
Structural studies of viperin, an antiviral radical SAM enzyme  

Michael K. Fenwick§,1, Yue Li∥,1, Peter Cresswell∥*, Yorgo Modis$*, Steven E. Ealick§* 
§Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853,USA 
∥Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, 
USA and  $Department of Medicine, University of Cambridge, MRC Laboratory of Molecular 
Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK 

 

This work was supported by a Wellcome Trust Senior Research Fellowship to Y.M. 

(101908/Z/13/Z), by National Institutes of Health grants DK067081 to S.E.E, and GM102869 to 

Y.M., and by the Howard Hughes Medical Institute (P.C.).  The work is based upon research 

conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team 

beamlines, which are supported by award GM103403 from the NIH.  Use of the Advanced 

Photon Source is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, 

under Contract No. DE-AC02-06CH11357. 

 

‡ The coordinates of viperin with bound SAH and with bound 5′-dAdo and L-Met have been 

deposited in the Protein Data Bank under accession code XXXX and YYYY, respectively. 

1These authors contributed equally this work. 

*To whom correspondence should be addressed: 

E-mail: peter.cresswell@yale.edu, ymodis@mrc-lmb.cam.ac.uk, see3@cornell.edu 

Classification: Immunology and Inflammation; Biophysics and Computational Biology 

Keywords: Antiviral response, interferon, radical, S-adenosylmethionine 

Short Title: Crystal structure of viperin  



 2

Abbreviations 

SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; DTT, dithiothreitol; RMSD, root 

mean square deviation; PEG, polyethylene glycol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3

Abstract 

Viperin is an interferon-inducible radical S-adenosylmethionine (SAM) enzyme that 

inhibits viral replication.  We determined crystal structures of an anaerobically prepared 

fragment of mouse viperin (residues 45-362) complexed with S-adenosylhomocysteine (SAH) or 

5′-deoxyadenosine (5′-dAdo) and L-Met.  Viperin contains a partial (βα)6-barrel fold with a 

disordered N-terminal extension (residues 45-74) and a partially ordered C-terminal extension 

(residues 285-362) that bridges the partial barrel to form an overall closed barrel structure.  

Cys84, Cys88, and Cys91 located after the first β-strand bind a [4Fe-4S] cluster.  The active site 

architecture of viperin with bound SAH (a SAM analogue) or 5′-dAdo and L-Met (SAM 

cleavage products) is consistent with the canonical mechanism of 5′-deoxyadenosyl radical 

generation.  The viperin structure together with sequence alignments suggest that vertebrate 

viperins are highly conserved and that fungi contain a viperin-like ortholog.  Many bacteria and 

archaebacteria also express viperin-like enzymes with conserved active site residues.  Structural 

alignments show that viperin is similar to several other radical SAM enzymes including the 

molybdenum cofactor biosynthetic enzyme MoaA and RlmN, which methylates specific 

nucleotides in ribosomal and transfer RNA. The viperin putative active site contains several 

conserved positively charged residues and a portion of the active site shows structural similarity 

to the guanosine triphosphate binding site of MoaA, suggesting that the viperin substrate may be 

a nucleoside triphosphate of some type. 
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Significance 

We report the first structures of viperin, an antiviral radical SAM enzyme.  The overall 

structure shows a canonical radical SAM enzyme fold that harbors a [4Fe-4S] cluster.  Structures 

with a bound SAM analogue or SAM cleavage products are consistent with a conventional 

mechanism of radical formation.  Sequence alignments guided by the putative active site residues 

of viperin reveal viperin-like enzymes in species from all kingdoms of life.  Structural 

alignments show similarity between viperin and the molybdenum cofactor biosynthetic enzyme 

MoaA and show that the active site architecture of viperin is consistent with a nucleoside 

triphosphate substrate. 

 

/body 
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Introduction 

Viruses exploit the metabolic machinery of host cells in order to replicate and spread to 

other cells.  While cytotoxic T-cells and antibody-producing B-cells can ultimately be produced 

in an adaptive response to the virus, innate immune mechanisms are used to rapidly respond to 

infection. Upon infection, cells can sense the presence of virus via pattern recognition receptors 

(1, 2) and produce interferons that limit the spread of infection to other cells (3).  Interferons 

induce the expression of hundreds of interferon-stimulated genes (ISGs), many of which are 

involved in various antiviral processes, including antigen presentation, apoptosis, and inhibition 

of viral replication (4-7). 

