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Abstract An interesting question is whether two 3-manifolds can be distinguished by com-
puting and comparing their collections of finite covers; more precisely, by the profinite com-
pletions of their fundamental groups. In this paper, we solve this question completely for
closed orientable Seifert fibre spaces. In particular, all Seifert fibre spaces are distinguished
from each other by their profinite completions apart from some previously-known exam-
ples due to Hempel. We also characterize when bounded Seifert fibre space groups have
isomorphic profinite completions, given some conditions on the boundary.
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1 Introduction

One possible algorithm to solve the homeomorphism problem for 3-manifolds could run
as follows. Given two triangulated 3-manifolds M1 and M2, perform Pachner moves on M1
to try to establish a homeomorphism with M2. In parallel, compute a list of finite-sheeted
covers of the two manifolds, along with regularity of the covers and the group of deck
transformations. If at some covering degree a difference appears, the two manifolds will be
shown to be non-homeomorphic.

The question arises, to what extent will this algorithm work? That is, could the collec-
tions of covers of two distinct 3-manifolds have the same structure? This is a manifestation
of the wider question of when two groups have the same set of finite quotients. The naı̈ve
statement in terms of sets of finite quotients is usually replaced with an equivalent formu-
lation concerning the profinite completions of the two groups. The question is then one of
‘profinite rigidity’. We make the following definition:

Definition 1.1 An (orientable) 3-manifold is profinitely rigid if the profinite completion
distinguishes its fundamental group from all other fundamental groups of (orientable) 3-
manifolds.
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In dimension 2, the analogous property is known to hold by work of Bridson, Conder, and
Reid [6], who showed that the profinite completion distinguishes 2-orbifold groups not just
from each other, but from all lattices in connected Lie groups.

For 3-manifolds, only a few examples are known to be profinitely rigid. Bridson and
Reid [7] and Boileau and Friedl [5] have proved that the figure-eight knot group is profinitely
rigid among 3-manifold groups, along with a handful of other knot groups. By contrast, there
are large families known not to be profinitely rigid. Funar [11] built on work of Stebe [21]
to give infinite families of Sol manifolds with the same finite quotients. Hempel [13] gave
Seifert fibred families, with geometry H2×R.

These examples notwithstanding, the profinite completion of the fundamental group of a
low-dimensional manifolds is known to contain a large amount of information. For instance,
Wilton and Zalesskii [26] have shown that the geometry (if any) of a 3-manifold is detected
by the profinite completion. In particular, Seifert fibre spaces are distinguished from all
other 3-manifolds. Lackenby [14] has shown that the pro-2 completion of a 3-manifold
group determines whether that 3-manifold contains a pair of embedded surfaces which do
not disconnect the manifold.

In this paper, we provide the full solution of the profinite rigidity question for closed
orientable Seifert-fibred 3-manifolds. In effect, the above-cited examples of Hempel [13]
are the only failures of profinite rigidity among these manifolds. The precise statement,
when combined with the work in [26], is:

Theorem 1.2 Let M be a (closed orientable) Seifert fibre space. Then either:

– M is profinitely rigid; or
– M has the geometry H2×R, is a surface bundle with periodic monodromy φ and the

only 3-manifolds whose fundamental groups have the same finite quotients as π1M are
the surface bundles with monodromy φ k, for k coprime to the order of φ .

The theorems of [26] are stated for closed manifolds, so we will be a little more circum-
spect about asserting profinite rigidity among all 3-manifolds. However we may still resolve
the rigidity question among Seifert fibre spaces. For the precise statements see Theorems
5.8 and 5.9; in summary

Theorem 1.3 Let M1, M2 be Seifert fibre spaces with non-empty boundary. Then the follow-
ing are equivalent:

– π̂1M1 ∼= π̂1M2, by an isomorphism inducing an isomorphism of peripheral systems.
– M1 is a surface bundle with periodic monodromy φ , and M2 is a bundle over the same

surface with monodromy φ k, where k is coprime to the order of φ .

The author would like to thank Marc Lackenby for suggesting this field of study and
for many enlightening conversations during the development of this theorem. The author
was supported by the EPSRC and by a Lamb and Flag Scholarship from St John’s College,
Oxford.

Remark 1.4 In this document, we will use the following conventions:

– all manifolds and orbifolds will be assumed compact, connected and without boundary
unless otherwise stated; all 3-manifolds will be orientable;

– abstract groups will be assumed finitely presented and will be denoted with Roman
letters G,H, ...; they will be assumed to have the discrete topology.

– profinite groups will be assumed topologically finitely generated and will be denoted
with capital Greek letters Γ ,∆ , ...
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– the symbols /f, /o, /p will denote ‘normal subgroup of finite index’, ‘open normal sub-
group’, ‘normal subgroup of index a power of p’ respectively; similar symbols will be
used for not necessarily normal subgroups.

– there is a divergence in notation between profinite group theorists, who use Zp to denote
the p-adic integers, and manifold theorists for whom Zp is usually the cyclic group of
order p. To avoid any doubt, the cyclic group of order p will be consistently denoted
Z/p or Z/pZ.

2 Cohomology of profinite groups

2.1 Goodness

It will important to have control over the cohomology of profinite completions. We recall
here certain theorems of this nature, which will be used freely without future reference.
Serre [20] made the following definition:

Definition 2.1 A finitely generated group G is good if for all finite G-modules A, the natural
homomorphism

Hn(Ĝ;A)→ Hn(G;A)

induced by G→ Ĝ is an isomorphism for all n.

Theorem 2.2 (Grunewald, Jaikin-Zapirain, Zalesskii [12]) All finitely generated Fuch-
sian groups are good.

Under certain finiteness assumptions which hold in our cases of interest, an extension of a
good group by a good group is itself good (see [20]); furthermore, finite index subgroups of
good groups are good. Hence:

Corollary 2.3 The fundamental groups of Seifert fibre spaces are good.

It wil not be needed in the sequel, but it seems fitting to mention that in fact all 3-manifold
groups are good. This theorem is of somewhat disputed attribution. It was proven be Wilton
and Zalesskii [25] that a 3-manifold has good fundamental group if all pieces of its JSJ de-
composition do. Seifert-fibred pieces are covered by the above corollary. That hyperbolic
3-manifold groups are good follows from the Virtually Compact Special Theorem and its
various consequences. There are numerous ways one may deduce this; one may use the Vir-
tual Fibring Theorem of Agol [1] or another route as outlined in [10]. In stating the Theorem
as due to Agol, Wilton-Zalesskii, and Wise we aim to recognise those who contributed most.
A full account and list of references may be found in [4].

Theorem 2.4 (Agol, Wilton-Zalesskii, Wise) Fundamental groups of compact 3-mani-
folds are good.

2.2 Chain complexes

It will be necessary later to work with certain exact sequences of modules over the group
ring of a profinite group. In this section we will recall and prove some of the necessary tools.
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Definition 2.5 Given a profinite abelian group A (usually Ẑ, Ẑ(p) or a finite abelian group)
and a profinite group Γ , the completed group ring A[[Γ ]] is defined as the inverse limit

lim←−
A′,N

A/A′[Γ /N]

of group rings indexed over the finite index open normal subgroups A′,N of A,Γ . It is a
compact Hausdorff topological ring.

