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Abstract

In the effort to introduce fuel cell technology in the field of decentral-

ized and mobile power generators, a hydrocarbon reformer to syngas

seems to be the way for the market uptake. In this thesis, a po-

tential technology is developed and investigated, in order to convert

commercial liquid fuel (diesel, kerosene and biodiesel) to syngas. The

fundamental concept is to oxidise the fuel in a oxygen depleted envi-

ronment, obtaining hydrogen and carbon monoxide as main products

of the reaction. In order to extend the flammability limit of hydro-

carbon/air mixtures, the rich combustion experiments have been car-

ried out in a two-layer porous medium combustor, which stabilises a

flame at the matrix interface and recirculates the enthalpy of the hot

products in order to enhance the reaction rates at ultra-rich equiva-

lence ratio. This thesis demonstrates the feasibility of the concept, by

exploring characteristic parameters for a compact, reliable and cost

effective device.

Specifically, a range of equivalence ratios, thermal loads and porous

materials have been examined. n-heptane was successfully reformed

up to an equivalence ratio of 3, reaching a conversion efficiency (based

on the lower heating value of H2 and CO over the fuel input) up to

75% for a packed bed of alumina beads. Thermal loads from P=2

to 12 kW at ϕ=2.0 demonstrated that heat losses can be reduced to

10%.

Similarly, diesel, kerosene and bio-diesel were reformed to syngas in

a Zirconia foam burner with conversion efficiency over 60%. The

effect of different burners, thermal loads and equivalence ratios have



also been assessed for these commercial fuels, leading to equivalent

conclusions.

A preliminary attempt to reduce the content of CO and hydrocarbons

in the reformate has been also performed using commercial steam re-

forming and water-gas shift reaction catalysts, obtaining encouraging

results. Finally, soot emission has been assessed, demonstrating par-

ticle formation for all the fuels above ϕ=2.0, with biodiesel showing

the lowest soot formation tendency among all the fuels tested.



List of Publications

Two journal papers and two conference papers have been published

about the results described in this thesis:

• A. Pastore and E. Mastorakos. “Rich n-heptane and Diesel Com-

bustion in Porous Media”, Experimental Thermal and Fluid Sci-

ence, 34:359-365, 2010.

• A. Pastore and E. Mastorakos. “Syngas Production from Liquid

Fuels in a Non-Catalytic Porous Burner”, Fuel, Article in Press,

2010.

• A. Pastore and E. Mastorakos. “Syngas Production from Diesel

Non-Catalytic Partial Oxidation in Inert Porous Media”, Pro-

ceedings of the 4th International Conference on Application of

Porous Media, Istanbul, 2009.

• A. Pastore and E. Mastorakos. “Non-Catalytic Multi-Fuel Re-

former for Syngas Production for Fuel Cell Applications”, AiChE

Spring Meeting, San Antonio, 2010.



Contents

Nomenclature xix

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fuel reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Small-scale reforming . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Steam reforming . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Partial oxidation . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4.1 Catalytic POX . . . . . . . . . . . . . . . . . . . 10

1.2.4.2 Thermal POX . . . . . . . . . . . . . . . . . . . . 11

1.2.5 Autothermal reforming . . . . . . . . . . . . . . . . . . . . 12

1.2.6 Comparison of the three techniques . . . . . . . . . . . . . 13

1.2.7 Syngas clean-up and water-gas shift . . . . . . . . . . . . . 14

1.3 Combustion in porous media . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Rich operation . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Lean operation . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.3 Kinetic modeling . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.2 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . 22

2 Experimental methods 24

2.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Burners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



CONTENTS

2.1.2 Porous materials . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.3 Flow control . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.4 Atomization and vaporization . . . . . . . . . . . . . . . . 32

2.1.5 Ignition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.6 Temperature detection . . . . . . . . . . . . . . . . . . . . 36

2.1.7 Gas sample analysis . . . . . . . . . . . . . . . . . . . . . 37

2.1.8 Particulate detection . . . . . . . . . . . . . . . . . . . . . 38

2.2 Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Post reforming catalysis . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Steam reforming catalyst . . . . . . . . . . . . . . . . . . . 49

2.3.2 Water-gas shift catalyst . . . . . . . . . . . . . . . . . . . 49

2.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Equilibrium calculation . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Carbon balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 n-heptane reforming 53

3.1 Preliminary investigations . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Mixture homogeneity . . . . . . . . . . . . . . . . . . . . . 53

3.1.2 Reformate uniformity . . . . . . . . . . . . . . . . . . . . . 57

3.1.3 Operating envelope . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Parametric investigations . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Thermal load effect . . . . . . . . . . . . . . . . . . . . . . 61

3.2.2 Equivalence ratio effect . . . . . . . . . . . . . . . . . . . . 66

3.2.3 Porous material effect . . . . . . . . . . . . . . . . . . . . 78

3.2.4 Burner size effect . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Heat losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 Soot emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



CONTENTS

4 Diesel, Biodiesel and Kerosene reforming 92

4.1 Diesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1.1 Thermal load . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1.2 Equivalence ratio . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.3 Porous material effect . . . . . . . . . . . . . . . . . . . . 102

4.1.4 Heat losses . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1.5 Endurance test . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Kerosene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 Soot emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Syngas clean-up 121

5.1 n-heptane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1.1 Endurance test . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Conclusions 133

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Suggestion for further research . . . . . . . . . . . . . . . . . . . . 135

References 149

ix



List of Tables

1.1 Examples of steam reformers integrated with fuel cells. . . . . . . 9

2.1 Porous medium specifications. . . . . . . . . . . . . . . . . . . . . 30

2.2 Fuel specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Fig. 2.8 main peak description. . . . . . . . . . . . . . . . . . . . 44

2.4 Fig. 2.9 main peak description. . . . . . . . . . . . . . . . . . . . 45

x



List of Figures

1.1 U.S. Primary Energy Flow by Source and Sector [1]. . . . . . . . . 2

1.2 Steps in reforming process. Source [2]. . . . . . . . . . . . . . . . 6

1.3 Solid and gas temperature and volumetric heat release for inlet gas

velocity of 60 cm/s and ϕ=0.65. Source [3]. . . . . . . . . . . . . 16

1.4 Computational structure of the reaction zone for n-heptane/air

combustion at ϕ=2.5 and v=60 cm/s. Source [4]. . . . . . . . . . 20

1.5 Computed exhaust H2 : CO and C2H2 levels as a function of mix-

ture stoichiometry and for an air preheat temperature of 500◦C.

Source [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Equipment setup for burner A, B and C. Burner D has alumina

beads as diffuser layer and burners E and F have a diameter of 100

mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 70 mm ID quartz tube equipped with a 25 mm layer of 2-3 mm

Al2O3 beads (flame holder) and a 80 mm layer of 6 mm Al2O3

beads (reforming layer). n-heptane/air flame at ϕ=2, P=5 kW

and preheating temperature T1=423 K. The flame on the rim of the

burner is due to the autoignition of the syngas with the laboratory

air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 70 mm ID burner and 100 mm ID burner equipped with spark

plugs, coil stainless steel tube, thermocouples and top hoods. . . . 28

2.4 Porous foams used for the reforming layer. Specifications in Table

2.1 as burners A, B, C, E and F from left to right. . . . . . . . . . 30

xi



LIST OF FIGURES

2.5 Foam failures: (a) ZrO2 foam cracking after thermal cycles; (b)

SiC, Al2O3, SiO2 compound foam melted after high-temperature

operations. The alumina paper wrapping is evident at the side of

the cylindrical piece. . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Exploded view of the DELAVAN AL-15 nozzle. (a) original ver-

sion; (b) modified nozzle; (c) modified nozzle with water line. . . . 34

2.7 Front and top view of the fuel pre-vaporizer. The T1 thermocouple

on top of the cone, the air and fuel inlet and the nozzle are visible

in the two photographs. . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 GC-MS output for Diesel oil. . . . . . . . . . . . . . . . . . . . . . 42

2.9 GC-MS output for Jet A-1. . . . . . . . . . . . . . . . . . . . . . 43

2.10 GC-MS output for RME biodiesel. . . . . . . . . . . . . . . . . . 43

2.11 Shell diesel specifications [6]. . . . . . . . . . . . . . . . . . . . . . 46

2.12 ADM biodiesel specifications [7]. . . . . . . . . . . . . . . . . . . . 47

2.13 CPS kerosene specifications [8]. . . . . . . . . . . . . . . . . . . . 48
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Chapter 1

Introduction

1.1 Background and Motivation

Energy consumption has dramatically increased during the last 30 years, by al-

most doubling the energy demand estimated in million tonnes of oil equivalent

[11]. The electricity generation and the transportation system are mainly based

on the combustion of fossil fuels, generally defined as oil, coal and natural gas,

as shown in Fig. 1.1.

There are several issues to be considered about fossil fuel consumption. First

of all, the greenhouse gas emission, due to hydrocarbon combustion, has obviously

followed the rising trend of fossil fuel utilization since the current energy infras-

tructure is considered as the main source of anthropogenic emissions. It is clear

that CO2 is the main pollutant, being one of the main products, together with

water, in complete combustion processes. The concentration of carbon dioxide

present in the environment is regulated by the carbon flow, which is constituted

by the flux from the atmosphere to the land and oceans through natural pro-

cesses such as plant photosynthesis. Unfortunately, this process can absorb only

partially the CO2 emitted by human activities: of the 6.1 billion metric tons of

carbon monoxide absorbed per year, 3.2 billion metric tons are added annually

unbalancing the absorption/emission ratio [11]. Secondly, oil, coal and natural

gas are not renewable resources and, even though new extraction sites are often

discovered, an alternative solution has to be found [12]. Numerous alternative fu-
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Figure 1.1: U.S. Primary Energy Flow by Source and Sector [1].

els have been investigated, such as biodiesel, methanol, ethanol, hydrogen, boron,

liquefied petroleum gas (LPG), Fischer-Tropsch fuel and solar fuels.

One of these is hydrogen, the most abundant of the chemical elements, con-

stituting roughly 75% of the universe’s elemental mass. Unfortunately, elemental

hydrogen is relatively rare on Earth, but it may be produced by using the process

of water electrolysis or by hydrocarbon reforming. In this sense, hydrogen cannot

be defined as a fuel, but it is an energy carrier, because it must be produced from

other naturally occurring species at significant cost in energy. The first process

seems to be the most promising for a clean environment solution, through the

utilization of nuclear, solar power or other renewable sources to provide the en-

ergy needed in water bond separation. Nowadays, water electrolysis is limited

by the cost and the emissions involved in upstream electricity generation. The

second option might be an intermediate step, characterised by centralised hy-

drogen generation with carbon capture and storage (CCS) [13]. If the Fuel Cell

Vehicle (FCV) system uses the H2 produced by this process, the CO2 emission

in the transportation field could be decreased to 70-80% of the traditional CO2

emission from the gasoline- or diesel-based IC engine vehicle systems [14]. Both

2
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possibilities, resulting in hydrogen production and its subsequent utilization in

energy applications, result in reducing drastically the carbon footprint of the pro-

cesses. Hydrogen might be used for power generation or as a transport fuel, for

example in association with fuel cells. As an energy carrier, it could be also a

suitable substitute for electricity; examples of H2 as an alternative energy carrier

from solar or nuclear plant are given by [15], by claiming, for instance, that in

the case of fusion reactors of 30 GW or even 100 GW, hydrogen in pipelines is

the most economically viable solution. Moreover, unlike electricity, hydrogen can

be stored and accumulated.

In the future, hydrogen might also be used for power generation and in trans-

port by fuelling gas turbines and IC engines, thanks to its high LHV (120.1

MJ/kg) and its high flammability (from 4% to 75% of volume in air). Moreover,

it has a high flame speed (order of magnitude higher than gasoline), a high effec-

tive octane number, and no toxicity or ozone-forming potential [16]. The product

of hydrogen combustion with air is water vapor and negligible pollution when the

peak temperature is limited. Nevertheless, the heating value per unit volume is

lower compared to hydrocarbons, because of the low density of H2 (89.9×10−6

kg/m3 STP). Another drawback linked with the low H2 density is the movement:

the power required to pump hydrogen is around 4.5 times higher than for natural

gas per unit of delivered energy [17]. Hydrogen can be stored on-board a vehicle

as a compressed gas, as a liquid in cryogenic containers, or as a gas bound with

certain metals in metal hydrides. Liquid hydrogen is not a cheap solution, since

the electricity required for hydrogen liquefaction at -253◦C and 1 atm is about

35-43 MJ/kg H2. Also refuelling stations are extremely expensive at the moment

and decentralised hydrogen production, even if it is the best choice for the market

uptake, is less efficient than large-scale centralised production and it makes CCS

impractical [17]. However, the estimation of the energy supply and demand in

2030 calls for an investment which is comparable to the estimated cost of the

power system replacement for the hydrogen production and distribution [17].

Currently, the cheapest and most popular sources of H2 are natural gas re-

forming (48% of the total hydrogen produced) and coal gasification (18% of the

total hydrogen produced) without CCS, and it is used primarily in the chemical

and refinery industries [16; 17; 18]. Since hydrogen production from renewable
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and nuclear energy needs more research and development, the hydrocarbon de-

pendence will remain still predominant for a long period. In this context, this

research focuses on the reforming of logistic heavy liquid fuel to syngas, in or-

der to obtain hydrogen for a mobile power generator system, for example in an

integrated fuel processor/fuel cell device.

One of the most promising hydrogen applications is the one connected to

fuel cells [19; 20]. The major advantages of fuel cells can be summarized by the

following characteristics [21]:

• High energy conversion efficiency;

• No emissions, or extremely low emissions of pollutants;

• Low noise pollution;

• Process simplicity for conversion of chemical to electrical energy.

The most attractive fuel cell feature is its independence from the intrinsic

efficiency limitation of thermal processes recognised by Carnot [22] and the al-

most complete absence of emissions. Modern IGCC power stations operate at

efficiencies of about 50% [23], limited by the top temperature of the cycle and

the typical overall fuel efficiency of gasoline-powered cars is around 12% and 15%

for diesel-powered cars [24]. Fuel cells are electrochemical devices and in theory,

devices could be constructed with an efficiency of 80-90% [25]. It must be noted

that higher energy efficiency itself leads to a reduction in emissions. The absence

of mechanical steps also leads to other advantages such as the minimum require-

ment of rotating accessories pumps and motors demonstrating a low level of

noise and vibrations.

1.2 Fuel reforming

1.2.1 Basic concepts

While waiting for the hydrogen economy led by water electrolysis through re-

newable energy sources - as the ultimate hydrogen economy prediction for the
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long term - the transitional approach seems to be the reformation of the avail-

able hydrocarbon fuels to fuel cell quality hydrogen [26]. Distributed hydrogen

production would be attractive in the early stages of a hydrogen economy. Thus,

small-scale reformers are the key technology for this first step [27]. In November

2000, DaimlerChrysler unveiled the NECAR 5 prototype automobile, which uti-

lizes methanol as a fuel with a fuel processor and a 75-kW fuel cell. Similarly, fuel

cells coupled to fuel reformers can be convenient generators for residential homes,

commercial buildings and building sites [2]. Nevertheless, the net efficiency of the

fuel cell system is reduced by using fuel processing for hydrogen production in

multiple stages (sulfur removal, fuel reforming, syngas clean-up), but it will still

show a significant efficiency advantage [2].

Eventually, when fuel cells and hydrogen demand will build up, a switch

can be made to central hydrogen production, by using fossil sources with CO2

sequestration and finally by the use of low carbon primary sources. Since the

infrastructure for producing and distributing fossil fuels is well established, the

research and development to introduce fuel cell and hydrogen utilisation in the

transport and residential power generation market is focused on this area [28].

This is the main reason driving the research described in this document, which

describes the development and performance of a liquid fuel processor.

1.2.2 Small-scale reforming

An on-board/on-site fuel processor should meet the following requirements:

• Hydrogen production levels smaller than those in chemical plants;

• Severe constraints on size and weight;

• Ability to cycle through frequent start-ups and shutdowns;

• Hydrogen production rate should be responsive to changes in demand;

• Strict cost target.

The reformate from a fuel processor generally contains 40-80% H2 in volume on

a dry basis [26] depending on the reforming technique and fuel adopted. From
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Figure 1.2: Steps in reforming process. Source [2].

the same reference, the authors underline that the fuel cell anode operates with

80-85% H2 utilisation. They propose that the balance of the unconverted H2 can

be oxidized and its heat can be recovered. For example, they suggest that this

recovered heat can be used to preheat the incoming water to produce steam or

to preheat fuel and air prior to injection into the reactor. The main steps and

options for on-site and on-board processing of liquid and gaseous hydrocarbons

are shown in Fig. 1.2.

The potential candidates for on-site and on-board reforming are gasoline,

diesel and jet fuels together with natural gas and carbon-neutral resources like

bio-fuels, since they all have existing infrastructure of manufacturing and distri-

bution. However, the problem associated with heavy fuel processing is mainly

the low H/C ratio, high energy consumption in fuel evaporation, the high tem-

perature at fuel reforming and the ease of carbon deposition and soot emission

[29]. In the next sub-sections, the three main different fossil fuel reforming meth-

ods will be covered, namely, steam reforming, partial oxidation and autothermal

reforming.

1.2.3 Steam reforming

Steam reforming (SR) is the most common technique to produce hydrogen in

the chemical process industry. One of the earliest steam reforming processes was

developed in Germany by IG Farbenindustrie in 1926 [30]. An example of an early

commercial steam reformer is a laboratory-scale device from Johnson-Matthey,

developed in the 1970s, which could produce high-purity hydrogen using a Pd

diffuser to purify the product gas [31].