Viperin, the product of rsad-2, was first identified as a protein induced by exposure of 

human macrophages to interferon-γ, and by infection of primary human fibroblasts with human 

cytomegalovirus (8, 9).  Early studies showed that viperin is induced in various cell types by 

interferon-α and -β, associates with the cytosolic face of the endoplasmic reticulum (ER), and 

inhibits human cytomegalovirus replication when pre-expressed in human fibroblasts (8).  Since 

then, viperin has been shown to be induced by several factors, including lipopolysaccharide (10-

12), and to inhibit a broad range of viruses, including human immunodeficiency virus-1 (HIV-1) 

(13), West Nile virus (14), hepatitis C virus (15, 16), dengue virus type-2 (17), influenza A virus 

(18), and tick borne encephalitis virus (19).  Gene-profiling microarray studies have shown that 

the viperin gene is one of the most highly inducible ISGs upon infection with a wide range of 

RNA viruses (20). 

The amino acid sequence of viperin contains a CxxxCxxC motif, characteristic of the 

radical S-adenosylmethionine (SAM) superfamily (8, 21), which is usually characterized 

structurally by a (βα)8-barrel or partial (βα)6-barrel fold (22).  Radical SAM enzymes use a 
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[4Fe-4S] cluster to reductively cleave SAM to generate a radical, which is typically transferred 

to a substrate via hydrogen atom abstraction (23-31).  The cysteine residues within the 

CxxxCxxC motif ligate three of the iron atoms of the [4Fe-4S] cluster.  Recombinant viperin has 

been shown to bind a [4Fe-4S] cluster and reductively cleave SAM (32), and mutation of the 

cysteine residues of the CxxxCxxC motif to alanine significantly diminishes the antiviral effects 

of viperin in HIV-1-infected (13) or hepatitis C virus-infected cells (16).  While viperin appears 

to be a radical SAM enzyme, neither the reaction it catalyzes nor its substrate have been 

identified. 

In the present study, we prepared and crystallized Mus musculus viperin under anaerobic 

conditions and determined crystal structures of viperin complexes with the SAM analogue S-

adenosylhomocysteine (SAH) or the SAM cleavage products 5′-deoxyadenosine (5′-dAdo) and 

L-Met.  The structures reveal the active site architecture and identify key active site residues.  

The active site architecture together with multiple sequence alignments shows that vertebrate 

viperins are highly conserved, and that fungi, bacteria, and archaebacteria express viperin-like 

enzymes.  Structural alignments show similarity between viperin and the molybdenum cofactor 

biosynthetic enzyme MoaA and the RNA methyltransferease RlmN.  The similarity extends to 

portions of the viperin and MoaA active sites. 

Results and Discussion 

 Crystallization and Structure Determination.  We crystallized an N-terminally 

truncated (Δ44 or Δ46) form of M. musculus viperin containing a [4Fe-4S] cluster under 

anaerobic conditions.  The truncation removes an amphipathic α-helix near the N-terminus 

responsible for ER and lipid droplet association and results in a water-soluble derivative (33, 34).  
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Crystal structures were determined for viperin bound to SAH at 2.0 Å resolution and 5′-dAdo 

and L-Met at 1.7 Å resolution (Tables S1 and S2).  The crystals belong to space group P212121 

and the asymmetric unit contains two molecules of viperin, each with ligands bound.  Electron 

density maps show clear electron density for the ligands and high occupancies for the four iron 

atoms of the [4Fe-4S] cluster (Fig. S1).    