Modules over A[[Γ ]], together with continuous module maps, form an abelian category
with the same formal properties as the category of R-modules for a ring R; so the machinery
of homological algebra works and we can define profinite group cohomology by starting
from an arbitrary resolution of Ẑ by projective (left) Ẑ[[Γ ]]-modules and applying the func-
tor HomẐ[[Γ ]](−,M) giving the continuous homomorphisms from a module to M. If M is

a module with trivial Γ -action, we can factor this through the functor Ẑ⊗Ẑ[[Γ ]]− which
‘forgets the Γ -action’ on the chain complex.

We will need to show that, under certain conditions, a free resolution of Z by Z[G]-
modules yields a free resolution of Ẑ by Ẑ[[Ĝ]]-modules. To this end we use the following
propositions and definitions, which are adapted from results in [15].

Definition 2.6 A discrete group G is of type FP(n) if there is a resolution of the trivial
module Z by projective Z[G]-modules P•, such that Pi is finitely generated for 0≤ i≤ n.

Proposition 2.7 Let G be a discrete group which is good. Then:

– lim−→K≤fG
Hq(K;M) = 0 for every finite G-module M and all q≥ 1

– If G is of type FP(n), then lim←−K≤fG
Hq(K;M) = 0 for every finite G-module M and all

1≤ q≤ n.

Proof First note we may restrict to the case of trivial modules in the conclusions, as any fi-
nite G-module M becomes trivial over K for a cofinal subset of {K≤f G}. Thus we may view
M interchangeably as a left or right module. The maps resK

K′ : Hq(K;M)→ Hq(K′;M) are
given by restriction of cochains. The direct limit in question (categorically a colimit) is zero
if all elements of Hq(K;M) are ‘eventually zero’; that is, for all x ∈Hq(K;M) there is some
K′ ≤ K such that x is mapped to zero under the restriction map Hq(K;M)→ Hq(K′;M). By
goodness of K, there is a natural identification Hq(K;M)∼= Hq(K̂;M) so we may represent
x as a continuous cochain ξ : K̂q→M (q > 0). The preimage of 0 under ξ is some open sub-
set of K̂q; products of open subgroups of K̂ form a neighbourhood basis in K̂q, so we may
choose ∆ ≤o K̂ such that ξ |∆ q = 0; then setting K′ = K∩∆ (so that ∆ = K̂′) the commuting
diagram

Hq(K;M) Hq(K′;M)

Hq(K̂;M) Hq(K̂′;M)

resK
K′

∼=
resK̂

K̂′

∼=

shows that resK
K′(x) = 0; hence that lim−→K≤fG

Hq(K;M) = 0.
For the second conclusion, assume G is of type FP(n). Then Hq(K;M) is finite for all

0 ≤ q ≤ n, K ≤f G and M a finite G-module, and similarly for the cohomology. Recall that
an inverse limit of finite abelian groups Ai is trivial if and only if for each i in the indexing
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set, there exists j ≥ i such that A j → Ai is the zero map; and similarly for a direct limit of
finite abelian groups.

So let K be a finite index subgroup of G, and take K′ such that the restriction map resK
K′

is zero on each Hq. We show that we can dualise this to find that the corestriction map is
also zero. Note that a finite-index subgroup of a group of type FP(n) is also of type FP(n).
Let P• be a projection resolution of Z by left ZK-modules, which is finitely generated in
dimensions at most n. There is a natural isomorphism (see [9], Proposition II.5.2)

HomZK(P•,HomZ(M,Q/Z))∼= HomZ(M⊗P•,Q/Z)

Now take homology; Q/Z is an injective abelian group, so Hom(−,Q/Z) is an exact functor
and commutes with homology; hence we get a natural isomorphism

Hq(K;M∗)∼= (Hq(K;M))∗

where N∗ denotes the dual Hom(N,Q/Z) of an abelian group. Finite abelian groups are
isomorphic to their dual and canonically isomorphic to their double-dual; so we get a natural
isomorphism

Hq(K;M∗)∗ ∼= Hq(K;M)

in dimensions 0 ≤ q ≤ n where the right hand side is finite. The inclusion K′→ K induces
the zero map on the left hand side by assumption, noting that M is isomorphic to M∗ so the
restriction map with M∗ coefficients also vanishes. Hence the map on the right hand side,
the corestriction map, is zero.

To prove the next proposition, we will need some exactness properties of the functor lim←−.
In general this functor will not be exact and so will not commute with homology. A well-
known condition for exactness is the Mittag-Leffler condition; roughly, it is an ‘eventual
stability’ condition. See [24] for a full treatment; here we merely state the definition and
consequence.

Definition 2.8 An inverse system (Ai)i∈I , where (I,≤) is a totally ordered inverse system
(not merely partially ordered) satisfies the Mittag-Leffler condition if for all i there exists
j ≥ i such that

im(Ak→ Ai) = im(A j→ Ai)

for all k ≥ j. That is, the images of the transition maps into Ai are eventually stable.

If all systems Cn,i (i ∈ I) in an inverse system of chain complexes C•,i satisfy the Mittag-
Leffler condition, then we will have

lim←−
i

Hn(C•,i) = Hn(lim←−
i

C•,i)

for all n. In our case, all the groups Cn,i will be finite, so that the Mittag-Leffler condition
holds (a decreasing sequence of subsets of a finite set is eventually constant). Our indexing
set I = {(m,K) |m∈N,K≤f G}will not be totally ordered; however by passing to the cofinal
subset J = {(m!,Kn)} where Kn is the intersection of the finitely many subgroups of index
at most n, we get a totally ordered indexing set without affecting the limit.

Proposition 2.9 Let (Ci)0≤i≤n → Z be a partial resolution of Z by free finitely generated
Z[G]-modules Ci = Z[G]⊕ri where G is a good group. Then (Ĉi)0≤i≤n → Ẑ is a partial
resolution of Ẑ by free Ẑ[[Ĝ]]-modules

Ĉi = Ẑ[[Ĝ]]⊕ri
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Proof For each m ∈ N and K ≤f G, set

Ai,m,K = (Z/m)[G/K]⊗Z[G]Ci = (Z/m)[G/K]⊕ri

so that the new chain groups are
Ĉi = lim←−

m,K
Ai,m,K

The groups Ai,m,K are finite, so the homology of each chain complex (A•,m,K) is finite; as
described above we may now use the Mittag-Leffler condition to conclude

Hi(Ĉ•) = Hi(lim←−
m,K

Ai,m,K) = lim←−
m,K

Hi(Ai,m,K)

Regarding (C•) as an exact complex of free finitely generated Z[K]-modules and noting that

Ai,m,K = (Z/m)⊗Z[K]Ci

these homology groups Hi(Ai,m,K) are precisely Hi(K;Z/m). By the goodness of G we can
now use Proposition 2.7 to conclude

Hi(Ĉ•) = lim←−
m,K

Hi(K;Z/m) = 0

for n−1≥ i≥ 1; and for i = 0

H0(Ĉ•) = lim←−
m,K

H0(K;Z/m) = lim←−
m,K

Z/m = Ẑ

i.e. (Ĉ•) is a free partial resolution of Ẑ.

3 Profinite completions of 2-orbifold groups

In this section we recall the results of Bridson, Conder and Reid [6] concerning Fuchsian
groups (i.e.orbifold fundamental groups of hyperbolic 2-orbifolds), and show that they ex-
tend to the case of Euclidean 2-orbifolds.

Theorem 3.1 (Theorem 1.1 of [6]) Let G1 be a finitely-generated Fuchsian group and G2
be a lattice in a connected Lie group. If Ĝ1 ∼= Ĝ2 then G1 ∼= G2.

