
First-order gradient regularisation

methods for image restoration

Reconstruction of tomographic images with thin structures

and denoising piecewise affine images

Evangelos Papoutsellis

Jesus College

DAMTP, Center for Mathematical Sciences

University of Cambridge

A thesis submitted for the degree of

Doctor of Philosophy

August 2015





Abstract

The focus of this thesis is variational image restoration techniques that in-

volve novel non-smooth first-order gradient regularisers: Total Variation (TV)

regularisation in image and data space for reconstruction of thin structures

from PET data and regularisers given by an infimal-convolution of TV and Lp

seminorms for denoising images with piecewise affine structures.

In the first part of this thesis, we present a novel variational model for PET

reconstruction. During a PET scan, we encounter two different spaces: the

sinogram space that consists of all the PET data collected from the detectors

and the image space where the reconstruction of the unknown density is finally

obtained. Unlike most of the state of the art reconstruction methods in which

an appropriate regulariser is designed in the image space only, we introduce

a new variational method incorporating regularisation in image and sinogram

space. In particular, the corresponding minimisation problem is formed by a

total variational regularisation on both the sinogram and the image and with

a suitable weighted L2 fidelity term, which serves as an approximation to the

Poisson noise model for PET. We establish the well-posedness of this new

model for functions of Bounded Variation (BV) and perform an error anal-

ysis through the notion of the Bregman distance. We examine analytically

how TV regularisation on the sinogram affects the reconstructed image espe-

cially the boundaries of objects in the image. This analysis motivates the use

of a combined regularisation principally for reconstructing images with thin

structures.

In the second part of this thesis we propose a first-order regulariser that is

a combination of the total variation and Lp seminorms with 1 < p ≤ ∞. A

well-posedness analysis is presented and a detailed study of the one dimen-

sional model is performed by computing exact solutions for simple functions

such as the step function and a piecewise affine function, for the regulariser

with p = 2 and p = ∞. We derive necessary and sufficient conditions for a

pair in BV × Lp to be a solution for our proposed model and determine the

structure of solutions dependent on the value of p. In the case p = 2, we

show that the regulariser is equivalent to the Huber-type variant of total vari-

ation regularisation. Moreover, there is a certain class of one dimensional data

functions for which the regularised solutions are equivalent to high-order reg-

ularisers such as the state of the art total generalised variation (TGV) model.



The key assets of our regulariser are the elimination of the staircasing effect

- a well-known disadvantage of total variation regularisation - the capability

of obtaining piecewise affine structures for p = ∞ and qualitatively compara-

ble results to TGV. In addition, our first-order TVLp regulariser is capable of

preserving spike-like structures that TGV is forced to smooth. The numerical

solution of the proposed first-order model is in general computationally more

efficient compared to high-order approaches.

Keywords: Total variation regularisation, Radon transform, Positron Emis-

sion Tomography reconstruction, Sinogram space regularisation, Bregman dis-

tance, Split Bregman algorithm, Thin structures, Staircasing effect, First-order

regularisers, Infimal convolution, Image decomposition, TVLp regularisers, To-

tal generalised variation.
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List of Notation

Against each entry is the page at which the notation is introduced.

Spaces of continuous and differentiable functions:

Ck(X,R`) 33 The space of k–times continuously differentiable R`-valued
functions in X.

Ckc (X,R`) 33 The space of k–times continuously differentiable R`-valued
functions with compact support in X.

C∞(X,R`) 33 The space of infinitely many times continuously differen-
tiable R`-valued functions in X.

C∞c (X,R`) 33 The space of infinitely many times continuously differen-
tiable R`-valued functions with compact support in X.

D(X,R`) 33 Another notation of C∞c (X,R`), known as test functions.

Cc(X,R`) 33 The space of continuous R`-valued functions with compact
support in X.

C0(X,R`) 33 The completion of Cc(X,R`) under the supremum norm
‖u‖∞ = sup

x∈X
|u(x)|.

Ckc (X) 33 The space of k–times continuously differentiable real valued
functions with compact support in X.

C∞c (X) 33 The space of infinitely many times continuously differen-
tiable real valued functions with compact support in X.

Cc(X) 33 The space of continuous real valued functions with compact
support in X.

C0(X) 33 The completion of Cc(X) under the supremum norm ‖u‖∞ =
sup
x∈X
|u(x)|.

Measure theory:

C 34 σ-algebra.

B(X) 34 The Borel σ-algebra of X.

|µ| 34 The total variation measure of µ.

ν � µ 35 ν is absolutely continuous with respect to µ.

ν⊥µ 35 ν and µ are mutually singular.

νa 35 The absolutely continuous part of measure ν.
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νs 35 The singular part of measure ν.
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µn
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⇀ µ 37 Weak∗ convergence for measures i.e.,

lim
n→∞
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X
u dµn =
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X
u dµ.

Space of Lebesque integrable functions:

Ld 38 The Lebesgue measure on Rd with d ≥ 1.

Lp(X,R`;µ) 38 The space of R`-valued, µ-measurable functions such that

‖u‖Lp(X,R`;µ) = (
´
X |u|pdµ)

1
p < ∞ for 1 ≤ p < ∞ and µ a

positive measure.

L∞(X,R`;µ) 38 The space of R`-valued, µ–essentially bounded measurable
functions such that ‖u‖L∞(X,R`;µ) = ess sup

u∈X
|u| <∞ and µ a

positive measure.

Lp(X,R`) 38 The space of R`-valued, Lebesgue measurable functions with
1 ≤ p ≤ ∞.

Lp(X) 38 The space of real valued, Lebesgue measurable functions
with 1 ≤ p ≤ ∞.

L1
+(X) 68 The space of positive valued, Lebesgue measurable func-

tions.

Sobolev spaces:

Ω 40 An open subset of Rd.
uΩ 41 The mean value of u in Ω, i.e., uΩ = 1

Ld(Ω)

´
Ω u dx.

Dau 41 The distributional (weak) a-th derivative of the function u.

Wk,p(Ω) 41 The space of u ∈ Lp(Ω) such that the distributional deriva-
tive Du ∈ Lp(Ω) for 0 ≤ |a| ≤ k.

Hk(Ω) 41 The Sobolev space Wk,2(Ω).

Hk
0(Ω) 41 The completion of C∞c (Ω) under the ‖·‖Wk,2(Ω) norm.

Functions of bounded variation:

BV(Ω,R`) 42 The space of R`-valued functions of bounded variation on Ω.

BV(Ω) 42 The space of real valued functions of bounded variation on
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TV(u) 43 The total variation of u ∈ L1(Ω,R`), equivalently denoted

as |Du|(Ω) when u ∈ BV(Ω,R`).

un
w∗
⇀ u 43 Weak∗ convergence in BV spaces i.e., un → u in L1(Ω,R`)
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w∗
⇀ Du in Ω.

Convex analysis:

domF 45 The effective domain of a functional F : X → R i.e.,
domF = {u ∈ X : F (u) <∞}.

F ∗ 45 The convex conjugate or Legendre-Fenchel transformation
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F ∗∗ 45 The convex biconjugate of F .

F
′
G(u) 46 The Gâteaux derivative of F at u.

F
′
F (u) 46 The Fréchet derivative of F at u.

∂F (u) 47 The subdifferential of F at u.

K∗ 49 The adjoint operator K∗ : Y ∗ → X∗ of the bounded linear
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XΩ 77 The characteristic function of the set Ω, i.e.,
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Ru(θ, s) 57 The Radon transform of u ∈ L1(Rd) in θ direction and s
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ˆ
Rd
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where δ is the one dimensional Dirac function.
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Σd 57 The domain of the Radon transform, i.e,
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{

(θ, s) : θ ∈ Sd−1, s ∈ R
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a cylinder of dimension d.

Σ2 59 The domain of the Radon transform for a two dimensional
function u with compact support known as sinogram space,
i.e.,
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R∗g(x) 61 The adjoint operator of the Radon transform R for g ∈
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ˆ
Sd−1
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Dξ
J(u, v) 74 The Bregman distance of a convex functional J : X → R for

a fixed subgradient ξ.

A(u(r̃))(x) 80 The Abel transform of u defined as

2

ˆ ∞
x

r̃u(r̃)√
r̃2 − x2

dr̃.

TVLpα,β 105 Total variation and Lp regulariser defined as

TVLpα,β(u) := inf
w∈Lp(Ω)

α ‖Du− w‖M + β ‖w‖Lp(Ω) .

BV2(Ω) 106 The space of functions of bounded Hessian on Ω, i.e., all the
functions u ∈W1,1(Ω) such that ∇u ∈ BV(Ω,Rd).

TV2(u) 106 The second order total variation of u, equal to
∥∥D2u

∥∥
M for

a function u ∈ BV2(Ω).

ICTVα,β 106 The TV–TV2 infimal convolution of u, i.e.,

ICTVα,β(u) := min
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α,β 107 The second order total generalised variation defined as
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Basics:
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Chapter 1

Introduction

The basic goal of my Ph.D thesis is to explore novel variational methods applied in im-

age processing. I am especially interested in total variation (TV) based regularisation

techniques for general image restoration as well as for image reconstruction in positron

emission tomography (PET).

The disciplines of image processing, image analysis and image restoration are terms

that are naturally related to computing with images. In fact, for more than three decades

the aforementioned fields were occupied mostly by computer scientists and electrical engi-

neers without any significant interest by mathematicians. However, in the late 90’s many

mathematicians developed an increasing interest in these fields, especially due to Rudin,

Osher and Fatemi and their research paper Nonlinear total variation based noise removal

algorithms in [ROF92, 1992]. This was not restricted to image denoising applications, but

also to image segmentation, see for instance the paper of Mumford and Shah in [MS89,

1989] or to a theoretical analysis of imaging models as in [AV94, 1994]. In addition, Rudin

et al. introduced the notion of the total variational regularisation which in practice is

considered as the integral of the absolute value of the gradient. The main outcome of

this pioneering work was the introduction of the space of bounded variation as the ap-

propriate space to explore images. It is considered by many researchers the holy grail of

mathematical imaging and a significant breakthrough towards image reconstruction.

It is a standard process to examine images from two different perspectives. One is from

the computer science framework where an image is regarded as a collection of numbers,

for instance a matrix with fixed columns and rows. Here, we say that an image lives

in the discrete world. The other is as an abstract mathematical entity, for instance a

function that assigns for every point in the real world a certain value. In the following,

we discuss these concepts of digital and mathematical image processing and lay emphasis

on properties such as edges or jump discontinuities.
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Introduction

1.1 Digital image processing

Everyday, we encounter a plethora of digital images captured in different situations: a

simple photo from our camera or our smartphone to climatological (weather prediction),

astronomical (Pluto images) and medical images (tomography) are only some of them.

One way to understand digital images is as a natural projection of the real world to the

digital world, for example our computer screen. Digital or discrete images, as they are

commonly referred to, are matrices of a fixed grid size n×m that contain squared pictures

elements, i.e., pixels that are arranged in columns and rows.

(a) Chessboard grey image

(b) Coloured image of Molyvos
port in Lesvos

(c) RGB pixel values of selected
region

Figure 1.1: Grey and coloured digital images with their pixel values for selected regions.

For example, in a greyscale image every picture element has a specific value ranged

from 0 to 255. It is normally interpreted as a black (0) and white (255) image but also

include many shades of grey, see a chessboard kind of image with their pixel values in

Figure 1.1a. Another common convention that is also used in this thesis is to rescale the

pixel values to [0, 1] range. Extending to coloured images (RGB images), we assign a value

from the red, green and blue channels to each pixel as in Figures 1.1b, 1.1c.

Although, a digital image lies in the discrete world, a useful convention for modelling

image reconstruction models mathematically is to consider images as scalar or vector

valued functions from a continuous space Ω ⊂ R2 i.e.,

u : Ω→ R or u : Ω→ R3. (1.1)
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1.1. Digital image processing

Figure 1.2: Andromeda Galaxy: Captured with the NASA/ESA Hubble Space Telescope
and is a cropped version of the full image with 1.5 billion pixels. One would need more than
600 HD television screens to display the whole image. http://www.spacetelescope.org/
images/heic1502a/

An image-function defined in the continuous setting is easier to analyse for its prop-

erties by using all the necessary tools that are available from our mathematical toolbox

e.g. functional analysis, convex analysis and measure theory. It is an admissible and fair

approximation to interpret analytically real world images, since one may think that a 21st

century digital image can actually be represented by billions and even more pixels as it

appears in Figure 1.2.

Having an image as a function, one may ask the following question: what is the most

appropriate space to describe images? For example, an image can be easily considered

as an L2, L∞ or even a W1,2 function, see Section 2.2. However, we need to take into

account the most basic property that the majority of the images have, known as the edge

of the image. In computer vision terminology, it is identified as a set of continuous pixel

positions where an abrupt change of intensity values occur, see for instance the red regions

and their pixels values in Figure 1.1. In the context of mathematical image processing,

an image-function has a jump discontinuity in this point and hence the derivative in this

point is not defined. Therefore, it is essential to find a suitable space whose elements can

describe this kind of behaviour.

Let us consider the following useful example of a function defined in Ω = [−1, 1] for

ε > 0 as:

uε(x) =





−1, −1 ≤ x < −ε,
x
ε , −ε ≤ x ≤ ε,
1, ε < x ≤ 1,

with ∇uε(x) =





1
ε , −ε ≤ x ≤ ε,
0, otherwise.

This function has a piecewise constant part and a relatively small linear part in [−ε, ε]
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internal, see Figure 1.3. Clearly uε(x) ∈W1,p for p ≥ 1. The pointwise limit of uε is

u0(x) =





−1, x < 0,

0, x = 0,

1, x > 0,

which is not differentiable and is not an element of W1,p(Ω) for any p > 1, cf. [Eva10].

We usually refer to u0 as a step function having a jump discontinuity at x = 0. In fact,

‖∇uε‖Lp =
2

εp−1

ε→0−→∞

for p ∈ (1,∞) and therefore Sobolev spaces cannot model edges or discontinuities.

−1 −1−ε ε

uε(x)

u0(x)

−1

−1

Figure 1.3: The step function u0 approximated by a W1,1 function uε.

On the other hand, for p = 1 we observe a different result. The space of functions of

bounded variation denoted by BV(Ω), where the gradient is identified by a measure and

not a function, is suitable to model edges, see Section 2.3. Indeed, as we will encounter

later W1,1(Ω) ⊂ BV(Ω) and in particular ‖∇uε‖L1 = 2. The variation from the −1 to

1 value is bounded and equal to 2 and (uε) converge to u0 ∈ BV(Ω) \W1,1(Ω) in some

topology. Therefore, it is sufficient to consider image-function as elements of the BV

space, a space that was initially introduced in image processing by Rudin et. al having an

enormous advantage on preserving the edges of images.

The main goal of this thesis is to propose novel variational imaging models, where

the BV space is our guideline towards imaging models with new capabilities for image

reconstruction.

1.2 Inverse Problems: Variational approach

The image processing problems that we encounter in this dissertation can be written as

linear inverse problems. Suppose that we have acquired a data f from an image acquisition

device. Usually, due to possible defects of the imaging system the data f contains several
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1.2. Inverse Problems: Variational approach

undesirable artifacts such as noise and blur. In some situations e.g. in tomography, the

data f constitutes a transformation of the image for instance a Fourier or Radon transform.

Our goal is to find an image u that is visually close to the underlying real image without

these kind of artifacts. Equivalently, we solve the following inverse problem with respect

to u

f = Ru+ η (1.2)

where R is a linear operator also known as forward operator. In practice, finding u is a

quite difficult task since R is mostly not invertible and there is an additional degrada-

tion to our data, creating an ill-posed problem in the sense of Hadamard. To be more

precise, let as assume that f satisfies the equation above where η is the noisy component

that follows a well-known distribution e.g. additive Gaussian noise. Certainly, there are

several applications that use different types of noise, such as Poisson or impulse noise.

In particular, Poisson noise or photon noise will be thoroughly examined in Chapter 3,

since it is related to positron emission tomography. The operator R can be the identity

operator for image denoising tasks, a convolution (blurring) operator for image deblurring

or the Radon transform for tomography related problems. For a Gaussian distribution η,

one way of rephrasing the problem is as a least-squares problem seeking u which solves

min
u∈X

1

2

ˆ
Ω
|f −Ru|2 dx, (1.3)

analogously finding u which minimises the noise η in the L2 sense. The first-order opti-

mality condition of this problem is R∗Ru = R∗f which is an ill-posed problem in general.

The matrix R∗R is not necessarily invertible and even when it is invertible, its inverse is

difficult to compute numerically causing numerical instability. The existence or even the

uniqueness of the solutions are not guaranteed. One way to overcome this problem is to

apply a common procedure known as regularisation and add some a priori information to

the model. Now, our model can be formed with the following variational expression:

min
u∈X

1

2

ˆ
Ω
|f −Ru|2 dx+ Ψ(u) (1.4)

and consists of the least squares term, which in general could be any distance function

H(Ru, f), namely the data fidelity or fitting term that measures the distance between

the data f and the reconstruction u under the forward operator R. The Ψ(u) term is

called regulariser and is responsible to provide additional information or regularity to

the final solution u. These two terms are typically weighted by a positive parameter, a

regularising parameter that balances the strength between the fidelity and the regulariser.

The Banach space X, where the minimisation takes place, is chosen for the above problem

to be well-defined and usually depends on the Ψ term. Finally, a successful or unsuccessful

reconstruction or solution of the above problem depends on the choice of these two terms
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as well as the choice of the regularising parameter. As we will see in the main chapters of

this thesis, the type of the fidelity term depends on the noise distribution that our model

demands. For instance, we choose the squared L2 norm i.e., H(Ru, f) = ‖Ru− f‖2L2(Ω)

for an image corrupted with additive Gaussian noise and for the case of impulse noise the

L1 norm is the appropriate choice for our fidelity. Furthermore, for the Poisson (photon)

noise we use the Kullback-Leibler divergence defined as H(Ru, f) =
´

ΩRu − f logRudσ

or the weighted-L2 norm H(Ru, f) =
´

Ω
(f−Ru)2

f dσ. There are many research papers that

analyse these types of noise and we refer the reader to some of them such as [BLZ08,

Nik04, CE05, LCA07, BBS+09, BLZ08, BBS+09, CDlRS14, CCDlR+15].

(a) Ground truth (b) Image corrupted
with Gaussian noise

(R = I)

(c) Tikhonov
regularisation

Ψ(u) = α ‖∇u‖2L2(Ω)

(d) ROF
regularisation

Ψ(u) = αTV(u)

Figure 1.4: Illustration of how different regularisers behave towards preservation of edges.

While the choice of the fidelity is enforced by the particular type of noise, the choice

of the regulariser is a personal selection aimed to preserve significant properties of the

solution. For instance, if one chooses a regulariser as Ψ(u) = ‖∇u‖2L2(Ω) and solve the

so-called Tikhonov regularisation minimisation problem, [TA77],

min
u∈W1,2(Ω)

1

2
‖Ru− f‖2L2(Ω) + α ‖∇u‖2L2(Ω) , (1.5)

then will observe that although the noise is eliminated, edges are lost since we have already

demonstrated that W1,2 is not a suitable space to preserve them, see Figure 1.4. On the

other hand, as it was suggested in [ROF92], if one selects the total variation of a function

u ∈ L1(Ω) i.e.,

Ψ(u) = TV(u) = sup

{ˆ
Ω
udivφ : φ ∈ C1

c (Ω), ‖φ‖∞ ≤ 1

}
(1.6)

then reconstruction under a proper choice of α, will preserve accurately all the edges in the

image. In this case, X = BV(Ω) and for the denoising task we use the identity operator,
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1.3. Contribution

i.e., R = I under Gaussian noise where we recover

min
u∈BV(Ω)

1

2
‖u− f‖2L2(Ω) + αTV(u) (1.7)

the well-known Rudin, Osher and Fatemi (ROF) model.

1.3 Contribution

This thesis consists of two main contributions as a result of two research papers [BMPS14,

BPPS15a] produced during my Ph.D.

Chapter 3: Total variation regularisation in image and sinogram space

for PET reconstruction

We focus on reconstructing images related to positron emission tomography (PET).

We propose a combined TV regularisation in the image and sinogram space. For a given

PET data f , it is expressed as the following variational minimisation problem:

argmin
u∈BV(R2)

{
α|Du|(R2) + β|D(Ru)|(Σ2) +

1

2

ˆ
Σ2

(f −Ru)2

f
dσ

}
. (1.8)

The first two terms act as total variation penalisation on the image space R2 and the

sinogram space Σ2 weighted by positive parameters α, β. The fidelity term is a weighted-L2

norm, an approximation to the Kullback-Leibler divergence that is suitable for denoising

images corrupted with Poisson noise, see also [SBMB09, LCA07]. We prove the well-

posedness of the proposed model and continuity properties of the Radon transformR in the

BV(Σ2) for images with compact support. The theoretical analysis also explores stability

issues regarding a small perturbation on the sinogram data as well as a quantitative error

analysis through the Bregman distance. In order to have a deeper understanding on how

sinogram regularisation affects the final object reconstruction, we choose to examine first

a regularisation only on the sinogram space i.e., when α = 0. We provide an analytical

computation for a sinogram image obtained from the characteristic function of a ball with

radius r, i.e., u = XBr and determine how the β parameter affects the final reconstruction,

presented in Figure 1.5. We use the Abel transform in order to recover an analytical

expression of u which is

u(r̃) =
δ

π
√
r2 − r̃2

,

where δ is the corresponding loss of contrast in the image derived from TV regularisation

on the sinogram space.

We observe that as we increase β the regularised solution starts to lose details from the

inner part of the circle concentrating on the boundaries of the object. This motivates the
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0 κ-κ r-r

1
u(r̃)

r̃

Figure 1.5: TV regularisation on the sinogram of a ball with radius r. We set α = 0
in (1.8). The black and the red curve constitute the regularised solution expressed by the
Abel inversion formula for a smaller and larger value of β respectively. The larger β the
more the solution concentrates around the boundaries of the ball.
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(b) Noisy Sinogram
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(c) Image space
regularisation

(β = 0)
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(d) Combined image
and sinogram space

regularisation
(β 6= 0)

Figure 1.6: Thin rectangle: Illustration of the combined image and sinogram space
regularisation.
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(b) Cropped and
smoothed region
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(c) Image space
regularisation

(β = 0)
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(d) Combined image
and sinogram space

regularisation
(β 6= 0)

Figure 1.7: XCAT: Illustration of the combined image and sinogram space regularisation.
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examination of (1.8) for reconstructing structures as in Figures 1.6, 1.7 where we see that

the extra penalisation on the sinogram space has a significant improvement compared to

TV regularisation in image space only, i.e., β = 0.

Chapter 4: Infimal convolution regularisation functionals of BV and Lp spaces

We begin with a literature review on high-order TV based variational methods such

as the infimal convolution (ICTV) regularisation proposed in [CL97] and the second or-

der total generalised variation (TGV2) introduced in [BKP10]. The main purpose of

high-order regularisation is to reduce and eliminate a well known artifact that first-order

regularisation promotes, namely the staircasing effect. For instance, a ROF regularised

solution (1.7) behaves as a piecewise constant approximation to the noisy data f due to

the TV term with a small L2 norm. This is illustrated in Figure 1.8, where the staircasing

term is clearly justified. Notice that in two dimensional images this can be interpreted as

blocky-like artifacts, see for example Figures 1.11c and 1.12c.

(a) Noisy input (b) Denoised (blue) and ground
truth (green) versions

Figure 1.8: Illustration of the staircasing effect for the ROF model.

However, as we discuss in Chapter 4 not only high-order regularisers are capable of

eliminating the staircasing effect. We propose a family of first-order infimal convolution

regularisation between BV and Lp spaces with 1 < p ≤ ∞ defined as

TVLpα,β(u) := inf
w∈Lp(Ω)

α ‖Du− w‖M + β ‖w‖Lp(Ω)

which are mainly used for image denoising tasks under Gaussian noise. We discuss the

analytical properties of

min
u∈BV(Ω)

1

2
‖f − u‖2L2(Ω) + TVLp

α,β(u)

and focus on the structure of solutions that are produced for different cases of f and
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p and different range of regularising parameters α and β. For example, if β ≥ α|Ω|
1
q ,

where q if the conjugate exponent of p, we have an equivalent ROF solution and for the

case of p = 2 our variational model coincides with the Huber-TV regularisation. In order

to understand the structure of the corresponding solutions, we begin our analysis with

the one dimensional version of our model and derive necessary and sufficient conditions

(optimality conditions) that the optimal (w, u) ∈ Lp × BV pair must satisfy. We recover

also the optimality conditions for the Huber–TV regularisation approach.

We present the analytical solutions for f being a step function as well as for a piecewise

affine function f in order to illustrate how the geometry of the solution differentiates in

terms of p. In addition, we realise that for finite values of p a piecewise smooth solution

is enforced whereas for p =∞ we obtain piecewise affine structures which is an innovative

result regarding first-order methods, see Figure 1.9. Let us emphasise the fact that our

proposed regulariser can preserve the exact geometry of the initial data compared to a

high-order regulariser, e.g. TGV2, see Figure 1.10.
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(c) p =∞

Figure 1.9: Step function: Structures of solutions for different values of p ∈ (1,∞].
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(a) p =∞
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(b) Comparison of TVL∞

and TGV2

Figure 1.10: Piecewise affine function: Reconstruction for p = ∞ and comparison with
TGV2. Geometry of the data is preserved with the proposed model.

We proceed with the two dimensional numerical experiments where we clearly demon-

strate that one can achieve equivalent visual results to high-order regularisers without any
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(a) Square (b) Noisy square (c) TV (d) TVL2 (e) TGV2

Figure 1.11: Square: TV, TVL2 and TGV2 reconstructions. Staircasing can be elimi-
nated with first-order methods.

(a) Circle (b) Noisy circle (c) TV (d) TVL∞ (e) TGV2

Figure 1.12: Circle: TV, TVL∞ and TGV2 reconstructions. Spike-like structures around
the origin are better preserved with the proposed method.

staircasing just by using first-order regularisers and finite values of p, see Figure 1.11.

Furthermore, we demonstrate that our regulariser is more suitable than TGV2 in order to

recover spike-like structures in the image, see Figure 1.12. However, there is a significant

disadvantage for the structure of the solution u when we deal with a scalar β. For the

p = ∞, we prove that |w| = ‖w‖∞ which is equivalent to say that the gradient of the

solution behaves as piecewise constant function. This is quite restrictive and introduces

similar staircasing artifacts but with different geometry e.g. affine staircasing, see Figure

1.13d on the background of the parrot.

One remedy to this problem is to introduce the weighted -TVL∞ version where β is

now a matrix with a priori information on the gradient of a smoothed image. It is written

as

min
uBV(Ω)
w∈L∞(Ω)

1

2
‖f − u‖22 + α ‖∇u− w‖1 + ‖β ◦ w‖∞

where ◦ denotes the Hadamard product and

β :=
c

|∇fσ|+ ε

with fσ be a smoothed version of the noisy image and ε a small positive constant. Ideally,

we would like β to imitate the gradient of the ground truth image meaning that is zero
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(a) Ground truth (b) Noisy (c) TV

(d) TVL∞: Scalar β (e) TGV2 (f) weighted-TVL∞

reconstruction using
the gradient of the

filtered image.

(g) weighted-TVL∞

using the gradient of
the ground truth

image.

Figure 1.13: Parrot: Illustration of TVL∞ reconstructions compared with TGV2. Scalar
β introduces affine staircasing artifacts whereas matrix β computed via the gradient of
the filtered image is visually close to TGV2. It still remains an open question on how we
can accurately choose the matrix β and obtain almost perfect reconstructions.

near the edges and w will vanish while preserving the edges. Moreover, a suitable choice

of the positive constant c provides us with an approximation to the correct slope for other

regions in the image. This approach provides enough freedom to the TVL∞ regularised

solution and achieve comparable results with high-order regularisers also for real-world
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images. It still remains an open question on how we can select the matrix β properly,

since computing β based on the gradient of the ground truth image, an image we do not

have a priori, results to almost perfect quality reconstructions, see Figure 1.13g.

31



Introduction

32



Chapter 2

Mathematical Preliminaries

The scope of this chapter is twofold. Firstly, we would like to provide all the necessary

mathematical background used in this thesis. We focus mainly on aspects of measure

theory, functional and convex analysis. The reader is advised to focus specifically to

the notions of Radon measures and functions of bounded variation, on duality theory

and subdifferential calculus and finally recall some of the fundamental properties and

embedding theorems for Lebesgue and Sobolev spaces. Secondly, we would like to help

the reader familiarise with the notation that is introduced and repeatedly used throughout

this thesis.

We usually denote by X an open subset of Rd with d ≥ 1. We denote by R (resp. R+)

the space of real numbers (resp. the space of real positive numbers) and Rd the Euclidean

d-dimensional space. The extended version of the real line is denoted by R = R ∪ {∞}.
We recall some standard definitions on the space of continuous functions. The space

of k-times continuously differentiable R`-valued functions is denoted by Ck(X,R`) and if

k =∞ we call this the space of smooth functions denoted by C∞(X,R`). If k = 0, we mean

the space of continuous functions and write C(X,R`). If ` = 1, we follow the notation

Ck(X) and C∞(X) instead of Ck(X,R) and C∞(X,R). Moreover, we define the space

of k-times continuously differentiable R`-functions with compact support on X denoted

by Ckc (X,R`). If k = ∞, we write C∞c (X,R`) as the smooth R`-valued functions with

compact support which are sometimes found in literature as the test functions denoted

by D(X,R`). Analogously, if ` = 1 we write Cc(X), Ckc (X) or C∞c (X) instead of Cc(X,R),

Ckc (X,R) and C∞c (X,R) respectively. The closure of Cc(X,R`) under the supremum norm

‖u‖∞ := sup
x∈X
|u(x)| describe the R`-valued functions that vanish at infinity denoted by

Ck0 (X,R`) and if ` = 1 we simply write Ck0 (X).

As a general notation rule for this thesis, when there is no possibility of confusion and

there is enough information from the context, we usually omit the range of functions.
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2.1 Measure Theory

This section covers the basic notions of measure theory and the key ingredient is the Radon

measure. We mainly follow [AFP00], [Rud87] although the reader is referred to classical

textbooks such as [EG92] and [FL07]. In order to have a smooth transition to the theory

presented below, we begin with the standard definitions of the σ-algebra and the measure.

Definition 2.1.1 (σ-algebra). Let X be a nonempty set and C be a collection of subsets

of X. We call C a σ-algebra if it satisfies the following properties :

(i) X ∈ C

(ii) if A ∈ C, then X \A ∈ C,

(iii) if An ∈ C for every n ∈ N, then
∞⋃
n=1

An ∈ C

We call the pair (X,C) a measure space. If X is a topological space, we define the

smallest σ-algebra containing all open subsets of X by B(X) i.e., the Borel σ-algebra

generated by open subsets of X.

Definition 2.1.2 (Measures). Let X be a nonempty set and C be a σ-algebra with ` ∈ N.

We say that a map µ : C→ R` is a measure if

µ(∅) = 0 and µ

( ∞⋃

n=1

An

)
=

∞∑

n=1

µ(An)

for any sequence An of pairwise disjoint elements of C. We call µ a real measure if ` = 1

and a vector measure if ` > 1 with µ = (µ1, · · · , µ`) where µi : C→ R for every i = 1, . . . , `.

Notice, that Definition 2.1.2 applies also to µ : C → [0,∞] or µ : C → R and in

these cases µ is called positive measure and signed measure respectively. If there exists

a sequence An ∈ C such that
∞⋃
n=1

An = X and µ(An) < ∞ for every n, then µ is called

σ-finite. If µ(X) <∞, the measure µ is called finite.

Definition 2.1.3 (Total variation measure). Let µ be a measure on (X,C) measure space.

We define its total variation measure |µ| : C→ R+ as

|µ|(A) := sup

{ ∞∑

i=1

|µ(An)| : An ∈ C, pairwise disjoint with

∞⋃

n=1

An = A

}
.

The difference between positive and real or vector measures is that in the latter case,

it can be shown that any real or vector measure must be finite. Notice that this is not

true for signed measures. This is a direct consequence of the fact that the total variation
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of measure µ is a finite positive measure. We proceed with two essential properties of

measures that are revealed in the following definition.

Definition 2.1.4. (i) Let µ be a positive and ν a real or vector measure on measure

space (X,C). We say that ν is absolutely continuous with respect to µ and write

ν � µ if for every A ∈ C

µ(A) = 0⇒ |ν|(A) = 0.

(ii) Let µ, ν positive measures (resp. real or vector valued) we say that they are mutually

singular and write ν⊥µ if there exists A ∈ C such that µ(A) = 0 (resp. |µ|(A) = 0)

and ν(X \A) = 0 (resp. |ν|(X \A) = 0).

Remark 2.1.5. An important result regarding the notion of mutually singular measures

is the following: if µ1 and µ2 are two positive mutually singular measures then

|µ1 + µ2| = |µ1|+ |µ2|.

Let µ := µ1 + µ2, then obviously

|µ1 + µ2|(X) ≤ |µ1|(X) + |µ2|(X).

For the other direction, since µ1⊥µ2 there exist two disjoint sets A1, A2 ∈ C with A1∪A2 =

X such that µ1(E) = µ1(A1 ∩ E) = µ(A1 ∩ E) and µ2(E) = µ2(A2 ∩ E) = µ(A2 ∩ E) for

any E ∈ C. If {Ei} and {Fi} are two partitions of X, i.e., pairwise disjoint whose union

form X and

∞∑

i=1

|µ1(Ei)|+
∞∑

i=1

|µ2(Fi)| =
∞∑

i=1

|µ(Ei ∩A1)|+
∞∑

i=1

|µ(Fi ∩A2)| ≤ |µ|(X),

since {Ei ∩A1}∞i=1 and {Fi ∩A2}∞i=1 are a partition of X. Taking the supremum over the

corresponding partitions, we conclude that |µ1|(X) + |µ2|(X) ≤ |µ|(X) = |µ1 + µ2|(X).

Let f ∈ L1(X,R`;µ) (see Section 2.2) and µ a positive measure on the measure space

(X,C). We define an R`-valued measure and its corresponding total variation as

fµ(A) =

ˆ
A
f dµ, |fµ|(A) =

ˆ
A
|f | dµ, ∀A ∈ C.

Clearly, fµ� µ and for every measurable function g, we write

ˆ
X
g d (fµ) =

ˆ
X
gf dµ.

The next fundamental theorem of measure theory allows to decompose a measure into an

absolutely continuous and singular part.
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Theorem 2.1.6 (Lebesgue decomposition). Let (X,C) a measure space and µ, ν be two

measures as in Definition 2.1.4(i) with a σ-finite µ. Then, there exists a unique pair of

R`-valued measures νa and νs such that

ν = νa + νs, νa � µ and νs⊥µ

Furthermore, there exists a function f ∈ L1(X,R`;µ) such that νa = fµ. The function

f is called the density of ν with respect to µ and is denoted by ν
µ . It is often found in

literature as Radon-Nikodým derivative of ν with respect to µ and is denoted by dν
dµ .

It is immediate that µ � |µ| for a real or vector measure µ. Hence, by the previous

theorem we obtain the following decomposition.

Theorem 2.1.7 (Polar decomposition). Let µ be an R`-valued measure on (X,C) measure

space, then there exists a unique S`−1-valued function f ∈ L1(X,R`; |µ|) such that µ =

f |µ|. We naturally denote f as sgn(µ) and |f | = 1, |µ|-almost everywhere.

For the rest of this section we assume that X is a locally compact and separable metric

space abbreviated as l.c.s and C = B(X).

Definition 2.1.8 (Radon measures). Let (X,B(X)) a measure space, where X is a l.c.s

metric space.

(i) A positive measure on (X,B(X)) is called Borel measure. Furthermore, if it is finite

on the compact sets then it is called positive Radon measure.

(ii) A set function defined on relatively compact Borel subsets of X that is a measure

on (K,B(K)) for every compact set K ⊂ X is called a real or vector Radon measure

on X.

If µ : B(X) → R` is a measure according to Definition 2.1.2, then we say that µ is a

finite Radon measure. The space of R`-valued Radon measures is denoted byMloc(X,R`)
and the finite R`-valued Radon measures as M(X,R`). We let Mloc(X) and M(X)

respectively for ` = 1. We identify the spaceM(X,R`) as a Banach space under the norm

‖µ‖M(X,R`) := |µ|(X). The following theorem introduces another formula of computing

the total variation measure.

Theorem 2.1.9. Let X be an l.c.s. metric space and µ ∈ M(X,R`). Then, for every

open A ⊂ X, the total variation measure is:

|µ|(A) = sup

{∑̀

i=1

ˆ
X
ui dµi : u ∈ Cc(A,R`), ‖u‖∞ ≤ 1

}
.
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We continue with a standard result which indicates that M(X,R`) can be identified

as the dual space of (C0(X,R`), ‖·‖∞) under the pairing 〈u, µ〉 :=
∑̀
i=1

ˆ
X
ui dµi.

Theorem 2.1.10 (Riesz representation theorem). Let X be a l.c.s. metric space and L a

bounded linear functional on (C0(X,R`), ‖·‖∞). Then there exists a unique µ ∈M(X,R`)
such that

L(u) =
∑̀

i=1

ˆ
X
ui dµi, ∀u ∈ C0(X,R`)

i.e., a bounded linear functional is characterised by a Radon measure µ and

‖L‖ = |µ|(X),

where ‖·‖ denotes the operator norm in the dual space C0(X,R`).

Notice that the above theorem is clearly valid when L : Cc(X,R`) → R is a bounded

linear functional and in this case we can identify the dual space of Cc(X,R`) asMloc(X,R`).
In addition, an equivalent expression of the Radon norm derived from Theorem 2.1.10 is

‖µ‖M = sup
{
〈u, µ〉 : u ∈ C0(X,R`), ‖u‖∞ ≤ 1

}
.

Using the density of the test functions, i.e., u ∈ C∞c (X,R`) dense in C0(X,R`) under

the supremum norm, we have that µ can be regarded as a distribution, i.e., a bounded

and linear functional L : C∞c (X,R`) → R provided that the supremum of 〈u, µ〉 tested

against all C∞c (X,R`) with ‖u‖∞ ≤ 1 is finite. This result will be useful in Section 4.4.1.

We conclude this section with the notion of convergence properties with respect to Radon

measures that will be useful when we deal with functions of bounded variation, see Section

2.3.

Definition 2.1.11 (Weak∗-convergence). Let µ, µn ∈M(X,R`) (resp. Mloc(X,R`)). We

say that µn (resp. locally) weakly∗ converges to µ if

lim
n→∞

ˆ
X
u dµn =

ˆ
X
u dµ, where

ˆ
X
u dµ =

(ˆ
X
u dµ1, · · · ,

ˆ
X
u dµ`

)

for every u ∈ C0(X) (resp. u ∈ Cc(X)).

Theorem 2.1.12 (Weak∗-compactness for measures). Let µn ∈M(X,R`), a sequence of

finite Radon measures with sup {|µn|(X) : n ∈ N} <∞, then there is a weakly∗ converging

subsequence. In addition, the map µ→ |µ|(X) is lower semicontinuous with respect to the

weak∗ convergence i.e., |µ|(X) ≤ lim inf
n→∞

|µn|(X), as a supremum of weakly∗ continuous

functionals.
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2.2 Lebesgue and Sobolev spaces

This section presents a brief summary of Lebesgue spaces denoted by Lp and Sobolev spaces

denoted by W1,p that will be used in the following chapters of this thesis. We primarily

focus on inclusion and convergence properties for Lp spaces and main embedding theorems

for W1,p spaces. We refer the reader to some classical textbooks related to both kind of

spaces [Bre11], [AF03], [Eva10], [Leo09] and [LL01].

2.2.1 Lp spaces

In the following, we let X be a l.c.s metric space and µ a positive measure.

Definition 2.2.1. Let (X,C, µ) be a measure space with 1 ≤ p ≤ ∞. Then, we define

(i) Lp(X,R`;µ) :=
{
u : X → R` : u is µ−measurable and ‖u‖Lp(X,R`;µ) <∞

}
, where

‖u‖Lp(X,R`;µ) :=

(ˆ
X
|u|p dµ

) 1
p

, for 1 ≤ p <∞.

(ii) L∞(X,R`;µ) :=
{
u : X → R` : u is µ−measurable and ‖u‖L∞(X,R`;µ) <∞

}
, where

‖u‖L∞(X,R`;µ) = ess sup
u∈X

|u| := inf {C > 0 : µ {x ∈ X : |u(x)| > C} = 0}

i.e., the essential supremum of |u|.

It is known that the Lp(X,R`;µ) are Banach spaces under the norm ‖·‖Lp(X,R`;µ) for

1 ≤ p ≤ ∞. Notice that we assign in Lp(X,R`;µ) spaces an equivalence relation which

transforms the initial seminorm ‖·‖Lp(X,R`;µ) into a norm. For simplicity of notation we

use the following rule: if µ is the Lebesgue measure Ld, where X is now a subset of Rd,
we use the notation Lp(X,R`) instead of Lp(X,R`;Ld) with d ≥ 1. Moreover, if it is clear

from the context and there is no possibility of confusion about the range of functions and

the corresponding measure µ, we simply write Lp(X). The following two propositions are

based on Hölder’s inequality and provide a relation between different Lp spaces and their

norms.

Proposition 2.2.2 (Lp inclusions). If µ(X) <∞, 1 ≤ p1 < p2 ≤ ∞ and u ∈ Lp2(X,R`;µ).

Then

‖u‖Lp1 (X,R`;µ) ≤ ‖u‖Lp2 (X,R`;µ) ·




|µ(X)|

1
p1
− 1
p2 , p2 <∞

|µ(X)|
1
p1 , p2 =∞

and u ∈ Lp1(X,R`;µ), i.e., Lp2(X,R`;µ) ↪→ Lp1(X,R`;µ) continuously.
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Let q be the Hölder conjugate exponent of p i.e., p, q satisfy 1
p + 1

q = 1 and

q :=





p
p−1 , 1 < p <∞,
∞, p = 1,

1, p =∞.

The following proposition can be found in [Leo09, Appendix B.7].

Proposition 2.2.3. Let (X,C, µ) be a measure space, µ is σ-finite and q the Hölder

exponent of p with 1 ≤ p ≤ ∞. Then, for any measurable function u : X → R`,

‖u‖Lp(X,R`;µ) = sup

{ˆ
X
|uv| dµ : v ∈ Lq(X,R`;µ), ‖v‖Lq(X,R`;µ) ≤ 1

}
.