Overall Structure.  Viperin is a globular protein containing a partial (βα)6-barrel fold 

(residues 75-284) observed in other radical SAM enzymes (22).  Residues 45-73 at the N-

terminus and residues 337-362 at the C-terminus are disordered.  The overall fold of viperin is 

illustrated in Fig. 1A and B.  The partial (βα)6-barrel is augmented by a β-strand (β7), a β-hairpin 

(β8 and β9), and three α-helices (α7, α8, and α9) from the C-terminal extension.  β7 forms 

hydrogen bonds with β6, β8 forms hydrogen bonds with β1, and β7 and β8 are connected by a 

segment containing a short α-helix (α7).  The C-terminal extension folds over the open portion of 

the partial (βα)6-barrel resulting in an overall closed barrel structure similar to a (βα)8-barrel.  β9 

and α8 are connected by a 12-residue loop in which G316GRKD320 of the loop are disordered. The 

final 26 residues of the protein, which follow α9, are disordered.  C-terminal truncations have 

been shown to reduce the effectiveness of viperin against HIV-1 (13), hepatitis C virus (16), and 

dengue virus type-2 (17) suggesting that the C-terminus may be required for interactions with a 

binding partner.  Indeed, viperin interaction with the cytosolic Fe/S cluster assembly factor 

CIAO1 depends on the conserved viperin C-terminal tryptophan residue, suggesting that viperin 

lacking the C-terminal region is likely to be enzymatically inactive (19).  Residues 50-74 of the 

N-terminal extension are predicted to be disordered based on analysis of the amino acid sequence 

(Fig. S2) (35).  This region may act as a flexible linker that aids membrane localization (33, 34) 

and enhances molecular mobility after localization.   
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Canonical Radical SAM Enzyme Structure.  The viperin β-barrel fold contains the 

radical SAM enzyme hallmark CxxxCxxC motif (C84NYKC88GFC91) located after strand β1.  

The three cysteine side chains of the motif ligate three irons of a [4Fe-4S] cluster and position 

the differentiated iron (not ligated by a cysteine side chain) near the center of the putative active 

site.  The interactions made between viperin and SAH, 5′-dAdo, and L-Met are consistent with 

known radical SAM enzyme structures (Fig. 1C and D).  SAH and L-Met anchor to the 

differentiated iron of the [4Fe-4S] cluster via their α-amino and α-carboxylate groups (28, 36).  

The α-amino group also forms hydrogen bonds with a conserved GGE motif (G125G126E127) (21, 

22), and the α-carboxylate group also forms hydrogen bonds with an arginine and serine side 

chain (Arg194 and Ser180) (37).  The ribose moiety of SAH and 5′-dAdo forms hydrogen bonds 

with the Arg194 and Ser180 side chains and its O3′-hydroxyl group is within hydrogen bonding 

distance of the side chain of Asn222.  The adenine moiety of SAH and 5′-dAdo is interposed 

between hydrophobic residues in or near the cluster-binding loop (Phe90 and Phe92), in β5 

(Val224), and near the end of β6 (Phe249 and Leu252).  The adenine moiety also forms hydrogen 

bonds with polar sites near the cluster-binding loop and near the end of β6 (Fig. 1C and D). 

 The binding modes of SAH and L-Met with the [4Fe-4S] cluster are consistent with the 

ability of viperin to reductively cleave the C5′-S bond of SAM (Fig. S3) (32) and are similar to 

the binding modes observed in high resolution crystal structures of other radical SAM enzymes 

(Fig. S4) (28, 38-43).  In the proposed mechanism of radical generation, a reduced [4Fe-4S] 

cluster delivers an electron to the sulfonium ion of SAM to homolytically cleave the C5′-S bond 

(44).  This requires a nearly linear arrangement of C5′, S, and Fe (45); typical C5′-S distances are 

3.2-3.7 Å and C5′-S-Fe angles are ~150° (Fig. 1C, Fig. S3A, and Fig. S4A).  After cleavage of 

the C5′-S bond, the sulfur atom of L-Met is expected to coordinate to the differentiated iron of 
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the cluster along with the α-amino and α-carboxylate groups to form an octahedral coordination 

sphere (Fig. 1D, Fig. S3B, and Fig. S4B) (44). 