Corollary 3.2 Let O1,O2 be closed 2-orbifolds. If ̂
πorb

1 (O1) ∼= ̂
πorb

1 (O2) then πorb
1 (O1) ∼=

πorb
1 (O2). If χorb(O1)≤ 0, then O1 and O2 are homeomorphic as orbifolds.

Proof Since πorb
1 (O1) is finite if and only if the orbifold Euler characteristic is positive, we

can safely ignore these cases as the profinite completion is then simply the original group.

Otherwise, assume ̂
πorb

1 (O1)∼= ̂
πorb

1 (O2). Recall that closed 2-orbifolds of nonpositive Euler
characteristic are determined by their fundamental groups.

The orbifold has a finite cover which is a surface; take such a cover of O1 and the
corresponding cover of O2. If necessary pass to a further finite cover so that both O1 and
O2 are covered with degree d by surfaces with isomorphic profinite completions. A surface
group is determined by its first homology, which is seen by the profinite completion, so
the two surfaces are homeomorphic to the same surface Σ . Orbifold Euler characteristic is



Profinite rigidity for Seifert fibre spaces 7

multiplicative under finite covers, so χorb(O1) = χ(Σ)/d = χorb(O2). Hence Euclidean and
hyperbolic orbifolds are distinguished from each other.

It only remains, in light of the above theorem of Bridson-Conder-Reid, to distinguish the
Euclidean 2-orbifolds from each other. The profinite completion detects first homology; a
direct computation shows that this suffices to distinguish all the Euclidean 2-orbifolds except
(S2;2,4,4) and (P2;2,2). Recall that an isomorphism of profinite completions would induce
a correspondence between the index 2 subgroups, with corresponding subgroups having the
same profinite completions. But (P2;2,2) is covered by the Klein bottle with degree 2, and
the Klein bottle is distinguished from the other 2-orbifolds by its profinite completion, but
does not cover (S2;2,4,4). So these two Euclidean orbifolds also have distinct profinite
completions.

Theorem 3.3 (Theorem 5.1 of [6]) Let G be a finitely generated Fuchsian group. Every
finite subgroup of Ĝ is conjugate to a subgroup of G, and if two maximal finite subgroups of
G are conjugate in Ĝ then they are already conjugate in G.

Proposition 3.4 Let G be the fundamental group of a closed Euclidean 2-orbifold X. Every
torsion element of Ĝ is conjugate to a torsion element of G, and if two torsion elements of G
are conjugate in Ĝ then they are already conjugate in G.

Proof The second statement is a special case of the fact that a virtually abelian group is
conjugacy separable [21].

We proceed on a case-by-case basis. If X is a torus or Klein bottle, then G is good and
has finite cohomological dimension, hence Ĝ has finite cohomological dimension and so
is torsion free. If X = (S2;2,2,2,2) then G is the amalgamated free product of two copies
of the infinite dihedral group. The result then holds by the same argument as in Theorem
5.1 of [6]; for a finite subgroup of the fundamental group of a graph of groups must be
conjugate into one of the vertex groups, which here are the copies of Z/2. The same result
holds profinitely. Similarly if X = (P2;2,2) then the fundamental group is an amalgamated
free product.

In [6] the triangle orbifolds were dealt with by passing to certain finite covers which
decompose as amalgams, and whose fundamental group contains the torsion element of
interest. However for Euclidean orbifolds, it may happen that no such covers exist; indeed
no orbifold whose fundamental group is an amalgam has any cone points of order greater
than 2. We will instead exploit the fact that our triangle groups are virtually abelian. We
give in detail the proof for the orbifold X = (S2;3,3,3); the other two triangle orbifolds are
similar but involve checking more cases, so it would be uninformative to include the proofs.

Let G =
〈
a,b
∣∣a3,b3,(ab)3

〉
. We have a short exact sequence

1 N G H1G 1

1 Z2 G (Z/3)2 1

∼= id ∼=

The subgroup N is a subgroup of the translation subgroup of G. The translation subgroup is
generated by the translations x = a−1b, y = ba−1. The action of conjugation is

xa = xb = y−1x−1, xa−1
= xb−1

= y etc

The subgroup N =
〈〈

aba−1b−1
〉〉

is then generated by the elements u = y−1x, v = x3; note
that [a,b] = u2v−1. To guide our calculations, note that an element aurvs of G acts on the
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plane by rotation about the centroid of a certain triangle, whose location is in fact that of the
fixed point of the rotation a, translated by ur+svr/3. So in G, we have

aurvs = aur+svr/3
= ay−r−sxs

and we expect similar equations to hold in Ĝ.
We have a short exact sequence for Ĝ induced from the one above:

1→ Ẑ2→ Ĝ→ (Z/3)2→ 1

and see that any torsion element of Ĝ is of the form aib juρ vσ where i, j = 0,1,2 are not both
zero and ρ,σ ∈ Ẑ. For example, take i = 1, j = 0; the other cases are very similar. We now
calculate

ay−ρ−σ xσ

= x−σ yρ+σ ·a · y−ρ−σ xσ

= a · (x−σ yρ+σ )ay−ρ−σ xσ

= a · (y−1x−1)−σ xρ+σ y−ρ−σ xσ

= a · y−ρ xρ x3σ = auρ vσ

So that torsion elements of this form are indeed conjugates of elements in G. The rest of the
proof consists of similar calculations for other cases and can be safely omitted.

4 Seifert Fibre Spaces

We first recall some information about the invariants of a Seifert fibre space before moving
on to profinite matters. For a more comprehensive introduction to Seifert fibre spaces see
[8] and [19].

Recall that a fibred solid torus is formed as a quotient of D2× [0,1] by identifying the
two end discs by a rotation by 2πq/p where p, q are coprime integers, called the fibre
invariants of the fibred solid torus. The foliation of D2× [0,1] by lines {x}× [0,1] descends
to a foliation of the torus by circles. Such pieces form a local model for a Seifert fibre space.
Note that the quotient of a fibred solid torus obtained by collapsing each fibre naturally has
an orbifold structure, where the image of the exceptional fibre is a cone point of order p.
After fixing an orientation for the disc and fibre, the number q becomes well-defined in the
range 0 < q < p; if no orientations are chosen, it is well-defined only in the range 0 < q ≤
p/2. To give the standard presentation for the fundamental group, it is conventional to define
the Seifert invariants of the exceptional fibre to be (α,β ) where α = p, and βq≡ 1 mod p.

The orbifold quotients of neighbourhoods of each fibre piece together to form the quo-
tient of the whole manifold M by the foliation; this is the base orbifold O of the Seifert fibre
space. This quotient induces a short exact sequence

1→<h>→ π1M→ π
orb
1 O→ 1

where πorb
1 O is the orbifold fundamental group, and h is the element of π1 represented by a

regular fibre. This subgroup <h> may be finite or infinite cyclic, and is either central (if O
is orientable) or π1M has an index 2 subgroup which contains h as a central element.

The final invariant has various different formulations; see [8], [19], [16]. It is in some
sense the ‘obstruction to a section’, and coincides with the Euler number of the fibration
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when there are no exceptional fibres and the Seifert fibre space is a bona fide fibre bundle.
In general it is still called the Euler number e of the Seifert fibre space, and is a rational
number. The key properties of the Euler number are the above behaviour when there are no
exceptional fibres, and the following naturality property:

Proposition 4.1 If M̃→M is a degree d cover, where the base orbifold cover Õ→ O has
degree m and a regular fibre of M̃ covers a regular fibre of M with degree l

1 < h̃> π1M̃ πorb
1 Õ 1

1 <h> π1M πorb
1 O 1

l d m

then
e(M̃) =

m
l
· e(M)

The Euler number has no well-defined sign a priori; given a choice of orientation on M,
e acquires a sign, and reversing the orientation (by flipping the direction along the fibres)
changes this sign. This is consistent with the interpretation as the obstruction to a section;
when there are no exceptional fibres, circle bundles with orientable total space are classified
by elements of H2(Σ ;Z), where the Z coefficients are twisted by the orientation homomor-
phism for Σ ; this group is Z whether or not Σ is orientable.

