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Abstract We present a determination of the strong cou-
pling constant αs(mZ ) based on the NNPDF3.1 determina-
tion of parton distributions, which for the first time includes
constraints from jet production, top-quark pair differential
distributions, and the Z pT distributions using exact NNLO
theory. Our result is based on a novel extension of the
NNPDF methodology – the correlated replica method –
which allows for a simultaneous determination of αs and
the PDFs with all correlations between them fully taken into
account. We study in detail all relevant sources of experimen-
tal, methodological and theoretical uncertainty. At NNLO we
find αs(mZ ) = 0.1185±0.0005(exp) ±0.0001(meth), showing
that methodological uncertainties are negligible. We conser-
vatively estimate the theoretical uncertainty due to missing
higher order QCD corrections (N3LO and beyond) from half
the shift between the NLO and NNLO αs values, finding
�αth

s = 0.0011.
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1 Introduction

The value of the strong coupling constant αs (mZ ) is a domi-
nant source of uncertainty in the computation of several LHC
processes. This uncertainty is often combined with that on
parton distributions (PDFs), with which it is strongly corre-
lated. However, while PDF uncertainties have reduced con-
siderably over the years, as it is clear for example by compar-
ing the 2012 [1] and 2015 [2] PDF4LHC recommendations,
the uncertainty on the αs PDG average [3] remains substan-
tially unchanged since 2010 [4]. As a consequence, the uncer-
tainty on αs is now the dominant source of uncertainty for
several Higgs boson production cross-sections [5].

Possibly the cleanest [6,7] determinations of αs come
from processes that do not require a knowledge of the PDFs,
such as the global electroweak fit [8]. These are free from
the need to control all sources of bias which may affect the
PDF determination and contaminate the resulting αs value.
A determination of αs jointly with the PDFs, however, has
the advantage that it is driven by the combination of a large
number of experimental measurements from several differ-
ent processes. This is advantageous because possible sources
of uncertainties related to specific measurements, either of
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theoretical or experimental origin, are mostly uncorrelated
amongst each other and will average out to some extent in
the final αs result. In addition to the above, the simultaneous
global fit of αs and the PDFs is likely to be more precise and
possibly also more accurate than individual determinations
based on pre-existing PDF sets, many of which have recently
appeared [9–15]. This is due to the fact that it fully exploits
the information contained in the global dataset while account-
ing for the correlation of αs with the underlying PDFs.

Here we present a determination of αs which exploits the
most recent PDFs obtained with the NNPDF methodology,
namely NNPDF3.1 [16]. This updates a previous determi-
nation of αs [17,18] based on NNPDF2.1 [19,20]. In com-
parison to this previous PDF set, NNPDF3.1 represents a
substantial improvement both in terms of input dataset, the-
oretical calculations, and fitting methodology. Specifically,
NNPDF3.1 is the first PDF set to make such an extensive use
of LHC data as to be dominated by them. It is in fact the first
global analysis to simultaneously use differential top, inclu-
sive jet, and Z pT distribution data, all using exact NNLO
theory. Indeed, typical PDF uncertainties are of order of one
to three percent in the data region for NNPDF3.1, about a
factor two smaller than they were for NNPDF2.1.

This greater precision in the PDF determination requires
a corresponding improvement in the methodology used for
the αs extraction. In our previous work [17,18], PDF repli-
cas were determined for a number of fixed values of αs ,
which was then extracted from the χ2 profile versus αs of the
best fit PDF, obtained as an average over the replicas. Here
instead, both αs and PDFs are determined from a simultane-
ous minimization in their combined parameter space. As we
will discuss below, this new method corresponds roughly to
determining the value and uncertainty on αs from the error
ellipse of the multivariate measurement in the (αs, PDF)

hyperspace, and the old method corresponds to performing
a scan of αs along the best-fit PDF line, see Fig. 1 for a

Fig. 1 Comparison between the standard deviation of a pair of corre-
lated variables (αs , θ) and the one-sigma range for the variable αs along
the best-fit line of θ . The best fit is denoted as (α̂s , θ̂ ) and the ellipse is
the one-sigma contour about it. The standard deviations on (αs , θ) are
(σα, σθ ), while σold is the one-sigma interval for αs with fixed θ = θ̂

schematic illustration. In a situation when the variables are
highly correlated, especially if the semi-axes of the ellipse
are of very different length, the procedure used in our previ-
ous work might lead to an underestimate of the uncertainty
in αs . Hence the new procedure becomes very relevant, now
that some PDF uncertainties are rather small.

