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ELISABETTA ZAMBON 

THE USE OF CATALYTICALLY DEAD CAS9 TO IDENTIFY KEY 
TRANSCRIPTION REGULATORS IN TRIPLE NEGATIVE BREAST CANCER 

ABSTRACT 

Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all 

breast cancer cases. It tends to be aggressive, high-grade and poorly differentiated 

tumour with poor clinical outcome. Lack of expression of oestrogen, progesterone 

receptors, and human epidermal growth factor receptor 2 make TNBC patients 

ineligible to hormonal therapy. For these reasons the identification of novel clinical 

targets still remains a priority. With the advances of multiomics, many of the genes 

transcriptionally upregulated in TNBC have been identified, but how they are 

disregulated is still unknown: the understanding of how this works at a 

transcriptional level could contribute to the development of a novel therapeutic 

approach. 

 

We report here a new methodology to identify key transcription regulators that we 

applied to investigate the expression of highly expressed genes in TNBC: our 

approach combines RIME proteomics with CRISPR/Cas9 technology. In brief, we 

targeted putative regulatory regions of differentially regulated genes in TNBC 

compared to other subtypes of breast cancer using a catalytically dead version of 

the Cas9 protein (dCas9). In particular, we focused on transcription regulators like 

FOXC1, NFIB and NFE2L3. We then performed RIME proteomics to identify which 

proteins are in close proximity to dCas9 and thus potentially bound to these putative 

regulatory regions. In addition, we developed a novel, statistical approach to analyse 

these particular proteomic datasets based on the relative abundance of the protein 

of interest, and a powerful ranking method to identify biologically and therapeutic 

meaningful candidates. 

 

Through this process, we identified three putative regulatory proteins, MTA2, CDK1 

and CDK6, bound to all three loci. In here, we reported how their knockdown, 

performed by shRNA, directly affects the expression of the investigated genes in a 

panel of TNBC cell lines, and their oncogenic capacity in vitro. These results 

demonstrate the importance of these transcription regulators for TNBC biology, and 

they highlight the necessity of a deeper understanding of their roles in gene 

expression regulation.  
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1 CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Breast cancer is the most common cause of cancer death in women, with around 

627,000 deaths in 2018 worldwide (Bray et al., 2018). In the UK, 1 in 8 women will 

develop breast cancer during their lifetime, according to the CRUK statistics of 2018. 

However, its mortality rates are decreasing, thanks to a significant improvement of 

the diagnostic techniques, surgical approaches and pharmacological treatments 

(World Health Organization, 2018).  

 

1.1.1 Breast cancer epidemiology 

The socio-economic background of the patient plays an important role in breast 

cancer incidence and mortality: it has been shown that women living in more socio-

economically deprived environments have a lower cancer incidence, but a higher 

mortality (Levi et al., 2004). This is likely to be related to different access to early 

detection screening and treatment, as for example later diagnosis, less efficient 

cancer care, limited treatment options or higher risk of treatment complications.  

 

In addition, the tumour incidence is related to different risk factor profiles including 

age, race, reproductive patterns, breast characteristics, hormone replacement 

therapy (HRT), diet, use of tobacco and alcohol (Winters et al, 2017).  

 

Furthermore, an essential role is played by genetics: every cancer is in fact 

characterized by a set of genes that, if mutated, strongly associates with 
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tumourigenesis. These are known as driver genes (Stratton et al., 2009), and they 

are responsible of cancer growth advantage. These genetic changes are usually 

somatic, but germline mutations can predispose heritable or familial cancer. Thanks 

to next generation sequencing, over 30626 mutations have nowadays been reported 

for breast cancer (Cancer Genome Atlas N., 2012; Rajendran et Chu-Xia, 2017): the 

majority of them occurs at somatic level, while the germline ones are responsible for 

5 to 10% of familial breast cancers types (Turnbull et Rahman, 2008). The most 

established model of breast cancer susceptibility is that the disease is due to several 

mutations in high-penetrant genes, such as BRCA1, BRCA2, TP53, PTEN, STK11, 

and CDH1, and a larger number of moderate penetrant genes like CHK2, ATM, 

BRIP1, and PALB2 (Mavaddat et al., 2010; Apostolou et al., 2013). However, the 

contribution of low-penetrant genes for the development of sporadict breast cancer 

remains uncertain (Balmain et al., 2003). 

 

Advances in high-throughput genotyping have allowed the discovery of germline 

mutations, primarily single-nucleotide polymorphisms (SNPs) associated with a 

higher risk of developing the disease. The first major genes associated with 

hereditary breast cancer were BRCA1 and BRCA2: their mutations, inherited in an 

autosomal dominant way, act recessively on the cellular level as tumor suppressor 

genes involved in double-stranded DNA (dsDNA) break repair (Stratton et al., 2008). 

The lifetime risk of familial breast cancer for women carrying these mutations is 

50%–85% (King et al., 2003; Shiovitz et al., 2015). Additional rare, but highly 

penetrant genes include: PTEN, where the lifetime risk is estimated around 

85% (Tan et al., 2012); TP53, with a 25% risk by age 25 (Ray et al., 2001; Shiovitz 

et al., 2015); CDH1, with a 39% lifetime risk (Pharaoh et al., 2001; Shiovitz et al., 

2015), and STK11, with a 32% risk by the age of 60 (Lim et al., 2004; Shiovitz et al., 

2015), each conferring a distinct clinical syndrome. On the basis of mathematical 

modeling, it is estimated that these genes account for 25% of cases (Walsh et al., 

2006). For these patients, breast awareness and breast self-exam is recommended 

to start at age 18. From age 25, clinical breast exam, and imaging with a 

combination of mammography and magnetic resonance imaging (MRI) should be 

carried out annually (Shiovitz et al., 2015). 

 

The recent surge of next generation sequencing of cancer genome has led to the 

discovery of novel, somatic driver mutations acquired during tumorigenesis (Shah et 

al., 2012; Ellis et al., 2012; Stephens et al., 2012; Banerji et al., 2012): with the 

exception of well-known genes like P53 and PIK3CA mutated in more than 30% of 
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breast cancer patients, these studies highlighted that the majority of the novel 

frequently mutated ones are present in less than 10% of the cases. In addition, they 

revealed the large genetic diversity among different tumours: Stephens et al. for 

example showed that among the 100 investigated breast cancers they identified 73 

different combination of mutated genes (Stephens et al., 2012). However, these 

genes could be grouped in similar pathways: they in fact demonstrated that 6 cancer 

genes were acting in the same JUN kinase pathway (Stephens et al., 2012), while 

Shah et al. discovered that pathways involving P53, PIK3 and ERBB were over-

represented in the mutated genes (Shah et al., 2012). These discoveries imply that 

even if genetically different, some tumours could have similar phenotypes because 

of mutations in the same pathway. In addition, in some tumours there was no 

obvious driver mutation, suggesting different mechanism responsible of tumour 

development such as for example DNA methylation (Desmedt et al., 2012). 

Large multicentre projects, like The Cancer Genome Atlas (TCGA) (Cancer Genome 

Atlas N., 2012) and the International Cancer Genome Consortium (ICGC) (Hudson 

et al., 2010) have performed detailed analyses of the somatic alterations affecting 

tumour genomes in various cancers, including breast. Large consortia and networks, 

as for example COSMIC and GENIE, are collecting mutation data from different 

sources to implement the understanding of the mutational landscape in cancer 

(Forbes et al., 2016; Consortium APG, AACR Project GENIE, 2017), in order to 

provide evidence on potential associations of genomic information with cancer 

subtypes, development of metastasis and prognosis. These findings will help to 

increase the knowledge of the disease and the discovery of driver events. 

 

However, the genetic diversity, the correlated different phenotypes and functional 

features within a patient’s tumour (intra-tumour heterogeneity) and among tumours 

from different patients (inter-tumour heterogeneity) are characteristics that 

complicate diagnosis and challenge therapy for breast cancer patients. 

 

1.2 Breast cancer development 

The natural development, progression and characteristics of breast neoplasms, 

together with the normal breast architecture, are important components to 

understand tumour heterogeneity.  
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The mammary gland itself is one of the tissues that undergo a significant, dynamic 

remodelling during development and throughout life. Deriving from ectodermal cells, 

it forms a primordial ductal tree (the mammary primordium) before birth, followed by 

postnatal development regulated by hormones, and the ductal tree outgrowth into 

the mammary fat pad induced during puberty. 

 

Further changes within the gland are related to pregnancy, with the formation of 

alveoli for milk secretion during lactation. At the end of this process, the ductal tree 

regresses to a pre-pregnancy-like state (involution) (Macias et Hinck, 2012; 

Sternlicht, 2006) (Fig. 1.1, from Manavathi et al., 2014). 

 
Two major cell types form the mammary epithelium, organized in a bi-layered 

structure: a luminal layer, lining the duct, and a contractile myopeithelial one, with a 

basal location. The luminal one is formed by cells expressing keratin 8/18/19 

(K8/18/19) and/or oestrogen and/or progesterone receptor (ER/PR), while the 

myoepithelial one by cells expressing K5/14 and/or smooth muscle actin (SMA) 

and/or p53 (Bissell et al., 2003; Hennighausen et Robinson, 2001). 

 

Tumour initiation and progression involve several pathological and clinical 

stages, with complex series of stochastic genetic events leading towards invasive 

phenotype: a ductal hyperproliferation (ductal carcinoma in situ, or DCIS), followed 

by invasive carcinomas (IC), and finally metastatic disease (Allred et al., 2001; 

Burstein et al., 2004). Metastases usually colonize bone, lung, brain, and liver, and 

they are considered the main cause of breast cancer mortality. 
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1.2.1 Molecular characteristics and breast cancer classification 

Nowadays, patient management is still limited to clinical characteristics and classic 

histological analysis. In particular, parameters such as receptor status (oestrogen-

receptor, ER, progesterone-receptor, PR, and/or ERBB2 receptor, HER2) contribute 

to diagnostic classification (Viale et al., 2012), together with tumour size, histological 

grade and axillary lymph-node involvement that have been shown to correlate with 

clinical outcome (Dawson et al., 2013). Hormone receptor-positive breast cancers 

account for approximately 75-80% of all cases, while HER2+ subtype for 

approximately 10-15% (Konecny et al., 2006). The remaining 10-15% of the cases 

are defined by the absence of hormone receptors and HER2 hence it is commonly 

known as triple negative breast cancer (TNBC). 

 

Over the past 20 years microarray-based technologies for gene expression analysis 

have given a new comprehensive molecular profiling, subdividing breast cancer into 

at least six subtypes: normal like, luminal A (ER and PR positive), luminal B (ER, PR 

and HER2 positive), HER2-enriched, claudin low, and basal like by hierarchical 

clustering (Blows et al., 2010; Perou et al., 2000; Prat et al., 2010; Santagata et al., 

2014; Sørlie et al., 2001, Sørlie et al., 2003). These expression profiles mostly 

reflect different clinical and pathological prognoses: using gene sets optimally 

selected to identify the intrinsic characteristics of breast tumours, these studies 

analysed large cohorts of samples and associated different mortality rates to 

different subtypes.  

 

Perou and colleagues were the first ones to show that breast tumours could be 

classified into different subtypes according to different expression profiles (Perou et 

al., 2000). Using 40 breast tumours and 20 matched pairs of samples before and 

after doxorubicin treatment, 476 genes were selected as ‘intrinsic gene set’ more 

variable between the tumours rather than the paired samples. On the basis of 

expression levels and hierarchical clustering analysis, tumours were separated in 

two branches: one characterized by low/absent expression of ER, and one 

characterized by its expression. The first group was further divided into the basal-

like subtype (high expression of keratins 5 and 17, laminin and fatty acid binding 

protein), the ERBB2+ subtype (high expression of several genes in the ERBB2 

amplicon at 17q22.24 including ERBB2 and GRB7), and normal breast-like group 

(with the highest expression of genes normally present in the adipose tissue or other 

nonepathilial cell types). The second group was divided into luminal subtype A 
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(highest expression of the ESR1 gene, GATA3, XBP1) and luminal subtype B (low 

to moderate expression of luminal genes.  

 

However, this approach requires large datasets, and cannot be applied for the 

classification of individual samples prospectively (Mackay et al., 2011). For this 

reason, 'single sample predictors' (SSPs) were developed on the basis of the 

correlation between the expression profile of a given sample with the centroids for 

each molecular subtype (usually the average expression profile of every molecular 

subtype) (Sørlie et al., 2003; Parker et al., 2009). In addition, on the basis of this 

approach, Parker et al. developed a quantitative reverse transcriptase-polymerase 

chain reaction (qRT-PCR)-based or NanoString-based method (PAM50) to classify 

formalin-fixed paraffin-embedded (FFPE) samples into the molecular subtypes 

(Parker et al., 2009). These molecular signatures not only helped understanding the 

biological spectrum of breast cancers, but also provided diagnostic, prognostic and 

predictive gene signatures, useful for the identification of new therapeutic targets. 

 

Despite the enthusiasm using this molecular taxonomy for clinical trials design and 

oncology practise, there are several limitations that have to be considered. Firstly, 

the subdivision of luminal tumours into A and B is strongly dependent on the SSP 

used (Weigelt et al., 2010) and highly depends on the expression of genes involved 

in proliferation (Parker et al., 2009), making this subgroup division artificial (Parker 

et al., 2009). In addition, normal breast-like cancer is now considered by some to be 

an invalid molecular subtype: they believe these tumours are likely to constitute an 

artefact of frozen tissue procurement and representation (Parker et al., 2009; 

Weigelt et al., 2010; Pratet al., 2010). Lastly, HER2+ subtype as defined by micro-

arrays does not include all cases so classified by clinically validated methods such 

as IHC, and vice versa (Parker et al., 2009; Weigelt et al., 2010). However, these 

discrepancies do not invalidate the existence of the 'intrinsic' subtypes (Perou et al., 

2010): it is in fact an evolving system for classification, and its future testing will 

determine the prognostic and predictive power and clinical utility. 

 

These profiles, together with integrated genomic and transcriptomic analysis of 

breast tumours, have revealed further subgroups with specific patters of recurrent 

somatic mutations, therefore specific tumour biology and distinct clinical outcomes 

(Stephens et al., 2012; TCGA, 2012). These type of data collected from 2000 

patients have been integrated in the Molecular Taxonomy of Breast Cancer 

International Consortium (METABRIC (Curtis et al., 2012)), and 10 new integrative 
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clusters (IntClust 1-10) were associated with distinct CNAs (Copy Number 

Alterations) and gene expression changes. This clearly demonstrates the 

heterogeneity present within tumours previously classified according to ER, PR and 

HER2 expression, and it further separates them into different subtype groups. 

 

1.2.2 Intra-tumour heterogeneity 

The complexity of the disease can challenge the accuracy of the prognosis: in fact 

even if biopsies are usually collected from multiple regions of the tumour, further 

aggressive areas may still be missed due to their scarcity and/or topological 

heterogeneity (Komaki et al., 2006). Furthermore, a systematic and comprehensive 

evaluation of the molecular features of metastases is still necessary, since they 

could carry different genetic and non-genetic alterations when compared to the bulk 

of the primary tumour (Ding et al., 2010; Shah et al., 2009).  

 

Yates et al. demonstrated that metastases could derive from subclones in the 

primary cancer: thanks to a whole genome sequencing of primary tumour and 

metastatic biopsies, they confirmed the development of metastases from very early 

stage of genetic diversification of the primary tumour. This highlighted the necessity 

of understanding the pattern of subclonal diversification in primary tumour (Yates et 

al., 2015). In their study they also found this heterogeneity to be present in all major 

immunohistological subgroups of breast cancer, even though definitive conclusions 

about heterogeneity in any particular subtype couldn’t be drawn (Yates et al., 2015). 

They sequenced mutliregion samples from 50 invasive breast cancers (27 ER+, 3 

HER2+, and 20 triple negative) in order to determine the patterns of spatial 

evolution, and they identified recurrent driver mutations in oncogenes and missense 

substitutions in tumours suppressor genes (Lawrence et al., 2014; Stephens et al., 

2012; Yates et al., 2015) 

 

To evaluate the spatial distribution of subclones, they performed targeted gene 

sequencing from primary tumours and correspondent lymph node metastases when 

possible: the predominant pattern of heterogeneity they identified was a 

geographically restricted expansion in the majority of the tumours (Yates et al., 

2015). In addition, they sequenced more than one focus (2-5) of 4 multifocal 

cancers: different foci of the same tumour were clonally related but with private 

mutations. This indicated that during its own growth, each focus was characterised 

by a complete overcome of one clone over the remaining tumour cells in that region. 
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Among these private mutations, BRCA2 and CDKN2A inactivation, PTEN point 

mutation and CDK6 amplification were identified (Yates et al., 2015). 

 

In the recent years, a huge effort has been put in the parallel sequencing analysis of 

primary and metastatic breast cancers (Yates et al., 2015; Ng et al., 2017), revealing 

that a variable proportion of somatic mutations are restricted or enriched in the 

metastatic lesion compared to the primary tumour, even of some affecting driver 

genes like PIK3CA, SMAD4 and TP53 (Schrijver et al., 2018). In addition, 

researchers have observed marked single nucleotide and copy number differences 

between primary breast carcinomas and metastases (Ding et al., 2010; Shah et al., 

2009). This genomic heterogeneity confirms the substantial genetic evolution 

acquired during disease progression, and could explain why some biomarkers 

specific for the primary tumour might not be informative to predict a therapeutic 

response.  

 

For this reason, novel approaches have been used to investigate differences 

between primary site and metastases. The progressive Intensive Trial of Omics in 

Cancer (ITOMIC) for example was designed to enroll patients with triple negative 

breast cancer to a specific therapy on the basis of the molecular profile of the cancer 

over space (primary vs metastases) and time (progression) (Blau et al., 2016). The 

genome analysis from multiple biopsies have demonstrated an extensive spatial and 

temporal heterogeneity in single nucleotide variants, CNV, insertion or deletion 

polymorphisms during treatment and revealed the evolution of molecular signatures 

(Soon-Shiong et al., 2006). 

Several phase III trials have also been conducted to evaluate the effect of extended 

endocrine treatment with tamoxifen (ATLAS (Davies et al., 2013)) or aromatase 

inhibitors (MA.17 (Goss et al., 2005), NSABP-B33 (Mamounas et al., 2008) and 

ABCSG (Jakesz et al., 2007)) beyond 5 years for ER+ breast cancer. It is becoming 

clearer that longer endocrine therapy can reduce the risk of late metastases in the 

second decade after initial breast cancer diagnosis and treatment (Davies et al., 

2013; Mamounas et al., 2008; Jakesz et al., 2007).  

In addition, few retrospective studies have used multi-gene signatures to predict late 

recurrence risk in ER positive breast cancer: PAM50 risk-of-recurrence (ROR) score 

for example differentiates patients on the basis of the risk for late recurrence beyond 

conventional prognostic factors (Filipits et al., 2014), using PAM50 intrinsic 

subtypes, tumour size, proliferation, number of positive lymph nodes to categorize 

patients into low, intermediate or high-risk groups. EndoPredict, a qRT-PCR-based 
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score, combines the expression levels of proliferative and ER signalling genes for 

patients at risk of developing late distant metastases at 10 years of follow-up; the 

Breast Cancer Index (BCI), a qRT-PCR assay based on the five-gene molecular 

grade index (MGI) and the HOXB13/IL17B ratio) (Sgroi et al., 2013) and the 70-

gene microarray prognosis signature MammaPrint® (Drukker et al., 2014) also 

contribute to the identification of late distant recurrences in selected subgroups. 

These predictors may be helpful in identifying patients for extended therapy after 5 

years of initial endocrine treatment. 

 

Some differences in the preferences of site for metastatic relapse have been 

identified between intrinsic subtypes of breast cancer (Smid et al., 2008; Soni et al., 

2005; Kennecke et al., 2010): the skeleton is more frequent between ER+, while 

HER2+ breast cancers frequently have metastases in the brain, liver and lung 

(Aversa et al., 2014). On the other hand, patients with ER negative breast cancer 

commonly have lung metastases, but other visceral sites, like the brain, are also 

common among triple-negative (TNBC) or basal-like breast cancer cases [(Smid et 

al., 2008; Soni et al., 2015; Kennecke et al., 2010). The molecular subtype of the 

primary tumour could then potentially serve as a biomarker for prediction of future 

metastatic sites (Viale et al., 2007; Piccart-Gebhart et al., 2005). Other conventional 

factors associated with a higher risk of recurrence include age at the time of primary 

tumour diagnosis (Kollias et al., 1997), TNM staging (size, nodal status, de novo 

distant metastatic disease (Chiang et al., 2008)) and tumour histological grade. The 

risk may also vary over time: while ER negative patients usually develop metastases 

within 5 years, approximately 50% of recurrences in patients with ER+ disease will 

occur after a more protracted period (beyond 5 years (Early Breast Cancer Trialists’ 

Collaborative, 2011). 

 

These observations suggest that metastatic process could be the convergent result 

of distinct genetic and epigenetic mechanisms in different patients. For this reason, 

further studies are necessary in order to understand it and the role of selective 

pressure of targeted therapies on intratumour heterogeneity.  

 

1.3 Triple Negative Breast Cancer (TNBC) 

One of the main challenges in treating this disease is that breast cancer is not a 

single entity, but a heterogeneous group of several subtypes with different biological 
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and clinical behaviour. Over the years, different parameters have been used to 

classify these tumours, but the most common ones are histopathological types in 

conjunction with the presence or absence of ER, PR and HER2. Hormone receptor-

positive breast cancers account for approximately 75-80% of all cases, while HER2 

overexpressing subtype accounts for approximately 10-15% (Konecny et al., 2006). 

Triple negative breast cancer (TNBC) counts for the remaining 10-15% of the cases, 

and it is characterized by the absence of expression of the receptors mentioned 

above. 

 

TNBC occurs more frequently in pre-menopausal women, in particular in the Africa-

American female population, where it affects 39% of the patients (Carey et al., 

2006), while only 16% of the Caucasian women develop it in the same age group 

(Trivers et al., 2009). TNBC tumours tend to be high-grade, poorly differentiated, 

with high mitotic and necrotic count (Ismail-Khan et Bui, 2010). They are also 

characterized by stromal lymphocytic infiltrate, pushing borders of invasion and 

increased propensity for metastases to brain and lungs (Tsuda et al., 2000), cellular 

pleomorphism and high nuclear-cytoplasmic ratio (Dawson et al., 2009). 

 

Histologically, the majority of TNBCs are high-grade invasive ductal carcinomas 

(IDCs or invasive carcinomas of no special type), which have pushing borders, 

marked nuclear pleomorphism, and numerous mitoses and often have geographic 

zones of necrosis and brisk lymphocytic infiltrates (Foulkes et al., 2010). However, 

several rare histologic high-grade, special-type breast cancers are significantly 

enriched in TN phenotype, such as carcinomas with apocrine differentiation, 

carcinomas with medullary features, and metaplastic breast carcinomas (MBCs) 

Bertucci et al., 2006). These histologic types share with conventional TNBCs a 

similar genomic landscape, still maintaining some clinically relevant singularities 

(Geyer et al., 2017).  

For example, carcinomas with apocrine differentiation are typically ER/PR negative, 

but with higher rate of HER2 amplification (Vranic et al., 2010); they occur in older 

patients and seem to have a favorable prognosis (Mills et al., 2016). They are 

characterized by a higher frequency of mutations in PIK3CA and PI3K pathway 

genes (Lehmann et al., 2014; Weisman et al., 2016), but a lower rate of TP53 

mutations and MYC gains compared with other TNBCs (Weisman et al., 2016).   

Carcinomas with medullary features are characterized by well-circumscribed 

borders, a syncytial growth pattern, and brisk lymphocytic infiltrate (Lakhani, 2012). 

Despite their cytologic features and high mitotic activity, they have been associated 
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with a favorable outcome. However, typical medullary carcinomas may not have a 

better prognosis than atypical ones (not fulfilling all diagnostic criteria) (Mateo et al., 

2016), and precise identification of this subtype is limited by doctors’ agreement 

(Lakhani et al., 2012).  

Regarding the MBCs, these tumours are often high grade, with conspicuous nuclear 

pleomorphism and mitotic activity, with squamous and/or mesenchymal 

differentiation (Weigelt et al., 2014). They are resistant to chemotherapy and have 

worse outcome (Lung et al., 2010). In addition, high inter and intratumor 

heterogeneity have been observed at the transcriptomic and genetic levels, 

correlating with morphologic heterogeneity (Weigelt et al., 2015; Geyer et al., 2015).  

 

In terms of pathological, molecular and clinical characteristics, TNBC shares 

similarities with the ‘basal-like’ subtype (BLBC). This term was chosen to define a 

subgroup of breast tumour cells lacking ER, PR and HER2, but expressing genes 

characteristic of normal basal/myoepithelial cells, such as KRT5, KRT14 and KRT17 

(Cytokeratins 5, 14 and 17, respectively), and EGFR (Epidermal Growth Factor 

Receptor) (Foulkes et al., 2010). More than 90% of BLBCs are TNBCs (Cheang et 

al., 2015), while BLBC represents the most frequent subtype of TNBC (55–81%) 

(Ismail-Khan et Bui, 2010; Prat et al., 2013). 

 

Furthermore, Lehmann et al. identified six subtypes of TNBC on the basis of gene 

expression analyses (Table 1.1): basal-like 1 and 2 (BL1 and BL2), 

immunomodulatory (IM), mesenchymal (M), mesenchymal stem-like (MSL), and 

luminal androgen receptor (LAR) (Lehmann et al., 2011). The BL1 subtype includes 

genes involved in the cell cycle and DNA damage repair, whereas the BL2 subtype 

is defined by higher expression of growth factor pathway genes. The IM subtype 

involves genes responsible for immune cell processes; the mesenchymal and MSL 

subtypes express genes responsible for cell motility and cellular differentiation 

(epithelial–mesenchymal transition), and the LAR subtype is characterized by 

androgen-receptor signalling. Many BL1 and BL2 tumours are associated 

with BRCA mutations and can be classified within the intrinsic basal-like subtype 

described by Perou et al. (Perou et al., 2000). 
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TNBC 
subtype 

Intrinsic 
subtype 

Signaling 
pathways 

Genetic 
signature 

Relative 
overall 

survival 

Potential 
therapies 

BL1 Basal-like Cell cycle, 
proliferation, 
DNA damage 

pathways 

ATR, BRCA, 
MYC, NRAS,     
Ki-67 

++ PARP 
Platinum 

BL2 Basal-like Growth factor 
Myoepithelial 

 

EGFR, MET, 
EPHA2, 
TP53 

+ PARP 
Platinum 

M Normal-like 
 

Claudin-low 

 

EMT 
Growth factor 

Wnt, ALK, 
TGF-β 

+ Tyrosine 
kinase 
inhibitors 
PI3K/mTOR 
inhibitors 

MSL Basal-like 
 

Claudin-low 

EMT 
Growth factor 
Proliferation 
(decreased) 

EGFR, 
PDGFR, 
ERK1/2, 
VEGFR2 

++ Tyrosine 
kinase 
inhibitors 
PI3K/mTOR 
inhibitors 

IM Basal-like Immune signal JAK1/2, 
STAT1/4, 
IRF1/7/8, 
TNF 

+++ Anti–PD-L1 
inhibitors 

 

LAR Luminal 
 
HER2 

AR AR, FOXA1, 
KRT18, 
XBP1 

+ AR-targeted 
PI3K 
inhibitors 

CDK4/6 
inhibitors 

Table 1.1: Molecular Subclassification of Triple-Negative Breast Cancer. TNBC 
subtype classification according to Lehmann et al., 2011 in relation to the altered 
gene expression profile, the intrinsic subtype, overall survival and potential matched 
therapies. +++: Best survival; ++: intermediate survival; +: worst survival. mTOR, 
mechanistic target of rapamycin; PARP, poly-ADP ribose polymerase; PD-L1, 
programed death-ligand 1; PI3K, phosphoinositide 3-kinase; TNBC, triple-negative 
breast cancer (Marotti et al., 2017; Sporikova et al., 2018).  

 
At the genomic level, TNBC tends to be very complex, as demonstrated by the high 

rate of point mutations, gene amplification and deletion (Cancer Genome Atlas 

Network, 2012). Two large studies have focused their attention in the identification 
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of genetic markers that influence prognosis and prediction of the appropriate therapy 

(Shah et al., 2012, Koboldt et al., 2002). In the first study, exome-sequencing, RNA-

sequencing, high-resolution SNP arrays and targeted deep resequencing were 

performed on 104 primary TNBC samples to identify patterns of somatic mutation 

(Shah et al., 2012): the most frequent copy number aberrations were identified for 

the BRCA1/2, RB1 (retinoblastoma gene 1), PTEN (phosphatase and tensin 

homolog) and EGFR genes. TP53 mutations were found to be the most common 

somatic aberration, followed by PIK3CA, USH2A (usher syndrome 2A) and MYO3A 

(myosin IIIA). However, only a minority of mutations (36%) were transcribed into 

mRNA (Shah et al., 2012). 

In the second study, DNA copy number arrays, DNA methylation, exome 

sequencing, mRNA arrays, microRNA sequencing, and reverse-phase protein 

arrays were conduct on 463 samples from patients (Koboldt et al., 2012).  In the 

basal-like tumors group (93 samples, 76 TNBCs), the most commonly mutated 

genes were TP53, PIK3CA, MLL3 (lysine methyltransferase 2C), AFF2 (AF4/FMR2 

family member 2), RB1 and PTEN. Copy number alterations were observed in 

several chromosomal regions or genes, as for example amplification or gain of 

MYC, CCNE (cyclin E1), 1q and 10p regions, loss of PTEN, RB1, INPP4B (inositol 

polyphosphate-4-phosphatase type II B) (30%), and the 8p and 5q regions (Koboldt 

et al., 2012). Some of these genes play a central role in the development of TNBC 

and are currently under investigation as promising therapeutic targets. 

 

BRCA1 and BRCA2 genes are fundamental for the activation and transcriptional 

regulation of DNA damage (DNA double- strand break repair by homologous 

recombination (HRR) and the maintenance of DNA stability), control of the cell 

cycle, cellular proliferation and differentiation (Venkitaraman, 2002). Depending on 

the ethnic background and age of the investigated cohort, 10-15% of the cases carry 

mutations for BRCA1 (Foulkes et al., 2003). Patients lacking BRCA1/2 function are 

more sensitive to DNA-damaging agents like platinum derivatives and poly(ADP 

ribose) polymerase (PARP) inhibitors (Plummer, 2011): the Treating to New Targets 

(TNT) trial has shown an objective response rate to carboplatin compared to 

docetaxel in metastatic TNBC tumors with BRCA mutations (Kummar et al., 2012). It 

has been reported that among patients responding to platinum-based chemotherapy 

scores of allelic imbalance are higher (Watkins et al., 2015): HORMAD1, a cancer 

testis antigen involved in the promotion of non-conservative recombination in 

meiosis (Fukuda et al., 2010) has been identified as a novel driver of genomic 

instability in TNBC (Watkins et al., 2015). This protein suppresses RAD51-
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dependent HR, generating micronuclei and structural chromosomal aberrations and 

driving in this way 53BP1-dependent non-homologous end-joining (NHEJ). In 

addition, the expression of HORMAD1 correlates with a better response to HR 

defect-targeting agents both in TNBC cell lines and clinical trial: this might add 

additional information to BRCA1/2 mutation testing for platinum treatment in TNBC 

patients (Watkins et al., 2015). 

 

Furthermore, MYC has been shown to be frequently overexpressed in poorly 

differentiated tumours, driving uncontrolled proliferation or apoptosis with the 

cooperation of the Wnt signalling (You et al., 2002) and BRCA1 (Wang et al. 1998) 

through a complex of BRCA1, Nmi, and MYC inhibiting TERT gene promoter activity 

in breast cancer (Li et al., 2002). In addition, it has been shown that these two genes 

cooperate to repress the transcription of psoriasin, a gene related to 

chemotherapeutic agent sensitivity (Li et al., 2002), demonstrating the fundamental 

role of BRCA1 as a tumour suppressor. MYC overexpression and BRCA1 loss seem 

highly correlated in a large portion in basal-like breast cancers (Grushko et al., 

2004), suggesting this genetic combination as a possible mechanism of BLBC 

development.  

Recent studies have also how the role of MYC in breast cancer tumourigenesis is 

dependent on the expression of PIM-1 (provirus integration site for Moloney murine 

leukemia virus 1) kinase 24. Horiuchi et al (Horiuchi et al., 2016) identified nine 

kinases required for the survival of MYC-activated non-immortalized human 

mammary epithelial cells: among those, PIM-1 had the greatest efficacy in 

maintaining survival. Subsequent analysis of distinct clinical cohorts highlighted that 

PIM-1 mRNA expression was significantly elevated in TNBC and its expression was 

associated with poor prognosis (Horiuchi et al., 2016). These results suggested how 

PIM-1 mediates survival, tumour growth and response to chemotherapy in 

cooperation with MYC in TNBC. Several research groups have generated small-

molecule inhibitors targeting PIM kinases, with current preclinical and clinical trials 

(Blanco-Aparicio et al., 2013), demonstrating how PIM-1 may be a reliable 

biomarker for the diagnosis, treatment, and prognosis of TNBC, since its 

upregulation could be an important.molecular event during the development and 

progression of TNBC.  

 

From a more clinical point of view, TNBC has an aggressive outcome, with short 

survival and relatively high mortality rate (Dent et al., 2007). The risk of recurrence 

seems to be higher during the first five years after diagnosis, with only few systemic 
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recurrences afterwards (Dawson et al., 2009). The high heterogeneity within 

patients, the lack of driver aberrations causing the pathology and the bad prognosis 

of the disease are the reasons why the development of new, biological and targeted 

treatments has been carried out. Nowadays some encouraging results have been 

obtained: in particular, pharmacological inhibition of transcription factors has raised 

increasing attention as a potential avenue for cancer treatment.  

 

Different ways are currently available to target a transcription factor indirectly or 

directly.  Transcription factors, as any other gene, are themselves controlled by 

transcription activators, repressors, epigenetic DNA or histone modifiers, so they 

can be inhibited or activated at the expression level (Lambert et al., 2018). In cancer 

treatment, a well-known example of this strategy is represented by HOXA cluster of 

transcription factors aberrantly expressed in leukaemia under the control of the MLL 

complex (Kawagoe et al., 1999). The aberrant MLL complex is formed by mutated or 

fused proteins such as HDAC, BRD4, Menin, WDR5 and PRMT1 (Steinhilber et al., 

2018): many of them are targeted for cancer treatments, deregulating in this was 

also the control of HOXA5-10 transcription factor. 

It is also possible to inhibit a transcription factor through degradation (Lambert et al., 

2018): a very well established example consists on the usage of compounds like 

bortezomib (Velcade®) for the ubiquitin-proteasome or sumoylation processes for 

several tumours, including breast cancer (Liu et al., 2016; Desterro et al., 2000). 

However, other compounds have been developed to work at the transcription factor 

interaction level with other proteins. For example the partner could be another 

transcription factor (homo-dimers, as for STAT, BCL6; hetero-dimers, as for 

RUNX1/CBFβ, MYC/MAX from the basal transcription machinery; co-factor/co-

activator/mediator or repressor (Nrf2/Keap1); chaperones), and the protein-protein 

interaction could be inhibited by small molecules like small compounds, 

peptidomimetics or stapled helix peptides (called PPIi, protein-protein interaction 

inhibitors). The tumour suppressor transcription factor p53 was the first one inhibited 

at the PPI level: in cancer, p53 is mutated and maintained in the cytoplasma through 

interaction with the Murine Double Minute 2 (mdm2) protein, also over-expressed in 

around 50% of all tumours (Rayburn et al., 2005). In this way, p53 is ubiquitinylated 

and subsequentally degraded (Zhou et al., 2001). 

Targeting the transcription factor/DNA interaction is a conventional therapy still used 

since the first anti-cancer chemotherapies several decades ago (6-mercaptopurine 

was the first DNA alkylating drug for leukemia and lymphoma) and different 

molecules have been developed to target different binding modes of transcription 
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factor to the DNA helix: DNA alkylating drug (i.e platinated agents) or DNA 

intercalating drugs (i.e. aromatic chromophores) are just some examples of the 

currently available options for cancer treatment (Lambert et al., 2018). 

Last possible mechanism of targeting a transcription factor is through its binding 

pocket, through a ligand-derived drug, as for steroid and hormonal receptors. In 

breast cancer, STAT5 for example is inhibited through direct interaction of an 

aptamer peptide (A431) mimicking its DNA binding-domain: in this way, the 

formation of the protein/DNA complex is inhibited and so the expression of the 

downstream target gene, such as cyclinD1 (Weber et al., 2013). 

 

However, since they often operate in mutually redundant families, a broad-scale 

knowledge of their functions and interactors remains a necessity, and a lot of work 

still has to be done to increase the therapeutic strategy against this type of cancer. 

 

1.4  Gene expression regulation: transcription 

Nowadays, the understanding of the regulation of gene expression still remains one 

of the most important challenges in biology. At the transcription level, it occurs at 

specific transcription regulatory regions (promoters and enhancers), particular DNA 

sequence located upstream of gene of interest where proteins such as RNA 

polymerase and several transcription factors (TFs), as well as microRNAs (miRNAs) 

(Huang et al., 2011; Younger et Corey, 2011), are recruited to control the expression 

of their target genes (Latchman, 1997).  

 

1.4.1 Gene transcription process 

The transcription process occurs in three main steps: an initiation phase (Sainsbury 

et al., 2015), that involves the recognition and binding of the RNA polymerase II (Pol 

II) to the gene promoter sequence; an elongation phase (Jonkers et Lis, 2015), 

during which the RNA production occurs; and a termination one (Porrua et Libri, 

2015), when the RNA and the Pol II are released from each other, and the Pol II is 

also released from the DNA. These steps are summarised in Fig. 1.2 (Weake et 

Workman, 2010). In eukaryotes, the first two phases are separated by an extra 

signal integration step that keeps the Pol II paused at the promoter region before the 

start of the active elongation (Sainsbury et al., 2015). 
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The initiation phase begins with the interaction between one or more transcription 

activator(s) and its recognition site within the promoter sequence of the target gene. 

These activators then sequentially recruit other co-activators and ATP-dependent 

nucleosome-remodelling complexes, facilitating the assembly and interaction with 

the DNA of the pre-initiation complex (PIC) (Roeder, 2005; Ptashne et Gann, 1997). 

Pol II and the general transcription factors (GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF 

and TFIIH are members of this complex.  At this point, while CDK7 (part of TFIIH 

complex) phosphorylates the serine 5 (S5) position of the Pol II carboxy-terminal 

domain (CTD), the DNA helicase XBP (another subunit of the TFIIH complex) 

remodels the PIC.11-15 bases of DNA at the transcription start site (TSS) are 

released to create a single-stranded DNA template to be introduced into the active 

site of Pol II (Saunders et al., 2006): this step, usually referred as promoter 

clearance, allows the Pol II to dissociate from some GFTs and proceed with the 

elongation stage.  

 

However, after the transcription of 20-40 nucleotides into the gene, the Pol II stops 

at the promoter-proximal pause site: a second phosphorylation is required at the S2 

of the Pol II CTD by CDK9 (a subunit of P-TEFb (Fuda et al, 2009)) in order to 

proceed. This modification is in fact fundamental for the formation of new binding 

sites for proteins involved in the mRNA processing and transcription like H3 lysine 

36 (H3K36) by methylase SET2 (Egloff et Murphy, 2008). 
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Figure 1.2: Early steps in the transcription cycle. a) Promoter selection is 
determined by the interaction of one or more transcription activator(s) with their 
recognition sites near target genes. b) Activation of gene expression is induced by 
the sequential recruitment of co-activator complexes (purple and pink) ATP-
dependent nucleosome-remodeling complexes. c) Co-activators and nucleosome 
remodelers facilitate the recruitment of RNA polymerase II (Pol II) and the general 
transcription factors (GTFs, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH) to form the 
pre-initiation complex (PIC) on the core promoter. These first steps (a–c) constitute 
the activator-dependent recruitment. d) CDK7 phosphorylates the serine 5 (S5) 
position of the Pol II and the DNA helicase XPB remodels the PIC, and 11–15 bases 
of DNA at the transcription start site (TSS) are unwound to introduce a single-
stranded DNA template into the active site of Pol II. This step is often referred to as 
promoter escape or clearance. e) Pol II transcribes 20–40 nucleotides into the gene 
and stops at the promoter-proximal pause site: the elongation requires a second 
phosphorylation at the S2 position of the Pol II by a subunit of human P-TEFb, that 
creates binding sites for proteins that are important for mRNA processing and 
transcription (Weake et Workman, 2010). 
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these initial stages of the transcription cycle. Although 
the mechanisms involved in the chosen examples may 
not always be observed in all other cases of inducible 
gene expression, we hope to provide a broad over-
view of the principles involved in inducible activation  
of transcription.

Activator-dependent recruitment
Gene activation involves a multistep recruitment 
process that consists of several potential rate-limiting 
steps during the initial stages of the transcription cycle 
(reviewed in REF. 8) (FIG. 1). During the initial steps of 
gene induction, transcriptional activators bind to specific 
DNA sequences near target genes and recruit transcrip-
tional co-activators and components of the transcription 

machinery to these genes through protein–protein 
interactions. These steps result in formation of the 
pre-initiation complex (PIC) on the promoter9,10. For 
the purposes of this Review, these first three steps 
can be regarded as a single rate-determining process, 
which we refer to as activator-dependent recruitment 
(FIG. 1a–c). An additional level of regulation is required 
for polymerase to proceed to productive transcription 
elongation (FIG. 1d,e). Although all of the steps in the 
transcription cycle are subject to regulation11, we focus 
in this Review on those steps that are most important 
for inducible gene expression: activator-dependent 
recruitment resulting in PIC formation; activation of the 
PIC and transcription initiation; and release of paused 
polymerase into productive elongation.

Figure 1 | Early steps in the transcription cycle.  
a | Promoter selection is determined by the interaction 
of one or more transcriptional activator(s) with specific 
DNA sequences (recognition sites) near target genes. 
Activators then recruit components of the transcription 
machinery to these genes through protein–protein 
interactions. b | Activation of gene expression is induced 
by the sequential recruitment of large multi-subunit 
protein co-activator complexes (shown in purple and 
pink) through binding to activators. Activators also 
recruit ATP-dependent nucleosome-remodelling 
complexes, which move or displace histones at the 
promoter, facilitating the rapid recruitment and 
assembly of co-activators and the general transcription 
machinery. c | Together, co-activators and nucleosome 
remodellers facilitate the rapid recruitment of RNA 
polymerase II (Pol II) and the general transcription 
factors (GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH  
to form the pre-initiation complex (PIC) on the core 
promoter9. These first three steps (a–c) constitute acti-
vator-dependent recruitment. d | After PIC assembly, 
CDK7 in human TFIIH (Kin28 in yeast) phosphorylates 
the serine 5 (S5) position of the Pol II carboxy-terminal 
domain (CTD). At the same time, another subunit of 
TFIIH, the DNA helicase XPB (Rad25 in yeast), remodels 
the PIC, and 11–15 bases of DNA at the transcription 
start site (TSS) is unwound to introduce a 
single-stranded DNA template into the active site  
of Pol II83. Pol II then dissociates from some of the GTFs  
and transitions into an early elongation stage of 
transcription83. This step is often referred to as promoter 
escape or clearance but is not sufficient for efficient 
passage of Pol II into the remainder of the gene.  
e | Following promoter clearance, Pol II transcribes  
20 – 40 nucleotides into the gene and halts at the 
promoter-proximal pause site. Efficient elongation by 
Pol II requires a second phosphorylation event at the S2 
position of the Pol II CTD by CDK9,a subunit of human 
P-TEFb (Ctk1 in yeast)8,104. Phosphorylation of the CTD 
creates binding sites for proteins that are important for 
mRNA processing and transcription through chromatin 
such as the histone H3 lysine 36 (H3K36) methylase  
SET2 (REF. 104). Nucleosome remodellers also facilitate 
passage of Pol II during the elongation phase of 
transcription. The transcription cycle continues with 
elongation of the transcript by Pol II, followed by 
termination and re-initiation of a new round of 
transcription (not shown).
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From a structural point of view, actively transcribed genes can be recognised by a 

specific nucleosome architecture of their promoters that allows the recruitment of the 

Pol II and TFs: they are characterised by AT-rich sequences that prevent the 

formation of a nucleosome, since they are less able to bend around a histone 

octane (Segal et al., 2006). In addition, chromatin remodellers like the RSC 

(Remodeling the Structure of Chromatin) complex maintain these regions without 

nucleosomes (called nucleosome-depleted regions, NDRs) by sliding them away 

(Hartley et Madhani, 2009). 

 

This chromatin state is necessary, but not enough to start the gene transcription. A 

process of histones exchange also has to happen, performed by enzymes (adding 

post-translational modifications (PMTs) to histones), energy-dependent chromatin 

remodellers and histone chaperons. All these components are recruited through a 

reversible phosphorylation of an unstructured domain in the large subunit of Pol II 

(the carboxy-terminal domain, CTD) performed by several different kinases (Hsin et 

Manley, 2012). 

 

In particular, the H2A–H2B dimer has to be replaced by the H2A.Z–H2B variant 

dimer into the nucleosomes flanking the NDR by the SWR complex, facilitating in 

this way the recruiting of chromatin remodellers and other TFs (Draker et al., 2012). 