The vanishing of the Euler number gives important topological information:

Proposition 4.2 Let M be a Seifert fibre space. The Euler number e(M) vanishes if and only
if M is virtually a surface bundle over the circle with periodic monodromy.

Finally, we can state the classification results of Seifert fibre spaces and characterisations of
their fundamental groups from these invariants.

Proposition 4.3 A Seifert fibre space is uniquely determined by the symbol

(b,Σ ;(α1,β1), . . . ,(αr,βr))

where

– b ∈ Z and e =−(b+∑βi/αi);
– Σ is the underlying surface of the base orbifold;
– (αi,βi) are the Seifert invariants of the exceptional fibres, and 0 < βi < αi are coprime.

If Σ is closed and orientable of genus g, π1M has presentation

〈
a1, . . . ,ar,u1,v1, . . . ,ug,vg,h

∣∣
h ∈ Z(π1M), aαi

i hβi , a1 . . .ar[u1,v1] . . . [ug,vg] = hb〉
If Σ is closed and non-orientable of genus g, then π1M has presentation

〈
a1, . . . ,ar,v1, . . . ,vg,h

∣∣
hai = h, hvi = h−1, aαi

i hβi , a1 . . .arv2
1 . . .v

2
g = hb〉



10 Gareth Wilkes

When the Seifert fibre space has boundary, we have similar presentations without the last
relation; the base orbifold group is just a free product of (finite or infinite) cyclic groups.
In these presentations, h represents the regular fibre; killing h gives a presentation of the
orbifold fundamental group of the base. Note also that reversing the orientation of the fibre
h and ‘renormalising’ to get the βi back into the correct range, there is an ambiguity in the
above symbol for a Seifert fibre space, under the transformation

(b,Σ ;(α1,β1), . . . ,(αr,βr))→ (−b− r,Σ ;(α1,α1−β1), . . . ,(αr,αr−βr))

which flips the sign of e. When the orbifold is orientable, this will be the only ambiguity
provided there is a unique Seifert fibre space structure on the manifold.

Proposition 4.4 If a closed manifold M has two distinct Seifert fibre space structures, then
it is covered by S3, S2×R, or S1×S1×S1.

Proposition 4.5 If h is a regular fibre, then the subgroup <h> is infinite cyclic unless M is
covered by S3.

Proposition 4.6 A manifold M is Seifert fibred if and only if it has one of the six geometries
in Figure 4.1. The geometry is determined by the Euler characteristic of the base orbifold
and the Euler number of M.

χorb > 0 χorb = 0 χorb < 0
e = 0 S2×R E3 H2×R
e 6= 0 S3 Nil S̃L2(R)

Fig. 4.1 The geometry of a Seifert fibre space is determined by the base orbifold and Euler number

5 Theorems

In this section we prove the following result, which with the work of [26] gives the theorem
in the introduction.

Theorem 5.1 Let M1,M2 be (closed orientable) Seifert fibre spaces. Then π̂1M1 ∼= π̂1M2 if
and only if one of the following holds:

– π1M1 ∼= π1M2, so that unless they have S3-geometry, M1 and M2 are homeomorphic;
– M1, M2 have the geometry H2 ×R, where for some hyperbolic surface S and some

periodic automorphism φ of S, the 3-manifolds M1 and M2 are S-bundles over the circle
with monodromy φ and φ κ respectively, where κ is coprime to order(φ).

The non-trivial part of the ‘if’ direction of this theorem was proved by Hempel [13].
Alternatively one can apply the argument of Theorem 5.9 to get a new proof.

The solution of the problem will proceed in several stages. Firstly, we will show that,
except in the ‘trivial’ geometries, an isomorphism of profinite completions of Seifert fibre
spaces will induce an automorphism of the profinite completion of the base orbifold group B̂,
which the two Seifert fibre spaces will share; and furthermore that both Seifert fibre spaces
will have the same Euler number (up to sign). We will then constrain the automorphism of B̂
and compute the action of such an automorphism on H2B̂. Intuitively we will be considering
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what can happen to the ‘fundamental class’ of the orbifold. We will then be able to conclude
the result by considering the cohomology classes giving the Seifert fibre spaces as central
extensions of B̂.

The ‘trivial’ geometries mentioned above are S3, E3, S2×R; they are trivial for the profi-
nite rigidity problem in the sense that spherical manifolds have finite fundamental group, and
there are only six and two orientable manifolds of the latter two geometries respectively, all
distinguished by their first homology. For the rest of the section, a ‘generic’ Seifert fibre
space will mean any Seifert fibre space not of the above geometries.

We will be using heavily the fact that the subgroup generated by a regular fibre is central;
this is only true for orientable base orbifold, so first note that we can reduce to this case
as follows. Suppose first that we have a closed Seifert fibre space. The orbifold group B
has a canonical index 2 subgroup corresponding to the orientation cover of the underlying
surface of the orbifold. This induces an index 2 cover of the Seifert fibre space. Note that
this cover contains all the information needed to recover the original Seifert fibre space; in
particular, for each exceptional fibre with Seifert invariants (p,q) where 1 ≤ q < p/2 the
cover has 2 exceptional fibres with the same invariant (p,q), and has no other exceptional
fibres. Because the index 2 subgroup is unique, it will follow that any isomorphism of the
profinite completions of the Seifert fibre space groups will induce an isomorphism for these
characteristic covers, to which we may apply the theorem for orientable base orbifold, and
then recover the original manifolds.

When the Seifert fibre space has boundary, the base orbifold group itself does not distin-
guish orientable base orbifold from non-orientable, and hence has no obvious characteristic
subgroup. However if we assume that the peripheral subgroups of the base orbifold groups
are preserved under the isomorphism of profinite completions, we can collapse each of them
to obtain a closed orbifold and take the canonical index 2 cover of this, and hence of the orig-
inal orbifold, to recover the above situation.

Throughout we will freely use the fact that Seifert fibre space groups and Fuchsian
groups are subgroup separable. In particular if M is a Seifert fibre space over a base orbifold
O, we may take profinite completions to obtain a short exact sequence

1→ Ẑ→ π̂1M→ π̂orb
1 O→ 1

where Ẑ is generated by a regular fibre. These facts are Theorems of Scott [18].

5.1 Preservation of the fibre

We first prove that the subgroup given by the fibre is still essentially unique for most Seifert
fibre spaces. In the statement of the theorem, a ‘virtually central’ subgroup Z of a group G
will mean that either Z is central in G or that the ambient group G has an index 2 subgroup
containing Z in which Z is central. The fibre subgroup of a Seifert fibre space subgroup is
such a subgroup; it is central when the base orbifold is orientable, or is central in the index
2 subgroup corresponding to the orientation cover of a non-orientable base orbifold.

Theorem 5.2 Let M,N be Seifert fibre spaces and suppose that π̂1(M) ∼= π̂1(N). Call this
common completion Γ . Then:

1. M and N have the same geometry;
2. Γ has a unique maximal virtually central normal procyclic subgroup unless the geome-

try of M is S3, S2×R, or E3; and
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3. If the geometry is Nil, H2×R, or S̃L2(R), then M and N have the same base orbifold
and Euler number.