6
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1.2 Fuel reforming

In catalytic steam reforming, the fuel reacts with steam in the presence of

a catalyst, producing hydrogen and carbon monoxide. A global reaction can be

written as:

CmHn + mH2O = mCO + (n/2 + m)H2 (1.1)

The steam reforming reaction is strongly endothermic and reactors are limited

by heat transfer, rather than by reaction kinetics [32]. Therefore steam reactors

are in general designed to promote heat exchange and hence they tend to be

large and heavy, which is an acceptable drawback since the heat inertia of this

system, rapid start and dynamic response are not usually part of the prerogatives

of steam reforming. Size and weight are not desirable for a reformer involving

transient duty cycles. Consequently, steam reformers are well suited for long

periods of steady state operation, showing high concentration of hydrogen in the

reformate. Another advantage for SR is that high pressure reformate can be

generated by pumping liquid fuel and water without the need to compress air.

Active catalysts should maximize hydrogen selectivity and inhibit coke formation

as well as CO production [26]. The catalyst utilization in steam reforming is

summarized by [33]. The authors report the wide use of nickel based catalysts,

which are prone to coke formation and sulfur poisoning. The production of coke

accelerates the degradation of the catalyst, until the catalyst is disintegrated and

reforming becomes impossible. Similarly, it is reported that sulfur poisons nickel-

based catalysts by forming metal sulfides and preventing reactants from adsorbing

at the surface. Consequently, the alternative is the implementation of noble metal

catalyst i.e. ruthenium, rhodium-based, which improves the tolerance to sulfur

and limiting coke formation but also increases dramatically the cost of the reactor

[34].

The steam to carbon ratio (S/C) plays an important role. Steam prevents solid

carbon formation on the catalyst, it pushes the equilibrium towards the products,

leading to a higher H2 production and finally it acts as diluent reducing the local

gradients in the reforming catalyst. However, high S/C ratios involve an increase

in reactor size and the production and superheating of steam is at the expense of

the fossil fuel to be reformed, lowering the global efficiency of the process [35].

As discussed previously, most of the hydrogen produced comes from natural

gas steam reforming [17], but alcohol fuels are becoming an attractive alternative
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because of the possible production of ethanol and methanol from biomass. Specifi-

cally, methanol steam reforming can be carried out at 250◦C [36], whereas ethanol

must be reformed above 300◦C [37], by using the proper catalyst for each feed-

stock. Ethanol is the most attractive, since it is less toxic than methanol. How-

ever, even methanol steam reforming is tremendously attractive, as the increasing

number of publications and extensive research demonstrate [38; 39; 40; 41] and

[31]. The advantage of methanol SR over the other reforming techniques consists

in the low CO production, a feature which cannot be translated to other hydro-

carbon fuels. Compared to heavier fuels, methanol does not contain carbon to

carbon bonds, it has a low boiling point (65◦C), it has a high H/C ratio (4:1) and

it can be converted to hydrogen at lower temperature than other fuels with the

aid of a sufficiently active catalyst. Nevertheless, the main drawbacks of these

two alcohol fuels are the low energy density (about half of the non-oxygenate

hydrocarbons) and the lack of infrastructure for their distribution.

The definition of thermal efficiency for the steam reforming process is not triv-

ial and it mainly depends on the heat source for driving the endothermic reaction.

Specific choices must be taken: the heat can be provided by using supplemental

fuel or recycled product gases. It seems quite clear that reformers do not com-

plete the global reaction, but make some CO and CH4 as products. Moreover,

practical systems cannot separate all the H2 from the reformate stream, so there

is some residual that can be used as fuel. It makes sense to burn the reformate

mixture instead of wasting its heating value, as experimentally demonstrated by

[42]. Some examples of steam reformers coupled to fuel cells from the literature

are shown in Table 1.1.

In conclusion, the challenges in steam reforming are mainly the design of the

heat transfer system and, above all, the choice of the catalyst for the specific

hydrocarbon to be reformed.
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1.2 Fuel reforming

Table 1.1: Examples of steam reformers integrated with fuel cells.

Firing

rate
Fuel Efficiency a

Gas cleaning

system
Fuel cell Ref.

1 kW NG, LPG 77% (full load) PROX 2.5 kW PEMFC [43]

2-8 kW NG, LPG 67% Pd membrane 5 kW PEMFC [44]

- FT diesel 58% WGS and PSA 4 kW PEMFC [45]

300 W Methanol 56.7% PROX 150 W PEMFC [46]

- NG 64.9% Pd membrane 5 kW PEMFC [47]

abased on H2 LHV
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1.2 Fuel reforming

1.2.4 Partial oxidation

Partial oxidation (POX) of hydrocarbons, characterised by a limited supply of

oxidiser, is an exothermic reaction. Thus, compared to steam reformers, sim-

pler reactors can be developed, since internal heat exchangers are not necessary.

The first studies about partial oxidation started in 1946, where experiments were

undertaken with Ni catalyst. The authors assumed a complete combustion of

methane with oxygen and a subsequent reaction of CO2 and H2O with the unre-

acted methane yielding eventually syngas [48]. On the contrary, other authors [49]

concluded that carbon monoxide and hydrogen are formed as primary reaction

products. Another early significant work on partial oxidation is [50]. Working

with reactors at high temperatures (750◦C) and short residence time (0.1 s), a

methane and oxygen conversion to syngas above 90% over precious metal cata-

lyst was achieved. Hydrocarbon feedstocks are oxidized to produce hydrogen and

carbon monoxide according to:

CmHn + (0.5)mO2 = mCO + (0.5)nH2 (1.2)

The main advantage of the partial oxidation technique is the small size of the

reactor and the rapid response to changes. However, the main disadvantages lie

with the low H2 : CO ratio and the danger of handling premixed air/fuel mixtures

[34]. Moreover, if the fuel is oxidised by air, a high fraction of nitrogen dilutes the

hydrogen content of the reformate. The partial oxidation reforming technique can

be divided in two subcategories: CPOX (catalytic partial oxidation) and TPOX

(thermal partial oxidation) since catalysts are not vital for POX, because of the

high temperature involved. The partial oxidation reforming technique is the only

one of the three that can be performed without the aid of a catalyst.

1.2.4.1 Catalytic POX

In the CPOX the hydrogen yield can be enhanced compared to the TPOX by

using a properly designed catalyst [51]. Moreover, the use of catalyst offers the

advantage of lower temperatures and no soot formation or unwanted by-products.

Lower temperatures favour the water-gas shift reaction downstream the reforming

process; it will mean also less fuel consumed during start-up and a wider choice
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of reactor materials, which can lower the device cost. Higher temperatures re-

quire more thermal integration and more insulation adding to the size and costs.

Catalytic partial oxidation is more difficult to control and the main issues include

over-heating or hot spots due to the exothermic nature of the reactions and cok-

ing problem [2]. Gaseous fuels CPOX has been demonstrated by processing on

a Rh catalyst n-butane at T=450◦C [52], propane at T=700◦C [53] and many

works focused on methane reforming with this technique [54; 55; 56]. Catalytic

partial oxidation of liquid higher hydrocarbons such as diesel and gasoline surro-

gates and desulfurized heavy liquid fuels has been demonstrated by [57; 58] and

[59], suggesting that reforming into hydrogen will be possible in the future. The

results and details from these papers are discussed and compared to this project

in Section 4.5.

1.2.4.2 Thermal POX

TPOX shows more flexibility regarding the fuel to be reformed and more robust

and cheaper reactors compared to CPOX. Thermal partial oxidation reformers are

characterized by flame temperatures of about 1300-1500◦C [2] but the optimal op-

erating range for syngas production lies in the ultra-rich regime close to or beyond

the conventional rich flammability limits. This limit has been overcome through

several experimental works using filtration wave, parallel channel, spouted bed

combustor and two-layer porous burner concepts [60; 61; 62; 63; 64; 65]. These

non-catalytic reforming techniques enhance reaction rates by increasing reaction

temperatures through internal heat transfer. Cool flame oxidation for heavy

hydrocarbon breakdown techniques [27; 66] were used in fossil fuels partial ox-

idation reforming, especially for heavy liquid fuels such as diesel. In [65], the

authors reformed methane/air mixtures with a proportion of fuel of 40% above

the normal rich flammability limit, thanks to the heat recirculation due to the

spouted bed. They also suggest the technique as a way to reform coal and heavy

fuel oil. The parallel channel concept has been developed by Ellzey et al. [63],

who successfully reformed propane/air mixtures in a meso-scale reformer. The

reformer consists of parallel channels separated by conducting walls. By alternat-

ing the flow directions between adjacent channels, counter-flow heat exchange is
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exploited to preheat the unreacted fuel/air mixture to a temperature level where

a self-sustained reaction zone is viable. Nevertheless, all the works produced on

hydrocarbon reforming to syngas in a non-catalytic partial oxidation reformer are

on the development stage and at laboratory scale. Combustion in porous media

will be discussed later in this Chapter, being one of the main features of this

experimental work and specific details are given in Section 1.3.

1.2.5 Autothermal reforming

Also known as indirect partial oxidation or oxidative steam reforming, autother-

mal reforming (ATR) was firstly introduced by Haldor Topsoe in the late 1950s

[67]. In essence, this process may be considered as a combination of partial oxi-

dation and steam reforming:

CmHn + (0.5)mH2O + 0.25mO2 = mCO + (0.5m + 0.5n)H2 (1.3)

It involves the introduction of both air and steam into a reforming reactor: the

partial oxidation occurs in an inlet zone of the reactor, providing heat for the

steam reforming reaction occurring in a second zone of the vessel that is packed

with catalyst. The catalyst controls the reaction pathways and determines the

relative extents of the oxidation and steam reforming reactions. No external

heating is required, since the exothermic oxidation reaction provides the heat

necessary for the endothermic steam reforming reaction. ATR can overcome the

load limitations of SR, because the oxidation process produces the heat required

for the endothermic reactions, leading to a rapid response to power demand and

faster start-up. The heat necessary to rapidly heat the reactor can be generated

by operating at a higher than normal oxygen-fuel ratio. A practical example of an

ATR processor is given by [68], describing a reactor capable of reforming gasoline

to produce a stream containing 40% H2 on a dry basis with an efficiency around

70% based on the lower heating value.

Thermodynamic calculations show that autothermal reforming theoretically

yields higher reforming efficiencies than partial oxidation even at lower preheat

temperatures [69]. Within an autothermal reformer heat can be integrated, for

example, to vaporize the water and preheat the steam. In the case of partial
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oxidation, this heat is waste energy and has to be removed by a cooling sys-

tem. Intuitively, it results that the maximum theoretical efficiency is achieved at

the thermoneutral point, where enough heat is provided to the steam reforming

process to drive the reaction and no energy produced in the exothermic partial

oxidation reaction is wasted [32]. The maximum achievable reforming efficiency

is around 80% [69].

Three advantages are particularly important:

• Less complicated reactor design and lower reactor weights because of the

less heat integration required;

• Wider choice of reactor materials;

• Lower fuel consumption during start-up.

An automotive application has been developed by a work sponsored by Re-

nault and Nuvera Fuel Cells [70], showing hydrogen concentrations around 40%

and CO level below 100 ppm using ethanol or gasoline as hydrocarbon feed stock.

The reaction can in theory be completely balanced, but in practice a little excess

of air is added to compensate the heat losses and to obtain a rapid response.

The difference between the efficiency of the ATR and SR consists in the loss

represented by the latent heat of vaporization of the water that escapes with the

combustion products in the steam reforming system [32], when part of the fuel

feed is used to combusted to generate heat for the reforming process. In au-

tothermal reforming operations, the H2O/CmHnOp and O2/CmHnOp ratios play

a fundamental role in thermal integration (global exothermicity or endothermic-

ity), hydrogen and carbon monoxide yield, coke deposition and soot emission.

In recent years, ATR reformers gained interest as application for APU (aux-

iliary power unit) systems, in order to replace the idle functioning of IC engines

with SOFC or PEMFC, due to stricter regulations, coupled with gasoline or diesel

fuel processors [71; 72; 73; 74].

1.2.6 Comparison of the three techniques

Partial oxidation is much faster than any of the other two reactions - by roughly

2 orders of magnitude compared to steam reforming - and response time in fuel
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supply is shorter [67]. This feature makes POX attractive for automotive appli-

cations. Moreover, it presents higher simplicity and scalability [32]. The main

drawbacks of POX compared to steam reforming are the lower hydrogen yield and

the dilution of the produced hydrogen by the inert nitrogen, which lowers the hy-

drogen concentration significantly when using air as the oxidiser. Catalytic steam

reforming offers higher hydrogen concentrations: 70-80% hydrogen is achieved for

steam reforming versus 40-50% for partial oxidation and autothermal reforming

on a dry basis in the crude reformate gas [33], but it operates at high tempera-

ture and low space velocity owing to slow kinetics. Even though steam reforming

yields more hydrogen than the other two techniques, POX results superior to the

other systems in terms of the energy cost to produce the same amount of hydro-

gen [51]. The difference in hydrocarbon consumption among the three reforming

systems depends strongly upon the efficiency of the heat exchanger [75]. Reform-

ing through partial oxidation is less expensive than with steam reforming because

of the compactness of the reactors, which do not need heat exchangers [76]. For

practical applications, partial oxidation and autothermal reforming are more at-

tractive because of their higher energy efficiency and small and light hardware

compared to SR. Moreover, POX is the only of the three techniques that allows

the reforming of fossil fuel in absence of catalyst. For this reason, the thermal

POX technique has been chosen as the concept to design the liquid fuel reformer

presented in this thesis.

1.2.7 Syngas clean-up and water-gas shift

Carbon monoxide must be kept under 10 ppm for the requirements of PEM

fuel cell electrodes [2]. At low temperature CO can deactivate the anode catalyst

made of Pt/C. This requirement is initially approached by using a water gas shift

reaction (WGSR), a process discovered in 1780 by the physicist Felice Fontana

[77]:

CO + H2O → CO2 + H2 (1.4)

This reaction is exothermic and independent of pressure, thus it is thermodynam-

ically favoured at low temperatures. For this reason, a general rule is that the

higher the temperature is, the higher the carbon monoxide concentration will be.
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1.3 Combustion in porous media

In the shift reactor, the hydrogen yield is increased and the content of carbon

monoxide in the reformed gas is reduced to 1-2% approximately with two different

temperature stages (HT-WGSR and LT-WGSR) [2; 78]. The catalyst involved

in driving the reaction must be carefully handled, regarding sulphur and oxygen

content in the reactants, temperature, phyroporicity and hot spot, especially for

exothermic processes (partial oxidation).

Other reactions can also be employed to further reduce the CO content in the

feed:

• Preferential or selective oxidation (through a precious catalyst only CO

is adsorbed and converted in CO2 through a small amount of extra air -

PROX) [79].

• CO methanation (it consists in the hydrogenation of CO using the H2

already present in the gas stream) [80].

• Molecular oxygen bleeding (by injecting low amounts of O2 into a H2 anode

feed stream contaminated by CO, the severe effects of carbon monoxide

could be completely eliminated for fuel cells operating at 80◦C) [81].

• Membranes (Palladium membrane allows only hydrogen to pass through its

crystal lattice when it is heated above 300◦C) [82].

1.3 Combustion in porous media

Combustion in porous media offers a way to establish non-catalytic POX and

is discussed here, as it forms the topic of this thesis. In traditional combustion

applications, the peak temperatures inside a combustion zone are directly related

to the energy content of the unburned air/fuel mixture. The theoretical maximum

temperature is predicted by the chemical equilibrium of an adiabatic process and

is thus called the adiabatic equilibrium temperature. The insertion of a porous

medium in the reaction zone allows the transfer of enthalpy from the burned

gases to the unburned gases. The recirculation of the sensible enthalpy of the

flame products occurs through convection from the hot gas to the inert matrix,

which, in turn, transfers the heat through conduction and radiation to the matrix
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1.3 Combustion in porous media

Figure 1.3: Solid and gas temperature and volumetric heat release for inlet gas

velocity of 60 cm/s and ϕ=0.65. Source [3].

upstream of the flame, which then heats the incoming unburned mixture [83]. The

higher thermal conductivity of the solid matrix compared to the conductivity of

the gas enhances the effective heat transfer from the products to the reactants.

Through this mechanism, it is possible to achieve a local temperature higher than

the adiabatic flame temperature, while at the exit the temperature is limited by

the first law of thermodynamics (Fig. 1.3). This mechanism leads to reaction

zones effectively operating with substantial amounts of preheat, which results

in faster kinetics and hence higher laminar flame speed (up to 20 times higher

than a corresponding free flame [84]) and in the extension of the flammability

limit of the mixture [85]. At ultra-rich or ultra-lean equivalence ratios the flame

temperature is higher than in free flame conditions, which allows initiation and

chain branching mechanisms to still occur. The superadiabatic effect in porous

media has been observed in 1912 [86] and extensively studied by several authors

[83; 87; 88; 89; 90].
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1.3 Combustion in porous media

1.3.1 Rich operation

The temperatures achieved in superadiabatic combustion and the fuel-rich con-

ditions provide an environment necessary for thermal cracking and/or partial

oxidation of various hydrocarbons. The extended rich flammability limit and the

higher flame temperatures allow partial oxidation conditions to be established,

thus allowing the stripping of the hydrogen out of the original fuel molecule.

Consequently, the main products of the reactions are molecular hydrogen and

carbon monoxide (syngas), along with nitrogen (since air provides the oxidiser)

and some other species in lower concentration (carbon dioxide and light hydro-

carbons). The main parameters affecting the oxidation behaviour are the thermal

load, the equivalence ratio, the thermal conductivity of the porous matrix (ma-

terial, porosity). Because of the heat recirculation, a balance must be achieved

between heat feedback, heat release and heat losses, such that the effective flame

speed equals the incoming fresh gas velocity. In this case a stationary flame can

be developed. Otherwise, the reforming in porous media can assume an unsteady

(filtration wave) condition. This operating mode has been experimentally demon-

strated for gaseous [62], and liquid fuels [4] and the concept is to alternate the

direction of the flame front by switching alternatively the reactant inlet with the

product outlet. Depending on the gas flow velocity and the equivalence ratio,

wave propagates either in the downstream direction producing super-adiabatic

temperature or in the upstream direction (counter-flow) [91]. Babkin et al. clas-

sified the filtration wave mechanism in five regimes based on the wave velocity

[92], showing that the low velocity regime (10−4 m/s) leads to strong thermal

coupling between gaseous and solid phase. Filtration wave operation may have

the disadvantage of a more complex fluid handling system, whereas stabilised

flames, on the other hand, are easier to control and hence this latter option has

been adopted in this research. A rich flame in porous media can be stabilised

through different techniques [92; 93]:

• cooling of the porous matrix at the desired flame position;

• equalization of flame velocity with the flow speed with ad hoc reactor design;

• heat radiation from a specific position which lowers the flame speed;
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• two-layer porous structure with a small pore region (flame holder) and a

large pore region (reforming layer).