 

The passage of Pol II is accompanied by a rapid and continuous disruption of 

nucleosome structure (Jamai et al., 2007), followed by a reformation of the 

nucleosome array when the transcription finishes. It has been noticed that there is 

also a co-transcriptional H3K36 nucleosome methyl mark enrichment over coding 

regions that reduces the affinities of the chaperons responsible of the nucleosome 

dynamics over elongation (Venkatesh et al., 2012): in this way, pre-existing histones 

are less likely to be replaced by the newly synthesized ones. 

 

1.4.2 Role of enhancers in gene transcription 

Enhancers are DNA sequences distantly located from gene promoters, in a range 

from hundreds base pairs to megabases (Lettice et al., 2003). Initially they were 

identified as regions with the potential to increase basal transcription (Banerji et al., 

1981), but it has been shown that they can also be transcribed by the Pol II to 

generate enhancer-associated RNAs (eRNAs) (Kim et al., 2010) (Fig. 1.3). These 

events are regulated by covalent modification of the histone tails of nucleosome, 
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such as methylation and acetylation. On the basis of these epigenetic modifications, 

it is possible to distinguish between different activations states (Ernst et Kellis, 

2010):  inactive enhancers, when they are characterized by compact chromatin; 

primed, when sequence-specific TFs bind specific sequences creating a DNase I-

hypersensitive, nucleosome-free region of open chromatin; and poised enhancers, 

that are primed enhancers with repressive epigenetic chromatin marks. 

 

The activation of the target gene promoter implies the recruitment of the different 

components of the transcriptional machinery to assembly the pre-initiation complex, 

start the transcription and lead to elongation. Through DNA looping, enhancers get 

in proximity of the promoter of the gene of interest, and they are thought to enhance 

the transcription process increasing the concentration of the factors that carry them 

out (Plank et Dean, 2014).  Among these factors there are co-activator complexes, 

like for example the Mediator (Kagey et al., 2010) and SAGA complexes (they 

contain histone acetylase (HAT) Gcn5) (Grant et al, 1997), scaffold proteins like 

cohesion that allow a stable promoter-enhancer interaction (Kagey et al., 2010), and 

other factors involved in the initiation of the elongation like Brd4 (Bromodomain 

Containing 4) (Liu et al., 2013). 
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Figure 1.3: Enhancer activation and function. Interactions between enhancers 
and promoters involve structural connections (orange oval) that include cohesin and 
the mediator complex to promote pre-initiation complex formation and initiate 
transcription. Enhancer RNAs (eRNAs) could promote transcription by facilitating 
chromatin looping, possibly by mediating interactions with cohesion, or with protein 
complexes required for transcriptional elongation (for example mediator complex). 
LDTFs, lineage-determining transcription factors; CTFs, collaborating transcription 
factors; SDTFs, signal-dependent transcription factors (modified from Heinz et al., 
2015). 
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1.4.3 Oncogenic transcription regulators in breast cancer 

Aberrantly expressed transcription regulators that lead to tumourigenesis are 

defined as oncogenic elements. For breast cancer, a great part of this category is 

formed by transcription factors. They are usually divided in three main subgroups 

(Gibbs, 2000; Brivanlou et Darnell, 2002): steroid receptors, such as oestrogen 

receptors (Tilley et al., 2001); resident nuclear factors, such as JUNB, JUND, c-JUN 

(Van Dam et Castellazzi, 2001) located in the nucleus and activated by 

serine/threonine residue phosphorylation and co-activators, and latent cytoplasmic 

factors, all those factors translocating into the nucleus after activation at the cell 

membrane level in a receptor-ligand manner, such as STAT family (Signal 

Transducers and Activators of Transcription), associated with  cell-cycle 

progression, cell survival, transformation, and angiogenesis (Calo et al., 2003). 

 

The overexpression and/or over-activity of these oncogenic TFs have a fundamental 

role in cell proliferation, tumour survival and invasive behaviour. Some of these 

factors are crucial for breast cancer carcinogenesis, in particular for TNBC. For 

example NF-κB (Nuclear factor of κB) has been demonstrated to drive breast cancer 

development and progression (Demicco et al., 2005; Srivastava et al., 2003) and is 

associated with particularly aggressive ER negative and HER2+ subtype known as 

inflammatory breast cancer (IBC) (Van Laere et al., 2006). TP53 gene is usually 

mutated in 20% of the cases (Pharaoh et al., 1999), with a different prognosis and 

rate between different subtypes of breast cancer, but an increased rate of mutations 

in cancers carries the germ-line BRCA1 and BRCA2 mutations (Smith et al., 1999). 

In addition, MYC amplification has been observed in the more aggressive phenotype 

of DCIS (Aulmann et al., 2002) or in the invasive component (Aulmann et al., 2006).  

These are just some of the well-know altered pathways that are necessary for breast 

cancer growth and progression: however, many others still require further 

investigations.  

 

1.5 Novel cancer therapies against gene transcription  

Recent studies have pointed out how cancers keep an identifiable pattern of gene 

expression (Wang et al., 2015; Hnisz et al., 2013; Hnisz et al., 2015; Lovén et al., 

2013): if a uniform gene expression is required, the tumour has to have a constant, 

active gene transcription. This necessity might be exploited to develop new 

approaches for cancer therapy: these tumours might be extremely sensitive to drugs 
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to inhibit transcription (Delmore et al., 2011; Chipumuro et al., 2014; Dawson et al., 

2011; Chapuy et al., 2013). 

Although this strategy could be difficult because of the redundancy of some 

pathways in non-malignant cells and tissues, recent studies have shown that the 

transcription of some genes is more sensitive to inhibition (Delmore et al., 2011; 

Kwiatkowski et al., 2014). To date, transcription factor-directed anticancer drug 

development has focused on membrane or cytosolic targeting of molecules acting 

as ligand receptors. Two successful examples can be cited as breast cancer 

therapies: tamoxifen, for ER-dependent breast cancers, and trastuzumab, for HER2+ 

ones. 

 

1.5.1 Breast cancer therapies: ER and HER2 examples 

Oestrogen receptor is a transcription factor that regulates the expression of genes 

involved in timely controlled cell division during mammary gland development and 

during post-pubertal physiological functions, such as pregnancy (Carroll, 2016). One 

of the first targeted agents in the treatment of this type of tumour is the selective 

oestrogen receptor modulator (SERM) tamoxifen (Fisher et al., 2005): it mimics 

oestrogen and binds to ER, but it alters the structure and function of the transcription 

factor so that it is no longer able to regulate the expression of target genes (Shiau et 

al., 1998). 

 

Due to gene amplification, HER2+ breast cancer is characterized by the expression 

of HER2, a transmembrane receptor with tyrosine kinase activity that belongs to a 

family of four receptors (EGFR/HER1, HER2, HER3, HER4). Structural studies have 

shown that HER2 is always in an active confirmation that allows dimerization with 

the ligand-activated HER receptors (Graus-Porta et al., 1997). It is involved in 

regulating cell growth, survival and differentiation through activation of the PI3K/Akt 

and the Ras/Raf/MAPK pathways (Yarden et al., 2001). 

 

Currently, the approved treatment for these patients is the monoclonal antibody 

trastuzumab, which recognizes the extracellular domain (ECD) of HER2: the binding 

limits the receptor’s ability to activate its intrinsic tyrosine kinase, which in turn, limits 

the activation of many other different signaling pathways promoting cancer growth. 

Although its antitumor action is not completely understood, different mechanisms 

have been proposed to explain the effect: trastuzumab blocks the binding of ERBB2 

to the receptor, preventing in this way the activation of signalling cascade and the 
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regulation of the transcription of targeted genes (Lane et al., 2001). This 

downstream effect could also be caused by the internalization and degradation of 

the ERBB2 receptor after trastuzumab binding, which would then downregulate the 

PI3K pathway signaling and downstream mediators of cell cycle progression such 

as cyclin D1 (Yakes et al., 2002; Izumi et al., 2002; Valabrega et al., 2007). 

Trastuzumab not only inhibits HER2 signaling pathways but also triggers immune-

mediated responses against HER2-overexpressing cells through antibody-

dependent cell-mediated cytotoxicity (ADCC): once trastuzumab binds the receptor 

on the surface of the cancer cell, activated natural killer cells bind the antibody and 

initiate the lysis of the cancer cell (Cooley et al., 1999). From clinical trials, 

trastuzumab seems to be generally well tolerated when administered after 

chemotherapy, although potential cardiotoxicity and resistance are major concerns. 

 

For HER2+ breast cancer resistance, it has been shown that cancer cells decrease 

or increase the expression of HER2 itself (Köninki et al., 2010), HER1 or HER3 

(Vazquez-Martin et al., 2007) to compensate, or increase the expression of some 

ligands like TGF-α (a ligand for EGFR/HER1) (Nahta et al., 2009). It might also arise 

through constitutive activation of the PI3K/Akt pathway, due to mutations in the 

PIK3CA gene and/or loss of PTEN (Arteaga et al., 2011). Preclinical studies showed 

that another treatment could inhibit cancer growth of those cells resistant to 

trastuzumab: lapatinib. This antibody reversibly inhibits the intracellular tyrosine 

kinase activity of both HER2 and HER1, suppressing downstream pathways such as 

MAPK/Erk1/2 and PI3K/Akt (Konecny et al., 2006). At the moment it is used in 

combination with anti-HER2 antibodies to enhance the apoptotic effect (O’Donovan 

et al., 2010). 

 

Regarding the ER-dependent breast cancer, the tumour can become resistant 

downregulating ER expression. This usually happens in approximately 10-20% of 

the cases (Harrell et al., 2006), and ER function is substituted by additional nuclear 

receptors. For example, Androgen Receptor (AR) was found to be upregulated in 

80-90% of ESR1+ breast cancer (Peters et al., 2009), and it could initiate cell 

division. However, in most of the cases ER expression is retained (Harrell et al., 

2006) and this transcription factor can still be functioning even in the presence of an 

anti-endocrine agent. Five possible mechanisms have being highlighted to explain 

this resistance: changes in drug metabolism and cellular secretion; upregulation of 

pathways that can promote ER transcriptional activity or of pathways that will make 

the target proteins more active; changes in the fidelity of the key proteins involved in 
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the ER complex; changes in the expression levels of associated proteins that are 

required for ER transcriptional activity (co-factors) and changes at the genetic level. 

In particular this last mechanism has acquired a lot of interest in the recent years. 

 

According to the TCGA data from 962 breast cancer samples, ESR1 mutations were 

present in only 0.5% of primary breast tumor cases (TCGA, 2012). The next-

generation sequencing (NGS) of DNA revealed a higher prevalence (11–55%) in 

metastatic ER+ breast cancers with prior AI exposure (Jeselsohn et al., 2015; 

Merenbakh-Lamin et al., 2013; Toy et al., 2013). Several works and clinical trials 

have showed how ESR1 mutations are rarely detected in treatment-naïve primary 

tumours, while they rise up to 11-39% of the cases (according to different patient 

profiles) in AI-refractory tumours (Jeselsohn et al., 2015; Niu et al., 2015; 

Chandarlapaty et al., 2016). According to these results, it is possible to believe that 

mutations arise through clonal selection of low abundant resistant clones or are 

acquired during the disease progression under the treatment selective pressure. 

The most common missense mutations are clastered in codons 537 and 538, while 

the most prevalent ESR1 point mutations are Y537S and D538G (several others 

have been identified but at significantly lower frequencies) (Reinert et al., 2017). 

Mutated ER recruits its coactivators without the hormone stimulation, and its 

affinities for oestrogen agonist or antagonist (estradiol or tamoxifen) are decreased. 

In addition, the mutations alter the conformational dynamics of the ER binding loop, 

conferring in this way an anti-oestrogen resistance (Fanning et al., 2016). 

 

Another resistance mechanism that has been reported is the acquisition of ESR1 

fusion genes. However, a detailed clinical study and prevalence is still required (Li et 

al., 2013). Recently Hartmaier et al. reported the identification of recurrent 

hyperactive ESR1 fusion genes in breast cancers resistant to endocrine therapy 

(Hartmaier et al., 2018). Through mate-pair DNA sequencing and/or RNA 

sequencing of matching primary-metastasis-normal samples from 6 patients, they 

were able to identify ESR1-DAB2, ESR1-GYG1, and ESR1-SOX9 in-frame fusion 

transcript (found only in the lymph node metastasis, not in the primary tumour), all 

with ligand-independent activity and hyperactive (Hartmaier et al., 2018). These 

observations suggest a potential role for the distinct 3′ gene partners in determining 

resultant ER activity. 

A similar mechanism has been reported for patients carrying BRCA1/2 germline 

mutation resistant to PARP inhibitors/platinum salts: in these cases, different 

BRCA1/2 intragenic deletions or reversion mutations (Edwards et al., 2008; Swisher 
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et al., 2008) are able to restore the reading frame, causing in this way resistance. 

Multiple activating ESR1 mutations have been detected in the ctDNA samples of 

patients carrying activating ESR1 fusion gene (Hartmaier et al., 2018), suggesting a 

novel polyclonal resistance mechanism (Christie et al., 2017). 

However, these findings still have to be fully elucidated because of that limited 

clinical history available: it is in fact possible that some of the ESR1 fusion genes 

are not transcribed and/or translated, or may have limited impact on the resistance 

to endocrine therapies.  

 

To block ER function, new drugs such as Fulvestrant (Faslodex) and Aromatase 

Inhibitors (AIs) have been developed: the first one is a steroidal anti-oestrogen that 

binds ER and induces its degradation, while AIs are starving the cancer of the 

oestrogen ligand, acting at a metabolic level. Both of the treatments have shown 

effectivity in tamoxifen-resistant context (Howell et al., 2005). 

 

Recent studies have also shown how ER requires the accumulation of many other 

proteins to perform different functions like, for example FOXA1 and GATA3 (Carroll 

et al., 2005; Eeckhoute et al., 2007): when any of these factors is specifically 

inhibited in breast cancer cells, ER-DNA interactions are perturbed. 

 

FOXA1 can occupy compacted DNA without the requirement of other proteins 

(Cirillo et al., 1999) and in this way facilitate interactions between additional factors 

(such as ER) and the DNA (Carroll et al., 2005). GATA3 has been shown to be 

required for the morphogenesis of normal mammary glands (Asselin-Labat et al., 

2006): it seems to be involved in promoting cellular differentiation and inhibiting 

proliferation, but becomes an essential component within the ER complex during 

tumour formation. In fact, when inhibited in cancer cells, ER interacts mainly with 

DNA binding sites demarcated by FOXA1 (Theodorou et al., 2012). This would 

suggest an important role of GATA3 in regulating ER-FOXA1 interactions (Carroll, 

2016).  

 

1.5.2 Treatment option for TNBC 

Despite the success in the treatment of various subtypes of breast cancer, for TNBC 

there is still a lack of unique, effective therapeutic approach. Several ones are 

currently under investigation, and they could eventually improve the outcome for 
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these patients. In Fig. 1.4 some of these approaches have been summarised (Park 

et al., 2018). 
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For example, for those patients carrying the mutations affecting the PI3K–AKT 

signalling pathway, a promising therapeutic approach has emerged from the 

randomized, double-blind, phase II PAKT trial (Schmid et al., 2020): the combination 

of AKT inhibition and chemotherapy. In this trial, 140 women with metastatic TNBC 

were randomly assigned to receive paclitaxel together with a placebo or capivasertib 

(pan-AKT inhibitor) at the intermitted dosage of 4 days on, 3 days off. An increased 

of the median progression-free survival (mPFS) was observed (5.9 months 

compared to 4.2 months with placebo), and so the median overall survival (19.1 

months versus 12.6 months). However, the effect of the treatment seems to be 

restricted mainly to patients carrying alteration in PIK3CA, AKT1 or PTEN. These 

recent results corroborate those observed with ipatasertib, another AKT inhibitor 

used in the LOTUS trial (Kim et al., 2017), confirming the validity of this combination.  

 

Another possible therapeutic approach for patients carrying BRCA-mutation consists 

of platinum agents, like carboplatin and cisplatin, leading to DNA crosslink strand 

breaks, which may be particularly important in these tumours lacking the 

homologous repair mechanism because of the mutation. A similar strategy is based 

on PARP (poly ADP-ribose polymerase) inhibitors, like olaparib or iniparib, that 

affect the activity of this polymerase, a critical enzyme for the base excision repair 

pathway and a key for the single-strand DNA breaks repair.  

PARPi were thought to contribute to a synthetic lethality mechanism by which 

inhibition of two DNA repair pathways contributes to cell kill in HRR-deficient 

cancerous cells over normal cells (Narod, 2010). It is now known that PARPi exert 

their efficacy interfering with the identification of DNA damage and multiple types of 

repair: their effects are mainly focused during S-phase, when DNA is exposed for 

replication, and HRR is preferred over nonhomologous end-joining (NHEJ) for repair 

of DNA double-strand breaks (Schreiber et al., 2006; Murai et al., 2012). 

In the last decades several clinical trials have been designed to use PARPi for 

breast cancer patients, with different clinical settings, such as neoadjuvant, adjuvant 

and metastatic (Vinayak et al., 2010). The mechanism of action (reversible or 

irreversible inhibition), dosing intervals (continuous or intermittent), toxicity, 

combination with chemotherapeutic agents are just some of the aspects of this 

therapy under investigations within the on going studies. 

The majority of the studies have been focused on BSI-201 (known as Iniparib 

(Sanofi-Aventis, France) and Olaparib (AstraZeneca, UK), even though some others 

have been developed and their efficacy evaluated, such as ABT-888 (Veliparib 

(Abbott), AG014699 (Pfizer), CEP-8983 (Cephalon), and MK-4827 (Merck). 
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Iniparib is an intravenous (IV) irreversible PARPi (Rouleau et al., 2010), dosed 

intermittently, primarily used in combination with gemcitabine and carboplatin. The 

first results for treatment of TNBC were in 2009 (O'Shaughnessy et al., 2009) where 

in a randomized phase II trial treated women had improvements in the clinical 

benefit rate (21% vs 62%; P=0.0002), overall response rate (16% vs 48%; P=0.002), 

median progression-free survival (3.3 vs 6.9 months; hazard ratio 

[HR]=0.342; P<0.0001), and median overall survival. Olaparib instead, the first FDA-

approved orally active PARPi is dosed continuously, mainly used in patients with 

BRCA mutation. The first phase II results came in 2009, when Tutt and colleagues 

showed that the response to a PARPi is dependent on BRCA1 or BRCA2 germline 

mutations rather than the tumour's phenotype (hormone receptor-positive or 

negative) (Tutt, et al., 2009).  

Current PARPi clinical trials registered with the National Institutes of Health’s United 

States National Library of Medicine in ClinicalTrials.gov include patients with breast 

cancer and are headed by monotherapy trials followed by combination trials. They 

are organized by type of combination (e.g. PARPi + chemotherapy) and clinical trial 

phase from I to III within each category, and include trial characteristics, patient 

population (with gBRCA1/2 bolded if a requirement for a particular trial), trial 

interventions and outcome measures. Combinations of iniparib 

with gemcitabine and carboplatin have been shown to delay TNBC progression and 

improve survival in clinical phase II studies (Liu, et al., 2012), but not in phase III 

trials (O'Shaughnessy et al., 2014). Olaparib was used in 2018 to treat 

germline BRCA-mutated, metastatic, and HER2-negative breast cancer (Le & 

Gelmon, 2018), but nowadays 15 clinical trials of olaparib monotherapy and 

combination therapy for TNBC are underway: olaparib in combination with 

programmed cell death-ligand 1 (PD-L1) inhibitors such 

as durvalumab and atezolizumab in (Roviello et al., 2016; Solinas et al., 2017); 

olaparib in combination with cediranib (AZD2171), inhibitor of VEGFR-

2 tyrosine kinase (Wedge et al., 2005); olaparib in combination with PI3K inhibitors 

such as buparlisib (BKM120) and alpelisib (BYL719) (Teo et al., 2017) and olaparib 

in combination with oral mTORC1/2 inhibitor (vistusertib/AZD2014) or AKT inhibitor 

(capivasertib/AZD5363) (Ocana & Pandiella, 2017). Combination treatments have a 

potential effect on growth inhibition of rapidly proliferating TNBC cells affecting blood 

supply and blocking the molecules required for cell growth. 

 

TNBC also exhibits higher mean quantities of tumour infiltrating lymphocytes (TILs) 

compared to other breast cancer subtypes both intratumourally and in adjacent 
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stromal tissues. Their presence has been associated with a favourable prognostic 

value, with complete response after neoadjuvant chemotherapy in TNBC patients 

and with a predictive marker for immunotherapy response (Borcherding et al., 2018). 

However, different TNBC subtypes show different characteristics: in particular the IM 

and basal-like subtypes are the ones with the higher infiltration of immune cells, 

antigen presenting cells and active immune pathways (Vinayak et al., 2017). In 

addition, the high frequency of BRCA1 and BRCA2 mutations is considered as 

another predictive marker for immunotherapy response (Borcherding et al., 2018). 

Among different strategies, immune-checkpoint inhibitors have shown promising 

results in both advanced and early-stage disease. However, response rates are very 

modest as single agent in advanced TNBCs and dependent on cancer type (Vikas 

et al., 2018). The majority of the current clinical trials have used monoclonal 

antibodies targeting the programmed cell death protein 1 pathway (PD-1/PD-L1) and 

the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), or combination 

strategies: these proteins are negative regulators of immune activation, and their 

presence in the tumour microenvironment prevents the activation of an efficient 

antitumor immune response (Pardoll, 2012). 

 

PD-L1 is expressed in 20%–50% of all breast cancer subtypes and it has been 

associated with higher histologic grades, larger tumours, and absence of hormone 

receptors (Ghebeh et al., 2006). Its expression in breast cancer, and in particular in 

basal-like TNBC, has been associated with longer overall and disease-free survival 

(Sun et al., 2016). Recently, the Food and Drug Administration (FDA) approved 

atezolizumab (anti-PD-L1) in combination with nab-paclitaxel for PD-L1-positive 

advanced TNBC. Significant response has been seen in early-phase trials with anti-

PD1 or anti-PD-L1, but response rates are up to 10% in unselected TNBC patients 

and improves only slightly to 20%–30% when patients are selected based on IHC-

based PD-L1+ tumours (Adams et al., 2017; Nanda et al., 2016). 

 

CTLA-4 is a T-cell inhibitory receptor that is expressed on activated CD8+ T cells 

and CD4+ regulatory T cells expressing CD25 and Foxp3. It attenuates the T-cell 

immune response binding to receptors on DCs: its blockade could remove these 

inhibitory signals, therefore enhancing the anti-tumoural effect (Arce Vargas et al., 

2018). It has been shown that TNBC is characterised by the highest incidence of 

TILs (20%; range, 4–37%) and the highest levels of Foxp3+ Tregs cells (70%; range, 

65–76%) of all breast cancer subtypes (Stanton et al., 2016): these Foxp3+ Tregs 

may be the therapeutic targets of CTLA-4 blockade approach in TNBC treatment. 
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Ipilimumab has already been approved by FDA for melanoma patients and is 

currently being investigated in breast cancer, together with tremelimumab (Hodi et 

al., 2010). 

 

Other targets that are being investigated for potential checkpoint inhibition include 

the BTLA, VISTA, TIM3, LAG3, and CD47 proteins but are very early in 

development (Havel et al., 2019). Overall, immunotherapy is considered one of the 

most promising therapeutic approaches with an efficient and durable effect for 

patients with TNBC. 

 
Unfortunately the treatments currently available have shown limited benefits. This 

indicates that TNBC cannot be treated as a uniform disease: its biology likely 

involves multiple redundancies and pathway cross-talks, which imply that if one 

pathway is selectively inhibited by a therapeutic strategy, a compensatory one would 

be activated. Therefore, not a single targeted therapy has been approved for TNBC 

treatment: combining two or more agents and/or finding new molecular targets may 

be required for a more rational and optimal approach. 

 

Recently Wang and colleagues have demonstrated that TNBC tumours are 

dependent on CDK7 (cyclin-dependent kinase 7) (Wang et al., 2015). CDK7 is not 

only a kinase, but also a subunit of a multi-protein basal transcription factor TFIIH: it 

is involved in the control of the cell cycle through phosphorylation of other CDKs 

(Malumbres, 2014), and regulates the initiation of the transcription by 

phosphorylating the RPB1 subunit of the RNA polymerase II (Malumbres, 2014). 

Wang and colleagues identified a selective inhibitor of CDK7 called THZ1 that also 

inhibits CDK7 dependent transcription of 450 genes supporting the tumourigenicity 

of TNBC (Fig. 1.5). These genes, encoding signalling molecules and transcription 

factors like TGF-β, STAT, WNT, are strongly dependent on continuous, active 

transcription, which is allowed by the presence of large clustered enhancer regions 

(super-enhancers), exceptionally regulated by transcription factors and co-factors 

(Hnisz et al., 2013), like for example CDK7. Targeting the transcription of this region 

seems to be an effective way to simultaneously suppress the expression of multiple 

genes fundamental for TNBC. This study thus highlights the feasibility of disrupting 

transcription as a therapeutic approach for TNBC treatment. 
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Figure 1.5: CDK7-dependent transcription addiction in TNBC. CDK7 regulates 
the continuous transcription of a cluster of TNBC genes phosphorylating the RNA 
polymerase II recruited at large clustered enhancer regions (super-enhancers). 
Selective inhibition of CDK1 through THZ1 causes a disrupted expression of this key 
cluster of genes, with an effect on cancer survival (modified from Wang et al., 2015). 
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A comprehensive identification of the transcriptional control of TNBC would aid in 

the development of more targeted therapies. This can be achieved by the use of 

novel proteomic and genomic tagging technologies, like CRISPR/Cas9, described in 

the following sessions. 

 

1.6  Novel techniques to investigate TFs 

1.6.1 Discovery proteomics 

Mass-spectrometry (MS) based approaches have been extremely useful to identify 

proteins present in different cellular compartments and/or expressed at different cell 

cycle stages. Thanks to them, it is possible to analyse a large amount of 

endogenous proteins avoiding time, cost and technical limitations of other 

techniques in a high throughput, sensitive, dynamic and fast way. 

 

In particular, discovery (or shotgun) proteomics is based on a bottom-up workflow 

(Yates et al, 2009), which consists in the identification of proteins through peptides 

generated by enzymatic cleavage. On the basis of their number, it is also possible to 

get quantitative information about the protein of interest: more specifically, relative 

abundances of peptides are estimated by counting the number of MS/MS spectra 

assigned to the same peptide/protein (Liu et al., 2004). Alternatively, the relative 

abundance is obtained as an integrated area of a peptide peak in extracted ion 

chromatogram (XIC) using dedicated software tools for data processing (Nahnsen et 

al., 2013). Isotopic-labelling strategies as the isotope-coded affinity tag (ICAT) (Gygi 

et al, 1999) and stable isotope labelling by amino acids in cell culture (SILAC) (Ong, 

2002) have been introduced for quantitative comparison of biological samples. Later 

on, chemical labelling by isobaric tags for relative and absolute quantification 

(iTRAQ) (Ross et al., 2004) and dimethyl labelling protocols have been developed to 

improve quantification accuracy (Boersema et al., 2009). However, the variance of 

the relative signal intensity is sequence-dependent, making the technique not 

inherently quantitative. 

 

In addition, MS can be applied for a global analysis of protein complexes: three 

main strategies are currently used for this purpose, summarised in Fig. 1.6.  
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Figure 1.6: Three main approaches for unbiased analysis of protein–
protein interactions. a) Affinity pulldown and isolation approach: it uses a 
specific antibody against an endogenous target protein or a tagged version of 
that protein to isolate it together with its interacting partners. These 
complexes are then eluted, digested, filtered through liquid chromatography 
and analysed by tandem mass spectrometry (LC-MS/MS). Statistical 
approaches are applied to identify specific from non-specific binding partners. 
b) Proximity labelling approach: cells are modified in order to ectopically 
express the target protein fused to a biotin ligase or a peroxidase enzyme. 
These enzymes can covalently transfer biotin labels to proteins that are in 
close proximity, so potential interactors. These biotinylated proteins can be 
isolated using streptavidin-conjugated beads after cell lisation. Similarly to the 
procedure, the isolated proteins undergo a digestion step, followed by LC-
MS/MS analysis and statistical tests. c) Protein correlation profiling: coupled 
with techniques like chromatography and density gradient centrifugation in 
order to separate protein complexes according to size, density, charge or 
hydrophobicity, assuming that interacting proteins will co-elute. This step 
could involve a single type of separation or multiple ones, sequentially or in 
parallel. Successively, each separated fraction is digested and analysed by 
LC-MS/MS, generating an elution profile for each detected protein. Clustering 
algorithms can then identify co-eluting proteins and infer the protein 
complexes in the lysate. HIC, hydrophobic interaction chromatography; IEX, 
ion-exchange chromatography; SEC, size-exclusion chromatography 
(Larance et  Lamond, 2015). 
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The first and most widely used approach is based on the affinity pulldown strategy 

(immunoprecipitation) (Fig. 1.6, a): the target protein, together with its interactors, is 

isolated through immunoprecipitation, using a specific antibody against it or against 

a tag ectopically expressed (for example GFP, short peptides (FLAG or 

hemagglutinin) (Trinkle-Mulcahy et al., 2008). This approach has been used to 

examine protein complexes in a proteome-wide scale (Hubner et al., 2010; Jäger et 

al., 2011).  It is a very sensitive method, in particular for low abundant complexes. 

 

The second approach is an in vivo proximity labelling (Fig. 1.6, b): a particular cell is 

engineered to ectopically expressed the target protein fused to a biotin-ligase 

derived from bacteria (the BioID method) (Roux et al., 2012), or to a peroxidase 

enzyme capable of activating biotin–phenol (the APEX method) (Rhee et al., 2013). 

Once activated, the biotin is rapidly and covalently conjugated to nearby Lys (in the 

case of BioID) or to Tyr (in the case of APEX) residues. This enhances the 

enrichment of potential interactors thanks to a streptavidin pulldown. In this 

particular approach, it is possible to maximise the purity of the sample with stringent 

buffers and extensive washes thanks to the high-affinity interaction between biotin 

and streptavidin. 

 

The third approach is based on variations of Protein Correlation Profile (Fig. 1.6, c) 

(Kirkwood et al., 2013): chromatography or density gradient centrifugation 

techniques are used to separate native protein complexes according to size, 

density, shape, charge and/or hydrophobicity. The cell extracts are isolated and 

fractionated under particular conditions to preserve protein–protein interactions. 

After elution, the different fractions are collected, individually processed and 

analysed by LC-MS/MS. Protein elution (gradient) profiles are then generated for 

each protein and compared with others by computational clustering to identify 

potential interacting proteins based on similarities. This approach can 

simultaneously analyse hundreds of protein complexes: it has in fact been used to 

study the interactome of some cell lines in combination with other protein properties 

like isoforms or PTMs (post transcriptional modifications) (Kirkwood et al., 2013). 

However, even if it has been shown that multiple chromatographic steps increase 

the resolution of the analysis (Havugimana et al., 2012), this method can be used 

only on soluble complexes. 

 

All these approaches can confirm the presence of a protein within a complex, but 

not the direct or indirect interaction with any of its members. This information can be 



 

38   

generated through protein crosslinking step coupled with one of these methods 

(Leitner et al., 2014; Mohammed et al., 2013), thanks to which it has been possible 

to map not only direct protein-protein bindings (Fischer et al., 2013; Weisbrod et al., 

2013), but also protein-RNA interactions (Kramer et al., 2014). However, this 

technique comes with several limitations: form a bioinformatics point of view, it is 

challenging to identify crosslinked peptides using MS fragmentation methods, and 

consequentially to estimate accurately the false-discovery rate (FDR) of each co-

fragmented peptide sequence, which could come from any protein in the original, 

crosslinked mixture. 

 

Nowadays, mass spectrometers offer high resolution (>400,000 mass/Δmass), high 

mass accuracy (<1 ppm), high sensitivity (<attomol), and high speed (12–20 Hz) 

(Sidoli et al., 2016). However, the results are complex to interpret, dependent on the 

method of acquisition and on the platform used for data analysis. Proteomics 

experiments are notoriously prone to produce a high proportion of false positives 

(Christoforou et al., 2014): in fact the signal of the protein of interest could be mixed 

with background noise, as other metabolites might have isobaric masses, which 

means the same atomic composition but different structure. In addition, 

reproducibility is extremely difficult to achieve: in organelle proteome studies, for 

example, it is almost impossible to obtain identical gradient fractions among 

experiments and replicates, and any experimental perturbation can affect the size or 

density of the organelle. The stochastic element of shotgun MS also has to be 

considered: the set of proteins identified in each experiment would never be 

identical. For these reasons, technical optimization, multiple replicates and 

comparative experiments are the only way to improves resolution and achieve low 

FDR levels (Itzhak et al., 2016; Itzhak et al., 2017).  

 

Even if MS approaches generate a static picture of the cellular proteins map that on 

the other hand naturally undergoes a continuous, dynamic modification process, 

their informative relevance is undeniable.   

 

1.6.2  Characterization of TF binding sites 

Transcription factors play a fundamental role in the regulation of gene expression 

through direct interaction with its regulatory regions or indirect ones, together with 

other regulatory proteins.  
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Each TF can recognize several similar DNA sequences with different binding 

affinities (Siggers et Gordân, 2014). For this reason, TF binding specificities (the 

preferential binding of specific sequences) are represented as binding site motifs, a 

summary of the preferentially bound sequences, used to predict TF binding sites.  

 

Currently one of the most widely used methods to study the TF-DNA binding 

preference is chromatin immunoprecipitation coupled with high-throughput 

sequencing (ChIP-Seq) (Furey, 2012). Briefly, the genomic region bound by a TF is 

isolated by immunoprecipitation and identified though high-throughput sequencing. 

ChIP-Seq signal ‘peaks’ are usually determined through peak calling algorithms and 

then analysed with software like MEME-ChIP (Kulakovskiy et al., 2010) or 

ChIPMunk (Machanick et Bailey, 2011) to look for enriched motifs within the pulled-

down regions.  

 

However, mapping of binding sites could be extremely difficult due to occasional low 

ChIP enrichment, possible clustering of binding sites in close proximity, and 

fragment size heterogeneity (a ChIP-Seq peak can cover even hundreds of bases, 

while the TF binding site are usually just few bp) (Rhee et Pugh, 2011). ChIP-exo, 

ChIP-nexus are improved version of the ChIP-Seq protocol to overcome these 

difficulties, where excess sequences are cut with exonucleases in order to have a 

narrower resolution of the binding sites (He et al., 2015). However these approaches 

are still not sufficient for a robust de novo motif discovery because, due to their own 

protocol limitation, they are not able to identify all possible binding sites, and indirect 

or cooperative binding events can alter the identification of a TF binding preference 

(Furey, 2012). Novel techniques like DNase-Seq, ATAC-Seq, and FAIRE-Seq have 

been developed as alternatives to investigate the transcription regulation in a TF-

independent way: they identify regions with accessible chromatin using a non-

specific DNA nuclease, transposase or formaldehyde crosslinking together with 

phenol-chloroform extraction (Boyle et al., 2011; Buenrostro et al., 2013). However, 

their ability in identifying TF binding sites through ‘footprints’ has been debated 

(Sung et al., 2016) and it seems to be TF-dependent: for example Sung et al. 

showed that DNase-Seq cannot fully capture footprints of TFs with short DNA 

residence time like SOX2 and glucocorticoid receptor (Sung et al., 2014). 

 

Another method of genome tagging has been used to investigate transcription: the 

CRISPR/Cas9 technology. 
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1.7 CRISPR/Cas9 technology 

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) 

accompanied by CRISPR-associated (Cas) proteins is a system used by bacteria 

and archaea to defend themselves against foreign DNA elements (Barrangou et al., 

2007; Garneau et al., 2010). There are different types of CRISPRs according to 

different bacteria species (Makarova et al., 2015), but the one used in this project is 

an engineered version of the type II CRISPR system from Streptococcus pyogenes. 

The key components of this system include the specific cleavage of double-stranded 

DNA mediated by Cas9 (Barrangou et al., 2007; Garneau et al., 2010), the presence 

of a short DNA sequence adjacent to the RNA-binding site, called protospacer-

adjacent motif (PAM) as a mechanism for discriminating self from non-self (Mojica et 

al., 2009), and the presence of a small transactivating CRISPR RNA (tracrRNA), 

which directs the post-transcriptional processing and maturation of the CRISPR 

RNA (crRNA) through sequence complementarity (Deltcheva et al., 2011). The 

entire process is defined by three different stages: the spacer acquisition, CRISPR-

Cas expression and DNA interference (Amitai et Sorek, 2016) (Fig. 1.7). 

 

During the first stage, a short protospacer sequence from a previous mobile element 

is incorporated into the CRISPR array as a new spacer (Heler et al., 2014): which 

protospacer has to be used is decided by specific recognition of protospacer 

adjacent motifs (PAMs) present in the invading plasmid and phage genomes (Mojica 

et al., 2009).  These motifs are a short (2–5 nucleotide) sequence essential for the 

cleavage of the target DNA during the interference stage (Mojica et al., 2009). 

During spacer acquisition, spacers are preferentially selected from protospacers that 

have a cognate PAM for the CRISPR–Cas system in question (Mojica et al., 2009; 

Heler et al., 2015).  

 

After that, the crRNA will be generated: the CRISPR array is transcribed into a long 

precursor (pre-crRNA) and processed by endonucleases into mature crRNAs (single 

spacer surrounded by partial CRISPR repeat sequences on one/both sides (Brouns 

et al., 2008). At the end these mature crRNAs form complexes with Cas proteins 

that will be targeted for DNA degradation (van der Oost et al., 2014). The processing 

of the pre-crRNA transcripts involves base pairing between a small transactivating 

crRNA (tracrRNA) and the repeat segment of the pre-crRNA, followed by the 

cleavage within the repeat region by an endogenous RNase III (Deltcheva et al., 

2011).  
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Figure 1.7: Stages of CRISPR-Cas immunity. a) Organization of a CRISPR–Cas 
locus in a bacterial or archaeal genome. The numbers, order and identities of the 
cas genes are different between CRISPR–Cas subtypes, and so the number of 
spacer–repeat units between species. b) In the adaptation stage, the Cas1–Cas2 
complex (two Cas1 dimers and a single Cas2 dimer) acquires a protospacer from 
the invader DNA and integrates it as a new spacer into the CRISPR array, and the 
first repeat is duplicated. c) In the expression and maturation stage, the CRISPR 
array is transcribed and processed into mature CRISPR RNAs (crRNAs), containing 
a transcribed spacer and part of the repeat sequence. They form ribonucleoprotein 
(RNP) complexes with Cas proteins, different from different subtypes. d) During 
interference, the crRNA–Cas RNP complex identifies the target DNA through 
complementary base-pairing in the presence of a protospacer-adjacent motif (PAM), 
and it is then degraded by nuclease proteins or domains. The position of the PAM 
and the identity of the nuclease that degrades the target are different in different 
CRISPR–Cas subtypes (Amitai et Sorek, 2016). 
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This system utilizes the multi-functional Cas9 protein to target and degrade DNA 

through the guide of a dual-RNA heteroduplex made by a crRNA and a tracrRNA 

(Deltcheva et al., 2011). This has been used to introduce double-stranded DNA 

breaks in the genomes of eukaryotic cells that are site-specific and can be repaired 

by NHEJ (non-homologous end joining), or HDR (homology-directed repair), 

generating site-specific genome modifications (Mali et al., 2013). 

 

Alternative versions have been developed to adapt to different biological systems for 

genome studies. For example, it can be programmed with single RNA molecule 

combining tracrRNA and crRNA features to cleave specific DNA sites. This small 

guide RNA (sgRNA) contains a designed hairpin that mimics the tracrRNA-crRNA 

complex (Jinek et al., 2012). The binding between the sgRNA and the target DNA 

causes the double-strand breaks because of the endonuclease activity of Cas9. In 

particular, the version we used for this project is a nuclease-deficient Cas9 (dCas9): 

it allows direct manipulation of the transcription process without genetically altering 

the DNA sequence (Qi et al., 2013). Furthermore, it allows the recruitment of diverse 

effector proteins for gene regulation at the transcription level (Fig. 1.8). For example 

it has been frequently fused to various transcription factors such as KRAB (Krüppel-

associated box) (Gilbert et al., 2013) or four concatenated mSin3 interaction 

domains (SID4X) (Konermann et al., 2013) to enhance transcription repression 

(CRISPRi) (Fig. 1.8, a). It has also been used to activate the expression of target 

genes (CRISPRa). In this case, dCas9 is fused with VP64 (herpes simplex VP16 

activation domain) or the p65 activation domain (p65AD) together with multiple 

gRNAs (Maeder et al., 2013), or synergistic activation mediator (SAM), like SunTag 

(Konermann et al., 2014) together with single gRNAs (Gilbert et al., 2013; Perez-

Pinera et al., 2013) and it was enough to activate transcription (Fig. 1.8, b and c). 

 

In addition the sgRNA can be modified into a scaffold to recruit transcriptional 

regulators (Zalatan et al., 2015): it could be fused to orthogonal protein-interacting 

RNA aptamers, which recruit specific RNA-binding proteins (RBPs) (Fig 1.8, d). 

These particular sgRNAs are called scaffold RNAs (scRNAs) (Zalatan et al., 2015). 

On the basis of the scRNA and the coupled RNA aptamer, different RBP 

transcriptional modulators can be recruited to different genes and have different 

effects.  

 

dCas9 fusion proteins can also act as sequence-specific, synthetic epigenome 

modifier, varying not only the epigenetic status but also the expression of the gene 
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of interest. Given the great number of functional epigenetic marks, from DNA 

methylation to histone modifications, future studies are necessary to develop a 

proper dCas9-based epigenetic modifier tool (Fig. 1.8, e, f) (Hilton et al., 2015; 

Wang et al., 2016). 

 

Other uses of the dCas9 protein include chromosome imaging in live cells and 

dissection of long-range chromatin interactions (Chen at al., 2013; Ma et al., 2015). 

However, the version of dCas9 we used in this project is an affinity-tagged dCas9: it 

is suitable for studying proteins interacting with specific portions of the genome, like 

for example for chromatin immunoprecipitation (ChIP) studies. In this case dCas9 is 

usually tagged and targeted to a specific locus in order to be used to pulldown the 

proteins associated with that region. This methodology allows the identification of 

protein-genome interactions at specific genomic loci. Recently Fujita et al. used this 

method to successfully characterize proteins interacting with an interferon-γ-

responsive promoter (Fujita et al., 2014). Because of the genome-wide off-target 

dCas9-binding events, proper controls and strong results validation are necessary. 

 

The use of the technique is flexible and programmable due to the fact that it is 

based on a sgRNA and it requires just a 20bp-matching region to target a specific 

gene.  
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Figure 1.8: CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) 
strategies. a) Transcription repression by nuclease-deficient Cas9 (dCas9) fused 
with different repressor domains (red ovals), like Krüppel-associated box (KRAB) 
domain or four concatenated mSin3 domains (SID4X). b) Transcription activation by 
dCas9 fused with different activation domains (green ovals), like multiple repeats of 
the herpes simplex VP16 activation domain (VP64) or the NF-κB transactivating 
subunit activation domain (p65AD). Multiple single guide RNAs (sgRNAs; different 
shades of orange) are necessary to recruit multiple dCas9 fusion proteins in order to 
have an efficient transcription activation. c) Enhanced transcription activation: just 
one sgRNA to recruit one dCas9 per target gene. The SunTag array uses an array 
of small peptide epitopes (blue circles) fused to the C terminus of dCas9 to recruit 
multiple copies of single-chain variable fragment (scFV) fused to VP64. The 
synergistic tripartite activation method (VPR) uses a fusion of three transcription 
activators, VP64, p65 and the Epstein–Barr virus R transactivator (Rta), to achieve 
enhanced transcription activation. d) The aptamer-based recruitment system 
(synergistic activation mediator (SAM)) utilizes dCas9 with a sgRNA encoding MS2 
RNA aptamers at the tetraloop and the second stem–loop (shown in dark green) to 
recruit the MS2 coat protein (MCP), fused to activators p65 and heat shock factor 1 
(HSF1). Additionally, VP64 is fused to dCas9. e) Epigenetic regulation. Fusion of 
histone demethylase LSD1 to Cas9 removes the histone 3 Lys4 demethylation 
(H3K4me2) mark, for transcription repression. F) Fusion of the catalytic core of the 
histone acetyltransferase p300 (p300Core) to dCas9 can acetylate H3K27 (H3K27ac), 
for transcription activation (Dominguez et al. 2015). 
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1.8 Aims of the present study 

As described in section 1.5, targeting transcription regulation could represent a 

successful approach for breast cancer treatment. In particular, TNBC patients could 

benefit the most, since a unique, effective therapy is still missing. As shown by 

Wang and colleagues, the inhibition of transcription factors like CDK7 suggests a 

direct effect on the tumourigenity of TNBC. However, for this purpose, a deeper 

understanding of the transcription regulation process is still necessary. 

 

In this thesis, the regulation of the trascription of genes highly and differentially 

expressed in TNBC compared to the other subtypes of breast cancer will be 

investigated. In particular, the main focus will be on the regulation of expression of 

transcription factors genes themselves. 

 

In order to do so, a novel technique has been developed, which is the results of the 

combination of CRISPR/Cas9 and RIME proteomics: a catalytically inactive Cas9 

(dCas9) will target potential promoter sequences of the genes of interest, and the 

transcription factors involved in the regulation of the gene expression will be identify 

through proteomic analysis. Common regulators between all or some of the studied 

loci will be further investigated in order to understand their role and importance for 

the biology of TNBC. 
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2 CHAPTER 2: MATERIAL AND 
METHODS 

 

2.1 Cell culture 

The MDA-MB-231 and HS578T breast cancer cell lines, and HEK293T cell line 

(ATCC) were maintained in Dulbecco’s modified Eagle’s medium (DMEM, high 

glucose, Thermo Fisher Scientific, Life Technologies, Gibco), supplemented with 

10% fetal bovine serum (FBS, Fetalclone III, Clontech) and 1% 

Penicillin/Streptomycin (P/S, Gibco) in a 37°C incubator with 5% CO2. The BT549 

and SUM159 breast cancer cell lines (ATCC) were maintained in Roswell Park 

Memorial Institute medium (RPMI 1640, Thermo Fisher Scientific, Life Technologies, 

Gibco), supplemented with 10% FBS and 1% P/S, in the same conditions. 