Remark 5.3 The first conclusion of this theorem was already known by the above-cited
theorem of [26]; the proof here, specific to Seifert fibre spaces, is different in some respects,
so we include it for completeness.

Proof As usual, spherical manifolds are distinguished by having finite fundamental groups,

hence finite profinite completions. The four model geometries E3, Nil, H2×R, and S̃L2(R)
are contractible, so the fundamental groups of all such manifolds have cohomological di-
mension exactly 3. All compact S2×R-manifolds are finitely covered by S2× S1, hence
have a finite index subgroup of cohomological dimension 1. All Seifert fibre space groups
are good, so this fact is detected by the profinite completion, hence S2×R is distinguished
from the other geometries. Henceforth assume that M has one of the four relevant geometries
with contractible universal cover.

Now suppose that Γ has two virtually central normal procyclic subgroups, <h> and
<η >, where h is represented by a regular fibre of M and <η > is not contained in <h>.
We will show first that the base orbifold O is Euclidean. Passing to the quotient by <h>,

the image of <η > is a normal procyclic subgroup of π̂orb
1 (O). By Corollary 5.2 of [6] and

Proposition 3.4 above, profinite completions of non-positively curved orbifold groups have

no finite normal subgroups, so <η > persists as an infinite procyclic subgroup of π̂orb
1 (O).

Hence also the subgroup <h> is still maximal even in the profinite completion i.e. is not
contained in some larger normal procyclic subgroup.

We can now pass to a finite index subgroup of Γ whose intersections with <h>, <η >
are central and non-trivial, and then to a further finite index subgroup ∆ so that the corre-
sponding cover of M has base orbifold an orientable surface Σ covering O. The image of
<η > now gives a central subgroup of π̂1Σ . But the profinite completion of a surface group
has no centre unless the surface is a torus (see [2], [15] or [3]). Hence O is Euclidean.

The base orbifold Σ is now a torus. We know that <η > is a central procyclic subgroup
of π̂1T2 ∼= Ẑ2; assume now that it is maximal. Using Theorem 4.3.5 of [17], the quotient
Ẑ2/<η > is Ẑ; hence we can quotient by the closed subgroup Ẑ2 generated by both h and
η to get an exact sequence

1→ Ẑ2→ ∆ → Ẑ→ 1

We now calculate that

H1(∆ ;Z/n)∼= (Z/n)3

for all n. As described in section 2 we can calculate this cohomology group using the spectral
sequence whose E p,q

2 page is given by

E p,q
2 = H p(Ẑ;Hq(Ẑ2;Z/n))
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3 0 0 0

2 Z/n Z/n 0

q 1 (Z/n)2 (Z/n)2 0

0 Z/n Z/n 0

0 1 2

p

Now the only arrow that could alter the p+ q = 1 diagonal is the arrow shown, which is
trivial; so this diagonal is already stable and the first cohomology is (Z/n)3 as required.

But the finite index subgroup ∆ ≤ Γ corresponds to a cover M̃ → M where the base
orbifold of M̃ is a torus. Then we have

π1M̃ =
〈
u1,v1,h

∣∣ [u1,v1] = h−e,h central
〉

where e is the Euler number of M̃; hence H1M̃ = Z2g⊕Z/eZ and

H1(∆ ;Z/n)∼= H1(M̃;Z/n)∼= (Z/n)2⊕Z/hcf(e,n)

for all n. Comparing with the above, we find that e must be zero; by naturality M also has
trivial Euler number.

We now deal with the case where Γ has a unique maximal virtually central procyclic
normal subgroup. Note that in this case, the isomorphism π̂1(M) ∼= π̂1(N) preserves <h>,
and hence induces an isomorphism of the profinite completions of the base orbifold; then by
Theorem 3.1 and Corollary 3.2, M and N have the same base orbifold O.

If we now show that M, N have the same Euler number, then we are finished as the
geometries are distinguished by base orbifolds and whether the Euler number is non-zero.
Again pass to an index d subgroup ∆ of Γ with the corresponding cover of M being M̃→M;
where M has base orbifold a surface. Then, as above, for both N and M, the Euler number is
given up to sign by the torsion part of H1M̃, divided by d, because the Euler number has the
naturality property in Proposition 4.1. First homology is a profinite invariant, hence N and
M have the same Euler number and the proof is complete.

Recall that the Euler number of the Seifert fibre space was of the form

e =−(b+∑
βi

αi
)

with b an integer. Thus given the base orbifold (hence the αi) and the Euler number, the only
further ambiguity is whether we can change the βi by values δi (with δi not congruent to 0
modulo αi) such that ∑δi/αi is an integer. By the Chinese Remainder Theorem, there is no
such collection of δi when all the αi are coprime. Hence we have the following corollary, in
which we change notation to follow the usual conventions for cone points.

Corollary 5.4 Let M be a Seifert fibre space whose base orbifold is an orbifold

(Σ ; p1, . . . , pk)

where p1, . . . , pk are coprime. Then π1M is distinguished by its profinite completion from all
other 3-manifold groups.
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The above theorem was stated and proved for closed Seifert fibre spaces. A similar
result holds for Seifert fibre spaces with boundary. Much of the above argument holds just
as well when the Seifert fibre space has boundary, except that we must rule out some cases
with more than one geometry, and the Euler number is no longer defined (a section of a
surface-with-boundary always exists). Furthermore, surfaces are no longer determined by
their profinite completion unless we have some information about the boundary.

Theorem 5.5 Let M, N be Seifert fibre spaces with non-empty boundary. Suppose that
π̂1(M) ∼= π̂1(N). Call this common completion Γ . Furthermore assume that M and N have
the same number of boundary components. Then:

1. Γ has a unique maximal virtually central normal procyclic subgroup unless M (and
hence N) is a solid torus, S1×S1× I or the orientable I-bundle over the Klein bottle;
and

2. except in these cases, M and N have the same base orbifold.

Proof The only positive Euler characteristic orbifolds with boundary are the disc with pos-
sibly one cone point; the Seifert fibre space is then a fibred solid torus.

The only zero Euler characteristic orbifolds with boundary are the annulus (giving the
Seifert fibre space S1×S1×I), the Möbius band and disc with two order 2 cone points (both
giving the orientable I-bundle over the Klein bottle).

These three spaces all have different profinite completions of fundamental groups; one is
Ẑ, one is Ẑ2 and the other is non-abelian; and none of the Seifert fibre spaces with hyperbolic
base orbifold have virtually abelian fundamental group, so we can safely proceed assuming
M, N are not any of the three exceptional manifolds above.

Part 1 of the proposition now follows from the same argument as in Theorem 5.1, replac-
ing “virtually a non-abelian surface group” with “virtually a non-abelian free group” to get
the lack of central subgroups of the base orbifold group. Now the base orbifold groups have
isomorphic profinite completions, so by [6], they are the same group. The ambiguity in the
surface is now resolved by the knowledge that M and N and hence their base orbifolds have
the same number of boundary components; and the fact that Γ detects whether the unique
maximal virtually central normal subgroup <h> is genuinely central or merely virtually so,
hence whether the base orbifold is orientable or not.