The last option has been chosen for this project because of the wider range of

velocity and equivalence ratio flame conditions that can be stabilised compared

to the other techniques. Flame propagation is possible only when the rate of heat

release from the reaction is higher than the heat loss to the surroundings. For

small pore structures, the flame propagation is limited to the upstream direction,

because, for some conditions, the heat losses from the flame in the small-pores

layer are higher than the heat released from the reaction. Moreover, the higher

optical thickness limits the radiative heat transfer in the upstream direction.

Therefore, the flame is quenched and cannot propagate upstream and sits at the

interface of the two porous layers. This concept has been introduced for first

by Babkin et al. [92], and it has been successfully demonstrated for gaseous

[60; 94; 95] and for liquid fuel reforming to syngas [60; 61]. This research focused

on the same principle, but demonstrated for the first time the applicability to

heavy commercial fuels.

1.3.2 Lean operation

As the superadiabatic effect in porous media allows to extend the flammability

limit, there are advantages also in the ultra-lean zone. Porous medium burners

working at ultra-lean equivalence ratios have demonstrated low NOx and CO

emissions compared to traditional burners and hence they obtained wide interest

in the field of radiant heating applications [96]. The subsequent decrease in tem-

perature due to the recirculation of the heat from the hot combustion products

inhibits the formation of nitrogen oxides. NOx may be formed either by the

thermal (Zeldovich) or prompt (Fenimore) mechanism. Because NOx formation

is dependent on the peak temperature, NOx emissions are observed to decrease

with decreasing equivalence ratio [97; 98]. Reduced temperatures in the combus-

tion zone might be predicted to lead to increased emissions of CO and unburned

hydrocarbons (UHC). However, the use of lean mixtures means that this is not

the case. A number of investigations find that CO emissions tend to be very low

(less than 40 ppm) and that they decrease with decreasing equivalence ratio [97].

18



1.3 Combustion in porous media

It is in any case fundamental to avoid hot and cold spots to prevent formation of

NOx, CO and UHC. For these reasons commercial products are already available

in this area, such as in space and water heating, industrial furnaces for glass pro-

duction, food industries, metal heat-treating, coating and paint drying, chemical

processing, paper and wood drying, and food processing [99; 100]. Further lean-

burn applications include the reburn of exhaust gases from existing combustion

systems, and the mitigation of fugitive methane emissions.

1.3.3 Kinetic modeling

Some numerical works have been performed on partial oxidation of hydrocarbons

in porous media. Ellzey et al. studied numerically the conversion of n-heptane in

a porous medium reactor consisting of alumina pellets [4]. The model used treats

the combustion process as one-dimensional and transient conservation equations

are solved for mass, gas-phase energy, solid-phase energy, and gas species. Heat

transfer processes include solid conduction within the porous matrix, convective

heat transfer between the solid and gas, solid radiation and gas-phase conduc-

tion. Transport associated with species diffusion is also included. Chemical

kinetics and transport processes are modeled using CHEMKIN and TRANFIT

with an intermediate complexity mechanism for n-heptane [10]. The significant

finding in this study is the path by which hydrogen is produced in a porous re-

actor, which consists in initial partial oxidation reactions and steam reforming

occurring downstream of the main reaction zone. Small hydrocarbons play a key

role in the steam reforming reaction, because they provide a valuable pathway

to increase hydrogen production. The computational results shown in Fig. 1.4

illustrate the prediction for the structure of a heptane/air reaction zone within

porous media. After the n-heptane is thermally broken down, there is formation

and consumption of small hydrocarbon compounds as the hydrogen concentration

continues to increase. The initial oxidation reactions result in a sharp increase in

hydrogen in the main reaction zone. However, the hydrogen concentration con-

tinues to increase downstream of the main reaction zone due to steam reforming;

evidence of which is illustrated by the peak and subsequent decrease of the water

concentration in the gas. In the process of steam reforming, water is consumed to
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1.3 Combustion in porous media

Figure 1.4: Computational structure of the reaction zone for n-heptane/air com-

bustion at ϕ=2.5 and v=60 cm/s. Source [4].

form CO, CO2, and H2. The numerical analysis predicted that steam reforming

contributed approximately 18% of the total hydrogen produced.

Similar behavior also appeared for the case of methane partial oxidations using

a batch reactor model, the SENKIN code of CHEMKIN 3.6.2 [64]. This finding

indicates that a long post-oxidation zone is necessary for the oxidation of the

soot precursors and for reactions to complete. It can be also concluded that the

injection of steam in the post oxidation zone will enhance the WGS and oxidized

the soot that could be formed.

In ref. [101], the oxidation of n-hexadecane at ϕ=0.5, 1.0 and 1.5 has been

modeled with a reaction mechanism consisting of 238 species and 1756 reversible

reactions. At ϕ=1.5 and T=1000 K, n-hexadecane preferentially reacts with H

(41.8%), and to a lesser extent with OH (17.1%) and CH3 (16.6%); thermal

decompositions represent 18.3% of the fuel consumption. This value increases to

83.2% at 1200 K.

Trimis et al. [5] performed experimental and numerical investigation of a

TPOX reforming process for methane/air mixtures. The model showed the mo-

lar H2 : CO ratio increasing with decreasing air/fuel ratio (Fig. 1.5) and it was

explained by considering the respective carbon monoxide and hydrogen formation

pathways. Carbon monoxide is formed from reactions involving either the formyl
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1.3 Combustion in porous media

radical (HCO) or ketene (CH2CO), the former being dominant for leaner mix-

tures while the latter for richer. Both HCO and CH2CO are oxygenated species

and their levels are expected to drop as the mixture becomes richer. At the same

time, rich conditions favour both hydrogen radical and unburned hydrocarbons

formation, thus promoting H abstraction reactions, such as:

CH4 + H → CH3 + H2 (1.5)

and

C2H4 + H → C2H3 + H2 (1.6)

which lead directly to H2 formation. Also the acetylene fraction is predicted to

increase with the equivalence ratio.

Figure 1.5: Computed exhaust H2 : CO and C2H2 levels as a function of mixture

stoichiometry and for an air preheat temperature of 500◦C. Source [5].
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1.4 Scope of Thesis

1.4.1 Specific objectives

The main target of this thesis is to demonstrate experimentally the feasibility of

a compact and flexible liquid fuel reformer for mobile applications. These two

requirements led to consideration of the non-catalytic partial oxidation as the

reforming technique. In this way it has been possible to reform common com-

mercial fuels (diesel, kerosene and biodiesel), which, because of their poisoning

compounds, cannot be reformed in any reformer involving catalysts. The par-

tial oxidation technique allows reduction of the dimension of the reactor and the

two-layer porous layer concept led to a sharp decrease in the device costs. The

specific objectives of this thesis are to:

• design a compact reactor including a vaporization stage, an ignition strategy

and a reforming layer;

• study the behaviour of the reformer varying the characteristic parameters

of the system (equivalence ratio, thermal load, materials);

• demonstrate the flexibility of the system with different heavy liquid fuels;

• test the possibility of reducing the carbon monoxide content and improve

the hydrogen fraction of the reformate.

1.4.2 Structure of Thesis

These targets were achieved and demonstrated with a set of experiments de-

scribed in the following chapters. The second chapter describes the experimental

methods, materials, fuels and measuring techniques that allowed optimisation

and investigation of burner functionality. The third chapter concerns n-heptane

reforming and presents a range of preliminary investigations, which lead to the

burner characterisation in terms of mixture preparation and operating envelope

of the burner. Moreover, parametric investigations have been performed to assess

the sensitivity of the reformate composition to the characteristic parameters. The
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1.4 Scope of Thesis

use of a standard fuel allowed comparison of the results with chemical equilib-

rium data. The commercial fuel reforming experiments, described in the fourth

chapter, demonstrate the flexibility of the reformer in processing commercial and

carbon neutral fuels such as diesel, kerosene and biodiesel in the same burner.

The last chapter describes the investigations and the preliminary tests on steam

reforming and WGS in order to clean the reformate from poisoning species (CO)

and approach the requirements of a fuel cell.
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Chapter 2

Experimental methods

This chapter describes the experimental methods used in this project. The dif-

ferent stages to achieve fuel reforming are presented, including fuel and material

specifications and the measurement techniques. At the end of the chapter, the

procedure adopted to run the tests is also presented and the equilibrium and

carbon balance calculation tools are explained.

2.1 Apparatus

The reformer developed for these experiments is illustrated in Fig. 2.1. Its

distinctive characteristic is the two-layer porous structure, the atomizer section,

and the capability to use various types of porous media. Different stages are

implemented to achieve fuel reforming to syngas and they are explained in details

in the following sections.

In principle, the liquid fuel needs to be atomized, vaporized and mixed with

the oxidizer. Then the mixture must be ignited and eventually reforming takes

place by means of the superadiabatic effect in the porous medium. In the ex-

periments, the flow rates of air (oxidizer) and fuel are accurately delivered by

means of two mass-flow controllers. Subsequently, the fuel needs to be intimately

mixed with the oxidizer through liquid break-up and evaporation. This target is

achieved using a modified commercial air-assisted atomizer and providing a hot

environment where the mixture is formed. The unreacted mixture is then ignited

by means of four spark plugs and stabilized over a flame holder. Thereafter, the
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2.1 Apparatus

flame is switched to rich condition and the fuel is then reformed in the porous

material that allows the superadiabatic condition to be established leading to the

extension of the flammability limit. Eventually, gas samples have been analyzed

by means of a Gas Chromatograph and soot emission was also investigated by

means of a filter-paper-method machine.

Moreover, it has been necessary to monitor the temperature of the different

stages. For this purpose, one K-type and two R-type thermocouples are inserted

in the reactor in the vaporization stage, at the ignition level and at the exit of

the burner (T1, T2 and T3 respectively in Fig. 2.1).

Figure 2.1: Equipment setup for burner A, B and C. Burner D has alumina beads

as diffuser layer and burners E and F have a diameter of 100 mm.

2.1.1 Burners

Initially, 70 mm ID quartz tubes were used as burners in order to optically detect

the flame inside the porous material, as shown in Fig. 2.2 where the tube is filled

with two layers of alumina beads of different size. At the bottom of the tube a
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2.1 Apparatus

brass plug was fixed and sealed with high-temperature O-rings and the nozzle was

centrally attached. The complete vaporization of the fuels could also be visually

checked, by denoting the absence of condensation on the tube’s walls.

Later on in the project, stainless steel tubes have been adopted to approach

the target of a practical device. A standard 316 SS grade was used due to its

good machining and welding characteristics and for the broad availability of the

material. Two different sizes were chosen in order to assess the scalability of

the device. A 70 mm ID x 300 mm burner was the most tested version, but a

100 mm ID modular burner was also investigated for some steam reforming and

water-gas shift reaction experiments (Chapter 5). Both the burners are flanged

at the bottom, to fit and seal a plate with the nozzle, the T1 thermocouple and

a containing stainless steel cone fitted in it. The plate is sealed to the rest of

the burner by a copper washer, since no plastic materials can withstand the high

temperatures of the process, and checked periodically for liquid and gas leakage.

The stainless steel burners are displayed in Fig. 2.3.

A 6 mm ID stainless steel tube coil has been wrapped around the burner to

integrate the heat produced by the exothermic reforming reaction. This heat has

been used to preheat the vaporizing air used to prepare the fuel/air mixture and

hence the burner was independent from external heat sources after the start-up

of the system.

The burners have been insulated with alumina wool (ZIRCAR Alumina mat)

in order to minimize heat losses to the environment. Specifically, only the re-

forming layer was externally insulated, whereas the vaporization stage was left

without any covering over the stainless steel tube. In this way the heat losses will

not allow this section to overheat and hence will oppose the flame propagation

to the upstream direction, preventing the ignition of the spray on the top of the

nozzle.
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2.1 Apparatus

Figure 2.2: 70 mm ID quartz tube equipped with a 25 mm layer of 2-3 mm Al2O3

beads (flame holder) and a 80 mm layer of 6 mm Al2O3 beads (reforming layer).

n-heptane/air flame at ϕ=2, P=5 kW and preheating temperature T1=423 K.

The flame on the rim of the burner is due to the autoignition of the syngas with

the laboratory air.
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Figure 2.3: 70 mm ID burner and 100 mm ID burner equipped with spark plugs,

coil stainless steel tube, thermocouples and top hoods.

2.1.2 Porous materials

The porous matrices used for the reforming layer are in the form of ceramic foam

or beads. Table 2.1 summarizes the main features of each material. The fine-pore

layer assists evaporation and prevents the flame to propagate upstream in most

of the conditions investigated, while the second (downstream) layer is where the

reforming occurs.

The first layer is a flame holder and it consists of a 50 mm long packed bed of

2-4 mm Al2O3 beads. The beads are held in place by a stainless steel wire mesh

placed over the stainless steel containing cone. The bead material is commercially

used for drying purposes (Sigma-Aldrich) and it has a melting point of 2313 K

[102]. This layer also enhances oxidizer/fuel mixing before ignition because of the

convoluted path that the mixture has to cover before reaching the layer interface.
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2.1 Apparatus

On top of this first layer, different porous materials were implemented, foams

(burner A, B, C, E and F) and beads (burner D). Five pieces of foams, different

in terms of their porosity and material, have been tested (Fig. 2.4). The ceramic

foams tested in this work come from the foundry industry for metal filtering

and thus are high temperature resistant while the ceramic beads are designed

as heat exchange media. Beads are more robust to thermal cycles compared

to ceramic foams, which are brittle and crack after few (around 10) cycles of

high temperature reforming and cooling down (Fig. 2.5a). Furthermore, beads

have the advantage of ease of fitting inside the burner. The main drawback

of the utilization of beads in place of foams is the higher thermal inertia due

to the matrix geometry (thin solid bridges for ceramic foams compared to ∼6

mm diameter solid beads) and hence the lower response time of configuration D.

Moreover, the ignition system used for burner A, B, C, E and F failed for burner

D, because the heat released by the flame kernels does not offset the heat losses

to the alumina beads. The flame had to be ignited from the top of the burner

and the reaction layer slowly penetrated into the packed bed while heating the

beads.

The foam pieces had to be wrapped in an alumina paper in order to seal

them to the burner’s walls, to minimize leaking around the porous media and

to protect them from the different thermal expansion compared to the stainless

steel tube. Zirconia foam is MgO stabilised and it exhibits higher resistance to

high temperatures than the SiC, Al2O3, SiO2 compound foam [103]. Fig. 2.5b

shows the damage to the foam of burner C due to the high temperatures reached

at equivalence ratios close to stoichiometry and the high thermal loads.
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Table 2.1: Porous medium specifications.

Burner A B C D E F

Material
ZrO2

foam

ZrO2

foam

SiC,

Al2O3,

SiO2

foam

D≃6mm

α−Al2O3

beads

ZrO2

foam

ZrO2

foam

Porosity 30 ppi 10 ppi 30 ppi 40%a 30 ppi 30 ppi

Length [mm] 100 100 100 100 50 25

Max

Temperature

[K]

1973

[103]

1973

[103]

1723

[103]
1923 [105]

1973

[103]

1973

[103]

Thermal

conductivityb

[Wm−1K−1]

2 2 -
12-30

[106]
2 2

Supplier Lanik Lanik Lanik Almatis Lanik Lanik

aPacked bed porosity ε estimated by [104], with dP particle diameter and D reactor diameter:

ε = 0.375 + 0.34
dp

D

bof the raw material

Figure 2.4: Porous foams used for the reforming layer. Specifications in Table 2.1

as burners A, B, C, E and F from left to right.
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Figure 2.5: Foam failures: (a) ZrO2 foam cracking after thermal cycles; (b) SiC,

Al2O3, SiO2 compound foam melted after high-temperature operations. The

alumina paper wrapping is evident at the side of the cylindrical piece.
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2.1 Apparatus

2.1.3 Flow control

The air flow is supplied by the laboratory compressed air line and it is controlled

by a Bronkhorst Mass Flow Controller. The controller works on the thermal mass

flow measuring principle (the temperature drift between no flow condition and gas

flowing through a heated channel is directly proportional to mass flow through

the sensor). The maximum pressure supplied is 2 bar (relative) before the nozzle.

The air flow can be directed to a 750 W electric heater, able to preheat the air

up to 573 K, or it can be switched to the stainless steel tube wrapped around the

burner. During the experiment it may become necessary to mix the air preheated

by the coil with some fresh air to keep the temperature at the desired value.

The liquid flow is delivered by a magnetic driven gear pump. The amount

of liquid supplied is controlled by a mini CORI-FLOW Bronkhorst Mass Flow

Meter which gives the voltage feedback to the pump according to the flow reading,

adjusting the speed of the pump.

The mini CORI-FLOW is able to measure the density and the temperature

of the liquid passing through and then it infers the flow rate, independently from

the liquid characteristics and hence no calibration is required.

For safety reasons, only a small amount of liquid is kept next to the feeding

system and the flow controllers shut their valves if a power cut occurs. Moreover,

for better accuracy the fuel line is flushed with acetone before a different fuel is

tested.