It turns out that the implementation of this simultaneous
minimization within the NNPDF methodology is nontrivial:
it requires the development of a suitable generalization of
the standard NNPDF approach, which we call the correlated
replica method. Using this strategy, αs can be treated like
any other quantity that depends on the PDFs. In particular,
its central value and uncertainty can be determined by per-
forming statistics over a replica sample. This means that,
for example, the uncertainty on αs is the standard deviation
of an ensemble of αs values. As we shall see, this allows
for a determination of αs with small experimental uncer-
tainties, and negligible methodological uncertainties. Hav-
ing reduced very much the size of all other uncertainties,
the problem of accurately estimating theoretical uncertain-
ties becomes quite serious. This is specifically problematic
in the case of missing higher-order uncertainties (MHOUs),
for which no fully satisfactory method has been developed.
Here we will conservatively estimate the theoretical uncer-
tainty due to missing higher order QCD corrections (N3LO
and beyond) from half the shift between the NLO and NNLO
αs values.

This paper consists of two main parts. First, in Sect. 2
we present the correlated replica method used for the deter-
mination of αs , explain how it is used to estimate the asso-
ciated PDF uncertainties, and compare it with the method
used in previous NNPDF determinations. Then, in Sect. 3
we present our determination of αs at NLO and NNLO
together with a careful assessment of all sources of uncer-
tainty. Possible future developments are briefly outlined in
Sect. 4.

2 The correlated Monte Carlo replica method

As discussed in the introduction, the αs determination pre-
sented here differs from our previous one [17,18] because
now the value of αs and its uncertainty are determined from
a correlated fit together with the PDFs. After briefly sum-
marizing the main aspects of the NNPDF methodology and
the way it was used to determine αs in Ref. [17,18], we
describe the main idea of the new method, and then discuss
the details of its implementation. Only the salient aspects of
the NNPDF methodology will be recalled here; the reader
is referred to the original literature (see Ref. [16], of which
we follow the notation, and references therein) and recent
reviews [2,21,22] for a more detailed discussion.
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2.1 General strategy

The NNPDF fitting methodology is based on constructing a
Monte Carlo representation of the original data sample con-
sisting of pseudodata (Monte Carlo replicas of the original
data), and fitting PDF replicas to these data replicas. Specifi-
cally, starting with an Ndat-component vector of experimental
points D with components Di , a set of Nrep replicas D(k) of
the data is generated by means of:

D(k)
i =

(
1 + rnor,k

i σ nor
i

)

×
⎛
⎝Di +

Nsys∑
p=1

r sys,k
i,p σ

sys
i,p + r stat,k

i σ stat
i

⎞
⎠ ,

i = 1, . . . , Ndat, (2.1)

where k = 1, . . . , Nrep; σ nor
i , σ

sys
i and σ stat

i are normal-
ization, systematic and statistical uncertainties, and ri are
random numbers such that statistics over the replica sample
reproduces the original statistical properties of the data in the
limit of large Nrep. For example, this means that

lim
Nrep→∞ cov

(
Di D j

) = Ci j , (2.2)

where cov denotes the covariance over the replica sample and
Ci j is the full experimental covariance matrix of the data.