 

All the clones derived from each cell line were grown in the same conditions as the 

parental one. For Doxycycline (Clontech) induction, the cells were treated 24 or 48 

hours before collection for RIME, ChIP-qPCR, protein or RNA analysis. The final 

concentration of Doxycycline was 1µg/mL. 

 

2.2 Cloning strategy 

gRNAs were designed through a computational screening using the tool eCRISP 

(http://www.e-crisp.org/E-CRISP/) and ordered together with the complementary 
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from Sigma. They were designed with a specific overhang sequence for ligation into 

the cloning sites of the PiggyBac vector (PB-gRNA-Bsa1-EF1α-RCB): the forward 

gRNA primers have a CTTG sequence at the 5’ end and the complementary 

sequences an AAAC at the 3’ end. They are as follows: 

 

Primers Sequences 

FOXC1 forward 5’-CTTG TGCGTAAAAAAGTCCTCGCC-3’ 

FOXC1 complementary 5’-AAAC GGCGAGGACTTTTTTACGCA-3’ 

ELF5 forward 5’-CTTG ACAGACAGGTCCGTTTGGTT-3’ 

ELF5 complementary 5’-AAAC AACCAAACGGACCTGTCTGT-3’ 

SOX10 forward 5’-CTTG CAGCTCCCAAGTCCTCTTCC-3’ 

SOX10 complementary 5’-AAAC GGAAGAGGACTTGGGAGCTG-3’ 

NFIB forward 5’- CTTG GAAGAAGAAAAGCCAGCAAA-3’ 

NFIB complementary 5’- AAAC TTTGCTGGCTTTTCTTCTTC-3’ 

NFE2L3 forward 5’-CTTG TGCGGCCCCTCCCACGGGCG-3’ 

NFE2L3 complementary 5’-AAAC CGCCCGTGGGAGGGGCCGCA-3’ 

Table 2.1: gRNA sequences designed for cloning. 

 

Every complementary pair of primers (1mM) was annealed for 5 minutes at 95°C in 

the thermocycler, and the temperature was dropped to 25°C with a decrease of 

0.2°C per second. 5µg of the PiggyBac vector were digested at 37°C for 3 hours 

with the BsaI-HF restriction enzyme (NewEngland BioLabs) to create the ligation 

sites. The vector was design to have two BsaI restriction sites, which provide 

directional cloning with a single enzymatic digestion. The product was purified by 

agarose gel electrophoresis (1% agarose gel), and the 9000bp (base pairs) band 

was extracted using the QIAquick Gel Extraction Kit (Qiagen). 

The linearized vector was then combined with the annealed gRNA oligos (v:v = 1:1) 

and ligated for 2 hours at room temperature using the T4 DNA ligase (NewEngland 

BioLabs) before transforming into E. coli bacteria. 
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2.3 Heat-shock transformation protocol of chemically 
competent E. coli cells 

For transformation, 100µL of NEB 5-α Competent E. coli cells were thawed on ice 

and mixed with 5µL of the experimental DNA. Cells were incubated on ice for 30 

minutes, heat-shocked in a 42°C water bath for 30 seconds and then immediately 

transferred on ice for 5 minutes. 950µl of SOC medium was then added to the cells 

and incubated at 37°C for 1 hour in a rotary shaker at 225-250rpm. For positive 

selection (the vector contains an Ampicillin Resistance gene), 100-200µl of 

transformation mixtures were plated on LB agar plates containing Ampicillin 

(100µg/mL) and incubated overnight at 37°C. The following day some colonies were 

picked and grew overnight in a rotary shaker at 225-250rpm at 37°C in a selection 

media (LB with Ampicillin, 10µg/mL). 

 

2.4 Plasmid DNA extraction and screening for positive clones 

Plasmid DNA was isolated from 10mL of overnight culture using QIAprep Spin 

Miniprep kit (Qiagen) according to the manufacturer’s instructions. Briefly, the 

bacterial culture was harvested and lysed by high alkaline conditions. The plasmid 

DNA was then adsorbed on a QIAprep membrane, washed, eluted with nuclease 

free water and quantified with Nanodrop. 

 

The oligo insertion was determined by double digestion using NotI-HF and HpaI 

restriction enzymes (NewEngland BioLabs). Agarose gel electrophoresis was used 

to identify positive clones and confirmed by DNA sequencing. 100ng/µL of every 

vector with the gRNAs inserted were sequenced using the following primer: 

5’-AATCGCATAACTTCGTATAATGTA-3’. The sequencing was performed by the 

GENEWIZ sequencing service. 

  

2.5 Transfection of cancer cells with lipofectamine 

MDA-MB-231 cells were counted using the haemocytometer and seeded in 6-well-

plates 24 hours prior to transfection in order to reach confluency on the next day. 

The transfection mix was prepared according to the manufacturer’s protocol using a 

ratio of 15µL of lipofectamine LTX (with PlusTM Reagent, ThermoFisher Scientific) 
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for 3.5µg of total DNA to transfect (dCas9 vector, PB-TRE-multag-dvas9-mtag, and 

gRNA vector, PB-gRNA-Bsa1-EF1α-RCB) and 0.5µg of Transposase expressing 

vector. 

 

24 hours post transfection the cells were selected with Blasticidin (50µg/mL, 

ThermoFisher Scientific, Life Technologies, Gibco) and the treatment was continued 

for 5 consecutive days. 

 

2.6 Flow cytometry analysis and sorting strategy 

For flow cytometry, cells were detached as normal, spun down, washed with Hanks' 

Balanced Salt Solution (HBSS, calcium, magnesium) containing 1% FBS and re-

suspended in 500µL of the same media, filtered and analysed at the Cell Sorter 

equipped with 488nm and 561nm lasers (SH800S Cell Sorter, Sony Biotechnology). 

 

Cells were sorted into their normal growing media and plated according to the final 

number of cells. 

 

2.7 Gene expression studies 

Total RNA was extracted using the RNeasy Plus Mini Kit (QIAgen) according to the 

manufacturer’s protocol. RNA was quantified spectrophotometrically (Nanodrop). 

Total cDNA was synthesized from the RNA by reverse transcription using the 

transcription Reverse Transcriptase (RT, Roche) following this protocol: 1.5µg of 

RNA was incubated at 65°C for 5 minutes with primers random hexamers 

(Promega). The 5X RT Buffer (Roche), RNasin Ribonucleotide Inhibitor 

(PROMEGA), 10mM of dNTP (Biolab) and the RT were then added to the samples 

and the reaction was carried out according to these cycles: 25°C for 10 minutes, 

42°C for 40 minutes and 70°C for 10 minutes. The expression of selected genes 

was quantified by RT (real-time)-PCR using the SYBER Green Master mix (Applied 

Biosystem). 

 

Gene-specific primers were chosen among the ones available on Primer Bank 

(https://pga.mgh.harvard.edu/primerbank/) and are as follows: 
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Primers Sequences 

GAPDH forward 5’- ACCCAGAAGACTGTGGATGG-3’ 

GAPDH complementary 5’-TCTAGACGGCAGGTCAGGTC-3’ 

FOXC1 forward 5’-TGTTCGAGTCACAGAGGATCG-3’ 

FOXC1 complementary 5’-CAGTCGTAGACGAAAGCTCC-3 

ELF5 forward 5’-CTATGGAGGGTGAGAGCAGA-3’ 

ELF5 complementary 5’-GTACACTAACCTTCGGTCAACC-3’ 

SOX10 forward 5’-CCTCACAGATCGCCTACACC-3’ 

SOX10 complementary 5’-CATATAGGAGAAGGCCGAGTAGA-3’ 

NFIB forward 5’-AAAAAGCATGAGAAGCGAATGTC-3’ 

NFIB complementary 5’-ACTCCTGGCGAATATCTTTGC-3’ 

NFE2L3 forward 5’-TGGGCAAAAGCGATTAAGGG-3’ 

NFE2L3 complementary 5’-AGGTGAGGTCATTGCTGTCT-3’ 

MTA2 forward 5’-CCAAGACATCTGTGGGTCCT-3’ 

MTA2 complementary 5’-GTCGAAGGGAGTGAGGAGTG-3’ 

CDK1 forward 5’-TTTTCAGAGCTTTGGGCACT-3’ 

CDK1 complementary 5’-CCATTTTGCCAGAAATTCGT-3’ 

CDK6 forward 5’-CCAGGCAGGCTTTTCATTCA-3’ 

CDK6 complementary 5’-AGGTCCTGGAAGTATGGGTG-3’ 

Table 2.2: Primers designed for RT-PCR. GAPDH was used as a control gene 
to obtain normalized values. 

 

Assays were performed in triplicate and the results were normalized for GAPDH 

expression and then calculated as fold induction of RNA expression compared to 

controls. 
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2.8 Western blot analysis 

Every cell line was grown in 6-well plates until confluency, treated and then washed 

twice with ice-cold PBS and solubilized with 50mM Hepes buffered solution, pH7.5, 

containing 150mM NaCl, 1.5mM MgCl2, 1mM EGTA, 10% glycerol, 1% Triton X-

100, a mixture of Protease Inhibitors (Aprotinin, PMSF and Naorthovanadate, 

cOmpleteTM Protease Inhibitor Cocktail). Protein concentration in the supernatant 

was determined using the Pierce BCA Protein Assay method (Thermo Scientific). 

Equal amounts (30 or 50µg, depending on experiment) of the whole cell lysate were 

electrophoresed through a reducing SDS/7% or SDS/10% (w/v) polyacrylamide gel 

on the basis of the size of the investigated proteins and electroblotted onto a PVDF 

membrane which was probed with primary antibodies against V5 tag (rabbit 

polyclonal antibody to V5 tag, Abcam, #ab9116 1:5000), MTA2 (rabbit polyclonal 

antibody to MTA2, Abcam, #ab8106, 1:1000), CDK1 (rabbit polyclonal antibody to 

CDK1, Abcam, #ab131450, 1:1000), CDK6 (rabbit polyclonal antibody to CDK6, 

Abcam, #ab151247, 1:1000) and α-Tubulin (mouse monoclonal antibody to alpha-

Tubulin, Abcam, #ab7291, 1:5000). The levels of proteins were detected after 1 hour 

incubation at room temperature with the horseradish peroxidase-linked secondary 

antibodies (anti-rabbit and anti-mouse antibodies, respectively, 1:10000), by the 

ECL® (enhanced chemiluminescence) System (GE Healthcare). 

 

2.9 ChIP (Chromatin immuno-precipitation) and ChIP-Seq 
(Chromatin immuno-precipitation Sequencing) 

Every clone was grown in 2 x 15-cm-dishes to 80% confluency, and fixed with 1% 

formaldehyde (CellStor Pot) diluted in the growing media-without serum for 10 

minutes at room temperature. The crosslink was then quenched adding glycine (1M, 

diluted in PBS) for 5 minutes. Cells were washed once with ice-cold PBS, scraped 

off after the addition of PBS and Proteinase Inhibitors, and prepared for sonication. 

 

50µL of beads per immuno-precipitation (Dynabeads™ Protein A) were used and 

washed once with 0.5% BSA in PBS using a magnetic rack. They were re-

suspended in PBS/BSA and 2.5µg antibody per ChIP (anti-rabbit IgG antibody, Cell 

Signalling; rabbit polyclonal antibody to V5 tag, Abcam; rabbit polyclonal antibody to 

MTA2, Abcam; rabbit polyclonal antibody to CDK1, Abcam; rabbit polyclonal 

antibody to CDK6), and rotated overnight at 4°C. The day after, they were washed 
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three times with PBS/BSA to remove the unbound antibody and re-suspended in 

100µL PBS/BSA just before combining them with the sonicated lysate. 

 

Every sample was washed 2 times with different buffers (Lysis Buffer 1, Lysis Buffer 

2, Table 2.3) containing Proteinase Inhibitors, and after every wash rotated at 4°C 

for 10 minutes after the first wash, 5 minutes after the second one, and pelleted. 

They were then re-suspended in Lysis Buffer 3 (Table 2.3) with Proteinase Inhibitor 

and sonicated for 30 seconds on, 30 seconds off for 8 cycles. To evaluate the 

efficacy of the sonication, 10µL of sonicated chromatin was incubated at 95°C for 5 

minutes to reverse the crosslink, treated with 1µL of RNaseA (ThermoFisher 

Scientific) for 15 minutes at 37°C, followed by 1µL of Proteinase K (ThermoFisher 

Scientific) for 15 minutes at 55°C to eliminate RNA and protein contamination, and 

run on an agarose gel. 

 

Lysis Buffer 1 Lysis Buffer 2 Lysis Buffer 3 

1M Hepes KOH,  

pH7.5 5M NaCl, 

0.5M EDTA 

pH8 50% Gylcerol 

10% IGEPAL 

10% Triton X-100 

ddH2O 

1M Tris HCl,  

pH8 5M NaCl, 

0.5M EDTA  

pH8 0.5M EGTA 

ddH2O 

1M Tris HCl,  

pH8 5M NaCl,  

0.5M EDTA,  

pH8 0.5M EGTA 

pH8 10% Na-

deoxycholate 

20% N-lauroylsarcosine 

ddH2O 

Table 2.3: Buffers used for ChIP and RIME. 

30µL of 10% Triton X-100 were added to the sonicated lysate and pelleted. The cell 

lysate samples were then diluted with Lysis Buffer 3 to 1mL with a final 

concentration of 1% Triton X-100. 25µL of the sample were taken as input and store 

at 4°C. The rest of the sample was added to the prepared beads and rotated 

overnight in the cold room. 

 

The following day the samples were washed 5 times in RIPA buffer (150mM NaCl, 

10mM Tris, pH7.2, 0.1% SDS, 1% Triton X-100, 1% NaDeoxycholate) using a 

magnetic rack, and 1 time in TE/NaCl (Tris 10mM, EDTA 1mM/Sodium chloride 50 
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mM) buffer. They were then re-suspended in 100µL of elution buffer (1% SDS, 0.1 

M NaHCO3), while the inputs were re-suspended in 75µL of it. To reverse the 

crosslink, they were incubated at 65°C overnight. The following morning the 

samples were centrifuged and the supernatant transferred in a new tube to eliminate 

the beads. They were then treated with 1µL of RNaseA for 30 minutes at 37°C, and 

1µL of Proteinase K for 2 hours at 55°C. The DNA was extracted using the MinElute 

Reaction Cleanup Kit (QIAgen), according to the manufacturer’s protocol. 

 

The enrichment of dCas9 on targeted sequence was assessed by qPCR using the 

SYBER Green Master mix (Applied Biosystem). Primers were chosen among the 

ones available on NCBI Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-

blast/) to amplify a sequence of almost 200bp containing the gRNA targeting site, 

and they are as follows: 

 

Primers Sequences 

FOXC1 forward 5’- TCATTCGGAGGCGGTTCTCA -3’ 

FOXC1 complementary 5’- CAGCCGCTTAAGGAAGCATT -3 

NFIB forward 5’- ACAAAGCAAACCAAGCAGGA -3’ 

NFIB complementary 5’- GGAGGAAGAGCCTATCGCTT-3’ 

NFE2L3 forward 5’- ACTTCTGCTCCCAGAAAGCCT -3’ 

NFE2L3 complementary 5’- TCGGGAGAAGCGAAGAAGGAG-3’ 

Table 2.4: Primers designed for ChIP. 

 
For every ChIP-Seq experiment, the same protocol as for ChIP was followed, but 

with some modifications. In this case, the cell clones were maintained in DMEM 

supplemented with 10% fetal bovine serum tetracycline-free (Tet System Approved 

FBS, Clontech) and 1% P/S in a 37°C incubator with 5% CO2 for 10 days before the 

actual experiment. Every cell line was then grown in 4 x 15-cm-dishes to 80% 

confluence, where two plates were used to test the sonication efficiency. 100µL of 

beads per immunoprecipitation (IP) were used, and re-suspended in PBS/BSA and 

10µg antibody per ChIP.  
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ChIP DNA was sequenced on an Illumina machine by the genome core facility at 

CIGC (CRUK Cambridge Institute Genomic Core). ChIP-Seq data were analysed by 

Dr Mike Firth and Dr Jonathan Cairns at AstraZeneca (AZ), Cambridge, UK. In brief, 

each library was divided into two and sequenced on different lanes. Reads were 

subsequently run through a pipeline to remove adaptor sequences and align to the 

reference genome (human_g1k_v37) using mem algorithm in BWA. Next, reads 

from the two runs were combined into a single BAM file using samtools. Reads 

falling into blacklistedgenomic regions were removed using bedtools intersect before 

marking and removing duplicate reads using Picard tools. Next, picard tools was 

used to sample ~105 million reads from each BAM file. Significantly enriched 

genomic regions relative to input DNA were identified using MACS2 with p-value 

cutoff of 1.00e−05. 

 

To generate the heatmaps, mapped read counts were calculated in a 10 bp window 

and normalised as reads per kilobase per million (RPKM mapped reads) using 

bamCoverage module from deeptools. This coverage file was then used to compute 

score matrix ± 1 kb around peak summits using computeMatrix reference-point 

module (from deeptools). Heatmaps of binding profiles around peak summits were 

generated using plotHeatmap module in deeptools. Number of overlapping peaks 

between samples and nearest downstream genes to peaks were determined using 

ODS and NDG utilities, respectively, in PeakAnnotator (version 1.4). For annotating 

nearest downstream genes, Homo sapiens GRCh37 (release 64) from ensembl was 

used. 

 

2.10 RIME (Rapid Immuno-precipitation Mass spectrometry of 
Endogenous proteins) 

Every clone was grown in 12 x 15-cm-dishes to 80% confluency, and fixed with 1% 

methanol-free formaldehyde (Ultra Pure, Polysciences, Inc.) diluted in the growing 

media without serum for 8 minutes at room temperature. To stop the crosslink, 

glycine (1M, diluted in PBS) was then added for 5 minutes. The cells were washed 

twice with ice-cold PBS, scraped off after the addition of PBS and Proteinase 

Inhibitors, and prepared for sonication. Every sample was washed 2 times with 

different buffers (Lysis Buffer 1, Lysis Buffer 2, Table 2.3) containing Proteinase 

Inhibitors, and rotated at 4°C for 10 minutes after the first wash, 5 minutes after the 

second one, and pelleted. They were then re-suspended in Lysis Buffer 3 (Table 
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3.4) with Proteinase Inhibitor and sonicated for thirty seconds on, thirty seconds off 

for 6-8 cycles. 30µL of 10% Triton X-100 were added to the sonicated lysate and 

pelleted. The cell lysate samples were then diluted to 1mL with a final concentration 

of 1% Triton X-100 and added to the prepared beads and rotated overnight in the 

cold room. 

 

100µL of beads per immunoprecipitation (PureProteome Protein G Magnetic Bead 

System, Merck Millipore; Dynabeads Protein A, ThermoFisher Scientific) were used 

and washed 3 times with 0.5% BSA in PBS using a magnetic rack. They were re-

suspended in PBS/BSA with 10µg antibody per IP (anti-rabbit IgG, Cell Signalling; 

rabbit polyclonal antibody to V5 tag, Abcam; rabbit polyclonal antibody to Bcl11a, 

Bethyl, A300-382A), and rotated overnight at 4°C. The day after, they were washed 

3 times with PBS/BSA to remove the unbound antibody and re-suspended in 100µL 

PBS/BSA just before combining them with the cell lysate. 

 

The following day the beads were washed 10 times in RIPA buffer using a magnetic 

rack, and 2 times in ammonium hydrogen carbonate (AMBIC, 100mM). The 

supernatant was then removed completely and the beads were stored in -20°C until 

submission for Mass Spectrometry analysis. This last part was performed by the 

Biological Mass Spectrometry Facility of AZ, (Waltham, Massachusetts, USA), in 

particular by Jon DeGnore, according to the published protocol (Mohammed H et al., 

2016) with the following changes. 

 

62ng of trypsin (Roche Applied Science, Indianapolis, IN) were used for digestion in 

100mM ammonium bicarbonate (Sigma). Sample were StageTip (Thermo Scientific) 

desalted prior to LC/MS/MS analysis.  Nanopore electrospray columns were used 

(ThermoFisher EasySpray #ES802). The mobile phase used for gradient elution 

consisted of (A) 0.1% formic acid in water and (B) 0.1% formic acid in Acetonitrile.  

 

The 120 minute gradient consisted of 2 to 25% B for 75 minutes, then 25% to 40% B 

for 20 minutes, then 40% to 95% B for 10 minutes, the 10 minutes holding at 95% B, 

then down to 2% B for 5 minutes. All steps were at 300nL/min. Tandem mass 

spectra (LC/MS/MS) were acquired on a Thermo Q Exactive plus mass 

spectrometer (Thermo Corp., San Jose, CA). The MS/MS spectra were searched 

against the NCBI non-redundant protein sequence database using the PEAKS 

software (Bioinformatics Solutions Inc., Waterloo, ON, CA) to produce a list of 

proteins identified for each sample. The precursor mass tolerance was set to 15ppm 
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and the MS/MS fragment mass tolerance to 0.05Da. Variable search modifications 

were oxidation of methionine, deamidation of Asparagine or Glutamine, and 

acetylation of the N-term. A false positive rate of 1% was used as a cut-off for 

peptide identifications. 

 

The output comprises lists of confidently identified proteins, accession numbers, 

protein descriptions, peptide identifications and search statistics. 

 

2.11 Knockdown strategy 

ShRNAs were chosen among the ones available on the MISSION™ TRC shRNA 

libraries and purchased from Sigma as bacterial stock together with the control 

vector pLKO.1-puro (SHC002V). They are as follows: 

 

shRNA Sequences 

MTA2 #1  

TRCN0000013377 

5’-
CCGGCCTAGATTGTAGCAGCTCCATCTCGAGAT
GGAGCTGCTACAATCTAGGTTTTT-3’ 

MTA2 #2 

TRCN0000013374 

5’-
CCGGCCCTCTTGAATGAGACAGATACTCGAGTA
TCTGTCTCATTCAAGAGGGTTTTT-3’ 

CDK1 #1 

TRCN0000000583 

5’-
CCGGGTGGAATCTTTACAGGACTATCTCGAGAT
AGTCCTGTAAAGATTCCACTTTTT-3’ 

CDK1 #2  

TRCN0000196602 

5’-
CCGGGTTTCCATATGTTATGTCAACCTCGAGGTT
GACATAACATATGGAAACTTTTTTG-3 

CDK6 #1 

TRCN0000196261 

5’-
CCGGGAGAAGTTTGTAACAGATATCCTCGAGGA
TATCTGTTACAAACTTCTCTTTTTTG-3 

CDK6 #2 

TRCN0000055435 

5’-
CCGGTCTGGAGTGTTGGCTGCATATCTCGAGAT
ATGCAGCCAACACTCCAGATTTTT-3’ 

Table 2.5: shRNAs used for knockdown. 
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Bacteria were plated on LB agar plates containing Ampicillin (100µg/mL) and 

incubated overnight at 37°C. The following day some colonies were picked and grew 

overnight in a rotary shaker at 225-250rpm at 37°C in the selection media (LB with 

Ampicillin, 10µg/mL). Plasmid DNA was isolated from 10mL of overnight culture 

using QIAprep Spin Miniprep kit (Qiagen) as described in previous session. Positive 

clones were confirmed by double digestion using NcoI-HF and EcoRI-HF restriction 

enzymes (NewEngland BioLabs). 

 

2.12 Lentivirus production with Addgene (3 vectors) 
Packaging System 

8 x 105  HEK293T cells (passage 0-20) were seeded on a pre gelatinized 10cm2 

plate (0.1 % w/v) in DMEM + 10% FBS in order to reach 70% confluency the day 

after. On the day of transfection, 3µg of the experimental vector were added to 3mL 

of OptiMEM  per well, together with 3µg of packaging mix (1µg of each plasmid: 

pMD2.G, Addgene #12259; pMDLg/pRRE, Addgene #12251; pRSVRev, Addgene 

#12253) and incubated for 5 minutes at room temperature. 36µL of lipofectamine 

LTX were then added and after 30 minutes of incubations at room temperature the 

mix was added to the seeded cells, where in the meantime their media had been 

replaced with D10 (DMEM + 10% FBS + GlutaMax w/o P/S). After 5 hours of 

incubation, the media was replaced with fresh D10, and left for 48 hours to allow the 

virus production. The media was then collected, filtered using a 0.45µm filter 

cartridge and Lenti-X concentrator was added. The solution was incubated O/N at 

4°C, centrifuged at 1500 x g for 45 minutes: the pellet was then resuspended in 

1/20th of the original volume using DMEM media. The virus not used was frozen 

down and kept at -80°C.   

 

Cells were then selected with 1µg/mL of puromycin for 3-5 days. 

2.13 Colony assay  

2000 cells for every cell line were counted, centrifuged at 400g for 5 minutes and 

resuspended in 280µL of cold matrigel matrix (Corning). 70µL of each aliquot were 

then seeded in a 6 well plate in order to have 3 replicates with 500 cells per well. 

After an incubation of 15 minutes at 37°C, 2mL of growth media was added gently to 

each well. Colonies were counted after 7 days. 
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2.14 Statistical analysis 

Statistical analysis was performed using ANOVA followed by Holm-Šídák test to 

compare the means of two or more independent groups. In this way we aimed to 

determine whether there is statistical evidence that the associated population means 

are significantly different. P<0.05 was considered as statistically significant. 
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3 CHAPTER 3: IDENTIFICATION OF THE 
GENES OF INTEREST AND SYSTEM 
VALIDATION 

3.1 Introduction  

Despite the advances in diagnosis and treatment, breast cancer still remains a 

major health problem for women, and a high biomedical research priority. 

Worldwide, it is the most common cancer for women, with a very high mortality rate.  

One of the main challenges in treating this disease is that breast cancer is not a 

single entity, but a heterogeneous group of several subtypes with different biological 

and clinical behaviour. The most commonly used way of classifying these tumours is 

on the basis of the histopathological type and the expression of ER, PR and HER2 

genes: 75-80% of the cases are identifies as hormone receptor-positive breast 

cancers, while 10-15% of them are HER2 overexpressing ones (Konecny et al., 

2006). Triple negative breast cancer (TNBC) counts for the remaining 10-15% of the 

cases, and it is characterized by the absence of expression of the receptors 

mentioned above. 

 

TNBCs tend to be extremely aggressive tumours, with a short survival and a 

relatively high mortality rate (Dent et al., 2007). In the last decades, multi-drug 

combination systemic therapies in the neoadjuvant and adjuvant settings have 

significantly improved patients’ outcome, and recently significant treatment 

advances have been achieved with poly (ADP-ribose) polymerase (PARP) inhibitors 

and immunotherapy agents, although in some cases the prognosis still remains 
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poor. At the genomic level, this subtype has a very high genetic complexity such as 

high rate of point mutations, gene amplification and deletion (Cancer Genome Atlas 

Network, 2012). However, a common genetic alteration still has to be found, with the 

only exceptions of PTEN, TP53 and BRCA1 for some patients (Abramson et al., 

2014; Foulkes et al., 2003).  

Because of the high heterogeneity, the lack of driver aberrations causing the 

pathology and the relative high mortality rate, the development of new biological 

targeted treatments is essential. 

 

In order to understand the complex biology behind the tumourigenity of TNBC, we 

combined a proteomic approach with the CRISPR/Cas9 technology (Fig. 3.1): we 

targeted the regulatory regions of highly expressed genes in TNBC with a 

catalytically inactive Cas9 protein (dCas9) to pull them down together with the 

associated proteins. These proteins were then identified through Mass Spectrometry 

(MS) and their role in the regulation of the transcription of the genes of interest was 

evaluated. In particular we focused on those proteins in common between all/some 

of the loci studied. For this project the proteomic approach we used was RIME 

(Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins 

(Mohammed et al., 2013)). 

 

With this investigation, we aimed to understand the transcription regulation of our 

genes of interest, in order to identify proteins that could be fundamental for the 

survival of TNBC tumours, and that could be the focus of future drug development 

studies. 
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Figure 3.1: Schematic representation of the project hypothesis. A) The putative 
promoter sequence of a highly expressed gene in triple negative breast cancer 
(TNBC) was targeted by a gRNA to redirect the catalytic inactive Cas9 (dCas9) to a 
specific DNA sequence. B) The proximity of dCas9 to the transcription machinery 
normally recruited on the promoter was fundamental for the crosslinking step, 
according to RIME (Rapid Immunoprecipitation Mass spectrometry of Endogenous 
proteins) protocol: all the proteins physically close to each others were linked 
together and to dCas9. C) An antibody against dCas9 was used to 
immunoprecipitate it together with all the other crosslinked proteins, lately identified 
through Mass Spectrometry. D) The strategy was applied to several genes of 
interest, in order to identify one or some key transcription factor(s) that are 
necessary for the expression of the target gene (master regulator(s)). 
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3.2 Identification of the genes of interest  

In order to identify key regulatory factors involved in the tumourigenicity of TNBC, 

we investigated the gene expression profile of TNBC/IntClust10 patients from the 

METABRIC study (Curtis et al., 2012). We set out to focus on genes upregulated in 

TNBC/IntClust10 but not in other subtypes of breast cancer. In addition, we 

narrowed our study to transcription factors as they could be new potential targets of 

therapeutic drugs for cancer treatment. Our analysis revealed that the top six most 

upregulated genes in these patients were FOXC1, ELF5, BCL11A, SOX10, NFIB 

and NFE2L3 (Fig. 3.2). On the other side genes like FOXA1, ESR1 and GATA3 

were not associated with TNBC (Fig. 3.2, fold negative change): their expression 

usually correlates with luminal subtypes of breast cancer, as shown by different 

expression profiling studies (Badve et al, 2007; Albergaria et al, 2009; Voduc et al, 

2008) 

 

Some of the highly regulated genes we found are well known in the literature to be 

specific for TNBC (BCL11A for example (Khaled et al., 2015)), while some others 

have not been associated with this disease to date (like NFE2L3). However, it has 

been shown that these genes play major roles in processes like stem cell 

maintenance, cell proliferation or migration (Chowdhury et al., 2017; Rhee et al., 

2008), which are extremely important in a tumourigenic system. 

 

It has to be mentioned that in this project we didn’t consider BCL11A, although it 

was the third gene on our list, because it was already under examination in other 

projects in the laboratory. We then decided to proceed with the analysis of five 

genes: FOXC1, ELF5, SOX10, NFIB and NFE2L3. 
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Figure 3.2: Differentially regulated transcription factors in IntClust10 
compared to the other clusters. Values on the horizontal axis indicate the 
logarithmic fold change of expression between clusters. Only the top 35 highly 
expressed transcription factors are shown. Analysis was performed by Oscar 
Rueda, in Carlos Caldas’ laboratory (CRUK-Cancer Institute, Cambridge). 
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Figure 3.2: Differentially regulated transcription factors in IntClust 10 compared to the other clusters. Values 
on the vertical axis indicate the logaritmic fold changes in transcription factor expression between clusters, 
as indicated. Only the top 35 highly expressed trascription factors  are shown. 
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To confirm the validity of our analysis, we investigated the basal expression of these 

genes in a panel of TNBC cell lines (MDA-MB-231, SUM159, HS578T and BT549) 

(Fig. 3.3, A, B, C and D). We were able to detect three out of five genes in all cell 

lines, FOXC1, NFIB and NFE2L3, with variable levels of expression. However, 

SOX10 seemed to be expressed only in MDA-MB-231 cell line and for this reason, 

we decided to exclude it from further examinations, together with ELF5, undetected 

in all our cell lines, which was the second most differentially expressed transcription 

factor showed in TNBC. These results could be explained by the fact that the 

METABRIC data are from primary tumour material, while the system we used are 

cell lines that carry variability between themselves too. In addition, it has to be noted 

that the experiment was designed at that time without appropriate controls for the 

presence or absence of expression of the genes of interest. This limitation could 

have also affected the final readout (Fig. 3.3), altering the conclusions about level of 

expression or the association of these genes to TNBC. Among all, we decided to 

use MDA-MB-231 cell line as our model for our further experiments.  

In addition, we compared the overall survival between TNBC patients carrying a 

mutated variant of the genes of interest and those without (Fig. 3.3, E) using data 

available from the TCGA database. Out of all of them, FOXC1 variants seem to be 

the most frequent and the only ones associated with a poorer prognosis for these 

patients, followed by NFIB. Alterations in this last one in particular seem to 

significantly affect patient’s survival in a long-term scale. 
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Figure 3.3: Expression of FOXC1 (A), NFIB (B), NFE2L3 (C) and SOX10 (D) in 4 TNBC cell lines. 

mRNA expression levels were determined by quantitative real-time PCR and normalized to glyceral-

dehyde-3-phosphate dehydrogenase (GAPDH). The error bars report standard deviations from 

triplicates.
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Figure 3.3: Expression of genes of interest in TNBC cell lines panel and 
associated patient’s survival. mRNA expression levels of FOXC1, SOX10, NFIB 
and NFE2L3 were determined by qPCR and normalized to glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) for four different TNCB cell lines: MDA-MB-
231 (A), SUM159 (B), HS578T (C) and BT549 (D). The error bars report standard 
deviations from triplicates. E) Comparison between the overall patient survival status 
between TNBC cases carrying the mutated gene of interested (altered group) and 
those expressing the unmutated form (unaltered group). Follow-up period: 60 
months. Data modified from TCGA. 
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3.3 gRNA design strategy 

To investigate the transcription regulation of the selected genes, we analysed their 

promoter region through the UCSC dataset (https://genome.ucsc.edu/): within it, we 

aimed to identify a sequence to target with our CRISPR/Cas9 approach. We based 

this research on some specific chromatin features and references in the literature 

(Gilbert et al., 2014): the presence of DNase Hypersensitivity clusters (a sequence 

of DNA that is sensitive to the cleavage of DNase I), histone modifications (in 

particular acetylation, marking a more relaxed structure of the chromatin), 

conservation of the DNA sequence among species and distance from the 

Transcription Starting Site (TSS, within 400bp upstream). All these features indicate 

an active chromatin state, which is most likely to be reached for transcription factor 

binding.  

 

Through the online tool eCRISP (http://www.e-crisp.org/E-CRISP/) we obtained a list 

of possible gRNA candidates to target the desired sequence. Among them, we 

chose the gRNA with the highest E-Score (Efficiency-Score) and the lower number 

of predicted off-targets.  

 

The position of the chosen gRNA for each gene has been reported in Fig. 3.4, 3.5 

and 3.6. It is possible to notice how it varies between them: for some it is really close 

to the TSS (for example in FOXC1 gene), for others more distal (as for NFIB). We 

tried to satisfy all the conditions described before in order to choose the potential 

best gRNA, but at the same time being flexible according to the features of every 

gene sequence. 
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Figure 3.6: Schem
atic representation of the position of gR

N
A

 w
ithin the prom

oter sequence of N
FE

2L3 gene. The gene location on 
the respective chrom

osom
e is show

n w
ith a red bar. The prom

oter and gene sequences are m
agnified in order to show

 the position of the 
gR

N
A

 from
 the transcription starting site of the gene, highlighted w

ith a red box. The presence of acetylation of histones (H
3K

27A
c) and 

D
N

A
 C

lusters in the prom
oter sequence of the gene w

as considered to identify regions of open chrom
atin, so accessible to the recruitm

ent 
of the transcription m

achinery. In addition, the level of conservation of the sequence w
as considered as an indication of the im

portance of 
the specific sequence am

ong species. E
very gR

N
A

 w
as designed w

ithin a distance from
 the transcription starting site of 400 bp, as 

previously described in G
ilbert et al., 2013. 

C
) N

fe2l3 gR
N

A position 

Figure 3.5: S
chem

atic representation of the position of gR
N

A w
ithin the prom

oter sequence of each gene of interest. The location on the respective chrom
o-

som
e of FO

X
C

1 (A
), N

FIB
 (B

) and N
FE

2L3 (C
) gene is show

n w
ith a red bar. The prom

oter and gene sequences are m
agnified in order to show

 the distance 
of the gR

N
A from

 the transcription starting site of the gene. The presence of acetylation of histons (H
3K

27A
c) and D

N
A C

lusters in the prom
oter sequence of 

the gene w
ere considered to identify regions of open chrom

atin, so accessible to the recruitm
ent of the transcription m

achinery. In addition, the level of conser-
vation of the sequence w

as considered as an indication of the im
portance of the specific sequence am

ong species. E
very gR

N
A w

as designed w
ithin a distance 

from
 the transcritpion starting site of X

X
X

 kb, as previously described in .......... et al, ......
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To deliver dCas9 and the gRNA we used a transposon system constituted by two 

main vectors (Figure 3.7): the PiggyBac vector (PB-gRNA-Bsa1-EF1α-RCB, Figure 

3.7, A), coding for the gRNA, and the PB-TRE-multag-dcas9-mtag vector (Figure 

3.7, B), coding for dCas9. 

 

With this system we aimed for a stable integration of the vectors’ DNA in the 

genome of the cells. Thanks to the presence of the enzyme PB transposase 

(transcribed by the PBase vector, courtesy of Dr Pentau Liu, Sanger), recognizing 

transposon-specific inverted terminal repeat sequences (ITRs) on both vectors, the 

DNA content is mobilized from the original site to the target genome, where they are 

going to integrate. This is possible through a ‘cut and paste’ mechanism into a 

genomic target region with a TTAA site. 

 

To confirm the successful transfection and integration, both vectors were designed 

to deliver selection markers. The gRNA vector contains a Blasticidin-resistance 

gene, which allowed the cells to survive when Blasticidin was added to the culturing 

media, and a fluorescent marker, mCherry. The dCas9 vector contains the EGFP as 

a fluorescent marker, which was fused to the dCas9 (dCas9-2A-EGFP). 

 

To allow for temporal control of dCas9 expression, we used a Tet-On inducible 

system (Baron et Bujard, 2000). Normally in a Tet-On system the transcription is 

induced by the presence of Tetracycline, which activates the recombinant 

Tetracycline controlled transcription factor (rTta). The rTta then binds the Tet 

Response Element (TRE) and initiates the gene expression. In our system the rTta 

was expressed under the control of the strong constitutive promoter, EF1α, along 

with the constitutive expression of the gRNA under the control of a U6 promoter. In 

the other vector, the expression of dCas9 was regulated by the TRE: in this way not 

only the dCas9 could be expressed just when Tetracycline (or derivatives, as 

Doxycycline) was added to the system, but also in those cells which had been 

transfected with both vectors.  

 

In addition, we decided to transfect the cells with the gRNA vector without any 

cloned gRNA inside, to which we will refer as ‘Empty gRNA’. For some of our 

experiments, this was used as an internal control to evaluate the general 

perturbations within the cells due to the presence of this exogenous system. 
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Figure 3.7: Schematic representation of the vectors used for transfection. A) 
Vector used to deliver the gRNA sequence, which is regulated by a U6 promoter. 
The vector also carries a mCherry gene for the fluorescence selection, a Blasticidin 
resistance gene (BlastR), and the tetracycline-inducible gene expression system 
(Tet-On-3G, third generation) for the expression of the tTA protein under the control 
of an EFIα promoter. B) Vector used to deliver the dCas9 sequence. It is a multi-
gene expression system under the regulation of a Tetracycline Responsive Element 
(TRE). dCas9 is expressed together with a V5 tag and an EGFP fluorescence 
marker, cleavable through a 2A peptide. 
 

 

 

 

 

 

 

 

 

 

 

 

 

U6 Promoter gRNA EFIα Promoter mCherry Tet-On-3G BlastR

V5 dCas9 2A EGFPTRE

Figure 3.4: Schematic representation of the vectors used for transfection. A) Vector used to deliver the gRNA sequence, which 
is regulated by a U6 promoter. The vector also carries a mCherry gene for the fluorescence selection, ablasticidin resistance 
gene (BlastR), and the tetracycline-inducible gene expression system (Tet-On-3G, third generation) for the expression of the 
tTA protein under the control of a EFIα promoter. B) Vector used to deliver the dCas9 sequence. It’s a multi-gene expression 
system under the regulation of a Tetracyclin Responsive Element (TRE). dCas9 is expressed together with a V5 tag, and an 
EGFP fluorescence marker, cleavable through a 2A peptide.

A) Vector 1: gRNA

B) Vector 2: dCas9
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3.4 Selection of double transfected cells 

Initially the cells were selected in culture for 3 days through Blasticidin, induced for 

24 hours with Doxycycline and analysed by flow cytometry for the expression of 

EGFP and mCherry. Initial attempts yielded low efficiency (0.02-1.9%, Fig. 3.8). 

  

Therefore, a different strategy was developed, consisting of two cycles of 

transfections, each followed by population enrichment of transfected cells by FACS 

sorting as summarized in Fig. 3.9. Briefly, cells were transfected with both vectors 

and kept in culture with Blasticidin for 5 days. Just the mCherry positive cells were 

then sorted, in order to eliminate all those without the gRNA vector. After 7-10 days 

of recovery, the sorted cells were transfected for the second time with the dCas9 

vector. This allowed us to increase the number of cells containing the dCas9 vector 

as well as the gRNA expressing vector. The cells were then expanded in culture, 

induced for 24 hours with Doxycycline and sorted for EGFP and mCherry signal 

(double positive cells) (Fig. 3.10). After the first transfection, only around 5% of the 

cells were mCherry positive, regardless of the gRNA analysed (Fig. 3.10, far left 

panel). After the second transfection we obtain higher percentage of double positive 

cells compared with the first attempt, but with different rates for every sample (far 

right panel). Although the strategy was the same, the efficiency of double 

transfection we obtain was different according to the gRNA analysed. The range of 

double positive cells varied between 5% (MDA-MB-231 + Nfe2l3 gRNA) and 10% 

(MDA-MB-231 + Foxc1 gRNA).  
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Figure 3.8: First sorting attem
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D
A

-M
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-231 clones. A
fter transfection w
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G
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 days in culture w
ith B
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ubsequently cells w

ere induced w
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and the double positive (m
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+) cells w

ere sorted. M
D

A
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ere transfected w
ith different gR
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fe2l3 gR

N
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D
A-M

B
-231 + Foxc1 gR

N
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 clone show
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D
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Figure 3.10: Sorting strategies of the MDA-MB-231 clones. After the first 
transfection with both mCherry-gRNA and EGFP-dCas9 vectors, just the mCherry+ 
cells were sorted and expanded in culture. Subsequently, cells were transfected 
again with just the EGFP-dCas9 vector, induced with Doxycycline for 24 hours, and 
the double positive (mCherry+ and EGFP+) cells were sorted. MDA-MB-231 cells 
were transfected with different gRNA vectors (Empty, Foxc1, Nfib, Nfe2l3 gRNAs) 
as described previously. A) FACS plot analysis for untrasfected MDA-MB-231, used 
as a Negative Control. B) MDA-MB-231 + Empty gRNA clone showing the 
percentage of positive cells for mCherry signal (X-axis), EGFP signal (Y-axis), and 
for both signals after each transfection. C), D), E) and F) represent the FACS plot 
analyses for MDA-MB-231 + Foxc1 gRNA, MDA-MB-231 + Nfib gRNA and MDA-
MB-231 + Nfe2l3 gRNA clones, respectively. 
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Figure 3.9: Sorting strategies of the MDA-MB-231 clones. After the first transfection with 
both mCherry-gRNA and EGFP-dCas9 vectors, just the mCherry+ cells were sorted and 
expanded in culture. Subsequently cells were transfected again with just the 
EGFP-dCas9 one, induced with Doxycycline for 48 hours, and the double positive 
(mCherry+ and EGFP+ cells were sorted. MDA-MB-231 cells were transfected with differ-
ent gRNA vectors (Empty, Foxc1, Nfib, Nfe2l3 gRNAs) as described previously. A) Facs 
plot analysis for untrasfected MDA-MB-231, used as a Negative Control. B) 
MDA-MB-231 + Empty gRNA clone showing the percentage of positive cells for mCherry 
signal (X axis), EGFP signal (Y axis), and for both signals after each transfection. C), D), 
E) and F) represent the facs plot analyses for MDA-MB-231 + Foxc1 gRNA, 
MDA-MB-231 + Nfib gRNA and MDA-MB-231 + Nfe2l3 gRNA clones respectively. 
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In order to determine the optimal conditions for inducing sufficient expression levels 

of dCas9, a time course pilot experiment was performed on MDA-MB-231 + Nfe2l3 

gRNA cell line with different time points induction with Doxycycline. dCas9 was 

evaluated at the protein level (Fig. 3.11, A) and at the DNA binding side on the 

promoter sequence of the gene of interest (Fig. 3.11, B). We reported results for 

dCas9 expression after 6, 12, 24, 36 and 48 hours of induction. 