2.1.4 Atomization and vaporization

The atomization turned out to be one of the key and most delicate stages of the

reforming process. Several commercial and custom-made nozzles have been tested

before finding a suitable design. Eventually, a commercial air-assisted nozzle has

been used for the experiments. The main issue was the processing of a very low

liquid flow rate and the achievement at the same time of a good atomization qual-

ity. This goal has been achieved using a DELAVAN AL-15 nozzle, commercially

used for heavy oil burners. The nozzle is designed around the external mix of

air and fuel concept. In this nozzle, the liquid phase is ejected in a jet form and

the air is impinging on it externally to the nozzle, causing the break-up and the
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atomization. Therefore, this design allows independent control of the fuel and the

air flow rate, giving high turndown ratios. The supplier certifies droplets with a

Sauter Mean Diameter (SMD) of 50 µm and a spray cone of around 45 ◦.

However, the commercial nozzle had to be modified to withstand the high

temperatures of the experiments. In particular, all the plastic seals have been

removed and the fuel channel has been replaced with a hypodermic tube in order

to reduce the residence time of the liquid inside the hot nozzle housing. The

nozzle is heated by the hot air flowing through and this can cause boiling of the

liquid inside the fuel channel. Consequently, flow oscillations may occur with low

boiling point liquids (i.e. n-heptane). An extra hypodermic tube has been added

next to the fuel line in order to inject water for the steam reforming and water-

gas shift reaction experiments. The different steps in the nozzle modification are

illustrated in Fig. 2.6.

The spray flows in a 100 mm long stainless steel conical section and the

evaporated fuel-air mixture reaches the first porous layer. A K-type thermocouple

placed just before the upstream side of the first porous section (i.e. at the end

of the atomiser-vapouriser conical section) gives the voltage feedback to the air

heater through a temperature controller (T1). This configuration is displayed in

Fig. 2.7. Different temperature set points have been fixed, according to the fuel

specifications, as explained in Section 2.2.

The uniformity of the air/fuel mixture has been assessed and the results are

reported in Section 3.1.1. For that purpose, a Fast Flame Ionization detector

(Cambustion HFR500 FFID) has been used. A 1.5 mm probe has been used to

sample the carbon content of the mixture over the burner cross section imme-

diately downstream the fine porous layer (flame holder). The detector gives the

total C1 as contributions from all the hydrocarbons present in the gas sample.

The sample line has been kept at 423 K when sampling n-heptane/air mixtures,

in order to avoid fuel condensation in the probe. Only n-heptane could be sam-

pled, since the other fuels have higher boiling points. The machine probe head

would suffer damages to the plastic sealings if its temperature is raised above 423

K and the condensation of fuel (especially from heavy fuel like the one used in

this research) in case of lower temperatures would flood the machine and damage

the sensors.
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The FFID machine has a linearity of the output (voltage output over carbon

concentration) until 2.0-2.5% C1. After this threshold, the reading is lower than

the actual value. Since the mixture sampled contained higher concentration of

hydrocarbons (ϕ=2.0 leads to a molar fraction of 3.7% of C7H16 in air), the

reading is normalized over the average value, in order to detect variation from

the mean value, rather than obtaining the exact proportion of fuel in air.

Figure 2.6: Exploded view of the DELAVAN AL-15 nozzle. (a) original version;

(b) modified nozzle; (c) modified nozzle with water line.
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Figure 2.7: Front and top view of the fuel pre-vaporizer. The T1 thermocouple

on top of the cone, the air and fuel inlet and the nozzle are visible in the two

photographs.
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2.1.5 Ignition

The main problem associated with this stage was the development of a stable

flame in between the two “cold” porous layers. Tests with a quartz tube demon-

strated the ease of quenching of a flame immediately after being generated by

two electrodes with a gap of 2 mm on the peripheral area of the burner. The

high heat losses to the porous matrix overcomes the heat generated by the flame

kernel.

Eventually, the ignition has been achieved by fixing four automotive spark

plugs evenly distributed on the burner walls at the porous layer interface. The

peripheral position prevents the spark plugs to undergo the maximum tempera-

ture of the burner, improving the lifetime of the electrodes. Additionally, after

few seconds of voltage applied to the plugs, four flame kernels quickly develop

and cover the whole cross section of the tube. Thus, a long emission of unreacted

mixture is avoided.

At the porous layer interface a R-type thermocouple is placed (T2) and it

gives the indication of successful ignitions. The actual temperature reading of

this thermocouple is not taken into consideration as it is strongly affected by

radiation from the porous material, the temperature of which cannot be measured

in order to be used for a correction.

2.1.6 Temperature detection

The temperatures of the different stages have been measured by three thermo-

couples. T1 is a K-type thermocouple with 1.5 mm bead diameter. K-type ther-

mocouples have an accuracy within ±2.5 K from 233 to 606 K which is suitable

for the measurement of the evaporation stage temperature (max. 573 K) [107].

Two more thermocouples were located inside the burner. T2 is a R-type thermo-

couple for the ignition detection at the porous layers interface and T3 is a R-type

thermocouple placed at the exit of the burner, where the gas samples are ex-

tracted. Both have a bead diameter of 0.5 mm and hence they are quick response

detectors (0.025 seconds from 293 K to 373 K [107]). T3 gives the temperature of

the syngas that is eventually analyzed by the Gas Chromatograph and provides

the indication of the achievement of a thermal steady state, once the reading
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becomes constant. This temperature is also used to calculate the energy balance

between the input species and the output species, to assess the heat losses (Sec-

tion 3.27). R-type thermocouples’ accuracy is within ±0.0025·|T| K from 873 to

1873 K [107].

T1 is directly plugged into the temperature controller for the electric air heater,

whereas T2 and T3 are connected to an amplifier (Omega Omni-Amp IV), which

provides also the cold junction compensation, and thereafter are plugged into a

digital acquisition card (NI-PCI-6034E). Eventually, a computer equipped with

NI Labview converts the voltage measured by these two detectors into a temper-

ature reading.

2.1.7 Gas sample analysis

In order to collect a gas sample, it was necessary to quench the ongoing reactions

and to remove the water vapour to avoid any damage to the gas chromatograph.

A water-cooled probe attached to a vacuum pump allows the quenching and

extraction of a sample of the exhaust gas at the burner exit. Subsequently, the

sample is passed through a calcium chloride cartridge for water removal. Between

the extraction and the drying stage, the sample line has been kept over 373 K to

avoid water condensation, by using a heating cord wrapped around the extraction

tube.

To obtain a consistent sample of the reformate, a hood with a 25 mm outlet

has been attached to the top of the burners. Therefore, the sample analyzed

represents a mixture of the gas coming from the very hot part (central) and from

the cold parts of the burner (peripheral — close to the burner walls). This hood

has a conical shape in order to avoid strong pressure drops which may affect the

spray and the flame.

The gas samples have been injected into a gas chromatograph (GC). The GC

is equipped with a Thermal Conductivity Detector (TCD) and with a Flame Ion-

ization Detector (FID) and two columns for the species separation. The Molecular

Sieve is used to separate H2, O2, N2, CH4 and CO. It is too retentive for C2

hydrocarbons and it can be deactivated by CO2 and H2O. The Haysep N porous

polymer column do not retain permanent gases and then H2, air, CO and CH4
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2.1 Apparatus

pass straight through without separation. CO2 is separated along with C2H2,

C2H4 and C2H6. Therefore, the gas sample passes first through the Haysep N

(porous polymer bead column) which retains carbon dioxide and C2 hydrocar-

bons while the other species elute quickly to the Molecular Sieve column. A

3-way valve allows the bypass of the Molecular Sieve before CO2 comes off the

porous polymer bead column. Finally, the sample passes through the TCD (non-

destructive detector) and afterwards through the FID (sample is combusted).

The FID detector is about 100 times more sensitive than the TCD. This detector

ionizes carbon atoms, in a hydrogen flame. Normally a hydrogen flame produces

a negligible amount of ions, so only hydrogen carbon bounded compounds carried

into the flame result in the formation of ions, whose quantity is measured in the

FID and the carbon amount deducted.

The carrier gas used is high-purity Argon and pure air and 99.995% purity

hydrogen were used for the FID flame. The machine is calibrated by a gas mixture

with species concentrations similar to the ones expected in the reformate before

every set of tests. The first calibration gas used was composed of 19.94% H2,

1.00% O2, 15.00% CO, 4.04% CO2, 4.87% CH4, 3.01% C2H2, 1.99% C2H4, 1.00%

C2H6, balance nitrogen. Later on in the research, a new calibration gas was

used, to match better the new syngas composition obtained through the system

optimization: 19.83% H2, 0.993% O2, 18.09% CO, 2.95% CO2, 4.00% CH4, 2.98%

C2H2, 2.01% C2H4, 0.514% C2H6, balance nitrogen. The sample line has been

periodically checked for leaks and the samples have been injected at the same

temperature and pressure. Given the partial oxidation process, no air should be

present in the gas samples, therefore the absence of oxygen in the GC reading

may insure that no leaks are present in the sampling line.

2.1.8 Particulate detection

Soot emission was investigated by means of a filter-paper-method machine (AVL

415S). A gas sample is taken from the exit of the burner with a probe and passed

through a filter paper. The blackening of the filter paper is measured with a

reflectometer and this indicates the soot content in the exhaust gas. The output
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value (FSN) is the Filter Smoke Number and it corresponds to the Paper Black-

ening (PB), as defined by Eq. 2.1, for a sampling length of 405 mm at 298 K

and 1 bar:

PB =
100 − RR

10
(2.1)

with RR=RP

RF

·100% and RP the reflectometer value of sample, RF the reflectome-

ter value of the unblackened paper and RR the relative brightness of the sample.

The soot detector extracted five gas samples for each condition and the average

value is reported in Section 3.4 and 4.4.

2.2 Fuels

The fuels investigated in this work are n-heptane, Jet A-1 kerosene, commercial

diesel oil and Rapeseed-Oil Methyl Ester (RME) biodiesel. Laboratory analyses

were performed for Jet A-1, Diesel and biodiesel by the Chemistry Department

Labs of Cambridge University. From the carbon-to-hydrogen ratio it is possible

to calculate the approximate molecular formulas of the fuel which, together with

the fuel specifications, are summarised in Table 2.2. n-heptane is high-purity

laboratory grade fuel (99+%). The diesel oil used for the reforming experiments

is commercial fuel from a local gas station and kerosene is from a supplier for the

local airport. The RME biodiesel is rapeseed-oil based and follows the EN 14214

standards and requirements.

The choice of reforming n-heptane has been dictated by the possibility of com-

paring experimental data with numerical simulations and computational models,

given the availability of chemical mechanisms [10] for such a reference fuel. Diesel,

kerosene and biodiesel experiments represent practical applications of the re-

former with commercial fuels. Different evaporation temperatures (T1) have been

set for ensuring full evaporation for each fuel. n-heptane has been vaporised in a

423 K environment. The boiling point range of Diesel is 457-648 K [108; 109] due

to the different properties of the different component contained; consequently,

the evaporation temperature was set to 573 K, being the maximum achievable
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with the configuration adopted. It has to be noted that the first layer improves

the vaporization process, as demonstrated by [110]. This effect is due to the

high temperature of the first layer for the heat conduction and radiation coming

from the downstream flame front and for the complex flow pattern covered by

the mixture inside the ceramic bead layer, which enhances the heat transfer to

the residual liquid spray phase. Similarly, kerosene boiling range is 463-523 K

[108] and hence T1 has been set at 523 K. The biodiesel/air mixture preparation

temperature has been set at 523 K, limited by the risk of cracking at high tem-

peratures, caused by the thermal instability of this fuel due to the presence of

oxygen atoms in the fuel molecule, as explained by [111; 112]. Figs. 2.8, 2.9 and

2.10 give the GC-MS reading of those fuels. The spectra clearly show the pres-

ence of heavier hydrocarbon components in diesel compared to kerosene, as listed

in Table dieselgcms and kerosenegcms. The biodiesel spectrum is consistent with

similar analyses published for the same type of fuel [113]. The fuel specifications

given by the suppliers are listed in Figs. 2.11, 2.12 and 2.13.
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Table 2.2: Fuel specifications.

Fuel n-heptane Jet A-1 Diesel oil RME biodiesel

Chemical for-

mula
C7H16 C12H24 C12H23 C19H36O2

LHV [MJ/kg] 44.926 42.800 43.000 37.600

Kinematic

Viscosity

[mm2/s]

@ 40 ◦C

0.51 1.0-2.0 2.0-4.5 3.50-5.0

Vapour Pres-

sure [kPa]
0.05 0.5 0.5 <0.267

Density

[kg/m3]

@ 15 ◦C

0.682 0.820 820-835 0.875-0.900

Heat of

vaporization

[kJ/kg]

318 251 250 254

Supplier Acros CPS fuels Shell ADM
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2.2 Fuels

Figure 2.8: GC-MS output for Diesel oil.
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Figure 2.9: GC-MS output for Jet A-1.

Figure 2.10: GC-MS output for RME biodiesel.
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2.2 Fuels

Table 2.3: Fig. 2.8 main peak description.

Peak

number

Retention

Time

Component

Type

1 2.254 Aromatic

2 2.480 Unknown

3 3.354 Aromatic

4 4.007 Aromatic

5 4.047 Alkane

6 6.748 Alkane

7 9.068 Alkane

8 11.002 Alkane

9 12.669 Alkane

10 14.142 Alkane

11 15.482 Alkane

12 16.743 Alkane

13 16.769 Alkane

14 17.910 Alkane

15 17.976 Alkane

16 19.023 Alkane

17 19.276 Methyl Ester

18 20.077 Alkane

19 21.037 Unknown

20 21.097 Unknown

21 22.037 Alkane

22 22.950 Alkane

23 23.824 Alkane
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Table 2.4: Fig. 2.9 main peak description.

Peak

number

Retention

Time

Component

Type

1 1.740 Alkane

2 2.007 Alkane

3 2.147 Unknown

4 2.214 Alkane

5 2.260 Aromatic

6 2.487 Alkane

7 4.054 Alkane

8 6.741 Alkane

9 9.041 Alkane

10 10.962 Alkane

11 12.609 Alkane

12 14.069 Alkane

13 15.409 Alkane
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Figure 2.11: Shell diesel specifications [6].
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Figure 2.12: ADM biodiesel specifications [7].
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Figure 2.13: CPS kerosene specifications [8].
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2.3 Post reforming catalysis

In order to explore the possibility of reducing the carbon monoxide and hydrocar-

bon content of the syngas, two further stages have been implemented and tested.

These two stages consists of a steam reforming stage to process the remaining

light hydrocarbons present in the off gas and a water-gas shift reaction to trans-

form the carbon monoxide to carbon dioxide and hydrogen. Both these stages

need steam and a catalytic bed where the reaction can take place. Burner E was

used for these experiments, due to the larger section area and therefore the longer

residence time of the syngas inside the catalytic bed. It has to be noted that both

the catalysts are poisoned by sulphur and therefore out of the fuels used in this

project, only n-heptane and biodiesel could be tested.

2.3.1 Steam reforming catalyst

The steam reforming catalyst used for this investigation is the G 90-EW from

Süd-chemie which is nickel-based on an aluminium oxide and calcium aluminate

carrier in “spoked wheel” shape, as shown in Fig. 2.14a. Specifically, the com-

ponent proportion on a weight basis is 11% Ni, 80% Al2O3, 9% CaO (bound as

CaAl12O19) and less than 0.02% of Na and SiO2. This catalyst is designed to

process natural gas, but it will be shown later that it has excellent performance

with the reformate produced by the partial oxidation of n-heptane, which con-

tains (apart from hydrogen and carbon monoxide) mainly methane and acetylene.

The operating temperature range for this catalyst is 773-1173 K and for this rea-

son it was simply poured on top of the ZrO2 foam, in order to use all the heat

produced by the reforming process without the aid of any external heat source.

A modular section of 100 mm in length was filled with this material.

2.3.2 Water-gas shift catalyst

The catalyst used for the water-gas shift reaction is the NextCatA from the

supplier Fuelcellsmaterial.com. It comes in pellet shapes (Fig. 2.14b) composed

of Zirconia doped with Ceria and 2% of Pt. The catalyst is for high-temperature
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operations and the working range is 673-1073 K. A cartridge filled with pellets

was attached to the top of the hood of burner E.

Figure 2.14: (a) Süd-chemie G 90-EW steam reforming catalyst wheels; (b) Fu-

elcellsmaterial.com ZDC/Pt catalyst pellets.

2.4 Procedure

A typical test procedure starts with the warming up of the reactor by a flow of

only the oxidiser (i.e. the air) through the reactor to bring the temperatures up

to the appropriate value corresponding to the fuel characteristics so as to avoid

fuel condensation. This first stage takes approximately from 10 to 20 minutes,

depending on the fuel that is processed. At this point, the fuel is injected. An

air/fuel ratio close to stoichiometry and a thermal power of 2 kW is used first

to achieve a prompt ignition. At this condition, the unreacted air/fuel mixture

flow velocity nearly matches a typical hydrocarbon laminar flame speed at ϕ=1.0

(approx. 40 cm/s [114] at normal atmospheric temperature and pressure) for the

size of the burners used in this experiment. The four automotive spark plugs are

activated and provide the means of ignition. After the ignition, the reaction zone

quickly extends inside the porous matrix and the equivalence ratio is switched

to rich values. When the thermocouple on the top of the burner (T3) gives a

constant reading, the system has reached thermal equilibrium and samples can
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be extracted through the sampling line. From cold to fully stabilised operation,

the system takes about 20-30 minutes, depending on the fuel.

2.5 Equilibrium calculation

The experimental molar fractions of H2, O2, N2, CO and CO2 and hydrocar-

bons up to C2 (methane, acetylene, ethylene and ethane) have been compared

to thermodynamic equilibrium calculations. The results were obtained by means

of a computational tool which elaborates the NASA database thermodynamic

coefficients [115]. The inputs to this code are the pressure (atmospheric in our

case) and the temperature of the mixture whose equilibrium composition is to

be calculated. Two options were used: (a) the adiabatic flame temperature cor-

responding to the ϕ and initial T (T1) used, calculated by [116], and (b) the

experimentally-determined sample temperature (T3).