A PDF replica is then fitted to each data replica D(k).
In the NNPDF approach, PDFs are parametrized using neu-
ral networks, in turn specified by a vector of parameters θ .
In the most recent NNPDF3.1 analysis, this vector θ has 296
components, corresponding to 37 parameters for eight neural
networks (for the up, antiup, down, antidown, strange, anti-
strange, total charm and gluon PDFs). Thus, for each data
replica D(k) a best-fit θ(k) is found by minimizing a figure of
merit characterizing the agreement between theory and data:

χ2(θ, D) = 1

Ndat

∑
i, j

(Ti [θ ] − Di )
(
C−1
t0

)
i j

(Tj [θ ] − Dj ).

(2.3)

Here, Ti [θ ] is the theoretical prediction for the i th datapoint,
dependent on the set of parameters θ , and Ct0 is the covari-
ance matrix used in the fit. Recall that in the presence of
multiplicative uncertainties, Ct0 cannot be directly identified
with the experimental covariance matrix C used for pseudo-
data generation Eq. (2.1) lest the fit be biased [23], and must
thus be constructed instead using a suitable procedure such
as the t0 method [24] (see also [25]).

A peculiarity of the NNPDF approach is that the best-fit
parameters of each replica, θ(k), are not defined as the abso-
lute minimum of the χ2 Eq. (2.3) in order to avoid overfitting,

i.e. in order not to fit statistical fluctuations. Instead, a suit-
able cross-validation algorithm is employed [26]. We thus
obtain a set of best-fit PDF replicas θ(k), each determined as
the minimum with respect to θ of the figure of merit χ2(k)

computed using the kth data replica:

θ(k) = argmin
[
χ2(θ, D(k))

]
, (2.4)

where argmin should be understood as minimization through
cross-validation, rather than as the absolute minimum. Note
that, because we employ non-deterministic minimization
algorithms, specifically genetic algorithms, the best-fit θ(k)

corresponding to a given data replica D(k) is not unique; two
identical data replicas D(k1) = D(k2) may lead to two differ-
ent θ(k1) �= θ(k2) in two runs of the minimization algorithm.

In summary, the standard NNPDF methodology produces
a set of replicas D(k) of the original data, and uses them to
construct a set of PDF replicas which correspond to param-
eters θ(k), where k runs over the replica sample.

The theory predictions Ti , which enter in the figure of
merit of the fit Eq. (2.3) depend not only on the PDF param-
eters θ , but also on theory parameters, specifically the value
of αs . Therefore, in general we can view the figure of merit
as a function χ2(αs, θ, D). In standard NNPDF determina-
tions, αs is treated as a fixed parameter, along with all other
theory parameters, such as quark masses, CKM matrix ele-
ments, the fine structure constant, and so on. On the other
hand, it is well known (see e.g. Ref. [27] for an early refer-
ence) that PDFs are strongly correlated to the value of αs ,
so a determination of the combined PDF+αs uncertainty on
a process which depends on both, requires knowledge of the
PDFs as αs is varied. With this motivation, NNPDF sets are
routinely released for different fixed values of αs , where the
procedure of generating data replicas D(k) and determining
PDF replicas determined by the best-fit parameters θ(k) is
repeated several times for different values of αs .

In our previous work [17,18], αs was determined by first
producing PDF fits for a range of values of αs . The χ2(αs)

of the mean of all the replicas was then fitted to a parabola
as a function of αs . This methodology has two main draw-
backs. The first is that, as mentioned, the PDFs are strongly
correlated to the value of αs . With this method, however, the
χ2 profile is determined as a function of αs along the line in
θ space which corresponds to the best-fit θ at each particu-
lar value of αs , without taking into account the variations in
θ space. Hence, as illustrated in Fig. 1, with the methodol-
ogy of Refs. [17,18] the resulting uncertainty on αs could be
somewhat underestimated.

The second drawback is more subtle. In the NNPDF proce-
dure, the PDF uncertainty is determined from statistics over
the replica sample, so a one-sigma interval is determined by
computing a standard deviation over replicas. Whether or
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not this corresponds exactly to a one-sigma (i.e. �χ2 = 1)
interval in αs space is unclear. In fact, in PDF determina-
tions based on Hessian minimization in parameter space,
the �χ2 = 1 criterion is modified by a suitable tolerance
factor [28–30], which possibly accounts for data inconsis-
tencies or parametrization bias. It is unclear, but certainly
possible, that PDF uncertainties estimated in the NNPDF fits
also include, at least to some extent, such a tolerance.