 Putative Viperin Active Site.  Two narrow passageways lead to the [4Fe-4S] cluster 

bound to viperin.  One has a diameter of 6 Å and forms part of the putative active site cavity, as 

it leads directly to C5′ of SAH and 5′-dAdo, the site of radical formation (Fig. 2A).  The second 

passageway is located on the opposite side of the protein and is formed by Leu264, Arg265, and 

the cluster-binding loop (Fig. S5).  The active site cavity is formed by residues from strands β1-

β6 and the beginning of the C-terminal extension.  These residues line the β-barrel with their side 

chains directed towards its interior (Fig. 2B).  The active site residues supply five positively 

charged (Lys120, Lys220, Arg245, Lys247, and Lys297), one negatively charged (Glu293), ten 

additional hydrophilic, and seven hydrophobic side chains (Fig. 2B). 

Viperin Crystal Packing Interactions.  The asymmetric unit of viperin crystals contains 

two molecules that interact through several salt bridges that are formed between the positively 

charged active site residues of one molecule and negatively charged residues in the loop 

following β6 of a second molecule (Fig. S6).  This head-to-tail interaction, together with the 

crystallographic twofold screw axis, generates pseudo-fourfold screw axis symmetry along the c 

axis of the unit cell.  The interface between the two viperin molecules in the asymmetric unit is 

relatively small (approximately 1000 Å2) (46), lacks twofold symmetry, and hence is not 

predicted to result in a dimer in solution.  However, it is possible that the head-to-tail interactions 

observed in the crystal contribute to higher order structures or polymerization when viperin is 

localized at the ER membrane at high concentrations (34). 
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Sequence Alignments with M. musculus Viperin.  Viperin is highly conserved within 

vertebrates although significant sequence variation occurs in the N-terminal region that precedes 

the β-barrel (8, 47).  BLAST searches starting with M. musculus viperin show that viperin is 

highly conserved among 171 vertebrates with sequence identities ranging from roughly 65 to 

95%.  In addition, the proposed active site residues are conserved.  BLAST searches also showed 

a group of closely related fungal enzymes.  Sequence alignments show that both the predicted 

structures and the putative active sites of the fungal viperin-like proteins are conserved compared 

to viperin.  The fungal enzymes lack the N-terminal extension found in viperin but have a C-

terminal extension that shows conservation within the fungal enzymes but is distinct from the 

viperin C-terminal extension, which itself is highly conserved.  While the biological role of the 

fungal viperin-like enzymes is unknown, it can be safely concluded that viperin and the fungal 

viperin-like enzymes have the same substrates and/or catalyze the same radical SAM chemistry.  

BLAST searches also yielded many bacterial and archaebacterial enzymes with low sequence 

identity (20-40%).  With the exception of MoaA, which is found in both prokaryotes and 

eukaryotes, these enzymes are best characterized as radical SAM enzymes of unknown function. 

 Comparison of Viperin and MoaA Structures.  A DALI search beginning with viperin 

shows structural similarity to many radical SAM enzymes (Z-scores ranging from 11 to 20) (48).  

The most similar structures are the anaerobic sulfatase maturating enzyme anSME from 

Clostridium perfrigens (Z-score 19.9) (41), the molybdenum cofactor biosynthetic enzyme 

MoaA from Staphylococcus aureus (49) (Z-score 18.7), the pyruvate formate-lyase activating 

enzyme PflA from E. coli (Z-score 18.1) (50), and the dual specificity RNA methylase RlmN 

from E. coli (Z-score 17.8) (38, 51).  Local sequence alignments of viperin to sequences in the 

Protein Data Bank (PDB) using BLAST show that S. aureus MoaA is the only protein that gives 
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an Expect value less than 10 (E = 4 x 10-6) (52).  Furthermore, more than half of ~7,500 

sequences (having Expect values < 10) produced from alignments of viperin to the non-

redundant protein sequence database using BLAST are predicted to be MoaA. 

 The results described above led us to examine the similarity between viperin and MoaA 

(PDB ID 2FB3) in greater detail.  MoaA is widely distributed in both prokaryotes and eukaryotes 

where it uses radical chemistry to catalyze the cyclization of GTP to 3′,8-cylic-GTP in the first 

step of molybdenum cofactor biosynthesis (53, 54).  Superposition of viperin and MoaA shows 

similar partial (βα)6-barrel cores (Fig. 3A).  In addition, MoaA has a short N-terminal extension 

and, like viperin, its C-terminal extension folds over the partial β-barrel and forms a β-hairpin, a 

loop, and a helical region (49).  However, the C-terminal extension of MoaA ligates a second 

[4Fe-4S] substrate-binding cluster that is not found in viperin.  GTP binds to the additional [4Fe-

4S] cluster through N1 and the 2-amino group of the guanine base. 