5.2 Central extensions

A central extension of a group B by a (necessarily abelian) group A consists of a short exact
sequence

1→ A→ G→ B→ 1

where the image of A is contained in the centre of G. Two such extensions are regarded as
equivalent if there is a commutative diagram

1 A G B 1

1 A G′ B 1

id ∼= id

Equivalence classes of central extensions are classified by elements of H2(B;A). The proof
of this fact proceeds directly via cochains, but for what follows it will also be convenient to
have the following interpretation.
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Let B =
〈
x1, . . . ,xn

∣∣r1, . . . ,rm
〉

be a presentation for B, let F be the free group on the
xi, and R the normal subgroup generated by the r j. From the Serre spectral sequence for the
short exact sequence

1→ R→ F → B→ 1

we obtain the five-term exact sequence

0→ H1(B;A)→ H1(F ;A)→ (H1(R;A))F → H2(B;A)→ 0 = H2(F ;A)

where the third non-zero term denotes those elements of H1(R;A) invariant under the conju-
gation action of F ; in fact this is the group H1(R/[R,F ];A). Given an element of H2(B;A),
lift to some

ξ ∈ (H1(R;A))F = (Hom(R,A))F

Then a central extension of B by A is given by the ‘presentation’ (abusing notation slightly):

G =
〈
Y,x1, . . . ,xn

∣∣S, Y ⊆ Z(G), r1 = ξ (r1), . . . ,rm = ξ (rm)
〉

where A =
〈
Y
∣∣S〉. The condition that A does genuinely include into this group is equivalent

to the invariance of ξ under the action of F . The ambiguity under choice of lift to an element
ξ is an element ψ ∈ H1(F ;A). However this ambiguity corresponds precisely to changing
the generating set of G to Y and the elements x′i = xi ·ψ(xi). Conversely if two such G, G′

given by ξ ,ξ ′ are isomorphic by an isomorphism Φ fixing B and A, then ξ and ξ ′ differ by
ψ ∈ H1(F ;A) given by ψ(xi) = xi · (Φ(xi))

−1.
The question of when two central extensions G,G′ of B by A given by ζ ,ζ ′ ∈ H2(B;A)

can be isomorphic allowing arbitrary automorphisms for B and A is more subtle; one needs
to prove whether any automorphisms of B and A can carry ζ to ζ ′ by the induced maps on
H2. This will be the central issue in the proof of Theorem 5.1.

The above theory of central extensions also holds for B̂ profinite, provided that the
abelian group A is finite so that the cohomology group H2(B̂,A) is reasonably well-behaved.
See Section 6.8 of [17]. The fundamental groups of generic Seifert fibre spaces (over ori-
entable base) are central extensions

1→ Z→ G→ B→ 1

classified by an element ηG ∈ H2(B;Z), where B = πorb
1 O is the fundamental group of the

base orbifold. The profinite completion of a generic Seifert fibre space group is a central
extension of B̂ by the infinite group Ẑ. To avoid the complications raised by the presence
of Ẑ, we restrict to a finite coefficient group as follows. Note that since an isomorphism of
profinite completions of two Seifert fibre space groups G, G′ preserves this central subgroup
Ẑ by Theorem 5.2, and since Ẑ has a unique index t subgroup, any isomorphism Ĝ ∼= Ĝ′

induces an isomorphism

Γ = Ĝ/<ht >∼= Ĝ′/<ht >= Γ
′

where Γ ,Γ ′ are now central extensions of B̂ by Z/t. Hence they are classified by elements
ζ ,ζ ′ of H2(B̂;Z/t). But B is a good group, hence H2(B̂;Z/t) is canonically isomorphic to
H2(B;Z/t); and ζG,ζG′ are the images of ηG,ηG′ under the maps

H2(B;Z)→ H2(B;Z/t)∼= H2(B̂;Z/t)

It remains to show that no automorphisms of B̂ and Z/t can carry ζG to ζG′ under the
induced maps on H2(B̂;Z/t) for all t unless the manifolds M1, M2 are homeomorphic or are
covered by the theorem of Hempel [13].
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Before moving on, let us calculate the cohomology classes ηG in terms of the five-term
exact sequence; this will be of use later. For a Seifert fibre space over orientable base with
symbol

(b,Σ ;(p1,q1), . . . ,(pr,qr))

the fundamental group has presentation

〈
a1, . . . ,ar,u1,v1, . . . ,ug,vg,h

∣∣
h ∈ Z(π1M), api

i hqi , a1 . . .ar[u1,v1] . . . [ug,vg] = hb〉
Let 1→ R→ F→ B→ 1 be the corresponding presentation of the base orbifold group. Now
R/[R,F ] is in fact the free Z-module on these relations y0 = a1 · · ·v−1

g , yi = api
i ; comparing

to the above general theory we see that the cohomology class ηG is the image in H2(B;Z)
of the map

y0 7→ b, yi 7→ −qi

in Hom(R/[R,F ],A). The chain complexes in the following section make rigorous our treat-
ment of R/[R,F ] as a free abelian group on these generators. The calculation is similar for
the bounded case, except that the y0 term does not appear.

5.3 Action on cohomology

We first constrain the possible automorphisms of base orbifold that we need to consider:

Proposition 5.6 Let M1, M2 be generic Seifert fibre spaces with π̂1(M1)∼= π̂1(M2). Let the
base orbifold group be

B =
〈

a1, . . . ,ar,u1,v1 . . . ,ug,vg
∣∣ap1

1 , . . . ,apr
r ,a1 · · ·ar · [u1,v1] · · · [ug,vg]

〉
Then some isomorphism of π̂1(M1) with π̂1(M2) induces an automorphism of B̂ mapping
each ai to a conjugate of aki

i , where ki is coprime to pi.

Proof This is a simple corollary of Proposition 3.4; for the induced automorphism of B̂
from any given isomorphism of the π̂1(Mi) must induce a bijection on conjugacy classes
of maximal torsion elements; hence ai is sent to a conjugate of aki

σ(i) for some permutation

σ with pσ(i) = pi and ki coprime to pi. Permuting the ai under the permutation σ−1 is
an automorphism of B, hence of B̂, so we can force σ to be the identity; on the level of
the Seifert fibre spaces we are simply relabelling the exceptional fibres and exploiting the
invariance of the fundamental group under such relabellings.

Note that this proposition works just as well when there is boundary.

Proposition 5.7 If φ is an automorphism of B as in Proposition 5.6, then for any n the
action of φ ∗ on H2(B̂;Z/n) is multiplication by κ for some profinite integer κ ∈ Ẑ such that
for all 1≤ i≤ r, κ is congruent to ki modulo pi.
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Proof We construct a partial resolution of Z by free ZB-modules, transport this to a partial
resolution of Ẑ by free Ẑ[[B̂]]-modules, and use this to compute the action on cohomology
of the above automorphisms of B. Fix the presentation

B =
〈

a1, . . . ,ar,u1,v1 . . . ,ug,vg
∣∣ap1

1 , . . . ,apr
r ,a1 · · ·ar · [u1,v1] · · · [ug,vg]

〉
of B, let F = F(ai,ui,vi) and R = ker(F → B).

Set C0 = ZB, interpreted as the free Z-module on the vertices of the Cayley graph of B,
with B-action by left translation on Cay(B); the map ε : ZB→ Z is the evaluation map.

Let C1 = ZB{xi, ū j, v̄ j}, the free ZB-module with generators xi (1 ≤ i ≤ r), ū j, v̄ j (1 ≤
j ≤ g). The generator xi represents the edge in Cay(B) starting at 1 and labelled by ai, and
similarly ū j, v̄ j represent the edges labelled u j,v j. Thus C1 is the space of linear combina-
tions of paths in Cay(B), with B-action given by left-translation.