Ideally, we would like a method of determining αs in
which the uncertainty onαs is determined on exactly the same
footing as the PDF uncertainty, and which thus yields the full
probability distribution for αs , marginalised with respect to
the PDF parameters. The goal is to treat αs on the same foot-
ing as the vector of parameters θ that determine the PDFs, i.e.
to simultaneously minimize the figure of merit with respect to
both αs and θ . This is difficult in practice, because the depen-
dence on αs appears in the theoretical predictions, which,
for reasons of computational efficiency, are provided in the
form of pre-computed grids determined before the fit using
the APFELgrid framework [31,32].

This difficulty can be overcome through the correlated
replica method, as we now explain. The method relies on
the concept of “correlated replica”, or c-replica for short.
A c-replica is a correlated set of PDF replicas, all obtained
by determining the best-fit θ(k) Eq. (2.4) but with different
(fixed) values of αs : given the data replica D(k), the mini-
mization Eq. (2.4) is performed several times, for a range of
fixed values of αs(mZ ). A c-replica thus corresponds to as
many standard NNPDF replicas as the number of values of αs

for which the minimization has been performed, all obtained
by fitting to the same underlying data replica D(k).

One can then determine the best-fit value α
(k)
s for the kth

c-replica by minimizing as a function of αs the figure of merit
χ2 Eq. (2.3) computed with θ(k)(αs) as αs is varied for fixed
k. Namely, we first define the figure of merit computed for
the kth c-replica,

χ2(k)(αs) = χ2
(
αs, θ

(k)(αs), D
(k)

)
, (2.5)

which we can view as a function of αs . Note that the depen-
dence of the theory prediction T and thus of the figure of
merit Eq. (2.3) on αs is both explicit, and implicit through
the best-fit parameters θ(k)(αs). We then determine the best-
fit value of αs for the kth c-replica as

α(k)
s = argmin

[
χ2(k)(αs)

]
. (2.6)

Note that while, as discussed above, in order to avoid over-
fitting, the best-fit θ(k) is not the absolute minimum of the
figure of merit, no overfitting of αs is possible, because over-
fitting happens when fitting a function, not a single param-
eter. Hence, in Eq. (2.6) the best fit value α

(k)
s does denote

the absolute minimum. Therefore, in practice α
(k)
s can be

determined by fitting a parabola to the discrete set of values
of χ2(αs) for each replica, and finding the minimum of the
parabola.

Note also that determining the best-fit for the kth c-replica
by first minimizing with respect to θ and then minimizing
with respect to αs is equivalent to simultaneously minimizing
in the (αs, θ) hyperspace, provided the same figure of merit is
used for PDF and αs determination. For instance, the absolute
minimum in (αs, θ) is the solution to the coupled equations

∂

∂θ
χ2(αs, θ) = 0, (2.7)

∂

∂αs
χ2(αs, θ) = 0, (2.8)

where Eq. (2.7) is actually a system of Npar equations because
θ is an Npar-component vector and the partial derivative
is a gradient. On the other hand, this solution can also be
found (compare Fig. 1) by first finding the solution θ(αs) to
Eq. (2.7), determining χ2(αs) = χ2(αs, θ(αs)), and solving

d

dαs
χ2(αs) =

(
∂

∂αs
+ ∂θ

∂αs

∂

∂θ

)
χ2(αs, θ) = 0. (2.9)

This two stage procedure yields the same solution as the
coupled Eqs. (2.7)–(2.8) because the second term in brackets
on the r.h.s. of Eq. (2.9) vanishes since θ(αs) was the solution
of Eq. (2.7).