We now state the Riesz representation theorem in Lp spaces.

Theorem 2.2.4 (Riesz representation in Lp). Let (X,C, µ) be a measure space with 1 ≤
p < ∞ and L a bounded linear operator in Lp(X,R`;µ). Then, there exists a unique

v ∈ Lq(X,R`;µ) such that

L(u) =

ˆ
X
uv dµ, ∀u ∈ Lp(X,R`;µ)

and ‖L‖(Lp(X,R`;µ))∗ = ‖v‖Lq(X,R`;µ). If p = 1, we require that µ is σ-finite.

We can indentify the dual of Lp(X,R`;µ) by Lq(X,R`;µ) if 1 < p <∞ and the dual of

L1(X,R`;µ) by L∞(X,R`, µ). Note, that for 1 < p < ∞ the Lp spaces are reflexive. For

sake of completeness, let us mention that the dual of L∞(X,R`;µ), can be identified by

the space of all bounded finitely additive measures absolutely continuous with respect to µ

and is denoted by ba(X,C;µ). Specifically, if L : L∞(X,R`;µ) → R is a bounded, linear

functional then there is a unique λ ∈ ba(X,C;µ) i.e.,

λ(A1 ∪A2) = λ(A1) + λ(A2), ∀A1, A2 ∈ C with A1 ∩A2 = ∅,
λ(A) = 0, if µ(A) = 0,

such that

L(u) =

ˆ
X
u dλ, ∀u ∈ L∞(X,R`;µ).

The space ba(X,C;µ) is a Banach space endowed with the total variation of λ. For more

details, we refer the reader to [Yos80, Chapter 4] and [FL07, Chapter 2]. Note that in

general L1(X,R`;µ) $ (L∞(X,R`;µ))∗. We conclude this section with some standard

results related to weak convergence in Lp spaces.
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Definition 2.2.5 (Weak convergence in Lp). Let (X,C, µ) be a measure space, (un) ∈
Lp(X,R`;µ) and q be the Hölder exponent of p.

(i) If 1 ≤ p < ∞, we say that un converges weakly to u ∈ Lp(X,R`;µ), denoted by

un ⇀ u, if ˆ
X
unv dµ→

ˆ
X
uv dµ, ∀v ∈ Lq(X,R`;µ)

(ii) If p =∞, we say that un converges weakly∗ to u ∈ L∞(X,R`;µ), denoted by un
w∗
⇀ u,

if ˆ
X
unv dµ→

ˆ
X
uv dµ, ∀v ∈ L1(X,R`;µ)

(iii) If un ⇀ u (resp. un
w∗
⇀ u ) then (un) is bounded in Lp(X,Rd;µ) and

‖u‖Lp(X,R`;µ) ≤ lim inf
n→∞

‖un‖Lp(X,Rd,µ) .

Theorem 2.2.6 (Weak compactness in Lp). Let (X,C;µ) be a measure space with 1 <

p ≤ ∞ and (un) bounded in Lp(X,R`;µ). Then, there exists a subsequence (unk), u ∈
Lp(X,R`;µ) such that un ⇀ u in Lp(X,R`;µ) for 1 < p ≤ ∞ or un

w∗
⇀ u in L∞(X,R`;µ).

Finally, we know that the L1(X,R`;µ) space enjoys no compactness properties. How-

ever, as we will see later for functions of bounded variation, it is convenient to identify

L1(X,R`;µ) as a subspace of Mloc(X,R`). Consider u ∈ L1(X,R`), then the mapping

φ ∈ Cc(X,R`) 7→
´
X uφ dx is continuous and linear functional on Cc(X,R`) denoted by

L(u), i.e.,

〈Lu, φ〉 =

ˆ
X
uφ dx, ∀φ ∈ Cc(X,R`).

In particular, one can prove that L is an isometry, since

‖Lu‖M(X,R`) = sup
φ∈Cc(X,R`)
‖φ‖∞≤1

ˆ
X
uφ dx = ‖u‖L1(X,R`)

and without loss of generality, we write ‖u‖M(X,R`) = ‖u‖L1(X,R`).

2.2.2 Wk,p spaces

Let Ω ⊂ Rd, d ≥ 1 be an open set with 1 ≤ p ≤ ∞. If a = (a1, · · · , ad) is an d-tuple of

nonnegative integers aj , we call a a multi-index with degree |a| =
d∑
j=1

aj . For a differential

operator D = ∂
∂x

we write Daφ = ∂a1

∂x
a1
1

· · · ∂ad
∂x
ad
d

φ. The corresponding integrals are now

with respect to the Lebesgue measure Ld.
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Definition 2.2.7. Let k a nonnegative integer. The Sobolev space Wk,p(Ω) consists of

functions u : Ω → R such that u ∈ Lp(Ω) and the distributional derivative denoted by

Dau belongs to Lp(Ω) in the weak sense for 0 ≤ |a| ≤ k i.e.,

ˆ
Ω
uDaφdx = (−1)|a|

ˆ
Ω
φv dx, ∀φ ∈ C∞c (Ω).

We call v the weak a-th derivative of u and we write v = Dau . Analogously, we define

the R`-valued Sobolev spaces Wk,p(Ω,R`).

We recall that Wk,p(Ω) is a Banach space endowed with the norm

‖u‖W1,p(Ω) =
∑

0≤|a|≤k
‖Dau‖Lp(Ω) for 1 ≤ p <∞,

‖u‖W1,∞(Ω) = max
0≤|a|≤k

‖Dau‖L∞(Ω) for p =∞.

It is also reflexive when 1 < p < ∞ and separable when 1 ≤ p < ∞. For p = 2, we

denote Wk,2(Ω) as Hk(Ω), which are Hilbert spaces. We write H0(Ω) = L2(Ω). Moreover,

we identify the closure of C∞c (Ω) under the Wk,p norm as Wk,p
0 (Ω), namely functions that

vanish on the boundary of Ω, denoted by ∂Ω, in the weak sense. Analogously, we write

Hk
0(Ω) instead of Wk,2

0 (Ω). Next, we state two of the most fundamental properties for

Sobolev spaces when k = 1. We define the Sobolev conjugate of p with 1 ≤ p ≤ d,

p∗ :=





dp
d−p , if p < d

∞, if p = d

and the mean value of u in Ω, i.e.,

uΩ :=
1

Ld(Ω)

ˆ
Ω
u dx.

Theorem 2.2.8 (Rellich-Kondrachov). Let Ω ⊂ Rd bounded with Lipschitz boundary.

Then, we have the following compact injections:

W1,p(Ω) ↪→ Lq(Ω), ∀q ∈ [1, p∗), p < d

W1,p(Ω) ↪→ Lq(Ω), ∀q ∈ [p,∞), p = d

W1,p(Ω) ↪→ C(Ω), p > d

In particular W1,p(Ω) ↪→ Lp(Ω) with compact injection for all p and d. The same embed-

dings are valid also for the W1,p
0 (Ω) space.

Theorem 2.2.9. Let Ω ⊂ Rd bounded open set with Lipschitz boundary.
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(i) Poincaré inequality: If 1 ≤ p < ∞ then there exists a constant C = C(Ω, p) such

that

‖u‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω) , ∀u ∈W1,p
0 (Ω)

(ii) Poincaré-Wirtinger inequality: If 1 ≤ p ≤ ∞ then there exist a constant C = C(Ω, p)

such that

‖u− uΩ‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω) , ∀u ∈W1,p(Ω)

Finally, we recall the notion of weak convergence in W1,p spaces similar to the Lp

spaces analogue.

Definition 2.2.10. Let Ω ⊂ Rd with a Lipschitz boundary and 1 ≤ p ≤ ∞. If un, u ∈
W1,p(Ω), we say that un converges weakly (weakly∗ if p = ∞) if un → u strongly in Lp

and ∇un ⇀ ∇u in Lp(Ω) (∇un w∗
⇀ ∇u in in L∞(Ω)).

2.3 Functions of bounded variation

The space of functions of bounded variation is an essential tool in mathematical imaging

and in particular in this thesis. This space is connected to the notion of edges that we

encounter in image processing. In a digital image, pixels at which image brightness changes

sharply are identified by edges. In the continuum setting, this results in the need to find

a suitable function space that allows jump discontinuities. Here, we provide a concrete

summary of this space and focus on important properties and theorems that will be used

in the forthcoming chapters. We recall that Ω denotes an open subset in Rd.

Definition 2.3.1. A function u ∈ L1(Ω,R`) is said to be a function of bounded variation

and write u ∈ BV(Ω,R`) if its distributional derivative Du can be represented by a R`×d-
valued finite Radon measure i.e., Du ∈M(Ω,R`×d) and for u = (u1, . . . , u`)

ˆ
Ω
ua
∂φ

∂xi
dx = −

ˆ
Ω
φdDiu

a, ∀φ ∈ C∞c (Ω,R`), i = 1, . . . , d, a = 1, . . . , `

and Du is an `× d matrix of measures Diu
a.

As usual, if it is clear from the context what the range of the functions is, we simply

write u ∈ BV(Ω). One of the main differences to the Sobolev spaces W1,p is that we

require the distributional (weak) derivative to be a measure rather than an Lp function.

It is straightforward from the definition that W1,1(Ω,R`) $ BV(Ω,R`). Indeed, if u ∈
W1,1(Ω,R`) one can define Du := ∇uLd which is a Radon measure absolutely continuous

with respect to Ld and we can write

ˆ
Ω
φdDu =

ˆ
Ω
φ∇u dLd.
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Also for the strict inclusion, we consider the Heaviside function X(0,∞) whose distributional

derivative is the Dirac measure δ{0} and is singular to Ld.
According to the Lebesgue decomposition theorem Du can be decomposed to an ab-

solutely continuous part denoted by Dau and a singular part Dsu with respect to Ld
measure and write

Du = Dau+Dsu.

We use the ∇u notation for the absolutely continuous part Dau = ∇u and when d = ` = 1

we simply write u′ as ∇u. We define for u ∈ L1(Ω,R`) the total variation of u, denoted

by TV(u) as

TV(u) = sup

{∑̀

a=1

ˆ
Ω
uadivφa dx : φ ∈ C1

c (Ω,R`×d), ‖φ‖∞ ≤ 1

}
.

One can show that u ∈ BV(Ω,R`) if and only if TV(u) < ∞ and in that case TV(u) =

|Du|(Ω). If u ∈ W1,1(Ω,R`) then TV(u) = |Du|(Ω) =
´

Ω |∇u| dx. Similarly to Theorem

2.1.12, the total variation is a lower semicontinuous functional in BV with respect to the

strong L1 topology i.e., if un → u in L1(Ω,R`) then

|Du|(Ω) ≤ lim inf
n→∞

|Dun|(Ω).

The space BV(Ω,R`) endowed with the norm

‖u‖BV(Ω,R`) = ‖u‖L1(Ω,R`) + |Du|(Ω)

is a Banach space, namely an extension to the ‖·‖W1,1(Ω). However, this topology is

very strong and too restrictive in most of the applications related to image processing.

Therefore, the notion of the weak∗ convergence is introduced in BV spaces according also

to Definition 2.1.11.

Definition 2.3.2 (Weak∗ convergence in BV). Let u, un ∈ BV(Ω,R`) we say that un

weakly∗ converges to u, if un converges to u strongly in L1(Ω,R`) and Dun weakly∗

converges to Du in Ω i.e.,

lim
n→∞

ˆ
Ω
φdDun =

ˆ
Ω
φdDu, ∀φ ∈ C0(Ω)

Theorem 2.3.3 (Compactness in BV). Let Ω be an open bounded domain in Rd with

Lipshitz boundary and (un)n ∈ BV(Ω,R`) such that

sup
n∈N
‖un‖BV(Ω,R`) <∞.
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Then, there exists a subsequence (unk)k∈N that converges to some u ∈ BV(Ω,R`) weakly∗

in BV(Ω,R`).

Naturally, the theorem above takes into account the previous definition and provides a

compactness property for the BV spaces. In fact, it is a good substitute in order to obtain

a compactness argument on W1,1 space due to its lack of reflexivity. In addition, the

compactness property of the BV space is a crucial factor in order to guarantee existence

of solutions for our forthcoming variational problems. Finally, we present some important

embeddings of BV with respect to Lp spaces and the Poincaré-Wirtinger inequality. Recall,

that 1∗ := d
d−1 if d > 1 and 1∗ =∞ if d = 1.

Theorem 2.3.4. Let Ω be an open bounded domain in Rd with Lipshitz boundary.

(i) Then BV(Ω) ↪→ L1∗(Ω) with continuous injection. If 1 ≤ p < 1∗, then BV(Ω) ↪→
Lp(Ω) with a compact injection.

(ii) If Ω is connected, then there exists a constant C = C(Ω) such that

‖u− uΩ‖Lp(Ω) ≤ C|Du|(Ω), ∀u ∈ BV(Ω), 1 ≤ p ≤ 1∗.

2.4 Convex Analysis

This section summarises the basic convex analysis tools used in this thesis. Basically, we

are interested in the convex conjugate and the subdifferential of a functional as well as the

Fenchel-Rockafellar duality theorem. For a detailed review on convex analysis we refer to

[ET99], [BC11] and [Roc70].

In the following, we assume (X, ‖·‖X) to be a Banach space. We start with some

standard definitions on convex sets and convex functionals.

Definition 2.4.1. Let (X, ‖·‖X) be a Banach space, a subset C of X and a functional

F : X → R.

(i) The set C is called convex if λu+ (1− λ)v ∈ C for all λ ∈ [0, 1] and u, v ∈ C.

(ii) The functional F is called convex (resp. strictly convex) if

F (λu+ (1− λ)v) ≤ λF (u) + (1− λ)F (v),

for all λ ∈ [0, 1] and for all u, v ∈ X (resp. for all λ ∈ (0, 1), u 6= v with a strict

inequality).

(iii) The effective domain of F is the set

domF = {u ∈ X : F (u) <∞} .
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A functional F is called proper if domF 6= ∅, i.e., F is not identically equal to +∞.

We proceed with the definition of the convex conjugate or also know as Legendre–

Fenchel transformation. Let X∗ be the dual space of X under the duality pairing 〈·, ·〉X,X∗ .

Definition 2.4.2 (Convex conjugate). Let X be a Banach space and X∗ its dual. For a

functional F : X → R, the convex conjugate of F denoted by F ∗ : X∗ → R is

F ∗(u∗) = sup
u∈X
〈u, u∗〉 − F (u) for all u∗ ∈ X∗.

Obviously, we can consider taking the supremum over all u ∈ domF which is translated

as the pointwise supremum of continuous and affine functions 〈u, ·〉 − F (u). Hence, F ∗ is

lower semicontinuous and convex. Futhermore, we may repeat the conjugation process,

leading to the biconjugate F ∗∗ : X → R defined analogously as

F ∗∗(u) = sup
u∗∈X∗

〈u, u∗〉 − F ∗(u∗), for all u ∈ X.

The next fundamental theorem allows us to determine under which conditions on the

functional F , the biconjugate F ∗∗ is indeed equal to F . The proof can be found in [Bre11].

Theorem 2.4.3 (Fenchel-Moreau). Let F : X → R be a convex, lower semicontinuous

and proper functional. Then F ∗∗ = F .

Let us demonstrate the importance of this theorem with few useful examples:

Example 2.4.4. (i) Let C a nonempty subset of X. We set the indicator function of

C as

IC(u) =





0, u ∈ C
+∞, u /∈ C.

Clearly, IC is convex and lower semicontinous if and only C is convex and closed

respectively. Now, we obtain I∗C(u∗) = sup
u∈C
〈u, u∗〉 where the right-hand side is com-

monly referred to as the support function of C and denoted by σC(u∗). Additionally,

if we assume that C is a closed and convex subset of X then by Theorem 2.4.3 we

obtain that I∗∗C = IC .

(ii) If F (u) = ‖u‖X , then by the Cauchy-Schwarz inequality one has

F ∗(u∗) ≤ sup
u∈X
‖u‖X (‖u∗‖X∗ − 1).

Then, if we consider separately the cases where ‖u‖X∗ ≤ 1 and ‖u‖X∗ > 1 we

conclude that F ∗ = IBX∗ , i.e., the indicator function of the unit ball of the dual
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space X∗. Similarly, for the biconjugate of F , we obtain that

F ∗∗(u) = sup
u∗∈X∗
‖u‖X∗≤1

〈u, u∗〉 = ‖u‖X = F (u).

(iii) If 1 < p <∞ and F (u) = 1
p ‖u‖

p
Lp(X), then by Young’s inequality we have that

F ∗(u∗) =
1

q
‖u∗‖qLq(X) ,

where q is the Hölder exponent of p.

Let us discuss now the subdifferential of a functional. The concept of subdifferentiabil-

ity constitutes a generalisation of differentiability in Banach spaces regarding for example

the Gâteaux and Fréchet derivatives.

Definition 2.4.5 (Gâteaux-Fréchet). Let X, Y be two Banach spaces. A map F : X → Y

is said to be Gâteaux differentiable at u ∈ X if there exists a bounded linear operator

Tu : X → Y such that ∀h ∈ X,

lim
t→0

F (u+ th)− F (u)

t
= Tuh.

If the limit exists, we say that F has a directional derivative at u in the direction h. The

operator Tu is said to be the Gâteaux derivative of F at u denoted by F ′G(u). If F is

Gâteaux differentiable at every point u ∈ X, then we say that F is Gâteaux differentiable.

If the limit exists uniformly in h on every bounded set in X, we say that F is Fréchet

differentiable at u ∈ X and Tu is the Fréchet derivative of F at u denoted by F ′F (u).

Equivalently, if we set z = ht then if t → 0 we have that z → 0 and F is Fréchet

differentiable at u if for all z ∈ X, F (u+ z)− F (u)− Tu(z) = o (‖z‖X), i.e.,

‖F (u+ z)− F (u)− Tu(z)‖Y
‖z‖X

→ 0, as ‖z‖X → 0.

Definition 2.4.6 (Subdifferential). Let (X, ‖·‖X) be a Banach space and F : X → R.

We say that F is subdifferentiable at u ∈ X if there exists u∗ ∈ X∗ such that

F (v) ≥ F (u) + 〈u∗, v − u〉 , ∀v ∈ X.

We call u∗ the subgradient of F at u ∈ X. The collection of all subgradients is called the

subdifferential of F at u denoted by ∂F (u) i.e.,

∂F (u) = {u∗ ∈ X∗ : F (v) ≥ F (u) + 〈u∗, v − u〉 , ∀v ∈ X} .
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Combining the two previous definitions, we can prove that if F is Fréchet differentiable

then it also Gâteaux differentiable. Moreover, if F is Gâteaux differentiable at u ∈ X then

∂F (u) =
{
F ′G(u)

}
. In general, the subdifferential can be multivalued. A standard example

is F : R→ R+ with F (u) = |u|. Then, the subdifferential is

∂F (u) = sgn(u) =





1, if u > 0,

[−1, 1], if u = 0,

−1, if u < 0.

Next, we recall some useful properties for the subdifferential. Most of the proofs can be

found in [ET99].

Proposition 2.4.7. Let (X, ‖·‖X) be a Banach space and F : X → R with F ∗ : X∗ → R
its convex conjugate.

(i) u∗ ∈ ∂F (u)⇔ F (u) + F ∗(u∗) = 〈u, u∗〉.

(ii) If F is a proper, lower semicontinuous and convex functional then

u∗ ∈ ∂F (u)⇔ u ∈ ∂F ∗(u∗).

(iii) Let F1 : X → R, F2 : Y → R be two proper, lower semicontinous and convex

functionals with R : X → Y be a linear operator. If R(domF1) ∩ domF2 6= ∅ with

F2 continuous at Ru ∈ Y then

∂ (F1(u) + F2(Ru)) = ∂F1(u)+∂F2(Ru), ∂F2(Ru) = ∂(F2 ◦R)(u) = R∗∂F2(Ru),

where R∗ : Y ∗ → X∗ is the adjoint operator of R.

Throughout this thesis, we mainly consider functionals that are convex, non-differentiable

and homogeneous. A functional F is said to be (positively) homogeneous of degree p if

for α ∈ R then F (αu) = |α|pF (u). We can obtain a useful characterisation of the subdif-

ferential when we are dealing with one-homogenous functionals.

Proposition 2.4.8 (One-homogenous). Let F : X → R be a proper, lower semicontinous,

convex and one-homogeneous functional. Then, F = σC with C = ∂F (0) and

∂F (u) = {u∗ ∈ X∗ : 〈u, u∗〉 = F (u), 〈u∗, v〉 ≤ F (v), ∀v ∈ X} .

Proof. Let u∗ ∈ C, then F ∗(u∗) = sup
u∈X
〈u, u∗〉 − F (u) ≤ 0 = 〈0, u∗〉 − F (0) ≤ F ∗(u∗) i.e.,

F ∗(u∗) = 0. On the other hand, there exists z ∈ X such that 〈z, u∗〉 − F (z) > 0. Then,
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∀λ > 0 we obtain F ∗(u∗) ≥ 〈λz, u∗〉 − F (λz) = λ(〈z, u∗〉 − F (z)) which can be arbitrarily

large i.e., F ∗(u∗) = +∞. Hence, we obtain that F ∗(u∗) = IC(u∗) and since F ∗ is also

convex and lower semicontinuous, we have that C is a closed, convex set in X∗. Finally,

by Theorem 2.4.3 and Proposition 2.4.7 (i) we conclude that F = F ∗∗ = (IC)∗ = σC ,

F (u) = 〈u, u∗〉 with u∗ ∈ ∂F (0), see also Example 2.4.4 (i), and

∂F (u) = {u∗ ∈ X∗ : 〈u, u∗〉 = F (u), 〈u∗, v〉 ≤ F (v), ∀v ∈ X} .

An important consequence is in the case of total variation norm, where one can obtain

the following characterisation:

∂ ‖Du‖M =
{

divφ, ‖φ‖∞ ≤ 1, φ|∂Ω · n = 0, 〈divφ, u〉 = ‖Du‖M
}

Indeed, see also [BO13],[CCC+10], by Proposition 2.4.8, we have that

∂ ‖Du‖M =
{
ξ ∈ BV(Ω)∗ : 〈ξ, u〉BV,BV∗ = ‖Du‖M , 〈ξ, v〉BV,BV∗ ≤ ‖Dv‖M , ∀v ∈ BV(Ω)

}
.

Then,

‖ξ‖BV(Ω)∗ = sup
v∈BV(Ω)
‖Dv‖M≤1

〈ξ, v〉 ≤ sup
v∈BV(Ω)
‖Dv‖M≤1

‖Dv‖M = 1

and the subdifferential can now be written as

∂ ‖Du‖M =
{
ξ ∈ BV(Ω)∗ : ‖ξ‖BV(Ω)∗ ≤ 1, 〈ξ, u〉BV,BV∗ = ‖Du‖M

}
.

Now let us define the dual of BV, which is also discussed in Section 4.5.1. It can be

identified by the space G(Ω), where it was initially introduced first in R2 by Y. Meyer in

[Mey01] and generalised for Ω ⊂ R2 in [AA05] , i.e.,

G(Ω) =
{
ξ ∈ L2(Ω,R`) : ξ = divφ, φ ∈ L∞(Ω,R`), φ|∂Ω · n = 0

}

under the so-called G∗ or Meyer norm

‖ξ‖∗ := inf {‖|φ(x)|‖∞ | divφ = ξ}

with
´

Ω ξ dx = 0. The existence of such φ is guaranteed by [BB03, Theorem 3] and

therefore we obtain the required expression.
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2.4.1 Fenchel-Rockafellar duality

We discuss the Fenchel-Rockafellar duality related to variational problems that we en-

counter in this thesis. Our goal is to associate to a minimisation problem (P), referred to

as the primal problem, a maximisation problem (P∗), referred to as the dual problem and

examine the relationship between these two problems, especially the connection between

their solutions.

Let X,Y two Banach spaces with F1 : X → R, F2 : Y → R be two proper, convex,

lower semicontinuous functionals and a bounded linear operator K : X → Y . We consider

a minimisation problem (primal problem) of the following form i.e.,

inf
u∈X

F1(u) + F2(Ku).

The corresponding dual problem is a maximisation problem defined as

sup
u∗∈Y ∗

−F ∗1 (K∗(u∗))− F ∗2 (−u∗),

where K∗ : Y ∗ → X∗ is the adjoint of K. We denote the infimum of (P) problem as inf P
and analogously the supremum of (P∗) as supP∗. In general, we have that supP∗ ≤ inf P
and both of them are finite. We say that there is no duality gap if they are equal and the

theorem below, see [ET99, Chapter III] provides a characterisation between their solutions.

Theorem 2.4.9. Assume that the primal and dual problems have solutions and supP∗ =

inf P. Then, u and u∗ are solutions of (P) and (P∗) respectively if and only if satisfy the

following optimality conditions

K∗(u∗) ∈ ∂F1(u),

− u∗ ∈ ∂F2(Ku).

In order to guarantee that supP∗ = inf P, we need to make the following assumption:

that there exists u0 ∈ X such that both F1(u0) and F2(Ku0) are finite and F2 is continuous

at Ku0. However, Attouch and Brezis in [AB86] proved the same result with a weaker

and more geometrical assumption, see also [BC11, Chapter 15].

Theorem 2.4.10 (Attouch-Brezis). Let X,Y be two Banach spaces, K : X → Y a

bounded linear operator and F1 : X → R, F2 : Y → R be two proper, convex, lower

semicontinuous functionals. If

⋃

λ≥0

λ (dom(F2)−K(domF1))

49



Mathematical Preliminaries

is a closed subspace of Y , then

inf
u∈X

F1(u) + F2(Ku) + min
u∗∈Y ∗

F ∗1 (K∗(u∗)) + F ∗2 (−u∗) = 0,

the dual problem has at least one solution and there is no duality gap.
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Chapter 3

Total variation regularisation in

image and sinogram space for

PET reconstruction

3.1 Introduction

In this chapter, we introduce our novel approach in image reconstruction for Positron

Emission Tomography abbreviated as PET. It is based on the publication [BMPS14].

Generally speaking, emission tomography is a specific branch of medical imaging that

employs radioactive materials to depict biochemical and physiological processes such as

metabolic activities, blood flow in the heart, detection of tumors, and to identify brain

regions influenced by drugs. It can be understood as the combination of two basic princi-

ples: (1) Emission: imaging through the use of a radioactive tracer or marker. The idea

of the tracer principle was first introduced by the Nobel prize winner in chemistry George

de Hevesy in the early 1900’s. His research on how plants absorb radioactive tracers was

the foundation of the current state of medical techniques such as PET. (2) Tomography:

projection imaging or drawing a cross-sectional slices of the region of interest. This idea

allows to obtain images that cannot be physically acquired, except by making a planar

cut through the body and then looking at the exposed surface. Hence, the importance of

tomography is to visualise characteristics of the human body without the need for surgery

leading to a significant breakthrough of non-invasive medical techniques.

In general, the radioactive tracers emit gamma rays which are photons with high en-

ergy. The emitted photons are recorded by appropriate detectors, placed around the

body and have geometrical information about the origin of every photon. Through these

measurements, which are in the form of projections, our scope is to apply mathematical

techniques in order to reconstruct accurately an image that represents the region of inter-

est, namely where the radiotracer started to emit photons and how it is distributed in the
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body.

Our proposed model can be summarised by the following minimisation problem: given

noisy measurements g ∈ L2(Σ2), we reconstruct u ∈ BV(R2) by solving

argmin
u∈BV(R2)

{
α|Du|(R2) + β|D(Ru)|(Σ2) +

1

2

ˆ
Σ2

(g −Ru)2

g
dσ

}
. (3.1)

The terms |Du|(R2) and |D(Ru)|(Σ2) are the total variation penalties on the image u and

on the measurement space Σ2 =
{

(θ, s) : θ ∈ S1, s ∈ R
}

of Ru. The space Σ2 is commonly

referred as the sinogram space and contains the values of Ru(θ, s), where R denotes the

Radon transform, R : L1(R2)→ L1(Σ2) with

Ru(θ, s) =

ˆ
R2

δ(s− x · θ)u(x) dx. (3.2)

The fidelity term represents a weighted L2 difference between Ru and the noisy data g,

which is a suitable choice due to its the statistics of the noise. In fact, as we describe

in Section 3.2, the measurements g during a PET scan are corrupted by Poisson noise

and the weighted L2 norm constitutes a standard approximation of the Kullback-Leibler

divergence
´

Σ2(Ru− glogRu) dσ, see [Saw11, Chapter 4]. The positive parameters α and

β are tuned appropriately in order to balance the strength of the regularisation on the

image and on the sinogram space that we require in the final solution u.

PET reconstruction using total variation regularisation is not new. Most of the state of

the art methods, see Section 3.4 are focused on regularising only the image space. However,

the novelty of our model is that we add an additional regulariser on the sinogram space

which enforces a priori information on the total variation of Ru. This approach can be

very useful when we are dealing with measurements corrupted with high levels of noise

and images that are governed by thin and elongated structures, see Section 3.7.3.

Organisation of the chapter

We first begin with a proper introduction to emission tomography and the clinical

stages during a PET scan, see Section 3.2.

In Section 3.3, we summarise all the basic properties of the Radon transform and

the sinogram space. We focus on its continuity in Lp spaces for functions with compact

support. We also recall the projection-slice theorem, which provides a connection between

the Radon and Fourier transforms and finally the filtered backprojection, a technique that

reconstructs an image from its noisy projections.

We proceed in Section 3.4 with a general review of the state of the art reconstruction

methods such as the expectation-maximisation (EM) algorithm and its extension via the

TV regularisation, namely the EM-TV approach introduced in [BBS+09],[BLZ08]. In

Section 3.5, we begin the analysis of the proposed model (3.1). One of the crucial step
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towards the well-posedness of the model is the BV continuity of the Radon transform of

functions with compact support. Existence, uniqueness and stability results are provided

as well as an error analysis using the Bregman distance.

In order to understand how regularisation of the sinogram space behaves and how the

reconstruction reflects in the image space, we compute analytically the TV regularisation

applied only on the sinogram of the characteristic function of ball with radius r i.e.,

u = XBr . In particular, we derive the optimality conditions of (3.1) when β = 0 and

obtain the corresponding regularised solution u, see Section 3.5.4.

Finally, in Sections 3.6 and 3.7, we proceed with the discretised problem of (3.1) and

perform our numerical experiments. We use the split Bregman algorithm, see Section 3.6.2,

to solve our minimisation problem and apply our method to both simulated phantoms and

real PET data. We demonstrate numerically the relation between regularising only on the

sinogram space and its corresponding image reconstruction which validates the theoretical

results of Section 3.5.4. We focus on how geometrical features of the reconstructing image

u, especially on the boundaries of the image, are affected in terms of the choice of the

parameter β. We conclude this chapter with numerical simulations of PET data with thin

and elongated structures that clearly demonstrate the advantage of our method.

3.2 Positron Emission Tomography

Figure 3.1: Stages of PET scan, Image courtesy of Wikipedia.

In this section, we describe the clinical stages during a PET scan as presented in Figure

3.1. For a thorough analysis of the physics and instrumentation aspects of PET imaging

as well as reconstruction methods we refer the reader to [Phe06] and [WA04].

The clinical Positron Emission tomography is divided into four stages:
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(i) A patient is injected (usually into blood circulation) with a radioactive tracer or

radiopharmaceutical. One of the most important radiopharmaceutical and widely

used in brain imaging is the 18F-FDG. This element consists of two parts: the tracer

compound, FDG which stands for fluorodeoxyglucose an analogue of glucose that

interacts with the body and a positron emitter, 18F a fluorine radioisotope. In

recent years, 18F-FDG has also become an important asset for cancer imaging since

malignant tumors cells can produce high levels of glucose metabolism in comparison

with normal cells.

(a) Transverse view (b) Coronal view

Figure 3.2: Realistic PET data for the chest simulated in [TPT+13]. Six different tumour
lesions appear in transverse and coronal views.

(ii) After the administration of the radiopharmaceutical, there is a waiting period that

depends on the nature of the tracer. For example, for the 18F-FDG is usually one

hour. During this period, 18F-FDG, as a glucose analogue, is taken up by high-

glucose-using cells such as brain, kidney, and cancer cells. In practice, cells in the

tissue which are more active have a higher metabolism, i.e., need more energy, and

hence will absorb more tracer isotope than cells which are less active. Thus, tumors

cells are highlighted in emission tomography images as bright regions against the

relatively dark background of surrounding normal tissues, see Figure 3.2.

(iii) The radioactive isotope starts to emit positron from its nucleus as a product of

the radioactive decay. Then, the emitted positron travels in tissue for a very short

distance (less than 1mm) losing enough of its kinetic energy until it meets with

an electron. At this point, the positron and the electron annihilate and emit two

gamma photons carrying an energy equal to 511Kev and travel in almost opposite

directions.

(iv) As the gamma rays travel through the patient’s body in opposite directions, they

are detected and recorded by an imaging hardware, as it is shown in Figure 3.1.

It consists by a large number of detectors e.g. block detectors ordered in a ring
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geometry around the body. Once the photons are recorded from these detectors,

they can indicate the annihilation point which occurred somewhere along this line.

This line from which a pair of detectors can detect coincidences usually is referred

as line of response denoted by LOR. A collection of a large number of these LORs

in different angles can help us reconstruct a complete cross-sectional image of the

object.

From a physical point of view, the change of intensity I of the emitted photons trav-

elling through the body can be described according to Lambert-Beer law:

dI

I
= −
ˆ
L′(x)

µ(z) dz ⇒ I = I0e
−
´
L′(x) µ(z) dz

(3.3)

where µ(z) is the attenuation-coefficient distribution of the body known as µ-map, and

L′(x) is the distance which extends from the annihilation point x through the detector, see

Figure 3.3. The attenuation-coefficient distribution is the tendency of an object to absorb

or scatter rays of a given energy. For example, a bone has a much higher attenuation

coefficient than from a soft tissue. It is usually compared with the attenuation coefficient

of the water and is quoted in terms of the Hounsfield unit, see [Eps07, Chapter 3]. Analo-

gously, for the spatial distribution of the radiotracer u(x), we have that the measurements

recorded from the detectors are mathematically described by

g =

ˆ
L
u(x)e

−
´
L′(x) µ(z) dz

dx (3.4)

which is called the attenuated Radon transform of u and is denoted by Rµu. In this case,

the distribution u(x) is weighted by an exponential term that represents the attenuation

coefficient of the body, where L denotes all the object points along the line connecting the

detectors. A detailed mathematical analysis of the Radon transform will be provided in

Section 3.3. In most modern PET devices, the distribution of the attenuation coefficient

µ(z) is already computed via a second imaging unit, like CT (computed tomography) or

MRI (magnetic resonance imaging). For example, there is the PET/CT imaging device

that combines the functionality of both PET and CT, see [WA04, Chapters 10,11] for

more details. In our analysis, we assume that µ(z) ≡ 0 and (3.4) becomes

g =

ˆ
L
u(x) dx. (3.5)

Our ultimate goal is to find the distribution u(x) given the measurements g. This is

a complicated task on its own and can be even more difficult, if one takes into account

that during a PET scan, these measurements are corrupted with noise. Individual photon

detections can be treated as independent events that follow a random distribution. It

is usually referred as photon noise or Poisson noise due to the fact that the number of
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s
φ

Radiotracer distribution u(x)
with attenuation coefficient µ(x)

Detector

L′(x)

L

y

x

~x

Detector

Figure 3.3: PET scan geometry: The measurements g of a radiotracer distribution u(x)
with attenuation coefficient µ(x) are given by (3.4) where L′(x) is a line segment of L for
all object points measuring the distance from the annihilation point to the detector.

events recorded by the detectors in any fixed interval of time obeys the well-known Poisson

probability distribution. In detail, let X be a discrete random variable assigned to the

number of photons measured by a given sensor/detector over a time interval t. Then, the

discrete probability distribution is

P(X = k ;λ) =
e−λλk

k!
(3.6)

where λ is the expected number of photons per unit time interval. Since, both the

(a) Scaled by 108 (b) Scaled by 1010 (c) Scaled by 1012

Figure 3.4: Poisson noise with different scaling factors of Figure 3.2, meaning different
photon counts see also section 3.7.

expectation and the variance of Poisson distribution are equal to λ, this indicates that

Poisson noise is signal dependent meaning that the noise intensity perturbating the image

pixel is proportional to the clean image. In fact the standard deviation grows with the

square root of the clean image. This can be justified in Figure 3.4, where the image quality
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deteriorates seriously when the photon count decreases. We use the MATLAB’s imnoise

routine with different scaling factors in order to simulate the number of photon counts,

see Section 3.7 for more details. The Poisson distribution will be used again in Section

3.4 in order to obtain a variational approach via the Bayesian framework.

3.3 Radon transform

In 1917, an Austrian Mathematician named Johann

Radon solved the following problem: Could we deter-

mine an object provided that the total density of ev-

ery line through the object is known? In [Rad17] or

in the first English translation in [Dea83, Appendix],

Radon introduced an operator measuring the density

of a function u along lines and provide an analytical

solution, known as the Radon inversion formula, of

recovering the function u by its density. In this sec-

tion, we briefly summarise all the basic properties of

the Radon transform such as its continuity, its connec-

tion with the Fourier transform and the filtered back-

projection. We mainly follow [NW01] and [Nat01].

Although, we refer the reader to other standard text-

books such as [Mar14], [Eps07], [Dea83].
Figure 3.5: Johann Radon

(1887-1956)

Definition 3.3.1 (Radon transform). Let u ∈ L1(Rd) and H(θ, s) =
{
x ∈ Rd : x · θ = s

}

be the hyperplane perpendicular to θ ∈ Sd−1 with distance s ∈ R from the origin. The

d-dimensional Radon transform of u is defined as

Ru(θ, s) =

ˆ
H(θ,s)

u(x) dx. (3.7)

Equivalently, we can write

Ru(θ, s) =

ˆ
y∈θ⊥

u(sθ + y) dy (3.8)

integrating along the orthogonal subspace θ⊥ =
{
x ∈ Rd : x · θ = 0

}
. The domain of the

Radon transform is Σd =
{

(θ, s) : θ ∈ Sd−1, s ∈ R
}

a cylinder of dimension d and is often

referred as projection space or Radon space or sinogram space.

One common expression regarding the Radon transform, see [Nat01] for instance, is
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by using the Dirac δ0 measure such that

ˆ
Rd
u(x) d δ0(x) = u(0).

Let δk be an exponential approximation of δ then

lim
k→∞

ˆ
Rd
δk(x)u(x) dx = u(0).

Hence, we have the following

lim
k→∞

ˆ
Rd
u(x)δk(s− x · θ) dx = lim

k→∞

ˆ
R

ˆ
θ⊥
u(tθ + y)δk(s− t) dy dt

=

ˆ
θ⊥
u(sθ + y) dy,

where in a sense we can write

Ru(θ, s) =

ˆ
Rd
u(x)δ(s− x · θ) dx. (3.9)

Clearly, the Radon transform is a well-defined linear operator for u ∈ L1(Rd), and in

fact is L1 continuous, since by a simple change of variables and Fubini’s theorem we obtain

ˆ
R
Ru(θ, s) ds =

ˆ
R

ˆ
y∈θ⊥

u(sθ + y) dy ds =

ˆ
Rd
u(x)dx

and

‖Ru‖L1(Σd) ≤ |Sd−1| ‖u‖L1(Rd) . (3.10)

However, this is not true in general. It can be shown, see [Bor98], that for p ≥ d
d−1 > 1

the function

u(x) = (2 + |x|)−
d
p ln

1

2 + |x|

belongs to Lp(Rd), since ‖u(x)‖Lp ≤
ln1−p(2)
p−1 , but Ru(θ, s)→∞.

Let us now examine the Radon transform in a two dimensional setting. For d = 2

equation (3.7) can be simplified to

Ru(θ, s) =

ˆ ∞
−∞

u(s cosφ− t sinφ, s sinφ+ t cosφ) dt. (3.11)
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Indeed, let a point (x, y) and line L passing

through it with distance s from the origin

being perpendicular to θ = (cosφ, sinφ), see

Figure 3.6. Then, a line passing though the

origin with angle φ from the x-axis intersects

the line L at the point (s cosφ, s sinφ) = ~r0.

Hence, for every t ∈ R we have that ~r =

~r0 + tθ⊥ i.e.,

x = s cosφ− t sinφ

y = s sinφ+ t cosφ.
(3.12)

y

x

~θ

~θ⊥

0
φ

L

(x, y)

~r

t~θ⊥

~r0

Figure 3.6: Local coordinates of PET in R2

Moreover, the space Σ2 = S1 × R can be identified as a half-cylinder with unit radius

whose surface contains all the measurements Ru(θ, s) with θ = (cosφ, sinφ) ∈ S1. From

(3.9), we observe that Ru(θ, s) = Ru(−θ,−s). In addition, if for example Ru(θ, s) is

known for −∞ < s <∞, then the only values of φ we need are in the range of φ ∈ [0, π),

since the points (−s, φ) and (s, φ+ π) produce the same value, see Figure 3.7a. Likewise,

we can also have s ∈ [0,∞) and φ ∈ [0, 2π). However, in practice the distance s of a line

L from the origin has always finite value and cannot extend to infinity, hence we usually

write Σ2 = {(φ, s) : s ∈ [−r, r], φ ∈ [0, π)} for some r > 0. Now, if we unroll this cylinder,

the resulting surface is a rectangular grid containing the values of the line integral (3.11)

for every distance s and angle φ. This unrolled space is commonly referred as the sinogram

space. This is due to the fact that a single point in the (x, y) plane has a sinusoidal form

in the Radon space. Indeed, we are interested on lines that passing through this point for

different angles φ. These lines can be expressed using (3.12), i.e., s = x0 cosφ + y0 sinφ.

Hence, for the polar coordinates (
√
x2

0 + y2
0, φ0), we have that

s = x0 cosφ+ y0 sinφ =
√
x2

0 + y2
0 cosφ0 cosφ+

√
x2

0 + y2
0 sinφ0 sinφ

=
√
x2

0 + y2
0 cos(φ− φ0). (3.13)

Roughly, a single a point in the (x, y) plane, e.g. a bright spot, is interpreted as a bright

sinusoidal curve over a grey background, see Figure 3.7.