2.6 Carbon balance

An algorithm has been written and used to calculate the water content of the

syngas. An iterative water molar fraction value has been introduced in the calcu-

lation in order to minimize the O:N ratio of the dry species minus the O:N ratio

of the wet species, since the O:N ratio must be conserved. In this way the water

mole fraction is estimated and hence the percentage of H2 bound by water and

light hydrocarbons present in the off-gas can be estimated.

The sum of the three components (molecular hydrogen, hydrogen in hydro-

carbons and hydrogen in water) ranges from around 90% down to 75% of the

hydrogen contained in the fuel molecule over the equivalence ratio. The discrep-

ancy at rich equivalence ratios may be due to the soot formation or to deposits

which have been detected on the first porous layer (flame holder). Moreover,

potential formation of hydrocarbons not detectable by the Gas Chromatograph

or condensed in the drier cartridge together with water may contain the missing

hydrogen. Hydrocarbons not detectable are those higher than C2 which, even if in

small fractions, can “hide” large quantities of hydrogen. The Gas Chromatograph

columns can tolerate a maximum temperature of 160 ◦C and hence high-boiling
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point hydrocarbons cannot be analyzed by the described configuration in any

case.
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Chapter 3

n-heptane reforming

This chapter deals with the experimental investigations carried out on n-heptane

reforming. Several parameters have been explored such as the thermal load, the

equivalence ratio, the different material characteristics and the burner size effect

on the syngas composition. Some preliminary studies have also been performed

concerning the homogeneity of the unreacted air/fuel mixture before the layer

interface and the syngas composition uniformity over the cross section of the

burner. Also the operating range of one of the configurations has been investi-

gated, demonstrating the superadiabatic effect on the flame speed.

3.1 Preliminary investigations

In this section the mixture uniformity, the reformate uniformity over the cross

section of the burner and the operating range of the reformer have been investi-

gated.

3.1.1 Mixture homogeneity

The functionality of the atomisation and evaporation stage of the burner has

been investigated in terms of mixture homogeneity by means of the HFR500

FFID and with the methodology described in Section 2.1.4. The tests have been

conducted on the 70 and 100 mm ID burner with n-heptane/air mixtures at P=7

kW and ϕ=2.0, 2.5 and 3.0 with a preheat temperature of 423 K. The mixture
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was sampled at 100 Hz and 1000 readings were recorded and averaged at 10 mm

displacement steps of the probe above the flame holder layer. Fig. 3.1 shows the

results of this investigations with the plot of the local voltage output normalized

by the average value over the cross section of the fuel/air mixture at ϕ=2.0 for

the two burners. It can be noted that the mixture is richer than the average value

in the central part of the burners, whereas on the sides it results leaner. However,

the deviation is limited to ±2% for the 70 mm ID burner and to ±5% for the 100

mm ID burner.

The same investigation has been carried out at ϕ=2.5 and 3.0 at P=7 kW.

Fig. 3.2 and Fig. 3.3 display the results from the two burners. A mixture inho-

mogeneity is more marked at higher equivalence ratios. At ϕ=2.5 the deviation

from the average value is around ±4% and ±10% and at ϕ=3.0 it reaches ±7%

and ±15% for the small and big burner respectively. Probably, the modification

of the nozzle design and the reduced air flow rate at high equivalence ratios im-

pede the initial breakdown of the liquid jet and hence may affect the uniform

distribution of the air/fuel mixture over the burner cross section. This disparity

is very mild for the small burner and confined to the peripheral area of the cross

section, whereas it is stronger for the 100 mm ID burner. This is may also be due

to the narrow spray cone angle (45 ◦) that prevents the mixture to cover uniformly

the cross section of the tube. Nevertheless, in view of the relatively small mixture

inhomogeneity and the further mixing achieved inside the reforming section, it is

expected that the reformate composition will be uniform across the burner. This

is demonstrated in more detail in the next Section.
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Figure 3.1: Reactant mixture over the first porous layer (flame holder) measured

by the FFID and expressed as normalized voltage over the cross section of the

two size burners (70 and 100 mm ID) at P=7 kW and ϕ=2.0.
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Figure 3.2: Reactant mixture over the first porous layer (flame holder) measured

by the FFID and expressed as normalized voltage over the cross section of the 70

mm ID burner at P=7 kW and ϕ=2.0, 2.5 and 3.0.
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Figure 3.3: Reactant mixture over the first porous layer (flame holder) measured

by the FFID and expressed as normalized voltage over the cross section of the

100 mm ID burner at P=7 kW and ϕ=2.0, 2.5 and 3.0.
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3.1.2 Reformate uniformity

After the investigation of the air/fuel mixture before ignition, a similar test has

been carried out for the uniformity of the syngas composition after the porous

reforming layer. For this purpose, burner E has been used (100 mm ID tube with

a 30 ppi ZrO2 foam), since it developed the largest divergence from a uniform

distribution of air/fuel mixture. Five different locations were sampled, going from

the burner walls to the centre of the tube. The extraction of the gas sample has

been carried out right above the foam, before diffusion and mixing could occur.

Also the temperature has been recorded at the different sampling points.

The results are shown in Fig. 3.4. The syngas composition results to be uni-

form over the radial positions, whereas the temperature trend follows a parabolic

curve over the flame holder layer, due to the heat losses at the walls. Hydrogen

and carbon monoxide peaks at the centre of the reformer and they are lower in

molar fraction at the peripheral area. Similarly, the temperature peaks at the

centre because of the heat losses at the tube’s walls. The syngas composition

difference between the five sampling points is anyway very limited and it is con-

tained within 10% variation of the average value.
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Figure 3.4: Syngas composition and exit temperature T3 over the reforming layer

of burner E at P= 7 kW and ϕ=2.0.
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3.1.3 Operating envelope

The operating points of the burner have been explored in order to detect sta-

tionary flame conditions. Burner C was used for this purpose. The thermal load

has been fixed and flames with equivalence ratios ranging from 1.5 to richer val-

ues were investigated. Then further sets of tests were carried out with a higher

thermal load. Four different flame behaviours have been observed: (a) quenching

– the heat produced by the flame does not offset the heat losses and the flame

cannot be sustained; (b) flash-back – the flame speed is high enough (or the flow

rate low enough) to penetrate the flame holder layer in the upstream direction

and ignite the mixture in the vaporization area; (c) filtration wave – a reaction

wave travels from the layer interface up to the top of the burner; (d) steady flame

stabilized at the interface or immediately downstream. This condition is the one

of interest in this work. The difference between conditions (c) and (d) was de-

tected by the temperature measurements. When the thermocouple placed at the

interface (T2) gave a constant and higher reading than the exit gas temperature

(T3), a filtration wave did not initiate and the flame would stabilise. On the con-

trary, a filtration wave gives a decreasing reading of the interface temperature T2

with time. A steady condition is associated with the stabilisation of the reaction

zone in the first half of the large pore layer, as demonstrated by [90]. Moreover,

the flow and fuel/air proportion conditions (P and ϕ) have been kept constant

for at least 20 mins, as a filtration wave travels with a speed around 10−4 m/s

[62; 63; 92] , which means that the flame would reach the top of the porous matrix

in approximately 16 mins, for this specific configuration. Therefore, if the flame

did not appear on the top of the porous media after 20 mins, the working point

was included in condition (d).

The operating envelope is described in Fig. 3.5, where the working points of

the reactor are plotted at different flow rates and equivalence ratios. Since the

flame is stabilised, the flow velocity in the burner is equivalent to the flame speed.

High equivalence ratios (up to ϕ=5.0) were reached and a maximum flame speed

of 88.6 cm/s at ϕ=2.0 has been achieved, limited by the equipment maximum

scale and the hazard of the great heat produced. The broadest steady operating

zone occurs at ϕ=2.0, consistent with [117].
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The experimental results have been compared to numerical calculations of free

premixed flames (i.e. in the absence of porous media) carried out by means of

a commercial code (COSILAB) [9]. The calculated flame speeds are for a free

n-heptane flame at the corresponding preheat temperature and equivalence ratio

of the experimental results. A detailed mechanism for n-heptane have been used

[10]. The comparison of the two sets of data demonstrates that the flame in the

porous media achieves much higher flame speeds than the the free flame at the

same ϕ, showing the establishment of superadiabatic conditions.

Figure 3.5: Operating envelope for burner C for n-heptane reforming at a pre-

heat temperature of 423 K. Laminar burning velocity of free premixed flames

calculated by the code COSILAB [9] and a detailed chemical mechanism [10].
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3.2 Parametric investigations

This section deals with the sensitivity of the syngas composition on different

parameters, namely equivalence ratio, thermal load, porous material and burner

size.

3.2.1 Thermal load effect

The effect of the thermal load on the syngas quality for a fixed equivalence ratio

has been investigated in burner A. The thermal load is defined in this work as

the mass flow rate of fuel multiplied by the lower heating value (P = ṁ · LHV )

and thus it is strictly related to the bulk velocity of the flow inside the burner.

The equivalence ratio has been kept constant at ϕ=2.0, since, as demonstrated

by Section 3.1.3, at this condition the burner showed stationary flame conditions

for a broad range of flow speed. The thermal load range has been varied from 2

to 12 kW, corresponding to a flame speed ranging from 11.3 to 67.6 cm/s. The

results are reported in Fig. 3.6. The dry molar fractions of hydrogen and carbon

monoxide increase and approach equilibrium as the thermal load increases. Sim-

ilarly, the dry carbon dioxide molar fraction decreases with P. In Fig. 3.7, the

experimental dry molar fraction of hydrogen, carbon monoxide and carbon diox-

ide is compared to the calculated equilibrium at the measured exit temperature

T3. The similar trends and the similarity of the values demonstrate consistency

of the experimental results.

The increase of hydrogen and carbon monoxide concentration may be at-

tributed to the higher reaction temperatures which are measured with increasing

thermal loads. Fig. 3.8 demonstrates this increase with the plot of the mea-

sured exit temperature (T3) compared to the adiabatic flame temperature of a

n-heptane/air mixtures at ϕ=2.0 over the thermal load. Also, the light hydrocar-

bons present in the syngas show a decrease in their concentration passing from

a thermal load of 2 kW to 7 kW and afterwards the molar fractions assume con-

stant values. This enhancement is highlighted also by the conversion efficiency,

defined by Eq. 3.1:
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ηLHV =
ṁH2

LHVH2
+ ṁCOLHVCO

ṁC7H16
LHVC7H16

(3.1)

ηLHV is 46.6% at P=2 kW and increases up to 70% at P=7 kW and then it

improves slowly up to almost 72% at P=12 kW, as shown in Fig. 3.10. Analo-

gously, the molar hydrogen conversion, given by Eq. 3.2, can be introduced and

it represents the percentage of H2 present in the reformate over the H2 content

of n-heptane, in terms of molar fraction X:

ηH2
=

XH2,out

8XC7H16,in

(3.2)

ηH2
is 27.8 % at P=2 kW and increases up to 48.1% at P=7 kW and it reaches

49% at P=12 kW. Fig. 3.9 displays the hydrogen distribution in the products.

It can be noted that molecular hydrogen percentage increases with the thermal

load reaching a peak at P=7-8 kW and it assumes a constant value afterwards.

Higher thermal loads have not been investigated due to equipment limitations,

the hazard of the high temperatures and the high hydrogen and carbon monoxide

flow rates produced. Similarly, lower thermal loads than 2 kW have not been

investigated for the risk of damaging the air heater at low air flow rates and for

the little heat produced by the flame which could not offset the heat losses to the

sides of the burner and by radiation downstream.
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Figure 3.6: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for a inlet air/fuel temperature of

423 K at various thermal loads for n-heptane reforming at ϕ=2.0 for burner A.

(a) Hydrogen, carbon monoxide and carbon dioxide. (b) Measured methane,

acetylene, ethylene and ethane.
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Figure 3.7: Calculated equilibrium at the measured exit temperature T3 and the

experimental mole fractions (on a dry basis) of hydrogen, carbon monoxide and

carbon dioxide for a inlet air/fuel temperature of 423 K at various thermal loads

for n-heptane reforming at ϕ=2.0 for burner A.
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Figure 3.8: Adiabatic and experimental exit temperature T3 for n-heptane re-

forming at conditions as in Fig. 3.6.
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Figure 3.9: H2 distribution in hydrogen, water and hydrocarbons present in n-

heptane reformate as a function of thermal load based on processing of the mea-

sured dry molar fractions. Conditions as in Fig. 3.6.
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Figure 3.10: Conversion efficiency for n-heptane reforming at ϕ=2.0 and at vari-

ous thermal loads for a preheat temperature of 423 K.
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3.2.2 Equivalence ratio effect

Different porous materials for the reforming layer (burners A, C and D) at thermal

loads ranging from 6 to 8 kW have been tested at equivalence ratios from ϕ=1.1

to ϕ=3.0 with steps of 0.1. The results from the equivalence ratio effect on the

reformate are shown in Figs. 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18 and 3.19

where the experimental molar fractions on a dry basis of H2, CO, CO2 and of

hydrocarbons up to C2 are displayed, along with the calculated equilibrium data

for burner A, C and D at P= 6, 7 and 8 kW. The thermodynamic equilibrium

calculations predict negligible concentrations of hydrocarbons.

The general trend is a monotonic increase of the hydrogen and carbon monox-

ide molar fraction and decrease of carbon dioxide molar fraction against the

equivalence ratio. Experimental results and calculated thermodynamic equilib-

rium data are very close up to ϕ=1.7 for P=6 kW and up to ϕ=1.9 for P=7 and

8 kW for burner A. For burner C at ϕ=1.7, H2, CO, CO2 dry molar fractions

are: 10.0% and 10.2%, 14.2% and 15.7%, 4.8% and 4.3% for the experimental and

equilibrium results respectively. At P=7 kW and ϕ=1.9 the dry molar fractions

of H2, CO, CO2 for burner A are 13.4% and 13.8%, 15.9% and 17.3%, 4.2% and

3.6% for the experimental and equilibrium results respectively. For burner D,

experimental data coincide well with equilibrium calculated molar fractions up

to an equivalence ratio of ϕ=2.0-2.1. At P=8 kW and ϕ=2.0, burner D presents

the following H2, CO, CO2 molar fractions: 15.4% and 15.5%, 17.9% and 18%,

3.4% and 3.3% for the experimental and equilibrium results respectively. For all

the conditions displayed, at ϕ richer than 2.0, hydrogen and carbon monoxide

molar fractions stay constant, whereas the hydrocarbon (HC) presence increases

considerably. For instance, passing from ϕ=2.1 to 2.9 for burner A, H2, CO

and CO2 molar fractions pass from 15.28% to 15.29%, 16.7% to 15.8% and from

3.8% to 2.9% respectively, whereas methane increases from 1.18% to 3.3%, acety-

lene from 0.7% to 1.8%, ethylene from 600 ppm to 1.3% and ethane from below

detectable limit to 140 ppm. Hence, the disparity of the hydrogen and carbon

monoxide values between the experimental and equilibrium data is probably due

to the formation of light hydrocarbons at high equivalence ratios.
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Rich flames lead to a large presence of hydrogen and carbon monoxide in

the samples but at the same time the reaction temperatures drop because for

the technique used in this study the heat provided is solely produced by the

oxidation process. Consequently, after an increase of H2 and CO molar fractions,

the fuel is reformed to light hydrocarbons rather than to syngas, because of the

lower temperature of the process. Ideally, by providing more heat (i.e. the steam

reforming concept relies on external heat sources [118]), the syngas molar fraction

curve over the equivalence ratio may increase monotonically.

In general, the operating point around ϕ=2.0 has demonstrated better perfor-

mance in terms of high stability and repeatability, high conversion efficiency and

low soot formation for the foam burners. This aspect is underlined by Fig. 3.20a,

where the H2 content is maximised at ϕ=2.0 for burner A at P= 7 kW. High

water content is exhibited at lower ϕ and high HC content is observed at higher

ϕ. Both water and light hydrocarbons act as hydrogen sinks. Also the conversion

efficiency, defined by Eq. 3.1, peaked around the same condition, as illustrated

by Fig. 3.20b. It is also interesting to note the consistent anomaly in the hydro-

carbon molar fraction trend at around ϕ=2.5, especially for Fig. 3.11b, 3.14b,

3.16b and 3.19b. Such behaviour may need further investigations and analysis.
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Figure 3.11: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for a inlet air/fuel temperature of

423 K at various equivalence ratio for n-heptane reforming at P=6 kW for burner

A. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Measured methane,

acetylene, ethylene and ethane.
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Figure 3.12: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for a inlet air/fuel temperature of

423 K at various equivalence ratio for n-heptane reforming at P=7 kW for burner

A. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Measured methane,

acetylene, ethylene and ethane.
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Figure 3.13: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for a inlet air/fuel temperature of

423 K at various equivalence ratio for n-heptane reforming at P=8 kW for burner

A. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Measured methane,

acetylene, ethylene and ethane.
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Figure 3.14: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for a inlet air/fuel temperature of

423 K at various equivalence ratio for n-heptane reforming at P=6 kW for burner

C. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Measured methane,

acetylene, ethylene and ethane.

71

Chapter2/Chapter2Figs/heptane_syngas_C_p_6kw.eps
Chapter2/Chapter2Figs/heptane_HC_C_p_6kw.eps


3.2 Parametric investigations

equivalence ratio [-]

dr
y

m
ol

ar
fr

ac
tio

n
[%

]

1 1.5 2 2.5 3
0

5

10

15

20

25

30

H2 exp

CO exp

CO2 exp

H2 num,TAD

CO num,TAD

CO2 num,TAD

(a)

equivalence ratio [-]

dr
y

m
ol

ar
fr

ac
tio

n
[%

]

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

CH4 exp

C2H2 exp

C2H4 exp

C2H6 exp

(b)

Figure 3.15: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for a inlet air/fuel temperature of

423 K at various equivalence ratio for n-heptane reforming at P=7 kW for burner

C. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Measured methane,

acetylene, ethylene and ethane.