One thus ends up, for each data replica D(k), with a best fit
value (α

(k)
s , θ(k)) of both αs and the PDF parameters. That is,

from each c-replica we extract a single best fit value α
(k)
s – an

“αs replica” – exactly on the same footing as all the other fit
parameters. The ensemble of values α

(k)
s obtained from all the

c-replicas then provides a representation of the probability
density of αs from which we can perform statistics in the
usual way. Interestingly, this means that we can now not
only compute the best fit αs and its uncertainty as the mean
and standard deviation (or indeed 68% confidence interval)
using the αs replicas, but also the correlation between αs and
the PDFs or indeed any PDF-dependent quantity.

In summary, the correlated replica method is akin to the
standard NNPDF methodology in that it starts by producing a
set of replicas of the original data, but uses these to construct
a set of correlated αs-dependent PDF replicas, the c-replicas,
which correspond to parameters θ(k)(αs) when k runs over
the replica sample and αs takes a number of discrete values.
From each c-replica a best-fit α

(k)
s can then be determined,

so each c-replica yields an αs replica, with α
(k)
s defined by

Eq. (2.6).
Hence, the correlated replica method exploits the fact that

in the NNPDF approach it is sufficient to know the best-fit
set of parameters for each replica, and all other information
is contained in the replica sample. The price to pay for this is
that the statistics of the αs fitting is inevitably more demand-

123



Eur. Phys. J. C (2018) 78 :408 Page 5 of 16 408

ing than with the method of Refs. [17,18] because we have
now have to fit a different parabola for each c-replica. The
issues arising from this will be discussed in the next section.

2.2 Implementation

Building on the conceptual strategy described above, we now
present the practical implementation of the correlated replica
method. As already mentioned, the best-fit α

(k)
s Eq. (2.6) for

the kth c-replica is determined by fitting a parabola to the
figure of merit χ2(αs), viewed as a function of αs , known at
the discrete set of αs values for which best-fit θ(k)(αs) are
available. The reliability of the quadratic approximation to
χ2(k) Eq. (2.5) and the stability of the position of the min-
imum upon inclusion of higher order terms can be studied
using standard methods and will be discussed in Sect. 3.2
below.

The best-fit αs and its uncertainty are then determined,
according to standard NNPDF methodology, as the mean and
standard deviation computed over the sample of αs replicas

αs = 〈α(k)
s 〉rep; σα = std

(
α(k)
s

)
rep

, (2.10)

where α
(k)
s is given by Eq. (2.6).

The uncertainty due to the finite size of the replica sample
can be estimated by bootstrapping. To this purpose, one con-
structs Nres resamples of the original sample of Nrep values

α
(k)
s . Each resample is obtained by drawing at random Nrep

values from the original sample by allowing repetition. This
means that each resample differs from the original sample
because some values are repeated and others are missing.
The finite-size uncertainty is then estimated by first comput-
ing the mean α

(res,i)
s for each of the resamples,

α(res,i)
s = 〈αs〉rep, (2.11)

where the mean is computed over the Nrep values of the i th
resample. The bootstrapping estimate of the finite-size uncer-
tainty on the central value of αs is then the standard deviation
of the set of α

(res,i)
s

�αs = std
(
α(res,i)
s

)
res

. (2.12)

The uncertainty on the uncertainty �σ can be similarly com-
puted by first determining the uncertainty Eq. (2.10) for each
resample, thus leading to an uncertainty σ

(res,i)
α , and then

computing the standard deviation of the ensuing uncertain-
ties:

�σ = std
(
σ (res,i)

α

)
res

. (2.13)

We find that results become independent of the random seed
used to generate the bootstrapping resamples when Nres �
10,000.

It turns out that, when determining the best-fit θ(k)(αs)

through the standard NNPDF minimization algorithm, a cer-
tain amount of fluctuation of individual values of χ2(αs)

about the parabolic best-fit is observed. In other words, the
χ2 profiles as a function αs are not very smooth. It is therefore
advantageous to introduce an improvement of the algorithm,
called batch minimization, which increases its accuracy at
the cost of increasing the time required for fitting.