 The superposition of viperin and MoaA results in clashes between the ribose and guanine 

moieties of GTP and the C-terminal extension of viperin; however, the structures align 

remarkably well near the triphosphate-binding site of GTP (Fig. 3B).  Similar modified β-barrels 

are used by both enzymes to form active site channels lined with several positively charged and 

other hydrophilic residues (Fig. S7).  These residues include Arg17, Lys69, Arg71, Thr102, 

Asn124, Lys163, Asn165, and Arg192 in MoaA and Lys120, Lys220, Lys247, Arg245, Ser75, 

Asn77, Asn122, Ser154, and Asn222 in viperin.  Moreover, the second β-strand and the 

following SAM binding motif of MoaA (K69IRITGGEPL) are very similar to those of viperin 

(K120INFSGGEPF), and six active site residues in MoaA (Lys69, Lys163, Arg192, Thr73, 

Asn165, and Ile194) are similar or identical to and occupy the same locations as active site 

residues in viperin (Lys120, Lys220, Lys247, Ser124, Asn222, and Phe249, respectively).  The 
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structural comparison shows that viperin likely contains a triphosphate binding site and, while 

viperin and MoaA almost certainly catalyze different chemical reactions, the viperin substrate is 

probably some form of nucleoside triphosphate. 

Comparison of Viperin and RlmN Structures.  Viperin was recently shown to co-

precipitate with dengue virus type-2 RNA (17). RlmN is a radical SAM enzyme that methylates 

adenosine 2503 of 23S rRNA and adenosine 37 of a subset of tRNAs and is the only radical 

SAM RNA-modifying enzyme for which a structure has been reported (38, 51, 55-57) (Fig. 

S8A).  RlmN contains a partial (βα)6-barrel core, which superimposes well with that of viperin 

(DALI Z-score 17.6, DALI rmsd 2.6 Å), and an N-terminal domain for RNA recognition (Fig. 

S8B).  Nucleotides 36-39 of tRNA insert into the active site of RlmN to position A37 for 

methylation.  RlmN binds the 5′-phosphate groups of nucleotides 37-39 via Arg114, Thr116, 

Asn172, Arg207, Asn307, and Arg344.  These residues are similar in type to the residues that 

bind the triphosphate moiety of GTP in MoaA; however, the architecture is significantly 

different.  Superposition of RlmN/tRNA onto viperin shows numerous clashes between viperin 

active site side chains and the tRNA loop (Fig. S9).  While phosphate binding sites are typically 

formed by positively charged and hydrogen bond donating residues (58), the local active site 

architecture surrounding the phosphate groups of a nucleoside triphosphate or RNA would, in 

general, be expected to be different.  Thus, our structural comparisons with MoaA and RlmN, 

although limited, suggest that the active site of viperin better reflects a binding site for a free or 

chain-terminal nucleotide than an inner nucleotide of RNA. 

Comparison of Predicted Radical SAM Enzymes of Unknown Function with 

Viperin.  Interestingly, a large group of bacterial and archaebacterial radical SAM enzymes of 

unknown function identified from BLAST searches show significant similarity to viperin.  In 
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general, these viperin-like enzymes lack both the N-terminal extension of viperin and the final 

15 C-terminal residues, which are conserved in vertebrate viperins.  They also lack the second 

substrate-binding iron-sulfur cluster found in MoaA, and the sequences are in general more 

similar to viperin than MoaA.  Within the active site, 15 mostly charged and hydrophilic residues 

are conserved compared to viperin (Fig. 4).  Sequence alignments further show that these 15 

residues are also highly conserved in viperin or viperin-like enzymes found in protists, fungi, and 

invertebrate and vertebrate animals.  In addition, 14 of these residues are conserved in the green 

alga Chlamydomonas reinhardtii.  A sequence alignment of viperin with representative enzymes 

from all kingdoms of life is shown in Fig. S10.  The conservation of the active site residues 

suggests that viperin and this widely distributed group of viperin-like enzymes have the same or 

similar substrates and/or catalyze the same or similar chemical reactions. 