 

It is possible to observe how the expression of dCas9 positively correlates with the 

duration of the Doxycycline induction: the longer it is, the higher the protein level. On 

the basis of these results, we decided to use 48 hours as the duration of induction 

for all further experiments. 
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Figure 3.11: dCas9 expression and DNA binding time course after Doxycycline 
induction. MDA-MB-231 + Nfe2l3 gRNA clone was used as a representative 
example. Cells were induced for 6, 12, 24, 36 and 48 hours with Doxycycline 
(1µg/mL). A) dCas9 protein expression time course. At indicated times, cells were 
lysed and 50µg of protein lysates were probed by Western Blot for the expression of 
dCas9 and α-Tubulin (loading control). Not induced cells were collected at the same 
time points as a background control. B) dCas9 ChIP-qPCR time course on NFE2L3 
promoter. At indicated times, cells were crosslinked with formaldehyde and collected 
as described in Material and Methods to perform ChIP-qPCR. Panel shows the DNA 
enrichment of the dCas9 pulldowns at different time points evaluated in comparison 
to the respective internal IgG control, and to the not induced dCas9 pulldown. 
Primers for qPCR were designed in a region of 120bp flanking the gRNA targeting 
sequence. Two-way ANOVA test was performed between not induced and induced 
dCas9 and IgG, and between themselves. P value <0,05. 
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Figure 3.7: dCas9 expression time course after induction with Doxycycline. The cells were 
induced for 6, 12, 24, 36 and 48 hours with DoxycyclinE. At indicated times, cells were lysed and 
50 μg of protein lysates were probed by WB for the expression of dCas9 and α-Tubulin (loading 
control). Not induced cells were collected at the same time points as a background control. The 
MDA-MB-231 + Nfe2l3 gRNA clone was used as a representative example.
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On the basis of these results, we decided to sort the double positive cells 48 hours 

after the addition of Doxycycline: in Fig. 3.12 the facs plots of every population of 

cells transfected with different gRNAs are shown, and untransfected MDA-MB-231 

cells were used as a negative control.  

 

It is interesting to notice that mCherry negative cells could be detected in sorted-

mCherry+ cells kept in culture for 7 days. This could have happened for two reasons: 

possible sorting error, or non-stringent sorting gate settings, or silencing of the 

vector which then leaded to downregulation of its expression. 

 

Other three strategies were tested to increase the percentage of double positive 

cells, all combining transfection of different DNA and sorting. Briefly, we tried to 

avoid a second transfection and we evaluated if just the sorting for the mCherry 

positive cells would have increased the percentage of double positive cells, but the 

results were similar to our first experiment. Because of the instability of the 

expression of the gRNA vector we noticed after the first sorting, we also attempted a 

second transfection with both vectors before sorting for the double positive. Finally 

we tried to deliver a single vector at the time, starting from the gRNA one, to finish 

with the dCas9 one just for the mCherry positive sorted cells. All these experiments 

worked, but the efficiency was not as good as the strategy chosen (data not shown). 

 

To further validate the expression of the gRNA and dCas9 vectors, we visualized the 

mCherry and EGFP signals: Fig. 3.13, 3.14, 3.15 and 3.16 show in particular the 

difference in dCas9 expression before and after induction of the double positive 

cells. The microscopy analysis confirmed that the vectors were stably integrated in 

the cells, and the inducible system worked as expected for all the transfected cell 

lines. 
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Figure 3.12: Sorting strategy of the MDA-MB-231 clones after 48 hours 
induction. After the first transfection with both mCherry-gRNA and EGFP-dCas9 
vectors, just the mCherry+ cells were sorted and expanded in culture. Subsequently, 
cells were transfected again with just the EGFP-dCas9 vector, induced with 
Doxycycline for 48 hours, and the double positive (mCherry+ and EGFP+) cells were 
sorted. MDA-MB-231 cells were transfected with different gRNA vectors (Empty, 
Foxc1, Nfib, Nfe2l3 gRNAs) as described previously. A) FACS plot analysis for 
untrasfected MDA-MB-231, used as a Negative Control. B) MDA-MB-231 + Empty 
gRNA clone showing the percentage of positive cells for mCherry signal (X-axis), 
EGFP signal (Y-axis), and for both signals after each transfection. C), D), E) and F) 
represent the FACS plot analyses for MDA-MB-231 + Foxc1 gRNA, MDA-MB-231 + 
Nfib gRNA and MDA-MB-231 + Nfe2l3 gRNA clones, respectively. 
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To ensure the purity of the population and the stable integration of both vectors after 

a couple of weeks in culture, transfected cell lines were analysed by flow cytometry, 

following 48 hours induction with Doxycycline. Data are shown in Fig. 3.17.  

 

The data presented clearly show that the expression of dCas9 was significantly 

induced 48 hours after the addition of Doxycycline for all the transfected cell lines. 

Some background expression of dCas9 was detectable in cells without the 

Doxycycline induction: this is likely to be caused by the presence of Tetracycline 

derivatives in the FBS used to culture these cells. Despite this, it is evident that the 

percentage of double positive cells increased after induction (Fig. 3.17, E). On the 

basis of this information, we decided to use a tretracycline-free FBS for any further 

sensitive experiments. 

 

Looking at the percentage of mCherry and EGFP positive cells after induction, it is 

possible to see how it varies within the samples, from a minimum of 22% (MDA-MB-

231 + Foxc1 gRNA), to a maximum of 66% (MDA-MB-231 + Nfib gRNA). We 

believe that this difference is due to the reaction of the cells to the vector itself: for 

example they could shut down the expression in the area of the genome where the 

vector has been integrated, or the region itself where it was located might not be 

particularly active. In none of the sample we saw 100% of cells expressing EGFP. 

This was expected considering the fact that the cells were not synchronized, so they 

could have been in different phases of the cell cycles, therefore reflecting different 

levels of gene expression in different phases. 

 

To further confirm the expression of dCas9 in our system, we also performed a 

Western Blot analysis on total protein lysate of cells induced with Doxycycline for 48 

hours (Fig. 3.18). The level of dCas9 was compared between induced and not-

induced cells, and α-Tubulin was used as a loading control. 

 

The data corroborated what we observed with the FACS analysis: there is a 

sustainable induction of dCas9 protein expression after treatment with Doxycycline. 

Although not quantified, it is possible to appreciate the increase of the signal in 

every sample. 

 



Chapter 3: Identification of the genes of interest and system validation 

 89 
 

Not Induced

Not Induced

Not Induced

Induced

Induced

Induced

A) MDA-MB-231 + Empty gRNA

C) MDA-MB-231 + Nfib gRNA

B) MDA-MB-231 + Foxc1 gRNA

gRNA-mCherry-Compensated

dC
as
9-
EG

FP
-C
om

pe
ns
at
ed

dC
as
9-
EG

FP
-C
om

pe
ns
at
ed

dC
as
9-
EG

FP
-C
om

pe
ns
at
ed

dC
as
9-
EG

FP
-C
om

pe
ns
at
ed

dC
as
9-
EG

FP
-C
om

pe
ns
at
ed

dC
as
9-
EG

FP
-C
om

pe
ns
at
ed

gRNA-mCherry-Compensated

gRNA-mCherry-Compensated gRNA-mCherry-Compensated

gRNA-mCherry-Compensated gRNA-mCherry-Compensated



 

90   

 
Figure 3.17: Flow cytometry analysis of MDA-MB-231 clones before and after 
48 hours induction with Doxycycline. MDA-MB-231 cells were transfected with 
different gRNA vectors (Empty, Foxc1, Nfib, Nfe2l3 gRNAs) as described previously. 
Cells containing both gRNA (mCherry+) and dCas9 (EGFP+) vectors (double positive 
cells) were sorted and expanded in culture for 2 weeks. They were then analysed by 
flow cytometry in order to assess the purity of the population. A) FACS plot analysis 
for MDA-MB-231 + Empty gRNA clone showing the percentage of positive cells for 
mCherry signal (X-axis), EGFP signal (Y axis), and for both signals without (left 
panel) or with (right panel) Doxycycline induction. B), C) and D) represent the FACS 
plot analyses for MDA-MB-231 + Foxc1 gRNA, MDA-MB-231 + Nfib gRNA and 
MDA-MB-231 + Nfe2l3 gRNA clones respectively. E) Percentage of double+ cells for 
each clone with (grey) or without (black) induction. 
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Figure 3.10: Flow cytometry analysis of the MDA-MB-231 clones before and after induc-
tion for 48 hours with Doxycycline. MDA-MB-231 cells were transfected with different 
gRNA vectors (Empty, Foxc1, Nfib, Nfe2l3 gRNAs) as described previously. Cells con-
taing both gRNA (mCherry+) and dCas9 (EGFP+) vectors (double+ cells) were sorted and 
expanded in culture for 2 weeks. They were then analysed by flow cytometry in order to 
assess the purity of the population. A) Facs plot analysis for MDA-MB-231 + Empty gRNA 
clone showing the percentage of positive cells for mCherry signal (X axis), EGFP signal 
(Y axis), and for both signals without (left panel) or with (right panel) Doxycyclin induc-
tion.B), C) and D) represent the facs plot analyses for MDA-MB-231 + Foxc1 gRNA, 
MDA-MB-231 + Nfib gRNA and MDA-MB-231 + Nfe2l3 gRNA clones respectively. E) Per-
centage of double+ cells for each clone with (grey) or without (black) induction. 
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Figure 3.18: dCas9 expression in different MDA-MB-231 clones after induction 
with Doxycycline. The MDA-MB-231 + Empty gRNA, + Foxc1 gRNA, + Nfib gRNA 
and + Nfe2l3 gRNA clones were induced for 48 hours with Doxycycline. Cells were 
then lysed and 50µg of protein lysate were probed by WB for the expression of 
dCas9 and α-Tubulin (loading control). Not induced cells were collected at the same 
time points as a background control. 
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Figure 3.12: dCas9 expression in different MDA-MB-231 clones after induction 
with Doxycycline.The MDA-MB-231 + Empty gRNA, + Foxc1 gRNA, + Nfib 
gRNA and + Nfe2l3 gRNA clones were induced for 48 hours with Doxycycline. 
Cells were then lysed and 50 μg of protein lysates were probed by WB for the 
expression of dCas9 and α-Tubulin (loading control). Not induced cells were 
collected at the same time points as a background control.
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3.5 Effect of dCas9 on expression of target genes 

To ensure that dCas9 was not interfering with the basal expression of the target 

genes, we analysed their expression in our transfected cell lines before and after 

Doxycycline induction for 48 hours, and we compared it with MDA-MB-231 + Empty 

gRNA treated in the same way (Fig. 3.19).  

 

For all clones, it seems like Doxycycline is causing a slight change in gene 

expression. Looking at the MDA-MB-231 + Empty gRNA control, it is possible to see 

how all the genes are downregulated compared to their basal expression. On the 

other hand, the treatment seems to have different effects on the other clones 

transfected with the respective gRNA: in particular for MDA-MB-231 + Foxc1 gRNA 

and MDA-MB-231 + Nfib gRNA the expression of the targeted genes seems to 

increase. This is probably related to the fact that the dCas9 is interacting with the 

promoter region of those genes and interfering with their expression, possibly 

masking some other proteins’ binding sites. MDA-MB-231 + Nfe2l3 gRNA is the only 

clone with a similar trend compared to the control, which could be explained by the 

fact that dCas9 is not masking any important region within the promoter of the gene. 

 

Despite the effect of the presence of dCas9 on basal transcription of the targeted 

genes, we decided to proceed with further experiments, since the cells treated with 

Doxycycline were immediately collected after 48 hours and used for investigations. 
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Figure 3.19: Effect of dCas9 induction on the expression of genes of interest 
in MDA-MB-231 clones. Expression of dCas9 was induced for 48 hours with 
Doxycycline (1µg/mL). Relative levels of FOXC1 (A), NFIB (B) and NFE2L3 (C) 
gene expression were quantified by qPCR and normalized to the respective 
GAPDH. The data are ratios with the respective control (untreated clone) and are 
reported as the mean ± S.D. of 3 technical replicates. Two-way ANOVA test was 
performed, P value <0,05. 
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Figure 3.13: Effect of dCas9 induction on expression of genes of interest in MDA-MB-231 clones by 
RT-PCR. The expression of dCas9 was induced for 48 hours with Doxycycline 1uM. Relative levels of  
FOXC1 (A), NFIB (B) and NFE2L3 (C) gene expression were quantified. The data are ratios with 
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To ensure the dCas9 binding to the desired sequence of DNA, ChIP (Chromatin 

Immuno-precipitation)–qPCR and ChIP-Seq (ChIP-Sequencing) experiments were 

performed. In order to do that, we induced every transfected cell line for 48 hours 

and compared the result with the respective not-induced control. 

  

For the ChIP-qPCR, we amplified the DNA sequence that contains the gRNA 

targeting site, using primers available on NCBI Primer-BLAST 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). The results (Fig. 3.20) show the 

correct localization of dCas9 on the promoter sequence for all genes of interest (A) 

FOXC1, B) NFIB, C) NFE2L3), with a further confirmation for FOXC1 by ChIP-Seq 

(Fig. 3.21). The enrichment of the DNA binding for both experiments was evaluated 

in comparison to the background binding, when dCas9 was not induced. To 

minimize the uncontrolled expression of dCas9, we maintained the cells in a media 

with a tetracycline-free FBS: in this way we wanted to reduce the perturbation of the 

system due to the presence of dCas9.  

 

From the ChIP-Seq analysis it is possible to confirm that the binding of the dCas9 is 

not unique, which means that it also interacts with other different sequences of DNA 

(off-targets, Fig. 3.21, B). However, the uncontrolled DNA binding of dCas9 is 

extremely low, which further support the evidence of a limited interference of the 

used system with the overall gene transcription.  

 

These results were extremely important because they corroborate the successful 

targeting of dCas9 to the region of interest. However, the off-target bindings we saw 

informed us that RIME on dCas9 could lead to misinterpretation: some proteins 

could be crosslinked to dCas9 but involved in other processes in other regions of the 

DNA. Taking this information into consideration, we decided to proceed with our 

proteomic approach, and to filter the potential candidates on the basis of their 

biological relevance and confidence of their identification at the mass-spectrometry 

level. 
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Figure 3.21: ChIP-Seq confirmation of dCas9 binding on the putative promoter 
sequence of FOXC1 gene. MDA-MB-231 + Foxc1 gRNA clone was seeded and 
induced for 48 hours with Doxycycline. Cells were then crosslinked with 
formaldehyde and collected as described in Material and Methods to perform ChIP-
Seq. A) Visualisation of differentially accessible peaks annotated to FOXC1 in IGV 
after dCas9 not induced and dCas9 induced ChIP-Seq data analyses using MACS 
for peaks calling. B) Heat maps showing dCas9 only, dCas9 + Dox (induced) only or 
common peaks in dCas9 IP. C) Venn diagram indicating the unique targeted genes 
of dCas9 after induction. Analyses were performed by Mike Firth and Jonathan 
Cairns, AZ, Cambridge, UK. 
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3.6 Discussion 

By investigating cancer genome data from ~2000 patients (METABRIC), we 

identified five highly regulated genes differentially expressed encoding for 

transcription factors (FOXC1, ELF5, SOX10, NFIB and NFE2L3), all known to have 

an important role in the breast, and some also in TNBC. 

 

FOXC1 for example promotes cancer stem cell properties by activating Smoothened 

(SM)-independent Hedgehog (Hh) signalling (Han et al., 2015), and can induce 

epithelial-mesenchymal transition (EMT) (Xia et al., 2013). It seems to play a role in 

TNBC’s invasiveness, regulating the downstream expression of MMP7 (Han et al, 

2018). Its expression positively correlates with a shorter brain and lung metastases 

free survival (Ray et al., 2010; Jensen et al., 2015). In addition, it seems to compete 

with GATA3 for binding some regions on the ESR1 promoter, repressing the 

expression of this gene (Yu-Rice et al., 2016). 

 

ELF5’s role in breast is well known: it regulates placentation (Donnison et al., 2005) 

and alveologenesis, the process during pregnancy when the mammary glands form 

acinar structures producing milk (Choi et al., 2009; Watson et Khaled, 2008). It also 

directs the differentiation of mammary progenitor cells towards the basal-like 

phenotype: it suppresses ESR1 expression and a panel of other 164 genes 

including FOXA1 and GATA3 (Kalyuga et al., 2012).  

 

SOX10 plays important regulatory roles in promoting both stem- and EMT-like 

properties in mammary stem cells (Dravis et al., 2015). In particular for TNBC it 

induces Nestin expression (Feng et al., 2017), a stemm cell marker involved in 

tumour invasiveness. 

 

On the other hand, NFIB activates critical MYB targets, including genes associated 

with apoptosis, cell cycle control, cell growth/angiogenesis and cell adhesion, 

forming a fusion MYB-NFIB protein (Persson et al., 2009). It also regulates the 

expression of genes associated with lactation such as Whey acidic protein (WAP) 

and α-lactalbumin (Murtagh et al., 2003). 

 

NFE2L3 plays a role as a transcription factor when it translocates to the nucleus in 

response to external stimuli (Chowdhury et al., 2017), like for example oxidant 

stress. In the breast, it seems to control cell proliferation activating UHMK1 (U2AF 
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homology motif kinase 1, a cell cycle regulator) and it has been shown to negatively 

correlate with metastases: its overexpression leads to inhibition of the EMT process 

(Sun et al., 2019).  

 

Experimentally, we were able to target putative regulatory regions of these genes by 

using dCas9. This particular approach has been further developed in the last few 

years into a technique called enChIP (engineered DNA-binding molecule-mediated 

ChIP (Fujita et Fujii, 2013)), where specific genomic regions are immunoprecipitated 

with antibody against a tag(s) fused to an engineered DNA-binding molecule 

(dCas9) recognizing an endogenous DNA sequence in the genomic regions of 

interest. In combination with MS and NGS (next generation sequencing), it has 

allowed to identify novel proteins (Fujita et Fujii, 2014; Fujita et al., 2013; Hamidian 

et al., 2018), RNAs (Fujita et al., 2015) or genomic regions (Fujita et al., 2017) in an 

unbiased manner.  

 

However, all these approaches require a deeper understanding of the off-target 

bindings: many of these uncontrolled binding events may be transient so insufficient 

for modulating transcription of nearby genes (Polstein et al., 2015), but a deeper 

understanding of the causes would help to develop strategies to minimize them and 

to improve the validation process of the results. 

 

Furthermore, we optimized a selection strategy to obtain stable TNBC cell lines 

transfected with the external DNA coding for dCas9 and a gRNA, and we ensured 

that the system we used did not interfere with the basal expression of the targeted 

genes, making it an inducible one (Tet-On system). Several examples are present in 

the literature to support the possibility of controlling the system in a spatial and 

temporal manner. Polstein et al., and Nihongaki et al., for example, have shown how 

the expression of endogenous targeted genes can be regulated by dCas9 after 

illuminating cells with a blue light. They used a cryptochrome-based blue light-

sensing system CRY–CIB heterodimerizing domains to recruit VP64 or p65AD to 

dCas9 to make it active in a reversible manner (Polstein et Gersbach, 2015; 

Nihongaki et al., 2015). But there are also examples of chemically induced dCas9, 

where the presence of rapamycin induces the dimerization of a split dCas9-VP64 

(Zetsche et al., 2015). 

 

We further reduced the effect of dCas9 presence on basal gene transcription 

inducing just those cells that were going to be collected for investigations. 
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3.7 Conclusions 

Data presented in this chapter demonstrated the efficiency of targeting putative 

regulatory regions of genes of interest, showing a limited interference on the basal 

gene expression. This encouraged us to proceed with the proteomic approach in 

order to identify novel regulators that will be discussed in the next chapter. 
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4 CHAPTER 4: RIME OPTIMIZATION 
AND STATISTICAL ANALYSIS 

  

4.1 Introduction 

Results presented in Chapter 3 demonstrated the ability of dCas9 to bind a specific 

region of the DNA within the promoter sequence of different genes of interest. They 

also showed how its expression was temporally regulated using a Tet-On inducible 

system, in order to minimize the interference of dCas9 to the basal overall 

transcription.  

 

Since the aim of this study was to identify novel transcription factors involved in the 

regulation of the expression of FOXC1, NFIB and NFE2L3, we decided to use a 

specific proteomic approach called RIME (Rapid Immunoprecipitation Mass 

spectrometry of Endogenous proteins) in order to identify endogenous-interacting 

proteins and protein-DNA binding events (Mohammed et al., 2013; Mohammed et 

al. 2016; D’Santos et al., 2015).  

 

The main features of this protocol are formaldehyde crosslinking and on-beads 

digestion. On one hand the usage of formaldehyde is well established not only for 

proteomic approaches (Sutherland, et al., 2008; Srinivasa et al., 2015), but also for 

chromatin immunoprecipitation (ChIP) and tissue fixation. This is because its size 

(∼2Å) allows the permeabilization of the cell membranes without addition of extra 

solvents, therefore leaving the cells intact. Furthermore, it allows only proteins in 



Chapter 4: RIME optimization and statistical analysis 

 101 

close proximity (2.3–2.7Å) to be crosslinked to each other. Thanks to the low 

concentration of formaldehyde and the short reaction time used in proteomic 

studies, unspecific crosslinks can be avoided and fixation of transient interactions 

allowed (Sutherland et al., 2008; Toews et al., 2008). On the other hand the on-bead 

digestion step allows a rapid and sensitive purification of the linked proteins.  

 

Furthermore, RIME was suitable for our aim because the crosslink and the nuclei 

fraction purification make possible to identify interactions occurring in a specific 

cellular compartment that could also be temporary and/or weak. The technique is 

extremely affordable, fast and sensitive, and it allows assessing unspecific bindings 

simply using a parallel IgG antibody to immunoprecipitate proteins from the same 

lysate that will then be subtracted from the target RIME.  

 

4.2 Experimental set-up  

In order to perform RIME on our three genes of interest, we established a 

collaboration with the Biological Mass Spectrometry Facility of AZ in Waltham, USA. 

In particular Dr Jon DeGnore has been the reference person for the proteomic 

experimental part of the project and data analyses.  

 

However, this technique had never been used there before, and the RIME samples 

from our laboratory had always been analysed at the Proteomic Facility at CRUK-

Cancer Institute (CRUK-CI), Cambridge, UK. For these reasons, we decided to 

perform a pilot experiment where we repeated an investigation previously conducted 

in our laboratory by Dr Kyren Lazarus, where he identified BCL11A interactors in 

MDA-MB-231 cell line. The aim of this comparison was to evaluate the 

reproducibility of the data despite the different facilities. Therefore, we submitted a 

RIME sample to the AZ facility. 

 

According to Mohammed et al., 2016, the reduction and alkylation processes of 

samples for this protocol increase the number of peptide spectrum matches (PSMs) 

of immunoglobulins peptides. These steps are usually performed while preparing 

proteins and peptides for MS analysis before the enzymatic or chemical cleavage in 

order to help the unfold of the protein, thereby facilitating the cut (Suttipong et a., 

2017).  
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According to Mohammed et al., usually ~50–60 immunoglobulin PSMs are detected 

without any reduction and alkylation, but they increase to >500 if performed (data 

obtain for 10µg of bound antibody), causing a significant increased number of 

nonspecific proteins identified. Therefore we decided to not reduce or alkylate our 

RIME samples, even though this could have led to lower sequence coverage of any 

protein at the MS level. 

 

The other sample was processed as described in Mohammed et al., 2016. As a 

mass spectrometer, we used a Thermo Q Exactive plus (Thermo Corp., San Jose, 

CA) rather than the LTQ Velos Orbitrap used in the paper, which allowed us to be 

more restrictive about the search tolerance of the ion precursors, and we analysed 

these first data using both Proteome Discoverer (v1.4) and PEAKS software 

(Bioinformatics Solutions Inc., Waterloo, ON, CA): the results are shown in Fig. 4.1. 

For this particular run, a cut-off of three unique PSMs was used: all the other 

proteins were excluded from the analysis because of the lack of confidence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: RIME optimization and statistical analysis 

 103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: BCL11A RIME results using Proteome Discoverer and PEAKS 
software for analyses. A) Venn diagram representing the number of unique 
proteins identified with Proteome Discoverer potentially interacting with BCL11A 
(305), as well as non-specific ones (Control, 35), and proteins found in both (Mutual, 
516). B) Venn diagram representing the number of unique proteins identified with 
PEAKS potentially interacting with BCL11A (368), non-specific ones (Control, 45), 
and mutual proteins (591). The IgG antibody with the same species as the BCL11A 
one was used as control. The analyses were performed at the Biological Mass 
Spectrometry Facility of AZ by Jon DeGnore. 
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We were extremely satisfied with the results: we were able to perform a successful 

RIME experiment in a different facility with different mass spectrometer. Both 

software seemed to give us comparable results in terms of number of proteins and 

overall coverage (Appendix A, Appendix B): for this reason, we decided to use 

PEAKS for all the other RIME experiments. 

 

Even though a good RIME experiment is defined in Mohammed et al., 2016 by the 

identification of 300−900 proteins, we believed that our numbers were lower 

because of the higher stringency we applied to the searching parameters compared 

to the ones used in the published protocol. The main modifications we applied and 

kept for all the RIME experiments we then performed are summarized in Table 4.1.  

 

 

 

Table 4.1: List of the modifications applied to the software settings for our 
RIME experiments (adjusted from Mohammed et al., 2016). Some software 
settings were changed in order to increase the stringency of the analysis (right 
column). Reference parameters published in Mohammed et al., 2016 have been 
reported in the left column. Parameters were changed according to the expertise of 
Jon DeGnore (AZ, Waltham, USA).  

 

We then compared these results with the ones from the three replicates analysed at 

the Cambridge Institute Proteomic facility. Results are shown in Fig. 4.2. 

 

 

 

Parameter Value
(published) 

Software search

Software setting:

Variable modifications

Maximum missed cleavages

Precursor tolerance

MS/MS tolerance (Da)

Peptide FDR

Mascot, Proteome Discoverer

Oxidation (M)

Deamidation (N, Q)

2

20 p.p.m

0.5

0.01

Value
(modified) 

PEAKS

Acetylation (N-term)

Oxidation (M)

Deamidation (N,Q)

2

15 p.p.m

0.05

0.01
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Figure 4.2: Venn diagram representation of the common proteins identified by 
MS between 4 different RIME experiments on BCL11A. Comparison between 3 
RIME technical replicates (RIME #1, #2 and #3) performed by Dr Kyren Lazarus and 
analysed with Mascot at the Proteomic Facility at CRUK-CI (Cambridge, UK), and 
our RIME experiment analysed with PEAKS at the Biological Mass Spectrometry 
Facility of AZ (Waltham, USA) by Jon DeGnore (RIME AZ). Each RIME shows the 
number of unique proteins (not present in the IgG control sample) and identified by 
at least three PSMs (peptide spectrum matches). 
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Despite different facilities, different software used and different searching 

parameters, this pilot experiment confirmed our ability to identify 6 proteins shared 

with all other experiments which are: AL7A1, CHD8, CAV1A, CENPF, CHTOP and 

BCL11A. All these proteins were part of the ‘top hits’ in the previous experiments, 

characterized by a high number of PSMs and good coverage. More importantly, 

some of these interactors have been validated in the laboratory (Lazarus et al., 

unpublished), confirming the validity of our approach. These results encouraged us 

to proceed further with the collaboration. 

 

4.3 RIME on dCas9 targeting FOXC1, NFIB & NFE2L3 

In order to apply the RIME protocol to our project, we decided to run a pilot 

experiment to confirm the applicability of the parameters and the quality of the data 

themselves. Firstly, we analysed the V5-dCas9 and IgG pulldowns for the FOXC1 

gene promoter in MDA-MB-231 + Foxc1 gRNA cell line, where dCas9 was induced 

with Doxycycline (1µg/mL) for 48 hours, as described in Chapter 3, and the samples 

processed as described in Material and Methods. However, the list of proteins we 

identified was much shorter than the expected one from a successful RIME 

experiment (Table 4.2) 
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UniProt  

Accession  

Number 

Protein Description 

  

Number 
PSMs  

Sequence 
coverage  
(%Cov:) 

Q5VTE0 
Putative elongation factor 1-
alpha-like 3 

EF1A3 19 43.073593 

Q13217 
DnaJ homolog subfamily C 
member 3 

DNJC3 5 16.071428 

P67809 
Nuclease-sensitive element-
binding protein 1 

YBOX1 4 7.4074073 

P48730 Casein kinase I isoform delta KC1D 4 12.048193 

Q04727 
Transducin-like enhancer 
protein 4 

TLE4 4 4.3984475 

Q04726 
Transducin-like enhancer 
protein 3 

TLE3 4 4.4041452 

Q13017 
Rho GTPase-activating protein 
5 

RHG05 3 2.7962716 

P60983 Glia maturation factor beta GMFB 3 29.577463 

O43396 Thioredoxin-like protein 1 TXNL1 3 12.110726 

Q13620 Cullin-4B CUL4B 3 3.833516 

P01860 
Immunoglobulin heavy constant 
gamma 3 

IGHG3 3 4.244032 

Q9HAV0 
Guanine nucleotide-binding 
protein subunit beta-4 

GBB4 3 10.294118 

Q9BY77 
Polymerase delta-interacting 
protein 3 

PDIP3 3 10.451306 

Table 4.2: List of proteins identified through RIME on V5-dCas9 targeting the 
putative promoter sequence of FOXC1 in MDA-MB-231 + Foxc1 gRNA cell line. 
MDA-MB-231 + Foxc1 gRNA cells were induced for 48 hours with Doxycycline 
(1µg/mL), and processed according to the RIME protocol (Mohammed et al., 2016). 
Samples were analysed using PEAKS software at the Biological Mass Spectrometry 
Facility of AZ by Jon DeGnore (Waltham, USA). Proteins listed have been selected 
if not present in the control sample (IgG), with PSMs ≥3. 

 
 
We believed that the stringent setting parameters and the high PSM cut-off we used 

to shortlist the candidate proteins were responsible for such a poor outcome 

compared to what is usually expected from a RIME experiment (300-900 proteins 

(Mohammed et al., 2016)). However, some of the proteins we identified have a role 

in the regulation of the gene transcription (for example TLE4, TLE3 (co-repressors), 
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or are involved in other functions like mRNA processing (YBOX1) or regulation of 

the translation (PDIP3).  

 

This information was promising, supporting a good execution of the protocol itself 

and a potential applicability of RIME to CRISPR/Cas9. For these reasons, we 

decided to extend the cut-off to PSMs ≥1 (rather than ≥3, as before), which 

significantly increased the overall number of identified proteins, and the number of 

nuclear factors (Appendix C). This encouraged us to believe that our approach could 

be used to identify transcription factors.  

 

For all the following RIME analyses we decided to maintain the cut-off at PSMs ≥1 in 

order to have a larger dataset, despite the decrease in confidence of the protein 

identification: with just one unique peptide calling for a protein, the certainty of a 

correct identification is reduced. 

 

Furthermore, we confirmed the validity of the execution acknowledging the good 

coverage level we obtained for dCas9 itself (Fig. 4.3). It has to be remembered that 

the antibody used for this immunoprecipitation recognizes the V5 tag, not the dCas9 

directly: this could explain the absence of some peptides, together with the 

alterations caused by the fixation process. 

 

On the basis of these results, we decided to proceed with our first RIME experiment. 

Because of the intrinsic variability of the technique, we decided to analyse three 

technical replicates per gene and to use the internal control called MDA-MD-231 + 

Empty gRNA cell clone. This cell line was obtained exactly as the other cell lines, 

but its gRNA vector didn’t contain any gRNA sequence. In this way we wanted to 

identify those proteins that could have reacted to the presence of dCas9, rather than 

being crosslinked to it because in close proximity at the gene promoter level. In Fig. 

4.4 the RIME experimental workflow is reported. 
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Figure 4.3: dCas9 sequence coverage obtained from RIME proteomics on 
FOXC1 promoter sequence investigation. Coverage of Q99ZW2|CAS9_STRP1 
CRISPR-associated endonuclease Cas9/Csn1 OS=Streptococcus pyogenes 
serotype M1 protein evaluated using PEAKS software. Analyses were performed by 
Jon DeGnore (AZ, Waltham, USA). Every peptide with a match has been highlighted 
in grey. In blue the MS reads alignments are represented. ‘O’: Oxidation (M)= + 
15.99. 
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The main purpose of this experiment was to identify common transcription 

regulators among the three previously chosen TNBC genes. In order to do that, we 

looked at the unique proteins identified through MS across the replicates first, and 

genes later, and we excluded those ones within the Empty gRNA vector samples, 

considered as background. However, we realized that our analysis was too 

stringent.  

 

For this reason, we tested some optimisation steps, aiming to improve the overall 

number of proteins, the coverage, number of PSMs per protein and the 

reproducibility of the data (Table 4.3).  

 

 
Table 4.3: Summary of the different optimizations attempted in order to 
improve the quality of our RIME data. Far left column: list of parameters we 
modified. Middle column: type of modification applied. Far right column: rational 
behind this change.  

 

 
Briefly, we started modifying some aspects of the sample preparation: we sorted 

again the double positive cells for every cell clone in order to increase the purity of 

the experimental population, and we aimed to reach 60-70% confluency of the cells 

on the day of collection to facilitate the sonication process. At the mass 

spectrometry level, we used longer columns to obtain a better separation of the 

peptides during the liquid chromatography phase, and we compared our results with 

a more powerful mass spectrometer (Orbitrap Fusion Lumos). However, what really 

had a significant impact on the quality of our data were the beads and the 

concentration of the antibody used. 

 

Parameters Variation

Cell population purity

Seeding confluency

LC/MS

Mass spectrometer

Beads

Double positive cells resorted

Decreased

Orbitrap Fusion Lumos

Types

Rational 

Higher cells number

Better separation

Better signal

Better signal

Better sonication

Longer columns
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Firstly, we decided to switch to Dynabeads magnetic beads (ThermoFisher 

Scientific) rather than PureProteome Magnetic Bead (Merck Millipore) following a 

discussion with Dr Jon DeGnore, in order to achieve a better enrichment of the 

immunoprecipitated protein compared to the respective IgG control. 

 

We then assessed what the best combination of antibody concentration and type of 

beads (Protein A, Protein G, or Protein A + G) was for our purposes. We performed 

a pilot ChIP-qPCR experiment on dCas9 induced in MDA-MB-231 + Nfe2l3 gRNA 

cell line that showed us how we obtained the nicest enrichment when we coupled 

our antibodies with Protein A beads on a ratio of 1:10 (1µg of antibody every 10µL of 

beads) (Fig. 4.5). We used this set-up for all the other RIME experiments we 

performed. 

 

All these variations lead to an increase of not only the protein numbers identified in 

both IgG and dCas9 pulldowns of ~40%, but also of the coverage (~50% 

improvement). We then submitted three RIME replicates (dCas9 and IgG 

immunoprecipitations) per each gene, and we run them at the mass spectrometer as 

previously described.  

 

As a first approach to the data, we decided to consider just those proteins that were 

not present in the control sample (IgG), without any filtering on PSM. We then 

evaluated the reproducibility between RIME replicates per each gene, and we 

compared the redundant proteins with those coming from the other 2 genes. In Fig. 

4.6 the results of this comparison are shown (for the full list of common proteins, see 

Appendix D). 

 

Overall, this was a substantial improvement for our RIME experiment from a 

quantitative point of view and in terms of reproducibility. 
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Figure 4.5: Antibodies and beads optimisation for ChIP-qPCR on dCas9-IP, 
targeting the promoter sequence of the NFE2L3 gene of interest. ChIP-qPCR 
was performed to evaluate the optimal combination of type of beads and 
concentration of V5 antibody to pull down dCas9 targeting the promoter sequence of 
NFE2L3 on MDA-MB-231 + Nfe2l3 gRNA cell line, as a reference. Three different 
combinations of beads were tested (Protein A, B and A+B beads) and two 
concentrations of antibody (2.5 and 5µg). The enrichment of the pulldown DNA was 
determined by qPCR and normalized to IgG. The error bars report standard 
deviations from duplicates. Two-way ANOVA test was performed to compare the 
DNA enrichment to the respective IgG. P value <0.05. 
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Figure 4.X: Antibodies and beads optimisation for ChIP of dCas9 on the promoter sequence of the 
gene of interest. ChIP - RT PCR was performed to evaluate the optimal combination of type of 
beads and concentration of V5 antibody to pull down dCas9 on the promoter of the targeted gene. 
MDA-MB-231 + NFE2L3 clone was used as an example. 3 different types of beads were tested (A, 
B and A+B beads) and 2 concentrations of antibody (2,5 and 5 ug). The enrichment od pulled-down 
DNA was determined by by quantitative real-time PCR and normalized to IgG. The error bars report 
standard deviations from duplicates.
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Figure 4.6: Number of proteins in common between FOXC1, NFIB, and NFE2L3 
promoters identified through RIME. Three RIME replicates per gene (dCas9 & 
IgG pulldowns) were submitted and analysed through MS by Jon DeGnore at the 
Biological Mass Spectrometry Facility of AZ (Waltham, USA). For every gene, a list 
of redundant proteins among replicates was generated and compared with the lists 
developed for the other genes. Overall, 38 proteins were found in common between 
all genes (9.7% of all the proteins identified). A) Redundant proteins among RIME 
replicates potentially interacting with FOXC1 promoter: among them, 19.7% were 
exclusively identified within this gene; 21% were potentially in common with just 
NFIB promoter, and 3.3% with the NFE2L3 one. B) Redundant proteins among 
RIME replicates potentially interacting with NFIB promoter: among them, 30% were 
exclusively identified within this gene, and 25% with the NFE2L3 one. C) Redundant 
proteins among RIME replicates potentially interacting with NFE2L3 promoter. 
Proteins seen just in dCas9 were considered, and no PSM filter was used. The 
experiment was performed with N=3. 
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Among the common proteins between all or some genes, we looked for those with a 

strong biological rational (primarily transcription factors), ideally with a strong 

proteomic justification (good coverage, high number of PSMs), and with a 

tumourigenic background. One particular protein stood out, MTA2. 

 

This protein is a transcription regulator part of the NuRD (Nucleosome Remodelling 

Deacetylase) complex (Basta et Rauchman, 2015), and according to our RIME 

results could have been involved in the regulation of FOXC1 and NFIB genes. Also, 

several other components of the NuRD complex were identified across different 

replicates of different genes (for example CHD4, MBD3, RBBP4/7), increasing its 

strength as a potential master regulator candidate. For these reasons, we decided to 

consider it as a candidate and to proceed with further validations.  

 

4.4 Novel statistical approach 
Despite the improvement we reached, the abundance in our dataset was still not 

comparable with the one expected from a successful RIME experiment (between 

300-900 proteins, as stated in Mohammed et al., 2016). In particular we noticed that 

excluding a priori proteins from any dCas9 pulldown just because they were also 

present in the IgG control not only was affecting the results, but was also misleading 

us. We didn’t in fact take into consideration that many of these proteins in common 

between the two RIME samples were diversified in terms of coverage and/or 

number of PSMs. 

 

For these reasons, we decided to change our way to analyse the data. Here we 

propose a novel statistical approach developed by Dr Beate Ehrhardt (previously at 

AZ, Cambridge, UK, now at Institute for Mathematical Innovation (IMI), Bath, UK), in 

collaboration with Dr Piero Ricchiuto and Dr Aurelie Bornot (both Darwin Building, 

AZ, Cambridge, UK) to understand if a protein was a true dCas9 interactor.  

 

In order to do that, we combined all RIME dCas9 samples and all the RIME IgG 

controls, and we evaluated if proteins were actually significantly different using the 

SumAUC (sum of the ‘Area Under the Curve’) parameter as an indicator of the 

relative abundance of that protein. This value is the result of the sum of the AUC of 

all the peptides identified for that protein, while the AUC of a peptide is a parameter 
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calculated by an algorithm (PEAKS in our case) on the basis of the RT (retention 

time) and the intensity of the peaks of the ionized peptide recorded at the MS level.  

The overall number of peptides used for this calculation (not just the PSMs), the 

number of replicates, the gene of interest and the case (dCas9 or IgG) were still 

taken into consideration at this point. 

 

In Fig. 4.7 the results of this statistical exploratory analysis for our last RIME 

experiment using Protein A beads are shown. We firstly evaluated the distribution of 

the overall proteins (identified in both dCas9 and IgG pulldowns) within replicates of 

the same gene, and between genes: as shown in Fig 4.7, A, FOXC1 RIME sample 

was the one with the higher number of proteins identified, while NFE2L3 and NFIB 

seemed to have a lower, but comparable one. Overall, replicates among the genes 

show a similar level of protein identification. When looking at the density plots, it is 

possible to see how the distribution of the sum of the areas for all the proteins was 

consistent between replicates of the same gene (Fig. 4.7, B), and conditions (Fig. 

4.7, C). 
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Figure 4.7: Exploratory data analysis for dCas9 RIME experiment. The 
proteomic data obtained by dCas9 and IgG immunoprecipitation on FOXC1, NFIB 
and NFE2L3 promoters on the respective MDA-MB-231 cell clones were evaluated 
to see if proteins were significantly different from dCas9 (case) and IgG (control), on 
the basis of their relative abundance (Sum AUC). A) Number of proteins per gene of 
interest per replicate. B) Density distributions per gene of interest per replicate. C) 
Density distributions per gene of interest per condition. LC/MS and PEAKS analysis 
data were performed by Jon DeGnore (AZ, Waltham, USA). Data analysis was 
carried out by Beate Ehrhardt (IMI, University of Bath), Piero Ricchiuto and Aurelie 
Bornot (AZ, Cambridge, UK). 
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We normalized each sample by its own median of relative abundance, where with 

sample we refer to replicate, gene, condition (Fig. 4.8, A, B). However, the density 

distribution per gene and per condition showed a possible bimodal tendency of the 

distribution, definitely for FOXC1 gene: we concluded we could not simply assume 

normality. Fig. 4.8, D, shows the result of this model comparison more clearly: when 

we evaluated all data for all genes simultaneously we observed that the number of 

peptides, genes, proteins, and condition (dCas9, IgG) significantly influence the 

relative abundance. In particular we noticed that on a Q-Q plot the points tend to 

curve off at the extremities: therefore the data have more extreme values than it 

would be expected if they truly came from a normal distribution. 

 

We then tested if the difference of the relative abundance of every protein was 

significantly different between dCas9 and IgG: to do so, we fit a linear model to the 

relative abundance for each protein separately. Despite the fact that the number of 

peptides had a significant effect on the relative abundance, we decided to exclude it 

from the statistical model. Since we run the test on a ‘per protein’ level, the 

information captured in the number of peptides directly related to relative abundance 

and any argument that the number of peptides relates to the length of proteins 

becomes void. We therefore did not adjust for number of peptides.  

 

Furthermore, if the protein had been observed for more than one gene we adjusted 

for differences between the genes. It also has to be mentioned that we excluded 

those proteins that were observed but that did not get an area assigned. The 

statistical analysis could have been run only for those proteins with three or more 

replicates across genes, and observed in both dCas9 and IgG. 
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Figure 4.8: Distribution of the relative abundance after normalization and 
model fitting. Every replicate, gene, condition obtained by dCas9 and IgG 
immunoprecipitation on FOXC1, NFIB and NFE2L3 promoters on the respective 
MDA-MB-231 cell clones were normalized by its own median of the relative 
abundance (Sum.Area.norm). A) Log10 of number of proteins per gene of interest 
per replicate after normalization. B) Density distributions per gene of interest per 
replicate after normalization. C) Density distributions per gene of interest per 
conditions after normalization. D) Overall data visualization and model comparison 
to normal distribution. Statistical analysis developed by Beate Ehrhardt (IMI, 
University of Bath), Piero Ricchiuto and Aurelie Bornot (AZ, Cambridge, UK). 
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The numbers of proteins excluded from the analysis for one of these reasons, and 

the number of proteins tested are reported in Table 4.4. 

 

 

 

 

 

 

 

Table 4.4: Overall numbers of proteins evaluated for the statistical analysis. 
Numbers of proteins excluded because only present in dCas9 (285), IgG (8), or in 
<4 replicates across genes (816), and number of proteins tested (475). Statistical 
analysis method developed by Beate Ehrhardt (IMI, University of Bath), Piero 
Ricchiuto and Aurelie Bornot (AZ, Cambridge, UK). 

 

After correcting for multiple testing (FDR), the proteins reported in Appendix E 

showed a difference in the relative abundance between dCas9 and IgG to a 

significance level of 5%. We also displayed the CRAPome (Contaminant Repository 

for Affinity Purification) scoring and the total number of replicates. In particular, this 

scoring (http://www.crapome.org/, Mellacheruvu et al., 2013) was considered as an 

indicator of the non-specificity of interactors on the basis of published proteomic 

experiments: the lower the value, the more interesting the protein; the higher, the 

more likely the protein was just background. 

 

Thanks to this approach we ended up having two sets of results: one list of proteins 

exclusively identified between dCas9 samples across the 3 genes (Appendix F), and 

one list of proteins (Appendix E) with a statistical significance and a specificity 

information. In order to choose objectively which candidates to validate, we 

developed a ranking method, in close collaboration with Aurelie Bornot (AZ, 

Cambridge, UK). 

 

Proteins seen: Numbers

dCas9 only

IgG only

< 4 replicates

Tested

285

8

475

816
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4.5 Identification of candidate transcriptional regulators in 
TNBC 

In order to highlight those candidates not only biologically, but also therapeutically 

significant, we developed a system where proteins were ranked according to their 

desirability: this was calculated on the basis of a given score among several 

categories that we believed could have helped us in the research of a master 

regulator.  

 

Desirability functions have been proposed as a way to integrate several numerous 

selection criteria in order to rank and select candidates (such as genes, proteins, 

metabolites, or lipids) from high-throughput biology experiments. Every variable is 

mapped to a continuous 0-1 scale, where 1 is the highest desirability, and 0 the 

lowest (Lazic, 2015). These functions were developed by Harrington (Harrington, 

1965) and later extended by Derringer and Suich (Derringer et Suich, 1980). 