Furthermore, when using the standard NNPDF minimiza-
tion, occasionally the fit fails to satisfy a number of conver-
gence and quality criteria (see Sect. 3.3.2 of Ref. [26]), in
which case it is discarded. Consequently, for some c-replicas
χ2(αs) is not available for all αs values. One must then decide
on a sensible criterion for c-replica selection, with the most
restrictive criterion being to only accept c-replicas for which
all χ2(αs) values are available, and the least restrictive one
to accept c-replicas for which at least three χ2(αs) values are
available so a parabola can be fitted. We now discuss batch
minimization and replica selection criteria in turn.

The idea of batch minimization is to refit a given set of data
replicas more than once. In order to improve the smoothness
of the χ2 profiles obtained by the direct use of NNPDF mini-
mization, we exploit the fact that the minimization algorithm
is not deterministic, and thus simply rerunning the minimiza-
tion from a different random seed leads to a slightly differ-
ent answer. Each of these refits is called a batch. For each
c-replica k and each αs value we then end up with several
best-fit results θ

(k)
i (αs), where i runs over batches.

We then pick for each c-replica k and for each αs value the
batch which gives the best χ2. We also impose the condition
that at least two of the batches for the given c-replica and
αs value have converged, in order to mitigate the influence
of outliers that narrowly pass the post-selection fit criteria.
The dependence of results on the number of batches used
can then be assessed a posteriori by comparing results found
with different numbers of batches.

After batch minimization, we end up with a set of c-
replicas θ(k)(αs) where, however, for several c-replicas,
results may be missing for one or more αs values because
convergence was not achieved. We must thus determine the
minimum number of αs values Nmin such that a c-replica is
accepted. The threshold Nmin is chosen to ensure the stabil-
ity of results. Curves with too few points lead to an unre-
liable parabolic fit, and thus an unreliable best-fit α

(k)
s for

that c-replica. This then leads to outlier values of α
(k)
s and a

spuriously large value of the uncertainty on the α
(k)
s deter-

mination. On the other hand, once the number of points is
sufficient for a reliable parabolic fit, requiring more points
does not improve the determination of α

(k)
s , but it reduces the
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number of c-replicas which are retained in the final sample,
which in turn increases the finite-size uncertainty.

Therefore, the optimal value of Nmin arises from a trade-
off between the uncertainty on α

(k)
s from the parabolic fitting,

and the finite-size uncertainty. In order to keep both criteria
into account, we fix Nmin by minimizing the bootstrapping
uncertainty �σ Eq. (2.13). However, in order to make sure
that the selection is not too tight, we do not minimize �σ

itself. Rather, we first multiply it by a penalty factor that
depends on the number of points. This is in turn determined
as the 99% confidence level factor from a two sided Student
t distribution. Indeed, if the distribution of best-fit α

(k)
s over

replicas is Gaussian, then the difference between the sampled
and true central value follows a Student t distribution with
Nrep − 1 degrees of freedom, zero mean and scale parameter
�σ /

√
Nrep. A given confidence level around the mean is

equal to the standard deviation �σ TCL,(Nrep−1), where TCL,N

is the percentile at CL confidence level for the two-sided
confidence factor of the Student t distribution with N degrees
of freedom. Hence, we choose a 99% confidence level, and
we determine Nmin as the value yielding the minimum of
�σ T0.99,(Nrep−1). Also in this case, the dependence of results
on the choice of selection criteria can be studied a posteriori,
and will be discussed in Sect. 3.2.

3 The strong coupling constant from NNPDF3.1

We now present the main result of this work, namely the
determination of αs (mZ ) based on the methodology dis-
cussed in Sect. 2. We first present the best-fit result for αs and
its experimental uncertainty, determined through the corre-
lated replica method. We then discuss methodological and
theoretical uncertainties. We finally collect our final result
and briefly compare it to other recent determinations from
PDF fits and to the PDG average.