Let us further lay emphasis on the boundedness of the object that we aim to recon-

struct. In medical applications, we mainly deal with functions with compact support. For

instance, if u(x, y) = 0 for x2 +y2 > r2 then by (3.9) Ru(θ, s) = 0, ∀|s| > r. In fact, under

these assumptions one can guarantee the Lp continuity of the Radon transform. It has

been shown for p = 2 in [SSW77, Section 12]. The proof for general p is based on a similar
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−r

r

0

φ

(φ, s)

1

0

(a) Radon measurements lie on the sur-
face of a half cylinder with unity radius
and |s| < r.

0

φ

s

(b) The unrolled cylinder and its corre-
sponding sinusoidal form.

Figure 3.7: The sinogram space Σ2 = {(φ, s) : s ∈ [−r, r], φ ∈ [0, π]} of a function which
is 0 everywhere except at (x0, y0), see also (3.13).

proof for the k-plane transforms, an extension to Radon transform, see [Mar14, Chapter

3] for more details. In Section 3.5.1, we will prove a similar continuity result regarding

locally supported functions of bounded variation.

Proposition 3.3.2. Let u ∈ Lploc(R
d) i.e., an Lp function vanishing outside a compact set

K with 1 ≤ p ≤ ∞ and q its Hölder exponent as in (2.2.1). Then, the Radon transform is

continuous in Lp(Σd) and

‖Ru‖Lp(Σd) :=

(ˆ
Σd
|Ru(θ, s)|p ds dθ

) 1
p

≤ |C Sd−1|
1
pdiam(K)

d−1
q ‖u‖Lp(Rd) .

Proof. Let K be a compact subset of Rd such that u(x) = 0 for every x ∈ Rd \ K. We

compute the following using Hölder inequality and writing u = u · XK

|Ru(θ, s)| = |
ˆ
y∈θ⊥

u(sθ + y) dy| ≤
(ˆ

y∈θ⊥
|u(sθ + y)|p dy

) 1
p

|θ⊥ ∩K|
1
q .

For any point x ∈ θ⊥ ∩ K we choose a ball centered at x with radius diam(K). Hence

θ⊥ ∩K ⊂ B(x, diam(K)) and

|Ru(θ, s)| ≤ C
(ˆ

y∈θ⊥
|u(sθ + y)|p dy

) 1
p

diam(K)
d−1
q

where C is a constant related to the volume of the ball and depends only on d. Similarly
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3.3. Radon transform

to (3.10), using a simple change of variables and Fubini’s theorem, we obtain

‖Ru‖pLp(R) ≤ C
pdiam(K)

p
q

(d−1) ‖u‖p
Lp(Rd)

and finally integrating over θ ∈ Sd−1 we conclude that

‖Ru‖Lp(Σd) ≤ C|Sd−1|
1
pdiam(K)

d−1
q ‖u‖Lp(Rd) .

Another useful result of the Radon transform is its relation with the Fourier transform

F , known as Projection-Slice theorem.

Theorem 3.3.3 (Projection-Slice). Let u ∈ L1(Rd), then for θ ∈ Sd−1 and ξ ∈ R

F1(Ru)(θ, ξ) = (2π)
d−1

2 Fdu(ξθ),

where on the left-hand side is the one dimensional Fourier transform and on the right-hand

side in the Fourier transform in Rd, d > 1.

An important consequence of the previous theorem is the uniqueness of the Radon

transform where the proof is based on the uniqueness of Fourier transform.

Corollary 3.3.4. If u1, u2 ∈ L1(Rd) with Ru1(θ, s) = Ru2(θ, s) for all (θ, s) ∈ Σd then

u1(x) = u2(x), ∀x ∈ Rd.

Finally, let us briefly describe how to reconstruct our initial unknown function u, once

we have obtained all the Radon measurements, namely a function g ∈ Σd. A reasonable

idea is to take the average value of all the line integrals over all lines passing through

a point x ∈ Rd. We assign a value to the point x ∈ Rd by averaging our projected

measurements g back to the initial space.

Definition 3.3.5 (Backprojection). Let g ∈ L1(Σd), we define the backprojection operator

R∗ as

R∗g(x) =

ˆ
Sd−1

g(θ, x · θ) dθ. (3.14)

It is the adjoint operator of R and for every u ∈ L1(Rd) and g ∈ L1(Σd) we have that

〈Ru, g〉L1(Σd) = 〈u,R∗g〉L1(Rd) .

However, the backprojection operation is not a good approximation of the function u,

as it is clearly indicated by the proposition below, see [Nat01, Chapter 1] for its proof.
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Proposition 3.3.6. Let u ∈ L1(Rd), then

R∗ (Ru(θ, s)) (x) = |Sd−2|
(

1

|x| ∗ u(x)

)

i.e, a smoothed approximation of u that expands radially from the origin.

In order to overcome this defect, we employ first a filtering on the projected measure-

ments and then apply the backprojection operation. This process is widely known as the

filtered-backprojection abbreviated as FBP. Let g = Ru, the idea is to find a suitable filter

V approximating the Dirac δ function and determine v from V = R∗v. Then

u u V ∗ u = R∗v ∗ u = R∗ (v ∗ Ru) = R∗(v ∗ g),

where the following property on convolution was used: for u ∈ L1(Rd) and g ∈ L1(Σd)

(R∗g) ∗ u = R∗ (g ∗ Ru) .

The process of finding a suitable filter V and then determine v is described in [NW01,

Chapter 5]. One of the most common filter that we also use in our analysis is the Ram-Lak

filter, see Section 3.7.2. In Figure 3.8, we compare our reconstructions of the characteristic

function of a square using the backprojection operation and the filtered backprojection

with a Ram-Lak filter. Clearly, there is a radial smoothing expanding from the center of

the square when we backproject without using any filter, as it is indicated by Proposition

3.3.6. On the other hand, the filtered backprojection can avoid this artifact and the

reconstruction is visually close to the initial image. Filtered backprojection is considered

as the most important algorithm in tomographic imaging and is still widely used in clinical

applications.

(a) Square (b) Sinogram (c) Backprojection (d) Filtered
backprojection

Figure 3.8: Backprojection and filtered backprojection operations on a characteristic
function of a square.
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3.4 State of the art image reconstruction methods

In (3.1), we reconstruct an image from PET measurements g by smoothing both in mea-

surement and image space. Our approach is inspired by an alternating regularisation pro-

cedure for PET reconstruction initially introduced by Barbano et. al in [BFS11]. Given

possible under sampled and noisy PET measurements g ∈ Σ2, an image u is reconstructed

by solving in the discrete setting

min
(h,u):h∈Σ2

u=R−1h

α|Dh|(Σ2) + β ‖u‖1 +
λ

2
‖g − h‖22 , (3.15)

where |Dh|(Σ2) is the discrete total variation of h in the sinogram space, R−1 is the inverse

Radon transform approximated by the FBP and α, β, λ are positive weighting parameters.

The image u is forced to be sparse by an `1 penalty. The main focus of [BFS11] is to study

the effect of total variation regularisation on the sinogram, rather than the image as

usually done in variational PET reconstruction [SBW+08, SBMB09, BBS+09, BSB10].

Therefore, in their numerical experiments the effect of the image regularisation is kept

low by choosing an appropriate weighting α � β. In [BFS11], it is proved that (3.15)

has a unique solution. Moreover, the authors show the effect that the total variation

regularisation of the sinogram h has on the reconstructed image u by a computational

experiment on a simulated data set. The main idea of adding a total variation prior

on the projection space originated in the works of Thirion in [Thi91] and Prince et al. in

[PW90]. In [Thi91], the author introduces a geometrical based approach in order to detect

inner and outer boundaries of an object. Since every point on the sinogram corresponds

to a line in the image space with fixed angle and distance from the origin, he proposes

to follow continuously edge points on the sinogram that will reflect to either inner or

outer edge points on the image. In [PW90], Prince and Willsky focus on reconstructing

tomographic images by using a Markov random field prior on the sinogram, particularly

in the presence of data with a low signal-to-noise ratio (SNR) and limited angle or sparse-

angle measurement configurations. Their approach leads to the computation of a smoothed

sinogram from which the image u is reconstructed using the filtered backprojection.

Besides adding an additional prior to the sinogram the novelty of our method is that it

combines two of the main philosophies encountered in PET reconstruction: direct methods

and iterative / variational methods.

(i) In a direct method, the goal is to perform an one step calculation in order to recover a

reconstruction form the PET measurements. Typically, direct methods neglect most

of the important features of PET such as noise distribution. For example, FBP is a

direct method as was described in Section 3.3. Another direct method presented in
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[BFK09], [MFI06] is to compute analytically the inverse Radon transform defined as

u(x, y) = R−1(Ru) :=
1

4iπ2
(∂x − i∂y)

ˆ 2π

0
eiθH(Ru)(y cosφ− x sinφ) dφ

where H(·) denotes the Hilbert transform. They approximate the PET datum g =

Ru by cubic splines, whereas the Hilbert transform is approximated by quadrature

formulas, see also [KGSF11, KGSF15].

(ii) On the other hand, iterative methods such as expectation-maximisation algorithm

(EM), introduced in [DLR] and [SV82] or variational methods such as EM-TV,

see [BBS+09] are based on the standard Bayesian modelling approach in inverse

problems. Prior knowledge in terms of regularity is expressed for the image function

u rather than the measurements g. In these cases, the possibility to include statistical

noise models is a important asset of iterative and variational methods.

Now, we discuss the Bayesian approach in iterative methods for PET reconstruction.

Assume that we have P detectors and denote by Xi, i = 1, . . . , P the random variables

assigned to each detector that are responsible to photon counting. Assume also that

Xi are pairwise independent and identically distributed. Since, every random variable

corresponds to a different detector, the latter assumption is indeed acceptable. Every Xi

random variable is Poisson distributed with parameter (Ru)i with a detected value gi.

Then using (3.6), the measurements g = Ru have conditional probability

P (g = gi|u ; (Ru)i) =
P∏

i=1

(Ru)gii
gi!

e−(Ru)i . (3.16)

In order to decide among all possible images u, which is the best estimate of the true object

we employ the maximum-likelihood (ML) criterion. Therefore, we seek a solution for which

the measured data g would have the greatest likelihood P(g|u) i.e., u ∈ argmax
u

P(g|u).

Generally speaking, using information only from the noise distribution generates problems

that are ill-posed and additional information on the solution has to be imposed. We can

obtain this information using the Bayes’ Law and choose an estimate u that maximises

the posterior probability density function P(u|g). Hence, we write

u ∈ argmax
u

P (u|g), where P(u|g) =
P (g|u)P (u)

P (g)
. (3.17)

Since the denominator does not depend on u, it suffices to maximise P (g|u)P (u). Hence,

we can enforce to our model a prior probability of the image u, see [CS05, LCA07]. The

most frequently used prior densities are the Gibbs priors, i.e.,

P (u) = e−αJ(u) (3.18)
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where α > 0 is a regularisation parameter and J(u) is a convex energy functional. Instead

of maximising P (g|u)P (u), we minimise − log(P (g|u)P (u)). We seek a minimiser of the

following problem

argmin
u≥0

{
P∑

i=1

((Ru)i − gi log(Ru)i) + αJ(u)

}
, (3.19)

where the first term is the so-called Kullback-Leibler divergence of Ru and g. This often

serves as a motivation to consider the continuous variational problem

argmin
u≥0

{ˆ
Σ2

Ru− g log(Ru) dσ + αJ(u)

}
. (3.20)

In the case where J ≡ 0, the first optimality condition in (3.20) yields the following

iterative scheme, known as EM algorithm

uk+1 =
uk

R∗1R
∗(

g

Ruk
). (3.21)

Additionally imposing prior information on the solution, e.g. that the solutions have small

total variation with J(u) = |Du|, leads to an extension of the EM algorithm, e.g. the EM-

TV algorithm. The reader is also referred to [Mül13] and [MBS+11] where an extension

to the EM-TV algorithm is applied to PET data using the Bregman distance, see Section

3.5.3. Finally, in order to reduce the computational cost of the Kullback-Leibler fidelity,

it is useful to replace it with a second order Taylor approximation, see [Saw11, Section

4.5.2] for more details, which results to a weighted-L2 squared version i.e.,

ˆ
Σ2

(g −Ru)2

g
dσ.

3.5 TV regularisation on image and sinogram

In this section, we will discuss the well-posedness of our minimisation problem. We typ-

ically considered image functions u that are defined on an open and bounded domain

Ω ⊂ R2, including sufficiently large balls around zero. Our proposed variational model is

argmin
u∈BV(Ω)

u≥0 a.e. in Ω

{
F (u) = α|Du|(Ω) + β|D(Ru)|(Σ2) +

1

2

ˆ
Σ2

(g −Ru)2

g
d σ

}
. (3.22)

Prior information for both the image and sinogram spaces is enforced and weighted by

positive parameters α and β. Note, that the TV regularisation on the sinogram in (3.22)

has a different effect on the reconstructed image compared to regularising in image space

(β = 0) only. Of course, regularisation of the image u enforces a certain regularisation of
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the sinogramRu as well. However, because of the nonlinear character of the total variation

regularisation, TV regularisation on the sinogram is not equivalent to a regularisation on

the image and vice-versa. In (3.22), the two types of TV regularisation impose different

structures in the subgradients of the two terms. This is also emphasised in Section 3.5.3,

where the source condition (3.41) and the subgradient elements ξ1, ξ2 are described.

We start with some observations that are crucial ingredients of the well-posedness

analysis for (3.22). In order not to divide by zero in the weighted L2 norm in (3.22), we

first assume that there exists constant c1 > 0 such that

0 < c1 ≤ g(θ, s) ≤ ‖g‖L∞(Σ) . (3.23)

The constraint (3.23) is not significantly restrictive in most medical experiments. Since

u is assumed to be nonnegative, this basically can be achieved if the lines in the Radon

transform are confined to those intersecting the support of u, at least in a discretised

setting. Moreover, to justify the definition of F (u) in (3.22) over the admissible set {u ∈
BV(Ω), u ≥ 0 a.e. in Ω} in Theorem 3.5.1 we show that the Radon transform of u is

again a function of bounded variation and Ru ∈ BV(Σ2) is well defined. To do so it is

important to assume that the object we wish to recover is compactly supported. Hence,

we may assume that supp u ⊂ Br ⊂ Ω, where Br is the ball with radius r centered at the

origin. Consequently, (3.9) implies that Ru(θ, s) = 0, when s /∈ (−r, r) and the projection

space becomes:

Σ2 =
{

(θ, s) : θ = (cosφ, sinφ) ∈ S1, −r ≤ s ≤ r, 0 ≤ φ < π
}
. (3.24)

If it is not stated otherwise, we will always assume that the reconstructed image is com-

pactly supported. Notice that, we may allow either negative values on the s variable and

not consider the Radon transform for φ = π or allow that s ≥ 0 and 0 ≤ φ < 2π, see

Section 3.3.

3.5.1 BV continuity of the Radon transform

Our first result deals with the continuity of the Radon transform as a mapping opera-

tor in the space of functions with bounded variation. A similar result is proved by M.

Bergounioux and E. Trélat in [BT10] in three dimensional case for bounded and axially

symmetric objects. Under these assumptions, they obtain a nice expression of the Radon

transform which can be identified as an Abel transform, see Section 3.5.4 for more details

on the Abel transform. They also provide a similar continuity result to Proposition 3.3.2

in [ABT08] for this specific expression of the Radon transform.

In what follows we do not need this symmetry assumption, but prove that the Radon

transform is BV continuous for compactly supported function u in two dimensions.
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Theorem 3.5.1. Let u ∈ BV(Ω) and the ball Br with radius r be its compact support, then

Ru ∈ BV(Σ2) and the Radon transform is BV continuous on the subspace of functions

supported in Br.

Proof. Since the Radon transform is L1 continuous, see (3.10), in order to prove that is

BV continuous with respect to ‖·‖BV = ‖·‖L1 + |D(·)| norm, it suffices to prove that the

total variation of Ru over Σ2 is finite and bounded by the total variation of u, i.e.,

|D(Ru)|(Σ2) = sup

{ˆ
Ω
Ru(θ, s)divh(θ, s) dθds : h ∈ C1

c (Σ2,R2), ‖h‖∞ ≤ 1

}
<∞.

Using the local coordinates (3.12), see also Figure 3.6 with t, s ∈ [−r, r], we compute that

ˆ
Σ2

Ru(θ, s)divh(θ, s) dθds =

ˆ π

0

ˆ r

−r

ˆ r

−r
u(s cosφ− t sinφ, s sinφ+ t cosφ)

divh(φ, s) dt ds dφ

=

ˆ π

0

ˆ r

−r

ˆ r

−r
u(x, y)

[
∇h1 · ~α+∇h2 · ~θ

]
dx dy dθ

where ~α = (−y, x), ~θ = (cosφ, sinφ). Set ~G(x, y) = (G1(x, y), G2(x, y))) with

G1(x, y) :=

ˆ π

0
−yh1(φ, x cosφ+ y sinφ) + h2(φ, x cosφ+ y sinφ) cosφdφ

G2(x, y) :=

ˆ π

0
xh1(φ, x cosφ+ y sinφ) + h2(φ, x cosφ+ y sinφ) sinφdφ

then,

divG(x, y) =
∂G1(x, y)

∂x
+
∂G2(x, y)

∂y
=

ˆ π

0

(
∇h1 · ~α+∇h2 · ~θ

)
dφ

and finally by Fubini’s theorem

ˆ π

0

ˆ r

−r

ˆ r

−r
u(x, y)

[
∇h1 · ~α+∇h2 · ~θ

]
dx dy dθ =

ˆ r

−r

ˆ r

−r
u(x, y)divG(x, y) dxdy.

The function G ∈ C1(Ω,R2) and if we consider G · XBr then G ∈ C1
c (Ω,R2). Moreover,

|G1(x, y)| ≤
ˆ π

0
|y||h1|+ |h2| ≤ π ‖h‖∞ (1 + |y|) ≤ π ‖h‖∞ (1 + r) = C

and similarly |G2(x, y)| ≤ C. Finally, let

A :=

ˆ r

−r

ˆ r

−r
u(x, y)divG(x, y) dx dy = C

ˆ r

−r

ˆ r

−r
u(x, y)div(

G(x, y)

C
) dx dy

and

B :=

ˆ
Σ2

Ru(θ, s)divh(θ, s) ds dθ.
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Then, taking the supremum over all G ∈ C1
c (Ω,R2) with ‖G/C‖∞ ≤ 1, we have that

B = C · |Du|(Ω). Similarly, for all h ∈ C1
c (Σ2,R2) with ‖h‖∞ ≤ 1, we conclude that

|D(Ru)|(Σ2) ≤ π(1 + r)|Du|(Ω) <∞.

Therefore, Ru ∈ BV(Σ2) and the variation coincides with the total variation |D(Ru)|(Σ2).

We deduce from (3.10) that

‖Ru‖BV(Σ2) ≤ π(1 + r) ‖u‖BV(Ω) .

3.5.2 Well-posedness of the model

Next, we show existence and uniqueness of a minimiser for the problem (3.22). The

following proof uses standard tools of variational calculus and mainly the existence over

the BV space is based on the Poincaré-Wirtinger inequality, see for example [AV94] and

[Ves01].

Theorem 3.5.2. Let α > 0, β ≥ 0 and g ∈ L∞(Σ2) which satisfies (3.23). Then, the

functional F (u) in (3.22) is lower semicontinuous and strictly convex and the minimisation

problem (3.22) attains a unique solution u ∈ BV(Ω) ∩ L1
+(Ω).

Proof. Let (un)n ∈ BV(Ω) be a minimising sequence of nonnegative functions, then there

exists a constant C1 > 0 such that

F (un) = α|Dun|(Ω) + β|D(Run)|(Σ2) +
1

2

ˆ
Σ2

(g −Run)2

g
dσ < C1. (3.25)

Let un = 1
|Ω|
´

Ω undx, then by the Poincaré-Wirtinger inequality, see Theorem 2.3.4, we

can find a constant C2 > 0 such that

‖un − un‖L2(Ω) ≤ C2|Dun|(Ω) (3.26)

and

‖un‖L2(Ω) ≤ C2|Dun|(Ω) + ‖un‖L2(Ω) = C2|Dun|(Ω) +

∣∣∣∣
ˆ

Ω
undx

∣∣∣∣ . (3.27)

We set vn = un − un and by (3.23)

C1 >

ˆ
Σ

(g −Run)2

g
≥ 1

‖g‖L∞(Σ2)

‖g −Run‖2L2(Σ2)
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we proceed to the following calculations

‖Run‖L2(Σ2) = ‖Run + g − g‖L2(Σ2) = ‖Run −Rvn + g − g‖L2(Σ2)

≤ C
1
2
1 ‖g‖

1
2

L∞(Σ2)
+ ‖Rvn‖L2(Σ2) + ‖g‖L2(Σ2)

≤ C
1
2
1 ‖g‖

1
2

L∞(Σ2)
+ C3 ‖g‖L∞(Σ2) + ‖R‖ ‖vn‖L2(Ω) ≤ C4

where the constant C3 depends on the sinogram space Σ2 and the last term is bounded

due to (3.26) and Proposition 3.3.2. Since,

∣∣∣∣
1

|Ω|

ˆ
Ω
undx

∣∣∣∣ · ‖R(XΩ)‖L2(Σ2) = ‖Run‖L2(Σ2) (3.28)

without loss of generality, we may assume that the image domain Ω is a unit square, then

R(XΩ) 6= 0, see [Pou10, Chapter 8] and conclude that |
´

Ω undx| is uniformly bounded.

Hence, by (3.27), (un) is L2(Ω) bounded and since Ω ⊂ R2 is a bounded and open set, it is

also L1(Ω) bounded. Moreover, since the Radon transform is L2 continuous for functions

with compact support, see Proposition (3.3.2), using the L1 continuity, we can summarise

the following results so far: The sequence (un)n∈N is bounded in L1(Ω) and |Dun|(Ω) <∞
i.e., is BV(Ω) bounded, hence we obtain a subsequence (unk)k∈N, u ∈ BV(Ω) such that

unk converges weakly∗ to u. Also, unk converges weakly to u in L2(Ω). Then,

Runk → Ru in L1(Σ2)

Runk ⇀ Ru in L2(Σ2).
(3.29)

Hence, for h ∈ C1
c (Σ2,R2) we obtain

lim inf
k→∞

|D(Runk)|(Σ2) ≥ lim inf
k→∞

ˆ
Σ2

Runk divh dσ ≥
ˆ

Σ2

Rudivh dσ

and taking the supremum over all ‖h‖L∞(Σ2) ≤ 1 we conclude that

|D(Ru)|(Σ2) ≤ lim inf
k→∞

|D(Runk)|(Σ2).

The weak lower semicontinuity of the L2 norm and the lower semicontinuity of total

variation semi-norm, see Section 2.3 for both the image and the projection space imply

that

F (u) ≤ lim inf
k→∞

F (unk).

Finally, in order to prove uniqueness let 0 ≤ u1, u2 ∈ BV(Ω) be two minimisers. If

Ru1 6= Ru2, then the strict convexity of the weighted L2 fidelity term together with the
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convexity of the total variation of Ru imply that:

F

(
u1 + u2

2

)
<
F (u1)

2
+
F (u2)

2
= inf

u∈BV(Ω)
u≥0 a.e.

F (u)

which is a contradiction. Hence, Ru1 = Ru2 and using Corollary 3.3.4, we conclude that

u1 = u2.

Further, we discuss the stability of problem (3.22) in terms of a small perturbation on

the data. Following [AV94], we consider a perturbation on the projection space i.e.,

gn = g + τn with ‖τn‖L2(Σ2) → 0 (3.30)

and define the corresponding minimisation problem on the perturbed functionals:

argmin
u∈BV(Ω)
u≥0 a.e.

{
Fn(u) = α|Du|(Ω) + β|D(Ru)|(Σ2) +

1

2

ˆ
Σ2

(gn −Ru)2

gn
dσ

}
. (3.31)

For (3.31) to be well-defined, we assume an L∞ bound on τn such that gn is still positive.

More precisely we assume that

0 < c1 ≤ gn(θ, s) ≤ ‖g‖L∞(Σ2) + ε, for all n ≥ 1, (3.32)

which is the same as assuming that the perturbations τn are bounded from above by a

small enough constant. Then, by the previous theorem we have that both Fn and F are

lower semicontinuous, strictly convex with unique minimisers un and u∗ respectively. In a

sense, we will prove that for a small change on our data g, our solution’s behaviour does

not change significantly. Before, we proceed with the stability analysis we need to ensure

that the functional is indeed BV-coercive. That is coercive with respect to the bounded

variation norm ‖u‖BV(Ω) = ‖u‖L1(Ω) + |Du|(Ω), rather than the total variation seminorm

only.

Lemma 3.5.3. Let g ∈ L∞(Σ2) a strictly positive and bounded function, then the func-

tional F in (3.22) is BV coercive i.e., there exists a constant C > 0 such that

F (u) ≥ C ‖u‖BV(Ω) . (3.33)

Proof. Let u ≥ 0 a.e with u ∈ BV(Ω) and consider v = u−u. Then, using again Poincaré-

Wirtinger inequality for 1 ≤ p ≤ 2, we obtain that

‖v‖Lp(Ω) ≤ C1|Dv|(Ω)
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and the corresponding estimate for the BV norm holds:

‖u‖BV(Ω) = ‖u‖L1(Ω) + |Du|(Ω) ≤ ‖u− u‖L1(Ω) + ‖u‖L1(Ω) + |Dv|(Ω)

≤ ‖u‖L1(Ω) + (C1 + 1)|Dv|(Ω). (3.34)

Note that in the above calculations we have used the fact that |Du|(Ω) = |Dv|(Ω). More-

over, see (3.28) we know that there exists a constant C2 > 0 such that

‖Ru‖L2(Σ2) = C2 ‖u‖L1(Ω)

since R(XΩ) 6= 0. Hence, we can derive the following bound:

F (u) = α|Du|(Ω) + β|D(Ru)|(Σ2) +
1

2

ˆ
Σ2

(g −Ru)2

g
dσ ≥ α|Dv|(Ω) +

1

2 ‖g‖L∞(Σ2)

‖g −Ru‖2L2(Σ2)

≥ α|Dv|(Ω) +
1

2 ‖g‖L∞(Σ2)

‖g −Rv −Ru‖2L2(Σ2)

≥ α|Dv|(Ω) +
1

2 ‖g‖L∞(Σ2)

(
‖g −Rv‖L2(Σ2) − ‖Ru‖L2(Σ2)

)2

≥ α|Dv|(Ω) +
1

2 ‖g‖L∞(Σ2)

‖Ru‖L2(Σ2)

(
‖Ru‖L2(Σ2) − 2 ‖g −Rv‖L2(Σ2)

)

≥ α|Dv|(Ω) +
C2 ‖u‖L1(Ω)

2 ‖g‖L∞(Σ2)

(
C2 ‖u‖L1(Ω) − 2

(
‖R‖C1|Dv|(Ω) + ‖g‖L2(Σ2)

))
(3.35)

Setting

A = C2 ‖u‖L1(Ω) − 2
(
C1 ‖R‖ |Dv|(Ω) + ‖g‖L2(Σ2)

)

we consider 2 cases:

(a) If A ≥ 1, then using (3.35), one can prove that

C1 + 1

α
F (u) ≥ (C1 + 1)|Dv| and

2 ‖g‖L2(Σ2)

C2
F (u) ≥ ‖u‖L1(Ω)

and hence by (3.34)

F (u)

(
C1 + 1

α
+

2 ‖g‖L2(Σ2)

C2

)
≥ ‖u‖BV(Ω) . (3.36)

(b) If A ≤ 1, then

‖u‖L1(Ω) ≤
1 + 2

(
‖R‖C1|Dv|(Ω) + ‖g‖L2(Σ2)

)

C2
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and using equation (3.34) we derive that:

‖u‖BV (Ω) −
1 + 2 ‖g‖L2(Σ2)

C2
≤
(2C1 ‖R‖

C2
+ C1 + 1

)
|Dv| ≤ K

α
F (u) (3.37)

where K =
2C1‖R‖
C2

+ C1 + 1. From equations (3.36), (3.37), we have that the functional

F is BV coercive.

Moreover, we can prove that given constants C > 0 and ε > 0, there exists n0 ∈ N
such that

|Fn(u)− F (u)| ≤ ε for n ≥ n0 and ‖u‖BV(Ω) ≤ C. (3.38)

Indeed, after few computations using (3.30) and the constraints on g and gn we conclude

that

1

2

∣∣∣∣∣

ˆ
Σ2

(gn −Ru)2

gn
− (g −Ru)2

g
− (gn − g)2

gn
dσ

∣∣∣∣∣ ≤
1

2c2
1

∣∣∣∣∣

ˆ
Σ2

g2τn − τn(Ru)2 dσ

∣∣∣∣∣

≤ 1

2c2
1

‖τn‖L2(Σ)

∥∥g2 − (Ru)2
∥∥

L2(Σ2)
.

The continuity of Radon transform for L2 functions with compact support, see Proposition

3.3.2 and that BV ↪→ L2 continuously, imply that we can find an appropriate constant

such that (3.38) is valid since the third term on the left-hand side vanishes for large n.

With these preparations we can prove the following weak stability result for minimisers of

(3.22).

Theorem 3.5.4. Let 0 < un, u
∗ ∈ BV(Ω) be the minimisers of the functionals Fn and F

defined in (3.31) and (3.22) respectively. Then

un ⇀ u∗ in L2(Ω). (3.39)

Proof. Observe that Fn(un) ≤ Fn(u∗) and using (3.38) we have that

lim inf
n→∞

Fn(un) ≤ lim sup
n→∞

Fn(un) ≤ F (u∗) <∞

Lemma 3.5.3 implies that (un)n∈N is BV bounded. Assume now that (3.39) is not true,

then there exists a subsequence unk which converges weakly to some u 6= u∗ in L2(Ω).

Hence, by the lower semicontinuity of F , equivalently weak lower semicontinuity since F

is convex,

F (u) ≤ lim inf
n→∞

F (unk)

= lim inf
k→∞

(F (unk)− Fnk(unk)) + lim inf
k→∞

Fnk(unk) ≤ F (u∗)
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3.5. TV regularisation on image and sinogram

which is a contradiction to the uniqueness of minimiser of F .

3.5.3 Error analysis using the Bregman distance

In the following we discuss a similar approach as presented in [BO04] for deriving an error

estimate for our model (3.22) in terms of the Bregman distance. Let us note that what

follows holds for a more general minimisation problem

argmin
u∈X

{
F (u) = αJ(u) + βJ(Ru) +

1

2

ˆ
Σ2

(g −Ru)2

g
dσ

}
, (3.40)

where J : X → R is a convex functional and X is a Banach space such that

R : X → L2(Σ2) ∩ X is a bounded operator. Before we proceed with proving an error

estimate for (3.40), we first restate the terminologies found in [BO04] of a minimising

solution, the source-condition and the notion of Bregman distance for a convex functional.

Definition 3.5.5. An element ũ ∈ X is called a minimising solution of Ru = g with

respect to the functional J : X → R if:

(i) Rũ = g,

(ii) J(ũ) ≤ J(v) ,∀v ∈ X, Rv = g.

Based on the definition of the subdifferential of J at u, see Definition 2.4.6, we consider

the following condition known as the source condition for an element ũ

∃w̃ ∈ L2(Σ2) such that R∗w̃ ∈ ∂J(ũ). (3.41)

One of the importance of the source condition is that the elements satisfying the source

condition (3.41) are exactly the minimisers of the (3.40) for β = 0, see [BO04, Prop. 1].

Next, we recall the Bregman distance for a convex functional J together with some of its

basic properties as it was first introduced in [Bre67].

Definition 3.5.6. Let X be a Banach space and J : X → R a convex and proper

functional with non empty subdifferential ∂J . The Bregman distance is defined as

DJ(u, v) = {J(u)− J(v)− 〈ξ, u− v〉 | ξ ∈ ∂J(v)} .

Moreover, the Bregman distance for a specify subgradient ξ ∈ ∂J(v) ⊂ X∗, v ∈ X is

defined as Dξ
J : X ×X → R+ with

Dξ
J(u, v) = J(u)− J(v)− 〈ξ, u− v〉 , (3.42)

where 〈·, ·〉X,X∗ is the standard duality product between X and its dual X∗.
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Let us mention few properties on the Bregman distance. For instance, if J is Gâteaux

differentiable then the subdifferential of J contains a unique element ξ and in that case

Dξ
J(u, v) = 0, see Definition 2.4.5. On the other hand, if J is not Gâteaux differentiable

then the subdifferential is multivalued and each element d ∈ Dξ
J(u, v) represents a distance

between u and v. One can immediately observe that the Bregman distance is not a metric

in the usual sense, since it is not in general symmetric or the triangular inequality is not

true. Moreover, for not strictly convex functionals, it is possible to have 0 ∈ Dξ
J(u, v) for

u 6= v and also there is no guarantee that Dξ
J(u, v) is nonempty since the subdifferential

can be nonempty. However, it produces a measure of how close are the elements u, v ∈ X,

see Figure 3.9. More precisely, it is a difference between the value of the tangent at v

evaluated at u and the value of J at u.

J(u)

J(v)

v u X

D
ξ
J(u, v)J

< ξ, u− v >

Figure 3.9: Bregman distance Dξ
J(u, v).

Let us mention some basic properties on the Bregman distance and their proofs are

based in the definitions of Bregman distance and the subdifferential of functional J .

(1) Dξ
J(u, u) = 0 , ∀u ∈ X.

(2) Dξ
J(u, v) ≥ 0, since ξ ∈ ∂J(v).

(3) If J is a strictly convex functional then Dξ
J(u, v) = 0⇔ u = v.

(4) If w ∈ X lies on the line segment between u, v then Dξ
J(u, v) ≥ Dξ

J(w, v).

Bregman distance is strongly related to the source condition (3.41) through the fol-

lowing observation. With a specific subgradient ξ satisfying the source condition we have

Dξ
J(u, ũ) = J(u)−J(ũ)−〈ξ, u− ũ〉X,X∗ = J(u)−J(ũ)−〈w̃,R(u− ũ)〉X,X∗ , hence it pro-

vides a relation between the error in the regularisation functionals and the output error
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3.5. TV regularisation on image and sinogram

Ru−Rũ. Now, we can derive an estimate for the difference of a minimising solution ũ in

Definition 3.5.5 and a regularised solution û of (3.40).

Let α > 0, β ≥ 0 and the data g fulfil (3.23). Then, for a minimiser û of (3.40) and

the exact solution ũ satisfying Rũ = f with a fixed noise bound ‖g − f‖L2(Σ2) ≤ δ from

the exact data f , we have

αJ(û) + βJ(Rû) +
‖g −Rû‖2L2(Σ2)

2 ‖g‖L∞(Σ2)

≤ αJ(ũ) + βJ(Rũ) +
δ2

2c1
⇔

αDξ1
J (û, ũ) + α < ξ1, û− ũ > +βDξ2

J (Rû, f) + β < ξ2,Rû− f > +
‖g −Rû‖2L2(Σ2)

2 ‖g‖L∞(Σ2)

≤ δ2

2c1

where, we have used the corresponding Bregman distances related to the functional J and

their subgradients ξ1, ξ2 regarding the image and the sinogram regularisation. We also

require that

∂(J(u) + J(Ru)) = ∂J(u) + ∂(J(Ru)) (3.43)

holds, subject to the assumption that the related effective domains have a common point,

that is

domJ(u) ∩ domJ(Ru) 6= ∅ for some u ∈ X (3.44)

see Proposition 2.4.7. In our case, this is valid due to Theorem 3.5.1. Let

(i) ξ1 ∈ ∂J(ũ)

(ii) ξ2 ∈ ∂(J(Rũ)) = R∗(∂J(Rũ)) ∈ R∗w2

Moreover, assume that the source condition (3.41) is satisfied with respect to J , that is

∃ξ1 ∈ ∂J(ũ) s.t ξ1 = R∗w1 , w1 ∈ L2(Σ2)

Then, by generalised Young’s inequality, that is for every ε > 0 we have

ab ≤ a2

2ε
+
εb2

2
,

we conclude that

αDξ1
J (û, ũ) + α 〈ξ1, û− ũ〉 + βDξ2

J (Rû, f) + β 〈ξ2,Rû− f〉 +
‖g −Rû‖2L2(Σ2)

2 ‖g‖L∞(Σ2)

≤ δ2

2c1
⇔

αDξ1
J (û, ũ) + βDξ2

J (Rû, f) + 〈αw1 + βξ2,Rû− f〉 +
‖g −Rû‖2L2(Σ2)

2 ‖g‖L∞(Σ2)

≤ δ2

2c1
⇔

αDξ1
J (û, ũ) + βDξ2

J (Rû, f) +
‖g −Rû‖2L2(Σ2)

2 ‖g‖L∞(Σ2)

≤ δ2

2c1
+ < αw1 + βξ2, f −Rû+ g − g >⇔
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αDξ1
J (û, ũ) + βDξ2

J (Rû, f) +
‖g −Rû‖2L2(Σ2)

2 ‖g‖L∞(Σ2)

≤ δ2

2c1
+
‖αw1 + βξ2‖2L2(Σ2)

2ε
+
ε

2
‖g −Rû‖2L2(Σ2)

+
‖αw1 + βξ2‖2L2(Σ2)

2ε
+
ε ‖f − g‖2L2(Σ2)

2
⇔

αDξ1
J (û, ũ) + βDξ2

J (Rû, f) +
‖g −Rû‖2L2(Σ2)

2 ‖g‖L∞(Σ2)

≤ δ2

2c1
+
‖αw1 + βξ2‖2L2(Σ2)

ε
+
ε

2
‖g −Rû‖2L2(Σ2) +

εδ2

2

Hence, for ε = ‖g‖−1
L∞(Σ) > 0 we have

Dξ1
J (û, ũ) +

β

α
Dξ2
J (Rû, f) ≤ c̃1δ

2

α
+ α ‖g‖L∞(Σ2)

∥∥∥∥w1 +
β

α
R∗w2

∥∥∥∥
2

L2(Σ2)

and prove the following theorem:

Theorem 3.5.7. Let δ > 0 be the noise bound related to the exact data f and the noise

data g. Moreover let (3.43) holds. If û is a minimiser of (3.40) and ũ the exact solution

of Rũ = f which satisfies the source condition (3.41), then for α > 0, β ≥ 0 we have the

following estimate:

Dξ1
J (û, ũ) +

β

α
Dξ2
J (Rû, f) ≤ c̃1δ

2

α
+ α ‖g‖L∞(Σ2)

∥∥∥∥w1 +
β

α
R∗w2

∥∥∥∥
2

L2(Σ2)

(3.45)

where c̃1 =
c1+‖g‖L∞(Σ2)

2c1‖g‖L∞(Σ2)
.

This result describes the connection between a regularised solution and a minimising

solution related to the regularised functional J . Finally, the estimate above contains the

case of β = 0 where it has been proved in [BO04, Theorems 1,2].

3.5.4 An explicit example of TV regularisation on the sinogram

Before we proceed with the numerical simulations of (3.22), we discuss how a regularised

solution in the projection space behaves in terms of an appropriate positive parameter β.

In particular, we derive an explicit solution of the weighted ROF minimisation problem

on the sinogram, that is

argmin
v∈BV(Σ2)
v≥0 a.e

{
β|Dv|(Σ2) +

1

2

ˆ
Σ2

(g − v)2

g
dσ

}
. (3.46)

We examine the sinogram of the characteristic function u of a ball with radius r

centered at the origin. Therefore, in this case it is easy to compute the corresponding

76



3.5. TV regularisation on image and sinogram

Radon transform, where there is no angle dependence due to its radial symmetry. Let

u(x, y) =





1, if x2 + y2 ≤ r
0, otherwise

(3.47)

then, g(θ, s) = Rθu(s) =





2
√
r2 − s2, for |s| < r

0, otherwise.
(3.48)

(a) u = XBr
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(c) 45o angle profiles: The loss of
contrast from the maximum value

2r is δ

Figure 3.10: The characteristic function of a ball with r = 50.5 and its sinogram given
in (3.48). The total variation reconstructions in 450 angle profiles with the weighted L2

and the standard L2 fidelities.

In Figure 3.10, we present u = XBr with radius r = 50.5 and the corresponding

sinogram g. We also put emphasis on the weighted L2 fidelity compared to the classical

ROF regularisation on the sinogram space, namely

argmin
v∈BV(Σ2)

β|Dv|(Σ2) +
1

2
‖g − v‖2L2(Σ2) .

We observe that the weight g on (3.46) allows on the solution v to respect the geometry
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of the initial sinogram and for example vanish outside the support (−r, r). We compare

the two types of total variation reconstructions where the β’s used, have been selected

appropriately in order to produce the same loss of contrast. Since, there is no angle

dependence on the sinogram, it suffices to present for demostration reasons only one angle

profile of the sinogram.

Now, we proceed by finding the optimality conditions for (3.46). These conditions

allow us to identify formally the structure of the solution. We first make the following

ansatz for a solution of (3.46) which is

v(s) =





δ = g(κ), for |s| ≤ κ,
g(s), for κ < |s| < r,

0, otherwise.

(3.49)

The solution v is zero outside the interval (−r, r), equal to the data in some subinterval

and constant δ in (−κ, κ) for κ > 0 representing the loss of contrast from the maximum

value of the sinogram. Notice that from (3.48), the maximum value of the sinogram is

obtained at s = 0 and is 2r.

The sinogram g ∈ C(−r, r) and a solution v of (3.46) is in C(−r, r) and hence also in

W1,1(−r, r) [CCN07]. Therefore, |Dv|(Σ) =
´

Σ2 |∇v| dx. Due to the lack of dependence

on φ, we do not consider in the following calculations the integral with respect to the angle

φ ∈ [0, π) and use only the symmetry on the sinogram space. Then, if we plug-in (3.49)

in (3.46), we obtain

argmin
v≥0 a.e

{
β ‖∇v‖L1(Σ2) +

1

2

ˆ
Σ2

(g − v)2

g
dσ

}
= argmin

v≥0 a.e

{
β ‖∇v‖L1([−r,r]) +

ˆ κ

0

(g − v)2

g
ds

}
=

argmin
κ

{
4β
√
r2 − κ2 +

ˆ κ

0

(
2
√
r2 − s2 +

δ2

2
√
r2 − s2

− 2δ

)
ds

}
=

argmin
κ

{
4β
√
r2 − κ2 + κ

√
r2 − κ2 + r2arcsin(

κ

r
) + 2(r2 − κ2)arcsin(

κ

r
)− 4κ

√
r2 − κ2

}

which can be simplified to

argmin
κ

{
(4β − 3κ)

√
r2 − κ2 + (3r2 − 2κ2)arcsin(

κ

r
)
}
. (3.50)

Since, it is impossible to compute an analytical expression for κ, we solve numerically

(3.50) under the constraint 0 < |κ| < r. Then, we obtain a value for κ which can be

substituted in (3.49) and find the corresponding loss of contrast δ for our solution after

the regularisation. We solve (3.50) with MATLAB’s built-in routine fminbnd in κ ∈ [0, r).