Materials and Methods 

 Anaerobic Production and Crystallization.  Residues 45-362 of M. musculus viperin 

(viperinΔ44), were over-expressed and purified using a variation of the methods used for 

preparation of radical SAM enzymes involved in thiamin and B12 biosynthesis (26, 59).  A gene 

for viperinΔ44 with a cleavable N-terminal hexahistidine tag was synthesized with codon 

optimization for expression in E. coli and cloned into pET-28 via NcoI and XhoI restriction sites 

to give the following protein product: NH2-MGSDKIHHHHHHSSGENLYFQG45…W362-

COOH.  A second truncated form of viperin lacking the first 46 amino acids, viperinΔ46, was 

prepared without gene optimization and was over-expressed and purified using similar 

procedures: MGSSHHHHHHSSGRENLYFQGHMASMTGGQQMGRGSE47… W362-COOH.  

E. coli NiCo21(DE3) cells (New England Biolabs) that contained plasmid pSuf (60) were 

transformed with the plasmid carrying the recombinant viperin gene.  Starter cultures grown in 
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15 mL of lysogeny broth supplemented with kanamycin (40 mg/L) and chloramphenicol (34 

mg/L) were transferred to shaker flasks containing 1.85 L of minimal medium (1 X minimal 

medium salts, 40 mg/L kanamycin, 34 mg/L chloramphenicol, 4 g/L dextrose, 2 mM MgSO4, 

and 0.1 mM CaCl2).  The cultures were shaken at 180 rpm and 37 ºC until the OD600 reached 0.5-

0.55 and then were placed in a 4 ºC cold room for 2.5 h.  L-Cys, Fe(NH4)2(SO4)2, and isopropyl 

β-D-1-thiogalactopyranoside were added to a final concentration of 0.21 mM, 0.065 mM, and 0.2 

mM, respectively, and the cultures were shaken at 50 rpm and 15 ºC for 20 h.  The cultures were 

then chilled to 4 ºC, and the E. coli were harvested via centrifugation at 6,000 g and 4 ºC for 15 

min and flash frozen in liquid nitrogen. 

Frozen cell pellets were thawed in a PVC anaerobic chamber (Coy Laboratory Products), 

resuspended in lysis buffer (100 mM Tris-HCl, 5 mM dithiothreitol (DTT), 0.4 mg/mL 

lysozyme, and 1.9 kU benzonase, pH 7.6), incubated for 30-60 min on ice, and lysed further via 

sonication.  The lysate was sealed in centrifuge bottles, transferred to a centrifuge outside of the 

glove box, and spun at 60,000 g and 4 ºC for 20 min.  The spun lysate was brought back into the 

glove box and the supernatant was subjected to immobilized nickel affinity chromatography 

employing wash (50 mM Tris-HCl, 300 mM NaCl, 20 mM imidazole, 3 mM DTT, pH 7.4) and 

elution (50 mM Tris-HCl, 300 mM NaCl, 250 mM imidazole, 3mM DTT, pH 7.5) buffers.  The 

eluate was buffer exchanged into hexahistidine tag cleavage buffer (25 mM Tris-HCl, 125 mM 

NaCl, 3 mM DTT, pH 7.5) using a Bio-Rad Econo-Pac 10DG desalting column and incubated 

for 8 h with tobacco-etch virus protease.  The reaction mixture was subjected to subtractive 

immobilized nickel affinity chromatography, buffer exchanged into 5 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) and 25 mM NaCl, pH 7.1, and flash-frozen in liquid 

nitrogen. 
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ViperinΔ44 and viperinΔ46 with bound SAH and viperinΔ44 with bound 5′-dAdo and L-

Met were crystallized inside the anaerobic chamber at room temperature using the hanging drop 

vapor diffusion method.  Drops were prepared with a 1:1 ratio of protein-to-reservoir solution.  