3.1 Best-fit results for αs and statistical uncertainty

We have determined αs (mZ ) both at NLO and NNLO using
the methodology and dataset of the NNPDF3.1 global anal-
ysis [16]. The only difference in the fit settings is the the-
oretical description of the inclusive jet production datasets
at NNLO. Here we use exact NNLO theory [33] for the
ATLAS [34] and CMS [35] inclusive jet measurements at
7 TeV, and discard the other jet datasets used in NNPDF3.1
for which the NNLO calculation is not available (note that,
as in NNPDF3.1, only ATLAS data in the central rapidity bin
are included). To ensure a consistent comparison, the input
datasets of the NLO and NNLO fits are identical, up to small
differences in the kinematical cuts as explained in [16].

Specifically, we determine αs by generating a set of 400
data replicas, and from them a set of 400 c-replicas each

with 21 values of αs , thus corresponding to a total of 8400
PDF replicas correlated as discussed in Sect. 2.1. These c-
replicas are generated for αs (mZ ) ranging between 0.106
and 0.130, varied in steps of �αs = 0.002 between 0.106 and
0.112 and between 0.128 and 0.130, and in steps of �αs =
0.001 between 0.112 and 0.128, adding up to the total of 21
values. From these we determine αs replicas, which form a
representation of the probability distribution of αs .

At NNLO we find

αNNLO
s (mZ ) = 0.11845 ± 0.00052 (0.4%). (3.1)

This result is based on a total of Nrep = 379 c-replicas,
selected from a starting set of 400 after batch minimization of
three batches, using the minimization and selection methods
described in Sect. 2.2. At NLO we find

αNLO
s (mZ ) = 0.12067 ± 0.00064 (0.5%). (3.2)

In this case, the sample includes Nrep = 108 c-replicas
selected after batch minimization with two batches. The
smaller number of c-replicas selected at NLO is in part
explained by the requirement (see Sect. 2.2) that two batches
have converged for the given αs value, which is of course
less severe when three batches are available, but the worse
quality of the NLO fit also plays a role since it causes more
fits to be discarded by the post-selection criteria.

The uncertainty quoted in Eqs. (3.1) and (3.2) is that
obtained using standard NNPDF methodology, namely, tak-
ing the standard deviation over the αs replica sample. We
have verified that essentially the same results are obtained if
instead we compute the 68% confidence interval. The uncer-
tainty is obtained in precisely the same way as our PDF uncer-
tainty, to which it is strongly correlated; it includes the prop-
agated correlated uncertainty from the underlying data, and
uncertainties coming from possible inefficiencies of the min-
imization procedure. This uncertainty is what we refer to as
the experimental uncertainty on αs (mZ ). It will have to be
supplemented by methodological and theoretical uncertain-
ties, to be discussed in Sects. 3.2 and 3.3 below.

The 379 c-replicas selected for the NNLO determination
are shown in Fig. 2. The color scale of each curve indicates
the best-fit αs value. It is apparent that the vast majority of
the curves exhibit an approximately parabolic behaviour. The
probability distributions of the best-fit values α

(k)
s Eq. (2.6)

which correspond to each c-replica, both at NLO and at
NNLO, are shown in Fig. 3, where the markers indicate
the value of α

(k)
s for each specific c-replica. These proba-

bility densities have been determined using the Kernel Den-
sity Estimate method, see [36]. We find that the probability
distribution for αs (mZ ) is both shifted to higher values and
broadened when going from NNLO to NLO. The decrease
of the best-fit value of αs (mZ ) when going from NLO to
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Fig. 2 The χ2 profiles for each of the 379 c-replicas used for the
NNLO determination of αs(mZ ), Eq. (3.1). Each curve corresponds
to an individual c-replica, and the color scale indicates the best-fit αs
value determined from the parabolic fit to that curve

NNLO has been repeatedly observed before (see Table 1 of
Ref. [37] for an extensive set of examples), also in our pre-
vious determination [17,18], while the broadening is due to
the poorer quality of the NLO fit.