In Figure 3.11, we present how the β parameter relates to the constant height value δ of

the computed regularised solution. Clearly, for small values of β, there is no significant

effect of the total variation regularisation but as we increase β, we have that δ decreases
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to 0, while κ tends to r.
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Figure 3.11: The relation between the regularisation parameter β and δ in (3.49), com-
puted using (3.50) for the example in Figure 3.10. The parameter β varies from 0.001 to
55 with step size 0.1.

Before we apply the inverse Radon transform on (3.49) and find the corresponding so-

lution in the image space, we need to verify its optimality. The following theorem ensures

that the candidate solution (3.49) for the problem (3.46) is indeed optimal.

Theorem 3.5.8. The unique solution of the minimisation problem (3.46) is defined by

(3.49).

Proof. The optimality condition on (3.46) implies that:

βq +
v − g
g

= 0, q ∈ ∂|Du|(Ω). (3.51)

Recall that the subdifferential of the total variation, see Section 2.4, can be expressed as

∂|Du|(Σ) =
{

divp : p ∈ L∞0 (Σ2), ‖p‖∞ ≤ 1, 〈divp, v〉 = |Du|(Σ2)
}

(3.52)

where L∞0 (Σ2) denotes the space of all functions in L∞(Σ2) that vanish at the boundary.

Therefore, in our case (3.51) becomes

βp′(s) +
v(s)− g(s)

g(s)
= 0, for s ∈ Σ2 = (−r, r)× [0, π) (3.53)

with −1 ≤ p(s) ≤ 1 and
´

Σ2 p
′(s)v(s) dσ =

´
Σ2 |v′(s)| dσ. Again, we can neglect the

integral over all the angles. Hence, If v is either increasing or decreasing on an interval

I ⊂ [−r, r], then through integration by parts one obtains −p(s)v′(s) = |v′(s)| which

immediately implies that p′ = 0 and v = g on I. However, when v 6= g on an interval

J ⊂ [−r, r], then p′ 6= 0 which is true only if v′(s) = 0 on J , i.e., v is constant. Overall,

the solution v is either constant or coincides with the initial data g.
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In order to compute the regularised image that corresponds to a solution of (3.46) we

first note that the rotational symmetry of the object in image space allows us to simplify

the Radon transform and its inverse. In this case the Radon transform coincides with the

so-called Abel transform, cf. [Pou10, Chapter 8]. More precisely, if u is a radial function

and u(x, y) = f(r =
√
x2 + y2), then the Radon transform can be written as

Rθu(s) = 2

ˆ ∞
s

f(r)r√
r2 − s2

dr (3.54)

where there is no angle dependence. Using (3.54), we can recover analytically the solution

u for a regularised sinogram (3.49). Indeed, the Abel transform and the inverse Abel

transform in this case are

A(u(r̃))(x) = 2

ˆ ∞
x

r̃u(r̃)√
r̃2 − x2

dr̃, (3.55)

u(r̃) = − 1

r̃π

d

dr̃

ˆ ∞
r̃

xA(u(r̃))(x)√
x2 − r2

dx. (3.56)

Setting u(r̃) = 1 and replacing the upper limit of the integral in (3.55) by r̃, the expression

in (3.55) matches the expression for the Radon transform in (3.48). Finally, we plug-in

(3.49) in (3.56) and focus on the constant part of the sinogram for −κ ≤ r̃ ≤ κ,

u(r̃) = − 1

r̃π

d

dr̃

ˆ r

r̃

xδ√
x2 − r̃2

dx =
δ

π
√
r2 − r̃2

. (3.57)

We observe that the reconstructed image is affected by the initial loss of contrast δ of the

sinogram regularisation in (3.49) and depends radially on r̃. In Figure 3.12, we present

the regularised solution u given by (3.57), which can be also interpreted as any angle

profile for the two dimensional sinogram, see for instance Figure 3.18. We present the

0 κ-κ r-r

1
u(r̃)

r̃

Figure 3.12: The solution u(r̃) (solid line) given in (3.57) inside the interval [−r, r] and 0
outside. The black and the red curve constitute the regularised solution for a smaller and
larger value of β, respectively. The larger β the more the solution concentrates around
the boundaries of the ball.
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reconstruction for two values of β: the initial black curve expands radially around 0 and

as we increase β (red curve), we have that δ → 0 and κ→ r. The solution after regularising

the sinogram starts losing details from the interior of the function and for extreme values

of β, it approximates the outer boundaries of the object. This theoretical analysis will be

an important motivation on using our approach to sinograms governed by thin structures.

The reader is advised to compare these results with the numerical ones obtained in Section

3.7.2.

3.6 Numerical Implementation

In this section, we discuss the numerical solution of the minimisation problem (3.22).

Since, we are dealing with regularisation on two spaces, the image and the sinogram

space, we employ the split Bregman technique. It was introduced in [GO09] and its

efficiency is based on splitting the initial minimisation problem to several other that are

computationally easy to solve. In our case, we can separate the problem into two space

related subproblems – one in image space and one in sinogram space – that are solved

iteratively in an alternating fashion. In order to present the numerical solution we start

with formulating (3.22) in a discrete setting.

3.6.1 Discrete Setting

Let (ui,j), i = 1, . . . , n, j = 1, . . . ,m be the discretised image defined on a rectangular

grid of size n×m, n,m > 0. Let (vi,j), i = 1, . . . , k, j = 1, . . . , ` the discretisation for an

element in the sinogram space Σ2 = [0, π)× [−r, r], where k denotes the number of angles

and ` the number of lines. The values ui,j and vi,j are defined on two-dimensional grids.

They are rearranged into one-dimensional vectors u ∈ Rnm and v ∈ Rk` by appending

the columns of the array to each other, starting from the leftmost. Then, the discrete

gradient for u ∈ Rn×m is a matrix ∇ ∈ Rnm×2nm which is the standard forward difference

approximation of the gradient in the continuum. More precisely, applying the discrete

gradient to u gives ∇u = ((∇u)1, (∇u)2) with Neumann/mirror boundary conditions

(∇u)1(i, j) =




u(i, j + 1)− u(i, j), if 1 ≤ i ≤ n, 1 ≤ j < m,

0, if 1 ≤ i ≤ n, j = m,

(∇u)2(i, j) =




u(i+ 1, j)− u(i, j), if 1 ≤ i < n, 1 ≤ j ≤ m,
0, if i = n, 1 ≤ j ≤ m.

The discrete divergence is defined as its adjoint, see for instance [Cha04], and is given by

div : (Rn×m)2 → Rnm with 〈divz, u〉 = −〈z,∇u〉
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where u ∈ Rn×m, z = (z1, z2) ∈ (Rn×m)2 and

divz =





z1(i, j)− z1(i− 1, j), if 1 < i < n, 1 ≤ j ≤ m,
z1(i, j), if i = 1, 1 ≤ j ≤ m
−z1(i− 1, j), if i = n, 1 ≤ j ≤ m

+





z2(i, j)− z2(i, j − 1), if 1 ≤ i ≤ n, 1 < j < m,

z2(i, j), if j = 1, 1 ≤ i ≤ n
−z2(i, j − 1), if j = m, 1 ≤ i ≤ n

Analogously, we define the discrete gradient and discrete divergence for v ∈ Rk` in the

projection space. Further, to approximate the Radon transform R we introduce the dis-

crete Radon transform as a mapping R : Rnm → Rk` and its inverse R−1 : Rk` → Rnm.

In the numerical implementation the discrete Radon transform is represented by a sparse

matrix R ∈ Rk`×nm which acts on a column vector u ∈ Rnm to obtain a sinogram image.

Let x(θî, sĵ), î = 1, . . . , k, ĵ = 1, . . . , `, be the line formed by θî, sĵ and for i = 1, . . . , n

and j = 1, . . . ,m define

ψi,j(θî, sĵ) =





1, where the line x(θî, sĵ) goes through the pixel (i, j)

0, otherwise.
(3.58)

Using this notation and the linearity of the Radon transform, we define the discrete Radon

transform as

Ru(θî, sĵ) =

n∑

i=1

m∑

j=1

ui,jRψi,j(θî, sĵ) (3.59)

where Rψi,j(θî, sĵ) is equal to the length of the intersection of the projection line with the

pixel (i, j).

With these discrete quantities, we can now define the discrete functional F by

min
u∈Rn×m



F (u) = α ‖∇u‖1 + β ‖∇(Ru)‖1 +

1

2

∑

k,`

(g −Ru)2

g



 (3.60)

where the following discrete `p norms for I = {(i, j) : i = 1, . . . , n and j = 1, . . . ,m} and

J = {(i, j) : i = 1, . . . , k and j = 1, . . . , `} are

‖u‖p =


 ∑

(i,j)∈I
|ui,j |p




1/p

, ‖v‖p =


 ∑

(i,j)∈J
|vi,j |p




1/p

,
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‖∇u‖p =


 ∑

(i,j)∈I

(
|((∇u)1)i,j |2 + |((∇u)2)i,j |2

)p/2



1/p

,

‖∇v‖p =


 ∑

(i,j)∈J

(
|((∇v)1)i,j |2 + |((∇v)2)i,j |2

)p/2



1/p

.

3.6.2 Split Bregman Algorithm

To solve the problem defined in (3.60), we employ the Bregman iteration [OBG+05] com-

bined with a splitting technique. The resulting algorithm is called Split Bregman and is

proposed in [GO09] to solve efficiently total variation and `1 regularised image problems.

The concept of this splitting procedure is to replace a complex and costly minimisation

problem by a sequence of simple and cheaply to solve minimisation problems and to set

up an iteration in which they are solved alternatingly. Note, that the Split Bregman

method can be equivalently phrased in terms of an Augmented Lagrangian method and

Douglas-Rachford splitting, cf. [Set09, EZC10, Set11].

Suppose, we have to solve a constrained minimization problem:

min
u
E(u) such that Au = b (3.61)

where A is a linear operator, E(u) is a convex functional and b is a vector. We transform

(3.61) into an unconstrained minimisation problem

min
u
E(u) +

λ

2
‖Au− b‖22 (3.62)

where for λ sufficiently large the problem coincides with (3.61). Instead of solving (3.62),

the authors in [OBG+05], introduce the concept of Bregman distance and propose to solve

uk+1 = argmin
u

Dξk

E (u, uk) +
λ

2
‖Au− b‖22

= argmin
u

E(u)−
〈
ξk, u

〉
+
λ

2
‖Au− b‖22

ξk+1 = ξk − λA>(Auk+1 − b).

(3.63)

However, the unpleasant minimisation (3.63) can be reduced to the following as it is proved

in [YOGD08, Theorem. 3.1]:

uk+1 = min
u
E(u) +

λ

2

∥∥∥Au− bk
∥∥∥

2

2
(3.64)

bk+1 = bk + b−Auk (3.65)

adding up the error in the fidelity term in every iteration. The splitting technique applied
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on total variation minimisation is based on separating the L1 and L2 components appeared

in the problem. As we will observe, the split Bregman algorithm, provide us with two

subproblems solved alternatingly in the projection and image space.

We follow [GO09] to adapt the split Bregman algorithm to (3.60). To do so, we consider

min
{u: u≥0 a.e.}

α ‖∇u‖1 + β ‖∇(Ru)‖1 +
1

2

∑

k,`

(g −Ru)2

g
. (3.66)

We start by replacing (3.66) with an equivalent constrained minimisation problem for two

unknowns, the image u ∈ Rn×m and the sinogram v ∈ Rk×`, related to each other by

v = Ru. This results to

min
{(u,v): u≥0 a.e.}

α ‖∇u‖1 + β ‖∇v‖1 +
1

2

∑

k,`

(g − v)2

g
s.t v = Ru. (3.67)

For computational efficiency reasons, we introduce three additional variables

z = ∇u,w = ∇v, u = ũ and v = Ru (3.68)

and rephrase (3.66) again into

min
{(u,ũ,v,z,w): ũ≥0 a.e., satisfying (3.68)}

α ‖z‖1 + β ‖w‖1 +
1

2

∑

k,`

(g − v)2

g
. (3.69)

Then, we could iteratively solve the constrained minimisation problem (3.69) by Bregman

iteration. For b01 ∈ Rk×l, b02 ∈ (Rk×l)2, b03 ∈ (Rn×m)2, b04 ∈ Rn×m, we iteratively solve for

k = 0, 1, . . .

argmin
u,ũ,v,z,w

{
α ‖z‖1 + β ‖w‖1 +

∑

k,`

(g − v)2

g
+ X(ũ>0) +

λ1

2

∥∥∥bk1 +Ru− v
∥∥∥

2

2
+
λ2

2

∥∥∥bk2 +∇v − w
∥∥∥

2

2

+
λ3

2

∥∥∥bk3 +∇u− z
∥∥∥

2

2
+
λ4

2

∥∥∥bk4 + u− ũ
∥∥∥

2

2

}
,

bk+1
1 = bk1 +Ruk+1 − vk+1, bk+1

2 = bk2 +∇vk+1 − wk+1,

bk+1
3 = bk3 +∇uk+1 − zk+1, bk+1

4 = bk4 + uk+1 − ũk+1,

with Lagrange multipliers (λi)
4
i=1 > 0, bk1 ∈ Rk×`, bk2 ∈ (Rk×`)2, bk3 ∈ (Rn×m)2, bk4 ∈

(Rn×m) and X(ũ>0) being the characteristic function for the positivity constraint on ũ.

To progress, in each iteration above we would need to solve a minimisation problem with

respect to all u, ũ, v, z, w at the same time which is numerically a very complicated task.

Instead, we use the split Bregman idea and in each iteration solve a sequence of decou-

pled problems with respect to u, ũ, v, z and w respectively. This procedure leads to five

minimisation problems that have to be solved sequentially in each iteration. The split

84



3.6. Numerical Implementation

Bregman algorithm for (3.60) is summarised below. For k = 0, 1, . . . we iteratively solve:

Split Bregman algorithm for (3.60)

vk+1 = argmin
v

{
1

2

∑ (g − v)2

g
+
λ1

2

∥∥∥bk1 +Ruk − v
∥∥∥

2

2
+
λ2

2

∥∥∥bk2 +∇v − wk
∥∥∥

2

2

}

(3.70)

uk+1 = argmin
u

{
λ1

2

∥∥∥bk1 +Ru− vk+1
∥∥∥

2

2
+
λ3

2

∥∥∥bk3 +∇u− zk
∥∥∥

2

2
+
λ4

2

∥∥∥bk4 + u− ũk
∥∥∥

2

2

}

(3.71)

ũk+1 = argmin
ũ

{
X(ũ>0) +

λ4

2

∥∥∥bk4 + uk+1 − ũ
∥∥∥

2

2

}
(3.72)

zk+1 = argmin
z

{
α ‖z‖1 +

λ3

2

∥∥∥bk3 +∇uk+1 − z
∥∥∥

2

2

}
(3.73)

wk+1 = argmin
w

{
β ‖w‖1 +

λ2

2

∥∥∥bk2 +∇vk+1 − w
∥∥∥

2

2

}
(3.74)

bk+1
1 = bk1 +Ruk+1 − vk+1 (3.75)

bk+1
2 = bk2 +∇vk+1 − wk+1 (3.76)

bk+1
3 = bk3 +∇uk+1 − zk+1 (3.77)

bk+1
4 = bk4 + uk+1 − ũk+1 (3.78)

Every subproblem either has an explicit solution or involves the solution of a linear sys-

tem of equations that can be efficiently solved with an iterative method such as conjugate

gradient. We iterate until ∥∥ũK+1 − ũK
∥∥

2

‖ũK+1‖2
< 10−4

and take vK+1 as the regularised sinogram and ũK+1 as the reconstructed image. Let us

go into more detail for the solution of each minimisation problem.

Solution of (3.70): To solve (3.70), we derive the corresponding Euler-Lagrange equation

for v and obtain a linear system of equations with k · ` unknowns vi,j , i = 1, . . . , k, j =

1, . . . , ` which reads

(3.70)⇒((1 + λ1) g − λ2 g div · ∇)v = g + λ1 g (bk1 +Ruk) + λ2g div(bk2 − wk). (3.79)

The system (3.79) is solved by a conjugate gradient method.
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Solution of (3.71): The Euler-Lagrange equation of (3.71) with respect to u is

(3.71)⇒ (λ1R∗R−λ3 div·∇+λ4)u = λ1R∗(vk+1−bk1)+λ3div(bk3−zk)−λ4(b4−ũk), (3.80)

where R∗ is the adjoint of R, i.e., that is the discrete backprojection. As before, the

system (3.80) is solved by a conjugate gradient method.

Solution of (3.72): The solution of (3.72) is given by

ũk+1 = max{bk+1
4 + uk+1, 0}.

Solution of (3.73) and (3.74): Finally, the solution of the minimisation problems

(3.73),(3.74) can be obtained exactly through soft shrinkage, see for instance [WYYZ08].That

is,

zk+1 = S α
λ3

(bk3 +∇uk+1) := max

(∥∥∥bk3 +∇uk+1
∥∥∥

2
− α

λ3
, 0

)
bk3 +∇uk+1

∥∥bk3 +∇uk+1
∥∥

2

, (3.81)

wk+1 = S β
λ2

(bk2 +∇vk+1) := max

(∥∥∥bk2 +∇vk+1
∥∥∥

2
− β

λ2
, 0

)
bk2 +∇vk+1

∥∥bk2 +∇vk+1
∥∥

2

. (3.82)

3.7 Numerical Results

In this section, we present our numerical results on both artificial and real PET data.

The Radon matrix that we described in (3.59) is fixed and produces sinograms of size

192×192, that is the sinogram is given in 192 projection lines, 192o degrees with 1o degree

incrementation and the corresponding reconstructed image is of size 175× 175 pixels. We

corrupt the sinograms with Poisson noise of different levels. In order to create noisy images

corrupted by Poisson noise, we apply the MATLAB routine imnoise (sinogram, poisson).

MATLAB’s imnoise function acts in the following way: for an image of double precision,

the input pixel values are interpreted as means of a Poisson distribution scaled by a factor

of 10−12. For example, if an input pixel has the value 5.5 ∗ 10−12 then the corresponding

output pixel will be generated from a Poisson distribution with mean of 5.5 and afterwards

scaled back to its original range by 1012. The factor 1012 is fixed to represent the maximal

number of detectable photons. Our simulated sinograms are in [0, 1] intensity and in order

to create different noise levels, we have to rescale the initial sinogram with a suitable factor

before applying imnoise and then scale it back with the same factor, i.e.,

Noisy Sinogram = scale ∗ imnoise ( sinogram
scale , poisson ).

To simulate realistic sinograms with higher noise level, we use 1013 as a scaling factor,

see for example Figure 3.13. The real data, in Figure 3.16, was obtained from the hardware
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phantom “Wilhelm”, a self-built phantom modelled of the human body. Beside the activity

in the heart a small source is placed in the phantom to simulate a lesion, see Section 3.7.1

for more information.

Before presenting our results we give some numerical details on how equations (3.70)-

(3.74) are solved and how the parameters α, β and (λi)
4
i=1 are chosen. Both linear systems

(3.79) and (3.80) are solved using MATLAB’s built-in function cg which performs a conju-

gate gradient method. As a stopping criterium we either stop after at most 200 iterations

or if the relative residual is smaller than 10−3. As it is observed in [GO09], it seems opti-

mal to apply only a few steps of an iterative solver for both subproblems (3.79) and (3.80)

since the error in the split Bregman algorithm is updated in every iteration. Typically, in

the case of β > 0, the computational times for the linear system of the sinogram is ap-

proximately 0.83 seconds per iteration and the corresponding linear system in the image

is solved approximately in 1.26 seconds per iteration. This computational time difference

can be justified by the fact that the corresponding matrix for the sinogram subproblem

is sparse, whereas the matrix of the image subproblem is dense since R∗R is used. Even

though we use R∗R in order to project in every iteration our regularised sinogram, we do

not observe any radial smoothing in the final reconstruction, as it is described in Propo-

sition 3.3.6. This is due to the alternating procedure that our algorithm imposes and the

total variation regularisation is sufficient to eliminate this artifact within the iterations.

The Lagrange multipliers (λi)
4
i=1 in equations (3.70)-(3.74) are selected following [P. 12]

in order to optimise the convergence speed. They are fixed as λ1 = 0.001, λ2 = 1, and

λ3 = λ4 = 100. Furthermore, note that these parameters have been tuned appropriately

in order to obtain a relatively small condition number for both system matrices

Aimg = λ1R∗R− λ3div · ∇+ λ4I,

Asin = (1 + λ1)g − λ2gdiv · ∇,

appear in (3.80) and (3.79) respectively. Finally, we observe that after 150 split Bregman

iterations, there are no significant changes in the reconstructed image and therefore we

choose a stopping criteria of either at most K = 400 iterations or we stop at iteration K

where for the first time we have

∥∥ũK+1 − ũK
∥∥

2

‖ũK+1‖2
< 10−4

and ũK+1 is the final regularised image. To evaluate the quality of reconstructed images

we choose the Signal-to-Noise Ratio (SNR) as a quality measure. The SNR is defined as

SNR = 20 log

( ‖u‖2
‖u− ũ‖2

)
(3.83)

87



Total variation regularisation in image and sinogram space for PET reconstruction

where u and ũ denote the ground truth and the reconstructed image, respectively. In

what follows, we first evaluate the proposed reconstruction technique (3.22) against pure

total variation regularisation on the image (β = 0) for a synthetic image of two circles and

for different noise levels, as well as for a real data set acquired for the Wilhelm phantom.

Then, we numerically analyse the scale space properties of pure sinogram regularisation,

that is for α = 0, which will be a motivation for the final section where we discuss the merit

of the proposed reconstruction method for PET data that encodes thin image structures,

see Section 3.7.3.

3.7.1 Image reconstruction from corrupted simulated and real PET data

Our numerical demonstration begin with a simple toy-phantom example as it is shown

in Figure 3.13. It is a simulated phantom of two discs with different radii and the corre-

sponding noiseless and noisy sinograms corrupted with low and high level Poisson noise

as described above.
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SNR=18.5246
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SNR=8.6814

Figure 3.13: The phantom image includes two discs of radii r1 = 26 and r2 = 11 pixels.
Its sinogram has 192 angles and 192 rays with low and high noise.
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First, we evaluate the proposed algorithm for reconstructing an image from the sino-

gram corrupted by low level Poisson noise with SNR=18.5246, see Figure 3.13c. The

proposed reconstruction algorithm with joint total variation regularisation on image and

sinogram (that is α, β > 0) is compared with the algorithm that uses pure total variation

regularisation on the image (that is α > 0 and β = 0). Both reconstruction strategies

are tested for a range of parameters α, β and in each case the reconstruction which has

the highest SNR value is found. For β = 0 we compute the reconstructed image for

α = 3, 4, 5, 6, 7. The optimal reconstructed image in terms of the best SNR= 25.8589 is

obtained for α = 6, see Figure 3.14a. Then, we test the proposed reconstruction method

applying total variation regularisation on both the image and the sinogram using the same

range of α = 3, 4, 5, 6, 7 and β = 0.001, 0.005, 0.01, 0.05. Here, the optimal reconstruction

was obtained for α = 6 and β = 0.001 with SNR= 25.3127, see Figure 3.14b. In Table 3.1,

a full list of tested parameters and SNRs for the corresponding reconstructed images is

given. The results do not indicate a significant difference between the algorithm with and

without total variation regularisation on the sinogram, both visually and also in terms

of the SNR. Indeed, in the low noise case additional total variation regularisation on the

sinogram produces even slightly worse results in terms of SNR than using no regularisation

on the sinogram at all.
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(a) α = 6, β = 0
SNR=25.8589
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(b) α = 6, β = 10−3

SNR=25.3127
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Figure 3.14: Low level noise: Optimal reconstruction results of the two discs image
with sinogram shown in Figure 3.13c with and without sinogram regularisation and a
comparison of the line profiles for the two results.

The TV regularisation on the sinogram gains importance in the reconstruction algo-

rithm when the noise in the corruption of the sinogram is increased. The sinogram with

high level noise is shown in Figure 3.13d and has SNR=8.6814. We tested the proposed

method for α = 250, 275, 300, 325, 350 and β = 0, 0.001, 0.01, 0.05, 0.1. The results are

reported in Table 3.2.

The highest SNR is obtained when α = 250 and β = 0.001, cf. Figure 3.15b. Although,

it is hard to distinguish any difference between the cases of β, we observe that the extra

penalisation on the sinogram produces better results in terms of the SNR value. The
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β

0 0.001 0.005 0.01 0.05 0.1

α

3 24.0819 22.0172 22.4415 22.8894 23.2414 21.6533

4 25.3682 24.0926 24.2951 24.4801 23.6303 21.9382

5 25.7867 25.0829 25.0779 25.0469 23.9432 22.0367

6 25.8589 25.3127 24.7787 25.0602 24.0095 22.1034

7 25.7436 24.8499 24.8278 25.0148 23.9662 22.2289

Table 3.1: Low level noise for simulated example in Figure 3.13: SNRs of reconstructed
images for different combinations of α and β values.
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Figure 3.15: High level noise: Optimal reconstruction results of the two discs image
with sinogram shown in Figure 3.13d with and without sinogram regularisation and a
comparison of the line profiles for the two results.

β

0 0.001 0.005 0.01 0.05 0.1

α

250 10.9544 10.9665 10.9557 10.9464 10.8531 10.8058

275 10.9502 10.9599 10.9501 10.9381 10.8595 10.8013

300 10.9425 10.9543 10.9415 10.9257 10.8267 10.7777

325 10.9167 10.9551 10.9434 10.9283 10.8101 10.7293

350 10.8784 10.9289 10.9165 10.9014 10.7946 10.7104

Table 3.2: High level noise for simulated example in Figure 3.13: SNRs of reconstructed
images for different combinations of α and β values.
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increase in SNR for β > 0 can be seen when comparing the middle line profiles of the

reconstructed images with and without sinogram regularisation in Figure 3.15c.

As a second example for our evaluation of the algorithm for PET reconstruction, we

consider real PET data obtained from scanning a self-built phantom of a human breast

with a small source which simulates a lesion, compare Figure 3.16a. The data has been

acquired with a Siemens Biograph Sensation 16 PET/CT scanner (Siemens Medical So-

lutions) located at the University Hospital in Münster. From the acquired 3D PET data,

we use only one sinogram slice. The 2D sinogram dimension is 192× 192 with a pixel size

of 3.375mm2. The size of the reconstructed image is 175 × 175, covering a field of view

of 590.625mm in diameter. The 2D slice of the noisy sinogram which has been used in

our computations is shown in Figure 3.16b. Reconstructions obtained from the proposed

algorithm, with and without sinogram regularisation, are shown in Figure 3.17. The addi-

tional regularisation of the sinogram seems to allow for smoother image structures (such

as the boundary of the red lesion) and results in a slight reduction of the staircasing effect

of total variation regularisation.

(a) Top: Phantom ”Wilhelm”, consisting of
a plastic torso and inserts for the lungs, heart
and liver. Bottom: Phantom reconstruction
with combined PET-MRI. Data courtesy of
the European Institute for Molecular Imag-
ing (EIMI), Münster.

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

(b) Noisy sinogram (2D slice)

Figure 3.16: Real PET data.

In the following two sections we will aim to improve our understanding of this new

sinogram regularisation, taking the analytic solution of Section 3.5.4 as a starting point.

A thorough numerical discussion of this example in Section 3.7.2 leads us to Section 3.7.3

where the benefits of total variation regularisation of the sinogram for the reconstruction

of thin objects are discussed.
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(b) α = 4, β = 0.1

Figure 3.17: Real Data: Best reconstructions in terms of visual comparison for the noisy
slice in Figure 3.16b.

3.7.2 Scale space of sinogram regularisation

Following up on the computations in Section 3.5.4, we now discuss how the regularisation

on the sinogram affects the backprojected image. Let us recall that every point (θ, s) on

the sinogram corresponds to a line s = x cosφ+y sinφ that passes through a point (x, y) on

the image, with a distance s from the origin and normal to the direction θ = (cosφ, sinφ).

Moreover, every point on an edge in the sinogram corresponds to a line in the object space

which is tangent to the boundary of the object. To further understand how sinogram

regularisation acts, we consider the effect of the regularisation when reconstructing an

image from simulated noise-free Radon data. To this end, we set α = 0, regularise the

noise-free sinogram with different values of β, and apply FBP to the regularised sinogram

to obtain the corresponding reconstructed image. We call the set of reconstructed images

from regularised sinograms with varying β regularisation, the scale space of total variation

regularisation of the sinogram.

We consider the discrete variational model of (3.22) for α = 0 which results in the

following weighted total variation denoising problem for the sinogram g

argmin
v≥0 a.e

β ‖∇v‖1 +
1

2

∑

k,`

(g − v)2

g
(3.84)

Similar to Section 3.6.2, we solve (3.84) by a split Bregman technique, introducing two

additional variables w = ∇v and ṽ = v. Let b01 ∈ (Rk×`)2 and b02 ∈ Rk×`, we iteratively

solve for k = 0, 1, . . .

vk+1 = argmin
v

λ1

2

∥∥∥bk1 +∇v − wk
∥∥∥

2

2
+
λ2

2

∥∥∥bk2 + v − ṽk
∥∥∥

2

2
, (3.85)

ṽk+1 = argmin
ṽ≥0

1

2

∑ (g − ṽ)2

g
+
λ2

2

∥∥∥bk2 + vk+1 − ṽ
∥∥∥

2

2
, (3.86)
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wk+1 = argmin
w

β ‖w‖1 +
λ1

2

∥∥∥bk1 +∇vk+1 − w
∥∥∥

2

2
, (3.87)

bk+1
1 = bk1 +∇wk+1 − vk+1, (3.88)

bk+1
2 = bk2 + vk+1 − ṽk+1. (3.89)
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(c) β=45
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(d) β=50.5
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Figure 3.18: Sinogram regularisation with different values of β (first row) and the cor-
responding filtered backprojected images (third row). The second row represents a 45o

comparison of the original sinogram and the sinogram after regularisation. The numerical
highest value of the sinogram is 102.8. The fourth row represents the middle line profiles
of the reconstructed images in the third row compared with the original one.

Moreover, since we do not apply any positivity constraint on the image as it is done

in the full algorithm used in Section 3.7.1, we might observe small negative values in

the reconstructed images presented in the following. The optimality condition of (3.85)

leads to a linear system, which is solved quite efficiently using the conjugate gradient

method. The subproblem (3.86) is an element-wise division and the subproblem (3.87)

can be computed explicitly by the shrinkage operator in a similar way as in (3.82). Note,

that we enforce a positivity constraint on the ṽ variable, which is our final solution. We
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fix λ1 = λ2 = 1 and solve alternatingly the subproblem (3.85), (3.86) and (3.87), until we

reached our stopping criteria:

∥∥ṽk+1 − ṽk
∥∥

2

‖ṽk+1‖2
< 10−5.

First, we consider image functions with radial symmetry such as in Section 3.5.4 equa-

tion (3.49). Figure 3.18 shows the numerically computed regularised sinograms and cor-

responding images for an original image of a ball with radius r = 50.5. Here, we use

MATLAB’s built-in function iradon with a Ram-Lak filter and spline interpolation to

compute the filtered backprojection of the regularised sinogram. Moreover, Table 3.3,

demonstrates the correspondence of the numerical solution with the analytic solution ob-

tained in Section 3.5.4 for three balls of radii r = 15.5, 30.5 and 50.5. The values δan and

δnum denote the analytic and numerical loss of contrast δ, respectively, in the expression

of the regularised solution in (3.49). As predicted from the analysis in Section 3.5.4, we

observe that as β converges to the radius r, the regularised image emphasises the boundary

of the ball, see for instance the third row in Figure 3.18.

r = 15.5

β 10−3 0.1 1 5 10 15 15.5

δan 30.94 29.88 25.84 16.09 7.59 0.64 0.084

δnum 31.32 29.76 25.71 15.96 7.37 0.67 0.37

r = 30.5

β 10−3 1 10 15 20 25 30.5

δan 60.93 59.6 31.35 22.37 14.46 7.27 0.09

δnum 61.98 54.58 31.42 22.47 14.55 7.34 0.65

r = 50.5

β 10−3 1 10 20 30 45 50.5

δan 100.92 93.33 65.74 45.46 28.71 7.16 0.12

δnum 101.83 93.26 65.75 45.41 28.82 7.24 0.68

Table 3.3: Comparison of analytic and numerical computations of sinogram regularisa-
tion for three test images of characteristic functions of circles with radii r = 15.5, 30.5
and 50.5. The parameters δan and δnum denote the analytic and numerical δ, respec-
tively, in the expression of the regularised solution in (3.49). Compare also Figure 3.18
for regularised reconstructions for the circle with radius r = 50.5.

Going beyond radial symmetry, we consider three additional examples where the sino-

gram depends on the direction θ. First, we simply consider the image that we use in

the previous section in Figure 3.13 without adding noise to its sinogram. The effect of β

regularisation in this case is presented in Figure 3.19. We see that as we increase β we lose

details in the image, starting again from the inner structure of the discs, while enhancing
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the boundaries of the objects. Here, the connection of the choice of β with the radius

of every circle is clearly visible. More precisely, for β < r2 the boundary of the smaller

circle is enhanced and for r2 < β < r1 the small circle is lost and the boundary of the

larger circle is enhanced. Again, due to the FBP we observe small negative values in the

reconstructed images.

(a) β = 10−3
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(c) β=3
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(d) β=7
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(e) β=12
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Figure 3.19: Sinogram regularisation with different values of β and the corresponding
filtered backprojected images using MATLAB’s iradon built-in function. The radii for the
discs are r1 = 13 and r2 = 5.5.
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(d) Sinogram

Figure 3.20: 2 rings with different annulus regions and its sinogram. Star-shaped image
of 5 points and its sinogram.

In Figure 3.20, we present two more test images. The first one is an image of two rings

with the same outer radius but with different annulus regions, compare Figure 3.20a. A

similar scale-space analysis as for the previous examples is carried out in Figure 3.21.

Additionally to the enhancement of the outer boundaries of the two rings we see that for
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increasing β regularisation the reconstructed image approaches the convex hull of the two

rings. This is even more apparent for the last example of a star-shaped object in Figure

3.20c. See Figure 3.22 in particular.
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(b) β=1
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(c) β=10
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(d) β=25.5
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Figure 3.21: 2 rings with different annulus regions: The outer radius for both rings is
r=25.5 and the inner radii are r1 = 21 and r2 = 11. In Figures (a)-(d), we present the
sinogram regularisation for increasing values of β with the corresponding filtered backpro-
jected using MATLAB’s iradon built-in function.
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(b) β=0.1
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(c) β=1
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(d) β=10
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(e) β=50
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Figure 3.22: Star-shaped image of 5 corners: In Figures (a)-(e), we present the sinogram
regularisation for increasing values of β with the corresponding filtered backprojected
image using MATLAB’s built-in function iradon.

The conclusion of this section is at the same time the motivation for the next section.

Analysing the effect of total variation regularisation on the sinogram by considering its

scale space and its effect on the reconstructed image we have seen in Figures 3.18–3.22 the

potential use of this method is for the enhancement and detection of object boundaries.
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As we will see in the next section, this effect can be exploited for enhancing thin structures

in images obtained from Radon measurements.

3.7.3 Thin Structure Reconstruction

In what follows, we discuss how total variation regularisation of the sinogram can improve

the quality of the reconstruction in comparison with pure total variation regularisation of

the image in the presence of thin structures. Our first example is a thin rectangular frame

in Figure 3.23. Similarly as in Section 3.7.1, we start by finding an optimal value of α

with β = 0, in terms of SNR. Then, we select a range of α values close to this optimal one

and we allow strictly positive values for β. The noise that is added on the sinogram, is

generated by MATLAB’s imnoise routine, with a 1012 scaling factor, see the beginning of

Section 3.7 for more explanation. The test image that is shown in Figure 3.23 has 50 pixels
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(a) Thin Rectangle
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(b) Noiseless Sinogram
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(c) SNR=14.9146

Figure 3.23: A thin rectangle of 50 pixels width, 100 pixels length and 2 pixels length on
the boundaries. The corresponding noiseless and noisy sinograms with 1012 scaling factor
in imnoise.

width and 100 pixels length and the rectangular frame has a width of 2 pixels. In Figure

3.24, we first present some of the results obtained with pure total variation regularisation

on the image, that is when β = 0. As we increase the α parameter, we observe that

the best SNR corresponds to α=5 with SNR=19.9764. That is because for small values

of α we observe that the large-scale structure of the object is still intact, with the cost

that noise is still present in the reconstructed image, see Figures 3.24a–3.24c. However,

with higher values of α noise is further eliminated but at the expense of a significant loss

of contrast and some unpleasant artifacts along the boundaries of the frame, see Figure

3.24d–3.24f.

If we switch on total variation regularisation on the sinogram, that is taking β > 0, we

obtain results which are greatly improved both in terms of the SNR of the reconstructed

images but also – visually – in terms of finding the right balance of eliminating the noise and

accurately preserving the thin structures, see Table 3.4 and Figure 3.25. This observation
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(a) α = 1, β = 0
SNR=16.5399
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(b) α = 5, β = 0
SNR=19.9764
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(c) α = 10, β = 0
SNR=19.8700
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(d) α = 20, β = 0
SNR=16.2678
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(e) α = 30, β = 0
SNR=13.054
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(f) α = 50, β = 0
SNR=8.6456

Figure 3.24: Thin Rectangle: Reconstruction without total variation regularisation on
the sinogram and different parameters of α.
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(a) α = 7, β = 0
SNR=20.4471
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(b) α = 2, β = 0.05
SNR=24.5981

Figure 3.25: Thin Rectangle: Best reconstructions with and without total variation
regularisation on the sinogram as reported in Table 3.4.

is confirmed by a second example of an image of two thin straight lines which cross,
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3.7. Numerical Results

β

0 0.005 0.01 0.05 0.1

α

2 17.6798 18.0078 19.7238 24.5981 24.2978

3 18.6444 18.9855 20.6460 23.9028 24.2647

4 19.4269 19.7539 21.5305 23.9178 23.2860

5 19.9764 20.2979 21.7962 23.6466 22.8525

6 20.2583 20.5771 21.9057 23.2213 22.3440

7 20.4471 20.8665 21.8372 22.7554 21.8147

8 20.3511 20.3276 20.9859 22.2391 21.2477

Table 3.4: Thin Rectangle: SNR with β ≥ 0.

compare Figure 3.26. The width of the thin lines is 3 pixels. The length of the horizontal

line is 121 pixels and of the vertical line is 100 pixels. The noise, added on the sinogram,

is generated with the same scaling factor of 1012 as before. Again, we observe that for

positive values of β, we obtain much better reconstructions with almost all noise eliminated

while keeping the boundaries of the thin structures intact, see Figure 3.27. We present

our numerical results for both cases of β, according to best SNR values that are produced

for specific ranges of α and β, see Table 3.5.
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(a) Cross
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(b) Sinogram
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(c) SNR=16.1538

Figure 3.26: Cross image: Two thin crossing lines and its noiseless and noisy sinograms
respectively. The width of the thin lines is 3 pixels. The length of the horizontal line is
121 pixels and of the vertical line is 100 pixels.

The previous toy-phantoms were used in order to demonstrate the advantages of our

proposed model where thin formations are present. Now, we proceed to a more realistic

PET phantom, which visualises the activity of the human heart. The XCAT phantom

is a 3D phantom. For our purpose we used only one z-slice through the centre of the
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(a) α = 7, β = 0
SNR=20.6859
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(b) α = 5, β = 0.05
SNR=22.8333

Figure 3.27: Cross image: Best reconstructios with and without total variation regular-
isation on the sinogram as reported in Table 3.5.

β

0 0.005 0.01 0.05 0.1

α

5 20.2146 20.6041 21.1127 22.8333 21.5244

7 20.6859 20.9067 21.2490 22.1166 20.8109

10 20.3563 20.2762 20.4687 20.6954 19.5800

13 19.3596 19.1946 19.2891 19.2428 18.3060

15 18.5511 18.3874 18.4518 18.3379 17.5022

Table 3.5: Cross: SNR with β ≥ 0.
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Figure 3.28: XCAT cardiac-torso phantom.

phantom which represents a transverse plane view of the human body, see Figure 3.28.

In particular, we can see the activity of the heart through the myocardium (the muscle
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3.7. Numerical Results

surrounding the heart) in red. We focus on regions where thin structures are observed,

see Figures 3.29a-3.29b and add the usual level of Poisson noise to their corresponding

sinograms, see Figures 3.29c-3.29d.
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(a) Zoom in
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(b) Zoom in
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(c) Noisy sinogram of (a)

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

0

20

40

60

80

100

120

140

(d) Noisy sinogram of (b)

Figure 3.29: Selected regions of the XCAT phantom with the corresponding noisy sino-
grams.
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(a) α = 5, β = 0
SNR=17.49887
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(b) α = 5, β = 0.05
SNR=13.4267
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(c) α = 4, β = 0
SNR=16.8721
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(d) α = 4, β = 0.05
SNR=13.1124

Figure 3.30: Reconstructions with and without total variation regularisation on the
details of the XCAT sinogram in Figure 3.29.

In Figures 3.30a-3.30d, we present our best reconstructions for these two different

data-regions in terms of the SNR values for both cases of sinogram regularisation. We

observe that the best reconstructions are achieved when there is no regularisation on the

sinogram. That is because for increasing values of β a smoothing on the originally blocky
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Total variation regularisation in image and sinogram space for PET reconstruction

boundaries is enforced and hence the SNR value is reduced. Indeed, as we show in the

following experiments this is only true if the initial data that we start our experiments

with is of low resolution and the thin structures have blocky instead of smooth boundaries.
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(a) Smooth version of
Figure 3.29a
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(b) Smooth version of
Figure 3.29b
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(c) Noisy sinogram of (a)
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(d) Noisy sinogram of (b)

Figure 3.31: High resolution XCAT: smooth versions of Figures 3.29a-3.29b and their
noisy sinograms.