72

Chapter2/Chapter2Figs/heptane_syngas_C_p_7kw.eps
Chapter2/Chapter2Figs/heptane_HC_C_p_7kw.eps


3.2 Parametric investigations

equivalence ratio [-]

dr
y

m
ol

ar
fr

ac
tio

n
[%

]

1 1.5 2 2.5 3
0

5

10

15

20

25

30

H2 exp

CO exp

CO2 exp

H2 num,TAD

CO num,TAD

CO2 num,TAD

(a)

equivalence ratio [-]

dr
y

m
ol

ar
fr

ac
tio

n
[%

]

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

CH4 exp

C2H2 exp

C2H4 exp

C2H6 exp

(b)

Figure 3.16: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for a inlet air/fuel temperature of

423 K at various equivalence ratio for n-heptane reforming at P=8 kW for burner

C. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Measured methane,

acetylene, ethylene and ethane.
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Figure 3.17: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for a inlet air/fuel temperature of

423 K at various equivalence ratio for n-heptane reforming at P=6 kW for burner

D. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Measured methane,

acetylene, ethylene and ethane.
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Figure 3.18: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for a inlet air/fuel temperature of

423 K at various equivalence ratio for n-heptane reforming at P=7 kW for burner

D. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Measured methane,

acetylene, ethylene and ethane.

75

Chapter2/Chapter2Figs/heptane_syngas_D_p_7kw.eps
Chapter2/Chapter2Figs/heptane_HC_D_p_7kw.eps


3.2 Parametric investigations

equivalence ratio [-]

dr
y

m
ol

ar
fr

ac
tio

n
[%

]

1 1.5 2 2.5 3
0

5

10

15

20

25

30

H2 exp

CO exp

CO2 exp

H2 num,TAD

CO num,TAD

CO2 num,TAD

(a)

equivalence ratio [-]

dr
y

m
ol

ar
fr

ac
tio

n
[%

]

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

CH4 exp

C2H2 exp

C2H4 exp

C2H6 exp

(b)

Figure 3.19: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for a inlet air/fuel temperature of

423 K at various equivalence ratio for n-heptane reforming at P=8 kW for burner

D. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Measured methane,

acetylene, ethylene and ethane.
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Figure 3.20: (a) H2 distribution in hydrogen, water and hydrocarbons present

in n-heptane reformate as a function of equivalence ratio based on processing of

the measured dry molar fractions. (b) Conversion efficiency defined by Eq. 3.1

against the equivalence ratio for n-heptane. Conditions as in Fig. 3.12.
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3.2.3 Porous material effect

This section focus on different porous materials for the reforming stage. Fig.

3.21 compares the experimental results obtained from a similar investigation as

the one in Section 3.2.2 (ϕ ranging from 1.1 to 3.0 at P=7 kW), but carried

out in burners A, B, C and D. The only significant enhancement in the reformer

performance has been demonstrated by burner D, which uses a packed bed of

alumina beads, as demonstrated by Fig. 3.22. The maximum deviation, calcu-

lated as the standard deviation of three tests carried out for some conditions,

resulted to be ±0.5% vol. from the value reported in the graphs. Therefore, this

enhancement is especially meaningful at equivalence ratios higher than ϕ=2.2.

Fig. 3.21 shows a higher molar fraction of H2 and CO for very rich equivalence

ratios, along with a lower hydrocarbon content compared to the foam burners.

Specifically, the conversion efficiency peaks at 75% at ϕ=2.5 with H2, CO and

CO2 experimental dry molar fractions of 19.3%, 19.9% and 2.3% respectively for

burner D, compared to a conversion efficiency of 57.9% and 15.0%, 17.1% and

2.9% molar fractions for burner B, 56.7% and 54.7% for burner A and C respec-

tively (Fig. 3.22) at the same equivalence ratio. The temperatures shown in Fig.

3.23 may aid the understanding of this trend; it appears that the beads lead to

higher reforming temperature (by 100 K) compared to the foam matrices. The

thermal conductivity of Al2O3 is higher compared to ZrO2, as listed in Table

2.1, and this may enhance the heat recirculation and the superadiabatic effect.

Therefore, as shown by the experimental results, higher reforming temperatures

lead to a lower presence of HCs in the reformate, resulting in higher H2 and CO

molar fraction. The other parameters such as porosity and foam material (burner

A, B and C) seem to not affect appreciably the reformate composition.
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Figure 3.21: Experimental mole fractions (on a dry basis) of (a) H2, (b) CO and

(c) total C1 (contributions from CH4, C2H2, C2H4 and C2H6) for burners A, B,

C and D at conditions as in Fig. 3.12.
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Figure 3.22: Conversion efficiency, as defined by Eq. 3.1, for burners A, B, C and

D at conditions as in Fig. 3.12.
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Figure 3.23: Exit temperature (T3) and conversion efficiency, as defined by Eq.

3.1, for burners A and D at conditions as in Fig. 3.12.
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A further investigation on the reforming layer with n-heptane concerns the

length of the porous medium. Burners E and F were set for this purpose. The

reformate component molar fraction graphs (Fig. 3.24) demonstrate higher values

of CO and H2 and lower molar fraction of C1 of burner E compared to burner F.

This may be due to the larger amount of heat captured and therefore recirculated

by a longer matrix, but also to the longer residence time in a hot environment

for the partial oxidation products. However, the limited improvement of the

performance observed, suggested that any further tests with longer pieces of foam

would not be very productive.
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Figure 3.24: Experimental mole fractions (on a dry basis) for an inlet air/fuel

temperature of 423 K at various equivalence ratios for n-heptane reforming at

P=7 kW for burners E and F. (a) Hydrogen, carbon monoxide and carbon dioxide.

(b) total C1 (contributions from CH4, C2H2, C2H4 and C2H6).
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3.2 Parametric investigations

3.2.4 Burner size effect

The results from the two burners of different diameter have been compared. The

same porous material (30 ppi ZrO2 foam) has been used for the reforming layer.

The results are displayed in Fig. 3.25. Hydrogen molar fractions are very similar

up to an equivalence ratio of 1.7. For richer equivalence ratios, burner A develops

a higher hydrogen presence in the syngas. For CO and CO2, the trend is the

opposite. Burner E shows a higher concentration of carbon monoxide and carbon

dioxide compared to burner A up to an equivalence ratio of 1.8. From this point

onwards the two curves overlap. This behaviour is mirrored by the C1 graph,

which shows a slight higher hydrocarbon presence in burner E syngas. Since

the exit temperatures recorded by the themocouple T3 are very similar for both

burners (Fig. 3.26), a possible reason is a better mixture uniformity in the smaller

burner, demonstrated in Section 3.1.1.
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Figure 3.25: Experimental mole fractions (on a dry basis) for an inlet air/fuel

temperature of 423 K at various equivalence ratios for n-heptane reforming at

P=7 kW for burners A and E. (a) Hydrogen, carbon monoxide and carbon dioxide.

(b) total C1 (contributions from CH4, C2H2, C2H4 and C2H6).

85

Chapter2/Chapter2Figs/heptane_burner_AE_syngas.eps
Chapter2/Chapter2Figs/heptane_burner_AE_HCs.eps


3.2 Parametric investigations
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Figure 3.26: Exit temperature (T3) for burners A and E at condition as in Fig.

3.12.
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3.3 Heat losses

3.3 Heat losses

Heat losses were assessed by means of a energy balance between the inlet species

and the products given by the Gas Chromatograph analyses. For this purpose,

the NASA database of species enthalpies has been used. The polynomial fits,

calculated at the measured exit temperature, have been used to infer the mixture

enthalpy, which has been then multiplied by the molar flow rate of the products.

The difference between the energy stored in the reactants and the energy stored

in the products gives the energy lost through radiation from the porous matrix

at the top of the burner in the downstream direction and through conduction

and convection at the outer wall of the reactor. Fig. 3.27 shows the percentage

of heat losses versus the thermal power input. At low firing rate the heat losses

are around 34% of the energy of the fuel, whereas at higher firing rates this ratio

drops to 10%. It is straightforward to devise ways to reduce these heat losses, for

example by preheating the atomising air (coil tube wrapped around the burner)

or the fuel or to produce steam for a potential syngas clean-up stage.
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Figure 3.27: Heat losses as a percentage of the thermal load vs. thermal load.

Burner A and ϕ=2.0.
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3.4 Soot emission

3.4 Soot emission

The soot emission has been measured with a filter-method machine, as described

by Section 2.1.8. The measurement gave the value of the FSN , defined by Eq.

2.1, which is plotted vs. the equivalence ratio in Fig. 3.28. The measurement

gives only a value which can be used as a qualitative trend of the particulate for-

mation. No indications about the size and the number of particles can be obtained

with this configuration. The trend shows that soot appears at an equivalence ra-

tio of ϕ=2.0-2.1 and it constantly increases with richer flames. Moreover, burner

D presents less particulate emission compared to burner A. The main reason for

this difference may be the lower presence of C2 hydrocarbons for n-heptane re-

forming in burner D compared to burner A, as highlighted by the comparison

between Fig. 3.18b and Fig. 3.12b, since C2 hydrocarbons are soot precursors

[119].
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Figure 3.28: Soot emissions measured by a filter-method machine (FSN defined

by Eq. 2.1) for n-heptane over a range of equivalence ratio for burner A and D

at P=7 kW.
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3.5 Discussion

3.5 Discussion

N -heptane reforming to syngas has been investigated by Ellzey et al. [4] through

the filtration wave mode and the experimental results may be compared with this

work. The porous layer used by those authors was a packed bed of alumina pellets

and the comparison with the packed bed of alumina beads (burner D) used in this

paper leads to significant similarities. In [4], both the equivalence ratio and the

flow velocity (thermal load) effect on the reformer efficiency have been examined.

The thermal load impact assessed by [4] matches the trend observed in a previous

paper [61]. Pertinent to this work, the equivalence ratio effect described in the

previous section is also compatible with the filtration-wave reformer [4] trends. In

both investigations, H2 and CO molar fractions increase steeply with ϕ, followed

by a moderate increase at high equivalence ratios. In [4] CO molar fraction at

ϕ=3.0 was 22% for a flow velocity of 60 cm/s, while in this paper it reaches 20%

for a velocity of about 30 cm/s. Ellzey et al. [4] also introduced the hydrogen and

carbon monoxide conversion efficiency, defined as the molar flow rate of H2 and

CO over the molar flow rate of the hydrogen and carbon bound in the reactants.

Results are very similar with ηH2
=75% and ηCO=90% and 88% for [4] and this

work, respectively. A qualitative soot inspection in [4] revealed a very low soot

formation for 1.5<ϕ<2.0, as stated in the soot emission section of this paper.

Therefore the present stable-flame n-heptane reforming at a two-layer porous

medium yields similar syngas quality to the filtration wave technique.

As demonstrated in Section 3.2.3, the porous material length affects the syngas

characteristics in n-heptane reforming. Numerical simulations [120; 121] suggest

that in the partial oxidation reforming the fuel goes through combination of

partial and complete oxidation reactions. The water produced downstream drives

steam reforming and produces H2. Also, in [62] this two-stage process is noticed

by observing a first quick thermal decomposition of methane, characterized by

rapid consumption of oxygen and hydrogen and water formation, followed by the

steam reforming of methane reacting with water producing hydrogen and carbon

monoxide in an endothermic reaction. The analysis carried out [62] shows that

the first stage characteristic time is around 20 ms whereas the steam reformation

stage is highly sensitive to temperature and a difference of 300 K leads to a
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reaction characteristic time shifting from 102 to 10-1 s. Being an endothermic

process, the presence of a hot and thicker material may enhance this second stage

of the reforming process.

3.6 Chapter summary

Various burner sizes, materials, equivalence ratios and thermal loads have been

explored for evaluating reforming of n-heptane. Two burners have been tested in

order to assess the homogeneity of the n-heptane/air distribution. The 70 mm

ID burner demonstrated a good vapour distribution at P=7 kW at ϕ=2.0, 2.5

and 3.0. The 100 mm ID burner showed a higher difference between the centre

and the peripheral area of the cross section, reaching a divergence up to 15% at

ϕ=3.0. However, the syngas composition over the reforming layer for the same

burner resulted to be uniform within 10% from the mean value.

The operating points of one foam burner (burner C) has been investigated

and it verified the establishment of flame speed higher than the free-flame at the

corresponding condition. Moreover, the equivalence ratio of 2.0 resulted to be

the broadest steady-flame operating zone.

The parametric investigation (thermal load, equivalence ratio, porous material

and burner size) highlighted the close dependency of the conversion efficiency to

the process temperature. In all cases, the parameter providing a better heat recir-

culation and therefore a stronger superadiabatic effect, lead to a condition close

to thermodynamic equilibrium. Specifically, a high thermal load and the bead

burner (burner D) demonstrated the best performance. Furthermore, the equiva-

lence ratio effect investigation showed a peak in the conversion efficiency around

ϕ=2.0 for the foam burners. From this value onwards, the syngas composition

moves away from equilibrium and light hydrocarbons start to be at significant

molar fractions. Eventually, the burner size did not affect heavily the reformer

output; a slight lower performance of the 100 mm ID burner seems to be due to

the lower homogeneity of the mixture distribution.

Finally, the heat losses and the soot emission have been also assessed. The 70

mm ID burner demonstrated a minimum of 10% of the input fuel energy lost by
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conduction and radiation and the filter-method machine pointed, qualitatively,

to ϕ=2.0 as the soot limit condition for burner A and D at P=7 kW.
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Chapter 4

Diesel, Biodiesel and Kerosene

reforming

This chapter deals with the reforming of “real” fuels. The scope of this research

was the reforming of commercially-available fuels and the achievement of this

target is described in the following sections. Diesel has been reformed at various

thermal loads, equivalence ratios and for different burners. Also Jet A-1 Kerosene

and RME Biodiesel has been successfully processed in the same reformer as the

other fuels.

4.1 Diesel

This section contains the diesel processing results. Commercial grade has been

chosen to better demonstrate the feasibility and the performances with the target

fuel set for this research.

4.1.1 Thermal load

A thermal load ranging from P=2 to 12 kW has been tested in burner A at a fixed

equivalence ratio of ϕ=2.0. The flame speed corresponded to a range from 15.2

cm/s to 91.3 cm/s and it is higher compared to the n-heptane experiment because

of the higher preheat temperature T1 used (lower density of air). The results are

reported in Fig. 4.1. As for the n-heptane experiment in Section 3.2.1, the dry
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4.1 Diesel

molar fraction of hydrogen and carbon monoxide increases constantly starting

from 5.3% and 10.1% and reaching 14.1% and 18.4% respectively. At the same

time carbon dioxide passed from 8.3% at P=2 kW and to 3.8% at P=12 kW.

Also the hydrocarbons detected by the FID embedded in the gas chromatograph

show a steep drop in their molar fraction. Specifically, as illustrated in Fig. 4.1b,

the main components, methane and ethylene, decreased from 1.2% to 0.4% and

from 1.1% to 90 ppm respectively. Acetylene and ethane demonstrated a very

scarce presence over all the tests.

The conversion efficiency, as defined by Eq. 3.1 and graphically shown in Fig.

4.2, starts from 31.1% at P= 2 kW and reaches 71.1% at P=12 kW. The exit

temperature T3 matches this trend, by peaking at 1300 K for P=12 kW. Similar

to the investigation carried out in Section 3.2.1, the distribution of hydrogen in

the products has been assessed. As for Eq. 3.2, the percentage of molecular

hydrogen present in the products passes from 17.8% to 49.6% at P=12 kW, as

depicted in Fig. 4.3. The main issue with diesel reformate analyses is that the

sum of the three components (molecular hydrogen, hydrogen in hydrocarbons

and hydrogen in water) is around 75% of the total hydrogen contained in the fuel

molecule, compared to the 80% obtained with the n-heptane experiments. The

possible explanation is the complexity of the diesel molecule, which may lead to

the formation of a larger quantity of heavy hydrocarbons compared to n-heptane

during the reforming process, which are not detectable by the gas chromatograph.

This explanation finds support also from the difference between the total hydrogen

contained in the products at low and at high temperatures (i.e. thermal loads).

At P=2 kW the sum of the hydrogen spread over the three different components

is 71.8%, whereas at P=12 kW is 75.8%. Therefore, it appears that the high

temperatures achieved at the maximum thermal load of this test enhance the

reaction rates and lead to diesel reforming to “light” components which can be

detected by the current configuration.
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Figure 4.1: Experimental mole fractions (on a dry basis) for a inlet air/fuel

temperature of 573 K at various thermal loads for diesel reforming at ϕ=2.0 for

burner A. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Methane,

acetylene, ethylene and ethane.
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Figure 4.2: Experimental exit temperature T3 and conversion efficiency for diesel

reforming at conditions as in Fig. 4.1.

Figure 4.3: H2 distribution in hydrogen, water and hydrocarbons present in diesel

reformate as a function of thermal load based on processing of the measured dry

molar fractions. Conditions as in Fig. 4.1.
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4.1.2 Equivalence ratio

Burner A and C have been used to test the equivalence ratio effect on the syngas

obtained from diesel oil. Burner C has been tested from ϕ=1.1 to 2.5, while

the investigation on burner A has been extended up to ϕ=3.0. Steps of 0.1 were

taken and the analyses of the gas samples gave the results depicted in Fig. 4.4 and

Fig. 4.5. Both burners presented a similar trend, also equivalent to the n-heptane

reforming results. However, diesel reformate presents higher molar fraction values

of CO and lower molar fraction values of H2. This difference is due to the different

H/C ratio of the two fuels (2.28 for C7H16 and 1.92 for C12H23). Specifically to

diesel reformate, H2 and CO peak at ϕ=2.5 with molar fraction values of 14.5%

and 18.4% respectively and similarly the molecular hydrogen in the products over

the hydrogen contained in the reactants ratio (Eq. 3.2) peaks at ϕ=2.4 with a

value of 43.5%, as shown in Fig. 4.6a. The conversion efficiency peaks at ϕ=2.0

with a value of ηLHV =62.7% (Fig. 4.6b) and H2, CO and CO2 experimental dry

molar fractions reach values of 12%, 16.6% and 4.8% respectively at this point.