Nowadays they are used in cheminformatics to rank compounds (Segall, 

2012; Bickerton et al., 2012), but can be applied to all those –omics technologies 

generating long lists of differentially expressed datasets. 

 

Before going into details, it has to be mentioned that we included in the analysis not 

only the proteins identified with the statistical method, but also those ones that were 

unique for the RIME dCas9 samples (Appendix F): for these last ones, a set P value 

of -1 was assigned. 

 

In particular, we decided to consider the following variables as index of a protein hit 

desirability:  

1. CRAPome value: as an indicator of non-specificity of the protein; the higher 

the CRAPome score, the lower the desirability of the protein. 

2. Number of relevant genes: the more genes of interest had seen the 

questioned protein, the higher the score. 

3. Differential expression according to METABRIC dataset. 

4. P value: assigned after the statistical analysis previously described, or -1 if 

the protein was only seen in the dCas9 RIME samples. 

5. Number of compounds available: overall number of any type of compounds 

available against the questioned protein, with a cut-off of activity ≥ 6. 

6. Number of AstraZeneca compounds available: overall number of available 

compounds within AZ. 
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7. Number of clinical compounds available: the questioned protein was more 

desirable if it had compound(s) already used in the clinic.  

8. Type of relation to TNBC: a score of 1 was assigned to those proteins with a 

known role in TNBC. 

9. Number of literature references to support the relation with TNBC: among 

those proteins with literature references supporting their role in TNBC, we 

catalogued them into newer when they were lower than five overall at the 

time of the analysis, well known if more than that. 

 

In Fig. 4.9 the general guidelines for this ranking are reported. Firstly, every protein 

was associated with a CRAPome value between 0 and 100 that predicted the 

probability of it to be just background: the lower the value, the more desirable the 

protein. We didn’t take into considerations all those proteins with a CRAPome value 

>80 (Fig. 4.9, A). Because we were interested in finding a protein able to regulate 

the expression of several genes, we decided to assign a score on the basis of how 

many promoters had potentially shown the presence of it through RIME: 1 if it was 

all three, 0.5 if it was 2, and 0 if just one (Fig. 4.9, B). In addition, we correlated the 

level of expression of the protein with the patients’ data coming from the METABRIC 

cluster for TNBC compared to the other subtypes of breast cancer (Fig. 4.9, C); we 

evaluated its differential expression between dCas9 and IgG, and we assigned a 

score of desirability on the basis of the P value, setting a cut off at P>0.01 (the 

higher the P value, the more desirable) (Fig. 4.9, D). However, one of the most 

important factors in our ranking system was the presence of a compound for the 

protein hit: we evaluated firstly the existence of any kind of compound published 

with an activity of at least 6 (Fig. 4.9, E), and we assigned an extra score if they 

were present among the AZ available compounds (Fig. 4.9, F), or already used in 

the clinic (Fig. 4.9, G). The final information we used to rank the hits was their 

relation to TNBC on the basis of the literature using ‘Pathway studio’ 

(https://www.pathwaystudio.com/): the more published information we found about 

their impact in TNBC, the more confident we were about the proteins (Fig. 4.9, H). 

We considered the relation with TNBC well known if we could found at least five 

publications, new if they were lower than (Fig. 4.9, I). 
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A) B)

C) D)

E) F)

G) H)
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Figure 4.9: Variables and level of desirability for RIME hits ranking. Overview of 
the variables considered to rank the protein candidates identified through RIME for 
the three genes of interest (FOXC1, NFIB & NFE2L3). A) Distribution of proteins on 
the basis of their CRAPome value, with cut-off set at 80. B) Value of desirability 
based on the number of genes involving the protein. C) Log fold change (LFC) of 
expression of the protein between TNBC METABRIC IntClust compared to the 
others. D) Distribution of the proteins on the basis of the P value calculated with the 
statistical analysis. E) Distribution of the number of compounds available for the 
analysed protein with an activity ≥ 6. F) Value of desirability on the basis of the 
presence of any compound among the AZ available ones. G) Value of desirability 
assigned if there are compounds available in the clinic. H) Desirability based on a 
known relation of the protein with TNBC. I) Distribution of novel (<5) or well-known 
proteins on the basis of the numbers of references in the literature. The analysis 
was performed by Aurelie Bornot, AZ, Cambridge, UK. 

E) F)

G) H)

I)
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With this particular dataset, we decided to take a discovery approach, and to choose 

candidates on the basis of their potential novelty. We wanted to validate primarily 

candidates whose role for the tumourigenicity of TNBC could have been new, 

without forgetting though the remaining scores assigned for every other variable 

considered (Appendix G). In Table 4.6 the top ranked candidates are shown: CDK6 

and CDK1. These proteins not only were the most novel among the RIME hits 

identified, but were also characterized by a high level of desirability, as shown by 

their low CRAPome value (5.84 and 19.71, respectively), high number of RIME 

replicates where they were identified (7 and 6), the fact that they were only seen in 

the dCas9 RIME samples (set P value of -1), numbers of available compounds also 

within the clinic (4 each). In addition, both proteins were potentially involved in the 

regulation of some (FOXC1 and NFIB for CDK1), or all (for CDK6) genes of interest, 

which made them strong master regulators candidates. 
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4.6 Discussion  

In this chapter we presented the application of RIME and CRIPR/Cas9 to identify 

novel transcription factors. For this purpose, we successfully established a 

collaboration with the Biological Mass Spectrometry Facility of AZ (Waltham, 

Massachusetts, USA), and in particular with an extremely talented collaborator, Dr 

Jon DeGnore. Despite their novelty to the technique, we managed to reproduce 

RIME proteomic data previously obtained and validated in our laboratory (Lazarus et 

al., unpublished), even if using more stringent conditions (in terms of precursor 

tolerance, or MS/MS tolerance for example), and different software for the analysis 

(PEAKS instead of Proteome Discovery). 

 

We demonstrated how RIME proteomics can pull down dCas9 along with proteins 

potentially recruited within the regulatory region of interest, and how some variables 

like the type of beads could make such an important difference in terms of quality of 

the proteomic data, and quantity.  

 

A similar technique called CAPTURE (CRISPR affinity purification in situ of 

regulatory elements) is successfully used to identify locus-specific chromatin-

regulating protein complexes and long-range DNA interactions at a single-copy 

genomic locus (Liu et al., 2017), further confirming the applicability of our approach. 

 

In close collaboration with Dr Beate Ehrhardt (IMI, University of Bath), Dr Piero 

Ricchiuto and Dr Aurelie Bornot (AZ, Cambridge, UK), we developed a novel, 

statistical approach to analyse RIME protein hits, based on the difference of the 

relative abundance (sum of the AUC, area under the curve) of a particular protein 

between the experimental pulldown (dCas9 in our case) and the background (IgG). 

This method allowed us to have an objective, scientific approach to the data despite 

their quality or origin. Because of the nature of the test we applied, we were able to 

associate a statistical significance to 475 proteins, and to identify 285 proteins 

exclusively pulled down with dCas9. 

 

Furthermore, we presented here a new system we developed in close collaboration 

with Aurelie Bornot (AZ, Cambridge, UK) to rank potential CRISPR/Cas9-RIME 

candidates on the basis of their biological and therapeutic interest. This ranking 

strategy finds its foundations in desirability variables like CRAPome, the existence of 

targeting compounds (preferably in the clinic or within the AZ available compounds), 
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their association with the disease of interest (TNBC in our case), and the protein 

novelty within the field.  

 

Among our candidates, we decided to pursue two proteins with further analyses: 

CDK1 and CDK6. Both these proteins belong to the cyclin dependent kinases 

(CDKs) family, involved in the regulation of the eukaryotic cell cycle. However, 

CDK1 is the only kinase essentially required for a successful completion of the cell 

cycle, in particular of the M-phase (Brown et al., 2015). It has been shown that 

CDK1 conditional knockout mice are also not viable and the derived embryonic 

fibroblasts show an arrest in G2 (Diril et al., 2012). Its deletion cannot be rescued 

by the closest relative CDK2 knock-in, suggesting it may possess unique pattern, 

level of expression and structural features (Satyanarayana et al., 2008). Recently 

Menon et al. identified though GSEA analysis of CDK1-high tumour cells from 

melanoma, colon and pancreatic cancer some pathway signature involving E2F, 

G2M, MYC and spermatogenesis, supporting a stem-like nature of these tumour 

cells. They also demonstrated a new role for CDK1 in regulating tumour-initiating 

capacity in melanoma and suggested a novel treatment strategy for cancer via 

interruption of CDK1 function and its protein-protein interactions (Menon et al., 

2018).  

 

On the other hand CDK6 is active in mid-G1 phase and, together with CDK4, it 

phosphorylates, and thus regulates the activity of tumour suppressor protein Rb and 

its related proteins p107 and p130. These proteins interact with the family of 

transcription factors known as E2 promoter binding factors (E2F1-E2F8), repressing 

transcription of genes that are essential for cell cycle progression (Harbour et al., 

1999). It is not surprisingly then that the aberrance of the CDK4/6 cyclin D-INK4-

pRb-E2F pathway is common in >80% of human cancers (Ortega et al., 2002). In 

addition, CDK6 phosphorylates other transcription factors such as forkhead box M1 

(FOXM1), mothers against decapentaplegic homolog 2/3 (SMAD2/3), eyes absent 

homolog 2 (EYA2) and methylosome protein 50 (MEP50), when part of the CDK4/6 

cyclin D complexes, or nuclear factors like NF-kB, linking cancers to inflammation 

(Buss et al., 2012; Handschick et al., 2014). 

 

Furthermore, cdk6-null mice develop normally, suggesting a specific oncogenic role 

for this kinase: in fact, blockage of CDK6 by microRNAs (miRNAs) has been shown 

to inhibit the proliferation of several tumours like gliomas, prostate and lung and 

colorectal carcinoma cancer (Anderlind et al., 2010; Chen et al., 2013; Honeywell et 
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al., 2013; Zhu et al., 2013; Li et al., 2014). Many studies have been published 

suggesting the potential therapeutic benefit of CDK6 inhibitors against different 

types of cancer.  

 

The third candidate we decided to validate was MTA2, less novel than the proteins 

just mentioned, but with a strong biological meaning. MTA2 is in fact a member of 

the metastasis tumour associated (MTA) family of transcriptional regulators and is a 

central component of the nucleosome remodelling and histone deacetylation 

complex (Mi-2NuRD complex) (Bowen et al., 2004). The core subunits of Mi-

2/NuRD complexes, Mi-2α and Mi-2β, are SNF2-like ATPase of the chromodomain 

helicase DNA-binding (CHD) protein family (CHD3 and CHD4, respectively, part of a 

subclass of the SWI/SNF family (Eisen et al., 1995), while the other components are 

utilized interchangeably to produce functionally distinct complexes. They include 

histone deacetylases (HDAC)1/2, methyl CpG binding domain proteins (MBD)2/3, 

histone-binding proteins/retinoblastoma-binding proteins (RbAp46 and/or RbAp48) 

that might function as structural proteins providing interactive interfaces for other 

components of the Mi2/NuRD complex (Marhold et al., 2004) and MTA1/2/3 

(Manavathi et Kumar, 2007) proteins. 

 

MTA2 is well known to be involved in the regulation of cytoskeletal organization via 

modulation of the Rho signalling pathway, and to be involved in the EMT (epithelial 

to mesenchymal transition) process through TWIST activity regulation (Fu et al., 

2010; Yang et al, 2004). It has been shown that MTA2 takes part in the regulation of 

the invasive behaviour for many cancers like oesophageal squamous cell 

carcinoma, non-small cell lung cancer and breast (Pakala et al., 2011; Weng et al., 

2014; Zhang et al., 2015; Sen et al., 2014). In breast, it plays other, important roles: 

it supports tumour progression, as shown by the increase of its expression during 

the development of mammary tumours in a multi-stage model of tumour progression 

(from normal duct to premalignant lesions to hyperplasia to ductal carcinoma and to 

invasive carcinoma) (Zhang et al., 2006), and interestingly the inhibition of ERα 

transactivation activity, promoting the development of hormone-independent 

phenotypes, in collaboration with MTA1 (Mazumdar et al., 2001; Cui et al., 2006).  

 

For these reasons we believe they could have been strong, potential master 

regulators candidate in TNBC. 
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4.7 Conclusion 

In conclusion, we demonstrated here the applicability of this combination of 

CRISPR/Cas9 and RIME proteomics strategy to investigate the regulation of 

transcription of a gene of interest. These results supported further analyses that are 

presented in Chapter 5. 
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5 CHAPTER 5: VALIDATION OF 
POTENTIAL TRANSCRIPTION 
REGULATORS 

  

5.1 Introduction 

In Chapter 4 we showed how we applied the RIME protocol from Mohammed and 

colleagues (Mohammed et al., 2013) to investigate the regulation of the transcription 

of three genes of interest. In particular, we demonstrated how we successfully 

adapted it to an exogenous protein like dCas9, increasing the signal at a mass 

spectrometry level. 

 

Furthermore, we presented a novel, statistical method to analyse RIME proteomic 

data on the basis of the relative abundance of the identified protein. This 

implemented the confidence of potential candidates’ selection for validation, 

together with a powerful ranking method based on the level of desirability assigned 

to every protein we developed for prioritising proteomic hits for this particular project.  

 

We decided to follow up three RIME hits, MTA2, CDK6 and CDK1, to begin with. 

Our choice was based on a combination of factors: novelty of the protein candidate 

for TNBC tumourigenicity, and biological meaning. MTA2, for example, which is part 

of the Mi-NuRD complex, is known to have an important role in ERα inhibition and 

EMT (Mazumdar et al., 2001; Cui et al., 2006). However, Mi2/NuRd is involved in 

many other processes: it is a chromatin-remodelling complex combining multiple 
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transcriptional regulatory events, such as histone deacetylation, histone 

demethylation, nucleosome mobilization and recruitment of regulatory proteins. It 

can promote or repress transcription, on the basis of the cellular context and of the 

protein subunits forming it.  

 

Regarding CDK6 and CDK1, their importance for cell cycle progression and their 

oncogenic roles are well established, also in breast cancer: CDKs are in fact 

responsible for the expression of genes by direct phosphorylation of G1/S activators 

(van den Heuvel et Dyson, 2008; Henley et Dick, 2012), or by their subsequent 

inhibition during S-phase (Bertoli et al., 2013). CDK6, together with CDK4, is 

responsible for entering to the cell cycle from quiescence, in collaboration with D-

type cyclins and cyclin E/CDK2 (Malumbres et Barbacid, 2009). CDK2/cyclin A and 

CDK2/cyclin E complexes are active in S phase and beyond, while CDK1/cyclin B 

complexes are responsible for the final step into mitosis. It has been shown that 

mammalian cells require at least five CDKs to regulate interphase: CDK2, CDK3, 

CDK4, and CDK6, and finally CDK1 in mitosis. However, studies in mouse models 

have shown that mice can survive lacking the interphase CDKs (Malumbres et al., 

2004; Ortega et al., 2003), since CDK1 can execute all the events necessary to 

drive cell division, but not the absence of this one, suggesting that for many cell 

types it is the only essential CDK (Santamaria et al, 2007). 

 

In this chapter, we investigate and validate if MTA2, CDK6 and CDK1 are bonafide 

transcription regulators of FOXC1, NFIB and NFE2L3, and that if they play a role in 

the progression or maintenance of TNBC cells.   

 

5.2 Localization of MTA2, CDK1 & CDK6 DNA binding 

First, we investigated the expression of MTA2, CDK6 and CDK1 in a panel of TNBC 

cell lines, and found that they are expressed in most of them (Fig. 5.1).  

 

Furthermore, we took into consideration the patient data set TCGA (The Cancer 

Genome Atlas), which has evaluated gene expression, DNA methylation and DNA 

copy number (CN) variation data from more than 800 patients. Pathologically, we 

found that the three candidates’ high expression correlates with TNBC, in 

particular for CDK6 and CDK1, while MTA2 shows some similarities with the 

HER2+ breast cancer (Fig. 5.2).  
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We then proceeded with the validation of the localization of the protein candidates 

within the potential promoter regions of FOXC1, NFIB and NFE2L3. As a first step, 

we performed ChIP-qPCR on every protein, and we assessed a 120bp sequence of 

DNA flanking the gRNA targeting site. Because we were looking for potential 

fundamental players in the tumourigenicity of TNBC, we took into consideration four 

different cell lines. In Fig. 5.3 the results of this investigation are presented.  

 

There is general variability between the cell lines in terms of DNA enrichment of the 

proteins’ pulldowns across the three different genes. However, FOXC1 promoter 

seems to be characterized by the most significant overall binding signal of the three 

proteins, in particular for MTA2, followed by CDK6. Interestingly, CDK1 was not 

associated with NFE2L3 gene in our proteomic dataset, but we couldn’t completely 

exclude it according to these ChIP-qPCR data. 
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Figure 5.1: MTA2, CDK6 and CDK1 expression in a panel of TNBC cell lines. 
Cells were seeded in order to reach confluency the day after for collection and 
lysation. 50µg of protein lysates were probed by WB for the expression of MTA2, 
CDK6, CDK1 and α-Tubulin (loading control). 
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Figure 5.1: MTA2, CDK6 and CDK1 expression in different TNBC cell 
lines. Cells were then lysed and 50 μg of protein lysates were probed 
by WB for the expression of MTA2, CDK6, CDK1 and α-Tubulin (load-
ing control). 
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Figure 5.3: MTA2, CDK1 & CDK6 ChIP-qPCR validation on the potential 
promoter sequence of FOXC1, NFIB and NFE2L3 in a panel of TNBC cell lines. 
The DNA enrichment of the MTA2, CDK1 & CDK6 for every cell line was evaluated 
in comparison to the respective internal IgG control. Primers for qPCR were 
designed in a region of 120bp flanking the gRNA of each respective promoter. The 
error bars report standard deviations from duplicates. Unpaired-t test was performed 
to compare the DNA enrichment to IgG: P value <0,05. 
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This experiment was extremely important for two reasons: it confirmed the 

recruitment of the proteins on the promoter sequences of some of the genes across 

multiple cell lines, and it confirmed the validity of the statistical approach combined 

with the ranking system. In addition, to further validate these results and to gain a 

global picture of where these putative transcription regulators bind on the genome, 

we decided to use a more powerful and accurate technique, and executed a ChIP-

Seq experiment on MDA-MB-231 cell line. The ChIP-Seq analyses were performed 

by Dr Mike Firth and Dr Jonathan Cairns (Darwin building, AZ, Cambridge, UK). 

 
In Fig. 5.4, the peaks identified for the three different immunoprecipitations are 

presented as heat maps. The results for MTA2 and CDK1 show a clear identification 

of wide and diverse genomic regions where the proteins bind. A deeper analysis is 

being conducted in order to investigate where else these proteins are interacting 

with the DNA, and if they could potentially be involved in the regulation of the 

transcription of other genes. 

 

On the other hand, the results for CDK6 show that there were no peaks detected 

across the genome: this is likely to be caused by the low performance of the 

antibody used for sequencing. For this reason, we had to exclude CDK6 sequencing 

results from further analyses.  
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Figure 5.4: Heat maps showing MTA2, CDK1 and CDK6 binding sites across 
the MDA-MB-231 cell line genome. ChIP-Seq experiments were performed on 
MTA2, CDK1 and CDK6 pulldowns in order to identify their binding sites across the 
genome of MDA-MB-231 cell line. Total number of peaks and their intensity are 
shown in a horizontal window of ±1Kb. Analyses were performed by Mike Firth and 
Jonathan Cairns (AZ, Cambridge, UK).  
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In Fig. 5.5 the bindings of these proteins on the promoter sequences of FOXC1, 

NFIB and NFE2L3 are shown, respectively. From a preliminary analysis it is 

possible to see how MTA2 and CDK1 seem to be both recruited to the putative 

promoter regions of FOXC1, NFIB and NFE2L3 towards loci relatively close to each 

other. This could be an indication of a potential collaboration of these two proteins in 

regulating the transcription of this gene, through a direct, or indirect, interaction. 

 

In order to understand if MTA2 and CDK1 would actually work together regulating 

the transcription of our genes of interest, we analysed those regions of the DNA 

where both proteins bind according to the ChIP-Seq dataset (Fig. 5.6, Appendix H). 

For this preliminary investigation, we looked at peaks overlapping within a specific 

and narrow range of DNA. Even though we couldn’t identify any directly overlapping 

sequence across the regulatory regions of our targeted genes, we couldn’t exclude 

the possibility of these two proteins collaborating to regulate the expression of the 

same downstream gene. 
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Figure 5.6: Unique and common CDK1 and MTA2 binding sites across the 
MDA-MB-231 cell line genome. MTA2 and CDK1 ChIP-Seq data were compared 
in order to identify those binding sites that are unique for each protein (CDK1 only 
peaks and MTA2 only peaks, respectively), and those that are common (Common 
peaks), across the genome of the MDA-MB-231 cell line. A) Heat maps showing 
CDK1 only, MTA2 only or common peaks in CDK1 and MTA2 IPs. Total number of 
peaks and their intensity are shown in a horizontal window of ±1Kb. B) Venn 
diagram indicating the common targeted genes of CDK1 and MTA2. Analyses were 
performed by Mike Firth and Jonathan Cairns, AZ, Cambridge, UK. 
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5.3 Functional validation of protein candidates 

After investigating the potential localization of the protein candidates on the putative 

regulatory regions of FOXC1, NFIB and NFE2L3, we evaluated if they could be 

involved in the transcription regulation of these genes. 

 

For this purpose, we performed shRNA-mediated knockdown of MTA, CDK1 and 

CDK6 in four different TNBC cell lines: each protein was targeted with two different 

shRNAs, and compared to the respective parental line transformed with a non-

targeting siRNA (negative control). We confirmed and evaluated the success of the 

knockdown strategy at the mRNA (Fig. 5.7) and protein level (Fig. 5.8). 

 

The data confirmed the efficacy of the knockdown for all the proteins, in particular at 

the mRNA level, even though some variability was reported in terms of efficiency 

between the cell lines, protein targeted and shRNA used. Overall, we observed a 

range of reduction between 60 and 90% for MTA2, between 40 to 90% for CDK1, 

and between 20-90% for CDK6 at the mRNA level. Only the knockdown of CDK6 for 

the HS578T cell line didn’t seem to work as well as for the other cell lines at the 

mRNA level. However, it is possible to notice some variability among cell lines in the 

knockdown efficacy between two shRNAs targeting the same protein. This could be 

due to a combination of several reasons: the presence of a large number of off-

targets for a specific shRNA, which would cause a ‘dilution effect’ on its activity 

(Arvey et al., 2010); the turnover rate of the targeted mRNA (Larsson and 

colleagues demonstrated that short-lived mRNAs are more insensitive to be 

downregulated (Larsson et al., 2010)), and the different abundance of the mRNA 

levels among cell lines (the more abundant the mRNA, the higher the gene-silencing 

effect (Hong et al., 2014). This experiment has to be repeated in order to 

corroborate the results. 

 

Furthermore, we evaluated if the reduction of the three proteins had a direct effect 

on the expression of FOXC1, NFIB and NFE2L3 at a gene transcription level by RT-

PCR. Results are shown in Fig 5.9 (MTA2 knockdown), Fig. 5.10 (CDK1 

knockdown) and Fig. 5.11 (CDK6 knockdown). 
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Figure 5.8: Representative MTA2, CDK1 and CDK6 knockdown protein levels 
in a panel of TNBC cell lines. MTA2, CDK1 and CDK6 protein levels were 
evaluated in the MDA-MB-231, SUM159, HS578T and BT569 transformed with the 
control (ctrl), sh1 and sh2 shRNAs for the three respective proteins. Cells were 
lysed and 30µg of protein lysate were probed by WB. α-Tubulin was used as a 
loading control. 
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The results show a potential role for MTA2, CDK1 and CDK6 in the regulation of the 

expression of FOXC1, NFIB and NFE2L3 for all the cell lines analysed. In fact, when 

knocked down, their absence causes an altered expression of these downstream 

genes. 

 

However, it is possible to see how the four cell lines are characterized by different 

behaviours to the knockdowns. Among them, MTA2 knockdown had the least 

significant effect on transcription of our target genes (Fig. 5.9). While in contrast, 

CDK1 knockdown had the most effect on our genes (Fig. 5.10). Interestingly, CDK1 

seems to positively regulate the expression of FOXC1, and to downregulate the 

NFE2L3 one, while CDK6 seems to be involved in the upregulation of the 

transcription of all genes in almost all the cell lines. 

 

All these experiments were performed shortly after selection (between 5-14 days, on 

the basis of the cell line), and this could be a possible explanation for the observed 

variability: some cell lines were more sensitive than others, showing some toxicity 

effect to the knockdown of these proteins (e.g. arrest of cell growth and cell death), 

or they could have activated different alternative transcription pathways as a 

compensatory mechanism. In addition, the efficacy of the knockdown varied 

between cell lines, which could have also influenced the expression of the 

downstream genes. These evaluations were performed just once when this thesis 

was written, but they require replication in order to confirm the results obtained. 

 

Next, we investigated if these proteins play a role in breast cancer, in particular in 

TNBC growth and maintenance. In order to do that, we firstly evaluated the dataset 

available at www.depmap.org to identify perturbation effects of MTA2, CDK1 or 

CDK6 knockdown (Fig. 5.12). For this purpose, we used the DEMETER2 

dependency score from different cell depletion assays, where every gene gets 

assigned a score of 0 if not essential, and the lower the score, the higher the 

probability that the gene is a fundamental one in a given cell line. The score -1 is 

identified as the median of all pan-essential genes. As shown in Fig. 5.12, B, CDK1 

seems to be an essential gene in breast cancer, while MTA2 and CDK6 depletion 

don’t seem to be as critical for this tumour. 
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Figure 5.12: Perturbation effects of MTA2 (A), CDK1 (B) and CDK6 (C) 
knockdown in a combined RNAi study (Broad, Novartis, Marcotte) in breast 
cancer. For each gene, the outcome from DEMETER2 dependency score from 
different cell depletion assays is reported. Score 0: not essential gene. Lower 
scores: higher probability that the gene is essential in a given cell line. Score -1 (red 
line): median of all pan-essential genes. Hotspot mutations: non-silent mutations 
hotspot in TCGA dataset; damagind mutations: mutations at start codon, or causing 
a frame shit, or a premature stop; other-non conserving: missense mutations; other-
conserving: mutations in non coding regions. Data available at www.depmap.org. 
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Additionally, we performed a 3D matrigel colony formation assay experiment to 

evaluate if the ability of these cell lines to form colonies in vitro was affected by the 

absence of any of the protein candidates. The results, shown in Fig. 5.13, gave us 

information about the clonogenic ability of TNBC cells in the absence of MTA2, 

CDK1 and CDK6.  
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We observed that when cells are deprived of MTA2, their capacity of forming 

colonies is significantly affected for MDA-MB-231 and SUM159 (Fig. 5.13, A), while 

CDK1 (Fig. 5.13, B) and CDK6 (Fig. 5.13, C) seem to play an important role in this 

process for all the cell lines analysed. This suggests that these proteins could be 

involved and fundamental for the tumourigenicity of TNBC. It is important to note 

that due to time restriction, this experiment was performed once at the time this 

thesis was written, therefore, further validations are required in order to confirm the 

results obtained.  

 

5.4 Future directions 

It has to be kept in mind that the chosen proteins were just some of the candidates 

identified with this technology. Many other proteins could be important gene 

transcription regulators, or have a fundamental role for the biology of TNBC, but due 

to time restriction while writing this thesis, it was not possible to investigate them 

further. 

However, we performed a preliminary pathway analysis on the proteins identified 

through RIME proteomics associated with a statistical power (Appendix E) and 

those proteins identified exclusively on the dCa9 RIME samples (Appendix F). Using 

the Enrichr online tool (https://amp.pharm.mssm.edu/Enrichr), and in particular the 

comprehensive integrated and non-redundant pathway resources BioPlanet2016 

and Elsevier pathway collection, we explored the potential biological mechanisms 

that could be regulated by these proteins. In Fig. 5.14 it is possible to see how the 

majority of them seemed to be involved in processes related to transcription, such 

as splicing, mRNA processing, mRNA transport (Fig. 5.14, A), DNA remodelling and 

mitotic checkpoint (Fig. 5.14, B). These results were expected, since we were 

aiming to target transcription-starting sites and to avoid interfering with the 

transcription process of the gene itself, and they further confirm the validity of our 

strategy. However, at this level of analysis we couldn’t identify any pathway directly 

involved in the regulation of the gene expression.  
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Figure 5.13: Preliminary pathways analysis for protein candidates identified 
through RIME proteomics and statistical analysis. A) BioPlanet 2016 database 
investigation for enriched pathways among protein candidates. Left side: bar chart 
visualisation of the 10 highest enriched pathways according to the database. Rigth 
side: p-value of the 10 highest enriched pathways according to the database. B) 
Elsevier Pathway Collection database investigation for enriched pathways among 
protein candidates. Left side: bar chart visualisation of the 10 highest enriched 
pathways according to the database. Rigth side: p-value of the 10 highest enriched 
pathways according to the database. Data available at 
https://amp.pharm.mssm.edu/Enrichr. 
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This could be potentialy implemented by a deeper and more sophisticated 

investigation of different databases and online tools that couldn’t be 

performed while this thesis was written. However, it has to be kept in mind 

that RIME proteomics has some intrinsic limitations, and despite our effort to 

implement the technique, it could be that the identification of regulatory 

events that are spatially and temporally limitied is affected by the low 

sensitivity and the low abundance of the signal. 

 

5.5 Discussion 

We demonstrated in this chapter the validity of the combination of CRISPR/Cas9 

and RIME proteomics as a method to identify novel transcription regulators. We 

showed how our statistical approach, together with a powerful ranking system, could 

be used to highlight potentially successful hits for validation among large proteomics 

datasets. 

 

In particular, we showed how the three candidates we identified in our project, 

MTA2, CDK1 and CDK6, correlate with TNBC patients data among the different 

subtypes of breast cancer, and they are recruited to the promoter sequences of the 

investigated genes FOXC1, NFIB and NFE2L3. In addition, thanks to ChIP-Seq 

analysis, we were able to identify many more genes regulated by these proteins. In 

order to complete our investigation, we need to optimize and repeat ChIP-Seq on 

CDK6 on MDA-MB-231: this would further enrich our dataset and possibly highlight 

more transcription pathways shared by these three proteins. 

 

Our data reveal how these proteins could be actively regulating the transcription of 

key TNBC oncogenes. Through functional assays, we showed how their absence 

causes an altered expression of the downstream genes in a panel of TNBC cell 

lines. Despite the variability we observed, the results support a direct role of MTA2, 

CDK1 and CDK6 on gene transcription regulation. In particular, it is possible to 

speculate a potential repressing role for CDK1 and CDK6: in fact, when they are 

downregulated, the transcription of downstream genes is enhanced. This could be 

explained by the function of CDKs themselves: thanks to their phosphorylation 

activity, they are able to regulate the status of other proteins, for example from an 

inactive status to and active one (van den Heuvel et Dyson, 2008; Henley et 



 

158   

Dick, 2012). It could be that CDK1 and CDK6 are recruited within the promoter 

region of our genes of interest to regulate the activity of some target transcription 

factors, modulating their effect on the gene transcription. Their absence causes a 

lack of this regulation, therefore an enhanced expression of the downstream gene. 

Further investigations should be carried out in order to confirm this hypothesis and 

to identify the direct target of the phosphorylation activity of these CDKs. 
 

Similarly, the absence of MTA2 caused a downregulation of the genes expression. 

This could be related to a change of function in the NuRD complex, of which MTA2 

is a member (Bowen et al., 2004). It is in fact known that different components, as 

well as different tissues, can modify the role of the complex in terms of gene 

regulation (Manavathi et Kumar, 2007): in our case, it could be that MTA2 worked as 

a transcription activator for the genes of interest, and its absence promoted a 

decrese in gene expression. However, further experiments would need to be 

performed in order to confirm the recruitment of the NuRD complex on the promoter 

sequences, and the role of MTA2 on transcription regulation through it rather than 

other complexes or protein-protein interactions. 

 

Furthermore, we demonstrated the importance of CDK1 and CDK6 for the 

tumourigenicity of TNBC. In fact, the ability of cell lines to form colonies in vitro 

seemed to be affected by the lack of these proteins. Over the past two decades, 

several works have illustrated that the dysregulation of CDKs affects tumor growth 

and cell proliferation (Malumbres et Barbacid, 2009). In addition, it is well known that 

CDKs are involved in many other processes like DNA damage repair, epigenetics, 

stemness, metabolism and transcriptional functions (Lim et Kaldis, 2013), indicating 

broader roles. In particular for breast cancer, recent studies have discovered that 

CDK4 and 6 also contribute to cancer stemness (Dai et al., 2016). Our results 

corroborate with the literature, showing how CDK1 inactivation significantly affects 

cell growth, probably inducing apoptotic mechanisms, as published (Goga et al., 

2007; Johnson et al., 2009). 

 

On the other hand, CDK6 has recently gained a lot of attention because of the 

potential efficacy of the blockade of cyclin D-CDK4/6 pathway as a therapeutic 

strategy for breast cancer (Arnold et Papanikolaou; 2005; Yu et al., 2001; Yu et al., 

2006), which seems to induce a phenotype similar to cellular senescence 

(Sharpless et Sherr, 2015). However, it has mainly been associated with ER+ breast 

cancer treatment.  
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TNBC has in fact been considered a poor candidate for CDK4/6 inhibitor therapy 

because of the frequent loss of expression of the RB protein (Herschkowitz et al., 

2008) or high expression of cyclin E, two mechanisms able to confer resistance to a 

CDK4/CDK6 inhibition. In addition, it has been shown that many TNBC cell lines are 

insensitive to CDK4/6 blockade in vitro (Finn et al., 2009). Interestingly, we observed 

an effect of CDK6 inhibition in our preliminary analysis. 

 

To support our observation, recent studies have demonstrated a potential TNBC 

sensitivity to CDK6: Asghar and colleagues (Asghar et al., 2017) showed that the 

luminal androgen receptor (LAR) subtype is affected by this treatment in vitro and in 

vivo, and they observed an increased CDK2 activity as a possible escaping 

mechanism. In addition, the simultaneous blockade of CDK4/6 and PI3K has been 

shown to have an effect in a variety of TNBC models (Asghar et al., 2017; Teo et al., 

2017). Furthermore, it has been observed that in TNBC preclinical models the 

inhibition of CDK4/6 can block breast cancer metastases: Liu and colleagues in fact 

reported how CDK4/6-mediated activation of DUB3 (Deubiquitinating Protein 3) is 

essential to stabilize SNAIL1, a transcription factor involved in the EMT process (Liu 

et al., 2017).  

 

Overall, these results provide rationale for further investigations on MTA2, CDK1 

and CDK6 in TNBCs, in order to understand and identify downstream regulated 

pathways or potential resistance mechanisms. 

 

5.6 Conclusion 

Results presented in this chapter demonstrated the efficacy of the new methodology 

we developed to investigate transcription regulation. In addition, the identified 

proteins seem to be important for the expression of FOXC1, NFIB and NFE2L3, and 

their targeting causes alteration to cancer cell clonogenic capacity. In particular, 

MTA2, CDK1 and CDK6 appear to be extremely important for the biology and 

tumourigenicity of TNBC, making them interesting candidates for further 

investigations. 
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6 CHAPTER 6: DISCUSSION 

Breast cancer development and progression are characterized by several genetic 

and epigenetic alterations of normal and host cells interacting with the developing 

tumour, such as immune, vascular and stromal cells. Whether inherited or not, 

changes like gene loss, amplification and point mutations would normally lead to cell 

death, but if affecting key genes, they could promote cell survival, proliferation, 

invasiveness and resistance (oncogenes).  

 

In breast cancer, loss of heterozygosity and copy number alteration seem to be 

involved in the transition from hyperplasia to ductal carcinoma in situ (DCIS) 

(Waldman et al., 2000). The increasing knowledge of these changes and their 

associated pathways has led to the development of targeted therapeutics. Several 

successful examples have been reported, like tamoxifen for ER-dependent breast 

cancers, and trastuzumab, for HER2+ tumours, but TNBC still miss a unique 

therapeutic approach. In the last decades, patients’ outcome has been significantly 

improved by multi-drug combination systemic therapies in the neoadjuvant and 

adjuvant settings, and treatment advances have been achieved with poly (ADP-

ribose) polymerase (PARP) inhibitors and immunotherapy agents. However, in 

some cases, the prognosis still remains poor. 

 

Recently transcription factors have gained a lot of attention as potential therapeutic 

targets for breast cancer because of their essential role in gene expression 

regulation, despite the potential, intrinsic toxicity. In particular for TNBC, Wang and 

colleagues have demonstrated the sensitivity of this disease to inhibition of 

transcription, showing how tumours are dependent on cyclin kinase 7 (CDK7), and 
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how its selective inhibition with THZ1 has a direct effect on cells’ tumourigenity 

(Wang et al., 2015). This result confirms the potential efficacy of targeting 

transcription as a therapeutic approach also for this disease. However, in order to do 

it, a deeper knowledge of the TNBC biology and gene transcription regulation is 

fundamental. 

To understand how transcription regulators drive the TNBC aggressive phenotype, 

we developed the current project, where we applied a combination of CRISPR/Cas9 

and RIME proteomics, and we demonstrated the potential of catalytically dead 

version of Cas9 protein (dCas9) to explore the regulation of the transcription of a 

specific gene of interest when coupled with discovery proteomics. 

 

6.1 Applicability of CRISPR/Cas9 to target putative regulatory 
regions 

By investigating the METABRIC dataset (~ 2000 patients) we identified highly and 

differentially expressed genes in TNBC encoding for transcription factors, and we 

further pursued three of them (FOXC1, NFIB and NFE2L3) with our analyses. All 

these genes are known to play important roles in TNBC, with the only exception of 

NFE2L3, which is novel for this type of cancer. In particular, FOXC1 promotes 

cancer stem cell properties and can induce epithelial-mesenchymal transition (EMT) 

(Xia et al., 2013). On the other hand, NFIB is involved in several different processes 

like cell cycle regulation, apoptosis, cell adhesion (Persson et al., 2019) and 

lactation (Murtagh et al., 2003). 

 

Experimentally, we were able to target putative regulatory region of these genes 

using dCas9. We optimised a protocol to obtain stable TNBC cell lines transfected 

with exogenous DNA coding for both dCas9 and gRNA targeting the regions of 

interest. We demonstrated here that dCas9 binds the desired sequences causing 

minimal interference with the expression of the gene in question thanks to its 

inducible expression, regulated by a Tet-On system. 

 

Recently, several techniques have been developed to purify specific genomic 

regions and to analyse molecular interactions by insertion of the recognition 

sequences of an exogenous DNA-binding molecule. Among these techniques, 

several examples are worth highlighting such as: the iChIP technology (insertional 

ChIP), where proteins like LexA are used for affinity purification of targeted DNA 
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sequences (Hoshino et Fujii, 2009), or engineered DNA-binding molecules like zinc-

finger proteins (Pabo et al., 2001) and transcription activator-like (TAL) 

proteins (Bogdanove et Voytas, 2011) to tag a specific genomic locus. However, the 

CRISPR system provides the most flexible and inexpensive way to target desired 

genomic regions. In particular a technique called enChIP (engineered DNA-binding 

molecule-mediated chromatin immunoprecipitation) has been optimised to purify 

genomic sequences of interest (Fujita et Fujii, 2013), immunoprecipitating them with 

antibody against a tag(s) fused to dCas9, which is co-expressed with a guide RNA 

(gRNA) and recognizes endogenous DNA sequence. 

 

All these novel technologies further demonstrate the applicability of our strategy to 

investigate the regulation of the transcription of a gene of interest. Furthermore, they 

have been recently successfully coupled with analytical methods like mass 

spectrometry (enChIP-MS) (Fujita et Fujii, 2014; Hamidian et al., 2018), microarray 

analysis (enChIP-chip), or RNA-Seq (enChIP-RNA-Seq) (Fujita et al., 2015), to 

perform unbiased investigation in a genome-wide scale.  

 

Nevertheless, our strategy has shown some intrinsic limitations. Firstly, we used 

exclusively cell lines to investigate TNBC tumour behaviour: despite being extremely 

versatile, they don’t fully recapitulate the complexity of the tumour and of its 

interaction with the microenvironment. For this reason, some of the discrepancy we 

saw between the METABRIC analysis and our cell line investigation could be 

explained. Even though better models are available to overcome this diversity, like 

PDXs (patient derived xenografts, (Cassidy et al., 2015)) for example, and it has 

been shown it is possible to genetically modify them using CRISPR/Cas9 (Hulton et 

al., 2019), it would be extremely difficult to reach the number of cells required for a 

successful RIME experiment with the conditions we used.  

 

Secondly, the CRISPR/Cas9 system used was characterized by some undesired 

expression of dCas9 without induction, due to the presence of some Tetracycline 

derivates in the FBS: despite a particular attention before some investigations, cells 

were usually kept in normal media conditions. The presence of dCas9, even though 

minimal, could have affected the phenotype of the cells over time. For this reason, a 

more efficient system could be used instead to prevent any uncontrolled presence of 

exogenous molecules. 
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In relation to this, the presence of off-targets has to be considered: despite every 

gRNA specificity, a number of off-site bindings of the dCas9 were identified. This 

was expected, since the targeted promoter regions are extremely repetitive across 

the genome (Jordan et al., 2003; Feschotte, 2008; Huda et al., 2009), but it could be 

implemented using different strategies to design gRNAs, or different versions of 

dCas9. In addition, it could implement the signal at a proteomic level, and decrease 

the ratio of false positive. 

 

6.2 CRISPR/Cas9 & RIME proteomics as a tool for novel 
transcription factor discovery 

In order to investigate the transcription regulation of our genes of interest, we 

applied a novel proteomic approach, RIME, which was never coupled with the use of 

CRISPR/Cas9 before, and we demonstrated here how this combination could 

potentially be a successful discovery tool. In collaboration with AstraZeneca, we 

optimized the RIME original protocol and we developed a novel, statistical approach 

to analyse RIME protein hits based on their relative abundance, followed by a 

ranking strategy based on a desirability function in order to highlight novel potential 

therapeutic candidates associated with TNBC. Thanks to this approach, we were 

able to identify three potential regulators, MTA2, CDK1 and CDK6, never associated 

with FOXC1, NFIB or NFE2L3 before. 

 

Among the different discovery proteomic techniques, we decided to use RIME 

because of its extreme affordability, speed and sensitivity. However, some intrinsic 

limitations in the technique itself made its applicability more challenging.  

 

In general, because of the usage of a crosslinker and the potential transitory 

interaction of some proteins, RIME requires optimization to find the correct 

experimental conditions for immunoprecipitation. For example, some antibodies 

might not be able to recognize their protein target because of the alteration of the 

epitopes after formaldehyde modification (Lindskog et al., 2005), which can 

obviously affect the outcome. In addition, the modifications generated by the 

crosslink can alter the chemical and physical properties of a peptide, making its 

identification at the MS level more difficult. In the particular case of formaldehyde 

though, the modifications it generates are known, and the MS search can be 

normalized taking this into consideration (Metz et al., 2003; Metz et al., 2006): it has 
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in fact been shown that the majority of these alterations occur at the amino-termini 

of lysine, tryptophan, and cysteine side chains (Toews et al., 2008).  

 

In addition, the crosslinking can affect the on-beads digestion, performed in this 

case using trypsin. The enzyme’s epitopes can be masked by formaldehyde 

modifications, causing an altered processed peptides dimension (very long, or too 

short), or when two proteins are linked to each other, an anomalous peptide (as a 

result of the fusion of parts of two interacting proteins). This would obviously 

interfere with the protein identification, resulting in loss of information or altered data. 

To overcome this problem, some proteomics protocols reverse the crosslinking with 

heat, but the harsh condition could also affect the quality of the proteins themselves. 

 

Lastly, it is important to note that RIME is not a quantitative approach, but mainly 

exploratory: this implies that to confidently identify an interactor at the MS level, a 

high number of PSMs (peptide spectrum matches) and coverage of the protein are 

required, which are often correlated to its high abundance at the endogenous level. 

However, this could not be the case for proteins interacting in a specific 

compartment (nucleus, for example), or at a particular time point (after a certain 

stimulus, or at a specific stage of the cell cycle, etc.), which could make the 

identification more complex.  

 

RIME has originally been developed to investigate interactors of endogenous, 

relatively abundant proteins, but we successfully modified it to be applied to an 

exogenous one. However, this decreased significantly the signal at the proteomic 

level, and made the identification of potential candidates more challenging. In fact, 

dCas9 was induced just for a short time, during which it had to translocate into the 

nucleus and interact with a very specific DNA sequence. Because of the importance 

of the genes of interest, we assumed a high level of transcription, so a high 

recruitment of the transcription machinery within the promoter sequence, but cells 

were at different stages of the cell cycle, and this could have influenced the overall 

gene expression level. For these reasons, despite its effectiveness, another 

approach could be used to implement the proteomic signals and facilitate protein 

discovery.  

 

In the last six years, novel techniques have been developed to label neighbouring 

proteins in the cell as a powerful and complementary approach to classic affinity 

purification/mass spectrometry (AP/MS)-based interactome mapping. BioID and 
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APEX are two of the widely used approaches and are both based on generating a 

reactive biotin derivative that diffuses from the enzyme’s active site to label proteins 

in the near vicinity (Rees et al., 2015; Kim et Roux, 2016). They have the ability to 

capture weak/transient interactions that can be lost in standard AP approaches, for 

both soluble and insoluble proteins, and thanks to the strength of the association of 

biotin with streptavidin, high-stringency protein extraction and capture methods allow 

minimal background contaminants. APEX in particular is characterized by a faster 

rate of labelling (minutes versus hours) that can facilitate the identification of 

dynamic changes in protein–protein associations over time.  