We observe a serious improvement to our reconstructions when our initial phantom

data is of higher resolution, see Figure 3.31. We change our experiment to the consideration

of a high resolution version of the XCAT phantom with thin structures as in Figures 3.29a-

3.29b but with medically more realistic smooth boundaries. As it is expected, regularising

only on the image space creates a rather unpleasant staircasing effect along the boundaries

which is clearly eliminated when we combine the regularisation on both spaces, see Figure

3.32. Indeed, a significant increase of the SNR when turning on the TV regularisation on

the sinogram (β > 0) can be observed.

Overall, our proposed variational model clearly indicates that the additional penalisa-

tion on the sinogram space has a powerful impact on PET reconstruction. The analysis

on the scale space total variation provides us with an interpretation on how our algorithm

can be beneficial and to what extend. Although, the combined regularisation is com-

putationally slower, we obtain better quality images with smoother boundaries when we

deal with images with thin and elongated structures. Finally, we would like to point out
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(a) α = 6, β = 0
SNR=17.7647
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(b) α = 5, β = 0
SNR=17.3795
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(c) α = 2, β = 0.05
SNR=19.5103

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) α = 2, β = 0.05
SNR=19.1820

Figure 3.32: Reconstructions with and without total variation regularisation on the sino-
gram. Reduced starcasing along the boundaries is achieved when sinogram regularisation
is active, resulting in a significant improvement of the SNR.

that our method could also be beneficial to applications related to computed tomography

reconstruction.
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Chapter 4

Infimal convolution regularisation

functionals of BV and Lp spaces

4.1 Introduction

In this chapter we introduce a family of a novel TV − Lp infimal convolution regularisa-

tion functionals with applications to image processing. It is based on the publications

[BPPS15a] and [BPPS15b]. So far, we have encountered the total variation (TV) regular-

isation functional in the context of medical imaging and in particular in PET reconstruc-

tion. Here, we propose a regulariser that is based on an “infimal-convolution process”, a

combination of the TV seminorm and the Lp norm, namely BV(Ω) and Lp(Ω) spaces. Our

regulariser can be expressed by the following minimisation problem:

TVLpα,β(u) := inf
w∈Lp(Ω)

α ‖Du− w‖M + β ‖w‖Lp(Ω) . (4.1)

The ‖·‖M denotes the Radon norm of a measure and the positive parameters α and β are

tuned appropriately for every p ∈ (1,∞] in order to balance the strength between these

two terms. The functional (4.1) is certainly based on TV seminorm with an additional

Lp norm which is responsible of obtaining different type of structures depending on the

value of p. As we will see in the forthcoming analysis, p regulates the smoothness of the

solution u for the minimisation problem

min
u

1

2
‖f − Tu‖sLs(Ω) + Ψ(u), (4.2)

where Ψ(u) is the regulariser in (4.1) and s ≥ 1. We assume that the data f , defined on

a domain Ω ⊂ Rd with d = 1, 2, has been corrupted through a bounded linear operator

T and additive (random) noise. Different values of s can be considered for the first term

of (4.2), the fidelity term. For example, models incorporating a L2 fidelity term (resp.

L1) are suitable for the restoration of images corrupted by additive Gaussian noise (resp.
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Infimal convolution regularisation functionals of BV and Lp spaces

impulse noise), when T is the identity operator. Certainly, as we have observed in the

previous chapter, other types of noise can also be considered, e.g. Poisson noise and in this

case the form of the fidelity term is adjusted accordingly, e.g. Kullback-Leibler divergence

or weighted-L2 norm, see (3.20) and (3.1) respectively.

One should notice that the regulariser (4.1) is not a formal expression of an infimal-

convolution action between two convex functionals. However, an equivalent way to refor-

mulate (4.1) and as a result (4.2) is by using an infimal-convolution of the ‖D(·)‖M and

‖D(·)‖Lp(Ω) seminorms with 1 < p ≤ ∞. Hence, given noisy data f , the solution u is

obtained by solving

min
u=u1+u2
u1∈BV(Ω)
u2∈W1,p(Ω)

α ‖Du1‖M + β ‖Du2‖Lp(Ω) +
1

s
‖f − T (u1 + u2)‖sLs(Ω) , s ≥ 1. (4.3)

In a sense, we decompose our image into two structural components. One that promotes

piecewise constant structures and one that promotes structures specified by the value of

p, particularly a combination of BV and Sobolev spaces W1,p. Later, we will prove that

(4.3) and (4.2) with Ψ(u) = TVLpα,β are equivalent in the one dimensional setting.

Infimal convolution approach as in (4.3) is not new. It was first introduced in [CL97]

by Chambolle and Lions in the context of image denoising. They proposed to use an

infimal convolution of functionals with first and second derivatives in order to reduce the

staircasing effect that the total variation regularisation creates. Explicitly, they propose

the following minimisation problem:

min
u=u1+u2
u1∈BV(Ω)
u2∈BV2(Ω)

α ‖Du1‖M + β
∥∥D2u2

∥∥
M +

1

2
‖f − u1 − u2‖2L2(Ω) (4.4)

where BV2(Ω) =
{
u ∈W1,1(Ω) : ∇u ∈ BV(Ω)

}
is the space of functions of bounded Hes-

sian [Dem85]. Note that by the definition of the total variation, see Section 2.3, we can

write ‖Du1‖M = TV(u1) and
∥∥D2u2

∥∥
M = TV2(u2) = TV(∇u2) and hence the first two

terms can be expressed as the ICTV (Infimal Convolution TV) regulariser defined below:

ICTVα,β(u) := min
v∈BV2(Ω)

αTV(u− v) + βTV2(v)

= min
w∈BV(Ω)
w=∇v

α ‖Du− w‖M + β ‖Dw‖M . (4.5)

Similarly, the positive parameters α and β are responsible to obtain a decomposition into

piecewise constant component from the first term and a piecewise affine component from

the second term. Compared to our regulariser (4.1), the reader is advised to focus on
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three differences with (4.5). We minimise over the Lp space without any constraint on w,

which is a function and not a measure and is penalised by the Lp norm compared to the

Radon norm. Moreover, our case involves only first-order variants of the total variation

whereas the ICTV includes also second order derivatives. In the following sections, these

key factors give sufficient capabilities to our first-order and TV-based model to reduce and

eliminate the staircasing effect.

We should mention that there exist many interesting and important approaches in the

context of high-order regularisers and in particular to image decomposition. For example,

in [CEP10] and [CEP07], the authors introduce a fourth-order model applied to denoising

and texture extraction. They replaced
∥∥D2u2

∥∥
M with ‖∆u2‖2L2 in (4.4) and either use

an L2-squared fidelity for denoising tasks or an H−1-squared fidelity which is suitable for

treating texture components in an image, see [OSV03], [LV08] and [Sch09]. The main

idea is to decompose a given image into structural-geometric and texture-oscillating com-

ponents. The reader is also referred to other structure-texture decomposition models as

in [AABFC05], [AGCO], [LV05] and [GLML07]. From another point of view, regularisers

that takes into account only second order derivatives, i.e., Ψ(u) = TV2(u) and minimise

over BV2(Ω) space, constitutes a significant improvement towards image restoration and

specifically staircasing elimination. For example, in [Sch98], [BP10] and [HS06a] a concrete

variational analysis is presented for (4.2) in the context of image denoising. Moreover, the

authors in [PS08] studied a high-order extension of the k-th derivative of total variation

and provided a characterisation of minimisers and analytical solutions for specific one

dimensional data.

The most successful regulariser of this kind is the second order total generalised varia-

tion (TGV) introduced by Bredies et al. [BKP10]. In practice, one can understand TGV

exactly as (4.5) by neglecting the constraint on w. Its definition reads

TGV2
α,β(u) := min

w∈BD(Ω)
α ‖Du− w‖M + β ‖Ew‖M . (4.6)

The minimisation of ICTVα,β is over functions that are gradients whereas the minimi-

sation of TGV2
α,β is over the wider space BD(Ω). It is the space of functions of bounded

deformation, i.e., the space of all w ∈ L1(Ω), whose distributional symmetrized deriva-

tive Ew = 1
2 (∇w +∇wᵀ) is a finite Radon measure, see [TS80]. As a result, the to-

tal generalised regularisation when Ψ(u) = TGV2
α,β(u) in (4.2) has the ability to find

the appropriate balance between piecewise constant and affine structures and provide a

staircasing-free reconstruction. In general, TGV and ICTV are not equivalent except in

the one dimensional setting, see [Mül13, Chapter 3]. Also, a recent paper on a modified

infimal convolution approach indicates that similar results to TGV can be obtained and

in certain cases the two methods are equivalent, see [SST11].

One of the main disadvantage of TGV is its computational cost that second-order
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derivatives create. For instance, the authors in [PS13] propose a regulariser Ψ(u) =

TV(u) + TV2(u) that can achieve similar results to TGV but with less computational

cost. In general, variational models that contain high-order derivatives can have significant

impact on the computational time involved to acquire the desired solution. Even though,

there are many efficient algorithms, as the split Bregman algorithm or the primal-dual

algorithm of Chambolle-Pock cf [CP11], that can be applied in order to solve minimisation

problems as (4.2), it is still much slower than a standard first-order methods. Our main

contribution of this chapter is to introduce a family of first-order regularisers (4.1) that

are capable of obtaining results comparable to high-order regularisers such as TGV. It is

an extension of total variation regularisation by incorporating the capabilities of Lp norms

for image processing purposes. To the best of our knowledge, the use of Lp norms for

p > 1 has been exploited in different contexts, see for instance the p-Laplacian and an L∞

decomposition in [Kui07] and [EV07] respectively.

Organisation of the chapter

In Section 4.2, we discuss the well-posedness of our regularisers (4.1) for p ∈ (1,∞] and

provide an equivalent expression based on standard duality arguments. We also examine

its relation to the total variation seminorm and prove existence and uniqueness results for

(4.2) when Ψ(u) = TVLpα,β(u).

We continue with the analysis of the p-homogenous analogue of (4.1), namely we

replace ‖w‖Lp(Ω) by 1
p ‖w‖

p
Lp(Ω) for finite values of p. An important outcome of this analysis

is that for p = 2, the 2-homogenous analogue coincide with the well-known Huber-TV

regularisation, see Section 4.3.

For a better understanding of our proposed regulariser, we provide a thorough analysis

in the one dimensional setting in Section 4.4. There, we derive necessary and sufficient

conditions for a pair (w, u) ∈ Lp×BV to be a solution of (4.2) for every value of p ∈ (1,∞]

and provide information about the structure of the solutions. We compute analytically

the exact solutions on representative one dimensional data such as the step function and

a piecewise affine function.

In Section 4.5, we formulate an image decomposition approach based on an infimal

convolution of BV and W1,p spaces. A characterisation of minimisers for the decomposition

approach is also presented in order to determine the nature of each components, i.e.,

piecewise constant and p-smooth components.

Our numerical experiments begin in Section 4.6, where we propose a split Bregman

algorithm in order to solve efficiently (4.2) for p ∈ (1,∞]. We compare the analytical and

numerical one dimensional results for the exact solutions of the step and the piecewise

affine function. Moreover, we concentrate on the affine behaviour of our solution for

increasing values of p and yet for p =∞. We demonstrate the capability of our first-order

variational model not only to eliminate the staircasing and achieve equivalent result to
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4.2. Total variation and Lp regularisation

TGV but also provide even better reconstructions when spike-like structures appear in

the images. Finally, we introduce a weighted version of the (4.1) regulariser where β is a

space-dependent matrix that imitates the gradient of the reconstructed image. Here, we

pose some open questions on how a suitable selection of the matrix β can be achieved in

order to obtain reconstructions that are far better than TGV and visually close to the

ground truth.

4.2 Total variation and Lp regularisation

We begin with the analysis of the TVLp functional as well as some of its main properties.

Let Ω ⊂ Rd with d ≥ 1, α, β > 0 and 1 < p ≤ ∞, we define TVLpα,β : L1(Ω) → R as

follows:

TVLpα,β(u) := min
w∈Lp(Ω)

α ‖Du− w‖M + β ‖w‖Lp(Ω) . (4.7)

First, we ensure that the above minimisation problem is indeed well-defined and the

minimum is attained.

Proposition 4.2.1. Let u ∈ BV(Ω) with 1 < p ≤ ∞ and α, β > 0. Then (4.7) is well

defined.

Proof. By the Lebesgue decomposition of the measure Du, we have that Du = Dau+Dsu.

Using the Remark 2.1.5, we obtain the following

w ∈ argmin
w̃∈Lp(Ω)

α ‖Du− w̃‖M + β ‖w̃‖Lp(Ω) ⇔

w ∈ argmin
w̃∈Lp(Ω)

α ‖Dsu+Dau− w̃‖M + β ‖w̃‖Lp(Ω) ⇔

w ∈ argmin
w̃∈Lp(Ω)

α (‖Dsu‖M + ‖Dau− w̃‖M) + β ‖w̃‖Lp(Ω) ⇔

w ∈ argmin
w̃∈Lp(Ω)

α ‖∇u− w̃‖L1(Ω) + β ‖w̃‖Lp(Ω) , (4.8)

where we have used that the measures are mutual singular with respect to the Lebesgue

messure (∇u − w)Ld and consider the minimisation over w̃. Thus, it suffices to prove

well-posedness for (4.8) which is an L1–Lp minimisation problem. Consider a minimising

sequence (w̃n)n∈N ∈ Lp(Ω) and a constant C > 0 such that 0 ≤ F (w̃n) ≤ C, where

F (w̃n) := α ‖∇u− w̃n‖L1(Ω) + β ‖w̃n‖Lp(Ω) .

Since w̃n is bounded in Lp(Ω), there exists a subsequence (w̃nk)k∈N and w ∈ Lp(Ω) such

that w̃nk ⇀ w in Lp(Ω) for 1 < p <∞ (or w̃nk
∗
⇀ w in L∞(Ω)). It remains to show that

‖∇u− w‖L1(Ω) ≤ lim inf
k→∞

‖∇u− w̃nk‖L1(Ω) .
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If 1 < p <∞ then by the dual expression of the L1 norm, one has that

‖∇u− w̃nk‖L1(Ω) ≥
ˆ

Ω
(∇u− w̃nk)v dx, ∀v ∈ L∞(Ω) ⊂ Lq(Ω) with ‖v‖∞ ≤ 1.

Then, we have

lim inf
k→∞

‖∇u− w̃nk‖L1(Ω) ≥ lim inf
k→∞

ˆ
Ω

(∇u− w̃nk)v dx =

ˆ
Ω

(∇u− w)v dx,

for all v ∈ L∞(Ω) ⊂ Lq(Ω) with ‖v‖∞ ≤ 1. Taking the supremum over all ‖v‖∞ ≤ 1, we

conclude that

‖∇u− w‖L1(Ω) ≤ lim inf
k→∞

‖∇u− w̃nk‖L1(Ω) .

The case p =∞ is proved using similar steps. Hence,

inf F ≤ F (w) ≤ lim inf
k→∞

F (w̃nk) = inf F,

and thus w is a solution to the problem (4.7).

It is often useful to identify a primal problem, as (4.7) with its dual formulation. For

example, the dual formulation of the ICTVα,β regulariser in (4.5) is

ICTVα,β(u) = sup
φ1∈C∞0 (Ω,Rd)

φ2∈C∞0 (Ω,Sym2(Rd))
‖φ‖∞≤α,‖φ2‖∞≤β
div2(φ2)=div(φ1)

ˆ
Ω
udiv2(φ2) dx

and for (4.6) is the same but with a different connection for φ1 and φ2,

TGV2
α,β(u) = sup

φ1∈C∞0 (Ω,Rd)

φ2∈C∞0 (Ω,Sym2(Rd))
‖φ‖∞≤α,‖φ2‖∞≤β

div(φ2)=φ1

ˆ
Ω
udiv2(φ2) dx

see [BBBM13], [BKP10]. Sym2(Rd) denotes the space of symmetric tensors of order 2. In

our case, we have that

TVLpα,β(u) = sup

{ˆ
Ω
udivφdx : φ ∈ C1

c (Ω), ‖φ‖∞ ≤ α, ‖φ‖Lq(Ω) ≤ β
}
, (4.9)

which constitutes another verification of our first-order method. The equivalence of (4.9)

and (4.7) is shown below.
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Proposition 4.2.2. Let u ∈ BV(Ω), then

min
w∈Lp(Ω)

α ‖Du− w‖M + β ‖w‖Lp(Ω) = sup

{ˆ
Ω
u divφdx : φ ∈ C1

c (Ω), ‖φ‖∞ ≤ α, ‖φ‖Lq(Ω) ≤ β
}

for 1 < p ≤ ∞.

Proof. First notice that in (4.9), we can replace C1
c (Ω) by C1

0(Ω), since C1
c (Ω) = C1

0(Ω) with

the closure taken with respect to the C1 norm. We define

X = C1
0(Ω),

F1 : X → R, with F1(φ) = I{‖·‖Lq(Ω)≤β}(φ),

F2 : X → R, with F2(φ) = I{‖·‖∞≤α}(φ)−
ˆ

Ω
udivφdx.

Then, we can rewrite (4.9) as

TVLpα,β(u) = − inf
φ∈X
‖φ‖∞≤α
‖φ‖Lq(Ω)≤β

{
−
ˆ

Ω
u divφdx

}
= − inf

φ∈X
F1(φ) + F2(φ).

The Fenchel–Rockafellar duality theory, see Section 2.4.1, allows to establish a relation

between the primal problem

− inf
φ∈X

F1(φ) + F2(φ),

and its dual

min
w∈X∗

F ∗1 (−w) + F ∗2 (w).

Here F ∗1 and F ∗2 denote the convex conjugate of F1 and F2 respectively. In order to obtain

such a connection, we follow [AB86] where it suffices to show that

⋃

λ≥0

λ (domF2 − domF1)

is a closed vector space. Indeed, we have that

⋃

λ≥0

λ (domF2 − domF1) ⊂ X

and for every φ ∈ X, we can write φ = λ(λ−1φ − 0) with
∥∥λ−1φ

∥∥
∞ ≤ α and 0 ∈ domF1.

Hence,
⋃
λ≥0

λ (domF2 − domF1) = X is a closed vector space and there is no duality gap

i.e.,

inf
φ∈X
{F1(φ) + F2(φ)}+ min

w∈X∗
{F ∗1 (−w) + F ∗2 (w)} = 0.
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Finally, we compute that

F ∗1 (−w) = sup
φ∈C1

0(Ω)
‖φ‖Lq(Ω)≤β

〈φ,w〉 = sup
φ∈Lq(Ω)
‖φ‖Lq(Ω)≤β

〈φ,w〉 = β ‖w‖Lp(Ω)

and similarly,

F ∗2 (w) = sup
φ∈C1

0(Ω)
‖φ‖∞≤α

〈w, φ〉 + 〈u,divφ〉 = sup
φ∈C1

0(Ω)
‖φ‖∞≤α

〈−Du+ w, φ〉 = α ‖Du− w‖M .

Thus the desired equality is proven.

Remark 4.2.3. The dual formulation of TVLpα,β : L1(Ω) → R is useful since one can

easily derive that TVLpα,β is lower semicontinuous with respect to the strong L1 topology

as a pointwise supremum of continuous functions.

We proceed with a relation of the TVLpα,β and the TV regulariser. The following lemma

shows that the TVLpα,β functional is Lipschitz equivalent to the total variation seminorm.

Lemma 4.2.4. Let u ∈ L1(Ω) and 1 < p ≤ ∞. Then TVLpα,β(u) < ∞ if and only if

u ∈ BV(Ω) and there exist constants 0 < C1, C2 <∞ such that

C2 ‖Du‖M ≤ TVLpα,β(u) ≤ C1 ‖Du‖M . (4.10)

Proof. Let u ∈ BV(Ω), using (4.7) we have that

TVLpα,β(u) ≤ α ‖Du− w‖M + β ‖w‖Lp(Ω) ,

for every w ∈ Lp(Ω). Setting w = 0 and C1 = α, we obtain

TVLpα,β(u) ≤ C1 ‖Du‖M .

For the other direction, we have that for any w ∈ Lp(Ω) ⊂ L1(Ω) by the triangle inequality

and from the Lp inclusion, see Proposition 2.2.2, we have

‖Du‖M ≤ ‖Du− w‖M + ‖w‖L1(Ω) ≤ ‖Du− w‖M + |Ω|
1
q ‖w‖Lp(Ω)

≤ C
(
‖Du− w‖M + ‖w‖Lp(Ω)

)
,

with C = max(1, |Ω|
1
q ). Then, for C2 = 1

CC̃
with C̃ = max( 1

α ,
1
β ) we obtain

C2 ‖Du‖M ≤ α ‖Du− w‖M + β ‖w‖Lp(Ω)

which yields the left-hand side inequality by taking the minimum over w ∈ Lp.
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Having shown the basic properties of the TVLpα,β functional, we can use it as a regu-

lariser for variational imaging problems, by minimising

min
u∈BV(Ω)

1

s
‖f − Tu‖sLs(Ω) + TVLpα,β(u), 1 ≤ s <∞, (4.11)

where T : Ls(Ω)→ Ls(Ω) is a bounded, linear operator and f ∈ Ls(Ω). We conclude our

analysis with existence and uniqueness results for the minimisation problem (4.11).

Theorem 4.2.5. Let 1 < p ≤ ∞ and f ∈ Ls(Ω). If T (XΩ) 6= 0 then there exists a solution

u ∈ Ls(Ω)∩BV(Ω) for the problem (4.11). If s > 1 and T is injective then the solution is

unique.

Proof. The proof is a straightforward application of the direct method of calculus of vari-

ations, see for instance [Ves01] or the Theorem 3.5.2 in the previous chapter. For a min-

imising sequence un ∈ Ls(Ω)∩BV(Ω), using Lemma 4.2.4 and that T does not annihilate

constants, we can prove that (un) is BV bounded. Hence, unk
∗
⇀ u and the lower semicon-

tinuity of TVLpα,β ensures that u is a solution. Finally, if s > 1, then the corresponding

energy functional is strictly convex and the uniqueness is valid if T is injective.

Since we are mainly interested in studying the regularising properties of TVLpα,β, from

now on we focus on the case where s = 2 and T is the identity function, i.e., denoising

task where rigorous analysis can be carried out. We thus define the following problem

min
u∈BV(Ω)

1

2
‖f − u‖2L2(Ω) + TVLpα,β(u),

or equivalently

min
u∈BV(Ω)
w∈Lp(Ω)

1

2
‖f − u‖2L2(Ω) + α‖Du− w‖M + β‖w‖Lp(Ω). (P)

Remark 4.2.6. In general the minimisation problem (P) is not well-defined for p = 1.

For instance, when β ≥ α by Proposition 4.4.6, we have that TVLpα,β(u) is equivalent to

α ‖Du‖M and the problem is well-posed, see [AV94, Ves01]. However, when α > β using

Remark 2.1.5, we have that

TVL1
α,β(u) = min

w∈L1(Ω)
α ‖∇u− w‖L1(Ω) + β ‖w‖L1 ,

113



Infimal convolution regularisation functionals of BV and Lp spaces

where the optimal solution is w = ∇u. Therefore, the minimisation becomes

inf
u∈BV(Ω)

α ‖Dsu‖M + β ‖∇u‖L1(Ω) +
1

2
‖f − u‖2L2(Ω) , or equivalent

inf
u∈BV(Ω)

{
F (u) := (α− β) ‖Dsu‖M + β ‖Du‖M +

1

2
‖f − u‖2L2(Ω)

}
.

We claim that if u ∈ BV(Ω) is a solution of the above minimisation problem, then Dsu = 0.

Assume by contradiction that Dsu 6= 0, we can find (un)n ∈W1,1(Ω), see [ABM14, Section

10.1], such that

un → u in L2(Ω), ‖Dun‖M → ‖Du‖M .

Then, we have that lim inf
n→∞

F (un) < F (u), which is a contradiction since u is a minimiser.

Hence, if u is a solution of the above problem then Dsu = 0 and it is also a solution of

inf
u∈W1,1(Ω)

β ‖Du‖M +
1

2
‖f − u‖2L2(Ω) ,

which is not a well posed problem in general.

4.3 The p-homogeneous analogue and relation to Huber-TV

In this section, we focus on the p < ∞ case and consider the p-homogeneous analogue of

(P), where we replace ‖w‖Lp(Ω) with 1
p ‖w‖

p
Lp(Ω), that is

min
u∈BV(Ω)
w∈Lp(Ω)

1

2
‖f − u‖2L2(Ω) + α ‖Du− w‖M +

β

p
‖w‖pLp(Ω) , 1 < p <∞. (Pp−hom)

Basically, we would like to understand how the variational problem changes with respect

to the one homogeneous model. The reason for the introduction of (Pp−hom) is that, in

certain cases, it is technically easier to derive exact solutions for (Pp−hom) rather than

for (P) straightforwardly, see Section 4.4.3. We show in Proposition 4.3.2 that there is

a strong connection between the models (P) and (Pp−hom). Here, we can guarantee the

uniqueness of the optimal w∗, since

w∗ = argmin
w∈Lp(Ω)

α ‖Du− w‖M +
β

p
‖w‖pLp(Ω)

and thus w∗ is unique as a minimiser of a strictly convex functional with 1 < p <∞. Hence,

compared to (P), an optimal solution pair of (Pp−hom) is unique. The next Proposition

says that, unless f is a constant function then the optimal w in (Pp−hom) cannot be 0

but nonetheless converges to 0 as β →∞. In essence, this means that one cannot obtain

TV-type solutions with the p-homogeneous model.
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Proposition 4.3.1. Let 1 < p < ∞, f ∈ L2(Ω) and let (w∗, u∗) be an optimal solution

pair of the p-homogeneous problem (Pp−hom). Then w∗ = 0 if and only if f is a constant

function. For general data f , we have that w∗ → 0 in Lp(Ω) for β →∞.

Proof. It follows immediately that if f is constant then (0, f) is the optimal pair for

(Pp−hom). Suppose that (w∗, u∗) solve (Pp−hom). Notice that in this case we also have

u∗ = argmin
u∈BV(Ω)

1

2
‖f − u‖2L2(Ω) + α‖Du− w∗‖M. (4.12)

Suppose now that w∗ = 0. Then (4.12) becomes

u∗ = argmin
u∈BV(Ω)

1

2
‖f − u‖2L2(Ω) + α ‖Du‖M . (4.13)

Furthermore, since (0, u∗) solve (Pp−hom), then for every h ∈ C∞c (Ω) and ε > 0, the pair

(ε∇h, u∗ + εh) ∈ Lp(Ω)× BV(Ω) is suboptimal for (Pp−hom), i.e.,

1

2
‖f − u∗‖2L2(Ω) + α ‖Du∗‖M ≤

1

2
‖f − u∗ − εh‖2L2(Ω) + α ‖D(u∗ + εh)− ε∇h‖M +

β

p
‖ε∇h‖pLp(Ω) ,

from which we take

1

2
‖f − u∗‖2L2(Ω) ≤

1

2
‖f − u∗ − εh‖2L2(Ω) +

β

p
‖ε∇h‖pLp(Ω)

0 ≤ ε2

2
‖h‖2L2(Ω) − ε

ˆ
Ω

(f − u∗)h dx+
βεp

p
‖∇h‖pLp(Ω) .

By dividing the last inequality by ε and taking the limit ε → 0 we have that
´

Ω(f −
u∗)h dx ≤ 0. By considering the analogous perturbations u∗ − εh , we obtain similarly

that
´

Ω(f − u∗)h dx ≥ 0 and thus

ˆ
Ω

(f − u∗)h dx = 0 ∀h ∈ C∞c (Ω).

Hence u∗ = f and and by taking the optimality condition of (4.13) we get that 0 ∈
∂ ‖D(·)‖M (f), which implies that Df = 0, i.e., f is a constant function. Finally, for the

last part of the proposition, simply observe that for every u ∈ BV(Ω) and w ∈ Lp(Ω) we

have that

1

2
‖f − u∗‖2L2(Ω)+α ‖Du∗ − w∗‖M+

β

p
‖w∗‖pLp(Ω) ≤

1

2
‖f − u‖2L2(Ω)+α ‖Du− w‖M+

β

p
‖w‖pLp(Ω)

and setting u = w = 0, we obtain

1

p
‖w∗‖pLp(Ω) ≤

1

2β
‖f‖2L2(Ω),
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and thus ‖w∗‖pLp(Ω) → 0 when β →∞.

We can further establish a connection, up to a rescaling of the β’s parameters, between

the 1-homogeneous (P) and the p-homogeneous model (Pp−hom).

Proposition 4.3.2. Let 1 < p < ∞ and f ∈ L2(Ω) not a constant. A pair (w∗, u∗) is

a solution of (Pp−hom) with parameters (α, βp−hom) if and only if it is also a solution of

(P) with parameters (α, β1−hom) where β1−hom = βp−hom‖w∗‖p−1
Lp(Ω).

Proof. Since f is not a constant by the previous proposition we have that w∗ 6= 0. Note

that for an arbitrary function u ∈ BV(Ω):

w∗ ∈ argmin
w∈Lp(Ω)

α ‖Du− w‖M +
βp−hom

p
‖w‖pLp(Ω) ⇔

0 ∈ α∂ ‖Du− ·‖M (w∗) + βp−hom|w∗|p−2w∗ ⇔

0 ∈ α∂ ‖Du− ·‖M (w∗) +
β1−hom
‖w∗‖p−1

Lp(Ω)

|w∗|p−2w∗ ⇔

w∗ ∈ argmin
w∈Lp(Ω)

α ‖Du− w‖M + β1−hom ‖w‖Lp(Ω) .

This means that w∗ is an admissible solution for both problems (P) and (Pp−hom), with

the corresponding set of parameters (α, β1−hom) and (α, βp−hom) respectively. The fact

that the same holds for u∗ as well, is due to

u∗ ∈ argmin
u∈BV(Ω)

1

2
‖f − u‖2L2(Ω) + α‖Du− w∗‖M,

which holds for both problems.

If we examine a particular case of p = 2, it turns out that problem (Pp−hom) is

essentially equivalent to the widely used Huber regularisation, [Hub64, Section 4]. We

recall that in the Huber total variation regularisation we approximate the gradient to

behave quadratically near 0, i.e., near flat regions and linearly otherwise, see Figure 4.1.

This approximation of the gradient is very useful in order to reduce the staircasing that

the total variation creates, see for instance [PCBC10],[AHH06]. Let ϕ : Rd → R with
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ϕγ(x) =




|x| − γ

2 , |x| ≥ γ,
|x|2
2γ , |x| ≤ γ,

x

ϕ(x)

−γ γ

Figure 4.1: Huber function
and the Huber-TV minimisation problem is written as:

argmin
u∈BV(Ω)

ˆ
Ω
ϕ(∇u) dx+

1

2
‖f − u‖2L2(Ω) . (4.14)

Proposition 4.3.3. Consider the functional F : BV(Ω)→ R as

F (u) = min
w∈L2(Ω)

α ‖Du− w‖M +
β

2
‖w‖2L2(Ω) , (4.15)

which is the 2-homogeneous analogue of TVL2
α,β. Then

F (u) =

ˆ
Ω
ϕ(∇u) dx+ α|Dsu|(Ω),

where ϕ : Rd → R with

ϕ(x) =




α|x| − α2

2β , |x| ≥ α
β ,

β
2 |x|2, |x| ≤ α

β .

Proof. Using the Remark 2.1.5, we have

F (u) = min
w∈Lp(Ω)

α ‖Du− w‖M +
β

2
‖w‖2L2(Ω)

= α|Dsu|(Ω) + α min
w∈L2(Ω)

ˆ
Ω
|∇u− w|+ β

2α
|w|2 dx.

So we focus on the minimisation problem

min
w∈L2(Ω)

ˆ
Ω
|∇u− w|+ β

2α
|w|2 dx. (4.16)

Bearing in mind that (as it can easily checked) for c ∈ Rd and γ > 0 that

argmin
y∈Rd

|c− y|+ γ

2
|y|2 =





1
γ
c
|c| if |c| ≥ 1

γ ,

c if |c| < 1
γ ,
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and

min
y∈Rd

|c− y|+ γ

2
|y|2 =




|c| − 1

2γ if |c| ≥ 1
γ ,

γ
2 |c|2 if |c| < 1

γ .

It is straightforwardly verified setting γ = β/α that the function

w∗ =
α

β

∇u
|∇u|X{|∇u|≥

α
β
} +∇uX{|∇u|<α

β
},

belongs to L∞(Ω) ⊂ L2(Ω) and solves (4.16) with optimal value equal to 1
α

´
Ω ϕ(∇u) dx.

The result above can also be generalised for general 1 < p < ∞ in (Pp−hom) which is

equivalent to a generalised Huber total variation regularisation, see also [HS06b].

Proposition 4.3.4. Let 1 < p <∞ and consider the functional TVLp−homα,β : BV(Ω)→ R
with

TVLp−homα,β (u) = min
w∈Lp(Ω)

α‖Du− w‖M +
β

p
‖w‖pLp(Ω). (4.17)

Then

TVLp−homα,β (u) =

ˆ
Ω
ϕp(∇u) dx+ α|Dsu|(Ω),

where ϕp : Rd → R with

ϕp(x) =





α|x| −
(

1− 1
p

)
α

λ
1
p−1

, |x| ≥ 1

λ
1
p−1

,

β
p |x|p, |x| ≤ 1

λ
1
p−1

,
where λ :=

β

α
.

Proof. Similarly to the previous proposition, we have

TVLp−homα,β (u) = α|Dsu|(Ω) + α min
w∈Lp(Ω)

ˆ
Ω
|∇u− w|+ β

pα
|w|p dx

and it suffices to examine the problem

min
w∈Lp(Ω)

ˆ
Ω
|∇u− w|+ β

pα
|w|p dx. (4.18)

Then for c ∈ Rd, λ > 0,

argmin
y∈Rd

|c− y|+ λ

p
|y|p =





1

λ
1
p−1

c
|c| if |c| ≥ 1

λ
1
p−1

,

c if |c| < 1

λ
1
p−1

,
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4.4. The one dimensional case

min
y∈Rd

|c− y|+ λ

p
|y|p =





|c| −
(

1− 1
p

)
1

λ
1
p−1

if |c| ≥ 1

λ
1
p−1

,

λ
p |c|p if |c| < 1

λ
1
p−1

,

and by setting λ = β/α the function

w∗ = λ
− 1
p−1
∇u
|∇u|X

{
|∇u|≥λ−

1
p−1

} +∇uX{
|∇u|<λ−

1
p−1

},

belongs to L∞(Ω) ⊂ Lp(Ω) and solves (4.18) with optimal value equal to 1
α

´
Ω ϕp(∇u) dx.
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(a) Huber functions ϕ2 with fixed p = 2,
α = 1 and varying β
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(b) Generalised Huber functions ϕp with
fixed α = 1, β = 2 and varying p

Figure 4.2: Illustration of the forms of the Huber type functions ϕp of Proposition 4.3.4.
Their linear and p–power parts are plotted with blue and red colour respectively

For the reader’s convenience, in Figure 4.2 we have plotted some of the functions ϕp in

order to illustrate how their form changes when their parameters vary. Note for instance in

Figure 4.2a how φ2 is converging to an absolute type function when β is getting large, i.e.,

approaching a total variation regularisation. This can also be seen from Proposition 4.3.1

where the optimal variable w is converging to 0 when β →∞. On the other hand when p

is getting large, Figure 4.2b, small gradients are essentially not penalised at all, allowing

the gradient to be almost constant, equal to its maximum value, leading to piecewise affine

structures.

4.4 The one dimensional case

In order to get more insight into the structure of solutions of the problem (P), in this sec-

tion we study its one dimensional version. For this Section Ω ⊂ R is an open and bounded
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interval, i.e., Ω = (a, b). Similar analysis has been presented in [BKV12] and [PB15] where

the one dimensional L1–TGV2 and L2–TGV2 problems are studied respectively.

4.4.1 Optimality conditions

The main outcome of this section is the derivation of the optimality conditions for the

one dimensional problem (P). These conditions can provide practical information about

the structure of the solutions for every value of α and β and for every p ∈ (1,∞]. We

begin our analysis by defining the predual problem (P ′), proving existence and uniqueness

for its solutions. Then, we follow similar steps as in Proposition 4.2.2 using the Fenchel–

Rockafellar duality theory in order to find a connection between their solution pairs, see

Section 2.4.1.

We define the predual problem (P ′)

− inf

{ˆ
Ω
fφ′dx+

1

2

ˆ
Ω

(φ′)2dx : φ ∈ H1
0(Ω), ‖φ‖Lq(Ω) ≤ β, ‖φ‖∞ ≤ α

}
, (P ′)

where the conjugate exponent of p ∈ (1,∞] is

q =





p
p−1 , if 1 < p <∞,
1, if p =∞.

(4.19)

Proposition 4.4.1. For f ∈ L2(Ω), the predual problem (P ′) admits a unique solution in

H1
0(Ω).

Proof. Let A :=
{
φ ∈ H1

0(Ω) : ‖φ‖Lq(Ω) ≤ β, ‖φ‖∞ ≤ α
}

be the admissible set of (P ′).
Consider a minimising sequence (φn)n∈N ∈ A, i.e., φn ∈ H1

0(Ω) with ‖φn‖Lq(Ω) ≤ β and

‖φn‖∞ ≤ α. Then there exists M > 0 such that

ˆ
Ω
fφ′n dx+

1

2

ˆ
Ω

(φ′n)2 dx ≤M.

Clearly, (φ′n)n∈N is bounded in L2(Ω) and also ‖φn‖L2(Ω) ≤ C ‖φn‖∞ ≤ Cα, hence it is

bounded in H1
0(Ω). By the reflexivity of H1

0(Ω) there exists a weakly convergent subse-

quence (φnk)k∈N and φ ∈ H1
0(Ω) such that φnk ⇀ φ in H1

0(Ω). Since A is convex and closed,

it is also weakly closed by the Mazur theorem, see [Bre11], and thus φ ∈ A. Finally, the

minimising energy functional is weakly lower semicontinuous and φ is a unique solution

for the predual problem due to its strict convexity.

Observe now that we can also write down the predual problem (P ′) using the following
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4.4. The one dimensional case

equivalent formulation:

− inf
(φ,ξ)∈X

F1(φ, ξ) + F2(K(φ, ξ)), (4.20)

where X = H1
0(Ω)×H1

0(Ω), Y = H1
0(Ω)× L2(Ω) and

K : X → Y , K(φ, ξ) = (ξ − φ, ξ′),
F1 : X → R, with F1(φ, ξ) = I{‖·‖Lq(Ω)≤β}(φ) + I{‖·‖∞≤α}(ξ),

F2 : Y → R, with F2(φ, ψ) = I{0}(φ) +

ˆ
Ω
fψ dx+

1

2

ˆ
Ω
ψ2dx.

(4.21)

We denote the infimum in (P ′) as inf P∗. Then, it is immediate that

− inf P∗ = − inf
(φ,ξ)∈X

F1(φ, ξ) + F2(K(φ, ξ)).

The dual problem of (4.20) is defined as

min
(w,u)∈Y ∗

F ∗1 (−K∗(w, u)) + F ∗2 (w, u), (4.22)

where K∗ denotes the adjoint of K. Let (σ, τ) be elements of H1
0(Ω)∗×H1

0(Ω)∗. Note that

elements on the dual space of H1
0(Ω) can be considered as distributions of 0 order, since we

restrict σ ∈ (H1
0(Ω))∗ to C∞c (Ω) the dense subspace of H1

0(Ω), see [ABM14, Section 5.2].

For the convex conjugate of F1, we write

F ∗1 (σ, τ) = sup
(φ,ξ)∈X
‖φ‖Lq(Ω)≤β
‖ξ‖∞≤α

〈σ, φ〉 + 〈τ, ξ〉 = β sup
φ∈H1

0(Ω)
‖φ‖Lq(Ω)≤1

〈σ, φ〉 + α sup
ξ∈H1

0(Ω)
‖ξ‖∞≤1

〈τ, ξ〉 . (4.23)

In the minimisation (4.22), both terms are finite and by standard density arguments we

have that

F ∗1 (σ, τ) = β sup
φ∈C∞c (Ω)
‖φ‖Lq(Ω)≤1

〈σ, φ〉 + α sup
ξ∈C∞c (Ω)
‖ξ‖∞≤1

〈τ, ξ〉 = β ‖σ‖Lp(Ω) + α ‖τ‖M , (4.24)

where we have used Theorems 2.2.4 and 2.1.10. Moreover, let K∗ : Y ∗ → X∗ with

〈−K∗(w, u), (φ, ξ)〉 = −〈(w, u),K(φ, ξ)〉 = −
〈
(w, u), (ξ − φ, ξ′)

〉

= −〈w, ξ〉 + 〈w, φ〉 −
〈
u, ξ′

〉
= 〈Du− w, ξ〉 + 〈w, φ〉 .
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Hence, we obtain

F ∗1 (−K∗(w, u)) = β ‖w‖Lp(Ω) + α ‖Du− w‖M , (4.25)

and

F ∗2 (w, u) = sup
(φ,ψ)∈Y
φ=0

〈w, φ〉 + 〈u, ψ〉 − 〈f, ψ〉 − 1

2

ˆ
Ω
ψ2

= sup
ψ∈L2(Ω)

〈u− f, ψ〉 − 1

2

ˆ
Ω
ψ2dx

:=

(
1

2
‖·‖2L2(Ω)

)∗
(u− f) =

1

2
‖u− f‖2L2(Ω) . (4.26)

Therefore, we have proved the following:

Proposition 4.4.2. The dual problem of (P ′) is equivalent to the primal problem (P)

in the sense that (w, u) ∈ Y ∗ is a solution of the dual of (P ′) if and only if (w, u) ∈
Lp(Ω)× BV(Ω) is a solution of (P).

It remains to verify that we have no duality gap between the two minimisation problems

(P) and (P ′). Similar to Proposition 4.2.2 we use the geometric condition that is presented

in [AB86], see Theorem 2.4.10. The proof of the following proposition follows the proof

of the corresponding proposition in [BKV12]. For the sake of completeness, we slightly

modify it for our case.