For richer values of ϕ, the performance drops steeply, as demonstrated by

burner A, and a red flame has been detected on the top of the porous material.

In Fig. 4.7 a quartz tube has been put over the stainless steel tube to visualize

better this effect for Diesel reforming at P=7 kW and ϕ=3.0. In the picture a red

flame coming out from the burner can be noted. It is not due to air entrainment

and it is not a filtration wave reaching the top of the foam as the flame resulted

being stabilized at the layer interface. The preheat temperature T1 has been

raised up to 773 K, by circulating the oxidative air only through the coil wrapped

around the tube, in the attempt to raise the overall reaction temperatures, but

no enhancements have been noticed. Furthermore, this effect was associated with

a steep increase in the soot emission, as demonstrated by Section 4.4. The reason

of this event is not clear, but it seems to be associated with the production of

heavy hydrocarbons in the reforming process, which partially oxidize only at

the exit of the burner. It can also be due to high radiation from the particles

emitted. An investigation with the aid of a spectrometer would confirm one of

these assumptions. Moreover, once the fuel flow has been stopped, the air flowing
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in the hot porous matrix lead to the oxidation of deposits inside the reforming

layer and a flame was still present for 20-30 seconds more.

A further distinction between n-heptane and diesel reforming in burner A is

the different path taken by the light hydrocarbon formation. n-heptane presents

higher concentrations of acetylene compared to ethylene, whereas for diesel (but

also for Jet A-1 and Bio-diesel, as it will be shown in the following sections)

ethylene is higher than acetylene.
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Figure 4.4: Experimental mole fractions (on a dry basis) for a inlet air/fuel

temperature of 573 K at various equivalence ratio for diesel reforming at P=7 kW

for burner A. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Methane,

acetylene, ethylene and ethane.
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Figure 4.5: Experimental mole fractions (on a dry basis) for a inlet air/fuel

temperature of 573 K at various equivalence ratio for diesel reforming at P=7 kW

for burner C. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Methane,

acetylene, ethylene and ethane.
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Figure 4.6: (a) H2 distribution in hydrogen, water and hydrocarbons present

in diesel reformate as a function of equivalence ratio based on processing of the

measured dry molar fractions. (b) Conversion efficiency defined by Eq. 3.1 against

the equivalence ratio for diesel. Conditions as in Fig. 4.4.
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Figure 4.7: Flame on the top of the reforming layer of burner A in diesel reforming

at P=7 kW and ϕ=3.0.
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4.1.3 Porous material effect

The test performed in the previous section has been repeated in burner D (Al2O3

beads). The trend shown in Fig. 4.8 demonstrates a similar behaviour to the one

observed for n-heptane reforming. The syngas quality is enhanced and the curves

describing H2 and CO molar fractions increase monotonically in this configura-

tion, leading to a higher conversion efficiency for ϕ richer than 2.5 compared

to those exhibited by burner A (Fig. 4.9) at these rich values. The broadest

difference between burner A and D has been recorded at ϕ=2.8. At this condi-

tion, burner A presents a dry molar fraction of hydrogen and carbon monoxide

of 9.6% and 12.9% respectively, whereas burner D gives 13.7% and 18.1% respec-

tively. The conversion efficiency passes from 35.6% to 53.8% switching from the

Zirconia foam burner to the Alumina beads reactor at this equivalence ratio.

In the previous section, a test run in burner C has been mentioned. It demon-

strated similar molar fractions to the ones obtained in the Zirconia burner. The

foam burners showed again no significant difference in the syngas composition,

even for different materials.
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Figure 4.8: Experimental mole fractions (on a dry basis) of (a) H2, (b) CO and

(c) C1 (contributions from CH4, C2H2, C2H4 and C2H6) for burner A and D at

conditions as in Fig. 4.4.
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Figure 4.9: Conversion efficiency, as defined by Eq. 3.1, for burners A and D at

condition as in Fig. 4.4.
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4.1.4 Heat losses

The heat losses have been assessed using the syngas composition and exit temper-

ature data from Section 4.1.1. The energy lost has been calculated through the

difference between the energy stored in the reactants and the energy stored in the

products, analogously to the procedure explained in Section 3.27. Fig. 4.10 out-

lines the percentage of heat losses versus the thermal power input. At low firing

rate the heat losses are around 41% of the energy of the fuel, whereas at higher

firing rates this ratio drops to 16%. The difference with the same investigation

performed on n-heptane is maybe due to the less accurate carbon balance between

reactants and products, as explained in Section 4.1.1. The missing species may

account for the energy difference in the heat losses analyses between n-heptane

and diesel.
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Figure 4.10: Heat losses for burner A for a thermal load ranging from P=2 to 12

kW and ϕ=2.0 at condition as in Fig. 4.4.
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4.1.5 Endurance test

An endurance test has been carried out in burner A at P=7 kW and ϕ=2.0. The

burner demonstrated a steady global behaviour over the test, showing no oscilla-

tion in flows and flame position. The test lasted 150 minutes and gas samples were

extracted every 30 minutes, which is the time needed by the GC to process one

sample. The results are shown in Fig. 4.11. The variation of hydrogen, carbon

monoxide and carbon dioxide are limited to 8% from the average value. After

60 and 150 minutes the biggest divergence from the average value is detected.

The hydrocarbons also presents a consistent trend, especially for methane and

ethylene which are the main HC detected in the gas samples. Consequently, the

conversion efficiency results stable around an average value of 63%, as displayed

in Fig. 4.12.
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Figure 4.11: H2, CO and CO2 experimental dry molar fractions of diesel reform-

ing at P=7 kW and ϕ=2.0 over time at condition as in Fig. 4.4.
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Figure 4.12: Conversion efficiency of diesel reforming at P = 7 kW and ϕ=2.0

over time at condition as in Fig. 4.4.
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4.2 Biodiesel

RME biodiesel has also been tested. The equivalence ratio effect has been in-

vestigated up to ϕ=3.0 for a thermal load of P=7 kW in burner A. The results

are shown in Fig. 4.13. Biodiesel data show a similar behaviour compared to

diesel reforming. H2 and CO dry molar fractions keep increasing up to ϕ=2.3

and then the performance decreases considerably. Consequently, the conversion

efficiency resulted maximum at ϕ=2.2 with ηLHV =64.9% with H2, CO and CO2

experimental dry molar fractions reaching values of 14.0%, 19.1% and 4.4% re-

spectively. The same test has been run in burner C. Fig. 4.14 shows the results,

which are comparable with burner A. Burner A provided higher syngas quality

between 2.2<ϕ<2.7 with conversion efficiencies higher than about 10% in this

range (Fig. 4.15). The HCs presence in the reformate is different compared

to diesel and n-heptane. The difference is the much higher molar fraction of

hydrocarbons at very rich equivalence ratio but also the predominant presence

of ethylene at ϕ higher than 2.7. This trend, together with the lower hydrogen

and carbon monoxide yield compared to other fuels, shows the complexity in the

reforming mechanism of heavy fuels.

The biodiesel test showed a shifted stability range towards richer equivalence

ratios compared to the other fuels investigated. Specifically, the flame managed

to penetrate the flame holder layer up to ϕ=1.7 in burner C and ϕ=1.8 in burner

A. The mechanism leading to this differing behaviour is not clear and it may due

to different kinetics paths taken by an oxygenated fuel like biodiesel compared to

diesel or kerosene during the pre-ignition reactions.
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4.2 Biodiesel
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Figure 4.13: Experimental mole fractions (on a dry basis) for a inlet air/fuel

temperature of 523 K at various equivalence ratio for RME biodiesel reforming

at P=7 kW for burner A. (a) Hydrogen, carbon monoxide and carbon dioxide.

(b) Methane, acetylene, ethylene and ethane.
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4.2 Biodiesel
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Figure 4.14: Experimental mole fractions (on a dry basis) for a inlet air/fuel

temperature of 523 K at various equivalence ratio for RME biodiesel reforming

at P=7 kW for burner C. (a) Hydrogen, carbon monoxide and carbon dioxide.

(b) Methane, acetylene, ethylene and ethane.
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4.2 Biodiesel
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Figure 4.15: Conversion efficiency, as defined by Eq. 3.1, for biodiesel reforming

in burners A and C at condition as in Fig. 4.13.
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4.3 Kerosene

4.3 Kerosene

Finally kerosene has been reformed, at P=7 kW, up to an equivalence ratio of

3.0. For this fuel, only burner A has been tested. The conversion efficiency,

shown in Fig. 4.16, peaks at ϕ=2.1 with the value of ηLHV =69.6% and H2,

CO and CO2 experimental dry molar fractions reach values of 13.8%, 18.9%

and 3.2% respectively. The reformate composition follows closely the calculated

equilibrium data up to ϕ=2.0 and afterwards the presence of hydrocarbons in the

experimental results lead to a divergence between the curves. It is noted that the

experimental CO molar fraction follows equilibrium closely up to ϕ=2.3. After a

peak of H2 and CO at ϕ=2.5, the molar fractions start to decrease, as described

also from the equilibrium calculations. The equilibrium calculations could not go

beyond ϕ=2.9, because the adiabatic flame temperature of C12H24 with enthalpy

of formation at 298.15 K of -383.894 kJ/mol [122] could not be calculated by the

method used for this project [116].

This fuel presented a very low concentration of HCs in the reformate and most

of the molecular hydrogen missing from the equilibrium calculation data is stored

in CH4, with very low concentration of C2 species. Specifically, at ϕ=3.0 the

maximum content of light hydrocarbons has been detected, with 2.9% methane,

0.12% of acetylene and 0.65% and 50 ppm of ethylene and ethane respectively.

Also for this fuel ethylene is predominant over the acetylene molar fraction.

112



4.3 Kerosene
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Figure 4.16: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for a inlet air/fuel temperature of

523 K at various equivalence ratio for Jet A-1 kerosene reforming at P=7 kW

for burner A. (a) Hydrogen, carbon monoxide and carbon dioxide. (b) Methane,

acetylene, ethylene and ethane.
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4.4 Soot emission

4.4 Soot emission

Fig. 4.17 gives an indication of the soot content in the sample for the three

different fuels described in this chapter, at P=7 kW for burner A at different

equivalence ratios. The graph represents a qualitative comparison between the

fuels and the soot emission trend, rather than a quantitative evaluation of the

particulate properties (soot number and size) at the different conditions consid-

ered. The main considerations drawn from the graph are, first, that soot starts

to appear in the sample above ϕ=2.0-2.1 for all fuels tested. Secondly, diesel

presents the highest FSN value and hence the largest particulate emission, as

expected. Finally, note the low soot generation observed in biodiesel reforming.

This trend is maybe due to the presence of oxygen atoms in the fuel molecule,

which lowers the rate of particulate formation.
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Figure 4.17: Soot emissions measured by a filter-method machine (FSN defined

by Eq. 2.1) for n-heptane, Diesel oil, Jet A-1 Kerosene and Biodiesel over a range

of equivalence ratio for burner A at P=7 kW.
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4.5 Discussion

4.5 Discussion

Comparing the results from the three fuels tested in this Chapter, the following

comments can be drawn. The total C1 molar fraction, as contribution from CH4,

C2H2, C2H4 and C2H6 of diesel, kerosene and biodiesel is shown in Fig 4.18.

The trend is similar for the three fuels up to ϕ=2.3. From this value onwards,

higher presence of HC is observed in biodiesel reformate. The complexity of the

fuel molecule seems to play the major role in the reforming mechanism, probably

because of the different components present in the fuel molecule as previously

shown in the GC-MS outputs (Figs. 2.8, 2.9 and 2.10), leading to a high sensitivity

of the reformate composition to the process temperature. Consequently, the

conversion efficiency is slightly different for the three fuels. ηLHV of the three

fuels is compared in Fig. 4.19. The graph shows similar trends and values, with

kerosene demonstrating a higher performance compared to diesel and biodiesel.

As demonstrated previously, the higher hydrogen and carbon monoxide yield is

in kerosene reforming, together with a low HCs emission, lead to the highest

performance among the fuels over all the equivalence ratio investigated.
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Figure 4.18: Experimental mole fractions (on a dry basis) of C1 (contributions

from CH4, C2H2, C2H4 and C2H6) for burner A at P=7 kW for diesel, biodiesel

and kerosene.
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Figure 4.19: Conversion efficiencies of kerosene, diesel and RME biodiesel reform-

ing, as defined by Eq. 3.1, at P=7 kW for burner A.
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4.5 Discussion

Diesel thermal partial oxidation has been studied experimentally in Ref. [123].

That experimental setup differs in the vaporization stage, reforming stage and in

the ignition strategy. The vaporizer in [123] is a separated section from the rest of

the reactor, the porous matrix is a single layer and the igniter is on the top of the

burner. A ZrO2-10 ppi foam has been implemented in [123], whereas different

dimensions and a porosity of 30 ppi was used in this paper. The operational

differences occur in the preheat temperature and the thermal load (873.15 K

and P= 10.5 kW in [123]). Despite these differences, comparable results were

achieved: the maximum H2 and CO concentration was obtained at ϕ=2.2 with a

molar fraction of 16.0% and 18.5% respectively. As previously shown in Section

3.2, we obtained maximum hydrogen and carbon monoxide molar fraction at

ϕ=2.5 with values of 14.5% and 18.4% respectively. The small difference from

the results of [123] is possibly due to the lower thermal load and the lower preheat

temperature used in this investigation, which lead to slower reaction rates of the

reforming process.

A catalytic partial oxidation reformer has been developed by [124] for an APU

system embedded with a SOFC. The authors obtained a conversion efficiency of

78% for a thermal load of 6 kW and ϕ=2.5, compared to 60% efficiency obtained

in this project for reforming in burner D at P=7 kW and at the same equivalence

ratio. A staged injection (a first lean oxidation followed by a second fuel stream

injected in the hot off-gas without any additional air) is implemented to provide

the system with the heat necessary to the fuel evaporation and catalytic bed

heating. Another experimental demonstration of CPOX of ethanol, isooctane,

hexadecane, synthetic JP8, desulfurized kerosene and desulfurized diesel for solid

oxide fuel cell applications has been performed by [59]. The results obtained by

desulfurized diesel reforming at ϕ=2.2 are H2=25%, CO= 18% and CO2=3%.

It can be noted that, apart from hydrogen, the results are similar to the results

obtained by burner D. The catalytic activity may enhance the production of hy-

drogen, which in this research resulted being “trapped” in the light hydrocarbons

and water.

Many other published works on diesel reforming focus on ATR of diesel oil and

its surrogates, highlighting the sensitivity of catalysts to the temperature profile

of the reactor and to the poisoning species (sulfur) and the degradation of the
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4.5 Discussion

catalytic bed with time. In [125], a noble metal catalyst has been used to reform

hexadecane and commercial diesel in an ATR reformer. The experimental results

show molar fractions of H2, CO, CO2 and CH4 of 53%, 25%, 18% and 3.2%

respectively, for commercial diesel reforming in a furnace kept at 850 ◦C. Further

energy was needed to produce the large amount of steam used to run the steam

reforming stage of the autothermal process and the WGS reaction. Synthetic

diesel (sulfur-free) and JP-8 (1000 ppmw S) have been reformed in an ATR

reactor in [126]. The effect of H2S, which is produced from the sulfur content

of the fuel at low temperatures (300 ◦C-400 ◦C) and of SO2, formed at higher

temperatures (>600 ◦C) is assessed separately and results to affect dramatically

and irreversibly the hydrogen yield, which dropped from 75% to 40% and 55%

respectively. For this reason, in a similar work [127] a ZnO desulfurizer bed has

been implemented in a 5 kW reactor before the reforming stage. The degradation

of noble catalyst activity has been demonstrated in [128], in which the yield of

H2 dropped from 39% to 30% and CO increased from 6% to 10% after 20 hours

of operation in the oxidative steam reformer of low sulfur (15 ppm) diesel. A

good example of integration of an ATR reformer, a WGSR stage and a PROX

carbon monoxide remover is [72], in which high importance has been attributed

to the homogeneity of the diesel/air/steam mixture. Before the clean-up stages,

the syngas composition obtained by the authors was 38% H2, 10% CO and 14%

CO2.

Steam reforming of desulfurized diesel has been carried out by [129]. Even if

short-run experiments showed good results with over 70% hydrogen concentration

in volume, shortly degradation of the catalyst and heavy deposits on the cata-

lyst surface have been observed. Lower temperature steam reforming operations

were also demonstrated by [130], by using supercritical water which enhance the

solubility of heavy liquid fuels.

Kerosene and bio-diesel non-catalytic reforming results are not available in

the open literature, to the author’s knowledge. The majority of experimental

investigations in this field focused on the autothermal [131; 132; 133] and steam

reforming approach, which resulted in higher performance than the technique

presented here. For example, in [131], dry molar fractions of 38% H2 and of

17% of CO have been obtained by autothermal reforming of desulphurised Jet
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4.6 Chapter summary

A-1. In [134], steam reforming of kerosene led to hydrogen molar fraction over

70% and carbon monoxide molar fraction at around 10%. Similarly, autothermal

reforming of biodiesel has been achieved by [74] with a dry gas composition after

the ATR reactor of 41.65% hydrogen and 8.62% carbon monoxide.

The slightly poorer performance of the present non-catalytic reformer com-

pared to the catalytic reformer is balanced, in practical applications, by the lower

cost expected by the absence of a catalyst and the more robust behaviour by the

capability to use a great variety of fuels in the same burner.