 

Myers and colleagues have demonstrated how powerful this approach is if coupled 

with CRISPR/Cas9: they developed a novel strategy called GLoPro (genomic locus 

proteomics) in which they fused dCas9 to the engineered peroxidase APEX2 (Lam 

et al., 2014) to target a specific DNA sequence with a single gRNA (sgRNA) (Myers 

et al., 2018), under the control of a Tet-On system. Their strategy could be a very 

sensible improvement to our approach, since it lacks of the formaldehyde 

crosslinking and all the limitations related to it. 

 

6.3 MTA2, CDK1 and CDK6 contribution to TNBC 
transcriptional programme 

We demonstrated here that the protein candidates identified with our technology are 

involved in the transcription regulation of the genes we investigated. In particular, we 

confirmed their recruitment on the putative promoter sequences, and we reported for 

the first time the direct association of MTA2, CDK1 and CDK6 with FOXC1, NFIB 

and NFE2L3, showing how their disruption can affect gene expression. 

 

Thanks to ChIP-Seq data analysis, it will be possible to identify even more genes 

regulated by these proteins, giving us a wider knowledge of the molecular pathways 

they are involved into. 

 

Furthermore, we showed how their deregulation, in particular of CDK1 and CDK6, 

could affect the oncogenic ability of TNBC cell lines in vitro. These results confirm 

the importance not only of these proteins, but also of our genes of interest for the 

tumourigenicity of the disease, and they corroborate with the literature. MTA2, for 

example, has been shown to be fundamental for tumour growth and metastatic 
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processes not only in ER-negative breast cancer (Covington et al., 2013) through 

the Rho pathway, but also in many other types of tumours (gastric, non-small-cell 

lung cancer for example (Zhou et al., 2015; Zhang et al., 2015)).  

 

Similarly, CDK1 and CDK6 are well known to be involved in cell cycle progression, 

stemness and transcriptional functions (Lim et Kaldis, 2013), and for these reasons 

they have gained a lot of interest in the last years as potential therapeutic targets, 

also for breast cancer. Several compounds are in fact available to target them, such 

as RO3306 for CDK1 and Palbociclib, Ribociclib and Abemaciclib for CDK6 (Pernas 

et al., 2018), currently in clinical use (NCT01333137 and NCT01919229 for CDK1, 

NCT03050398, NCT02732119 and NCT02187783 for CDK6, source: 

https://clinicaltrials.gov)  

 

However, targeting transcription as a therapeutic strategy in vivo is complicated by 

the fact that cancer-related pathways are complex and sometimes interacting with 

each other. They are also not exclusively confined to cancer cells, but they are 

shared with normal tissue, causing toxicity. For these reasons we believe that a 

combination of therapeutic approaches could be a more efficient treatment for TNBC 

patients. However, in order to target the right ones, a deeper understanding of the 

molecular processes where key proteins are involved and how they are regulated 

could be extremely beneficial for a safer therapeutic approach. In support of this 

hypothesis and our preliminary results, it has recently been shown how the 

combination of CDK6 inhibitor palbociclib with chemotherapy in sequential 

treatments increases significantly the inhibition of cell proliferation and promotes cell 

death in TNBC (Cretella et al., 2019)  

 

Our findings, even if preliminary, reveal possible, novel mechanism of tumour 

growth promotion by these proteins’ direct regulation of FOXC1, NFIB or NFE2L3 

expression, and give rational for more investigations on the tumourigenic 

mechanisms regulated by MTA2, CDK1 and CDK6. In addition, it has to be kept in 

mind that even the targeted genes are transcription factors themselves, which 

implicates that their altered expression also affects the transcription regulation of 

many other genes.  

 

Overall, these conclusions confirm our initial aim to investigate the regulation of 

gene transcription through CRISPR/Cas9 and discovery proteomics. 
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However, despite its demonstrated power, we believe that additional confirmation is 

important to increase the confidence of candidate identification when using our 

approach: in fact RIME itself brings an intrinsic variability, mainly related to the 

crosslink. In addition, our statistical approach takes into consideration the overall 

number of peptides identified for a protein as a reference of relative abundance, not 

just the PSMs: this inevitably increases the number of potential false positive. For 

these reasons, functional validations are necessary. 

 

6.4 Future directions 

CRISPR/Cas9 and RIME proteomics approach can be used to investigate the 

regulation of transcription of any gene of interest, as demonstrated here. However, 

to understand the role and the importance of any protein identified, an accurate 

selection of the candidate and an important validation process has to be carried out. 

 

6.4.1 Implementation of CRISPR/Cas9 strategy and proteomic approach 

In order to facilitate proteins identification and to reduce the background noise, an 

implemented but very similar strategy could be used: the GLoPro strategy (Myers et 

al., 2018), a system with an inducible, sgRNA guided dCas9, fused with APEX2 

enzyme, able to biotinylate proximal proteins in the presence of hydrogen peroxide. 

The inducibility of dCas9, the short action radius of the enzyme biotinylation, and the 

high affinity of the streptavidin purification should significantly increase the specificity 

of this approach. In addition, the absence of the crosslinking step and its 

consequent limitations would improve the confidence of protein identification.  

 

To further reduce the background noise, it could be possible to re-design the gRNA 

with more novel, developed tools, or to investigate the nature of potential off-targets 

using website like www.guidescan.com: in this way, the undesired binding of dCas9 

across the genome could be reduced.  

 

On a side, a deeper investigation on the quality of the gRNA used could be carried 

out, identifying the undesired bindings of dCas9 across the genome. This 

information is provided by the ChIP-Seq experiments we have performed on several 
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cell lines. Confrontation among them could also be very informative, in order to see 

if there are preferred regions or sequences for dCas9. 

 

6.4.2 Identification of MTA2, CDK1 and CDK6 regulation pathways and 
genome-wide binding site investigation 

To further understand how these proteins contribute to the TNBC transcription 

program, a ChIP-Seq experiment on MTA2 and CDK6 knockdown cells should be 

performed: in this way it will be possible to understand which pathways would be 

directly altered by their absence, and highlight potential rescue mechanisms. Due to 

the essentiality of CDK1, this experiment woudn’t be informative. 

In addition, these results could be coupled with a deeper analysis of the ChIP-Seq 

data we originated, in order to understand which regions are directly binded by 

these proteins. These genes could be further validated by ChIP-qPCR, and could 

potentially be affected by a direct inhibition of these transcription factors.  

 

A deeper investigation should then be performed in order to assess if our protein 

candidates regulate different pathways in a dependent way, and what processes or 

tumourigenic mechanism they are involved into. This information would help to 

elucidate the complex biology of TNBC. 

 

6.4.3 RIME proteomics to identify novel interactors 

Transcription factors usually interact with other proteins to carry out their function, or 

they are important subunits of a bigger complex. 

  

To understand if any of our candidates has a specific interactor, RIME proteomics 

should be performed. This experiment could be critical to understand if they are part 

of a complex, (like MTA2 is), and if they belong to the same one. Even though our 

preliminary data didn’t show any direct interaction, it is still possible that some of 

these proteins are part of the same complex to regulate the expression of some 

genes, or that they share a similar interactor. Further validations, as for example Co-

IPs, would be required in order to confirm the RIME results. 

 

These results could help understand if some pathways are co-regulated by the 

same complexes or protein-protein interactions: due to the essential roles our 

protein candidates have, their disregulation would be difficult to consider as a 
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potential therapeutic strategy for TNBC. However it would be interesting to 

investigate the phosphorylation activity of CDK1 and CDK6 among the proteins 

recruited within the promoter region of the genes of interest, and to evaluate the 

effect of its blockade rather then directly targeting the protein itself. In addition, their 

interactors could potentially be more tissue- or gene-specific, providing a more 

efficient, potential therapeutic target. Due to the redundancy of transcription factors’ 

activity, deeper and more sophisticated analyses would still need to be performed in 

order to understand the complexity of gene regulation. 

 

6.4.4 In vivo validation of MTA2, CDK1 and CDK6’s roles 

Despite being a great resource, any in vitro system lacks in recapitulating the 

complexity of the tumour behaviour: for this reason, in vivo models like PDXs could 

provide novel, significant information.  

 

Using TNBC patients’ derived PDXs, it would be possible to further validate the role 

of these three proteins in the regulation of the transcription of the genes of interest: 

ChIP-qPCR could confirm the DNA binding over their promoter sequences, as well 

as Co-IPs could confirm potential interactions. These experiments should also be 

performed on those genes highlighted from the ChIP-Seq and RNA-Seq 

experiments, improving the significance of our results and confirming the relevance 

of these proteins for TNBC patients. 

 

6.5 Conclusions 

In conclusion, we have demonstrated here how CRISPR/Cas9 and RIME 

proteomics approaches can be coupled to investigate the regulation of transcription 

of any gene of interest. In particular, we have highlighted their applicability to identify 

novel therapeutic candidates. Furthermore, for the first time we have associated 

transcription factors like MTA2, CDK1 and CDK6 to the regulation of the 

transcription of three highly expressed genes in TNBC, as FOXC1, NFIB and 

NFE2L3, and we are currently investigating in which other pathways they are 

involved. This information could be essential to understand the efficacy of a potential 

drug treatment against them for TNBC patients. 
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7 APPENDICES 

 

APPENDIX A: EXAMPLE PROTEOME DISCOVERER DATA OF 
BCL11A RIME EXPERIMENT 

 

UniProt  
Accession  
Number 

Protein Description 
   

Protein 
Name 
 

# of 
unique  
pepti- 
des  

Sequenc
e 
coverag
e  
(%Cov:) 

P49454 Centromere protein F CENPF 15 8.10% 

P49419 Alpha-aminoadipic 
semialdehyde dehydrogenase  AL7A1 13 24.68% 

P68032 Actin, alpha cardiac muscle 1  ACTC 12 36.34% 

Q9HCK8 Chromodomain-helicase-DNA-
binding protein 8  CHD8 12 9.41% 

P55884 Eukaryotic translation initiation 
factor 3 subunit B  EIF3B 12 17.44% 

Q6UB99 Ankyrin repeat domain-
containing protein 11  ANR11 11 5.29% 

Q8IXT5 RNA-binding protein 12B  RB12B 11 9.99% 

O75717 WD repeat and HMG-box DNA-
binding protein 1  WDHD1 11 15.59% 

Q9UQE7 Structural maintenance of 
chromosomes protein 3  SMC3 10 12.49% 

P21127 Cyclin-dependent kinase 11B  CD11B 9 9.56% 
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Q9H8M2 Bromodomain-containing protein 
9  BRD9 8 22.11% 

Q01804 OTU domain-containing protein 
4  OTUD4 8 8.17% 

Q15366 Poly(rC)-binding protein 2  PCBP2 8 25.21% 

P53999 Activated RNA polymerase II 
transcriptional coactivator p15  TCP4 8 51.97% 

P26368 Splicing factor U2AF 65 kDa 
subunit  U2AF2 8 36.42% 

Q9UHB7 AF4/FMR2 family member 4  AFF4 7 11.44% 

P40121 Macrophage-capping protein  CAPG 7 25.57% 

Q96JM3 Chromosome alignment-
maintaining phosphoprotein 1  CHAP1 7 11.08% 

Q14839 Chromodomain-helicase-DNA-
binding protein 4  CHD4 7 6.80% 

O15320 cTAGE family member 5  CTGE5 7 11.19% 

O15371 Eukaryotic translation initiation 
factor 3 subunit D  EIF3D 7 16.42% 

Q9BY77 Polymerase delta-interacting 
protein 3  PDIP3 7 28.50% 

Q16576 Histone-binding protein RBBP7  RBBP7 7 18.59% 

Q9NTZ6 RNA-binding protein 12  RBM12 7 7.62% 

Q07020 60S ribosomal protein L18  RL18 7 31.91% 

P62847 40S ribosomal protein S24  RS24 7 39.10% 

Q14683 Structural maintenance of 
chromosomes protein 1A  SMC1A 7 6.97% 

Q92922 SWI/SNF complex subunit 
SMARCC1  SMRC1 7 10.95% 

Q01130 Serine/arginine-rich splicing 
factor 2  SRSF2 7 23.08% 

Q15029 116 kDa U5 small nuclear 
ribonucleoprotein component  U5S1 7 10.80% 

Q6PJT7 Zinc finger CCCH domain-
containing protein 14  ZC3HE 7 13.04% 

Q9BRD0 BUD13 homolog BUD13 6 14.22% 

Q2TBE0 CWF19-like protein 2  C19L2 6 8.17% 

P52907 F-actin-capping protein subunit 
alpha-1  CAZA1 6 24.48% 

Q9NZ63 Uncharacterized protein C9orf78  CI078 6 29.07% 

O75534 Cold shock domain-containing 
protein E1  CSDE1 6 10.65% 
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P35659 Protein DEK DEK 6 14.40% 

P49411 Elongation factor Tu, 
mitochondrial  EFTU 6 15.27% 

P60228 Eukaryotic translation initiation 
factor 3 subunit E EIF3E 6 13.71% 

P14625 Endoplasmin ENPL 6 11.33% 

P25205 DNA replication licensing factor 
MCM3 MCM3 6 10.52% 

P55081 Microfibrillar-associated protein 
1 OS MFAP1 6 20.73% 

Q9Y3C1 Nucleolar protein 16 OS NOP16 6 43.82% 

O60828 Polyglutamine-binding protein 1  PQBP1 6 39.25% 

O94906 Pre-mRNA-processing factor 6  PRP6 6 8.29% 

Q6NZI2 Polymerase I and transcript 
release factor  PTRF 6 12.82% 

P62750 60S ribosomal protein L23a  RL23A 6 37.18% 

O15160 DNA-directed RNA polymerases 
I and III subunit RPAC1  RPAC1 6 18.50% 

Q9Y265 RuvB-like 1  RUVB1 6 20.18% 

O95391 Pre-mRNA-splicing factor SLU7  SLU7 6 10.92% 

Q9H7E2 Tudor domain-containing protein 
3  TDRD3 6 15.36% 

Q68CZ2 Tensin-3  TENS3 6 8.51% 

O14617 AP-3 complex subunit delta-1  AP3D1 5 5.38% 

Q66PJ3 ADP-ribosylation factor-like 
protein 6-interacting protein 4  AR6P4 5 13.30% 

P25705 ATP synthase subunit alpha, 
mitochondrial  ATPA 5 10.67% 

Q86UU0 B-cell CLL/lymphoma 9-like 
protein  BCL9L 5 6.60% 

Q9Y224 UPF0568 protein C14orf166  CN166 5 33.20% 

O60716 Catenin delta-1  CTND1 5 5.79% 

Q15398 Disks large-associated protein 5  DLGP5 5 7.45% 

P31689 DnaJ homolog subfamily A 
member 1  DNJA1 5 19.90% 

Q52LJ0 Protein FAM98B  FA98B 5 29.70% 

P51116 Fragile X mental retardation 
syndrome-related protein 2  FXR2 5 10.25% 

P49915 GMP synthase [glutamine-
hydrolyzing]  GUAA 5 11.40% 
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Q13418 Integrin-linked protein kinase  ILK 5 10.18% 

P42166 Lamina-associated polypeptide 
2, isoform alpha  LAP2A 5 10.81% 

O94776 Metastasis-associated protein 
MTA2  MTA2 5 14.97% 

Q9P2K5 Myelin expression factor 2  MYEF2 5 17.83% 

Q9Y314 Nitric oxide synthase-interacting 
protein  NOSIP 5 22.26% 

O00151 PDZ and LIM domain protein 1  PDLI1 5 24.01% 

Q8IXK0 Polyhomeotic-like protein 2  PHC2 5 3.96% 

Q8WWY3 U4/U6 small nuclear 
ribonucleoprotein Prp31  PRP31 5 15.03% 

P62333 26S protease regulatory subunit 
10B  PRS10 5 18.51% 

Q9P2N5 RNA-binding protein 27  RBM27 5 7.45% 

P27694 Replication protein A 70 kDa 
DNA-binding subunit  RFA1 5 11.69% 

Q15287 RNA-binding protein with serine-
rich domain 1  RNPS1 5 20.33% 

Q5VT52 Regulation of nuclear pre-mRNA 
domain-containing protein 2  RPRD2 5 3.97% 

Q9NVA2 Septin-11  SEP11 5 14.45% 

Q9P270 SLAIN motif-containing protein 2  SLAI2 5 11.36% 

P51532 Transcription activator BRG1  SMCA4 5 3.28% 

Q2TAY7 WD40 repeat-containing protein 
SMU1  SMU1 5 9.55% 

Q8WVK2 U4/U6.U5 small nuclear 
ribonucleoprotein 27 kDa protein  SNR27 5 19.35% 

O00267 Transcription elongation factor 
SPT5  SPT5H 5 7.64% 

Q7KZ85 Transcription elongation factor 
SPT6  SPT6H 5 3.19% 

Q08170 Serine/arginine-rich splicing 
factor 4  SRSF4 5 11.74% 

Q9P2J5 Leucine--tRNA ligase, 
cytoplasmic  SYLC 5 6.72% 

P35269 General transcription factor IIF 
subunit 1  T2FA 5 13.54% 

Q9BUF5 Tubulin beta-6 chain  TBB6 5 26.23% 

P23193 Transcription elongation factor A 
protein 1  TCEA1 5 21.26% 
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P55072 Transitional endoplasmic 
reticulum ATPase  TERA 5 10.92% 

P12270 Nucleoprotein TPR TPR 5 4.10% 

Q13595 Transformer-2 protein homolog 
alpha  TRA2A 5 14.54% 

Q6NZY4 Zinc finger CCHC domain-
containing protein 8  ZCHC8 5 9.48% 

Q5VUA4 Zinc finger protein 318  ZN318 5 2.33% 

P61221 ATP-binding cassette sub-family 
E member 1  ABCE1 4 11.69% 

O94929 Actin-binding LIM protein 3  ABLM3 4 8.05% 

Q12904 
Aminoacyl tRNA synthase 
complex-interacting 
multifunctional protein 1  

AIMP1 4 24.68% 

Q9NQW6 Actin-binding protein anillin  ANLN 4 5.87% 

P12429 Annexin A3  ANXA3 4 15.79% 

P46100 Transcriptional regulator ATRX  ATRX 4 2.69% 

Q14137 Ribosome biogenesis protein 
BOP1 BOP1 4 8.71% 

Q13895 Bystin  BYST 4 17.39% 

Q9HC52 Chromobox protein homolog 8  CBX8 4 13.37% 

Q9H6F5 Coiled-coil domain-containing 
protein 86  CCD86 4 11.39% 

O00299 Chloride intracellular channel 
protein 1  CLIC1 4 32.78% 

P23528 Cofilin-1  COF1 4 37.35% 

Q10570 Cleavage and polyadenylation 
specificity factor subunit 1  CPSF1 4 5.13% 

Q9BQ61 Uncharacterized protein 
C19orf43  CS043 4 47.16% 

Q12996 Cleavage stimulation factor 
subunit 3  CSTF3 4 8.79% 

Q9NVP1 ATP-dependent RNA helicase 
DDX18  DDX18 4 7.76% 

Q6XZF7 Dynamin-binding protein  DNMBP 4 3.87% 

Q14697 Neutral alpha-glucosidase AB  GANAB 4 4.77% 

Q96RT7 Gamma-tubulin complex 
component 6  GCP6 4 4.29% 

P51610 Host cell factor 1  HCFC1 4 2.70% 

P05198 Eukaryotic translation initiation 
factor 2 subunit 1  IF2A 4 9.52% 
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Q15056 Eukaryotic translation initiation 
factor 4H  IF4H 4 31.85% 

P13645 Keratin, type I cytoskeletal 10  K1C10 4 16.95% 

P33176 Kinesin-1 heavy chain  KINH 4 5.71% 

Q96RT1 Protein LAP2  LAP2 4 6.16% 

Q9Y4Z0 U6 snRNA-associated Sm-like 
protein LSm4  LSM4 4 28.06% 

Q9NR56 Muscleblind-like protein 1  MBNL1 4 17.01% 

O43148 mRNA cap guanine-N7 
methyltransferase  MCES 4 11.97% 

Q16539 Mitogen-activated protein kinase 
14  MK14 4 19.44% 

O60524 Nuclear export mediator factor 
NEMF  NEMF 4 3.62% 

Q9BZE4 Nucleolar GTP-binding protein 1  NOG1 4 8.99% 

P55209 Nucleosome assembly protein 
1-like 1  NP1L1 4 17.14% 

O96028 Histone-lysine N-
methyltransferase NSD2  NSD2 4 4.84% 

Q08J23 tRNA (cytosine(34)-C(5))-
methyltransferase  NSUN2 4 7.17% 

Q8TEW0 Partitioning defective 3 homolog  PARD3 4 2.88% 

Q6L8Q7 2',5'-phosphodiesterase 12  PDE12 4 8.70% 

Q9Y237 Peptidyl-prolyl cis-trans 
isomerase NIMA-interacting 4  PIN4 4 51.91% 

Q12972 Nuclear inhibitor of protein 
phosphatase 1  PP1R8 4 19.66% 

Q9Y3C6 Peptidyl-prolyl cis-trans 
isomerase-like 1  PPIL1 4 21.69% 

Q06124 Tyrosine-protein phosphatase 
non-receptor type 11  PTN11 4 7.37% 

Q9UHX1 Poly(U)-binding-splicing factor 
PUF60  PUF60 4 13.42% 

Q9BTD8 RNA-binding protein 42  RBM42 4 14.17% 

Q92900 Regulator of nonsense 
transcripts 1  RENT1 4 4.25% 

P24928 DNA-directed RNA polymerase 
II subunit RPB1  RPB1 4 2.64% 

Q9Y3B9 RRP15-like protein RRP15 4 15.25% 

P60866 40S ribosomal protein S20  RS20 4 29.41% 

P62304 Small nuclear ribonucleoprotein RUXE 4 32.61% 
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E  

Q9Y3A5 Ribosome maturation protein 
SBDS  SBDS 4 26.00% 

P53992 Protein transport protein 
Sec24C 3 SC24C 4 7.04% 

Q14493 Histone RNA hairpin-binding 
protein 1  SLBP 4 14.81% 

Q53GS9 U4/U6.U5 tri-snRNP-associated 
protein 2  SNUT2 4 6.02% 

Q8WXA9 Splicing regulatory 
glutamine/lysine-rich protein 1  SREK1 4 15.16% 

Q08945 FACT complex subunit SSRP1  SSRP1 4 8.89% 

Q9Y2Z0 Suppressor of G2 allele of SKP1 
homolog 3   SUGT1 4 17.81% 

O43776 Asparagine--tRNA ligase, 
cytoplasmic 1 SYNC 4 11.50% 

P23258 Tubulin gamma-1 chain  TBG1 4 12.20% 

Q5JTD0 Tight junction-associated protein 
1  TJAP1 4 12.75% 

Q15025 TNFAIP3-interacting protein 1  TNIP1 4 6.13% 

Q9NXH9 tRNA (guanine(26)-N(2))-
dimethyltransferase 1 TRM1 4 5.61% 

Q9NW82 WD repeat-containing protein 70  WDR70 4 11.93% 

Q96NC0 Zinc finger matrin-type protein 2  ZMAT2 4 17.59% 

Q96ME7 Zinc finger protein 512  ZN512 4 6.00% 

Q15942 Zyxin  ZYX 4 10.49% 

P31946 14-3-3 protein beta/alpha  1433B 3 18.70% 

P01892 HLA class I histocompatibility 
antigen, A-2 alpha chain  1A02 3 7.40% 

Q9UKV8 Protein argonaute-2  AGO2 3 4.66% 

O00170 AH receptor-interacting protein  AIP 3 9.39% 

P20073 Annexin A7  ANXA7 3 6.35% 

P63010 AP-2 complex subunit beta  AP2B1 3 3.20% 

Q9NP61 ADP-ribosylation factor 
GTPase-activating protein 3  ARFG3 3 9.50% 

Q8NFD5 AT-rich interactive domain-
containing protein 1B  ARI1B 3 2.10% 

P06576 ATP synthase subunit beta, 
mitochondrial  ATPB 3 9.83% 

Q9UIG0 Tyrosine-protein kinase BAZ1B  BAZ1B 3 1.96% 

Q9NPI1 Bromodomain-containing protein BRD7 3 6.91% 
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Q05682 Caldesmon  CALD1 3 6.31% 

P47756 F-actin-capping protein subunit 
beta  CAPZB 3 10.47% 

Q16543 Hsp90 co-chaperone Cdc37  CDC37 3 13.49% 

Q03188 Centromere protein C  CENPC 3 3.08% 

Q9P2D1 Chromodomain-helicase-DNA-
binding protein 7  CHD7 3 1.74% 

Q9Y3Y2 Chromatin target of PRMT1 
protein  CHTOP 3 12.10% 

P09496 Clathrin light chain A  CLCA 3 12.10% 

Q8N1G2 Cap-specific mRNA (nucleoside-
2'-O-)-methyltransferase 1  CMTR1 3 5.27% 

Q15003 Condensin complex subunit 2  CND2 3 2.97% 

P35606 Coatomer subunit beta'  COPB2 3 4.30% 

Q9ULV4 Coronin-1C  COR1C 3 13.29% 

O75131 Copine-3  CPNE3 3 6.33% 

P21291 Cysteine and glycine-rich 
protein 1  CSRP1 3 21.76% 

Q9P013 Spliceosome-associated protein 
CWC15 homolog  CWC15 3 13.97% 

Q9UJU6 Drebrin-like protein  DBNL 3 13.02% 

Q16531 DNA damage-binding protein 1  DDB1 3 3.68% 

Q96GQ7 Probable ATP-dependent RNA 
helicase DDX27  DDX27 3 3.64% 

Q9UJV9 Probable ATP-dependent RNA 
helicase DDX41  DDX41 3 6.59% 

Q9Y2R4 Probable ATP-dependent RNA 
helicase DDX52  DDX52 3 10.18% 

Q9NY93 Probable ATP-dependent RNA 
helicase DDX56  DDX56 3 8.96% 

Q13217 DnaJ homolog subfamily C 
member 3  DNJC3 3 6.94% 

P49005 DNA polymerase delta subunit 2  DPOD2 3 7.89% 

Q9Y295 Developmentally-regulated 
GTP-binding protein 1  DRG1 3 11.17% 

P50570 Dynamin-2  DYN2 3 6.78% 

Q9H4M9 EH domain-containing protein 1 EHD1 3 8.61% 

Q99613 Eukaryotic translation initiation 
factor 3 subunit C  EIF3C 3 4.82% 

Q9BSJ8 Extended synaptotagmin-1  ESYT1 3 5.25% 
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Q9NQT5 Exosome complex component 
RRP40 EXOS3 3 26.91% 

Q01469 Fatty acid-binding protein, 
epidermal  FABP5 3 16.30% 

Q00688 Peptidyl-prolyl cis-trans 
isomerase FKBP3  FKBP3 3 20.54% 

Q92616 Translational activator GCN1  GCN1L 3 1.46% 

Q9UKJ3 G patch domain-containing 
protein 8  GPTC8 3 3.06% 

P11166 Solute carrier family 2, facilitated 
glucose transporter member 1  GTR1 3 5.89% 

P16104 Histone H2AX  H2AX 3 38.46% 

P0C0S5 Histone H2A.Z  H2AZ 3 33.59% 

Q96A08 Histone H2B type 1-A  H2B1A 3 51.18% 

Q75N03 E3 ubiquitin-protein ligase Hakai  HAKAI 3 10.59% 

Q92769 Histone deacetylase 2  HDAC2 3 7.38% 

P51858 Hepatoma-derived growth factor  HDGF 3 16.25% 

Q9H910 Hematological and neurological 
expressed 1-like protein  HN1L 3 36.32% 

Q8WVV9 Heterogeneous nuclear 
ribonucleoprotein L-like  HNRLL 3 10.15% 

P34931 Heat shock 70 kDa protein 1-like  HS71L 3 18.88% 

O43719 HIV Tat-specific factor 1  HTSF1 3 4.37% 

Q8WUF5 RelA-associated inhibitor  IASPP 3 5.31% 

P01857 Ig gamma-1 chain C region  IGHG1 3 7.27% 

Q15652 
Probable JmjC domain-
containing histone 
demethylation protein 2C  

JHD2C 3 1.69% 

P30085 UMP-CMP kinase  KCY 3 16.33% 

Q9BW19 Kinesin-like protein KIFC1  KIFC1 3 8.62% 

P07195 L-lactate dehydrogenase B 
chain  LDHB 3 12.57% 

Q96BZ8 Leukocyte receptor cluster 
member 1  LENG1 3 15.53% 

Q9UPQ0 LIM and calponin homology 
domains-containing protein 1  LIMC1 3 3.79% 

Q3MHD2 Protein LSM12 homolog  LSM12 3 13.33% 

Q96GA3 Protein LTV1 homolog  LTV1 3 6.74% 

P61326 Protein mago nashi homolog  MGN 3 30.14% 

Q96T58 Msx2-interacting protein  MINT 3 0.79% 
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Q9UBU8 Mortality factor 4-like protein 1  MO4L1 3 12.98% 

Q14764 Major vault protein  MVP 3 8.40% 

O75380 
NADH dehydrogenase 
[ubiquinone] iron-sulfur protein 
6, mitochondrial  

NDUS6 3 44.35% 

P55769 NHP2-like protein 1  NH2L1 3 20.31% 

P30419 Glycylpeptide N-
tetradecanoyltransferase 1  NMT1 3 6.65% 

Q9BSC4 Nucleolar protein 10  NOL10 3 4.65% 

Q9Y2X3 Nucleolar protein 58  NOP58 3 8.88% 

Q8TAT6 Nuclear protein localization 
protein 4 homolog  NPL4 3 6.58% 

Q8WUM0 Nuclear pore complex protein 
Nup133  NU133 3 3.03% 

Q8N1F7 Nuclear pore complex protein 
Nup93  NUP93 3 6.11% 

Q02218 2-oxoglutarate dehydrogenase, 
mitochondrial  ODO1 3 6.16% 

P36957 

Dihydrolipoyllysine-residue 
succinyltransferase component 
of 2-oxoglutarate 
dehydrogenase complex, 
mitochondrial 

ODO2 3 6.62% 

P54886 Delta-1-pyrroline-5-carboxylate 
synthase  P5CS 3 4.91% 

Q86YP4 Transcriptional repressor p66-
alpha  P66A 3 8.37% 

Q86U42 Polyadenylate-binding protein 2  PABP2 3 8.82% 

O95340 
Bifunctional 3'-
phosphoadenosine 5'-
phosphosulfate synthase 2  

PAPS2 3 7.65% 

Q16513 Serine/threonine-protein kinase 
N2  PKN2 3 3.96% 

O43447 Peptidyl-prolyl cis-trans 
isomerase H  PPIH 3 19.77% 

Q9H2H8 Peptidyl-prolyl cis-trans 
isomerase-like 3  PPIL3 3 34.78% 

P30041 Peroxiredoxin-6  PRDX6 3 23.66% 

P25787 Proteasome subunit alpha type-
2  PSA2 3 18.38% 

P60900 Proteasome subunit alpha type-
6  PSA6 3 19.92% 

O75475 PC4 and SFRS1-interacting PSIP1 3 5.28% 
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protein  

Q13200 26S proteasome non-ATPase 
regulatory subunit 2  PSMD2 3 5.40% 

P30520 Adenylosuccinate synthetase 
isozyme 2  PURA2 3 11.18% 

Q9H0U4 Ras-related protein Rab-1B  RAB1B 3 15.42% 

Q3YEC7 Rab-like protein 6  RABL6 3 7.41% 

Q96S59 Ran-binding protein 9  RANB9 3 7.82% 

Q8NDT2 Putative RNA-binding protein 
15B  RB15B 3 7.53% 

Q5T8P6 RNA-binding protein 26  RBM26 3 3.38% 

P29558 RNA-binding motif, single-
stranded-interacting protein 1  RBMS1 3 15.27% 

Q5TC82 Roquin-1  RC3H1 3 2.65% 

P18754 Regulator of chromosome 
condensation  RCC1 3 15.68% 

Q92785 Zinc finger protein ubi-d4 REQU 3 17.14% 

O76021 Ribosomal L1 domain-
containing protein 1  RL1D1 3 4.49% 

P05388 60S acidic ribosomal protein P0  RLA0 3 12.93% 

Q9BYD1 39S ribosomal protein L13, 
mitochondrial  RM13 3 28.09% 

Q6P1L8 39S ribosomal protein L14, 
mitochondrial  RM14 3 30.34% 

Q9P0M9 39S ribosomal protein L27, 
mitochondrial  RM27 3 30.41% 

Q9BRJ2 39S ribosomal protein L45, 
mitochondrial  RM45 3 11.76% 

Q8TA86 Retinitis pigmentosa 9 protein  RP9 3 11.76% 

Q3B726 DNA-directed RNA polymerase I 
subunit RPA43  RPA43 3 8.58% 

P30876 DNA-directed RNA polymerase 
II subunit RPB2  RPB2 3 4.68% 

P62244 40S ribosomal protein S15a  RS15A 3 27.69% 

P82921 28S ribosomal protein S21, 
mitochondrial  RT21 3 37.93% 

Q92541 RNA polymerase-associated 
protein RTF1 homolog  RTF1 3 4.08% 

P26447 Protein S100-A4  S10A4 3 30.69% 

Q15020 Squamous cell carcinoma 
antigen recognized by T-cells 3  SART3 3 4.67% 
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Q12872 Splicing factor, suppressor of 
white-apricot homolog  SFSWA 3 4.52% 

O95347 Structural maintenance of 
chromosomes protein 2  SMC2 3 4.34% 

P53814 Smoothelin  SMTN 3 5.23% 

P09012 U1 small nuclear 
ribonucleoprotein A  SNRPA 3 15.25% 

O75940 Survival of motor neuron-
related-splicing factor 30  SPF30 3 9.24% 

P52788 Spermine synthase  SPSY 3 13.93% 

Q68D10 Protein SPT2 homolog  SPT2 3 6.42% 

P37108 Signal recognition particle 14 
kDa protein  SRP14 3 37.50% 

Q8IX01 SURP and G-patch domain-
containing protein 2  SUGP2 3 4.81% 

P14868 Aspartate--tRNA ligase, 
cytoplasmic  SYDC 3 11.58% 

P26639 Threonine--tRNA ligase, 
cytoplasmic  SYTC 3 6.50% 

Q6P1X5 Transcription initiation factor 
TFIID subunit 2  TAF2 3 3.42% 

P37802 Transgelin-2  TAGL2 3 11.06% 

O75764 Transcription elongation factor A 
protein 3  TCEA3 3 12.64% 

Q5QJE6 Deoxynucleotidyltransferase 
terminal-interacting protein 2 TDIF2 3 7.41% 

Q9BWD1 Acetyl-CoA acetyltransferase, 
cytosolic  THIC 3 16.12% 

Q86V81 THO complex subunit 4  THOC4 3 14.01% 

Q92973 Transportin-1  TNPO1 3 3.56% 

Q9HCJ0 Trinucleotide repeat-containing 
gene 6C protein  TNR6C 3 2.72% 

Q5JTV8 Torsin-1A-interacting protein 1  TOIP1 3 9.09% 

Q96PN7 Transcriptional-regulating factor 
1  TREF1 3 3.75% 

Q01081 Splicing factor U2AF 35 kDa 
subunit  U2AF1 3 13.33% 

O43818 U3 small nucleolar RNA-
interacting protein 2  U3IP2 3 7.58% 

P61081 NEDD8-conjugating enzyme 
Ubc12  UBC12 3 18.58% 

P17480 Nucleolar transcription factor 1  UBF1 3 6.68% 
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Q92890 Ubiquitin fusion degradation 
protein 1 homolog  UFD1 3 12.38% 

Q96T88 E3 ubiquitin-protein ligase 
UHRF1  UHRF1 3 5.17% 

O60504 Vinexin  VINEX 3 7.60% 

P55060 Exportin-2  XPO2 3 4.12% 

Q7Z2W4 Zinc finger CCCH-type antiviral 
protein 1  ZCCHV 3 6.21% 

Q8N5A5 Zinc finger CCCH-type with G 
patch domain-containing protein  ZGPAT 3 7.91% 

Q9UPN3 Microtubule-actin cross-linking 
factor 1, isoforms 1/2/3/5  MACF1 3 0.00% 

P42696 RNA-binding protein 34  RBM34 2 9.53% 

Q9Y285 Phenylalanine-tRNA ligase 
alpha subunit  SYFA 2 10.04% 
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APPENDIX B: PEAKS DATA OF BCL11A RIME 
EXPERIMENT 
 

UniProt  
Accession  
Number 

Protein Name 
  

# of unique  
peptides 

Sequence 
coverage  
(%Cov:) 

P49454 CENPF 17 8.60 
O75717 WDHD1 16 20.90 
Q9HCK8 CHD8 16 10.46 
P49419 AL7A1 14 27.27 
Q9H0A0 NAT10 13 12.98 
Q6PJT7 ZC3HE 12 22.55 
Q9BY77 PDIP3 12 38.24 
P55884 EIF3B 11 14.13 
Q8IXT5 RB12B 11 9.99 
Q01804 OTUD4 10 9.69 
Q2TBE0 C19L2 10 11.86 
Q9BRD0 BUD13 10 22.62 
O60716 CTND1 9 14.46 
P53999 TCP4 9 53.54 
Q03135 CAV1 9 51.69 
Q9H8M2 BRD9 9 23.12 
O00299 CLIC1 8 46.06 
O94906 PRP6 8 13.71 
O95391 SLU7 8 18.26 
P21127 CD11B 8 9.56 
P40121 CAPG 8 32.18 
P42166 LAP2A 8 23.63 
Q01130 SRSF2 8 38.91 
Q07020 RL18 8 41.49 
Q15029 U5S1 8 14.20 
Q7KZ85 SPT6H 8 6.26 
Q9UHB7 AFF4 8 12.21 
Q9UQ88 CD11A 8 9.71 
O60828 PQBP1 7 42.64 
O75534 CSDE1 7 10.65 
P12270 TPR 7 4.87 
P23193 TCEA1 7 24.58 
P49411 EFTU 7 20.35 
P55081 MFAP1 7 26.42 
Q13595 TRA2A 7 26.60 
Q14839 CHD4 7 6.22 
Q6NZY4 ZCHC8 7 16.69 
Q8WVK2 SNR27 7 27.10 
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Q9H7E2 TDRD3 7 18.13 
Q9NTZ6 RBM12 7 7.62 
P12429 ANXA3 6 23.22 
P33176 KINH 6 8.10 
P35269 T2FA 6 17.21 
P37802 TAGL2 6 23.62 
P49915 GUAA 6 13.71 
Q12904 AIMP1 6 31.09 
Q15287 RNPS1 6 22.62 
Q15398 DLGP5 6 9.69 
Q15434 RBMS2 6 33.17 
Q17RY0 CPEB4 6 11.80 
Q2TAY7 SMU1 6 11.89 
Q5JTD0 TJAP1 6 18.67 
Q66PJ3 AR6P4 6 17.58 
Q6NZI2 PTRF 6 12.82 
Q8IXK0 PHC2 6 6.99 
Q8NFD5 ARI1B 6 5.55 
Q9BQ61 CS043 6 48.30 
Q9NVA2 Sep-11 6 17.48 
Q9NVP1 DDX18 6 11.49 
Q9NZ63 CI078 6 29.07 
Q9P2N5 RBM27 6 9.06 
Q9UHX1 PUF60 6 23.08 
Q9Y2Z0 SUGT1 6 21.10 
O00267 SPT5H 5 8.28 
O43148 MCES 5 15.76 
O43660 PLRG1 5 10.70 
O43719 HTSF1 5 6.62 
O75531 BANF1 5 40.45 
P00367 DHE3 5 14.70 
P20073 ANXA7 5 6.76 
P24928 RPB1 5 2.69 
P25705 ATPA 5 10.67 
P30520 PURA2 5 13.16 
P30876 RPB2 5 7.58 
P31689 DNJA1 5 19.90 
P35659 DEK 5 13.60 
P46100 ATRX 5 3.41 
P49591 SYSC 5 13.42 
P51532 SMCA4 5 3.28 
P51610 HCFC1 5 3.54 
P55209 NP1L1 5 25.58 
P60228 EIF3E 5 11.69 
P60842 IF4A1 5 38.67 
P60866 RS20 5 31.93 
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P62333 PRS10 5 18.51 
P62750 RL23A 5 37.18 
Q01469 FABP5 5 24.44 
Q06124 PTN11 5 10.55 
Q08170 SRSF4 5 11.74 
Q12872 SFSWA 5 6.10 
Q13418 ILK 5 10.18 
Q15397 K0020 5 10.49 
Q5VT52 RPRD2 5 3.63 
Q68D10 SPT2 5 10.07 
Q8N1F7 NUP93 5 11.11 
Q8NDT2 RB15B 5 11.01 
Q8TAT6 NPL4 5 15.63 
Q8WWY3 PRP31 5 15.03 
Q8WXA9 SREK1 5 15.16 
Q92785 REQU 5 19.69 
Q96ME7 ZN512 5 9.35 
Q96T58 MINT 5 1.72 
Q96T88 UHRF1 5 9.21 
Q9BTD8 RBM42 5 20.83 
Q9BWD1 THIC 5 27.96 
Q9BZE4 NOG1 5 10.88 
Q9NR56 MBNL1 5 19.85 
Q9NW82 WDR70 5 14.83 
Q9P2K5 MYEF2 5 14.00 
Q9Y3A5 SBDS 5 28.00 
Q9Y3C1 NOP16 5 41.01 
Q9Y3Y2 CHTOP 5 18.15 
O15145 ARPC3 4 17.42 
O15294 OGT1 4 5.07 
O43776 SYNC 4 11.50 
O60504 VINEX 4 9.24 
O60524 NEMF 4 3.62 
O75380 NDUS6 4 47.58 
O75396 SC22B 4 25.12 
O75676 KS6A4 4 9.33 
O75821 EIF3G 4 24.06 
O76021 RL1D1 4 10.20 
O94929 ABLM3 4 8.05 
O95232 LC7L3 4 11.34 
O95573 ACSL3 4 7.50 
O95793 STAU1 4 9.01 
O96028 NSD2 4 4.84 
P01857 IGHG1 4 9.39 
P06576 ATPB 4 13.42 
P0C0S5 H2AZ 4 33.59 
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P13645 K1C10 4 12.33 
P14625 ENPL 4 7.85 
P14678 RSMB 4 18.33 
P14868 SYDC 4 13.77 
P17480 UBF1 4 9.03 
P20290 BTF3 4 37.38 
P23258 TBG1 4 12.20 
P27824 CALX 4 16.22 
P28482 MK01 4 9.44 
P29558 RBMS1 4 28.08 
P30041 PRDX6 4 33.04 
P35244 RFA3 4 23.14 
P37108 SRP14 4 47.79 
P42285 SK2L2 4 6.81 
P52788 SPSY 4 20.22 
P53814 SMTN 4 6.76 
P53992 SC24C 4 7.04 
P62136 PP1A 4 17.27 
P62304 RUXE 4 32.61 
P63162 RSMN 4 18.33 
P68032 ACTC 4 43.77 
P68133 ACTS 4 43.77 
P78344 IF4G2 4 9.37 
Q00688 FKBP3 4 20.54 
Q01081 U2AF1 4 13.75 
Q02218 ODO1 4 6.94 
Q03188 CENPC 4 4.56 
Q08J23 NSUN2 4 7.17 
Q12996 CSTF3 4 8.79 
Q13895 BYST 4 17.39 
Q14137 BOP1 4 10.99 
Q14493 SLBP 4 14.81 
Q14697 GANAB 4 4.77 
Q14738 2A5D 4 7.64 
Q16543 CDC37 4 21.43 
Q16576 RBBP7 4 25.88 
Q52LJ0 FA98B 4 22.12 
Q53GS9 SNUT2 4 6.02 
Q5JTV8 TOIP1 4 9.09 
Q5QJE6 TDIF2 4 9.13 
Q5T8P6 RBM26 4 4.77 
Q5TC82 RC3H1 4 4.24 
Q5VTR2 BRE1A 4 5.64 
Q6L8Q7 PDE12 4 8.70 
Q6P1L8 RM14 4 30.34 
Q6P1X5 TAF2 4 3.42 
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Q6XZF7 DNMBP 4 2.73 
Q70EL1 UBP54 4 3.86 
Q71RC2 LARP4 4 9.67 
Q71UI9 H2AV 4 33.59 
Q75N03 HAKAI 4 15.27 
Q86V81 THOC4 4 19.07 
Q8IWC1 MA7D3 4 5.71 
Q8IYB3 SRRM1 4 7.85 
Q8N1G2 CMTR1 4 6.47 
Q8NBJ5 GT251 4 7.23 
Q8TEW0 PARD3 4 2.88 
Q8WUM0 NU133 4 3.81 
Q8WYA6 CTBL1 4 9.06 
Q92616 GCN1L 4 1.91 
Q92890 UFD1 4 16.61 
Q92973 TNPO1 4 7.02 
Q96DI7 SNR40 4 13.73 
Q96GQ7 DDX27 4 3.64 
Q96RT7 GCP6 4 3.52 
Q99426 TBCB 4 29.10 
Q99439 CNN2 4 15.21 
Q99613 EIF3C 4 6.46 
Q9BTA9 WAC 4 15.30 
Q9BW19 KIFC1 4 9.21 
Q9H2H8 PPIL3 4 38.51 
Q9H4M9 EHD1 4 14.61 
Q9H6F5 CCD86 4 11.39 
Q9HC52 CBX8 4 13.37 
Q9HCJ0 TNR6C 4 3.20 
Q9NRH3 TBG2 4 12.20 
Q9NSY1 BMP2K 4 9.13 
Q9NY93 DDX56 4 12.07 
Q9NYV4 CDK12 4 3.83 
Q9P270 SLAI2 4 8.78 
Q9P2J5 SYLC 4 5.02 
Q9P2R6 RERE 4 6.00 
Q9UBB9 TFP11 4 5.97 
Q9UIG0 BAZ1B 4 3.17 
Q9UJV9 DDX41 4 8.20 
Q9UNQ2 DIM1 4 7.67 
Q9Y2R4 DDX52 4 7.18 
Q9Y2X3 NOP58 4 13.23 
Q9Y3B9 RRP15 4 15.25 
Q9Y4Z0 LSM4 4 28.06 
A0JLT2 MED19 3 20.90 
A6NHR9 SMHD1 3 1.80 
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O00170 AIP 3 9.39 
O14744 ANM5 3 7.22 
O43447 PPIH 3 19.77 
O60231 DHX16 3 4.42 
O75131 CPNE3 3 6.33 
O75940 SPF30 3 9.24 
O94804 STK10 3 5.48 
O94875 SRBS2 3 3.55 
O95340 PAPS2 3 7.65 
O95425 SVIL 3 2.85 
O95602 RPA1 3 3.20 
P01892 1A02 3 13.97 
P05388 RLA0 3 12.93 
P07195 LDHB 3 12.57 
P07237 PDIA1 3 10.24 
P07339 CATD 3 11.17 
P08758 ANXA5 3 12.81 
P09012 SNRPA 3 15.25 
P09496 CLCA 3 20.56 
P11166 GTR1 3 5.89 
P11413 G6PD 3 6.60 
P17980 PRS6A 3 10.93 
P18206 VINC 3 5.03 
P18754 RCC1 3 15.68 
P19387 RPB3 3 19.64 
P23919 KTHY 3 9.43 
P25440 BRD2 3 5.87 
P25788 PSA3 3 20.78 
P26639 SYTC 3 6.50 
P27361 MK03 3 15.57 
P30419 NMT1 3 6.65 
P31930 QCR1 3 9.58 
P35606 COPB2 3 4.30 
P35908 K22E 3 16.28 
P36957 ODO2 3 7.28 
P37837 TALDO 3 10.68 
P38606 VATA 3 9.08 
P43686 PRS6B 3 8.13 
P45974 UBP5 3 8.74 
P46937 YAP1 3 13.10 
P49005 DPOD2 3 7.89 
P49773 HINT1 3 34.92 
P50570 DYN2 3 6.78 
P51116 FXR2 3 10.70 
P51858 HDGF 3 16.25 
P52565 GDIR1 3 33.33 
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P54886 P5CS 3 4.91 
P55010 IF5 3 8.12 
P56545 CTBP2 3 13.71 
P61024 CKS1 3 41.77 
P61163 ACTZ 3 16.22 
P61221 ABCE1 3 8.35 
P62310 LSM3 3 34.31 
P62714 PP2AB 3 13.92 
P63010 AP2B1 3 3.20 
P67775 PP2AA 3 13.92 
P67809 YBOX1 3 15.74 
P78406 RAE1L 3 8.15 
P82921 RT21 3 37.93 
Q02241 KIF23 3 7.19 
Q04917 1433F 3 21.54 
Q05397 FAK1 3 4.66 
Q05682 CALD1 3 6.31 
Q12788 TBL3 3 2.23 
Q12972 PP1R8 3 14.81 
Q13200 PSMD2 3 8.04 
Q13206 DDX10 3 6.86 
Q13217 DNJC3 3 8.13 
Q14444 CAPR1 3 4.37 
Q14764 MVP 3 8.40 
Q15003 CND2 3 2.97 
Q15014 MO4L2 3 11.46 
Q15020 SART3 3 4.67 
Q15046 SYK 3 6.70 
Q15427 SF3B4 3 10.61 
Q15642 CIP4 3 8.82 
Q15652 JHD2C 3 1.69 
Q16531 DDB1 3 3.68 
Q16539 MK14 3 19.44 
Q16637 SMN 3 13.61 
Q3B726 RPA43 3 8.58 
Q3MHD2 LSM12 3 13.33 
Q53EP0 FND3B 3 2.82 
Q5HYJ3 FA76B 3 13.57 
Q5SW79 CE170 3 2.40 
Q5TGY3 AHDC1 3 4.30 
Q5VWG9 TAF3 3 4.52 
Q5VYS8 TUT7 3 2.21 
Q6IBS0 TWF2 3 12.61 
Q6RFH5 WDR74 3 10.65 
Q6XE24 RBMS3 3 15.33 
Q86VM9 ZCH18 3 5.14 
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Q8IWZ8 SUGP1 3 4.96 
Q8IY67 RAVR1 3 13.04 
Q8IZL8 PELP1 3 5.40 
Q8IZP0 ABI1 3 9.45 
Q8N5A5 ZGPAT 3 7.91 
Q8N6H7 ARFG2 3 9.40 
Q8TA86 RP9 3 11.76 
Q8TAP9 MPLKI 3 32.40 
Q8TAQ2 SMRC2 3 4.94 
Q8TDW0 LRC8C 3 5.98 
Q8WUD4 CCD12 3 21.69 
Q8WUF5 IASPP 3 5.31 
Q8WXX5 DNJC9 3 15.77 
Q92522 H1X 3 19.72 
Q92541 RTF1 3 4.08 
Q92879 CELF1 3 12.96 
Q92928 RAB1C 3 26.87 
Q96KP4 CNDP2 3 6.95 
Q96PN7 TREF1 3 3.75 
Q96PU5 NED4L 3 3.90 
Q96Q83 ALKB3 3 11.54 
Q96RT1 LAP2 3 4.11 
Q96S59 RANB9 3 7.82 
Q96ST2 IWS1 3 5.25 
Q99816 TS101 3 7.95 
Q99848 EBP2 3 12.42 
Q9BPX3 CND3 3 1.97 
Q9BQ67 GRWD1 3 10.31 
Q9BRJ2 RM45 3 11.76 
Q9BSC4 NOL10 3 4.65 
Q9BWU0 NADAP 3 9.05 
Q9BY44 EIF2A 3 8.55 
Q9BYD1 RM13 3 28.09 
Q9BYG3 MK67I 3 22.18 
Q9H0U4 RAB1B 3 26.87 
Q9H2U1 DHX36 3 2.28 
Q9HCG8 CWC22 3 4.63 
Q9NP61 ARFG3 3 10.08 
Q9NPI1 BRD7 3 6.91 
Q9NRX4 PHP14 3 56.00 
Q9NXV6 CARF 3 6.72 
Q9P0L0 VAPA 3 20.48 
Q9P0M9 RM27 3 30.41 
Q9P2D1 CHD7 3 1.74 
Q9P2I0 CPSF2 3 3.32 
Q9UBU8 MO4L1 3 12.98 
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Q9UHI6 DDX20 3 9.83 
Q9UKV8 AGO2 3 7.80 
Q9UMY1 NOL7 3 15.18 
Q9UPW0 FOXJ3 3 5.47 
Q9Y295 DRG1 3 11.17 
Q9Y3B4 SF3B6 3 28.80 
Q9Y3D0 MIP18 3 31.29 
Q9Y3F4 STRAP 3 13.71 
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APPENDIX C: UNIQUE NUCLEAR FACTORS PULLED-
DOWN WITH DCAS9 AT THE FOXC1 GENE PROMOTER 
THROUGH RIME 
 