The boundary map d1 : C1→C0 sends each path to the sum of its endpoints, so that for
example xi 7→ ai−1∈ZB. Certainly εd1 = 0; exactness at C0 now follows by connectedness
of the Cayley graph.

Let C2 =ZB{y0, . . . ,yr}. We can interpret C2 as representing ‘all the relations of B’; that
is, all closed loops in the Cayley graph. The generator y0 will represent the relation a1 · · ·v−1

g
in the above presentation, and yi the relation api

i ; now define d2 : C2→C1 by mapping each
generator to the loop in the Cayley graph representing it; for instance,

d2(yi) = xi +a1 · xi +a2
1 · xi + · · ·+api−1

i · xi

d2(y0) = x1 +a1 · x2 + · · ·+a1 · · ·ar−1 · xr

+a1 · · ·ar · ū1 + · · ·−a1 · · ·ar[u1,v1] · · · [ug,vg]v̄g

Any loop in the Cayley graph represents some element of R, which can be expressed as a
product of conjugates of the relations in the above presentation. Left conjugation of a rela-
tion corresponds to left-translating the loop around the Cayley graph; so any such product
of conjugates can be realised in the Cayley graph as a ZB-linear combination of the d2(yi).
Hence d1d2 = 0 and the image of d2 is precisely the kernel of d1.

Let us analyse the kernel of d2; let

s = ∑
i

∑
b

ni
bb · yi ∈ ker(d2)

where ∑b ni
bb ∈ ZB for each i. The coefficient of xi in d2(s) is

0 = ∑
b

n0
bba1 · · ·ai−1 +∑

b
ni

bb(1+ai + · · ·api−1
i )

Multiplying on the right by (ai−1) kills the second sum; and reparametrising the first sum
yields n0

bai
= n0

b for all b ∈ B. If r > 1, the ai generate an infinite subgroup of B; but ∑n0
bb

is a finite linear combination, so n0
b = 0 for all b. If r = 1, we can analyse the coefficient of

ui instead as g > 0 for a non-spherical orbifold; or we can simply note that profinite rigidity
in the cases r = 0,1 was already covered by Corollary 5.4, so that we need not worry any
further about them. We are left to conclude that ∑b ni

bb(1+ai + · · ·api−1
i ) = 0, hence ∑b ni

bb
is some multiple of (ai−1) and the kernel of d2 is spanned by (ai−1)yi.

Now set C3 = ZB{z1, . . . ,zr} and d3(zi) = (ai−1) · yi to find an exact sequence

C3→C2→C1→C0→ Z

i.e. a partial resolution of Z by free ZB-modules as desired.



18 Gareth Wilkes

By Proposition 2.9 we have a partial resolution

Ĉ3→ Ĉ2→ Ĉ1→ Ĉ0→ Ẑ

where each Ĉi is the free Ẑ[[B̂]]-module on the same generators as Ci, and the boundary
maps are defined by the same formulae on these generators. We can thus use this resolution
to compute the first and second (co)-homology on B̂.

Let φ : B̂→ B̂ be an automorphism of B̂ as in Proposition 5.6. Construct maps φ] : Ĉi→ Ĉi
for i = 1,2 as follows. Lift φ to φ̃ : F̂ → F̂ such that

φ̃(ai) = (aki
i )

g−1
i

for some gi ∈ F̂ . Write the image of each generator of F̂ under φ̃ as a limit of words on these
generators; then map the corresponding generator of Ĉ1 to the associated limit of paths in
the Cayley graph. To define φ] on Ĉ2, note that each relation of B̂ is mapped to an element
of R̄ under φ̃ , hence can be written as a (limit of) products of conjugates of relations; now
map this to an element of Ĉ2 just like before. We have made a choice of expression of an
element of R̄ in terms of conjugates of relations; the ambiguity is by construction an element
of ker(d̂2) = im(d̂3), which image will soon vanish. For definiteness, choose

φ](yi) = kigi · yi (1≤ i≤ r)

coming from the obvious expression of φ̃(api
i ) from above. Because the map on R̄ was

induced by the map on F̂ used to define φ] : Ĉ1→ Ĉ1, we get a commuting diagram

Ĉ3 Ĉ2 Ĉ1 Ĉ0

Ĉ3 Ĉ2 Ĉ1 Ĉ0

φ] φ]

Now apply the functor Ẑ⊗Ẑ[[B̂]]− to the above diagram; i.e., factor out the action of B̂, to
get a commuting diagram

Ẑ⊗Ẑ[[B̂]] Ĉ3 Ẑ{y0, . . . ,yr} Ẑ{xi, ū j, v̄ j} Ẑ⊗Ẑ[[B̂]] Ĉ0

Ẑ⊗Ẑ[[B̂]] Ĉ3 Ẑ{y0, . . . ,yr} Ẑ{xi, ū j, v̄ j} Ẑ⊗Ẑ[[B̂]] Ĉ0

0 d′2

φ]

0

φ]

0 d′2 0

with the rows no longer exact, but with the maps marked as zero becoming trivial because
the image of each generator of the chain group had a factor (ai− 1). We have some good
control over the maps in the above, viz.

φ](xi) = kixi

φ](yi) = kiyi

d′2(y0) = x1 + · · ·+ xr

d′2(yi) = pixi

If φ](y0) = κy0 +∑ µiyi, then tracking this around the diagram we find

κ + piµi = ki
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for all i.
For n ∈ N, we now apply HomẐ(−,Z/n) to the above diagram, to get a commuting

diagram

(Z/n){y∗0, . . . ,y∗r} (Z/n){x∗i , ū∗j , v̄∗j}

(Z/n){y∗0, . . . ,y∗r} (Z/n){x∗i , ū∗j , v̄∗j}

0 d2 0

0

φ ]

d2

φ ]

0

in which the homology of each row gives H2(B̂;Z/n) and φ ] gives an action on this coho-
mology group.

First let us note that this action is genuinely the functorial map φ ∗ induced by φ . By
construction Ẑ⊗Ẑ[[B̂]] Ĉ2 is the free Ẑ-module on our relations. In this construction for the
discrete group, this would be R/[R,F ]. In the profinite world, R̄/[R̄, F̂ ] may not be free
abelian, as not every closed subgroup of a free profinite group is free; however we do get a
canonical surjection

Ẑ⊗Ẑ[[B̂]] Ĉ2 � R̄/[R̄, F̂ ]

since our chosen set of relations is a generating set for this latter group. But now the map φ]

on Ẑ⊗Ẑ[[B̂]]Ĉ2 is easily seen to induce the natural map on R̄/[R̄, F̂ ] given by φ̃ ; and naturality
of the quotient map

H1(R̄/[R̄, F̂ ];Z/n)� H2(B̂;Z/n)

coming from the five-term exact sequence shows that φ ] will indeed give the correct action
on H2.