Proposition 4.4.3. Let F1, F2,K be defined as in (4.21). Then

Y =
⋃

λ≥0

λ(domF2 −K(domF1)) (4.27)

is a closed vector space and

min
(φ,ξ)∈X

F1((φ, ξ)) + F2(K(φ, ξ)) + min
(w,u)∈Y ∗

F ∗1 (−K?(w, u)) + F ∗2 ((w, u)) = 0. (4.28)

Proof. Let (v, ψ) ∈ Y and define ψ0(x) = c1, where c1 = 1
|Ω|
´

Ω ψ(x) dx. This condition is

useful in order to find elements that lie on the right-hand side of (4.27). For instance, let

ξ(x) =
´ x
a (ψ0−ψ)(y) dy. Since by construction, ξ′ = ψ0−ψ ∈ L2(Ω) with ξ(a) = ξ(b) = 0,

we have that ξ ∈ H1
0(Ω). Furthermore, let φ = −v + ξ ∈ H1

0(Ω) and (φ, ξ) ∈ X with

(v, ψ) = (ξ − φ, ψ0 − ξ′) = (0, ψ0)− (ξ − φ, ξ′) = (0, ψ0)−K(φ, ξ).

Choosing appropriately λ > 0 such that
∥∥λ−1φ

∥∥
Lq(Ω)

≤ β,
∥∥λ−1ξ

∥∥
∞ ≤ α, we can write

(v, ψ) = λ
(
(0, λ−1ψ0)−K(λ−1φ, λ−1ξ)

)
,
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with domF2 = {0} × L2(Ω) and domF1 = {(φ, ξ) : ‖φ‖Lq(Ω) ≤ β, ‖ξ‖∞ ≤ α}. Since

(v, ψ) ∈ Y were chosen arbitrarily, (4.27) holds.

Since there is no duality gap, we can find a relationship between the solutions of (P ′)
and (P) via the optimality conditions, see [ET99, Prop. 4.1 (III)]. The following definition

is useful when one wants to characterise optimality conditions based on the subdifferential

calculus. It was introduced in [BKV12] as a generalisation of the sign function.

Definition 4.4.4. Let µ ∈M(Ω). We define the set-valued sign, Sgn(µ) as

Sgn(µ) = {v ∈ L∞(Ω) ∩ L∞(Ω, |µ|) : ‖v‖∞ ≤ 1, v = sgn(µ), |µ| − a.e.} . (4.29)

It is proved in [BKV12] that if µ ∈M(Ω) then

∂ ‖·‖M (µ) ∩ C0(Ω) = Sgn(µ) ∩ C0(Ω). (4.30)

Theorem 4.4.5 (Optimality conditions). Let p ∈ (1,∞] and f ∈ L2(Ω). A pair (w, u) ∈
Lp(Ω)× BV(Ω) is a solution of (P) if and only if there exists a function φ ∈ H1

0(Ω) such

that
φ′ = u− f,
φ ∈ αSgn(Du− w),

(4.31)

and





φ ∈
{
φ̃ ∈ Lq(Ω) :

∥∥∥φ̃
∥∥∥

Lq(Ω)
≤ β

}
, if w = 0, 1 < p ≤ ∞

φ = β |w|
p−2w

‖w‖(p−1)
Lp(Ω)

, if w 6= 0, 1 < p <∞

φ ∈
{
φ̃ ∈ L1(Ω) :

〈
φ̃, w

〉
= β ‖w‖∞ ,

∥∥∥φ̃
∥∥∥

L1(Ω)
≤ β

}
, if w 6= 0, p =∞.

(4.32)

Proof. Since there is not duality gap, the optimality conditions read, see Theorem 2.4.9 :

(φ, ξ) ∈ ∂F ∗1 (−K∗(w, u)), (4.33)

K(φ, ξ) ∈ ∂F ∗2 (w, u), (4.34)

for every (φ, ξ) and (w, u) solutions of (P ′) and (P) respectively. Note that in dimension

one we have H1
0(Ω) ⊆ C0(Ω). Hence, for every (σ, τ) ∈ X∗, we have the following:

F ∗1 (σ, τ) ≥ F ∗1 (−K∗(w, u)) + 〈(σ, τ) +K∗(w, u), (φ, ξ)〉 ⇔
α ‖τ‖M + β ‖σ‖Lp(Ω) ≥ α ‖Du− w‖M + β ‖w‖Lp(Ω) + 〈(σ, τ)− (w,Du− w), (φ, ξ)〉 ⇔
α ‖τ‖M + β ‖σ‖Lp(Ω) ≥ α ‖Du− w‖M + β ‖w‖Lp(Ω) + 〈σ − w, φ〉 + 〈τ − (Du− w), ξ〉 ⇔
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



α ‖τ‖M ≥ α ‖Du− w‖M + 〈τ − (Du− w), ξ〉 , ∀τ ∈ H1
0(Ω)∗,

β ‖σ‖Lp(Ω) ≥ β ‖w‖Lp(Ω) + 〈σ − w, φ〉 , ∀σ ∈ H1
0(Ω)∗

⇔




α ‖τ‖M ≥ α ‖Du− w‖M + 〈τ − (Du− w), ξ〉 , ∀τ ∈M(Ω),

β ‖σ‖Lp(Ω) ≥ β ‖w‖Lp(Ω) + 〈σ − w, φ〉 , ∀σ ∈ Lp(Ω)
⇔





ξ ∈ α∂ ‖·‖M (Du− w),

φ ∈ β∂ ‖·‖Lp(Ω) (w),

and using (4.30) we can simplify the last expressions to:

ξ ∈ αSgn(Du− w).

For the (4.32) let us consider the p < ∞ and p = ∞ separately. If 1 < p < ∞ the

homogeneity of the Lp norm implies that its subdifferential, see Proposition 2.4.8, can be

written as:

∂ ‖·‖Lp(Ω) (w) =
{
z ∈ (Lp(Ω))∗ = Lq(Ω) : 〈z, w〉 = ‖w‖Lp(Ω) , 〈z, σ〉 ≤ ‖σ‖Lp(Ω) , ∀σ ∈ Lp(Ω)

}
.

Then, if w = 0, the above expression reduces to ‖σ‖Lp(Ω) ≥ 〈z, σ〉 , ∀σ ∈ Lp(Ω) which is

valid for any z ∈ Lq(Ω) with ‖z‖Lq(Ω) ≤ 1, i.e., the unit ball of Lq(Ω). If w 6= 0 then

the subdifferential reduces to the Gâteaux derivative of the Lp norm, i.e., ∂ ‖·‖Lp(Ω) (w) =
|w|p−2w

‖w‖p−1
Lp(Ω)

. For the p =∞ case, the subdifferential is written analogously

∂ ‖·‖Lp(Ω) (w) =
{
z ∈ (L∞(Ω))∗ : 〈z, w〉 = ‖w‖∞ , ‖σ‖∞ ≥ 〈z, σ〉 , ∀σ ∈ L∞(Ω)

}
.

The dual space of L∞(Ω) consists of all bounded and finitely additive signed measures,

see [Yos80, Chapter IV] for more details. However, since φ ∈ H1
0(Ω) ⊂ L1(Ω) we do not

take into account all the elements of (L∞(Ω))∗, rather than the intersection with L1(Ω),

where L1(Ω) ⊂ (L∞(Ω))∗. Hence, we have that

∂ ‖w‖∞ =
{
z ∈ L1(Ω) : 〈z, w〉 = ‖w‖∞ , ‖σ‖∞ ≥ 〈z, σ〉 , ∀σ ∈ L∞(Ω)

}

where for w = 0, it reduces to the unit ball on L1(Ω) i.e., ‖z‖L1(Ω) ≤ 1. Finally, from

(4.34) we have for every (ŵ, û) ∈ Y ∗

F ∗2 (ŵ, û) ≥ F ∗2 (w, u) + 〈K(φ, ξ), ((ŵ, û)− (w, u)〉 ⇔
1

2

ˆ
Ω

(f − û)2 dx ≥ 1

2

ˆ
Ω

(f − u)2 dx+
〈
(ξ − φ, ξ′), (ŵ − w, û− u)

〉
⇔

1

2

ˆ
Ω

(f − û)2 dx ≥ 1

2

ˆ
Ω

(f − u)2 dx+ 〈ξ − φ, ŵ − w〉 +
〈
ξ′, û− u

〉
⇔
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


〈ξ − φ, ŵ − w〉 ≤ 0, ∀ŵ ∈ (H1

0(Ω))∗,
1
2

´
Ω(f − û)2 ≥ 1

2

´
Ω(f − u)2 + 〈ξ′, u− û〉 , ∀û ∈ (L2(Ω))∗

⇔





ξ = φ,

ξ′ ∈ ∂
(

1
2 ‖f − ·‖

2
2

)
(u) = u− f.

Combining all the above results, we obtain the optimality conditions (4.31) and (4.32).

One can immediately recover, by letting w = 0, the optimality conditions for the

(ROF) minimisation problem with regularising parameter α i.e.,

min
u∈BV(Ω)

1

2
‖f − u‖2L2(Ω) + α ‖Du‖M , (ROF)

see [Rin00]. On the other hand when w 6= 0, the additional condition (4.32) depends on

the value of p and as we will see later it allows a certain degree of smoothness in the

solution u. Finally, in Table 4.1, we compare our optimality conditions with respect to the

TV and TGV2
α,β regularisers for variational problems as in (4.2). The reader can again

check the difference between first and second order regularisers. The optimality conditions

of (L2 − TGV2
α,β) variational problem can be found in [PB15].

Optimality conditions

L2–αTV (ROF) L2–TVLp
α,β L2–TGV2

α,β

u ∈ BV(Ω), φ ∈ H1
0(Ω) u ∈ BV(Ω), w ∈ Lp(Ω), φ ∈ H1

0(Ω) u,w ∈ BV(Ω), φ ∈ H2
0(Ω)

φ′ = u− f,
φ ∈ α Sgn(Du).

φ′ = u− f,
φ ∈ αSgn(Du− w),

‖φ‖Lq(Ω) ≤ β, if w = 0, 1 < p ≤ ∞,

φ = β
|w|p−2w

‖w‖(p−1)
Lp(Ω)

, if w 6= 0, 1 < p <∞,

〈φ,w〉 = β ‖w‖∞ , ‖φ‖L1(Ω) ≤ β, if w 6= 0, p =∞.

φ′′ = u− f,
φ′ ∈ α Sgn(Du− w),

φ ∈ β Sgn(Dw).

Table 4.1: The optimality conditions for the one dimensional L2−TV, L2−TVLp
α,β and

L2 − TGV2
α,β denoising problems.

4.4.2 Structure of the solutions

We are now ready to determine the structure of the solutions of (P) for every value of

p ∈ (1,∞]. It is reasonable to discuss first the cases where the solution u of (P) is a

solution of a corresponding ROF minimisation problem i.e., when w = 0.

Proposition 4.4.6 (ROF-solutions). Let q as in (4.19). If

β

α
≥ |Ω|

1
q , (4.35)
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then the solution u of (P) coincides with the solution of (ROF) and w = 0. It is also

true for p = 1 and q =∞.

Proof. Let (w∗, u∗) be a solution pair for (P), then for every (w, u) ∈ Lp(Ω)× BV(Ω),

1

2
‖f − u∗‖2L2(Ω)+α ‖Du∗ − w∗‖M+β ‖w∗‖Lp(Ω) ≤

1

2
‖f − u‖2L2(Ω)+α ‖Du− w‖M+β ‖w‖Lp(Ω) .

Setting w = 0, we get

1

2
‖f − u∗‖2L2(Ω) + α ‖Du∗ − w∗‖M + β ‖w∗‖Lp(Ω) ≤

1

2
‖f − u‖2L2(Ω) + α ‖Du‖M . (4.36)

Since w ∈ Lp(Ω) with p ∈ (1,∞], we have that

‖w∗‖M = ‖w∗‖L1(Ω) ≤ |Ω|
1− 1

p ‖w∗‖Lp(Ω) ,

and using the condition (4.35) we have

α ‖Du∗‖M ≤ α ‖Du∗ − w∗‖M + α ‖w∗‖M
≤ α ‖Du∗ − w∗‖M + β|Ω|

1
p
−1 ‖w∗‖M

≤ α ‖Du∗ − w∗‖M + β ‖w∗‖Lp(Ω) . (4.37)

From (4.36) and (4.37), we conclude that for every u ∈ BV(Ω),

1

2
‖f − u∗‖2L2(Ω) + α ‖Du∗‖M ≤

1

2
‖f − u‖2L2(Ω) + α ‖Du‖M ,

i.e., u∗ solves

min
u∈BV(Ω)

1

2
‖f − u‖2L2(Ω)+α ‖Du‖M = min

u∈BV(Ω)
w=0

1

2
‖f − u‖2L2(Ω)+α ‖Du− w‖M+β ‖w‖Lp(Ω) .

For p = 1 and q =∞, the proof is obvious.

In fact, what we have essentially proved above is that if (4.35) holds then

TVLpα,β(u) = α‖Du‖M , ∀u ∈ BV(Ω).

Notice also that when (4.35) holds then we have that w = 0 is an admissible solution but

in general we cannot prove that this solution is unique, unless we treat the p-homogeneous

analogue. The condition (4.35) is valid for any dimension d ≥ 1. It provides a rough

threshold for obtaining ROF-type solutions in terms of the regularising parameters α, β

and the image domain Ω. However, the condition is not sharp, since as we will see in the

following sections, we can obtain a sharper estimate when a specific data of f is examined.
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The following proposition is in the spirit of [BKV12, Proposition 4.3] and gives more

insight into the structure of solutions of (P). It is formulated rigorously via the use of

good representatives of BV functions, see [AFP00, Theorem 3.28]. The proof remains the

same in our case hence it can be omitted.

Proposition 4.4.7. Let f ∈ BV(Ω) and suppose that (w, u) ∈ Lp(Ω)×BV(Ω) is a solution

pair for (P) with p ∈ (1,∞]. Suppose that u > f (or u < f ) on an open interval I ⊂ Ω

then (Du− w)bI = 0 i.e., u′ = w on I and |Dsu|(I) = 0.

An acceptable solution of (ROF) regularisation is also the constant solution. Therefore,

we consider the case where the solution is constant in Ω, which in fact coincides with the

mean value f̃ of the data f:

f̃ := argmin
u constant

1

2
‖f − u‖2L2(Ω) =

1

|Ω|

ˆ
Ω
f dx. (4.38)

ROF u = f̃

|Ω|
1
q ||f − f̃ ||L1(Ω)

β = α|Ω|
1
q TVLp

w 6= 0

β

α||f − f̃ ||L1(Ω)

p → ∞

p → 1

Figure 4.3: Characterisation of solutions of (P) for any data f : The blue/brown areas
correspond to the ROF type solutions (w = 0) and the purple area corresponds to the
TVLp solutions (w 6= 0) for 1 < p ≤ ∞. We note that the blue/purple areas are potentially
larger/smaller as the conditions we have derived are not sharp.

Proposition 4.4.8 (Mean value solution). If the following conditions hold

α ≥ ‖f − f̃‖L1(Ω),

β ≥ |Ω|
1
q ‖f − f̃‖L1(Ω),

(4.39)
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then the solution of (P) is constant and it is equal to f̃ .

Proof. Clearly, if u is a constant solution of (P), then Du = 0 and from (4.10) we get

TVLpα,β(u) = 0 which implies (4.38) and u = f̃ . In order to have u = f̃ , from the

optimality conditions (4.31) and (4.32), it suffices to find a function φ ∈ H1
0(Ω) and

φ′ = f̃ − f, ‖φ‖∞ ≤ α, ‖φ‖Lq(Ω) ≤ β.

Let φ(x) =
´ x
a (f̃ − f(s)) ds, then obviously φ(a) = φ(b) = 0 and

|φ(x)| ≤
ˆ x

a
|f̃ − f(s)| ds ≤ ‖f − f̃‖L1(Ω) <∞.

Therefore, ‖φ‖∞ ≤ ‖f − f̃‖L1(Ω). Also, since L∞(Ω) ⊂ Lq(Ω) we obtain

‖φ‖Lq(Ω) ≤ |Ω|
1
q ‖φ‖∞ ≤ |Ω|

1
q ‖f − f̃‖L1(Ω).

Hence, it suffices to choose α and β as in (4.39).

In Figure 4.3, we summarise our results so far. There, we have partitioned the set

{α > 0, β > 0} into different areas that correspond to different types of solutions of the

problem (P). The brown area, arising from thresholds (4.39), corresponds to the choices

of α and β that produce constant solutions while the blue area corresponds to ROF type

solutions, according to threshold (4.35). Therefore, we can determine the area where the

non-trivial solutions are obtained i.e., w 6= 0, see purple region. Note that since the

conditions (4.35) and (4.39) are not sharp the blue and the purple areas are potentially

larger or smaller respectively as it is shown in Figure 4.3.

Let us now, examine the non-trivial solutions of (P) (w 6= 0) for the p <∞ and p =∞
cases. We begin with the p <∞ case where the solution is obtained by a non-homogenous

p-Laplace differential equation, cf. [Kui07].

Proposition 4.4.9 (TVLp-solutions). Let f ∈ BV(Ω) and suppose that (w, u) ∈ Lp(Ω)×
BV(Ω) is a solution pair for (P) with p ∈ (1,∞) and w 6= 0. Suppose that u > f (or

u < f) on an open interval I ⊂ Ω then the solution u of (P) is obtained by

−C(|u′(x)|p−2u′(x))′ + u(x) = f(x), ∀x ∈ I where C =
β

‖w‖p−1
Lp(Ω)

. (4.40)

Proof. Since 1 < p <∞, w 6= 0 using Proposition 4.4.7 and the second optimality condi-

tion of (4.32), we have that

φ = β
|u′|p−2u′

‖w‖p−1
Lp(Ω)

.

Hence, by (4.31) we obtain (4.40) where C = β

‖w‖p−1
Lp(Ω)

.
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4.4. The one dimensional case

One very important property is revealed when p =∞. In fact, it is the first time that

first-order total variation based methods can indeed produce piecewise affine solutions.

Proposition 4.4.10. (Affine structures) If (w, u) ∈ L∞(Ω)×BV(Ω) a solution pair of (P)

and assume that either u > f or u < f in some open interval I ⊂ Ω. Then |w(x)| = ‖w‖∞
a.e in I and u is a piecewise affine function.

Proof. Let U ⊂ I of positive measure such that |w(x)| < ‖w‖∞ for every x ∈ U . Then,

we have the following:

ˆ
Ω
φ(x)w(x) dx ≤

ˆ
Ω
|φ(x)||w(x)| dx =

ˆ
Ω\U
|φ(x)||w(x)| dx+

ˆ
U
|φ(x)||w(x)| dx

< ‖w‖∞
ˆ

Ω\U
|φ(x)| dx+ ‖w‖∞

ˆ
U
|φ(x)| dx = ‖w‖∞ ‖φ‖L1(Ω) ≤ β ‖w‖∞

Hence, we reach a contradiction by the third optimality condition of (4.32) and |w(x)| =
‖w‖∞ a.e in I. Moreover by Proposition (4.4.7) we obtain that u′(x) = ±‖w‖∞, meaning

that the slope of the solution is constant and u is a piecewise affine function in I.

Let us mention, one particular case where our model coincides with L2 − TGV2
α,β

minimisation problem. This indicates that one can achieve, for a specific class of one

dimensional data, the same results with a high-order order model by using only first-order

regularisers. Notice that in the one dimensional setting (4.6) coincides with (4.5) and the

BD(Ω) space is replaced by BV(Ω).

Proposition 4.4.11 (TGV2
α,β ∼ TVL∞α,β). Let (u,w) ∈ BV(Ω)×BV(Ω) is a solution pair

of (4.2) with Ψ(u) is given by (4.6) and has the properties that u′ is monotone, odd and

u 6= f a.e. Then, u is a solution of (P) with β̃ = 2β.

Proof. Since Du = Dsu + Dau, u′ is monotone, odd function then by Proposition 4.4.7

‖Dw‖M = 2 ‖w‖∞, with u′ = w. Let A ⊂ BV(Ω) the set of functions with the previous

property, then using Remark 2.1.5

u ∈ argmin
u∈A

{
α ‖Du− w‖M + β ‖Dw‖M +

1

2
‖f − u‖2L2(Ω)

}
⇔

u ∈ argmin
u∈A

{
α ‖Dsu‖M + β

∥∥Du′
∥∥
M +

1

2
‖f − u‖2L2(Ω)

}
⇔

u ∈ argmin
u∈A

{
α ‖Dsu‖M + 2β

∥∥u′
∥∥
∞ +

1

2
‖f − u‖2L2(Ω)

}
⇔

u ∈ argmin
u∈A

{
α ‖Du− w‖M + 2β ‖w‖∞ +

1

2
‖f − u‖2L2(Ω)

}

i.e., u is a minimiser of (P) with β̃ = 2β. Equivalently, the one dimensional functionals

TGV2
α,β and TVL∞α,2β coincide.
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4.4.3 Exact solutions

In what follows, we compute explicit solutions of the (P) model. We examine representa-

tive one dimensional data such as the step function and a piecewise affine function with

one discontinuity. The step function in Ω = (−L,L), L > 0 is defined as:

f(x) =





0, if x ∈ (−L, 0],

h, if x ∈ (0, L).
(4.41)

It reasonable to start with the ROF-type solutions that are obtained for 1 < p ≤ ∞ when

w = 0.

ROF–type solutions (step function)

We are initially interested in a solution that respects the discontinuity at x = 0 and

is piecewise constant. From the optimality conditions (4.31)–(4.32), it suffices to find a

function φ ∈ H1
0(Ω) such that

φ(−L) = φ(L) = 0, ‖φ‖∞ ≤ α, φ(0) = α, (4.42)

which is piecewise affine. It is easy to see that by setting φ(x) = α
L(L−|x|), the conditions

(4.42) are satisfied and the solution u is piecewise constant. The first condition of (4.32)

implies that ‖φ‖Lq(Ω) ≤ β ⇔ β
α ≥ ( 2L

q+1)
1
q and provides a necessary and sufficient condition

that need to be fulfilled in order for u to be piecewise constant, that is to say

u(x) =




α
L , if x ∈ (−L, 0],

h− α
L , if x ∈ (0, L),

⇔ β

α
≥
(

2L

q + 1

) 1
q

. (4.43)

For the constant solution, i.e., when u = f̃ , the mean value of f , we define φ(x) = h
2 (L−|x|)

and in that case conditions (4.42) are satisfied with ‖φ‖∞ ≤ α⇔ α ≥ hL
2 and ‖φ‖Lq(Ω) ≤

β ⇔ β ≥ h
2 (2Lq+1

q+1 )
1
q . This implies that

u = f̃ =
h

2
⇔ α ≥ hL

2
and β ≥ h

2

(
2Lq+1

q + 1

) 1
q

. (4.44)

Using now (4.43)–(4.44) we can draw the exact regions in the quadrant of {α > 0, β > 0}
that correspond to these two types of solutions, see the left graph in Figure 4.5 for the

special case p = 2. Notice that in these regions w = 0 and the estimates are valid for any

p ∈ (1,∞]. The above estimates are sharp compared to those that we obtained in (4.35)

and (4.39), where we compute that β ≥ (2L)
1
qα and α ≥ hL, β ≥ h(2Lq+1)

1
q .
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4.4. The one dimensional case

TVL2-type solutions (step function)

For simplicity, we examine here only the case p = 2 with w 6= 0 in Ω. However, we refer

the reader to Section 4.6.2 where we compute numerically solutions for other finite values

of p. Using Proposition 4.4.9, we observe that the solution is given by the following second

order differential equation:

−Cu′′(x) + u(x) = f(x), subject to C =
β

‖w‖L2(Ω)

. (4.45)

Even though we can tell that the solution of (4.45) has an exponential form, the fact that

the constraint on C depends on the solution w, creates a difficult computation to recover

u analytically. In order to overcome this obstacle, we consider the one dimensional version

of the 2-homogeneous analogue of (P) that was introduced in Section 4.3:

min
u∈BV(Ω)
w∈L2(Ω)

1

2
‖f − u‖2L2(Ω) + α ‖Du− w‖M +

β2−hom
2

‖w‖2L2(Ω) . (4.46)

Similarly to Section 4.4.1, one can derive the optimality conditions for (4.46). A pair

(w, u) ∈ Lp(Ω) × BV(Ω) is a solution of (4.46) if and only if there exists a function

φ ∈ H1
0(Ω) such that

φ′ = u− f,
φ ∈ αSgn(Du− w),

φ = β2−homw.

(4.47)

Equivalently, these are the optimality conditions for the one dimensional analogue of the

Huber-TV minimisation problem (4.14). Therefore, if we want to recover analytically the

solutions of (P) for p = 2 and determine the purple region in Figure 4.5 it suffices to solve

the equivalent model (4.46), where we know from Proposition 4.3.1 that w 6= 0. We may

restrict our computations only on I = (−L, 0] ⊂ Ω and due to symmetry the solution in

I = (0, L) is given by u(x)+u(−x) = h. From the optimality conditions (4.47), we acquire

that

−u′′(x) + ku(x) = 0, where k2 =
1

β2−hom
and x ∈ I = (−L, 0] ⊂ Ω.

Then, clearly u(x) = c1e
kx + c2e

−kx with φ(x) = c1
k e

kx − c2
k e
−kx + c3 for all x ∈ (−L, 0].

Initially, we examine solutions that are continuous and due to symmetry must have the

value h
2 at the x = 0, i.e., u(0) = h

2 . Since φ ∈ H1
0(−L,L), we have φ(−L) = 0 and also

u′(−L) = 0 by the last condition of (4.47). Finally, we require that φ(0) < α. After some
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computations, we conclude that

u(x) =




c1e

kx + c2e
−kx, if x ∈ (−L, 0],

h− c1e
−kx − c2e

kx, if x ∈ (0, L),
⇔ tanh(kL)

k
<

2α

h
, (4.48)

where c1 = c2e
2kL, c2 = h

2(e2kL+1)
and c3 = 0. On the other hand, in order to get solutions

that preserve the discontinuity at x = 0, we require the following:

φ(−L) = 0, u′(−L) = 0,

u(0) <
h

2
, φ(0) = α.

Then, we find

u(x) =




c1e

kx + c2e
−kx, if x ∈ (−L, 0],

h− c1e
−kx − c2e

kx, if x ∈ (0, L),
⇔ tanh(kL)

k
>

2α

h
, (4.49)

where c1 = c2e
2kL, c2 = αk

e2kL−1
. Note that the conditions for α and β2−hom in (4.48)

and (4.49) are supplementary and thus only these type of solutions can occur, see the

quadrant of {α > 0, β2−hom > 0} as it presented in Figure 4.4. Letting g(β2−hom) =√
β2−hom tanh ( L√

β2−hom
), if g(β2−hom) < 2α

h then the solution is of the form (4.48), see

the blue region in Figure 4.4.

On the other hand, in the complementary green region we obtain the solution (4.49).

For extreme cases where β2−hom → ∞, i.e., k → 0 we obtain tanh(kL)
k → L, which means

that there is an asymptote of g at α = hL
2 . Although, we know the form of the inverse func-

tion of the hyperbolic tangent, we cannot compute analytically the inverse f−1. However,

we can obtain an approximation using a Taylor expansion which leads to

√
β2−hom tanh

(
L√

β2−hom

)
= L− L3

3β2−hom
+O

(
1

β2
2−hom

)
=

2α

h
⇔ β2−hom =

hL3

3(hL− 2α)
,

where α > 0 and α 6= hL
2 . Finally, we need to examine is what kind of solutions are

produced in the limiting case β2−hom →∞. Letting β2−hom →∞ in (4.48), we have that

c1, c2 → h
4 and u(x)→ h

2 for every x ∈ Ω, which in fact is the mean value solution f̃ . For

the discontinuous solutions, we have that c1, c2 → α
2L and

u(x)→




α
L , if x ∈ (−L, 0],

h− α
L , if x ∈ (0, L),
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β2−hom

hL
2 hL α

−L 0 L

h

0

0

h

−L 0 Lg(β) = 2α
h β ∼ hL3

3(hL−2α)

Figure 4.4: Characterisation of solutions of (4.46) for data f being a step function. The
green region corresponds to solutions that preserve the discontinuity at x = 0, (4.49),
while the lightblue region corresponds to continuous solutions, (4.48), both having an
exponential form.

i.e., we converge to the solution (4.43). We also have that

w(x) = kc2




e2kL+kx − e−kx, if x ∈ (−L, 0],

e2kL−kx − ekx, if x ∈ (0, L],

with ‖w‖L2(Ω) = c2

√
2kekL(sinh(2kL)−2kL)

1
2 and c2 is expressed either by (4.48) or (4.49).

Then, in both cases we have w → 0 as k → 0. Observe that the product of β2−hom ‖w‖L2(Ω)

is bounded as β2−hom → ∞ for both types of solutions and in fact corresponds to the

bounds found in (4.43) and (4.44) for p = 2. Indeed, since

(sinh(2kL)− 2kL)
1
2

k
3
2

→ 2

√
L3

3
, as k → 0,

then if α > hL
2 with c2 = h

4 and β2−hom →∞

β2−hom ‖w‖L2(Ω) =

√
2c2e

kL

k
3
2

(sinh(2kL)− 2kL)
1
2 → h

2

√
2L3

3
= β1−hom,
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while if α ≤ hL
2 with c2 = α

2L and β2−hom →∞

β2−hom ‖w‖L2(Ω) =

√
2c2e

kL

k
3
2

(sinh(2kL)− 2kL)
1
2 → α

√
2L

3
= β1−hom.

The last result is yet another verification of Proposition 4.3.2 and it shows that there

is an one to one correspondence, namely β2−hom ‖w‖L2(Ω) ↔ β1−hom and the purple region

of Figure 4.5 is characterised by the solutions obtained in Figure 4.4. Equivalently, we

have derived the exact solutions for the step function under the Huber-TV regularisation.

ROFI ROFII

hL
2

hL
2

TVL2
I TVL2

II

β2−homβ1−hom

h
2

√
2L3

3

√
2L
3 α

α

β1−hom ↔ β2−hom||w||L2(Ω)

Figure 4.5: Characterisation of solutions of (P) for p = 2 for data f being a step
function. The type of solutions in the purple region of the left graph are exactly the
solutions obtained for the 2-homogenous problem (4.46), on the right graph.

TVL∞ type solutions (step function)

Let us now derive the analytical solutions of (P) for the step function (4.41) when p =∞.

The ROF-type solutions (4.43), (4.44) are still valid for p =∞ with q = 1. For w 6= 0, the

analysis presented below justifies Proposition 4.4.10, namely we recover affine solutions.

First, we consider a piecewise affine solution u preserving the discontinuity at x = 0

and u = f on (−L,−l) ∪ (l, L) i.e., near the boundaries. Indeed, by the optimality condi-

tion (4.31), it suffices to find a quadratic continuous function φ, increasing (decreasing) on

(−l, 0) = {x ∈ (−L,L) : u > f} ((0, l) = {x ∈ (−L,L) : u < f}) with φ(0) = α which van-
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ishes near the boundaries. We also use Proposition 4.4.7 in order to define w ∈ L∞(−L,L).

Therefore, we define

φ(x) =





0, x ∈ (−L,−l],
α
l2

(l − |x|)2, x ∈ (−l, l],
0, x ∈ (l, L),

, w(x) =





0, x ∈ (−L,−l],
2α
l2
, x ∈ (−l, l],

0, x ∈ (l, L).

The optimality condition (4.32) implies that 〈φ,w〉 = β ‖w‖∞ ⇔ l = 3β
2α and since l < L

we have that β
α < 2

3L. Finally, in order to preserve the discontinuity, we require that

u(0) < h
2 ⇔ α < hl

4 ⇔ β > 8α2

3h and conclude that the solution, see orange region in Figure

4.6, is

u(x) =





0, x ∈ (−L,−l],
2α
l2

(x+ l), x ∈ (−l, 0],

h+ 2α
l2

(x− l), x ∈ (0, l],

h, x ∈ (l, L],

⇔ β

α
<

2

3
L, β >

8α2

3h
(TVL∞I : step)

hL
2

hL
4

hL2

2

ROFI ROFII

TVL∞III

TVL∞I

TVL∞II

TVL∞IV

hL2

6

hL
8

β

α

Figure 4.6: Step function: The solutions graph of (P) for TVL∞.
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On the other hand for a continuous solution u that u(0) = h
2 and u = f on (−L,−k)∪

(k, L) i.e., near the boundaries we define,

φ(x) =





0, x ∈ (−L,−k],

h
4k (k − |x|)2, x ∈ (−k, k],

0, x ∈ (k, L),

, w(x) =





0, x ∈ (−L,−k],

h
2k , x ∈ (−k, k],

0, x ∈ (k, L).

Also, 〈φ,w〉 = β ‖w‖∞ ⇔ k =
√

6β
h . Moreover, k < L ⇔ β < hL2

6 and φ(0) < α ⇔ β <
8α2

3h . Hence the solution, see lightblue region in Figure 4.6, is

u(x) =





0, x ∈ (−L,−k],

h
2k (x+ k), x ∈ (−k, k],

h, x ∈ (k, L],

⇔ β <
hL2

6
, β <

8α2

3h
. (TVL∞II : step)

We now examine solutions for which u = f is not allowed and are either preserve

the discontinuity at x = 0 or they do not. For instance, let u be a piecewise affine

function defined on intervals I1 = (−L, 0) = {x ∈ (−L,L) : u > f} and I2 = (0, L) =

{x ∈ (−L,L) : u < f}. Then, the optimality conditions can be expressed as

φ(0) = α, (preserve discontinuity)

φ′(0) <
h

2
, (u(0) <

h

2
)

φ′(−L) > 0, (or φ′(L) < 0, since either u > f or u < f)

φ′′(−L) > 0, (u is strictly monotone, w > 0).

(4.50)

We define φ(x) = c1x
2−c2|x|+α and w(x) = 2c1 for x ∈ (−L,L) and since φ ∈ H1

0(−L,L)

φ(−L) = 0⇔ c1L
2 − c2L+ α = 0

〈φ,w〉 = β ‖w‖∞ ⇔ 2c1
L3

3 − c2L
2 + 2αL = β

}
⇒

c1 =
3(αL− β)

L3
,

c2 =
4αL− 3β

L2
.

Finally, by (4.50) we have the following:

φ′(0) <
h

2
⇔ c2 <

h

2
⇔ β >

4

3
Lα− hL2

6
,

φ′(−L) > 0⇔ c2 > 2c1L⇔ β >
2L

3
α,

φ′′(−L) > 0⇔ c1 > 0⇔ β < Lα,

(4.51)
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and the solution, see green region in Figure 4.6, is

u(x) =





6(αL−β)
L3 x+ 4αL−3β

L2 , x ∈ (−L, 0]

h+ 6(αL−β)
L3 x− 4αL−3β

L2 , x ∈ (0, L)
⇔

β >
4

3
Lα− hL2

6

β >
2L

3
α, β < Lα.

(TVL∞III : step)

Similarly, for a continuous and affine solution u, we define φ(x) = c3x
2 − h

2 |x| + c4 with

w(x) = 2c3 for x ∈ (−L,L) under the conditions:

φ(0) < α, u is continuous

φ′(0) =
h

2
, u(0) = h

2

φ′(−L) > 0, u > f

φ′′(−L) > 0, u is increasing.

(4.52)

Hence, we compute

φ(−L) = 0⇔ c3L
2 − h

2L+ c4 = 0

〈φ,w〉 = β ‖w‖∞ ⇔ 2c3
L3

3 − h
2L

2 + 2c4L = β

}
⇒

c3 =
3(hL2 − 2β)

8L3

c4 =
hL2 + 6β

8L

and the solution, see grey region in Figure 4.6, is

u(x) =
3(hL2 − 2β)

4L3
x+

h

2
, x ∈ (−L,L)⇔

β <
4

3
Lα− hL2

6
,

β >
hL2

6
, β <

hL2

2
.

(TVL∞IV : step)

TVL∞ type solutions (piecewise affine function)

Here, we choose to examine the exact solutions for a piecewise affine function defined as

g(x) =




λx, , x ∈ (−L, 0],

λx+ h, , x ∈ (0, L).
(4.53)

We demonstrate the capability of our regulariser to obtain piecewise affine solutions. In the

following, we have summarised our computed solutions for every combination of α, β > 0

using similar analysis with the one described above. We conclude with a total of eight

types of solutions, three of them are ROF-type solutions, i.e., w = 0 and the rest are

the corresponding TVL∞ solutions, see also Figure 4.7. All the analytical computations

regarding the solutions below can be found in Appendix A.

We begin with the ROF-type solutions. We consider a solution that is piecewise
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constant near the boundaries and u = f in I1 = (−l1, 0) ∪ (0, l1), where l1 > 0,

u(x) =





− α
l1−L −

λ
2 (l1 + L), x ∈ (−L, l1),

λx, x ∈ (l1, 0),

λx+ h, x ∈ (0, l1),

h+ α
l1−L + λ

2 (l1 + L), x ∈ (l1, L),

⇔

0 ≤ α ≤ λL2

2
,

β ≥ 2αL− 2α

3

√
2α

λ
,

l1 = L−
√

2α

λ
.

(ROFI : affine)

We proceed with a piecewise constant solution where u 6= f for all x ∈ (−L,L),

u(x) =




α
L − λL

2 , x ∈ (−L, 0),

h− α
L + λL

2 , x ∈ (0, L),
⇔

hL

2
≤ α < hL+ λL2

2
,

β ≥ αL+
λL3

6
.

(ROFII : affine)

Finally, we obtain the mean value solution u = f̃ = 1
2L

´ L
−L g(x)dx:

u(x) =
h

2
, x ∈ (−L,L)⇔ α >

hL+ λL2

2
, β ≥ hL2

2
+

2λL3

3
. (ROFIII : affine)

For w 6= 0, we have the following analytic solutions:

u(x) =





λx, x ∈ (−L, l2),(
2α
l22

+ λ
)
x+ 2α

l2
, x ∈ (−l2, 0),

(
2α
l22

+ λ
)
x− 2α

l2
+ h, x ∈ (0, l2),

λx+ h, x ∈ (l2, L),

⇔
β >

8α2

3h
, β ≤ 2α

3
L,

l2 =
3β

2α
.

(TVL∞I : affine)

u(x) =





λx, x ∈ (−L, l3),(
h

2l3
+ λ
)
x+ h

2 , x ∈ (−l3, l3),

λx+ h, x ∈ (l3, L),

⇔
β ≤ hL2

6
, β <

8α2

3h
,

l3 =

√
6β

h
.

(TVL∞II : affine)

u(x) =





(
6(αL−β)

L3 + λ
)
x+ 4αL−3β

L2 , x ∈ (−L, 0),
(

6(αL−β)
L3 + λ

)
x+ h− 4αL−3β

L2 , x ∈ (0, L),
⇔

β >
4α

3
L− hL2

6
,

β >
2

3
αL, β <

4

3
αL,

β < αL+
λL3

6
.

(TVL∞III : affine)
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u(x) =





(
− 2α

(L−l4)2 + λ
)
x− 2αl4

(L−l4)2 , x ∈ (−L,−l4),

λx, x ∈ (−l4, 0),

λx+ h, x ∈ (0, l4),(
− 2α

(L−l4)2 + λ
)
x+ 2αl4

(L−l4)2 + h, x ∈ (l4, 0),

⇔

β < 2αL− 2α

3

√
2α

λ
,

β ≥ 4α

3
L,

l4 =
3β

2α
− 2L.

(TVL∞IV : affine)

u(x) =

(
3(hL

2

2 − β)

2L3
+ λ

)
x+

h

2
⇔

β <
4α

3
L− hL2

6
, β >

hL2

6

β <
hL2

2
+

2λL3

3
.

(TVL∞V : affine)

For demonstration reasons, the Figure 4.7 is formed when λ = h
L and the colored regions

are defined appropriately.

hL

7hL2

6

2hL2

3

hL2

6

hL
2

ROFI ROFII ROFIII

TVL∞
II

TVL∞
I

TVL∞
IV

TVL∞
V

β

α

TVL∞
III

Figure 4.7: Piecewise affine function: The solutions graph of (P) for TVL∞ with λ = h
L .
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4.5 An image decomposition approach

Here, we present another formulation for the problem (P) by decomposing an image into

a BV part (piecewise constant) and a part that belongs to W 1,p(Ω) (smooth). We also

provide a characterisation of minimisers based on the analysis of Yves Meyer for the (ROF)

model , cf. [Mey01]. Let 1 < p ≤ ∞ and Ω ⊂ Rd and consider the following minimisation

problem:

min
u∈BV(Ω)
v∈W1,p(Ω)

L(u, v) :=
1

2
‖f − u− v‖2L2(Ω) + α ‖Du‖M + β ‖∇v‖Lp(Ω) . (4.54)

This is in fact an infimal convolution operation between the total variation seminorm and

the Lp norm of the gradient. In this way, we can decompose our image into two geometric

components. The second term captures the piecewise constant structures in the image, as

in the (ROF), whereas the third term captures the smoothness that depends on the value

of p. In the one dimensional setting, we can prove that the problems (P) and (4.54) are

equivalent.

Proposition 4.5.1. Let Ω = (a, b) ⊂ R, then a pair (v∗, u∗) ∈ W1,p(Ω) × BV(Ω) is a

solution of (4.54) if and only if (∇v∗, u∗ + v∗) ∈ Lp(Ω)× BV(Ω) is a solution of (P).

Proof. Let u = u+ v then, we have the following

(v∗, u∗) ∈ argmin
u∈BV(Ω)
v∈W1,p(Ω)

1

2
‖f − u− v‖2L2(Ω) + α ‖Du‖M + β ‖∇v‖Lp(Ω) ⇔

(v∗, u∗) ∈ argmin
u∈BV(Ω)
v∈W1,p(Ω)

1

2
‖f − u− v‖2L2(Ω) + α sup

φ∈C∞c (Ω)
‖φ‖∞≤1

{〈
u, φ′

〉}
+ β ‖∇v‖Lp(Ω) ⇔

(v∗, u∗) ∈ argmin
u∈BV(Ω)
v∈W1,p(Ω)

1

2
‖f − u‖2L2(Ω) + α sup

φ∈C∞c (Ω)
‖φ‖∞≤1

{〈
u, φ′

〉
+ 〈∇v, φ〉

}
+ β ‖∇v‖Lp(Ω) ⇔

(w∗, u∗) ∈ argmin
u∈BV(Ω)
w=∇v

v∈W1,p(Ω)

1

2
‖f − u‖2L2(Ω) + α ‖Du− w‖M + β ‖w‖Lp(Ω) .

