdivided.
- ALL_SUBSETS_CURATED.xlsx.
Contains all curated data, assembled into a multiple worksheets Excel 2013 file with 16 distinct

tabs corresponding to the entire curated database followed by the 15 derived subsets described in the
‘Methods/Subsets extraction’ section and reminded in the table below:
T
A
S
M
D
L
B
A
B
M
A
E

AB LABELS
 Descriptions

LL
 The complete curated database

OLUBLE
 Soluble proteins

EMBRANE
 Membrane proteins

ETERGENT
 Membrane proteins structures solved in detergents

CP
 Membrane proteins structures solved in lipidic cubic phase

ICELLES
 Membrane proteins structures solved in bicelles

LPHA
 α-helical transmembrane part of membrane proteins

ETA
 β-barrel transmembrane part of membrane proteins

ONOTOPIC
 Monotopic membrane proteins

TPASE
 Membrane proteins with ATPase function

-TRANSFER
 Membrane proteins with electron transfer function

http://blanco.biomol.uci.edu/mpstruc/
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HANNEL
 Membrane proteins with channel function

ECEPTOR
 Membrane proteins with receptor function

RANSPORTER
 Membrane proteins with transporter function

MBEDDED
 Membrane proteins fully embedded within the membrane

XTRAMB
 Membrane proteins with extramembranous domains
E
Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/
10.1016/j.dib.2018.05.072.
Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at https://doi.
org/10.1016/j.dib.2018.05.072.
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