Finally, we can compute this action on H2(B̂;Z/n). We have from above

φ
](y∗0) = κy∗0

φ
](y∗i ) = µiy∗0 + kiy∗i

d2(x∗i ) = y∗0 + piy∗i
d2(ū∗i ) = 0 = d2(v̄∗i )

so that, given a cochain ζ = by∗0−∑i qiy∗i , we have

φ
∗([ζ ]) = [φ ](ζ )] = [(κb−∑qiµi)y∗0−∑qikiy∗i ]

= [κ(by∗0−∑qiy∗i )−∑qiµi(y∗0 + piy∗i )]

= κ[ζ ]

Proof (Proof of Theorem 5.1) Recall that we have reduced to the case of orientable base
orbifold. As discussed in section 5.2, our manifolds M1, M2 are determined by cohomology
classes η1,η2 ∈ H2(B;Z). If

M1 = (b,Σ ;(p1,q1), . . . ,(pr,qr))

then as a cochain in the basis y∗0, . . . ,y
∗
r of HomZB(C2,Z) where C• is the partial resolution

defined above, we have (see section 5.2)

η1 = [by∗0− ∑
1≤i≤r

qiy∗i ]
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and similarly for η2. From these we get cohomology classes ζi,n ∈H2(B̂;Z/n). Suppose that

π̂1(M1)∼= π̂1(M2). Then, after possibly reordering the exceptional fibres of M2, we have that
the exists κ ∈ Ẑ such that κζ1,n = ζ2,n for all n. It is a consequence of the previous propo-
sition that an automorphism of the base induces such an effect on the cohomology groups;
we may also rescale the fibres of the Mi by an automorphism of Ẑ, giving an automorphism
of the coefficient ring of H2. But this is simply multiplication of the cohomology class by
some element of Ẑ×, which we merge into κ .

If the Mi have non-zero Euler number e > 0 (by reversing the orientation on the fibres
we can always force e > 0 for both manifolds), choose n = me∏ pi for some integer m, and
define a group homomorphism E : H2(B̂;Z/n)→ Z/n by

E(∑ tiy∗i ) =−t0 ∏ p j +∑
i6=0

ti ∏
j 6=i

p j

so that E(κξ ) = κE(ξ ). Since e =−(b+∑qi/pi), we have E(ζ1,n) = e∏ p j modulo n; then

E(κζ1,n−ζ2,n) = (κ−1)e∏ p j = 0 modulo n

so that κζ1,n = ζ2,n for all n = me∏ p j can only hold if κ is congruent to 1 modulo m for all
m, i.e. if κ = 1 and ζ1,n = ζ2,n for all n, so that η1 = η2 and M1, M2 are homeomorphic.

If the Mi have Euler number zero, so that they are H2×R manifolds, choose n=∏ pi and
k ∈ Z such that k is congruent to κ mod n. Then M2 is a Seifert fibre space with zero Euler
characteristic and Seifert invariants (pi,kqi); there is only one such, and Hempel showed
that these pairs of H2×R manifolds are precisely those surface bundles in the statement of
the theorem.

Rather easier is the bounded case, given sensible conditions on the boundary.

Theorem 5.8 Let M1,M2 be orientable Seifert fibre spaces with boundary, and assume that
there exists an isomorphism Φ : π̂1M1→ π̂1M2 inducing an isomorphism of peripheral sys-
tems, in the following sense. The boundary components of M1 determine a conjugacy class
of Z2-subgroups in the fundamental group, which gives a conjugacy class of Ẑ2-subgroups
in the profinite completion. The isomorphism Φ is required to send one such set of conjugacy
classes to the other, inducing isomorphisms on the matched copies of Ẑ2.

Let M1 have Seifert invariants (pi,qi). Then for some k ∈ Z coprime to all pi, M2 is the
Seifert fibre space with the same base orbifold and Seifert invariants (pi,kqi).

Proof We can safely focus on hyperbolic base orbifolds, the other three Seifert fibre spaces
with boundary being easily distinguished from these and each other by their first homol-
ogy, hence by the profinite completion. As before, we have already reduced to the case of
orientable base orbifold.

Note that two boundary components of the base orbifolds generate distinct free Ẑ factors
of the base orbifold group, and the standard theory of free profinite products (see Theorem
9.1.12 of [17]) shows that these are not conjugate in the profinite completion; so the number
of peripheral conjugacy classes remains the same as the number of boundary components.
Then by Theorem 5.5 both Seifert fibre spaces share the same base orbifold O, and there is

an induced automorphism of B̂ = π̂orb
1 O. As before, we can now consider the Seifert fibre

spaces as being represented by elements of H2(B̂;Z/n) for arbitrary n.
Take a presentation

B =
〈
a1, . . . ,ar,b1, . . . ,bs,u1,v1, . . . ,ug,vg

∣∣ap1
1 , . . . ,apr

r
〉
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for the base orbifold, where the ai are the cone points and the (conjugacy classes of the) bi
give all but one of the boundary components; the remaining boundary component is

b0 = a1 · · ·ar ·b1 · · ·bs · [u1,v1] · · · [ug,vg]

As before, we are at liberty to permute cone points with the same order, and permuting
boundary components is also permitted. Thus given Proposition 5.6 and the conditions of
the theorem we may assume that the automorphism φ of B̂ induced by Φ is of the form

ai 7→ (aki
i )

gi , b j 7→ (b
l j
j )

h j

for elements gi,h j of B̂, l j ∈ Ẑ×, and ki coprime to pi.
Now the induced automorphism of

H1(B̂) = B̂ab =
r⊕

i=1

Z/pi⊕
s⊕

j=1

Ẑ⊕ Ẑ2g

sends the class of b0 to

φ∗([b0]) = φ∗(∑[ai]+ ∑
j 6=0

[b j]) = ∑ki[ai]+ ∑
j 6=0

l j[b j]

and on the other hand to
l0[b0] = ∑ l0[ai]+ ∑

j 6=0
l0[b j]

showing that all the ki are congruent to l0 modulo pi and that all the li are equal.
Using essentially the same chain complex as in the closed case we can now compute

that the action on

H2(B̂;Z/∏ pi) =
r⊕

i=1

Z/pi

is multiplication by l0, or equivalently multiplication by some k ∈ Z congruent to l0 modulo
∏ pi, thus taking the element (q1, . . . ,qr) representing M1 to the element representing M2,
which we now see to be (kq1, . . . ,kqr).

We finally prove the converse to the last theorem. A mild adjustment to this argument,
with the appropriate modification of the cohomology group considered, provides another
proof of Hempel’s theorem on closed Seifert fibre spaces.

Theorem 5.9 Let M1,M2 be Seifert fibre spaces with non-empty boundary and with the
same base orbifold O. Suppose M1 has Seifert invariants (pi,qi) and M2 has Seifert invari-
ants (pi,kqi) where k is some integer coprime to every pi. Then π̂1M1 ∼= π̂1M2.

Proof Again it suffices to deal with the case of orientable base orbifold. Let Γi = π̂1Mi, let
hi be a generator of the centre of π1Mi, and let

Γi,n = Γi/<ht >

where t = n∏ pi.
Note that for each i the Γi,n form a natural inverse system with maps Γi,nm → Γi,n. Fur-

thermore, any map from Γi to a finite group must kill some power of h, and hence factors
through some Γi,n. It follows that

Γi = lim←−
n

Γi,n
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Now k maps to an invertible element of Z/∏ pi; then there is some invertible element
κ of Ẑ congruent to k modulo each pi. One can prove this by noting that by the Chinese
Remainder theorem the natural map (Z/mn)× → (Z/n)× is always surjective, hence so is
the map Ẑ×→ (Z/n)×.

As discussed in Section 5.2, Γi,n is classified by an element

ζi ∈ H2(B̂;Z/t) =
r⊕

j=1

Z/p j

where B is the base orbifold group; by assumption ζ2 = kζ1 = κζ1. Multiplication of the
coefficient group κ gives an automorphism of the cohomology group taking ζ1 to ζ2, hence
induces an isomorphism Γ1,n → Γ2,n. Moreover this isomorphism is compatible with the
quotient maps Γi,nm→ Γi,n; hence we have an isomorphism

Γ1 = lim←−
n

Γ1,n ∼= lim←−
n

Γ2,n = Γ2

as required.
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