However, we can eliminate the last constraint since

{
w ∈ Lp(Ω) : ∃v ∈W1,p(Ω), w = ∇v

}
= Lp(Ω). (4.55)

Indeed, let w ∈ Lp(Ω) ⊂ L1(Ω) for p ∈ (1,∞] and define v(x) =
´ x
a w(s) ds for x ∈ Ω ⊂ R.

Clearly, v′ = w a.e and by Hölder’s inequality

|v(x)|p =

∣∣∣∣
ˆ x

a
w(s) ds

∣∣∣∣
p

≤ (x− a)p−1

ˆ x

a
|w(s)|p ds < C <∞
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4.5. An image decomposition approach

and v ∈W1,p(Ω) for p ∈ (1,∞). Finally, for the case p =∞, let C > 0 be a constant such

that |w(x)| ≤ C a.e. on Ω. In that case we have |v(x)| ≤
´ x
a |w(s)| ds ≤ C|Ω| < ∞, i.e.,

v ∈ L∞(Ω) and hence v ∈W1,∞(Ω) since v′ = w, see also [Bre11, Chapter 8]. Therefore,

(w∗, u∗) ∈ argmin
u∈BV(Ω)
w∈Lp(Ω)

1

2
‖f − u‖2L2(Ω) + α ‖Du− w‖M + β ‖w‖Lp(Ω) ,

where u∗ = u∗ + v∗ and w∗ = ∇v∗.

Even though for d = 1 it is true that every Lp function can be written as a gradient,

this is not true for higher dimensions. In fact, as we show in the following sections, the

constraint (4.55) is quite restrictive and for example the staircasing effect cannot always

be eliminated in the denoising process, see for instance Figure 4.25. The existence of

minimisers of (4.54) is shown following again the same techniques as in Proposition 4.2.1.

Moreover, one can immediately show if (v∗, u∗) ∈ W1,p(Ω) × BV(Ω) is a minimiser of

(4.54) then

u∗ = argmin
u∈BV(Ω)

{
1

2
‖f − u− v∗‖2L2(Ω) + α ‖Du‖M

}
(4.56)

v∗ = argmin
v∈W1,p(Ω)

{
1

2
‖f − u∗ − v‖2L2(Ω) + β ‖∇v‖Lp(Ω)

}
. (4.57)

Hence by the optimality conditions of (4.56) and (4.57), we obtain that:

0 ∈ α∂ ‖·‖M (u∗) + u∗ + v∗ − f, (4.58)

0 ∈ β∂ ‖·‖Lp(Ω) (v∗) + u∗ + v∗ − f. (4.59)

Using (4.59) and the characterisation of the subdifferential of total variation, see Section

2.4,

∂ ‖·‖M (u∗) =
{

divφ : ‖φ‖L∞(Ω) ≤ 1, φ · n|∂Ω = 0, 〈divφ, u〉L2(Ω) = ‖u∗‖M
}
, (4.60)

see also [CCC+10] and [BO13], we derive that

ˆ
Ω
f =

ˆ
Ω
u∗ + v∗. (4.61)

Let (u1, v1), (u2, v2) ∈ BV(Ω)×W1,p(Ω) be two minimisers of (4.54). Since the energy

functional is convex one has that for every λ ∈ [0, 1]

L(λ(u1, v1) + (1− λ)(u2, v2)) ≤ λL(u1, v1) + (1− λ)L(u2, v2),
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which is in fact an equality i.e.,

L(λ(u1, v1) + (1− λ)(u2, v2)) = λL(u1, v1) + (1− λ)L(u2, v2). (4.62)

Moreover, if u1 + v1 6= u2 + v2 due to the strict convexity of 1
2 ‖f − ·‖

2
L2(Ω) we reach a

contradiction of (4.62), hence the sum is unique. In addition to this, we also have

α ‖D(λu1 + (1− λ)u2)‖M + β ‖∇(λv1 + (1− λ)v2)‖Lp(Ω)

= α(λ ‖Du1‖M + (1− λ) ‖Du2‖M + β(λ ‖∇v1‖Lp(Ω) + (1− λ) ‖∇v2‖Lp(Ω)). (4.63)

If we assume that

‖∇(λv1 + (1− λ)v2)‖Lp(Ω) < λ ‖∇v1‖Lp(Ω) + (1− λ) ‖∇v2‖Lp(Ω) ,

then we contradict the equality on (4.63). Hence, the Minkowski inequality becomes an

equality which is equivalent to the existence of µ > 0 such that ∇v2 = µ∇v1. In other

words, we have proved the following proposition that was also shown in [KV09] in a similar

context:

Proposition 4.5.2. Let (u1, v1), (u2, v2) be two minimisers of (4.54). Then

u1 + v1 = u2 + v2, (4.64)

∃µ > 0 such that ∇v2 = µ∇v1. (4.65)

4.5.1 Characterisation of minimisers

In this section, we provide a characterisation of minimisers for (4.54). Namely, we would

like to identify the cases when one obtains (u, 0), (0, v) as minimisers and certainly when

an optimal decomposition occur, i.e, u represents the piecewise constant component of

the image and v represents a component whose structure depends on p. Based on Meyer

analysis, who introduced the so-called texture norm in order to provide the decomposition

for the (ROF) model, we define a similar texture norm for our proposed model (4.54)

and provide necessary and sufficient conditions for certain types of solutions depending

on the texture norm and the regularising parameters α, β. Related characterisations of

minimisers can be found in [KV09], [LV08], [LV05], [OSV03].

In [Mey01, Theorem 3], Meyer proved the following theorem:

Theorem 4.5.3. Let f ∈ L2(R2) and (u, v) ∈ BV(R2)× L2(R2) then:

(i) If ‖f‖∗ ≤ α, then the image f is seen as a texture and f = 0 + f in the (ROF)

decomposition.
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4.5. An image decomposition approach

(ii) If ‖f‖∗ > α, then the (ROF) decomposition f = u+v is characterised by the following

conditions

‖v‖∗ = α and

ˆ
Ω
u(x)v(x)dx = α ‖Du‖M .

Let us recall the definition ‖·‖∗ and the corresponding G(R2) space. For further details,

the reader is referred to [Mey01] and [Had05].

Definition 4.5.4. The space G(R2) is a Banach space of distributions f which can be

decomposed as

f(x) = ∂g1(x) + ∂g2(x)

with g1, g2 ∈ L∞(R2). It is endowed with the following norm,

‖f‖∗ := inf
{
‖|g(x)|‖L∞(R2) | ∇ · g = f

}

where g = (g1, g2) and |g(x)| =
√
g1(x)2 + g2(x)2.

Roughly speaking, the space G(R2) could be seen as the dual space of BV(R2). In

fact, G(R2) is the dual space BV∗ of BV where BV = BV
S(R2)

i.e, the closure of BV with

the Schwartz norm. Hence, by a duality argument we observe that if f ∈ BV(R2) and

g ∈ L2(R2) then,

‖g‖∗ = sup
f∈BV

‖Df‖M≤1

{ˆ
R2

f(x)g(x)dx

}
(4.66)

and the following inequality is valid:

ˆ
R2

f(x)g(x)dx ≤ ‖Df‖M ‖g‖∗ , ∀f ∈ BV, ∀g ∈ L2(R2) (4.67)

The above relation (4.67) can be generalised for functions f ∈ BV(R2). The proof

is straightforward using approximations with mollifiers, see [Mey01, Lemma 3]. Notice,

that the Definition 4.5.4 applies for cases where Ω = R2. Later, it was generalised also to

Ω ⊂ R2 being a bounded domain. For unbounded domains a constant non-zero function

has unbounded G-norm and a normalisation condition is necessary as

ˆ
Ω
f(x)dx = 0. (4.68)

In fact the authors in [AA05, Proposition 2.1] prove that

G(Ω) =

{
f ∈ L2(Ω) :

ˆ
Ω
f(x) dx = 0

}
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and the G-norm becomes

‖f‖∗ := inf
{
‖|g(x)|‖L∞(Ω) | ∇ · g = f, g · ~n = 0 on ∂Ω

}
(4.69)

where ~n is the unit normal vector on the boundary.

We are now ready to begin with the characterisation of minimisers for trivial cases,

solutions which one of the components are zero, i.e., (u∗, 0) or (0, v∗). We observe from

equations (4.56), (4.57) that if (u∗, 0) or (0, v∗) are minimisers of (4.54), then either u∗

behaves as a ROF-type solution or v∗ is a L2 −W1,p solution:

v∗ = argmin
v∈W1,p(Ω)

{1

2
‖f − v‖2L2(Ω) + β ‖∇v‖Lp(Ω)

}
.

Proposition 4.5.5. (i) If ‖f − u‖∗ ≤ α and β
α ≥ |Ω|1/q, then (u, 0) is a minimiser.

(ii) If ‖f − v‖∗ ≤ β|Ω|
1
q ≤ α, then (0, v) is a minimiser.

Proof. (i) Since ‖f − u‖∗ ≤ α, then for every h ∈ BV(Ω), we have that

ˆ
Ω

(f − u)h dx ≤ α ‖Dh‖M .

The latter is also true for every h ∈W1,1(Ω) ⊂ BV(Ω). Hence,

ˆ
Ω

(f − u)h dx ≤ α ‖∇h‖L1(Ω)

and since Ω ⊂ R2 bounded, we conclude that

ˆ
Ω

(f − u)h ≤ α ‖∇h‖1 ≤ α|Ω|
1
q ‖∇h‖p ≤ β ‖∇v‖p , ∀h ∈W1,p(Ω) ⊂W1,1(Ω).

Finally, for every h ∈W1,p(Ω) one has that

α ‖Du‖M +
1

2
‖f − u‖2L2(Ω) ≤ α ‖Du‖M (Ω) +

1

2
‖f − u‖2L2(Ω) +

1

2
‖h‖2L2(Ω) − 〈f − u, h〉 + 〈f − u, h〉

= α ‖Du‖M +
1

2
‖f − u− h‖2L2(Ω) + 〈f − u, h〉

≤ α ‖Du‖M +
1

2
‖f − u− h‖2L2(Ω) + β ‖∇h‖Lp(Ω)

i.e., (u, 0) is a minimiser for (4.54).

(ii) Similarly, for every h ∈ BV(Ω) we have that

ˆ
Ω

(f − v)h ≤ β|Ω|
1
q ‖Dh‖M ≤ α ‖Dh‖M .
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Hence,

β ‖∇v‖Lp(Ω) +
1

2
‖f − v‖2L2(Ω) ≤ β ‖∇v‖Lp(Ω) +

1

2
‖f − v‖2L2(Ω) +

1

2
‖h‖2L2(Ω)

− 〈f − v, h〉 + 〈f − v, h〉

= β ‖∇v‖Lp(Ω) +
1

2
‖f − v − h‖2L2(Ω) + 〈f − v, h〉

≤ β ‖∇v‖Lp(Ω) + α ‖Dh‖M +
1

2
‖f − v − h‖2L2(Ω) ,

i.e., (0, v) is a minimiser for (4.54).

The previous proposition implies that for β
α ≥ |Ω|

1
q , we have the decomposition f =

u+ 0 + (f −u) where u ∈ BV(Ω) and the residual part r := f −u ∈ L2(Ω) is controlled by

α. On the other hand, if β
α ≤ |Ω|

− 1
q , we have that f = 0 + v + (f − v) where v ∈W1,p(Ω)

for p ∈ (1,∞] and the residual part r := f − v ∈ L2(Ω) is controlled by β. We observe

that the first condition for the (4.54) model coincides with (4.35) for the (P), meaning

that the u component behaves as an ROF solution whereas the v component is 0. For the

other inequality, where β ≤ α|Ω|
1
q the u component is 0 and the v component is a solution

of L2−W1,p problem, which in fact is continuous. This is also verified by the fact that in

the right corner regions (lightblue regions) of the quadrants in Figures 4.4, 4.6 and 4.7 the

corresponding solutions are indeed continuous. Compared to the analysis performed in

Section 4.4.2 in the one dimensional setting, the estimates derived above provide us with

a quantitative analysis also in the two dimensional setting.

Our next step is to examine the cases where non-trivial solutions are obtained. For

this task, we need to define a similar texture norm as the ‖·‖∗ norm, dual to BV + W1,p.

Definition 4.5.6. Let g ∈ L2(Ω) and α, β > 0 and 1 < p ≤ ∞. We define

‖g‖(α,β) = sup
G

| 〈g, u+ v〉 |
α ‖Du‖M + β ‖∇v‖Lp(Ω)

(4.70)

with 〈·, ·〉 be the L2 inner product and

G =
{

(u, v) ∈ BV ×W1,p : α ‖Du‖M + β ‖∇v‖Lp(Ω) 6= 0.
}

(4.71)

The following useful lemma is also proved in [LV08] in a similar context.

Lemma 4.5.7. If f ∈ L2(Ω) with ‖f‖(α,β) <∞ then
´

Ω f = 0.

Proof. Let (u, v) ∈ G. Then, for any constant λ ∈ R\
{

0
}

, (u, v + λ) ∈ G and

| 〈f, u+ v + λ〉 |
α ‖Du‖M + β ‖∇(v + λ)‖Lp(Ω)

=
| 〈f, u+ v〉 + 〈f, λ〉 |

α ‖Du‖M + β ‖∇v‖Lp(Ω)

≤ ‖f‖(α,β) <∞.
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The last condition implies that there exists a constant Λ > 0 such that | 〈f, λ〉 | < Λ <∞
for all λ ∈ R\

{
0
}

and therefore | 〈f,XΩ〉 | must be zero i.e.,
´

Ω f = 0

Now, we are ready to provide a characterisation of minimisers via the texture norm

defined above.

Theorem 4.5.8. Let (u, v) ∈ G be an optimal decomposition BV ×W1,p of (4.54) with

f ∈ L2(Ω) and the residual part is r := f − u− v ∈ L2(Ω). Then,

‖f‖(α,β) ≤ 1⇔ u = v = 0, r = f. (4.72)

If ‖f‖(α,β) > 1, then (u, v) ∈ G is characterised by

‖r‖(α,β) = 1 and | 〈f, u+ v〉 | = α ‖Du‖M + β ‖∇v‖Lp(Ω) . (4.73)

Proof. Suppose (0, 0) is a minimiser, then for every pair (u, v) ∈ BV ×W1,p we have

1

2
‖f‖2L2(Ω) ≤ α ‖Du‖M + β ‖∇v‖Lp(Ω) +

1

2
‖f − u− v‖2L2(Ω)

〈f, u+ v〉 ≤ α ‖Du‖M + β ‖∇v‖Lp(Ω) +
1

2
‖u+ v‖2L2(Ω) .

Replacing u by εu and v by εv with ε→ 0±, we obtain

| 〈f, u+ v〉 | ≤ α ‖Du‖M + β ‖∇v‖Lp(Ω) ⇒ ‖f‖(α,β) ≤ 1.

For the converse, we have that | 〈f, u+ v〉 | ≤ α ‖Du‖M + β ‖∇v‖Lp(Ω) for (u, v) ∈ G and

α ‖Du‖M + β ‖∇v‖Lp(Ω) +
1

2
‖f − u− v‖2L2(Ω) = α ‖Du‖M + β ‖∇v‖Lp(Ω) +

1

2
‖f‖2L2(Ω)

+
1

2
‖u+ v‖2L2(Ω) − 〈f, u+ v〉

≥ 1

2
‖f‖2L2(Ω) +

1

2
‖u+ v‖2L2(Ω) ≥

1

2
‖f‖2L2(Ω) .

Hence, the optimal decomposition in this case is u = v = 0 with r = f . For the condition

(4.73), let (h1, h2) ∈ BV ×W1,p and ε ∈ R then,

α ‖D(u+ εh1)‖M+β ‖∇(v + εh2)‖Lp(Ω)+
1

2
‖r − ε(h1 + h2)‖2L2(Ω) ≥ α ‖Du‖M+β ‖∇v‖Lp(Ω)+

1

2
‖r‖2L2(Ω)

and can be simplified by the triangle inequality on the left hand side as

α ‖Du‖M + α|ε| ‖Dh1‖M + β ‖∇v‖Lp(Ω) + β|ε| ‖∇h2‖Lp(Ω) +
1

2
‖r − ε(h1 + h2)‖2L2(Ω) ≥

α ‖Du‖M + β ‖∇v‖Lp(Ω) +
1

2
‖r‖2L2(Ω) ⇔
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α|ε| ‖Dh1‖M + β|ε| ‖∇h2‖Lp(Ω) +
1

2
‖r − ε(h1 + h2)‖22 ≥

1

2
‖r‖2L2(Ω) ⇔

α|ε| ‖Dh1‖M + β|ε| ‖∇v‖Lp(Ω) +
ε2

2
‖h1 + h2‖2L2(Ω) ≥ ε 〈r, h1 + h2〉 .

Dividing with ε > 0 and letting ε→ 0, one has

〈r, h1 + h2〉 ≤ α ‖Dh1‖M + β ‖∇h2‖Lp(Ω) ,

i.e., ‖r‖(α,β) ≤ 1. If we replace (h1, h2) = (u, v) ∈ BV ×W1,p and ε ∈ (−1, 1) then

αε ‖Du‖M + βε ‖∇v‖Lp(Ω) +
ε2

2
‖u+ v‖2L2(Ω) ≥ ε 〈r, u+ v〉 .

Again considering the cases with ε→ 0±, we conclude that

| 〈r, u+ v〉 | = α ‖Du‖M + β ‖∇v‖Lp(Ω) ,

with ‖r‖(α,β) = 1.

Finally, if (4.73) is true then for every (h1, h2) ∈ BV ×W1,p and ε ∈ R

α ‖D(u+ εh1)‖M + β ‖∇(v + εh2)‖Lp(Ω) +
1

2
‖r − ε(h1 + h2)‖2L2(Ω)

≥ 〈r, u+ v + ε(h1 + h2)〉 +
1

2
‖r‖2L2(Ω) +

ε2

2
‖h1 + h2‖2L2(Ω) − ε 〈r, h1 + h2〉

= 〈r, u+ v〉 +
1

2
‖r‖2L2(Ω) +

ε2

2
‖h1 + h2‖2L2(Ω)

= α ‖Du‖M + β ‖∇v‖Lp(Ω) +
1

2
‖r‖2L2(Ω) +

ε2

2
‖h1 + h2‖2L2(Ω)

≥ α ‖Du‖M + β ‖∇v‖Lp(Ω) +
1

2
‖r‖2L2(Ω)

i.e., (u, v) ∈ G is an optimal decomposition of f .

Notice that condition (4.72) is valid if and only if
´

Ω f = 0. Otherwise, by Lemma

4.5.7 we have that ‖f‖(α,β) =∞.

4.6 Numerical Experiments

Throughout this section, we present our numerical simulations in one and two dimensional

setting for the problem (P). We start with the one dimensional case where we verify

numerically the analytical solutions obtained in Section 4.4.3 for p = 2 and p = ∞. The

type of structures that are promoted for different values of p is also examined. Moreover,

we perform a structural decomposition using the equivalent model (4.54) for complex

one dimensional data. Finally, we proceed to the two dimensional experiments where we
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focus on image denoising tasks and in particular on the reduction and elimination of the

staircasing effect.

The discretised version of problem (P) is defined as

min
u∈Rn×m

1

2
‖f − u‖22 + TVLpα,β(u). (4.74)

Here TVLpα,β : Rn×m → R with 1 < p ≤ ∞ is

TVLpα,β(u) = argmin
w∈(Rn×m)2

α ‖∇u− w‖1 + β ‖w‖p ,

where for x ∈ Rn×m, we set ‖x‖p =

(
n,m∑
i,j=1
|x(i, j)|p

) 1
p

and for x = (x1, x2) ∈ (Rn×m)2 we

set

‖x‖p =




n,m∑

i,j=1

(√
(x1(i, j))2 + (x2(i, j))2

)p



1
p

.

We denote by ∇u = ((∇u)1, (∇u)2) the discretised gradient with forward differences and

zero Neumann boundary conditions defined as

(∇u)1(i, j) =





u(i,j+1)−u(i,j)
t if 1 ≤ i ≤ n, 1 ≤ j < m,

0 if 1 ≤ i ≤ n, j = m,

(∇u)2(i, j) =





u(i+1,j)−u(i,j)
t if 1 ≤ i < n, 1 ≤ j ≤ m,

0 if i = n, 1 ≤ j ≤ m,

where t denotes the step size. The discrete version of the divergence operator is defined

as the adjoint of ∇, i.e., for every w = (w1, w2) ∈ (Rn×m)2 and u ∈ Rn×m, we have that

〈−divw, u〉 = 〈w,∇u〉 with

divw =





w1(i,j)−w2(i−1,j)
t if 1 < i < n, 1 ≤ j ≤ m,

w1(i,j)
t if i = 1, 1 ≤ j ≤ m,

−w1(i−1,j)
t if i = m, 1 ≤ j ≤ m,

+





w2(i,j)−w1(i,j−1)
t if 1 < j < m, 1 ≤ i ≤ n,

w2(i,j)
t if j = 1, 1 ≤ i ≤ n,

−w2(i,j−1)
t if j = m, 1 ≤ i ≤ n.

We solve the minimisation problem (4.74) in two ways. The first one is by using

the CVX optimisation package under MOSEK solver (e.g. interior point methods), see

[GB14, Mos08]. This method is efficient for small–medium scale optimisation problems
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and thus it is a suitable choice in order to replicate one dimensional solutions. On the

other hand, we prefer to solve large scale two dimensional versions of (4.74) with the split

Bregman method [GO09] which has been widely used for the fast solution of non-smooth

minimisation problems.

4.6.1 Split Bregman for TVLp–L2

We describe how we adapt the split Bregman algorithm to our discrete model (4.74). We

have already encountered the split Bregman algorithm in the previous chapter. Letting

z = ∇u− w, the corresponding unconstrained problem becomes

min
u∈Rn×m

w∈(Rn×m)2

z∈(Rn×m)2

1

2
‖f − u‖22 + α ‖z‖1 + β ‖w‖p , such that z = ∇u− w.

Replacing the constraint by a Lagrange multiplier λ, we obtain the following uncon-

strained formulation:

min
u∈Rn×m

w∈(Rn×m)2

z∈(Rn×m)2

1

2
‖f − u‖22 + α ‖z‖1 + β ‖w‖p +

λ

2
‖z −∇u+ w‖22 . (4.75)

The Bregman iteration, see [OBG+05], that corresponds to the minimisation (4.75)

leads to the following two step algorithm:

(uk+1, zk+1, wk+1) = argmin
u,z,w

1

2
‖f − u‖22 + α ‖z‖1 + β ‖w‖p +

λ

2

∥∥∥bk − z +∇u− w
∥∥∥

2

2
,

bk+1 = bk + zk+1 −∇uk+1 − wk+1

(4.76)

Since solving (4.76) at once is a difficult task, we employ a splitting technique and

minimise alternatingly for u, z and w. This yields the split Bregman iteration for our

method:
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Split Bregman algorithm for (4.74)

uk+1 = argmin
u∈Rn×m

1

2
‖f − u‖22 +

λ

2

∥∥∥bk + zk −∇u+ wk
∥∥∥

2

2
, (4.77)

zk+1 = argmin
z∈(Rn×m)2

α ‖z‖1 +
λ

2

∥∥∥bk + z −∇uk+1 + wk
∥∥∥

2

2
, (4.78)

wk+1 = argmin
w∈(Rn×m)2

β ‖w‖p +
λ

2

∥∥∥bk + zk+1 −∇uk+1 + w
∥∥∥

2

2
, (4.79)

bk+1 = bk + zk+1 −∇uk+1 − wk+1. (4.80)

Next, we discuss how we solve each of the subproblems (4.77)–(4.79) for the p < ∞
and p =∞ cases.

Solution of (4.77): The first-order optimality condition of (4.77) results into the following

linear system:

(I − λ∆)︸ ︷︷ ︸
A

u = f − λdiv(bk + zk − wk)︸ ︷︷ ︸
c

. (4.81)

Here A is a sparse, symmetric, positive definite and strictly diagonal dominant matrix,

thus we can easily solve (4.81) with an iterative solver such as conjugate gradient or Gauss–

Seidel method. However, due to the zero Neumann boundary conditions, the matrix A

can be efficiently diagonalised by the two dimensional discrete cosine transform,

A = W ᵀ
nmDWnm, (4.82)

where here Wnm is the discrete cosine matrix and D = diag(µ1, · · · , µn∗m) is the diago-

nal matrix of the eigenvalues of A. In this case, A has a particular structure of a block

symmetric Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks and one can ob-

tain the solution of (4.77) by three operations involving the discrete cosine transform

[Han10] as follows: Firstly, we calculate the eigenvalues of A by multiplying (4.82) with

e1 = (1, 0, · · · , 0)ᵀ from both sides and using the fact that W ᵀ
nmWnm = WnmW

ᵀ
nm = Inm,

we get

Di,i =
[WnmAe1]i
[Wnme1]i

, i = 1, 2, · · · , nm. (4.83)

Then, the solution of (4.77) is computed exactly by

u = W ᵀ
nmD

−1Wnmc. (4.84)

Solution of (4.78): The solution of the subproblem (4.78) is obtained in a closed form
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via the following shrinkage operator, see also [GO09, WYYZ08]. Indeed, for i = 1, 2 we

have

zk+1
i = shrinkα

λ
(bki −∇iuk+1 + wki︸ ︷︷ ︸

gi

) := max
(
‖g‖2 −

α

λ

) gi
‖g‖2

. (4.85)

Solution of (4.79): Finally, we discuss the solution of the subproblem (4.79). In the

spirit of [VO96], we solve (4.79) by a fixed point iteration scheme, where we consider

finite values of p. Letting κ = β
λ and η = −bk − zk+1 +∇uk+1, the first-order optimality

condition of (4.79) becomes

κ
|w|p−2w

‖w‖p−1
p

+ w − η = 0. (4.86)

For given wk, we obtain wk+1 by the following fixed point iteration

wk+1
i =

ηi
∥∥wk

∥∥p−1

p

κ|wk|p−2 + ‖wk‖p−1
p

, (4.87)

under the convention that 0/0 = 0. We can also consider solving the p-homogenous

analogue (Pp−hom), where for certain values of p, e.g. p = 2, we can solve exactly (4.87),

since in that case wk+1
i = ηi

κ+1 . However, we observe numerically that there is no significant

computational difference between these two methods.

On the other hand, for p =∞ equation (4.79) becomes

argmin
w∈(Rn×m)2

κ ‖w‖∞ +
1

2
‖w − η‖22 , (4.88)

which is the proximity operator associated to κ ‖·‖∞ and is denoted by proxκ‖·‖∞(η).

Then, since (κ ‖·‖∞)∗(w) = I{‖·‖1≤κ}(w) and by the proximity identity, see for instance

[CW05, CP08],

η = proxκ‖·‖∞(η) + proxI{‖·‖1≤κ}
(η) (4.89)

it suffices to compute the Euclidean projection onto L1 ball i.e.,

proxI{‖·‖1≤κ}
(η) = argmin

v

1

2
‖v − η‖22 + I{‖·‖1≤κ}(η)

= argmin
‖v‖1≤κ

1

2
‖v − η‖22 := π{‖·‖1≤κ}(η), (4.90)

and the solution of (4.88) is now w = η−π{‖·‖1≤κ}(η). A detailed analysis for an efficient

algorithm solving (4.90) is proposed in [DSYT08] and for the vector-valued cases we follow

[FP11]. Let us finally mention that since we do not solve exactly all the subproblems

(4.77)–(4.79), we do not have a convergence proof for the split Bregman iteration. However

in practice, the algorithm converges faster to the right solutions after comparing them with
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the corresponding solutions obtained with the CVX package.

4.6.2 One dimensional results

Here, we set m = 1 and thus u ∈ Rn×1, w ∈ (Rn×1)2. Initially, we compare our nu-

merical solutions with the analytical ones, obtained in Section 4.4.3 for the step function

for p = 2, p = ∞ and the piecewise affine function for p = ∞. We also demonstrate

that for a particular datum the solution of (P) coincides with the one dimensional second

order total generalised variation, see Proposition 4.4.11. Finally, we continue with numer-

ical experiments related to the image decomposition approach in Section 4.5. There, we

concentrate on the geometrical structure decomposition of one dimensional signal into a

piecewise constant and structural components depending on the value of p.
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(a) Step function
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(b) (ROFI): α = 15,
β = 500
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(c) (ROFII) : α = 60,
β = 1300

Figure 4.8: Comparison between numerical solutions of (P) and the corresponding an-
alytical solutions obtained in Section 4.4.3. The parameters α and β are chosen so that
conditions (4.43) and (4.44) are satisfied.

The step function defined in (4.41) is discretised into 2000 points where h = 100, L = 1

and Ω = [−1, 1]. We first examine the ROF-type solutions for p = 2, where the parameters

α and β are selected according to the conditions (4.43) and (4.44), see Figure 4.8. There,

we see that the analytical solutions coincide with the numerical ones. Obviously, we can

obtain identical results if one selects p =∞ with an appropriate choice of α and β.

Now, we proceed by computing the non-ROF solutions. The numerical solutions are

obtained using the 2-homogeneous analogue of (4.46), since we have proved that the 1-

homogeneous and p-homogeneous problems are equivalent modulo an appropriate rescaling

of the parameter β, see Proposition 4.3.2. In fact, as it is described in Figure 4.5, in order to

obtain solutions from the purple region, it suffices to seek solutions for the 2-homogeneous

(4.46). Notice also that these solutions are exactly the solutions obtained solving a Huber-

TV problem, see Proposition 4.3.3. The analytical solutions are given in (4.48) and (4.49)

and are compared with the numerical ones in Figure 4.9, where we observe that they

coincide. We also verify the equivalence between the 1-homogeneous and 2-homogeneous
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(a) TVL2
I : α = 20,

β2−hom = 450
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(b) TVL2
II : α = 60,

β2−hom = 450
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(c) 1 and 2-homogeneous:
α = 15, β2−hom=450,
β1−hom = β2−hom ‖w‖2

Figure 4.9: Comparison between numerical and analytical solutions obtained in Section
4.4.3 for the step function, by solving the 2-homogeneous problem (4.46). The parameters
α and β are chosen so that conditions (4.48) and (4.49) are satisfied. The last plot indicates
the equivalence between the 2-homogeneous (4.46) and the 1-homogeneous problem (P).
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(a) TVLp discontinuous solutions for
p = {4
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2 , 2, 3, 4, 10}
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Figure 4.10: Step function: The structure of solutions for (P) with different values of p.

problems where α is fixed and β is obtained from Proposition 4.3.2, see Figure 4.9c.

We continue our experiments for general finite values of p focusing on the geometric

behaviour of the solutions as p increases. In order to compare the solutions for p ∈ (1,∞),

we fix the parameter α and choose appropriate values of β and p. We choose α and β so that

they belong to the purple region in Figure 4.5, i.e., β < ( 2L
q+1)

1
qα and β < h

2 (2Lq+1

q+1 )
1
q , hence

non-ROF solutions are obtained. We set p = {4
3 ,

3
2 , 2, 3, 4, 10} and for the solutions that

preserve the discontinuity we select β = {72, 140, 430, 1350, 2400, 6800} with fixed α = 20

(observe that β < ( 2L
q+1)

1
qα is valid in any case), see Figure 4.10a. For the continuous cases,

we set α = 60 and β = {50, 110, 430, 1700, 3000, 9500} (again the conditions α ≥ hL
2 and

β < h
2 (2Lq+1

q+1 )
1
q hold), see Figure 4.10b. Notice that for p = 4

3 , the solution has a similar

behaviour to p = 2, but with a steeper gradient at the discontinuity point. Moreover,

the solution becomes almost constant near the boundary of Ω. On the other hand, as we

increase p, the slope of the solution near the discontinuity point reduces and it becomes
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(a) (TVL∞I ): α = 15, β = 10
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(b) (TVL∞II ): α = 60, β = 30
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(c) (TVL∞III): α = 40, β = 60
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(d) (TVL∞IV): α = 80, β = 70

Figure 4.11: Step function: Comparison between numerical solutions of (P) with p =∞
and the corresponding analytical solutions obtained in Section 4.4.3. The parameters α and
β satisfy the corresponding conditions for each solution, see (TVL∞I : step)-(TVL∞IV : step).

almost linear with a relative small constant part near the boundary.

The almost linear structure of the solutions that appears for large p motivates us to

examine the case of p =∞, firstly for the step function and secondly for a piecewise affine

function defined in (4.53) where λ = 50 and the data is again discretised in 2000 points.

For demonstration purposes, here Ω = [−2, 2]. In Figures 4.11a-4.11d, we present our

numerical solutions compared to the analytical ones for the step function with p = ∞.

The parameters are selected according to (TVL∞I : step)-(TVL∞IV : step). Similarly, in

Figures 4.12a-4.12h we present all the eight type of solutions regarding the piecewise

affine function. In addition to this, we analyse a specific type of solution which appears in

Figure 4.7. In the yellow region, namely the (TVL∞III : affine) solution, if we select β = αL

then we can achieve a solution with the same slope as our initial data. If we compare

this result with a high order regulariser as TGV2
α,β, we observe that although in both

cases we preserve the discontinuity, TGV2
α,β cannot respect the geometry of the data.

In fact, none of the acceptable solutions obtained using TGV2
α,β for a piecewise affine

function, see [PB15, Section 5.2] can achieve a similar result. In Figure 4.13, we present

our results using the TGV2
α,β and TVL∞α,β regularisers. Futhermore, TVL∞ is equivalent

to TGV2 on certain class of one dimensional data. In order to achieve this kind of result

we use a symmetric input data as in Figure 4.14. It is a combination of two piecewise

affine functions with two discontinuities creating a spike at the origin. The parameters
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(a) (ROFI): α = 25, β = 90
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(b) (ROFII): α = 120,
β = 320
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(c) (ROFIII): α = 210,
β = 500
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(d) (TVL∞I ) : α = 20,
β = 15
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(e) (TVL∞II ) : α = 80,
β = 40
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(f) (TVL∞III) : α = 90,
β = 215
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(g) (TVL∞IV): α = 30,
β = 90
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(h) (TVL∞V ) : α = 100,
β = 130

Figure 4.12: Piecewise affine function: Comparison between numerical solutions of (P)
with p =∞ and the corresponding analytical solutions obtained in Section 4.4.3. The pa-
rameters α and β satisfy the corresponding conditions for each solution see (ROFI : affine)-
(TVL∞V : affine).

are selected according to Proposition 4.4.11.

In the last part of this section, we discuss the image decomposition approach presented

in Section 4.5. We treat a more complicated one dimensional noiseless signal with piecewise

constant, affine and exponential components and solve the discretised version of (4.54)

using CVX under MOSEK. We verify numerically the equivalence between (4.54) and (P)

for p = 2, i.e., (∇v, u+ v) corresponds to (w, u) where (v, u) and (w, u) are the solutions

of (4.54) and (P) respectively, see Figure 4.15. The parameters α and β for Figure

4.15a are selected appropriately in order to have an optimal decomposition into piecewise
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Figure 4.13: Numerical comparison of TGV2
α,β and TVL∞α,β regularisers for the piece-

wise affine function. The parameters α and β are chosen such that ‖f − uTGV2‖2 =
‖f − uTVL∞‖2.
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Figure 4.14: Numerical comparison of TGV2
α,β and TVL∞α,β regularisers for the symmet-

ric hat function. The parameters are α = 2 and βTGV2 = 2 and βTVL∞ = 4.

constant and exponential components. We also compare the decomposed parts u, v for two

extreme values of p, i.e., p = 4
3 and p =∞. In order to have a reasonable comparison on

the corresponding solutions, here the parameters α, β are selected such that the residual

‖f − u− v‖2 is the same for both values of p. As we observe, the v decomposition with

p = 4
3 promotes some flatness on the solution, meaning that it converges to an almost

piecewise constant solution, see Figure 4.16a. On the other hand for p =∞, more spikes

are introduced in the solution u+ v, see Figure 4.16b.

4.6.3 Two dimensional results

Let us now consider images instead of signals, where u ∈ Rn×m, w ∈ (Rn×m)2 with m > 1

and Ω denotes a rectangular/square image domain. We focus on image denoising tasks

and on eliminating the staircasing effect for different values of p. We may again use CVX

under MOSEK but with some serious drawbacks in terms of computational efficiency. In

fact, for large image data, CVX fails to obtain results for high values of p due to out of

memory errors.

We start with the image in Figure 4.17, i.e., a square with piecewise affine structures.

The image size is 200 × 200 pixels at a [0, 1] intensity range. The noisy image, Figure

4.17b, is a corrupted version of the original image with Gaussian noise of zero mean and

variance σ = 0.01.

156



4.6. Numerical Experiments

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

4
u + v
data

(a) Solution u+ v of (4.54)
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(c) Equivalence of (P) and (4.54):
u = u+ v
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(d) Equivalence of (P) and (4.54):
w = ∇v

Figure 4.15: Numerical results on the image decomposition approach (4.54) for p = 2,
see Section 4.5.
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(a) Decomposition of the data in Figure
4.15a for p = 4
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(b) Decomposition of the data in Figure
4.15a for p =∞

Figure 4.16: Decomposition of the data in Figure 4.15a into u, v parts for p = 4
3 and

p = ∞. The value p = 4
3 produces a v component with flat structures while p = ∞

produces a component with affine structures. In both cases we have ‖f − u− v‖2 = 6.667.

In Figure 4.18, we present the best reconstructions results in terms of two quality

measures, the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity Index
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(a) Square (b) Noisy square: PSNR=20.66
and SSIM=0.1791

Figure 4.17: Square with piecewise affine structures and its noisy version with σ = 0.01.

(SSIM), see [WBSS04] for the definition of the latter. In each case, the values of α and

β are selected appropriately for the optimal PSNR and SSIM. Our stopping criterion for

the proposed algorithm in Section 4.6.1 is the relative residual error becoming less than

10−6 i.e., ∥∥uk+1 − uk
∥∥

2

‖uk+1‖2
≤ 10−6. (4.91)

We also fix a maximum number of iterations for the finite and large values of p, e.g. p = 7,

which is at 5000 iterations. This is in order to ensure that the fixed point iteration we

perform on the w subproblem (4.87) converges to the correct solution. We observe by

comparing with the CVX results that for p < 4 the stopping rule in (4.91) is sufficient to

obtain the correct solution.

Finally, for computational efficiency, we fix λ = 10α when 1 < p < 4 and λ = 1000α

when 4 ≤ p <∞. This is an empirical rule in order to reduce the computational cost when

we perform the fixed point iteration for large but finite values of p. For p =∞, we fix again

λ = 10α. The best reconstructions in terms of the PSNR have no visual difference among

p = 3
2 , 2 and 3 and the staircasing is obvious, see Figures 4.18a–4.18c. This is one more

indication that the PSNR – which is based on the squares of the difference between the

ground truth and the reconstruction – does not correspond to the optimal visual results.

However, the best reconstructions in terms of SSIM are visually better. They exhibit

significantly reduced staircasing for p = 3
2 and p = 3 and is essentially absent in the case

of p = 2, see Figures 4.18d–4.18f.

We can also get a total staircasing elimination by setting higher values for the param-

eters α and β, as we show in Figure 4.19. There, one observes that on one hand as we

increase p, almost affine structures are promoted – see the middle row profiles (blue) in

Figure 4.19, where we compare them with the middle row profiles of the ground truth
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(a) TVL
3
2 : α = 0.1, β = 2.5,

PSNR=33.63

(b) TVL2: α = 0.1,
β = 13.5, PSNR=33.68

(c) TVL3: α = 0.1, β = 76,
PSNR=33.70

(d) TVL
3
2 : α = 0.3, β = 7.7,

SSIM=0.9669

(e) TVL2: α = 0.3, β = 34,
SSIM=0.9706

(f) TVL3: α = 0.3, β = 182,
SSIM=0.9709

Figure 4.18: Best reconstructions in terms of PSNR and SSIM for p = 3
2 , 2, 3.

(green) – and on the other hand these choices of α, β produce a serious loss of contrast

that however can be easily treated via the Bregman iteration. Contrast enhancement via

Bregman iteration was introduced in [OBG+05], see also [BBBM13] for an application to

higher-order models. It involves solving a modified version of the minimisation problem

(P). Setting u0 = f , for k = 1, 2, . . ., we solve iteratively

uk+1 = argmin
u∈Rn×m

w∈(Rn×m)2

1

2

∥∥∥f + ṽk − u
∥∥∥

2

2
+ α ‖∇u− w‖1 + β ‖w‖p ,

ṽk+1 = ṽk + f − uk+1.

(4.92)

Instead of solving (4.74) once for fixed α and β, we solve a sequence of similar problems

adding back a noisy residual in each iteration which results to a contrast improvement.

For stopping criteria, e.g. discrepancy principle, regarding the Bregman iteration we refer

to [OBG+05]. In Figure 4.20 we present our best Bregmanised results in terms of SSIM.

There, we notice that Bregman iteration leads to a significant contrast improvement, in
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(a) TVL
3
2 : α = 1,

β = 25,
SSIM=0.9391
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(b) TVL2: α = 1,
β = 116,

SSIM=0.9433
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(c) TVL3: α = 1,
β = 438,

SSIM=0.9430
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(d) TVL7: α = 2,
β = 5000,

SSIM=0.9001

Figure 4.19: Staircasing elimination for p = 3
2 , 2, 3 and 7. High values of p promotes

almost affine structures as we observe from the middle-row comparison of the solution u
(blue) and the ground truth (green).

comparison to the results of Figure 4.19. Notice that the Bregmanised TVL2 (first-order)

reconstruction is indeed visually close to the Bregmanised TGV2 (4.6) (second-order),

compare Figures 4.20e and 4.20f. We use the Chambolle–Pock primal-dual method, cf.

[CP11], to solve the corresponding second-order TGV2 and second-order Bregmanised

TGV2.

We continue our experimental analysis with a radially symmetric image, see Figure

4.21. In Figure 4.22, we demonstrate that we can achieve staircasing-free reconstructions

for p = 3
2 , 2, 3 and 7. Let us emphasise the fact that when we increase p, we obtain results

that preserve the spike in the centre of the circle, see Figure 4.22d.

The loss of contrast can be treated again using the Bregman iteration (4.92). The best

results of the latter in terms of SSIM are presented in Figure 4.23, for p = 2, 4 and 7 and

they are also compared with the corresponding Bregmanised TV and TGV2. We observe

that we can obtain reconstructions that are visually close to the TGV2 ones and in fact

notice that for p = 7, the spike on the centre of the circle is better reconstructed compared

to TGV2. This behaviour is clear when we visualise the surface plots of the corresponding

reconstructions, see Figure 4.24. As we observe both in Figures 4.23f and 4.24h, TGV2

regulariser tends to smooth out the spike-like structures appear in the origin of the circle

and behaves similar to the TVL2 regulariser.