Protein name Protein Description 

BRX1 Ribosome biogenesis protein BRX1 homolog 
DNJC3 DnaJ homolog subfamily C member 3 
RL1D1 Ribosomal L1 domain-containing protein 1 
SPB1 pre-rRNA processing protein FTSJ3 
TAF2 Transcription initiation factor TFIID subunit 2 
H2B1K Histone H2B type 1-K 
CSTF2 Cleavage stimulation factor subunit 2 
SPIN1 Spindlin-1 
VRK1 Serine/threonine-protein kinase VRK1 
MMTA2 Multiple myeloma tumour-associated protein 2 
DIM1 Probable dimethyl adenosine transferase 
ZN512 Zinc finger protein 512 
CKS1 Cyclin-dependent kinases regulatory subunit 1 
RUXE Small nuclear ribonucleoprotein E 
RS27 40S ribosomal protein S27 
H2AZ Histone H2A.Z 
EIF1B Eukaryotic translation initiation factor 1b 
PCNP PEST proteolytic signal-containing nuclear protein 
RS15 40S ribosomal protein S15 
MAT1 CDK-activating kinase assembly factor MAT1 
RL35A 60S ribosomal protein L35a 
PQBP1 Polyglutamine-binding protein 1 
SET Protein SET 
RL24 60S ribosomal protein L24 
RBMS2 RNA-binding motif, single-stranded-interacting protein 2 
MK67I MKI67 FHA domain-interacting nucleolar phosphoprotein 
RS23 40S ribosomal protein S23 
RP9 Retinitis pigmentosa 9 protein 
PR38A Pre-mRNA-splicing factor 38A 
SARNP SAP domain-containing ribonucleoprotein 
RTCA RNA 3'-terminal phosphate cyclase 
NC2A Dr1-associated corepressor 
DNJA2 DnaJ homolog subfamily A member 2 
PDIP3 Polymerase delta-interacting protein 3 
RBM42 RNA-binding protein 42 
NLE1 Notchless protein homolog 1 
PPIE Peptidyl-prolyl cis-trans isomerase E 
PSIP1 PC4 and SFRS1-interacting protein 
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WAC WW domain-containing adapter protein with coiled-coil 
TOE1 Target of EGR1 protein 1 
SMYD3 Histone-lysine N-methyltransferase 
CLP1 Polyribonucleotide 5'-hydroxyl-kinase 
ZMY11 Zinc finger MYND domain-containing protein 11 
MIC60 MICOS complex subunit MIC60 
PBIP1 Pre-B-cell leukaemia transcription factor-interacting protein 
HP1B3 Heterochromatin protein 1-binding protein 3 
UBF1 Nucleolar transcription factor 1 
IASPP RelA-associated inhibitor 
TEAD1 Transcriptional enhancer factor TEF-1 
NOLC1 Nucleolar and coiled-body phosphoprotein 1 
RTF1 RNA polymerase-associated protein RTF1 
IKKA Inhibitor of nuclear factor kappa-B kinase subunit alpha 
CEBPZ CCAAT/enhancer-binding protein zeta 
SIK3 Serine/threonine-protein kinase 
RERE Arginine-glutamic acid dipeptide repeats protein 
SFSWA Splicing factor, suppressor of white-apricot 
PDS5A Sister chromatid cohesion protein 
SMRC2 SWI/SNF complex subunit 
YES Tyrosine-protein kinase Yes 
ZMIZ2 Zinc finger MIZ domain-containing protein 2 
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APPENDIX D: COMMON RIME PROTEINS AMONG 
FOXC1, NFBI & NFE2L3, AFTER FILTERING FOR 
PSM≥ 1, SUBTRACTION OF IGG, AND REDUNDANCY 
AMONG REPLICATES (N=3) 

 
UniProt 
Accession 
Number 

Protein 
Name 

Protein Description 

Q6PJT7 ZC3HE Zinc finger CCCH domain-containing protein 14  
Q96QD9 UIF UAP56-interacting factor  
O75152 ZC11A Zinc finger CCCH domain-containing protein 11A  
Q53F19 CQ085 Uncharacterized protein C17orf85  
P46013 KI67 Antigen KI-67  
Q9Y5S9 RBM8A RNA-binding protein 8A  
P61326 MGN Protein mago nashi homolog  
Q9Y2W1 TR150 Thyroid hormone receptor-associated protein 3  
Q8N9M1 CS047 Uncharacterized protein C19orf47  
Q9BZE4 NOG1 Nucleolar GTP-binding protein 1  
Q9NYF8 BCLF1 Bcl-2-associated transcription factor 1  
Q9BZZ5 API5 Apoptosis inhibitor 5  
Q8TDD1 DDX54 ATP-dependent RNA helicase DDX54  
P27694 RFA1 Replication protein A 70 kDa DNA-binding subunit  
Q9H307 PININ Pinin  
Q6P6C2 ALKB5 RNA demethylase ALKBH5  
Q9ULW0 TPX2 Targeting protein for Xklp2  
Q96MU7 YTDC1 YTH domain-containing protein 1  
Q14320 FA50A Protein FAM50A  
Q8WWY3 PRP31 U4/U6 small nuclear ribonucleoprotein Prp31  
Q5T8P6 RBM26 RNA-binding protein 26  
Q96EV2 RBM33 RNA-binding protein 33  
P46783 RS10 40S ribosomal protein S10  
Q9GZR7 DDX24 ATP-dependent RNA helicase DDX24  
Q06830 PRDX1 Peroxiredoxin-1  
P14678 RSMB Small nuclear ribonucleoprotein-associated 

proteins B and B'  
Q86U42 PABP2 Polyadenylate-binding protein 2  
Q9UKV3 ACINU Apoptotic chromatin condensation inducer in the 

nucleus  
O43395 PRPF3 U4/U6 small nuclear ribonucleoprotein Prp3  
Q9NQ29 LUC7L Putative RNA-binding protein Luc7-like 1  
O00422 SAP18 Histone deacetylase complex subunit SAP18  
Q14011 CIRBP Cold-inducible RNA-binding protein  
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Q9Y5J1 UTP18 U3 small nucleolar RNA-associated protein 18 
homolog  

P62318 SMD3 Small nuclear ribonucleoprotein Sm D3  
Q9Y2X3 NOP58 Nucleolar protein 58  
Q96KR1 ZFR Zinc finger RNA-binding protein  
Q9NRL2 BAZ1A Bromodomain adjacent to zinc finger domain 

protein 1A  
Q13185 CBX3 Chromobox protein homolog 3  
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APPENDIX E: LIST OF PROTEINS WITH STATISTICAL 
SIGNIFICANCE 

 
Accession Protein 

names 
Crapome N° 

reps 
P 
value 

P 
Value 
adjusted 

Relevant 
genes 

Q86V81 THOC4 43.06569343 18 0 0 FOXC1, 
NFE2L3, 
NFIB 

Q9Y3Y2 CHTOP 12.40875912 12 0 0 FOXC1, 
NFE2L3, 
NFIB 

O00148 DX39A 33.57664234 12 0 0 FOXC1, 
NFE2L3, 
NFIB 

Q13838 DX39B 33.57664234 14 0 0 FOXC1, 
NFE2L3, 
NFIB 

P17844 DDX5 60.0973236 18 0 0 FOXC1, 
NFE2L3, 
NFIB 

Q08211 DHX9 49.8783455 18 0 0 FOXC1, 
NFE2L3, 
NFIB 

P60842 IF4A1 46.22871046 14 0 0 FOXC1, 
NFE2L3, 
NFIB 

P38919 IF4A3 35.76642336 16 0 0 FOXC1, 
NFE2L3, 
NFIB 

P07910 HNRP
C 

43.79562044 18 0 0 FOXC1, 
NFE2L3, 
NFIB 

P31943 HNRH1 63.99026764 18 0 0 FOXC1, 
NFE2L3, 
NFIB 

Q9BY77 PDIP3 19.22141119 11 0 0 FOXC1, 
NFE2L3, 
NFIB 

P08865 RSSA 38.92944039 16 0 0 FOXC1, 
NFE2L3, 
NFIB 

P82979 SARNP 18.97810219 15 0 0 FOXC1, 
NFE2L3, 
NFIB 

Q01130 SRSF2 32.84671533 15 0 0 FOXC1, 
NFE2L3, 
NFIB 

P84103 SRSF3 47.93187348 18 0 0 FOXC1, 
NFE2L3, 
NFIB 
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P62995 TRA2B 20.68126521 16 0 0 FOXC1, 
NFE2L3, 
NFIB 

Q92841 DDX17 57.90754258 16 0 1.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P84090 ERH 36.49635036 11 0 1.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P09651 ROA1 65.20681265 17 0 1.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P61978 HNRPK 70.0729927 18 0 1.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P23246 SFPQ 48.90510949 18 0 1.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q13247 SRSF6 33.81995134 18 0 1.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q92499 DDX1 30.4136253 16 0 2.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q5VYK3 ECM29 1 15 0 2.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q6ZNL6 FGD5 1 17 0 2.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P51991 ROA3 44.52554745 16 0 2.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P14866 HNRPL 46.22871046 17 0 2.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P19338 NUCL 63.50364964 17 0 2.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P62847 RS24 43.55231144 18 0 2.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P46781 RS9 41.36253041 17 0 2.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q99729 ROAA 50.1216545 13 0 3.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q00839 HNRP
U 

68.12652068 18 0 3.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P62917 RL8 38.19951338 18 0 3.00E-04 FOXC1, 
NFE2L3, 
NFIB 
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Q9Y3I0 RTCB 30.4136253 12 0 3.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P52272 HNRP
M 

53.52798054 18 0 4.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P26599 PTBP1 41.84914842 16 0 4.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q6NZI2 PTRF 4.379562044 16 0 4.00E-04 FOXC1, 
NFE2L3, 
NFIB 

O43390 HNRP
R 

45.74209246 16 0 5.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q6ZUA9 MROH
5 

1 12 0 5.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q15717 ELAV1 24.57420925 15 1.00E-
04 

6.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q15424 SAFB1 18.73479319 16 1.00E-
04 

6.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P13611 CSPG2 0.486618005 17 1.00E-
04 

6.00E-04 FOXC1, 
NFE2L3, 
NFIB 

O00571 DDX3X 51.58150852 16 1.00E-
04 

7.00E-04 FOXC1, 
NFE2L3, 
NFIB 

O43143 DHX15 40.87591241 11 1.00E-
04 

7.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P52597 HNRPF 59.12408759 13 1.00E-
04 

7.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q92945 FUBP2 32.36009732 18 1.00E-
04 

7.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P06748 NPM 61.31386861 18 1.00E-
04 

7.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P61313 RL15 36.25304136 18 1.00E-
04 

7.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P39023 RL3 39.6593674 18 1.00E-
04 

7.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P04406 G3P 60.3406326 16 1.00E-
04 

8.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P62829 RL23 59.12408759 12 1.00E-
04 

8.00E-04 FOXC1, 
NFE2L3, 
NFIB 
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P61254 RL26 34.30656934 18 1.00E-
04 

8.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P62266 RS23 38.92944039 18 1.00E-
04 

8.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q15233 NONO 53.52798054 15 1.00E-
04 

9.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P62906 RL10A 28.46715328 17 1.00E-
04 

9.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P26373 RL13 53.04136253 18 1.00E-
04 

9.00E-04 FOXC1, 
NFE2L3, 
NFIB 

P08670 VIME 62.53041363 18 1.00E-
04 

9.00E-04 FOXC1, 
NFE2L3, 
NFIB 

Q13151 ROA0 39.9026764 13 1.00E-
04 

0.001 FOXC1, 
NFE2L3, 
NFIB 

Q8WXF1 PSPC1 19.9513382 16 1.00E-
04 

0.001 FOXC1, 
NFE2L3, 
NFIB 

Q15287 RNPS1 26.52068127 15 1.00E-
04 

0.001 FOXC1, 
NFE2L3, 
NFIB 

P23396 RS3 64.72019465 18 1.00E-
04 

0.001 FOXC1, 
NFE2L3, 
NFIB 

Q9BVP2 GNL3 19.46472019 13 1.00E-
04 

0.0011 FOXC1, 
NFE2L3, 
NFIB 

P60866 RS20 43.55231144 14 1.00E-
04 

0.0011 FOXC1, 
NFE2L3, 
NFIB 

P62701 RS4X 54.74452555 18 2.00E-
04 

0.0011 FOXC1, 
NFE2L3, 
NFIB 

Q15637 SF01 19.7080292 11 1.00E-
04 

0.0011 FOXC1, 
NFE2L3, 
NFIB 

Q14103 HNRP
D 

52.55474453 16 2.00E-
04 

0.0012 FOXC1, 
NFE2L3, 
NFIB 

P38159 RBMX 41.11922141 15 2.00E-
04 

0.0012 FOXC1, 
NFE2L3, 
NFIB 

P84098 RL19 51.09489051 18 2.00E-
04 

0.0012 FOXC1, 
NFE2L3, 
NFIB 

P35268 RL22 46.71532847 18 2.00E-
04 

0.0012 FOXC1, 
NFE2L3, 
NFIB 
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P22626 ROA2 63.74695864 18 2.00E-
04 

0.0013 FOXC1, 
NFE2L3, 
NFIB 

Q15365 PCBP1 47.20194647 15 2.00E-
04 

0.0013 FOXC1, 
NFE2L3, 
NFIB 

P22087 FBRL 39.17274939 15 2.00E-
04 

0.0014 FOXC1, 
NFE2L3, 
NFIB 

P63244 GBLP 32.84671533 11 2.00E-
04 

0.0014 FOXC1, 
NFE2L3, 
NFIB 

Q07666 KHDR1 33.57664234 17 2.00E-
04 

0.0014 FOXC1, 
NFE2L3, 
NFIB 

P62753 RS6 50.60827251 18 2.00E-
04 

0.0014 FOXC1, 
NFE2L3, 
NFIB 

P46778 RL21 32.84671533 12 2.00E-
04 

0.0015 FOXC1, 
NFE2L3, 
NFIB 

P62424 RL7A 47.93187348 18 2.00E-
04 

0.0015 FOXC1, 
NFE2L3, 
NFIB 

Q99848 EBP2 12.89537713 11 3.00E-
04 

0.0017 FOXC1, 
NFE2L3, 
NFIB 

P84243 H33 33.81995134 18 3.00E-
04 

0.0018 FOXC1, 
NFE2L3, 
NFIB 

P62826 RAN 37.46958637 13 3.00E-
04 

0.0018 FOXC1, 
NFE2L3, 
NFIB 

P63173 RL38 33.81995134 15 3.00E-
04 

0.0018 FOXC1, 
NFE2L3, 
NFIB 

P62241 RS8 55.47445255 17 3.00E-
04 

0.0018 FOXC1, 
NFE2L3, 
NFIB 

P23528 COF1 47.68856448 16 3.00E-
04 

0.0019 FOXC1, 
NFE2L3, 
NFIB 

P62308 RUXG 11.92214112 12 3.00E-
04 

0.0019 FOXC1, 
NFE2L3, 
NFIB 

A8MWD9 RUXGL 1 12 3.00E-
04 

0.0019 FOXC1, 
NFE2L3, 
NFIB 

Q12906 ILF3 38.44282238 15 4.00E-
04 

0.0021 FOXC1, 
NFE2L3, 
NFIB 

Q04118 PRB3 1 5 4.00E-
04 

0.0021 NFE2L3 

P49207 RL34 20.4379562 18 4.00E- 0.0021 FOXC1, 



Appendices 

 239 

04 NFE2L3, 
NFIB 

P18124 RL7 42.57907543 18 4.00E-
04 

0.0022 FOXC1, 
NFE2L3, 
NFIB 

P98179 RBM3 21.41119221 11 4.00E-
04 

0.0024 FOXC1, 
NFE2L3, 
NFIB 

Q8IVT2 MISP 4.866180049 13 5.00E-
04 

0.0025 FOXC1, 
NFE2L3, 
NFIB 

P49756 RBM25 18.73479319 15 5.00E-
04 

0.0025 FOXC1, 
NFE2L3, 
NFIB 

Q07020 RL18 46.47201946 18 5.00E-
04 

0.0025 FOXC1, 
NFE2L3, 
NFIB 

Q8IY81 SPB1 15.32846715 10 5.00E-
04 

0.0026 FOXC1, 
NFE2L3, 
NFIB 

P40429 RL13A 35.03649635 14 5.00E-
04 

0.0027 FOXC1, 
NFE2L3, 
NFIB 

P62899 RL31 41.36253041 16 6.00E-
04 

0.0029 FOXC1, 
NFE2L3, 
NFIB 

Q16629 SRSF7 46.47201946 12 6.00E-
04 

0.003 FOXC1, 
NFE2L3, 
NFIB 

Q8TDN6 BRX1 16.30170316 12 6.00E-
04 

0.0031 FOXC1, 
NFE2L3, 
NFIB 

P09429 HMGB
1 

25.79075426 17 6.00E-
04 

0.0031 FOXC1, 
NFE2L3, 
NFIB 

P43243 MATR3 41.60583942 17 6.00E-
04 

0.0031 FOXC1, 
NFE2L3, 
NFIB 

P61353 RL27 38.68613139 17 7.00E-
04 

0.0033 FOXC1, 
NFE2L3, 
NFIB 

Q99829 CPNE1 7.299270073 12 8.00E-
04 

0.0036 FOXC1, 
NFE2L3, 
NFIB 

O60869 EDF1 19.46472019 10 8.00E-
04 

0.0037 FOXC1, 
NFE2L3, 
NFIB 

P46939 UTRO 6.569343066 13 9.00E-
04 

0.0039 FOXC1, 
NFE2L3, 
NFIB 

P63241 IF5A1 30.4136253 16 9.00E-
04 

0.0042 FOXC1, 
NFE2L3, 
NFIB 

P36578 RL4 47.93187348 18 9.00E- 0.0042 FOXC1, 
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04 NFE2L3, 
NFIB 

Q02878 RL6 41.84914842 18 9.00E-
04 

0.0042 FOXC1, 
NFE2L3, 
NFIB 

P08621 RU17 26.27737226 15 0.001 0.0043 FOXC1, 
NFE2L3, 
NFIB 

O60506 HNRP
Q 

47.93187348 12 0.001 0.0043 FOXC1, 
NFE2L3, 
NFIB 

P83731 RL24 47.44525547 15 0.0011 0.0046 FOXC1, 
NFE2L3, 
NFIB 

P42766 RL35 37.95620438 18 0.0011 0.0046 FOXC1, 
NFE2L3, 
NFIB 

P46777 RL5 37.95620438 13 0.0011 0.0046 FOXC1, 
NFE2L3, 
NFIB 

Q02543 RL18A 27.49391727 13 0.0012 0.0048 FOXC1, 
NFE2L3, 
NFIB 

Q13263 TIF1B 43.06569343 10 0.0012 0.0049 FOXC1, 
NFE2L3, 
NFIB 

P21333 FLNA 54.98783455 15 0.0012 0.005 FOXC1, 
NFE2L3, 
NFIB 

P05787 K2C8 57.66423358 18 0.0012 0.005 FOXC1, 
NFE2L3, 
NFIB 

Q9BQ39 DDX50 28.95377129 11 0.0014 0.0058 FOXC1, 
NFE2L3, 
NFIB 

P02545 LMNA 22.38442822 18 0.0014 0.0058 FOXC1, 
NFE2L3, 
NFIB 

Q14980 NUMA1 18.97810219 10 0.0015 0.0058 FOXC1, 
NFE2L3, 
NFIB 

P62913 RL11 50.85158151 13 0.0015 0.0058 FOXC1, 
NFE2L3, 
NFIB 

P68104 EF1A1 85.15815085 18 0.0016 0.0061 FOXC1, 
NFE2L3, 
NFIB 

Q5VTE0 EF1A3 1 18 0.0016 0.0061 FOXC1, 
NFE2L3, 
NFIB 

P12268 IMDH2 20.1946472 11 0.0016 0.0061 FOXC1, 
NFE2L3, 
NFIB 

P53999 TCP4 38.92944039 10 0.0016 0.0063 FOXC1, 
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NFE2L3, 
NFIB 

P07477 TRY1 15.81508516 18 0.0017 0.0064 FOXC1, 
NFE2L3, 
NFIB 

P46776 RL27A 48.17518248 16 0.0017 0.0064 FOXC1, 
NFE2L3, 
NFIB 

O75367 H2AY 16.54501217 13 0.0017 0.0065 FOXC1, 
NFE2L3, 
NFIB 

P62750 RL23A 54.50121655 18 0.0018 0.0065 FOXC1, 
NFE2L3, 
NFIB 

P61513 RL37A 23.84428224 12 0.0018 0.0065 FOXC1, 
NFE2L3, 
NFIB 

P15880 RS2 51.09489051 13 0.0018 0.0066 FOXC1, 
NFE2L3, 
NFIB 

P11142 HSP7C 96.35036496 18 0.0019 0.0067 FOXC1, 
NFE2L3, 
NFIB 

P68431 H31 34.79318735 16 0.0019 0.0068 FOXC1, 
NFE2L3, 
NFIB 

Q71DI3 H32 34.54987835 16 0.0019 0.0068 FOXC1, 
NFE2L3, 
NFIB 

P27635 RL10 35.52311436 15 0.0019 0.0068 FOXC1, 
NFE2L3, 
NFIB 

Q8NC51 PAIRB 42.57907543 17 0.0019 0.0068 FOXC1, 
NFE2L3, 
NFIB 

P06733 ENOA 54.25790754 17 0.002 0.0071 FOXC1, 
NFE2L3, 
NFIB 

Q07955 SRSF1 32.60340633 14 0.002 0.0071 FOXC1, 
NFE2L3, 
NFIB 

P62937 PPIA 44.76885645 14 0.0021 0.0072 FOXC1, 
NFE2L3, 
NFIB 

P63220 RS21 27.98053528 10 0.0021 0.0072 FOXC1, 
NFE2L3, 
NFIB 

P11940 PABP1 41.84914842 13 0.0024 0.0081 FOXC1, 
NFE2L3, 
NFIB 

P61247 RS3A 49.39172749 16 0.0024 0.0082 FOXC1, 
NFE2L3, 
NFIB 

P60709 ACTB 88.32116788 18 0.0028 0.0094 FOXC1, 
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NFE2L3, 
NFIB 

P62979 RS27A 60.3406326 18 0.0028 0.0094 FOXC1, 
NFE2L3, 
NFIB 

Q9BYG3 MK67I 1 10 0.0029 0.0096 FOXC1, 
NFE2L3, 
NFIB 

O75607 NPM3 11.92214112 14 0.003 0.0098 FOXC1, 
NFE2L3, 
NFIB 

O76021 RL1D1 23.84428224 11 0.0032 0.0105 FOXC1, 
NFE2L3, 
NFIB 

P46779 RL28 26.52068127 14 0.0033 0.0107 FOXC1, 
NFE2L3, 
NFIB 

Q9UKM9 RALY 10.70559611 12 0.0034 0.0108 FOXC1, 
NFE2L3, 
NFIB 

Q14498 RBM39 39.6593674 10 0.0034 0.0109 FOXC1, 
NFE2L3, 
NFIB 

P62851 RS25 47.68856448 17 0.0034 0.0109 FOXC1, 
NFE2L3, 
NFIB 

Q01081 U2AF1 30.90024331 16 0.0035 0.0109 FOXC1, 
NFE2L3, 
NFIB 

P08729 K2C7 37.71289538 18 0.0037 0.0115 FOXC1, 
NFE2L3, 
NFIB 

Q15366 PCBP2 45.98540146 11 0.0037 0.0115 FOXC1, 
NFE2L3, 
NFIB 

P30050 RL12 48.90510949 15 0.0039 0.0119 FOXC1, 
NFE2L3, 
NFIB 

P61927 RL37 4.379562044 15 0.004 0.012 FOXC1, 
NFE2L3, 
NFIB 

P62891 RL39 14.84184915 14 0.004 0.012 FOXC1, 
NFE2L3, 
NFIB 

Q59GN2 R39L5 1 14 0.004 0.012 FOXC1, 
NFE2L3, 
NFIB 

P62244 RS15A 43.30900243 14 0.004 0.012 FOXC1, 
NFE2L3, 
NFIB 

P32969 RL9 40.63260341 14 0.0041 0.0124 FOXC1, 
NFE2L3, 
NFIB 

P11387 TOP1 26.76399027 10 0.0043 0.0127 FOXC1, 
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NFE2L3, 
NFIB 

Q9HB71 CYBP 16.30170316 10 0.0045 0.0133 FOXC1, 
NFE2L3, 
NFIB 

P62269 RS18 55.71776156 15 0.0047 0.0139 FOXC1, 
NFE2L3, 
NFIB 

Q14137 BOP1 12.16545012 10 0.0048 0.014 FOXC1, 
NFE2L3, 
NFIB 

P10412 H14 72.74939173 18 0.0049 0.014 FOXC1, 
NFE2L3, 
NFIB 

P05783 K1C18 57.90754258 18 0.0049 0.014 FOXC1, 
NFE2L3, 
NFIB 

Q6VAB6 KSR2 1 13 0.0049 0.014 FOXC1, 
NFE2L3, 
NFIB 

P62280 RS11 36.73965937 14 0.0049 0.014 FOXC1, 
NFE2L3, 
NFIB 

P63261 ACTG 88.32116788 12 0.0053 0.0148 FOXC1, 
NFE2L3, 
NFIB 

P12956 XRCC6 42.82238443 10 0.0052 0.0148 FOXC1, 
NFE2L3, 
NFIB 

Q7KZF4 SND1 28.71046229 16 0.0053 0.0149 FOXC1, 
NFE2L3, 
NFIB 

P16403 H12 73.23600973 18 0.0055 0.0153 FOXC1, 
NFE2L3, 
NFIB 

P08708 RS17 43.06569343 14 0.0061 0.0168 FOXC1, 
NFE2L3, 
NFIB 

P0CW22 RS17L 43.06569343 14 0.0061 0.0168 FOXC1, 
NFE2L3, 
NFIB 

Q969Q0 RL36L 18.24817518 17 0.0064 0.0176 FOXC1, 
NFE2L3, 
NFIB 

Q16630 CPSF6 33.33333333 9 0.0067 0.0181 FOXC1, 
NFE2L3, 
NFIB 

P26641 EF1G 46.95863747 16 0.0067 0.0181 FOXC1, 
NFE2L3, 
NFIB 

P08779 K1C16 66.66666667 6 0.0076 0.0205 NFE2L3, 
NFIB 

P04908 H2A1B 65.93673966 16 0.0084 0.0219 FOXC1, 
NFE2L3, 
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NFIB 
Q93077 H2A1C 65.93673966 16 0.0084 0.0219 FOXC1, 

NFE2L3, 
NFIB 

Q7L7L0 H2A3 65.93673966 16 0.0084 0.0219 FOXC1, 
NFE2L3, 
NFIB 

P09874 PARP1 44.28223844 18 0.0083 0.0219 FOXC1, 
NFE2L3, 
NFIB 

Q7Z6E9 RBBP6 9.489051095 11 0.0084 0.0219 FOXC1, 
NFE2L3, 
NFIB 

P62888 RL30 27.00729927 12 0.0091 0.0237 FOXC1, 
NFE2L3, 
NFIB 

P08238 HS90B 67.39659367 18 0.0093 0.0239 FOXC1, 
NFE2L3, 
NFIB 

P11532 DMD 1.216545012 10 0.0097 0.025 FOXC1, 
NFE2L3, 
NFIB 

P62249 RS16 51.33819951 13 0.0103 0.0262 FOXC1, 
NFE2L3, 
NFIB 

P35580 MYH10 40.3892944 9 0.0105 0.0265 FOXC1, 
NFE2L3, 
NFIB 

Q5M775 CYTSB 4.622871046 10 0.0107 0.0272 FOXC1, 
NFE2L3, 
NFIB 

P62277 RS13 38.44282238 14 0.0112 0.0281 FOXC1, 
NFE2L3, 
NFIB 

Q71U36 TBA1A 94.64720195 13 0.0112 0.0281 FOXC1, 
NFE2L3, 
NFIB 

Q14204 DYHC1 31.87347932 12 0.0115 0.0286 FOXC1, 
NFE2L3, 
NFIB 

O75369 FLNB 41.60583942 14 0.0122 0.0299 FOXC1, 
NFE2L3, 
NFIB 

P62857 RS28 44.28223844 14 0.0122 0.0299 FOXC1, 
NFE2L3, 
NFIB 

P07437 TBB5 92.94403893 18 0.0122 0.0299 FOXC1, 
NFE2L3, 
NFIB 

Q9Y2T7 YBOX2 42.09245742 4 0.0124 0.0302 FOXC1, 
NFIB 

Q14667 K0100 1 8 0.0126 0.0305 FOXC1, 
NFE2L3, 
NFIB 



Appendices 

 245 

Q9Y383 LC7L2 1 12 0.0126 0.0305 FOXC1, 
NFE2L3, 
NFIB 

P15311 EZRI 27.00729927 13 0.0129 0.0306 FOXC1, 
NFE2L3, 
NFIB 

Q6FI13 H2A2A 65.93673966 16 0.0129 0.0306 FOXC1, 
NFE2L3, 
NFIB 

Q16777 H2A2C 65.93673966 16 0.0129 0.0306 FOXC1, 
NFE2L3, 
NFIB 

Q96I24 FUBP3 15.32846715 7 0.0132 0.0312 FOXC1, 
NFE2L3, 
NFIB 

P07737 PROF1 36.00973236 11 0.0134 0.0315 FOXC1, 
NFE2L3, 
NFIB 

P20290 BTF3 8.515815085 9 0.014 0.0328 FOXC1, 
NFE2L3, 
NFIB 

Q9BUJ2 HNRL1 25.79075426 12 0.0149 0.0345 FOXC1, 
NFE2L3, 
NFIB 

P47914 RL29 41.11922141 17 0.0148 0.0345 FOXC1, 
NFE2L3, 
NFIB 

Q66PJ3 AR6P4 26.03406326 13 0.0155 0.0358 FOXC1, 
NFE2L3, 
NFIB 

P62314 SMD1 46.95863747 10 0.0161 0.037 FOXC1, 
NFE2L3, 
NFIB 

P16104 H2AX 56.20437956 16 0.0163 0.0372 FOXC1, 
NFE2L3, 
NFIB 

P68363 TBA1B 94.64720195 18 0.0164 0.0373 FOXC1, 
NFE2L3, 
NFIB 

Q14978 NOLC1 29.19708029 10 0.0172 0.0388 FOXC1, 
NFE2L3, 
NFIB 

P31942 HNRH3 23.35766423 13 0.0181 0.0407 FOXC1, 
NFE2L3, 
NFIB 

P62081 RS7 48.66180049 15 0.0184 0.0412 FOXC1, 
NFE2L3, 
NFIB 

Q9BU76 MMTA2 1 12 0.02 0.0446 FOXC1, 
NFE2L3, 
NFIB 

P18621 RL17 46.22871046 13 0.0206 0.0458 FOXC1, 
NFE2L3, 
NFIB 
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P62805 H4 54.74452555 18 0.0208 0.0459 FOXC1, 
NFE2L3, 
NFIB 

Q96AE4 FUBP1 13.38199513 13 0.0212 0.0466 FOXC1, 
NFE2L3, 
NFIB 

Q9Y5B9 SP16H 18.49148418 11 0.0226 0.0492 FOXC1, 
NFE2L3, 
NFIB 

P11388 TOP2A 16.78832117 9 0.0226 0.0492 FOXC1, 
NFE2L3, 
NFIB 
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APPENDIX F: LIST OF DCAS9 UNIQUE PROTEINS 
ACROSS GENES, NUMBER OF REPLICATES >4 