4.6 Chapter summary

The 70 mm ID burner has been tested for commercial fuel reforming in ceramic

foams and beads (diesel) porous layers. Diesel reforming has been tested for the

thermal load, equivalence ratio and porous material effect with similar general

results as for n-heptane reforming. The diesel reformate proved to be sensitive to

the process temperature and to the equivalence ratio, which cannot be decoupled

in the thermal POX technique used in this project. High thermal loads led

to high reforming temperatures, leading to conversion efficiency up to 71.1%

at the maximum thermal load tested and at ϕ=2.0, conditions for which, the

reformer also showed the lowest heat losses. At this point the hydrogen balance

between reactants and products is matching better than at lower thermal loads.

Further tests demonstrated that the maximum conversion efficiency is achieved at

ϕ=2.0 and the use of alumina beads for the reforming layer (burner D) improved

the hydrogen and carbon monoxide fraction for ϕ higher than 2.5. Finally, an

endurance test has demonstrated a syngas composition fluctuating around the

8% of the mean molar fraction values.

Biodiesel has been successfully reformed to syngas in burner A and C, match-

ing the behaviour showed by the diesel tests at different equivalence ratios. Hy-

drogen and carbon monoxide reach a peak and then start to decrease steeply,

along with a substantial formation of light hydrocarbons, in the highest percent-

age among the four fuel tested in this research. The top conversion efficiency

obtained was at ϕ=2.2 with a value of 64.9%.
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4.6 Chapter summary

Kerosene reforming has showed the highest conversion efficiency over the fu-

els tested. This is due mainly to the low presence of hydrocarbons in the refor-

mate, with significant presence only of methane. The conversion efficiency was

maximum at ϕ=2.1 with a value of 69.6%. Finally, the soot emission analysis

highlighted the low particulate formation of biodiesel reforming compared to the

other fuel outcome.

Of particular interest are (a) the different pathways taken by the hydrocarbon

formations (ethylene compared to acetylene in n-heptane and diesel, biodiesel,

kerosene reforming), (b) the presence of deposits and sooty flames at ϕ>2.5 in

diesel reforming and (c) the ease of flash-back demonstrated by rich biodiesel

flames compared to the other fuels. These issues require further studies by means

of experimental and numerical investigations to achieve a fuller understanding of

the chemistry involved.

An attempt to reform crude rapeseed oil has been made, but tests failed for

coking of the burner, high deposits and ignition failure. A potential alternative

may be the reforming of a blend of crude oil and kerosene or biodiesel, examining

the stability and the functionality of the reformer. Nevertheless, the reforming

of a carbon neutral feedstock such as RME Biodiesel in a robust and reliable

device has been demonstrated in this Chapter, showing only minor drawbacks in

comparison to the major benefits obtained.
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Chapter 5

Syngas clean-up

In this chapter, some experiments concerning syngas clean-up have been under-

taken. The target was to test the possibility of reducing the carbon monoxide

content and transforming the remaining hydrocarbons to extra hydrogen in order

to approach the requirements of a high-temperature PEM a fuel cell.

5.1 n-heptane

Single steps were undertaken to assess the improvement obtained by implement-

ing each stage and they are described by Fig. 5.1. The columns represent the

experimental mole fractions of hydrogen, carbon monoxide, carbon dioxide and

the total C1 (contributed from methane, acetylene, ethylene and ethane), while

the symbols represent the corresponding calculated equilibrium results at the

adiabatic flame temperature.

The first set of data depicts the results for the previously described n-heptane

for burner E (a). The second set is the syngas composition with water injection

(ṁH2O/ṁC7H16
=1) without any catalyst (b). The experimental data show a slight

increase in H2 dry molar fraction associated with an increase in CO2 and decrease

of CO molar fraction for this configuration in agreement with a “thermal” water-

gas shift reaction of the reformate.

Afterwards, the SR catalyst has been inserted in the reactor and, firstly, the

reaction has been driven by the water produced by the partial oxidation process

only (no extra water injected - configuration (c) in Fig. 5.1). In this case, the
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5.1 n-heptane

molar fraction of HCs is significantly reduced (from 4.5% to 1% C1) through the

reaction (5.1):

CmHn + mH2O = mCO + (n/2 + m)H2 (5.1)

while H2 molar fraction increased from 12.9% to 17.9%. A similar improvement

has been observed by injecting extra water (d), but in this case the G-90 catalyst

acted also as a WGSR: H2 reached 20.8% and CO2 achieved 12% whereas CO

dropped to 7.3% while the HC presence is only moderately reduced.

Eventually, the high temperature water-gas shift reaction stage has also been

implemented injecting a H2O/C7H16 mass flow ratio of 1 (configuration (e)) and

subsequently raised to 2 (f). The final composition of the syngas is 22.3% H2,

5.4% CO and 15.6% CO2 with only 0.39% of CH4, 70 ppm of C2H2 and 10-20

ppm of C2H4 and C2H6 left un-reformed.

The same operation has been carried out for n-heptane reforming in the same

burner at the same thermal load but at ϕ=2.5. The results displayed in Fig.

5.2 illustrate similar trends as those at ϕ=2.0, with the sole difference of higher

levels of the molar fractions of the syngas components over all the different steps.

In more detail, the final syngas composition for configuration (f) is: 27.1% H2,

8.7% CO, 11.8% CO2, 0.98% CH4, 0.02% C2H2, 40 ppm of C2H4 and 16 ppm of

C2H6.

From the comparison with the equilibrium calculations it can be noted that the

experimental and the calculated molar fractions of hydrogen differ by less than 2%

for conditions (c), (d), (e) and (f). In particular, at condition (f) the experimental

H2 dry molar fraction is 22.3% and the equilibrium value is 22.6%. The biggest

gap is observed at condition (b), in which the experimental H2 dry molar fraction

is 12.9% and the equilibrium value is 19.1%. This is possibly due to the lack

of energy (resulting in lower temperature) to run the steam reforming process

(endothermic reaction). When the catalyst is added, the steam reforming process

is enhanced since the catalytic effect consists in the acceleration of the rates of

the chemical reactions at low temperatures. Experimental CO and CO2 dry

molar fractions in the configurations involving a catalytic activity (configurations

(c), (d), (e) and (f)) are respectively lower and higher compared to the calculated

equilibrium. Moreover, the equilibrium calculation carried out at T3 instead of the
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5.1 n-heptane

adiabatic temperature shows an opposite behaviour, with experimental hydrogen

molar fraction far from the calculated value and CO and CO2 experimental results

comparable with the calculated data. This disparity can be observed also in Fig.

5.2, for configurations (c), (d) and (e).

At ϕ=2.5, the experimental hydrogen molar fraction is again very close to

the calculated equilibrium for configurations (c), (d), (e) and (f), in which the

catalytic bed is implemented. The best match is achieved for configuration (e)

with an experimental H2 dry molar fraction of 27.7% and a calculated equilibrium

value of 27.4%.

Photographs of the syngas flame ignited on top of the burner are displayed

in Fig. 5.3, 5.4 and 5.5. The colour of the flame gives a qualitative indication of

the species present in the syngas produced by the reformer. Passing from Fig.

5.3 to Fig. 5.4, the flame in configurations (c) and (d) is less sooty and it starts

to be slightly blue because of the substantial reduction of hydrocarbons present

in the off-gas. Eventually, with the implementation of the WGSR (Fig. 5.5)

in configurations (e) and (f), the major component is hydrogen and hence the

flame assumes a pale blue colour, difficult to visually detect. Furthermore, in

configurations (e) and (f), the almost sole presence of hydrogen as species makes

the flame much shorter than the flame of the other configurations. This occurs

because H2 diffuses more rapidly than most other hydrocarbon fuels do and in a

laminar non-premixed flame (as the one in Fig. 5.5) molecular diffusivity plays

the major role [135], together with the higher flame speed of hydrogen/air flames

[136].
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5.1 n-heptane

Figure 5.1: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for steam reforming and water-

gas shift reaction experimental results of n-heptane reformate obtained at P=7

kW and ϕ=2.0 in burner E. (a) ceramic inert foam only; (b) water injection

(ṁH2O/ṁC7H16
=1); (c) steam reforming with no extra water injected; (d) steam

reforming with water injection ṁH2O/ṁC7H16
=1); (e) steam reforming and WGSR

with water injection (ṁH2O/ṁC7H16
=1); (f) steam reforming and WGSR with

water injection (ṁH2O/ṁC7H16
=2).
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5.1 n-heptane

Figure 5.2: Calculated equilibrium at the adiabatic flame temperature and the

experimental mole fractions (on a dry basis) for steam reforming and water-

gas shift reaction experimental results of n-heptane reformate obtained at P=7

kW and ϕ=2.5 in burner E. (a) ceramic inert foam only; (b) water injection

(ṁH2O/ṁC7H16
=1); (c) steam reforming with no extra water injected; (d) steam

reforming with water injection ṁH2O/ṁC7H16
=1); (e) steam reforming and WGSR

with water injection (ṁH2O/ṁC7H16
=1); (f) steam reforming and WGSR with

water injection (ṁH2O/ṁC7H16
=2).

125

Chapter4/Chapter4Figs/hep_wgsr_2_5.eps


5.1 n-heptane

Figure 5.3: Off-gas flame at the burner’s outlet for n-heptane at P=7 kW and

ϕ=2.0 in burner E at configuration (a) and (b).
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5.1 n-heptane

Figure 5.4: Off-gas flame at the burner’s outlet for n-heptane at P=7 kW and

ϕ=2.0 in burner E at configuration (c) and (d).
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5.1 n-heptane

Figure 5.5: Off-gas flame at the burner’s outlet for n-heptane at P=7 kW and

ϕ=2.0 in burner E at configuration (e) and (f).
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5.1 n-heptane

5.1.1 Endurance test

The functionality of the SR catalyst (Süd-chemie G 90-EW) has been also assessed

over time for configuration (c). The flow conditions have been set to thermal

load P=7 kW and equivalence ratio ϕ=2.5. Gas samples were analyzed every 15

minutes and the data are displayed in Fig. 5.6. The result is that the hydrogen

molar fraction reduced from 20.8% to 19.4%, carbon monoxide passes from 17.2%

to 16.9% and carbon dioxide stayes constant around 4.5% after 75 minutes of

running showing a slight degradation of the catalyst with time.
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Figure 5.6: Experimental mole fractions (on a dry basis) over time for steam

reforming (configuration (c) in Fig. 5.1) of n-heptane at P=7 kW and ϕ=2.5 in

burner E.
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5.2 Biodiesel

5.2 Biodiesel

An attempt of syngas clean-up has been also made on the RME biodiesel refor-

mate. The main issue concerns in the water injection. It has been noted that

with the current configuration, the injection of water together with the fuel at

the nozzle level, as explained in Section 2.1.4, caused the reduction of the tem-

perature T1 below the necessary evaporation temperature for biodiesel, resulting

in high oil condensation on the burner’s walls. However, transitory results have

been achieved for configuration (f). For 1-2 minutes the gas samples demon-

strated the functionality of the catalyst stages, before the first stage temperature

dropped. Specifically, in Fig. 5.7 three different steps in the clean-up process are

displayed. For the configurations (a) and (c), the flame is stable since no water

was injected. The first one is the syngas composition obtained in burner E at

P=7 kW and ϕ=2.5. Hydrogen molar fraction is around 12.6%, carbon monoxide

and carbon dioxide 15.4% and 5.4% respectively and the total contribution from

the hydrocarbons reached 6.03%. By adding the steam reforming catalyst only

without any extra water injection, as in configuration (c), the hydrocarbon pres-

ence significantly decreased to a 0.53%. Also, hydrogen molar fraction reached

almost 15% and carbon monoxide and carbon dioxide shifted to 13.3% and 6.02%

respectively, demonstrating a WGSR operation of that catalytic bed. Eventually,

the WGSR catalyst has been added as in configuration (f). The final composition

obtained is 18.9% H2, 4.5% CO, 16.4% CO2, 0.34% CH4, 0.002% C2H2, 40 ppm

of C2H4 and 20 ppm of C2H6.
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5.2 Biodiesel

Figure 5.7: Experimental mole fractions (on a dry basis) for steam reforming and

water-gas shift reaction experimental results of biodiesel reformate obtained at

P=7 kW and ϕ=2.5 in burner E. Configurations (a), (c) and (f), as defined in

Fig. 5.1.
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5.3 Chapter summary

5.3 Chapter summary

The implementation of SR and WGSR stages along with water injection has been

experimentally demonstrated for n-heptane reformate clean-up. Moreover, the

potential of biodiesel syngas clean-up in the reformer has been introduced, even

if more work is needed to obtain stable operation and better thermal integration

to avoid oil condensation. The experimental results obtained by processing n-

heptane showed consistency with the calculated equilibrium data, especially for

hydrogen molar fraction. Eventually, a slight degradation of the G-90 EW steam

reforming catalyst activity has been observed over 75 minutes of operation.
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Chapter 6

Conclusions

6.1 Summary

The objectives of this thesis were to design a reactor based on the two-layer

porous inert medium partial oxidation, to study the behaviour of the reformer

varying the characteristic parameters of the system (equivalence ratio, thermal

load, materials) and to demonstrate the flexibility of the reactor with different

heavy liquid commercial fuels. In order to achieve these targets, a compact re-

actor has been designed and investigated by means of temperature detectors and

of a gas analyser. A vapouriser based on a commercial air-assisted nozzle fed

with hot air has been designed and embedded in the reactor and an automotive

spark-plug system has been implemented for the ignition of the air/fuel mixture.

Temperatures were measured at three different stages with K-type and R-type

thermocouple to monitor the temperature of the pre-vapouriser, of the porous

medium interface and of the gas samples and a Gas Chromatograph calibrated

for H2, O2, N2, CO, CO2, CH4, C2H2, C2H4 and C2H6 measured the species

present in the reformate. Different fuels have been successfully reformed.

First of all, n-heptane has been processed in several burner setups with dif-

ferent material, diameter and length. The most successful configuration was the

alumina bead packed bed burner, which displayed the highest conversion efficien-

cies over the equivalence ratio values investigated. Specifically, the conversion

efficiency peaked at 75% at ϕ=2.5 for P=7 kW with H2, CO and CO2 exper-

imental dry molar fractions of 19.3%, 19.9% and 2.3%. Preliminary tests have
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6.1 Summary

been carried out for this fuel to assess the homogeneity of the air/fuel mixture

and demonstrated a good uniformity of fuel vapour, especially for the 70 mm

ID burner. Moreover, the reformate over the 100 mm ID burner surface was

quite uniform in composition. The operating range of burner C was explored

and the equivalence ratio of 2 displayed the broadest range of flame speed that

could be stabilised in the two-layer porous medium reactor. At this equivalence

ratio, the reformate composition approached very closely the equilibrium data,

calculated by means of the NASA CEA database. Composition closer to the

equilibrium were achieved with high thermal loads, which also demonstrated low

heat losses - approximately 10% - calculated from the energy balance between

the products and the reactants. A particulate emission investigation has been

performed, pointing to ϕ=2.0 as the soot limit; above this equivalence ratio soot

was generated.

The reforming investigation has been extended to commercial heavy liquid fu-

els and diesel, kerosene and biodiesel have been successfully converted to hydrogen-

enriched gas. These fuels demonstrated a similar beahaviour to n-heptane, but

diesel and biodiesel exhibited lower conversion efficiency and hydrogen content

due to their low H2 : C ratio and the complexity of the fuel molecule, which

led to slow kinetics, sensitive to the process temperature and leading to signif-

icant light hydrocarbon formation at rich equivalence ratios. Diesel conversion

efficiency peaked at ϕ=2.0 for P=7 kW in burner A with a value of ηLHV =62.7%

and H2, CO and CO2 experimental dry molar fractions reach values of 12%,

16.6% and 4.8% respectively. Biodiesel conversion efficiency resulted to a max-

imum at ϕ=2.2 for P=7 kW in burner A with ηLHV =64.9% with H2, CO and

CO2 experimental dry molar fractions reaching values of 14.0%, 19.1% and 4.4%

respectively. Kerosene was the only fuel which could be compared to equilibrium

calculations and demonstrated close results to the calculated fractions up to an

equivalence ratio of 2. Its efficiency peaked at ϕ=2.1 for P=7 kW in burner A

with the value of ηLHV =69.6% and H2, CO and CO2 experimental dry molar

fractions reach values of 13.8%, 18.9% and 3.2% respectively. The soot investiga-

tion showed that biodiesel has the lowest particulate emissions out of the three

fuels, most likely due to the oxygen content in the molecule.
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6.2 Suggestion for further research

Finally, steam reforming and water-gas shift reactions have been applied to

the reformate obtained from n-heptane and biodiesel in order to remove light

hydrocarbons and carbon monoxide from the syngas obtained by the partial ox-

idation process. Commercial catalysts have been inserted in the reactor and

different configurations involving water injection have been tested. The exper-

imental results gave confidence in the feasibility of the process by approaching

equilibrium calculations and for n-heptane a H2 mole fraction of 27.1% has been

achieved with 8.7% CO and around 1% C1 at ϕ=2.5. Better thermal integration

in order to avoid sharp temperature drops due to the water injections must be

adopted in potential further research, but the “pale blue” off-gas flame and the

gas analysis demonstrated the functionality of the concept with hydrogen as the

main component of the syngas obtained.

6.2 Suggestion for further research

Further research may focus on experimental and modelling work. On the experi-

mental side, research on better use of the heat produced by the partial oxidation

process would help to improve the global efficiency of the system. Moreover,

more resistant material to thermal cycles should be found and tested and maybe

a combination of foams and beads may lead to use the benefits given by the two

solutions (quick response for the foam and high efficiency for the bead layer).

A very important step forward would be a more detailed analysis of the syngas

composition, which would allow to detect all the species which in this research

were missing from the carbon balance, especially high hydrocarbons. Eventually,

a clean-up stage based on the results here obtained may be implemented and a

integration with a fuel cell system should be attempted.

On the modelling side, a study of the structure of the flame for n-heptane

and possibly for a real fuel (kerosene) would be beneficial in the understand-

ing of the reforming mechanisms and in the main step controlling the reactions.

The experimental data described in this thesis may help validating a potential

computational model.
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