The concentration of viperin was approximately 0.2 mM and the concentrations of SAH 

(solubilized in dimethylsulfoxide), 5′-dAdo, and L-Met were 5 mM, 5 mM, and 10 mM, 

respectively.  Typical reservoir solutions contained 100 mM HEPES, pH 7.0-7.6, and 20-30% 

(w/v) polyethylene glycol monomethyl ether (PEG MME) 2000; the concentration of PEG MME 

2000 was increased 5-15% in the cryoprotectant. 

X-ray Data Collection and Processing.  Viperin crystals were exposed to X-rays with 

wavelengths λ = 0.9792 Å, λ = 0.9793 Å, or 1.7384 Å at 100 K at beamline NE-CAT 24-ID-C of 

the Advanced Photon Source (APS) (Table S1).  X-ray diffraction images were recorded for 1 °/s 

oscillations on a PILATUS 6MF detector positioned 290 mm (λ = 0.9792 Å), 390 mm (λ = 

0.9793 Å), or 220 mm (λ = 1.7384 Å) from the crystal.  X-ray images were processed using 

HKL2000 (61). 

Structure Determination and Refinement.  The crystal structure of viperin with bound 

SAH was determined using single-wavelength anomalous diffraction phasing based on the four 

cluster Fe sites located using SHELXD (62).  More than 70% of the protein residues were built 

automatically using the Autosol module of PHENIX (63).  Automated structure refinement was 

performed using PHENIX (64) and accounted for translation, libration, and screw vibrational 

motion of partitioned chains (65) (Table S2).  Manual model building was performed using 

COOT (66).  Structural and electron density illustrations were made using Chimera (67) and 

PyMOL (68). 
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Figure Legends 

Fig. 1.  Overall structure of viperin.  (A) Ribbon diagram of viperin with SAH shown as balls 

and sticks, the [4Fe-4S] cluster shown as brown and yellow spheres, and the three cysteine 

residues of the [4Fe-4S] cluster-binding motif shown as sticks.  The partial (βα)6-barrel fold, N-

terminal extension, and C-terminal extension are colored light blue, salmon, and light green, 

respectively.  (B) Topology diagram for viperin.  β-strands and helices are represented by thick 

arrows and cylinders, respectively.  AH1 denotes the excised putative membrane-associating 

amphipathic helix.  (C) Stereoview of SAH binding site.  (D) Stereoview of 5′-dAdo and L-Met 

binding sites.  Potential hydrogen bonds are shown as dashed lines and water molecules are 

shown as red spheres. 

Fig. 2.  Structure of the viperin active site cavity.  (A) Surface representation of viperin showing 

a narrow passageway leading to C5′ of SAH, the predicted site of radical formation. (B) 

Stereoview of the active site cavity.  Residues in the partial (βα)6-barrel fold, N-terminal 

extension, and C-terminal extension are colored light blue, salmon, and light green, respectively. 

Fig 3.  Structural comparison of viperin and S. aureus MoaA.  (A) Superimposition of MoaA 

onto viperin.  The partial (βα)6-barrel fold, N-terminal extension, and C-terminal extension of 

viperin are colored light blue, salmon, and light green, respectively.  The corresponding regions 

of MoaA are colored goldenrod, dark red, and navy blue.  SAH bound to viperin is shown as 

balls and sticks.  GTP bound to MoaA is not shown for clarity.  The [4Fe-4S] clusters and the 

cysteine residues that ligate the irons are shown as sticks.  (B) Active site comparison of viperin 

and MoaA.  GTP bound to MoaA is shown as balls and sticks.  The side chains of 22 active site 

residues of viperin and the side chains of eight residues of MoaA that reside within 4 Å of the 

phosphate groups of GTP are shown. 
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Fig. 4.  Stereoview of viperin active site showing conserved residues found in viperin or viperin-

like enzymes from all kingdoms of life.  Viperin-like enzymes were identified by searching for 

the active site residues of M. musculus viperin in a large set of sequences aligned to M. musculus 

viperin using BLAST with an Expect value of 10.  Fifteen active site residues (represented with 

magenta sticks) were found to be conserved.  
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