 
Accession Protein 

name 
Crapome Number 

replicates 
Relevant genes 

P24043 LAMA2 0.24 6 FOXC1, NFE2L3, NFIB 
Q9NVC6 MED17 0.24 8 FOXC1, NFE2L3, NFIB 
Q8TD57 DYH3 0.49 7 FOXC1, NFE2L3, NFIB 
Q14161 GIT2 0.73 8 FOXC1, NFE2L3, NFIB 
Q16831 UPP1 0.73 7 FOXC1, NFE2L3, NFIB 
O00442 RTCA 0.97 6 FOXC1, NFE2L3, NFIB 
E9PRG8 CK098 1 8 FOXC1, NFE2L3, NFIB 
Q8N9M1 CS047 1 9 FOXC1, NFE2L3, NFIB 
Q5T890 ER6L2 1 8 FOXC1, NFE2L3, NFIB 
Q6PI47 KCD18 1 6 FOXC1, NFE2L3, NFIB 
Q9BWE0 REPI1 1 6 FOXC1, NFIB 
Q9UPW5 CBPC1 1.46 8 FOXC1, NFE2L3, NFIB 
P21980 TGM2 1.46 8 FOXC1, NFE2L3, NFIB 
Q16666 IF16 2.19 6 FOXC1, NFE2L3, NFIB 
O43818 U3IP2 2.43 6 FOXC1, NFIB 
Q9UMY1 NOL7 2.68 6 FOXC1, NFIB 
Q6P6C2 ALKB5 2.92 9 FOXC1, NFE2L3, NFIB 
O00479 HMGN4 2.92 6 FOXC1, NFE2L3, NFIB 
Q5C9Z4 NOM1 2.92 8 FOXC1, NFE2L3, NFIB 
Q96QD9 UIF 3.16 9 FOXC1, NFE2L3, NFIB 
Q9NZM1 MYOF 3.65 8 FOXC1, NFE2L3, NFIB 
Q15397 K0020 3.89 6 FOXC1, NFIB 
Q9NR12 PDLI7 3.89 6 FOXC1, NFE2L3, NFIB 
P52298 NCBP2 4.62 7 FOXC1, NFE2L3, NFIB 
Q9Y3C1 NOP16 4.62 6 FOXC1, NFIB 
Q9BXS6 NUSAP 4.62 6 FOXC1, NFIB 
O43159 RRP8 4.87 6 FOXC1, NFIB 
P23193 TCEA1 4.87 7 FOXC1, NFE2L3, NFIB 
Q9UNZ5 L10K 5.11 6 FOXC1, NFE2L3, NFIB 
Q53F19 CQ085 5.35 9 FOXC1, NFE2L3, NFIB 
Q14320 FA50A 5.35 9 FOXC1, NFE2L3, NFIB 
Q9NWT1 PK1IP 5.35 6 FOXC1, NFIB 
Q9H6F5 CCD86 5.6 7 FOXC1, NFE2L3, NFIB 
Q9NVU7 SDA1 5.6 8 FOXC1, NFE2L3, NFIB 
P17480 UBF1 5.6 6 FOXC1, NFIB 
Q96MU7 YTDC1 5.6 9 FOXC1, NFE2L3, NFIB 
Q00534 CDK6 5.84 7 FOXC1, NFE2L3, NFIB 
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Q92979 NEP1 5.84 8 FOXC1, NFE2L3, NFIB 
Q6DKI1 RL7L 5.84 8 FOXC1, NFE2L3, NFIB 
Q9Y5J1 UTP18 6.33 9 FOXC1, NFE2L3, NFIB 
Q96S55 WRIP1 6.33 8 FOXC1, NFE2L3, NFIB 
P13984 T2FB 6.57 6 FOXC1, NFIB 
Q9Y3T9 NOC2L 6.57 6 FOXC1, NFIB 
Q96EV2 RBM33 6.57 9 FOXC1, NFE2L3, NFIB 
Q9H7B2 RPF2 6.57 7 FOXC1, NFE2L3, NFIB 
O94979 SC31A 6.57 6 NFE2L3, NFIB 
Q15061 WDR43 6.57 6 FOXC1, NFE2L3, NFIB 
Q9BTT0 AN32E 6.81 7 FOXC1, NFE2L3, NFIB 
Q9NRL2 BAZ1A 6.81 9 FOXC1, NFE2L3, NFIB 
P06703 S10A6 7.06 8 FOXC1, NFE2L3, NFIB 
Q13206 DDX10 7.3 6 FOXC1, NFE2L3, NFIB 
P43490 NAMPT 8.27 6 FOXC1, NFE2L3, NFIB 
Q5QJE6 TDIF2 8.52 6 FOXC1, NFIB 
P61326 MGN 9 9 FOXC1, NFE2L3, NFIB 
Q96A72 MGN2 9 8 FOXC1, NFE2L3, NFIB 
O15347 HMGB3 9.25 6 FOXC1, NFIB 
Q14690 RRP5 9.25 6 FOXC1, NFIB 
Q15050 RRS1 9.25 7 FOXC1, NFE2L3, NFIB 
Q03701 CEBPZ 9.49 6 FOXC1, NFIB 
P31949 S10AB 9.49 6 FOXC1, NFE2L3, NFIB 
Q8WWK9 CKAP2 9.73 7 FOXC1, NFE2L3, NFIB 
Q9GZR7 DDX24 9.73 9 FOXC1, NFE2L3, NFIB 
Q9NY93 DDX56 9.73 6 FOXC1, NFE2L3, NFIB 
Q99575 POP1 9.73 6 FOXC1, NFIB 
Q96T37 RBM15 9.73 8 FOXC1, NFE2L3, NFIB 
Q5T8P6 RBM26 9.73 9 FOXC1, NFE2L3, NFIB 
Q9Y3B9 RRP15 9.73 6 FOXC1, NFIB 
P04083 ANXA1 9.98 7 FOXC1, NFE2L3, NFIB 
Q96GQ7 DDX27 9.98 8 FOXC1, NFE2L3, NFIB 
O15027 SC16A 9.98 6 NFE2L3, NFIB 
P26358 DNMT1 10.22 6 FOXC1, NFIB 
Q9NQ55 SSF1 10.22 7 FOXC1, NFE2L3, NFIB 
Q6PJT7 ZC3HE 10.22 9 FOXC1, NFE2L3, NFIB 
Q9Y2S6 TMA7 10.46 7 FOXC1, NFE2L3, NFIB 
Q9NX58 LYAR 10.71 7 FOXC1, NFE2L3, NFIB 
Q9UKD2 MRT4 10.71 8 FOXC1, NFE2L3, NFIB 
Q9H1E3 NUCKS 10.71 8 FOXC1, NFE2L3, NFIB 
Q9ULW0 TPX2 10.71 9 FOXC1, NFE2L3, NFIB 
Q53GS9 SNUT2 10.71 6 FOXC1, NFIB 
Q9H0S4 DDX47 10.95 8 FOXC1, NFE2L3, NFIB 
Q13823 NOG2 10.95 7 FOXC1, NFE2L3, NFIB 
P35269 T2FA 10.95 6 FOXC1, NFIB 
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Q9NZM5 GSCR2 11.19 6 FOXC1, NFE2L3, NFIB 
O15226 NKRF 11.19 8 FOXC1, NFE2L3, NFIB 
O75152 ZC11A 11.19 9 FOXC1, NFE2L3, NFIB 
Q9NWH9 SLTM 11.44 8 FOXC1, NFE2L3, NFIB 
Q8TDD1 DDX54 11.92 9 FOXC1, NFE2L3, NFIB 
Q6P1J9 CDC73 12.17 7 FOXC1, NFE2L3, NFIB 
Q96EP5 DAZP1 12.17 6 FOXC1, NFE2L3, NFIB 
Q86U42 PABP2 12.17 9 FOXC1, NFE2L3, NFIB 
O43172 PRP4 12.17 6 FOXC1, NFIB 
O75937 DNJC8 12.41 6 FOXC1, NFIB 
Q9BZZ5 API5 12.65 9 FOXC1, NFE2L3, NFIB 
P04637 P53 12.65 6 FOXC1, NFE2L3, NFIB 
Q9NW13 RBM28 13.14 7 FOXC1, NFE2L3, NFIB 
Q9Y5S9 RBM8A 13.14 9 FOXC1, NFE2L3, NFIB 
Q9BZE4 NOG1 13.63 9 FOXC1, NFE2L3, NFIB 
Q9H307 PININ 13.63 9 FOXC1, NFE2L3, NFIB 
P55769 NH2L1 14.36 6 FOXC1, NFIB 
O43395 PRPF3 14.36 9 FOXC1, NFE2L3, NFIB 
Q7L4I2 RSRC2 14.36 8 FOXC1, NFE2L3, NFIB 
O00422 SAP18 14.36 9 FOXC1, NFE2L3, NFIB 
P17096 HMGA1 14.84 6 FOXC1, NFE2L3, NFIB 
Q5JTH9 RRP12 14.84 7 FOXC1, NFE2L3, NFIB 
Q9P2N5 RBM27 15.09 8 FOXC1, NFE2L3, NFIB 
Q14684 RRP1B 15.09 6 FOXC1, NFIB 
O14776 TCRG1 15.57 6 FOXC1, NFE2L3, NFIB 
Q9NVP1 DDX18 16.06 8 FOXC1, NFE2L3, NFIB 
O94776 MTA2 16.06 7 FOXC1, NFE2L3, NFIB 
Q96KR1 ZFR 16.55 9 FOXC1, NFE2L3, NFIB 
Q13573 SNW1 16.79 7 FOXC1, NFE2L3, NFIB 
Q01780 EXOSX 17.03 6 FOXC1, NFIB 
Q9H0A0 NAT10 17.03 7 FOXC1, NFE2L3, NFIB 
O75494 SRS10 17.27 9 FOXC1, NFE2L3, NFIB 
Q9UKV3 ACINU 17.76 9 FOXC1, NFE2L3, NFIB 
Q9UQE7 SMC3 17.76 6 FOXC1, NFE2L3, NFIB 
O95218 ZRAB2 17.76 6 FOXC1, NFIB 
O60832 DKC1 18 8 FOXC1, NFE2L3, NFIB 
Q13242 SRSF9 18.73 8 FOXC1, NFE2L3, NFIB 
P16949 STMN1 18.98 6 FOXC1, NFIB 
Q14683 SMC1A 19.22 7 FOXC1, NFE2L3, NFIB 
P46013 KI67 19.46 9 FOXC1, NFE2L3, NFIB 
P37108 SRP14 19.46 6 FOXC1, NFE2L3, NFIB 
P06493 CDK1 19.71 6 FOXC1, NFIB 
P61956 SUMO2 19.71 8 FOXC1, NFE2L3, NFIB 
Q9BXP5 SRRT 19.95 7 FOXC1, NFE2L3, NFIB 
P27694 RFA1 20.44 9 FOXC1, NFE2L3, NFIB 
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Q13185 CBX3 20.68 9 FOXC1, NFE2L3, NFIB 
P56537 IF6 20.68 8 FOXC1, NFE2L3, NFIB 
Q9Y2X3 NOP58 21.9 9 FOXC1, NFE2L3, NFIB 
P41091 IF2G 22.14 7 FOXC1, NFE2L3, NFIB 
P46087 NOP2 22.14 8 FOXC1, NFE2L3, NFIB 
O00567 NOP56 23.36 6 FOXC1, NFIB 
Q05519 SRS11 23.6 6 NFE2L3, NFIB 
Q9H0D6 XRN2 23.6 8 FOXC1, NFE2L3, NFIB 
P23526 SAHH 23.84 6 FOXC1, NFE2L3, NFIB 
P39748 FEN1 23.84 8 FOXC1, NFE2L3, NFIB 
Q13428 TCOF 25.06 6 FOXC1, NFIB 
Q14011 CIRBP 26.03 9 FOXC1, NFE2L3, NFIB 
P18077 RL35A 26.28 6 FOXC1, NFE2L3, NFIB 
Q9P258 RCC2 27.01 6 FOXC1, NFIB 
O43684 BUB3 27.25 6 FOXC1, NFE2L3, NFIB 
P17980 PRS6A 27.49 7 FOXC1, NFE2L3, NFIB 
Q92769 HDAC2 27.98 6 FOXC1, NFE2L3, NFIB 
Q8N163 CCAR2 28.71 6 FOXC1, NFE2L3, NFIB 
Q9NQ29 LUC7L 28.71 9 FOXC1, NFE2L3, NFIB 
O43809 CPSF5 28.95 6 FOXC1, NFE2L3, NFIB 
O95232 LC7L3 29.68 8 FOXC1, NFE2L3, NFIB 
E9PAV3 NACAM 30.41 7 FOXC1, NFE2L3, NFIB 
Q13765 NACA 30.41 6 FOXC1, NFE2L3 
P15924 DESP 30.66 7 FOXC1, NFE2L3, NFIB 
P62841 RS15 30.66 7 FOXC1, NFE2L3, NFIB 
P42167 LAP2B 30.9 6 FOXC1, NFIB 
Q9Y230 RUVB2 34.31 6 FOXC1, NFE2L3, NFIB 
Q8WWY3 PRP31 35.28 9 FOXC1, NFE2L3, NFIB 
Q9UHX1 PUF60 35.28 7 FOXC1, NFE2L3, NFIB 
P17661 DESM 38.44 6 FOXC1, NFE2L3, NFIB 
Q96E39 RMXL1 38.69 7 FOXC1, NFE2L3, NFIB 
P14678 RSMB 41.36 9 FOXC1, NFE2L3, NFIB 
Q9NYF8 BCLF1 41.61 9 FOXC1, NFE2L3, NFIB 
O75533 SF3B1 41.61 8 FOXC1, NFE2L3, NFIB 
P62318 SMD3 42.82 9 FOXC1, NFE2L3, NFIB 
P46783 RS10 43.07 9 FOXC1, NFE2L3, NFIB 
Q14240 IF4A2 43.31 6 FOXC1, NFE2L3, NFIB 
Q9Y2W1 TR150 43.31 9 FOXC1, NFE2L3, NFIB 
Q06830 PRDX1 61.56 9 FOXC1, NFE2L3, NFIB 
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APPENDIX G: RIME HITS RANKING: FIRST 100 TOP CANDIDATES RANKED ON A NOVELTY BASIS 

 
Accession Crapome N° 

rep 
genes p. 

adjust 
mlogFC N° 

Cpds 
N° 
Cpd 
pact>5 

N° AZ 
Cpd  
pact>5 

N° 
Cpd 
Clinic 

type N°r
ef 

kno
wn 

newer 

Q00534| 
CDK6_HU
MAN 

5.84 7 FOXC1,
NFE2L3,
NFIB 

-1 1.439236
227 

2559 2095 5 4 Regulati
on 

1 0.91 0.97 

P06493| 
CDK1_HU
MAN 

19.71 6 FOXC1,
NFIB 

-1 0.622985
294 

24443 10953 11 4 Regulati
on 

1 0.82 0.87 

P11388| 
TOP2A_HU
MAN 

16.79 9 FOXC1,
NFE2L3,
NFIB 

0.0492 0.854372
122 

2077 117 0 121 Regulati
on 

1 0.61 0.65 

P09874| 
PARP1_HU
MAN 

44.28 18 FOXC1,
NFE2L3,
NFIB 

0.0219  8819 6670 6 8 Regulati
on 

10 0.96 0.61 

P04637| 
P53_HUMA
N 

12.65 6 FOXC1,
NFE2L3,
NFIB 

-1  37387 3580 0 8 ClinicalTr
ial,Regul
ation 

18 0.63 0.39 

Q92769| 
HDAC2_HU
MAN 

27.98 6 FOXC1,
NFE2L3,
NFIB 

-1 0.728621
906 

7117 4224 0 8 NoRelto
TNBC 

0 0.30 0.30 

P43490| 
NAMPT_H
UMAN 

8.27 6 FOXC1,
NFE2L3,
NFIB 

-1 0.499884
987 

9340 8848 0 3 NoRelto
TNBC 

0 0.29 0.29 

P26358| 
DNMT1_HU
MAN 

10.22 6 FOXC1,
NFIB 

-1 0.591521
458 

2445 190 0 3 NoRelto
TNBC 

0 0.28 0.28 



 

252   

P04406| 
G3P_HUM
AN 

60.34 16 FOXC1,
NFE2L3,
NFIB 

0.0008 0.758192
562 

682 18 0 1 NoRelto
TNBC 

0 0.25 0.25 

P23526| 
SAHH_HU
MAN 

23.84 6 FOXC1,
NFE2L3,
NFIB 

-1 0.217309
025 

699 307 0 2 NoRelto
TNBC 

0 0.21 0.21 

P62937| 
PPIA_HUM
AN 

44.77 14 FOXC1,
NFE2L3,
NFIB 

0.0072 0.042381
598 

765 378 0 8 NoRelto
TNBC 

0 0.20 0.20 

P21333| 
FLNA_HUM
AN 

54.99 15 FOXC1,
NFE2L3,
NFIB 

0.005 0.174363
056 

291 291 0 0 Regulati
on 

3 0.18 0.19 

P07437| 
TBB5_HUM
AN 

92.94 18 FOXC1,
NFE2L3,
NFIB 

0.0299 0.542417
078 

781 173 0 30 NoRelto
TNBC 

0 0.18 0.18 

P19338| 
NUCL_HU
MAN 

63.5 17 FOXC1,
NFE2L3,
NFIB 

0.0002 0.312157
18 

0 0 0 1 CellExpr
ession 

1 0.16 0.17 

P11387| 
TOP1_HUM
AN 

26.76 10 FOXC1,
NFE2L3,
NFIB 

0.0127 0.012205
904 

1623 285 0 50 NoRelto
TNBC 

0 0.14 0.14 

Q16831| 
UPP1_HUM
AN 

0.73 7 FOXC1,
NFE2L3,
NFIB 

-1 0.005089
477 

301 79 0 2 NoRelto
TNBC 

0 0.14 0.14 

P12268| 
IMDH2_HU
MAN 

20.19 11 FOXC1,
NFE2L3,
NFIB 

0.0061 -
0.411410
207 

2058 1386 0 0 NoRelto
TNBC 

0 0.14 0.14 

P39748| 
FEN1_HUM
AN 

23.84 8 FOXC1,
NFE2L3,
NFIB 

-1 0.617906
432 

18871 851 0 0 NoRelto
TNBC 

0 0.14 0.14 

Q9NZM1| 
MYOF_HU

3.65 8 FOXC1,
NFE2L3,

-1 -
0.446525

0 0 0 0 Regulati
on 

1 0.12 0.13 
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MAN NFIB 596 
Q9H1E3| 
NUCKS_H
UMAN 

10.71 8 FOXC1,
NFE2L3,
NFIB 

-1 0.104070
36 

2244 284 3 0 NoRelto
TNBC 

0 0.13 0.13 

P08621| 
RU17_HUM
AN 

26.28 15 FOXC1,
NFE2L3,
NFIB 

0.0043 -
0.223690
007 

0 0 0 1 NoRelto
TNBC 

0 0.13 0.13 

Q9BXS6| 
NUSAP_HU
MAN 

4.62 6 FOXC1,
NFIB 

-1 0.627675
524 

0 0 0 0 Regulati
on 

3 0.12 0.13 

P06748| 
NPM_HUM
AN 

61.31 18 FOXC1,
NFE2L3,
NFIB 

0.0007  13557 5708 21 0 NoRelto
TNBC 

0 0.12 0.12 

P46013| 
KI67_HUM
AN 

19.46 9 FOXC1,
NFE2L3,
NFIB 

-1 0.426718
768 

0 0 0 0 Regulati
on 

6 0.12 0.12 

P06733| 
ENOA_HU
MAN 

54.26 17 FOXC1,
NFE2L3,
NFIB 

0.0071 0.794191
533 

2 1 0 0 NoRelto
TNBC 

0 0.10 0.10 

P08670| 
VIME_HUM
AN 

62.53 18 FOXC1,
NFE2L3,
NFIB 

0.0009 0.437449
241 

1 0 0 1 NoRelto
TNBC 

0 0.10 0.10 

P02545| 
LMNA_HU
MAN 

22.38 18 FOXC1,
NFE2L3,
NFIB 

0.0058 0.310864
73 

36141 6147 0 0 NoRelto
TNBC 

0 0.1 0.1 

P17980| 
PRS6A_HU
MAN 

27.49 7 FOXC1,
NFE2L3,
NFIB 

-1 0.167019
816 

125 83 0 0 NoRelto
TNBC 

0 0.1 0.1 

P27694| 
RFA1_HUM
AN 

20.44 9 FOXC1,
NFE2L3,
NFIB 

-1 0.341587
719 

245 56 0 0 NoRelto
TNBC 

0 0.1 0.1 
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P21980| 
TGM2_HU
MAN 

1.46 8 FOXC1,
NFE2L3,
NFIB 

-1 0.185262
094 

7192 416 0 0 NoRelto
TNBC 

0 0.09 0.09 

P11940| 
PABP1_HU
MAN 

41.85 13 FOXC1,
NFE2L3,
NFIB 

0.0081 0.411681
485 

843 314 0 0 NoRelto
TNBC 

0 0.09 0.09 

P38919| 
IF4A3_HU
MAN 

35.77 16 FOXC1,
NFE2L3,
NFIB 

0 0.138252
245 

56 27 0 0 NoRelto
TNBC 

0 0.09 0.09 

Q14683| 
SMC1A_HU
MAN 

19.22 7 FOXC1,
NFE2L3,
NFIB 

-1 -
0.141746
662 

0 0 0 0 Regulati
on 

1 0.09 0.09 

P41091| 
IF2G_HUM
AN 

22.14 7 FOXC1,
NFE2L3,
NFIB 

-1 0.133219
699 

8 8 0 0 NoRelto
TNBC 

0 0.09 0.09 

P16403| 
H12_HUMA
N 

73.24 18 FOXC1,
NFE2L3,
NFIB 

0.0153 -
0.476225
517 

11 8 0 0 NoRelto
TNBC 

0 0.09 0.09 

Q9NQ55| 
SSF1_HUM
AN 

10.22 7 FOXC1,
NFE2L3,
NFIB 

-1  40 6 0 0 NoRelto
TNBC 

0 0.09 0.09 

Q15717| 
ELAV1_HU
MAN 

24.57 15 FOXC1,
NFE2L3,
NFIB 

0.0006 0.177883
213 

15 3 0 0 NoRelto
TNBC 

0 0.09 0.09 

Q07666| 
KHDR1_HU
MAN 

33.58 17 FOXC1,
NFE2L3,
NFIB 

0.0014 0.067469
558 

36 36 0 0 NoRelto
TNBC 

0 0.08 0.08 

Q71U36| 
TBA1A_HU
MAN 

94.65 13 FOXC1,
NFE2L3,
NFIB 

0.0281 0.338243
876 

728 152 2 0 NoRelto
TNBC 

0 0.08 0.08 

O43172| 
PRP4_HUM

12.17 6 FOXC1,
NFIB 

-1 0.150382
745 

5 3 0 0 NoRelto
TNBC 

0 0.08 0.08 
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AN 
P60842| 
IF4A1_HU
MAN 

46.23 14 FOXC1,
NFE2L3,
NFIB 

0  8 3 0 0 NoRelto
TNBC 

0 0.08 0.08 

P68104| 
EF1A1_HU
MAN 

85.16 18 FOXC1,
NFE2L3,
NFIB 

0.0061 0.047344
463 

11 10 0 1 NoRelto
TNBC 

0 0.08 0.08 

Q15365| 
PCBP1_HU
MAN 

47.2 15 FOXC1,
NFE2L3,
NFIB 

0.0013 0.143778
023 

2 2 0 0 NoRelto
TNBC 

0 0.08 0.08 

P08865| 
RSSA_HU
MAN 

38.93 16 FOXC1,
NFE2L3,
NFIB 

0 0.065765
317 

1 1 0 0 NoRelto
TNBC 

0 0.08 0.08 

P23528| 
COF1_HU
MAN 

47.69 16 FOXC1,
NFE2L3,
NFIB 

0.0019 0.208933
807 

1 1 0 0 NoRelto
TNBC 

0 0.07 0.07 

P08238| 
HS90B_HU
MAN 

67.4 18 FOXC1,
NFE2L3,
NFIB 

0.0239 0.181627
528 

1813 959 0 0 NoRelto
TNBC 

0 0.07 0.07 

O00422| 
SAP18_HU
MAN 

14.36 9 FOXC1,
NFE2L3,
NFIB 

-1 -
0.774650
629 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q14011| 
CIRBP_HU
MAN 

26.03 9 FOXC1,
NFE2L3,
NFIB 

-1 -
1.110894
726 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P11532| 
DMD_HUM
AN 

1.22 10 FOXC1,
NFE2L3,
NFIB 

0.025 0.056003
077 

0 0 0 3 NoRelto
TNBC 

0 0.06 0.06 

Q9ULW0| 
TPX2_HUM
AN 

10.71 9 FOXC1,
NFE2L3,
NFIB 

-1 1.099977
504 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 
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P07477| 
TRY1_HUM
AN 

15.82 18 FOXC1,
NFE2L3,
NFIB 

0.0064 -
0.000892
578 

8477 3478 0 0 NoRelto
TNBC 

0 0.06 0.06 

P46939| 
UTRO_HU
MAN 

6.57 13 FOXC1,
NFE2L3,
NFIB 

0.0039 -
0.043355
989 

0 0 0 2 NoRelto
TNBC 

0 0.06 0.06 

Q9BZE4| 
NOG1_HU
MAN 

13.63 9 FOXC1,
NFE2L3,
NFIB 

-1 0.965905
846 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P22626| 
ROA2_HU
MAN 

63.75 18 FOXC1,
NFE2L3,
NFIB 

0.0013 -
0.096630
363 

1 1 0 0 NoRelto
TNBC 

0 0.06 0.06 

O75369| 
FLNB_HUM
AN 

41.61 14 FOXC1,
NFE2L3,
NFIB 

0.0299 -
0.713406
086 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P04083| 
ANXA1_HU
MAN 

9.98 7 FOXC1,
NFE2L3,
NFIB 

-1 0.818941
475 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P08729| 
K2C7_HUM
AN 

37.71 18 FOXC1,
NFE2L3,
NFIB 

0.0115 0.811377
915 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P20290| 
BTF3_HUM
AN 

8.52 9 FOXC1,
NFE2L3,
NFIB 

0.0328 -
0.527273
631 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q6VAB6| 
KSR2_HUM
AN 

1 13 FOXC1,
NFE2L3,
NFIB 

0.014 -
0.035123
262 

20 17 0 0 NoRelto
TNBC 

0 0.06 0.06 

P84243| 
H33_HUMA
N 

33.82 18 FOXC1,
NFE2L3,
NFIB 

0.0018 -
0.499038
876 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

O60832| 
DKC1_HU

18 8 FOXC1,
NFE2L3,

-1 0.729023
914 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 
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MAN NFIB 
P09651| 
ROA1_HU
MAN 

65.21 17 FOXC1,
NFE2L3,
NFIB 

0.0001 0.065488
567 

1 1 0 0 NoRelto
TNBC 

0 0.06 0.06 

P17096| 
HMGA1_H
UMAN 

14.84 6 FOXC1,
NFE2L3,
NFIB 

-1 0.021796
769 

0 0 0 0 Regulati
on 

1 0.06 0.06 

Q7L4I2| 
RSRC2_HU
MAN 

14.36 8 FOXC1,
NFE2L3,
NFIB 

-1 -
0.084986
913 

0 0 0 0 Regulati
on 

1 0.06 0.06 

O75607| 
NPM3_HU
MAN 

11.92 14 FOXC1,
NFE2L3,
NFIB 

0.0098 0.703137
464 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q14980| 
NUMA1_H
UMAN 

18.98 10 FOXC1,
NFE2L3,
NFIB 

0.0058 -
0.459706
335 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P06703| 
S10A6_HU
MAN 

7.06 8 FOXC1,
NFE2L3,
NFIB 

-1 0.664536
461 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q9H7B2| 
RPF2_HUM
AN 

6.57 7 FOXC1,
NFE2L3,
NFIB 

-1 0.652865
116 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P49207| 
RL34_HUM
AN 

20.44 18 FOXC1,
NFE2L3,
NFIB 

0.0021 0.651378
428 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P40429| 
RL13A_HU
MAN 

35.04 14 FOXC1,
NFE2L3,
NFIB 

0.0027 -
0.396639
156 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

O00148| 
DX39A_HU
MAN 

33.58 12 FOXC1,
NFE2L3,
NFIB 

0 0.638998
333 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 
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P24043| 
LAMA2_HU
MAN 

0.24 6 FOXC1,
NFE2L3,
NFIB 

-1 -
0.389470
058 

1 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q9NWH9| 
SLTM_HU
MAN 

11.44 8 FOXC1,
NFE2L3,
NFIB 

-1 -
0.385685
743 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q9NX58| 
LYAR_HUM
AN 

10.71 7 FOXC1,
NFE2L3,
NFIB 

-1 0.619657
015 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P53999| 
TCP4_HUM
AN 

38.93 10 FOXC1,
NFE2L3,
NFIB 

0.0063 -
0.369622
243 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P22087| 
FBRL_HUM
AN 

39.17 15 FOXC1,
NFE2L3,
NFIB 

0.0014 0.606127
189 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P37108| 
SRP14_HU
MAN 

19.46 6 FOXC1,
NFE2L3,
NFIB 

-1 -
0.360199
008 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q16666| 
IF16_HUM
AN 

2.19 6 FOXC1,
NFE2L3,
NFIB 

-1 0.595680
282 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P15311| 
EZRI_HUM
AN 

27.01 13 FOXC1,
NFE2L3,
NFIB 

0.0306 -
0.346938
262 

16 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P13611| 
CSPG2_HU
MAN 

0.49 17 FOXC1,
NFE2L3,
NFIB 

0.0006 -
0.342411
417 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P31949| 
S10AB_HU
MAN 

9.49 6 FOXC1,
NFE2L3,
NFIB 

-1 0.576932
267 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q969Q0| 
RL36L_HU

18.25 17 FOXC1,
NFE2L3,

0.0176 -
0.303341

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 
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MAN NFIB 162 
Q15061| 
WDR43_H
UMAN 

6.57 6 FOXC1,
NFE2L3,
NFIB 

-1 0.546171
18 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P46087| 
NOP2_HU
MAN 

22.14 8 FOXC1,
NFE2L3,
NFIB 

-1 0.529283
327 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q9H6F5| 
CCD86_HU
MAN 

5.6 7 FOXC1,
NFE2L3,
NFIB 

-1 0.527909
97 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q9NW13| 
RBM28_HU
MAN 

13.14 7 FOXC1,
NFE2L3,
NFIB 

-1 0.524771
825 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

O15027| 
SC16A_HU
MAN 

9.98 6 NFE2L3,
NFIB 

-1 -
0.568319
769 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P61326| 
MGN_HUM
AN 

9 9 FOXC1,
NFE2L3,
NFIB 

-1 0.509331
947 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q8TDN6| 
BRX1_HUM
AN 

16.3 12 FOXC1,
NFE2L3,
NFIB 

0.0031 0.501433
548 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

O60869| 
EDF1_HUM
AN 

19.46 10 FOXC1,
NFE2L3,
NFIB 

0.0037 -
0.256123
3 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P62308| 
RUXG_HU
MAN 

11.92 12 FOXC1,
NFE2L3,
NFIB 

0.0019 0.498979
714 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q9Y2X3| 
NOP58_HU
MAN 

21.9 9 FOXC1,
NFE2L3,
NFIB 

-1 0.495899
605 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 
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Q92979| 
NEP1_HUM
AN 

5.84 8 FOXC1,
NFE2L3,
NFIB 

-1 0.470572
942 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

O00571| 
DDX3X_HU
MAN 

51.58 16 FOXC1,
NFE2L3,
NFIB 

0.0007 0.022897
04 

80 22 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q6ZNL6| 
FGD5_HU
MAN 

1 17 FOXC1,
NFE2L3,
NFIB 

0.0002 -
0.214139
015 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

O95232| 
LC7L3_HU
MAN 

29.68 8 FOXC1,
NFE2L3,
NFIB 

-1 -
0.212021
667 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 

P68363| 
TBA1B_HU
MAN 

94.65 18 FOXC1,
NFE2L3,
NFIB 

0.0373 0.314564
92 

716 142 0 0 NoRelto
TNBC 

0 0.06 0.06 

P11142| 
HSP7C_HU
MAN 

96.35 18 FOXC1,
NFE2L3,
NFIB 

0.0067 0.285458
532 

161 34 0 0 NoRelto
TNBC 

0 0.06 0.06 

Q9NWT1| 
PK1IP_HU
MAN 

5.35 6 FOXC1,
NFIB 

-1 0.529972
805 

0 0 0 0 NoRelto
TNBC 

0 0.06 0.06 
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APPENDIX H: MTA2 AND CDK1 COMMON PEAKS IDENTIFIED THROUGH CHIP-SEQ ANALYSIS 
 

Seq 

Names 

Start End Score Seq 

Names 

Start End Where Symbol 

chr1 55429434 55429658 0.71886 chr1 55428001 55431001 enhancer NA 

chr1 59151082 59151315 0.61045 chr1 59133331 59151119 intron HSD52 

chr1 59151082 59151315 0.61045 chr1 59133331 59198182 intron HSD52 

chr1 59151082 59151315 0.61045 chr1 59151120 59151241 exon HSD52 

chr1 59151082 59151315 0.61045 chr1 59133331 59203094 intron HSD52 

chr1 59151082 59151315 0.61045 chr1 59133331 59208010 intron HSD52 

chr1 59151082 59151315 0.61045 chr1 59132582 59184430 intron LINC01358 

chr1 59151082 59151315 0.61045 chr1 59150202 59152199 promoter_flanking_region NA 

chr1 85298209 85298495 1.6266 chr1 85277739 85376765 intron RP11-131L23.1 

chr1 85298209 85298495 1.6266 chr1 85297002 85298999 promoter_flanking_region NA 

chr1 211259020 211259300 0.5961 chr1 211258491 211260107 intron RCOR3 

chr1 211259020 211259300 0.5961 chr1 211258526 211259578 intron RCOR3 

chr1 211259020 211259300 0.5961 chr1 211259279 211259560 five_prime_utr RCOR3 

chr1 211259020 211259300 0.5961 chr1 211259279 211259726 exon RCOR3 

chr1 211259020 211259300 0.5961 chr1 211258000 211261401 promoter NA 
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chr10 15200669 15200938 0.60408 chr10 15200002 15202999 promoter_flanking_region NA 

chr10 31940989 31941232 0.48901 chr10 31939802 31941999 promoter_flanking_region NA 

chr10 78520955 78521190 1.22506 chr10 78249071 78525329 intron LINC00856 

chr10 78520955 78521190 1.22506 chr10 78179247 78525329 intron LINC00856 

chr10 78520955 78521190 1.22506 chr10 78406700 78525329 intron RP11-90J7.3 

chr10 78520955 78521190 1.22506 chr10 78238305 78528750 intron RP11-90J7.3 

chr10 78520955 78521190 1.22506 chr10 78466179 78525329 intron RP11-90J7.3 

chr10 78520955 78521190 1.22506 chr10 78521001 78521400 ctcf_binding_site NA 

chr10 78520955 78521190 1.22506 chr10 78520955 78521469 open_chromatin NA 

chr10 110414567 110415026 0.10265 chr10 110413402 110415999 promoter_flanking_region NA 

chr10 114271671 114271909 0.96656 chr10 114261296 114272739 intron VWA2 

chr10 114271671 114271909 0.96656 chr10 114271201 114272401 enhancer NA 

chr10 119253831 119254068 0.30664 chr10 119207970 119326515 intron GRK5 

chr10 119253831 119254068 0.30664 chr10 119250002 119255599 promoter_flanking_region NA 

chr10 119667659 119667874 0.04108 chr10 119651856 119669850 intron BAG3 

chr10 119667659 119667874 0.04108 chr10 119657569 119669850 intron BAG3 

chr10 119667659 119667874 0.04108 chr10 119666802 119668999 promoter_flanking_region NA 

chr11 34371503 34371726 0.05178 chr11 34371165 34372399 promoter_flanking_region NA 

chr11 69122770 69123097 0.11619 chr11 69121672 69124199 promoter_flanking_region NA 

chr11 125079116 125079383 0.38631 chr11 125079112 125079247 exon,cds SLC37A2 

chr11 125079116 125079383 0.38631 chr11 125079248 125079683 intron SLC37A2 
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chr11 130383658 130383868 0.39025 chr11 130369043 130393494 intron RP11-121M22.1 

chr11 130383658 130383868 0.39025 chr11 130383400 130384600 enhancer NA 

chr12 26274766 26275073 1.30365 chr12 26252921 26287482 intron SSPN 

chr12 26274766 26275073 1.30365 chr12 26252921 26298264 intron SSPN 

chr12 26274766 26275073 1.30365 chr12 26231986 26319601 intron RP11-283G6.5 

chr12 26274766 26275073 1.30365 chr12 26214778 26326383 intron RP11-283G6.4 

chr12 26274766 26275073 1.30365 chr12 26273901 26274900 five_prime_flank RP11-283G6.6 

chr12 26274766 26275073 1.30365 chr12 26273802 26276199 promoter_flanking_region NA 

chr12 85465093 85465334 0.84325 chr12 85465073 85465589 open_chromatin NA 

chr12 124233414 124233654 0.14343 chr12 124149792 124311817 intron FAM101A 

chr12 124233414 124233654 0.14343 chr12 124149792 124235544 intron FAM101A 

chr12 124233414 124233654 0.14343 chr12 124232402 124234611 promoter_flanking_region NA 

chr14 22556427 22556668 0.98877 chr14 22555640 22556639 five_prime_flank AE000662.92 

chr14 22556427 22556668 0.98877 chr14 22556640 22556842 exon AE000662.92 

chr14 22556427 22556668 0.98877 chr14 22556311 22556522 exon AE000662.93 

chr14 22556427 22556668 0.98877 chr14 22556523 22556791 intron AE000662.93 

chr14 64806588 64806828 0.43819 chr14 64805091 64822946 intron SPTB 

chr14 64806588 64806828 0.43819 chr14 64806202 64807029 promoter_flanking_region NA 

chr14 95265501 95265711 0.36738 chr14 95230134 95307513 intron CLMN 

chr14 95265501 95265711 0.36738 chr14 95230134 95319710 intron CLMN 

chr14 95265501 95265711 0.36738 chr14 95260603 95296133 intron CLMN 
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chr14 95265501 95265711 0.36738 chr14 95264402 95266399 promoter_flanking_region NA 

chr16 48964320 48964590 0.66186 chr16 48963262 48964760 promoter_flanking_region NA 

chr16 86951884 86952179 0.94826 chr16 86951601 86953199 promoter_flanking_region NA 

chr17 15273147 15273354 1.12975 chr17 15272291 15273290 five_prime_flank AC005703.3 

chr17 15273147 15273354 1.12975 chr17 15272719 15274614 promoter_flanking_region NA 

chr17 16381345 16381554 0.23606 chr17 16381341 16381515 exon,five_prime_utr UBB 

chr17 16381345 16381554 0.23606 chr17 16381465 16381679 exon,five_prime_utr UBB 

chr17 16381345 16381554 0.23606 chr17 16381516 16381901 intron UBB 

chr17 16381345 16381554 0.23606 chr17 16381030 16381901 intron UBB 

chr17 16381345 16381554 0.23606 chr17 16381037 16381901 intron UBB 

chr17 16381345 16381554 0.23606 chr17 16381290 16381462 exon,five_prime_utr UBB 

chr17 16381345 16381554 0.23606 chr17 16381185 16381901 intron UBB 

chr17 16381345 16381554 0.23606 chr17 16381185 16382358 intron UBB 

chr17 16381345 16381554 0.23606 chr17 16381463 16381901 intron UBB 

chr17 16381345 16381554 0.23606 chr17 16381152 16382151 three_prime_flank RP11-138I1.4 

chr17 16381345 16381554 0.23606 chr17 16380200 16382001 promoter NA 

chr17 55433073 55433322 0.2755 chr17 55432602 55434599 promoter_flanking_region NA 

chr17 59756148 59756477 0.26479 chr17 59735474 59764970 intron VMP1 

chr17 59756148 59756477 0.26479 chr17 59735474 59808795 intron VMP1 

chr17 59756148 59756477 0.26479 chr17 59738948 59765051 intron VMP1 

chr17 59756148 59756477 0.26479 chr17 59738948 59764970 intron VMP1 



Appendices 

 265 

chr17 59756148 59756477 0.26479 chr17 59752002 59758199 promoter_flanking_region NA 

chr17 59786676 59786964 0.44025 chr17 59735474 59808795 intron VMP1 

chr17 59786676 59786964 0.44025 chr17 59773886 59808795 intron VMP1 

chr17 59786676 59786964 0.44025 chr17 59782002 59793599 promoter_flanking_region NA 

chr17 67441296 67441495 0.80391 chr17 67379393 67532801 intron PITPNC1 

chr17 67441296 67441495 0.80391 chr17 67378203 67532801 intron PITPNC1 

chr17 67441296 67441495 0.80391 chr17 67440002 67444799 promoter_flanking_region NA 

chr17 77125426 77125725 1.02836 chr17 77089272 77142645 intron SEC14L1 

chr17 77125426 77125725 1.02836 chr17 77093348 77142645 intron SEC14L1 

chr17 77125426 77125725 1.02836 chr17 77117402 77130365 promoter_flanking_region NA 

chr19 16877019 16877260 0.92906 chr19 16876939 16877639 exon SIN3B 

chr19 16877019 16877260 0.92906 chr19 16877162 16877335 exon SIN3B 

chr19 16877019 16877260 0.92906 chr19 16876579 16877544 intron SIN3B 

chr19 16877019 16877260 0.92906 chr19 16876953 16877375 open_chromatin NA 

chr19 43562801 43563012 0.06599 chr19 43561021 43574909 intron XRCC1 

chr19 43562801 43563012 0.06599 chr19 43561021 43575407 intron XRCC1 

chr19 43562801 43563012 0.06599 chr19 43561021 43580364 intron XRCC1 

chr19 43562801 43563012 0.06599 chr19 43554805 43574909 intron XRCC1 

chr19 43562801 43563012 0.06599 chr19 43561021 43592867 intron L34079.2 

chr19 43562801 43563012 0.06599 chr19 43561602 43564599 promoter_flanking_region NA 

chr2 10452293 10452650 0.91955 chr2 10452319 10452469 exon AC007249.3 
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chr2 10452293 10452650 0.91955 chr2 10451319 10452318 five_prime_flank AC007249.3 

chr2 10452293 10452650 0.91955 chr2 10452470 10453868 intron AC007249.3 

chr2 10452293 10452650 0.91955 chr2 10451328 10452327 three_prime_flank RP11-320M2.1 

chr2 10452293 10452650 0.91955 chr2 10452001 10452800 enhancer NA 

chr2 19911810 19912027 0.51074 chr2 19910260 19913708 exon WDR35 

chr2 19911810 19912027 0.51074 chr2 19910260 19913557 three_prime_utr WDR35 

chr2 19911810 19912027 0.51074 chr2 19911698 19912308 tf_binding_site NA 

chr2 28584009 28584215 0.37252 chr2 28582506 28585760 intron PLB1 

chr2 28584009 28584215 0.37252 chr2 28582802 28585599 promoter_flanking_region NA 

chr2 37776692 37776940 0.24589 chr2 37775401 37777001 enhancer NA 

chr2 38396148 38396347 0.79317 chr2 38395869 38396531 open_chromatin NA 

chr2 201798315 201798548 0.9522 chr2 201790661 201800783 intron CDK15 

chr2 201798315 201798548 0.9522 chr2 201790661 201806428 intron CDK15 

chr2 201798315 201798548 0.9522 chr2 201798090 201799244 promoter_flanking_region NA 

chr22 38313384 38313698 1.43467 chr22 38303249 38314081 intron CSNK1E 

chr3 31969003 31969283 0.45962 chr3 31879831 32046490 intron OSBPL10 

chr3 31969003 31969283 0.45962 chr3 31879831 31980898 intron OSBPL10 

chr3 31969003 31969283 0.45962 chr3 31879831 31969402 intron OSBPL10 

chr3 31969003 31969283 0.45962 chr3 31876513 31980898 intron OSBPL10 

chr3 31969003 31969283 0.45962 chr3 31967202 31970399 promoter_flanking_region NA 

chr3 36701759 36702010 0.19312 chr3 36701735 36702414 open_chromatin NA 
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chr3 48595608 48595807 0.41569 chr3 48595268 48596267 five_prime_flank COL7A1 

chr3 98922857 98923207 0.65577 chr3 98904995 99018055 intron CTD-2021J15.1 

chr3 195105423 195105624 0.21739 chr3 195070112 195122025 intron XXYLT1 

chr3 195105423 195105624 0.21739 chr3 195070112 195153886 intron XXYLT1 

chr3 195105423 195105624 0.21739 chr3 195070112 195156448 intron XXYLT1 

chr3 195105423 195105624 0.21739 chr3 195105346 195105771 tf_binding_site NA 

chr4 5038240 5038466 0.86428 chr4 5036202 5038799 promoter_flanking_region NA 

chr4 123832418 123832634 1.06512 chr4 123829188 123863574 intron LINC01091 

chr4 123832418 123832634 1.06512 chr4 123829188 123925183 intron LINC01091 

chr4 123832418 123832634 1.06512 chr4 123830802 123834399 promoter_flanking_region NA 

chr5 14268231 14268525 0.86046 chr5 14143883 14270824 intron TRIO 

chr5 14268231 14268525 0.86046 chr5 14183960 14270824 intron TRIO 

chr5 14268231 14268525 0.86046 chr5 14263202 14270804 promoter_flanking_region NA 

chr5 42985834 42986057 0.14794 chr5 42984402 42986399 promoter_flanking_region NA 

chr5 132073620 132073829 0.12371 chr5 132072790 132073789 five_prime_flank CSF2 

chr5 132073620 132073829 0.12371 chr5 132073790 132073823 five_prime_utr CSF2 

chr5 132073620 132073829 0.12371 chr5 132073790 132073982 exon CSF2 

chr5 132073620 132073829 0.12371 chr5 132073824 132073982 cds CSF2 

chr5 150477404 150477603 1.49474 chr5 150475760 150485228 intron CTC-367J11.1 

chr5 150477404 150477603 1.49474 chr5 150476801 150478199 promoter_flanking_region NA 

chr5 173455362 173455603 0.68005 chr5 173451202 173457799 promoter_flanking_region NA 
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chr5 173457001 173457215 0.40407 chr5 173451202 173457799 promoter_flanking_region NA 

chr6 17417814 17418019 1.77466 chr6 17393747 17421554 intron CAP2 

chr6 17417814 17418019 1.77466 chr6 17417202 17419599 promoter_flanking_region NA 

chr6 33840183 33840460 1.10424 chr6 33839402 33841076 promoter_flanking_region NA 

chr6 42879722 42879977 0.38534 chr6 42879618 42879951 exon RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879635 42879937 five_prime_utr RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879682 42879937 five_prime_utr RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879682 42879951 exon RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879635 42879951 exon RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879639 42879951 exon RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879929 42879951 exon RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879933 42879937 five_prime_utr RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879920 42879951 exon RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879924 42879951 exon RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879933 42879951 exon RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879938 42879951 cds RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879952 42880557 intron RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879952 42880860 intron RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879952 42883318 intron RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879952 42883450 intron RPL7L1 

chr6 42879722 42879977 0.38534 chr6 42879200 42881001 promoter NA 
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chr6 44043158 44043368 0.49055 chr6 44001117 44074496 intron RP5-1120P11.1 

chr6 44043158 44043368 0.49055 chr6 44041202 44044807 promoter_flanking_region NA 

chr6 47135752 47135954 0.73707 chr6 47134002 47136458 promoter_flanking_region NA 

chr6 63635791 63636096 0.32917 chr6 63635823 63636150 exon,five_prime_utr PHF3 

chr6 63635791 63636096 0.32917 chr6 63634820 63635819 five_prime_flank PHF3 

chr6 63635791 63636096 0.32917 chr6 63635820 63636150 exon,five_prime_utr PHF3 

chr6 63635791 63636096 0.32917 chr6 63635825 63636150 exon,five_prime_utr PHF3 

chr6 63635791 63636096 0.32917 chr6 63635836 63636150 exon,five_prime_utr PHF3 

chr6 63635791 63636096 0.32917 chr6 63635400 63637801 promoter NA 

chr6 71248478 71248706 1.66823 chr6 71233658 71284859 intron RP11-154D6.1 

chr6 71248478 71248706 1.66823 chr6 71247802 71251799 promoter_flanking_region NA 

chr6 73803547 73803780 1.0143 chr6 73803302 73803965 intron CD109 

chr6 73803547 73803780 1.0143 chr6 73803302 73806843 intron CD109 

chr6 73803547 73803780 1.0143 chr6 73803200 73804201 enhancer NA 

chr6 144415880 144416268 0.11308 chr6 144403185 144421877 intron UTRN 

chr6 144415880 144416268 0.11308 chr6 144415601 144416599 promoter_flanking_region NA 

chr7 2255729 2255970 0.47301 chr7 2255170 2256873 intron SNX8 

chr7 2255729 2255970 0.47301 chr7 2255819 2256190 open_chromatin NA 

chr8 8288569 8288827 0.46645 chr8 8286202 8289918 promoter_flanking_region NA 

chr8 26451397 26451614 0.19394 chr8 26408377 26505306 intron BNIP3L 

chr8 26451397 26451614 0.19394 chr8 26447801 26452278 promoter_flanking_region NA 
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chr8 41221552 41221766 0.16648 chr8 41221391 41222128 open_chromatin NA 

chr8 82257863 82258095 0.4962 chr8 82257704 82258628 open_chromatin NA 

chr8 117811330 117811531 0.08973 chr8 117807378 117812871 intron EXT1 

chr8 117811330 117811531 0.08973 chr8 117810955 117811589 open_chromatin NA 

chr8 125513058 125513395 0.69125 chr8 125473315 125540909 intron RP11-136O12.2 

chr8 125513058 125513395 0.69125 chr8 125511802 125514199 promoter_flanking_region NA 

chr8 127898887 127899098 0.3132 chr8 127796009 127939507 intron PVT1 

chr8 127898887 127899098 0.3132 chr8 127890999 127932464 intron PVT1 

chr8 127898887 127899098 0.3132 chr8 127890999 127989161 intron PVT1 

chr8 127898887 127899098 0.3132 chr8 127890999 127939507 intron PVT1 

chr8 127898887 127899098 0.3132 chr8 127898202 127901599 promoter_flanking_region NA 

chr8 133217883 133218125 0.10502 chr8 133213144 133220580 intron WISP1 

chr8 133217883 133218125 0.10502 chr8 133213144 133225389 intron WISP1 

chr8 133217883 133218125 0.10502 chr8 133213144 133227410 intron WISP1 

chr8 133217883 133218125 0.10502 chr8 133191214 133225389 intron WISP1 

chr8 133217883 133218125 0.10502 chr8 133191214 133227410 intron WISP1 

chr8 133217883 133218125 0.10502 chr8 133216202 133218599 promoter_flanking_region NA 

chr8 143940293 143940582 1.96392 chr8 143938693 143946384 intron PLEC 

chr8 143940293 143940582 1.96392 chr8 143938693 143958594 intron PLEC 

chr8 143940293 143940582 1.96392 chr8 143938693 143973402 intron PLEC 

chr8 143940293 143940582 1.96392 chr8 143938693 143975176 intron PLEC 
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chr8 143940293 143940582 1.96392 chr8 143938693 143950183 intron PLEC 

chr8 143940293 143940582 1.96392 chr8 143938693 143942391 intron PLEC 

chr8 143940293 143940582 1.96392 chr8 143938693 143943778 intron PLEC 

chr8 143940293 143940582 1.96392 chr8 143938693 143944647 intron PLEC 

chr8 143940293 143940582 1.96392 chr8 143938693 143946349 intron PLEC 

chr8 143940293 143940582 1.96392 chr8 143938693 143953725 intron PLEC 

chr1 156505014 156505238 0.30513 NA NA NA NA NA 

chr5 143246065 143246322 0.4611 NA NA NA NA NA 

chr6 1481425 1481651 0.09676 NA NA NA NA NA 