We conclude with numerical results for the image decomposition approach of Section

4.5 which we solve again using the split Bregman algorithm. Recall that in two dimensions,
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(a) TV: α = 0.2,
SSIM=0.9387

(b) TVL2: α = 1, β = 116,
SSIM=0.9433

(c) TGV2: α = 0.12,
β = 0.55, SSIM=0.9861

(d) Bregmanised TV: α = 1,
SSIM=0.9401, 4th iteration

(e) Bregmanised TVL2:
α = 2, β = 220,

SSIM=0.9778, 4th iteration

(f) Bregmanised TGV2:
α = 2, β = 10,

SSIM=0.9889, 8th iteration

Figure 4.20: First Row: Best reconstruction in terms of SSIM for TV, TVL2 and TGV2.
Second Row: Best reconstruction in terms of SSIM for Bregmanised TV, TVL2 and TGV2.

(a) Circle (b) Noisy circle: SSIM=0.2457

Figure 4.21: Image with symmetric radial structures and its noisy version with σ = 0.01.

161



Infimal convolution regularisation functionals of BV and Lp spaces

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) TVL
3
2 : α = 0.8,

β = 17,
SSIM=0.8909
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(b) TVL2: α = 0.8,
β = 79,

SSIM=0.8998
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(c) TVL3: α = 0.8,
β = 405,

SSIM=0.9019
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(d) TVL7: α = 0.8,
β = 3700,

SSIM=0.9024

Figure 4.22: Staircasing elimination for p = 3
2 , 2, 3 and 7. Better preservation of spike-

like structures for large values of p. Middle-row comparison of the regularised solution u
(blue) and the ground truth (green).

the solutions of (4.54) will not necessarily be the same with the ones of (P). In fact, we

observe that (4.54) cannot always eliminate the staircasing, see Figure 4.25. Even though,

we can easily eliminate the staircasing both in the square and in the circle by applying

TVLp regularisation, Figures 4.25b and 4.25d, we cannot obtain equally satisfactory results

by solving (4.54). While using the latter we can get rid of the staircasing in the circle,

Figure 4.25c, this is not possible for the square, Figure 4.25a, where we observe – after

extensive experimentation – that no values of α and β lead to a staircasing elimination.

This is analogous to the difference between the TGV2 and the ICTV regularisers, see also

[Mül13, Chapter 4]. However, as we mentioned before, the strength of the formulation

(4.54) lies on its ability to efficiently decompose an image into piecewise constant and

smooth parts. We show that in Figure 4.26, for the image in Figure 4.25c.

4.6.4 The p =∞ case

Now, we present our results using the TVL∞ as our regulariser. We follow the same

procedure as we did in the finite p case and choose high values of α and β in order

to remove the staircasing. For instance, in the square example with fix α = 5 and we

gradually increase the values of β until we obtain an ROF solution, i.e., |w| = 0, see

Figure 4.27. We realise two main properties for the reconstructed images. First, we

can achieve staircasing-free reconstructions when β = 4, 6, 10 ·104, see also the middle row

profiles in Figure 4.27. Moreover, in every reconstruction we observe not only a serious loss
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(a) Bregmanised TV: α = 2,
SSIM=0.8912, 6th iteration

(b) Bregmanised TVL2:
α = 5, β = 625,

SSIM=0.9718, 12th iteration

(c) Bregmanised TVL4:
α = 5, β = 8000,

SSIM=0.9802, 13th iteration

(d) Bregmanised TVL7:
α = 3, β = 15000,

SSIM=0.9807, 9th iteration

(e) Bregmanised TGV2:
α = 2, β = 10,

SSIM=0.9913, 8th iteration

(f) Difference between the
Bregmanised TVL7 and

TGV2

Figure 4.23: Best reconstruction in terms of SSIM for Bregmanised TV, TVL2, TVL4,
TVL7 and TGV2. The absolute difference between TVL7 TGV2, see also Figure 4.24.

of contrast but also a significant loss of geometrical information of the square. The reason

for this kind of behaviour for the TVL∞ regulariser has already mentioned in Section

4.4.2. We proved that in the one dimensional setting, see Proposition 4.4.10, a regularised

solution u of (P) behaves as a piecewise affine function with the same gradient, namely

±‖w‖∞. Although, it is difficult to derive the same conclusion for the two dimensional

setting, we expect the same behaviour that is |w| = ‖w‖∞ in regions where u 6= f . This

can be verified numerically as we demonstrate in Figure 4.28b, where we present the image

of |w| =
√
w2

1 + w2
2. We observe that w is constant a.e. with |w| = ‖w‖∞ = 0.0054 and

the slope of the solution u is the same in regions where u 6= f .

Let us focus on the loss of contrast. As before, in order to recover the loss of contrast

we employ the Bregmanised version of our model and the regularised solution is shown

in Figure 4.28c. One can observe that we recover a perfect reconstruction in the inner
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(a) Original (b) Bregmanised
TVL2

(c) Bregmanised
TVL7

(d) Bregmanised
TGV

(e) Original:
central part zoom

(f) Bregmanised
TVL2: central part

zoom

(g) Bregmanised
TVL7: central part

zoom

(h) Bregmanised
TGV: central part

zoom

Figure 4.24: Surface plots of the images in Figure 4.23. Notice how high values of p,
here for p = 7, can preserve the sharp spike in the middle of the image.

(a) Solution u+ v of
(4.54): p = 2,

α = 0.8, β = 120,
SSIM=0.9268

(b) TVL2: α = 1,
β = 116,

SSIM=0.9433

(c) Solution u+ v of
(4.54) p = 2:

α = 0.8, β = 70,
SSIM=0.8994

(d) TVL2: α = 0.8,
β = 79,

SSIM=0.8998

Figure 4.25: Comparison between the model (4.54) for p = 2 and TVL2: Staircasing
cannot be always eliminated with (4.54).

square however we introduce a kind of staircasing in the background region. This is not

the standard staircasing that we have encountered so far, see for instance Figure 4.27d. It

acts as an affine approximation of the noisy data and we refer to this behaviour with the

term affine staircasing, see the middle row profiles in Figure 4.28d that correspond to the

background region.

For the sake of eliminating the affine staircasing in the background area of the inner

square, we need to examine its structure. The square image is constructed with two
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(a) Piecewise constant
component u

(b) Smooth component v
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(c) Middle row profiles

Figure 4.26: Geometric decomposition of the image in Figure 4.25c into a piecewise
constant and smooth component, u and v respectively, by solving (4.54) for p = 2.
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(a) TVL∞: α = 5,
β = 4 · 104
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(b) TVL∞: α = 5,
β = 6 · 104
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(c) TVL∞: α = 5,
β = 10 · 104
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(d) TVL∞: α = 5,
β = 15 · 104

Figure 4.27: TVL∞ reconstructions with fixed α = 5 and different values of β until we
reach a ROF solution. Staircasing can be eliminated with a serious loss of contrast and
geometrical information. Middle row profiles (blue) compared with ground truth (green).

different slopes one in the inner square and one in the background region, see the green

middle row profile in Figure 4.28d. Notice that the slope in the inner square is sin =
0.2314

47 = 0.0049 whereas the slope in the background region is sout = 1
100 = 0.01. As

we illustrate in Figure 4.27, we know that the regularising parameter β is responsible to

the slope of the regularised solution. In Figures 4.29a, 4.29b, we perform the following

experiment. We select two different values of β, meaning that we enforce two different

slopes in the solution u of (P). For a fixed α = 0.3 and proper choices of β we can

eliminate the staircasing only in one of these regions. This is equivalent to say that we
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(a) TVL∞: α = 5,
β = 60000,

SSIM=0.8197

(b) |w|, α = 5,
β = 60000

(c) Bregmanised
TVL∞: α = 5,
β = 60000,

SSIM=0.9601, 14th
iteration
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(d) Middle row
profiles of Figure

4.28c (blue) and the
ground truth (green)

Figure 4.28: The TVL∞ reconstruction u and its |w| =
√
w2
x + w2

y solution of (P).

Bregmanised TVL∞ reconstruction and the middle row profile comparison (blue) with the
ground truth (green).

(a) TVL∞: α = 0.3,
β = 3500,

SSIM=0.9547

(b) TVL∞: α = 0.3,
β = 7000,

SSIM=0.9672

(c) Bregmanised
weighted-TVL∞

(4.93): α = 5,
βin = 6 · 104,

βout = 11 · 104, 14th
iteration,

SSIM=0.9837

(d) Bregmanised
TGV2: α = 2,

β = 10,
SSIM=0.9889, 8th

iteration

Figure 4.29: TVL∞ reconstructions with fixed α and different scalar values of β. Breg-
manised weighted-TVL∞ reconstructions with a space dependent parameter β. Bregman-
ised TGV2 reconstruction. A suitable choice of β ∈ Rn×m can achieve similar results to
high-order regularisers.

approximate the correct slope of the ground truth for the inner square when β = 3500

and for the background when β = 7000 and in these regions u 6= f . Notice, that the

values of β behave inversely proportional to the slopes sin and sout. That is, we choose

β = 3500 in order to eliminate the staircasing for the inner square which is the half of

the value β we use so as to eliminate the staircasing in the background. This behaviour
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(a) TVL∞: α = 0.7,
β = 14000, SSIM=0.9122

(b) Bregmanised TVL∞:
α = 3, β = 65000,

SSIM=0.9828, 8th iteration

(c) Bregmanised TVL∞

surface plot

(d) Bregmanised TGV2:
α = 2, β = 10,

SSIM=0.9913, 8th iteration

(e) Difference between the
Bregmanised TVL∞ and

TGV2

(f) Bregmanised TGV2

surface plot

Figure 4.30: TVL∞, Bregmanised TVL∞ and Bregmanised TGV2 reconstructions for
the circle test image. The surface plots indicate that spike-like structures are better
preserved with the TVL∞ regulariser. The reader is suggested to compare the absolute
difference of the Bregmanised TVL∞ and TGV2 with the Figure 4.23f.

motivates us to treat β as a space dependent parameter that has two different values in

these regions. Hence, β ∈ Rn×m is a matrix multiplied componentwise with |w| and we

obtain a weighted-TVL∞ version of (4.74), that is

min
u∈Rn×m

1

2
‖f − u‖22 + α ‖∇u− w‖1 + ‖β ◦ w‖∞ , (4.93)

where ◦ denotes the Hadamard product. Analogously, we consider the Bregmanised ap-

proach of the weighted-TVL∞ where we choose βin = 6 · 104 and βout = 11 · 104 the values

of the matrix β for the inner square and the background region respectively. As we ob-

serve in Figures 4.29c–4.29d, we obtain a reconstruction that is similar to the Bregmanised

TGV2 both visually and in terms of SSIM.
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We perform the same experiments for the circle image. If we examine the middle

row profiles that appear in Figure 4.22, we realise that there is no need to treat β as

a space dependent parameter since the slope is almost the same in the inner circle and

in the background region. We collect all reconstructions regarding the TVL∞ and the

Bregmanised TVL∞ in Figure 4.30. Firstly, we demonstrate that we can eliminate the

staircasing with high values of α and β. Secondly, we can apply the Bregmanised approach

(4.92) and obtain similar reconstruction to TGV2. In fact, spike-like structures that are

present in the origin of the circle are better preserved using the TVL∞ regulariser, see for

instance the surface plots in Figures 4.30c–4.30f as well as the absolute difference in Figure

4.30f. Compared to the finite p case, see Figure 4.23f, we observe that in the p =∞ case,

the spike structure in the origin is even better reconstructed.

4.6.5 Open problems

(a) Circle (b) Weighted matrix
β computed using
the ground truth
image as in (4.94)
with c = 120 and

ε = 10−3

(c) Weighted-TVL∞

with β as in Figure
4.31b: α = 0.5,
SSIM=0.9888

(d) TGV2: α = 0.2,
β = 0.6

SSIM=0.9834

Figure 4.31: Comparison between weighted-TVL∞ with β as in (4.94) and TGV2 regu-
larisers. A TVL∞ reconstruction is visually closer to the ground truth, since TGV2 tends
to smooth spike-like structures, hence SSIM is slightly less.

In general images with complex structures, finding the correct matrix β is not an easy

task and remains an open question. However, we would like to emphasise the capabilities

of our regulariser compared to high-order methods as TGV2. As we verified numerically in

the previous section, β has to be selected appropriately so that the slope of the regularised

solution is close to the slope of the ground truth image g. In fact, β has to be inversely

proportional to the gradient of the ground truth. Hence, one reasonable choice is to define

β as

β =
c

|Dg|+ ε
(4.94)
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4.6. Numerical Experiments

where c is a positive constant and ε a small positive constant. This choice of β can be

interpreted as follows: in flat-constant regions, i.e., where |Dg| → 0, β →∞ meaning that

ROF-type solution is enforced which is preferable to reconstruct piecewise constant regions

and preserve the edges on the image. Also, a suitable choice of the parameter c based on

the values |Dg| can approximate the correct slope for the solution u. In Figures 4.31b-

4.31c, we compute the space dependent matrix β using the gradient of the ground truth

image g and compare it with the corresponding TGV2 reconstruction. Our reconstruction

is better compared to TGV2 both visually and in terms of the SSIM. In addition, we can

avoid considering the Bregmanised approach of our model since a sophisticated choice of

β is enough to reduce on its own the loss of contrast and hence the computational cost,

in order to arrive to a satisfying reconstruction, is also reduced. In our final numerical

experiments, we follow the same procedure to real world images as in the parrot and the

ladybug. The noisy version of parrot is corrupted with Gaussian noise of σ = 0.001, see

Figure 4.32. The image resolution is 200x200 pixels. Since, there is no a priori information

about the ground truth image, it is reasonable to apply a smoothing to our noisy version

and use this version to compute the matrix β. We perform a Gaussian filtering using

the Matlab’s built-in functions fspecial and imfilter with standard deviation σ = 2 and

window size of 13x13 pixels. The filtered image is denoted by fσ. The corresponding β is

now

β =
c

|∇fσ|+ ε
. (4.95)

First, we observe that due to the smoothing we perform in the noisy image, we have

lost all the edge information as it is appeared in Figure 4.32c. This is far more convincing if

one compares between the gradient images of the ground truth and the smoothed versions

in Figures 4.32d-4.32e. However, we are not interested so much on losing the edges since

this can be guaranteed by our proposed regulariser and the selection of the constant c. In

fact, a large constant c will result to a similar reconstruction where one employs TV as

the regulariser and hence edges will be preserved, see Figure 4.33a. The proof is identical

to Proposition 4.4.6 that if

c ≥ α|Ω|(‖Dfσ‖∞ + ε) (4.96)

then a ROF-type solution is produced. Simply, notice that

|Dfσ|+ ε

|Dfσ|+ ε
◦ |w| ≤ (‖Dfσ‖∞ + ε)

c
‖β ◦ w‖∞

where all the actions are considered componentwise and ε is a relatively small constant.

Certainly is not an accurate threshold but can help us on finding the best constants α

and c that produce the highest SSIM. On the other hand, if we use the weighted-TVL∞

where β is computed via the gradient of the filtered image, we have reduced the staircasing

especially in smooth regions on the background and in its beak. Now, if we compute β
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Infimal convolution regularisation functionals of BV and Lp spaces

(a) Ground truth (b) Gaussian noise
σ = 0.001, SSIM=0.7134

(c) Gaussian smoothing
σ = 2, window size of 13x13

pixels

(d) Gradient of the ground
truth

(e) Gradient of the filtered
image

Figure 4.32: Parrot image corrupted with Gaussian noise and the gradients of the filtered
and the ground truth images.

based on the gradient of the noiseless image, the solution we obtain is almost perfect and

visually close to the original image with a very high SSIM value, compare also the SSIMs

of TV, TGV2 and TVL∞ computed via the filtered version reconstructions. We perform

similar numerical experiments for the image in Figure 4.34. Its resolution is 200x183 pixels

and is contaminated by Gaussian noise of σ = 0.005. The best reconstructions in terms

of SSIM are presented in Figure 4.35.

Let us mention that all the experiments regarding the weighted-TVL∞ functional are

again solved by the split Bregman algorithm performed in (4.93). Similar to (4.88), here

we need to solve

min
w∈(Rn×m)2

‖β ◦ w‖∞ +
1

2
‖w − η‖22 . (4.97)
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4.6. Numerical Experiments

(a) TV reconstruction, α = 0.02,
SSIM=0.9229

(b) TGV2, α = 0.023 and β = 0.2
SSIM=0.9308

(c) Weighted-TVL∞

reconstruction, α = 0.024 and β
computed from 4.32e (filtered

version) with c = 11, ε = 10−4,
SSIM=0.9279

(d) Weighted-TVL∞

reconstruction, α = 0.4 and β
computed from 4.32d (ground
truth) with c = 30, ε = 10−4,

SSIM=0.9599

Figure 4.33: Best reconstruction in terms of SSIM using TV, TVG2 and weighted-TVL∞

regularisers computed via the filtered and the ground truth image.

This can be rephrased as a projection onto weighted `1 balls, since

(
‖β ◦ ( · )‖∞

)∗
(w) = I{∥∥∥ 1

β
◦ ( · )

∥∥∥
1
≤1
}(w),

where ∥∥∥∥
1

β
◦ w
∥∥∥∥

1

=

n,m∑

i,j

| 1

βi,j
◦ wi,j |.
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Infimal convolution regularisation functionals of BV and Lp spaces

(a) Ladybug (b) Gaussian noise
σ = 0.005, SSIM=0.4076

(c) Gaussian smoothing
σ = 2, window size of 13x13

pixels

(d) Gradient of the ground
truth

(e) Gradient of the filtered
image

Figure 4.34: Ladybug image corrupted with Gaussian noise and the gradients of the
filtered and the ground truth images.

We use the algorithm proposed in [KST11] with a slight modification to solve the projection

onto weighted `1 balls and using (4.89), we obtain the solution of (4.97). Moreover, we

compare numerically its computational cost with other regularisers such as TV and TGV2.

In order to have a fair comparison, we choose to solve all the minimisation models for TV

and TGV2 regularisers using the same numerical approach. For this purpose, we use

CVX. In Table 4.2, we collect all the computational (CPU) times for the reconstructions

presented in Figure 4.33 and Figure 4.35 with medium cvx precision. As we mentioned

before, CVX is significantly computational slow and is not suitable for medium-large two

dimensional images. Recall that the resolutions for the parrot and ladybug images are

200x200 and 200x183 respectively and the CPU time is affected by the size of the images,

see Table 4.2. For large scale problems, MOSEK uses a presolver in order to reduce some

constraints and variables for the interior-point method. This is very computationally

expensive and for instance images of size close to 512x512 are the limit that MOSEK can

handle with a 2GB of memory. However, it provides with very accurate and trustworthy
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4.6. Numerical Experiments

(a) TV reconstruction, α = 0.06,
SSIM=0.8608

(b) TGV2, α = 0.068 and
β = 0.046 SSIM=0.8874

(c) Weighted-TVL∞

reconstruction, α = 0.07 and β
computed from Figure 4.34e
(filtered version) with c = 30,
ε = 10−4, SSIM=0.8729

(d) Weighted-TVL∞

reconstruction, α = 0.5 and β
computed from Figure 4.34d
(ground truth) with c = 50,
ε = 10−4, SSIM=0.9300

Figure 4.35: Best reconstruction in terms of SSIM using TV, TVG2 and weighted-TVL∞

regularisers computed via the filtered and the ground truth image.

reconstructions and furthermore accurate conclusions regarding the computational speed.

Clearly, we observe that TGV2 reconstructions are indeed the slowest compared to TV

and weighted-TVL∞ reconstructions for both the parrot and the ladybug images. The

computational time difference between the weighted-TVL∞ and TGV2 is over 100 seconds.

Therefore, we believe that by finding a suitable choice of β, first-order TV-related reg-

ularisers are in fact sufficient and efficient so as to obtain comparable reconstructions with

high-order regularisers. There is still room for improvement for better quality reconstruc-

tions as one can observe by comparing between a TGV2 reconstruction with SSIM=0.9284

and a weighted TVL∞ reconstruction with SSIM=0.9599 in Figures 4.33b-4.33d respec-
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Infimal convolution regularisation functionals of BV and Lp spaces

CPU time with CVX (sec)

TV w-TVL∞ (filtered) w-TVL∞ (ground truth) TGV2 Size

Parrot 92.1 235.48 215.74 357.73 200x200

Ladybug 79.66 189.26 186.78 284.16 200x183

Table 4.2: Computational times using CVX under MOSEK for the reconstructions pre-
sented in Figures 4.33–4.35. The cvx precision is medium. The implementations were
done using MATLAB (2013) with 2.4 GHz Intel Core 2 Duo and 2 GB of memory.

tively. This difference in the SSIM value is mainly due to the fact that TGV2 regulariser

besides eliminating the noise and the staircasing it also oversmooths texture structures

specially in the wing of the parrot. Hence, a correct choice of β provides not only a

suitable gradient information to the final solution but also enforce a better treatment to

texture regions, a significant image property that is responsible to obtain high-quality

image reconstructions.
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Chapter 5

Conclusions

In this thesis we have presented novel image reconstruction methods based on the total

variation regularisation that was introduced in [ROF92]. These kind of methods have

been proposed in the context of general imaging denoising as well as for reconstructing

tomographic images obtained via Positron emission tomography (PET).

We begin, in Chapter 2, with an introduction and a review of basic mathematical

tools needed in this dissertation. We emphasise mainly the space of functions of bounded

variation and how it can be beneficial in imaging applications.

In Chapter 3, we present our variational method related to medical imaging and PET

reconstruction. It is a combined regularisation between the image and the sinogram space

that one encounters during a PET scan. Our explicit reconstruction of total variation

regularisation, directly on the sinogram space, provides us with a new insight on how

PET reconstruction could be improved and in which cases. This is focused on enhancing

object boundaries and especially for images where thin structures are present. We illustrate

this behaviour with an extensive analysis at both theoretical and numerical levels where

we realise that one can achieve a significant improvement on reconstructing tomographic

images governed by thin and elongated structures. This property is illustrated for simple

phantoms as well as realistic PET phantoms that depict the activity of the human heart

as the XCAT cardiac-torso phantom.

In Chapter 4, we begin with a brief review of first and second order TV-based regular-

isation methods such as the classical ROF model, the infimal convolution regularisation

proposed in [CL97], and the second order total generalised variation proposed in [BKP10].

In order to remove the staircasing that TV usually introduces, one common and success-

ful path is to enforce high-order derivatives to the variational model with an additional

computational cost. However, this is not always the case as we demonstrate in Chapter

4. We propose a family of first-order infimal convolution regularisation TVLp functionals

of BV and Lp spaces where 1 < p ≤ ∞. We examine the type of solutions that TVLp

promotes depending on its regularising parameters and the value of p. In addition, we
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Conclusions

show that our regulariser is either equivalent to the ROF regularisation when certain con-

ditions are fulfilled or to the Huber-TV regularisation, see [Hub64], for p = 2. However,

the most important outcome of this analysis is in the case of p =∞. We acquire piecewise

affine structures, where to the best of our knowledge this is a novel result regarding first-

order methods. The reconstructions are not only comparable with those obtained from

high-order methods such as TGV2 but also in certain cases are visually better e.g. for

spike-like structures. Finally, we state some open questions related to the weighted-TVL∞

regulariser and how β can be tuned appropriately so as to recover an even better quality

image.
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Appendix A

Exact solutions of TVL∞:

Piecewise affine function

In this section, we present our analytical computations of TVL∞α,β regulariser that are

omitted from Chapter 4 in Section 4.4.3 for the piecewise affine function g with one

discontinuity. Recall that

g(x) =




λx, , x ∈ (−L, 0],

λx+ h, , x ∈ (0, L),

with λ 6= 0 and the corresponding optimality conditions for p =∞ that a solution of (P)

should satisfy for φ ∈ H1
0(Ω) are the following:

φ′ = u− g,
φ ∈ αSgn(Du− w),

φ ∈ L1(Ω), ‖φ‖L1(Ω) ≤ β, if w = 0,

φ ∈ L1(Ω), 〈φ,w〉 = β ‖w‖∞ , ‖φ‖L1(Ω) ≤ β , if w 6= 0.

(A.1)

We begin with the computations of the three ROF solutions where w = 0 in Ω = (−L,L).

For a solution that is constant and equal to the mean value i.e., u = 1
Ω

´
Ω g(x) dx = h

2 ,

we require that φ is a quadratic function which vanishes at x = ±L. Indeed, for every

x ∈ (−L, 0), we have that φ′(x) = h
2 − λx which by the boundary conditions and its

symmetry can be expressed as φ(x) = λ
2 (L2−x2) + h

2 (L−|x|) for every x ∈ Ω. Moreover,

‖φ‖L1(Ω) ≤ β ⇔ β ≥ 2λL3

3
+
hL2

2
,

φ(0) < α⇔ λL2 + hL

2
< α,

(A.2)

hence we obtain (ROFIII : affine).
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Exact solutions of TVL∞: Piecewise affine function

One the other hand for a piecewise constant solution u with u(x) 6= g(x) in Ω, we

obtain φ(x) = −c1|x| − λ
2x

2 + c2. Since φ(−L) = 0 and φ(0) = α due to the discontinuity

at x = 0, we conclude that c1 = 2α−λL2

2L and c2 = α. In addition, due to the structure of

the solution, we require that

u(0) <
h

2
⇔ α <

hL+ λL2

2
,

u(−L) = c1 ≥ 0⇔ α ≥ hL

2
,

‖φ‖L1(Ω) ≤ β ⇔ β ≥ λL3

6
+ αL,

(A.3)

which coincides with (ROFII : affine).

For a piecewise constant function in I1 = (−L,−l1), I2 = (l1, L), 0 ≤ l1 < L and

u(x) = g(x) otherwise, we have that φ(x) = −c1|x| − λ
2x

2 + c2 with φ(−l1) = α and

φ(−L) = 0. Then,

c1 = − α

l1 − L
− λ

2
(l1 + L),

c2 = − αL

l1 − L
− λl1L

2
.

(A.4)

In order to compute l1, we require also that φ′(−l1) = 0 ⇔ c1 = −λl1 and by (A.4) one

needs to solve

λl31 − 2λLl21 − (2L2 − 2α)l1 = 0. (A.5)

Either l1 = 0 or l1 = L −
√

2α
λ . Notice that for the case l1 = 0, c1 = 0 we obtain a

(ROFII : affine) solution with u(x) = 0 for x ∈ (−L, 0) and u(x) = h for x ∈ (0, L).

Hence,

l1 ≥ 0⇔ α ≤ λL2

2
,

‖φ‖L1(Ω) ≤ β ⇔ β ≥ 2αL− 2α

3

√
2α

λ
,

(A.6)

which is exactly (ROFI : affine).

Now, for the non-ROF solutions where w 6= 0 in Ω, we follow the same strategy using

also Propositions 4.4.7 and 4.4.10. For a piecewise affine solution, such that u(x) = g(x)

in I = (−L,−l2) ∪ (l2, L), we have that

φ(x) =





0, x ∈ (−L, l2),

(c1 − λ)x
2

2 − c2|x|+ c3, x ∈ (−l2, l2),

0, x ∈ (l2, L).

(A.7)

Since the solution preserve the discontinuity at x = 0, we have that c3 = α and c1, c2 can
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be found from

φ(−l2) = 0,

φ′(−l2) = 0,
⇔




c1 = 2α

l22
+ λ,

c2 = 2α
l2
.

(A.8)

In order to compute l2, we define

w(x) =





λ, x ∈ (−L, l2),

c1, x ∈ (−l2, l2),

λ, x ∈ (l2, L),

(A.9)

and 〈φ,w〉 = β ‖w‖∞ implies that l2 = 3β
2α . Notice that w is not unique in general and

an equivalent expression is still valid, e.g. w = 0 in I = (−L,−l2) ∪ (l2, L) namely when

φ = 0. Finally, we require that

l2 < L⇔ β ≤ 2αL

3
,

u(0) <
h

2
⇔ c2 <

h

2
⇔ β >

8α2

3h
,

(A.10)

which results to (TVL∞I : affine). A solution with the same structure but without any

discontinuity in Ω has u(0) = h
2 , and therefore

φ(x) =





0, x ∈ (−L, l3),

(c1 − λ)x
2

2 − h
2 |x|+ c3, x ∈ (−l3, l3),

0, x ∈ (l3, L),

, w(x) =





λ, x ∈ (−L, l3),

h
2l3

+ λ, x ∈ (−l3, l3),

λ, x ∈ (l3, L).

(A.11)

Again, we can compute c1, c3 and l3 by

φ(−l3) = 0,

φ′(−l3) = 0,

〈φ,w〉 = β ‖w‖∞

⇔





c1 = h
2l3

+ λ,

c3 = hl3
4 ,

l3 =
√

6β
h .

(A.12)

Then, l3 ≤ L⇔ β ≤ hL2

6 and φ(0) < α⇔ β < 8α2

3h which are the necessary and sufficient

condition for (TVL∞II : affine).

For a discontinuous solution such that u(x) 6= g(x) in Ω we have that φ(x) = (c1 −
λ)x

2

2 − c2|x|+ c3 and w(x) = c1. Then, we find that

φ(0) = α,

φ(−L) = 0,

〈φ,w〉 = β ‖w‖∞

⇔





c1 = 6(αL−β)
L3 + λ,

c2 = 4αL−3β
L2 ,

c3 = α.

(A.13)
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Exact solutions of TVL∞: Piecewise affine function

Finally, we require that

c1 > 0⇔ β < αL+
λL3

6
,

u(0) <
h

2
⇔ c2 <

h

2
⇔ β >

4αL

3
− hL2

6
,

φ′(−L) > 0⇔ β >
2αL

3
,

c2 > 0⇔ β <
4αL

3
,

(A.14)

which is equivalent to (TVL∞III : affine). Certainly, we have similar results for a continuous

solution that u(x) 6= g(x) in Ω. Then, φ(x) = (c1 − λ)x
2

2 − h
2 |x|+ c3 with w(x) = c1 and

one has

φ(−L) = 0,

〈φ,w〉 = β ‖w‖∞
⇔





c1 =
3(hL

2

2
−β)

2L3 + λ,

c3 = hL
8 + 3β

4L

(A.15)

where the conditions

φ(0) < α⇔ c3 < α⇔ β <
4αL

3
− hL2

6
,

c1 > 0⇔ β <
hL2

2
+

2λL3

3
,

φ′(−L) > 0⇔ β >
hL2

6

(A.16)

provide us with the same solution as (TVL∞V : affine).

Our final solution is piecewise affine where u(x) = g(x) in I = (−l4, l4) and can be

seen as the complementary case of (TVL∞I : affine). Therefore, one has that w(x) = c1

and

φ(x) =





(c1 − λ)x
2

2 + c2x+ c3,

c4,

(c1 − λ)x
2

2 − c2x+ c3.

(A.17)

We can compute ci, i = 1, 2, 3, 4 and l4 by the conditions above

φ(0) = α,

φ(−L) = 0,

φ(−l4) = α,

φ′(−l4) = 0,

〈φ,w〉 = β ‖w‖∞

⇔





c4 = α,

c1 = λ− 2α
(L−l4)2 ,

c3 = α− αl24
(L−l4)2 ,

c2 = − 2αl4
(L−l4)2 ,

l4 = 3β
2α − 2L

(A.18)
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and conclude to (TVL∞IV : affine) by

c1 > 0⇔ β < 2αL− 2α

3

√
2α

λ
,

c2 ≤ 0⇔ l4 ≥ 0⇔ β ≥ 4αL

3
.

(A.19)
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Backward EM-TV methods for inverse problems with Poisson noise, Preprint

(2009), 5133 – 5137. (Cited on pages 24, 52, 63, and 64).

[BC11] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Op-

erator Theory in Hilbert Spaces, CMS Books in Mathematics, Springer New

York, 2011, http://dx.doi.org/10.1007/978-1-4419-9467-7. (Cited on

pages 44 and 49).

[BFK09] P. E. Barbano, A. S. Fokas, and G. A. Kastis, Analytical reconstructions for

PET and SPECT employing L1-denoising, Digital Signal Processing, 2009

16th International Conference (2009), 1–5, http://dx.doi.org/10.1109/

ICDSP.2009.5201187. (Cited on page 64).

[BFS11] P. E. Barbano, A. Fokas, and C.-B. Schönlieb, Alternating regularisation in

measurement- and image space for PET reconstruction, Proceeding Interna-

tional conference on Sampling Theory and Applications (2011), 1–4. (Cited

on pages 9 and 63).

184

http://dx.doi.org/10.1007/s11263-006-4331-z
http://dx.doi.org/10.1007/s11263-006-4331-z
http://dx.doi.org/10.1137/040617261
http://dx.doi.org/10.1088/0266-5611/10/6/003
http://dx.doi.org/10.1088/0266-5611/10/6/003
http://www.jstor.org/stable/30041437
http://dx.doi.org/10.1007/s10915-012-9650-3
http://dx.doi.org/10.1007/s10915-012-9650-3
http://dx.doi.org/10.1007/978-1-4419-9467-7
http://dx.doi.org/10.1109/ICDSP.2009.5201187
http://dx.doi.org/10.1109/ICDSP.2009.5201187


BIBLIOGRAPHY

[BKP10] K. Bredies, K. Kunisch, and T. Pock, Total Generalized Variation, SIAM

Journal on Imaging Sciences 3 (2010), no. 3, 492–526, http://dx.doi.org/

10.1137/090769521. (Cited on pages 27, 107, 110, and 175).

[BKV12] K. Bredies, K. Kunisch, and T. Valkonen, Properties of L1-TGV2: The

one-dimensional case, Journal of Mathematical Analysis and Applications

(2012), http://dx.doi.org/10.1016/j.jmaa.2012.08.053,. (Cited on

pages 120, 122, 123, and 127).

[BLZ08] M. Bertero, H. Lanteri, and L. Zanni, Iterative image reconstruction: a

point of view, Mathematical Methods in Biomedical Imaging and Intensity-

Modulated Radiation Therapy (IMRT), (CRM Series vol 7) ed Y Censor, M

Jiang and A K Louis (2008), 37–63. (Cited on pages 24 and 52).

[BMPS14] M. Burger, J. Müller, E. Papoutsellis, and C.-B. Schönlieb, Total varia-

tion regularization in measurement and image space for PET reconstruc-

tion, Inverse Problems 30 (2014), no. 10, 105003, http://stacks.iop.org/

0266-5611/30/i=10/a=105003. (Cited on pages 9, 25, and 51).

[BO04] M. Burger and S. Osher, Convergence rates of convex variational regular-

ization, Inverse Problems 20 (2004), 1411–1420, http://dx.doi.org/10.

1088/0266-5611/20/5/005. (Cited on pages 73 and 76).

[BO13] M. Burger and S. Osher, A Guide to the TV Zoo: Level Set and PDE Based

Reconstruction Methods in Imaging, Springer, 2013. (Cited on pages 48

and 141).

[Bor98] R. Boris, The Calderon reproducing formula, windowed X-ray transforms,

and radon transforms in Lp-spaces, Journal of Fourier Analysis and Applica-

tions 4 (1998), no. 2, 175–197, http://dx.doi.org/10.1007/BF02475988.

(Cited on page 58).

[BP10] M. Bergounioux and L. Piffet, A Second-Order Model for Image Denoising,

Set-Valued and Variational Analysis 18 (2010), no. 3-4, 277–306, http://

dx.doi.org/10.1007/s11228-010-0156-6. (Cited on page 107).

[BPPS15a] M. Burger, K. Papafitsoros, E. Papoutsellis, and C.-B. Schönlieb, Infimal

convolution regularisation functionals of BV and Lp spaces, Part I: The finite

p case, Journal of Mathematical Imaging and Vision, (Accepted) (2015),

http://arxiv.org/abs/1504.01956. (Cited on pages 9, 25, and 105).

[BPPS15b] , Infimal convolution regularisation functionals of BV and Lp Spaces.

The case p = ∞, submitted (2015), http://arxiv.org/abs/1510.09032.

(Cited on pages 9 and 105).

185

http://dx.doi.org/10.1137/090769521
http://dx.doi.org/10.1137/090769521
http://dx.doi.org/10.1016/j.jmaa.2012.08.053
http://stacks.iop.org/0266-5611/30/i=10/a=105003
http://stacks.iop.org/0266-5611/30/i=10/a=105003
http://dx.doi.org/10.1088/0266-5611/20/5/005
http://dx.doi.org/10.1088/0266-5611/20/5/005
http://dx.doi.org/10.1007/BF02475988
http://dx.doi.org/10.1007/s11228-010-0156-6
http://dx.doi.org/10.1007/s11228-010-0156-6
http://arxiv.org/abs/1504.01956
http://arxiv.org/abs/1510.09032


BIBLIOGRAPHY

[Bre67] L. M. Bregman, The relaxation method of finding the common point of convex

sets and its application to the solution of problems in convex programming,

USSR Computational Mathematics and Mathematical Physics 7 (1967),

no. 3, 200–217, http://www.sciencedirect.com/science/article/pii/

0041555367900407. (Cited on page 73).

[Bre11] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential

Equations, Springer-Verlag New York, 2011, http://dx.doi.org/10.1007/

978-0-387-70914-7. (Cited on pages 38, 45, 120, and 141).

[BSB10] C. Brune, A. Sawatzky, and M. Burger, Primal and Dual Bregman

Methods with Application to Optical Nanoscopy, International Jour-

nal of Computer Vision (2010), 211–229, http://dx.doi.org/10.1007/

s11263-010-0339-5. (Cited on page 63).
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(1985), 155–190. (Cited on page 106).

187

http://dx.doi.org/10.1016/j.jvcir.2006.12.004
http://dx.doi.org/10.1016/j.jvcir.2006.12.004
http://dx.doi.org/10.1023/B:JMIV.0000011325.36760.1e
http://dx.doi.org/10.1007/s002110050258
http://dx.doi.org/10.1137/060669498
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/s10851-010-0251-1
http://epubs.siam.org/doi/abs/10.1137/1.9780898717877
http://epubs.siam.org/doi/abs/10.1137/1.9780898717877
http://dx.doi.org/10.1137/050626090


BIBLIOGRAPHY

[DLR] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from

Incomplete Data via the EM Algorithm, Journal of the Royal Statistical

Society. Series B (Methodological) 39, no. 1, 1–38, http://www.jstor.org/

stable/2984875,. (Cited on page 64).

[DSYT08] J. Duchi, S. S. Shai, S. Yoram, and C. Tushar, Efficient Projections Onto the

L1-ball for Learning in High Dimensions, Proceedings of the 25th Interna-

tional Conference on Machine Learning, ICML ’08, 2008, http://doi.acm.

org/10.1145/1390156.1390191, pp. 272–279. (Cited on page 151).

[EG92] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of func-

tions, CRC Press, Boca Raton, FL, 1992. (Cited on page 34).

[Eps07] C. L. Epstein, Introduction to the Mathematics of Medical Imaging, Second

Edition, 2007, http://dx.doi.org/10.1137/9780898717792.fm. (Cited on

pages 55 and 57).

[ET99] I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Clas-

sics in Applied Mathematics, Society for Industrial and Applied Mathemat-

ics, 1999, http://epubs.siam.org/doi/abs/10.1137/1.9781611971088.

(Cited on pages 44, 47, 49, and 123).

[EV07] C. Elion and L. Vese, An image decomposition model using the total variation

and the infinity laplacian, Proc. SPIE 6498 (2007), 64980W–64980W–10,

http://dx.doi.org/10.1117/12.716079. (Cited on page 108).

[Eva10] L.C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in

Mathematics, Second Edition, American Mathematical Society, 2010. (Cited

on pages 22 and 38).

[EZC10] E. Esser, X. Zhang, and T. Chan, A General Framework for a Class of

First Order Primal-Dual Algorithms for Convex Optimization in Imaging

Science, SIAM Journal on Imaging Sciences 3 (2010), no. 4, 1015–1046,

http://dx.doi.org/10.1137/09076934X. (Cited on page 83).

[FL07] I. Fonseca and G Leoni, Modern Methods in the Calculus of Variations: Lp

Spaces, Springer, 2007. (Cited on pages 34 and 39).
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[OSV03] S. Osher, A. Solé, and L. Vese, Image Decomposition and Restoration

Using Total Variation Minimization and the H−1, Multiscale Modeling

& Simulation 1 (2003), no. 3, 349–370, http://dx.doi.org/10.1137/

S1540345902416247. (Cited on pages 107 and 142).

191

http://dx.doi.org/10.1098/rsif.2005.0061
http://dx.doi.org/10.1098/rsif.2005.0061
http://dx.doi.org/10.1002/cpa.3160420503
http://dx.doi.org/10.1002/cpa.3160420503
http://dx.doi.org/10.1137/1.9780898719284
http://dx.doi.org/10.1137/1.9780898719284
http://dx.doi.org/10.1023/B:JMIV.0000011326.88682.e5
http://dx.doi.org/10.1137/1.9780898718324
http://dx.doi.org/10.1137/1.9780898718324
http://dx.doi.org/10.1137/040605412
http://dx.doi.org/10.1137/S1540345902416247
http://dx.doi.org/10.1137/S1540345902416247


BIBLIOGRAPHY

[P. 12] P. Getreuer, Rudin-Osher-Fatemi Total Variation Denoising using Split

Bregman, Image Processing On Line (2012), http://dx.doi.org/10.5201/

ipol.2012.g-tvd. (Cited on page 87).

[PB15] K. Papafitsoros and K. Bredies, A study of the one dimensional total gen-

eralised variation regularisation problem, Inverse Problems and Imaging

9 (2015), no. 2, 511–550, http://dx.doi.org/10.3934/ipi.2015.9.511.

(Cited on pages 120, 125, and 154).

[PCBC10] T. Pock, D. Cremers, H. Bischof, and A. Chambolle, Global Solutions of Vari-

ational Models with Convex Regularization, SIAM Journal on Imaging Sci-

ences 3 (2010), no. 4, 1122–1145, http://dx.doi.org/10.1137/090757617.

(Cited on page 116).

[Phe06] E. M. Phelps, PET: Physics, Instrumentation and Scanners, Springer New

York,, 2006,, http://dx.doi.org/10.1007/0-387-34946-4. (Cited on

page 53).

[Pou10] A.D. Poularikas, Transforms and application handbook, 3rd edition, CRC

Press, 2010. (Cited on pages 69 and 80).
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