The impact on the αs determination of any subset of the
input data can be roughly assessed by studying its contribu-
tion to the total figure of merit. We have done this by deter-
mining replica by replica the corresponding partial χ2

p for a
process (or group of processes) p, defined as the figure of
merit Eq. (2.3) with the summation over i, j now restricted
to data which belong to the specific subset p. The αs fit
procedure through the correlated replica method is then just
repeated but using this partial χ2

p. Namely, for each c-replica

the partial χ
2(k)
p for process p is computed, a parabola is fit-

ted to it, the corresponding minimum α
(k)
s,p of the parabola is

determined, and the resulting set of minima is used to find
the value of αs (mZ ) and its uncertainty.

Table 1 Number of data points at NLO and NNLO corresponding to
the different subsets of the input experimental data considered here.
These eight subsets add up to the total dataset

NLO NNLO

Fixed-target charged lepton DIS 973 973

Fixed-target neutrino DIS 908 908

Collider DIS (HERA) 1221 1211

Fixed Target Drell–Yan 189 189

Collider Drell–Yan 378 388

Inclusive jets 164 164

Z pT 120 120

Top quark pair production 26 26

Total 3979 3979

Here we consider the following eight groups of processes
p: top production, the Z pT distributions, collider and fixed
target Drell–Yan, inclusive jets, and deep-inelastic scattering
(DIS) either at HERA or at fixed-target experiments, in the
latter case separating charged lepton and neutrino beams.
The number of data points corresponding to each of these
data subsets is shown in Table 1. Not unexpectedly, the χ

2(k)
p

profiles for data subsets turn out to be rather less parabolic
than the total χ2, especially for processes such as neutrino
DIS or fixed target Drell–Yan that have weak sensitivity to
αs .

When determining αs (mZ ) from the partial χ
2(k)
p , we do

not repeat the replica selection and simply use the same repli-
cas selected for the total dataset. Consequently, we must
apply a form of post-selection, whereby each time a parabola
for χ

2(k)
p has no minimum the corresponding c-replica is

ignored. At NNLO, for five out of eight data subsets we
retain all 379 c-replicas, while for jets, neutrino DIS, and
fixed-target Drell–Yan, we retain only 376, 366, and 302
c-replicas respectively. The results for the partial αs (mZ )

determined from χ2
p for the various families of processes are

Fig. 3 The probability distributions for the best-fit α
(k)
s values Eq. (2.6) at NNLO (left) and at NLO (right). Each marker indicates the α

(k)
s value

corresponding to each individual c-replica
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Fig. 4 The values of the partial αs (mZ ) and the corresponding uncertainties determined from χ2
p for the various families of processes p of Table 1

at NLO and NNLO

collected in Fig. 4. The central value and uncertainty shown
are respectively determined as the median and 68% symmet-
ric confidence level interval from the corresponding partial
α

(k)
s,p. This is because the analogue of Fig. 3 for individual

processes turns out to be rather non-gaussian, especially for
processes such as fixed-target Drell–Yan that only have a
weak handle on αs .

The values of αs (mZ ) shown in Fig. 4 should be inter-
preted with some care. Indeed, the partial χ2

p is in each case
computed using PDF c-replicas determined from the mini-
mization of the global χ2. These are in general different from
the c-replicas that would be determined by simultaneous min-
imization of χ2

p with respect to αs and the PDFs. Therefore,
the values of αs,p in Fig. 4 cannot be interpreted as the best-fit
values of αs (mZ ) for a given subset p. They instead provide
an estimate of the pull on the best-fit αs (mZ ) value that spe-
cific families of processes have within the global fit subject
to the constraints from the rest of the data.

Moreover, even their interpretation as pulls is only approx-
imate. Firstly, the replica selection is applied to the total χ2

rather than to each partial χ2
p , so that several partial χ2(k)

p pro-
files turn out not to have a minimum. Furthermore, the total
χ2 includes cross-correlations which are lost when determin-
ing partial χ2

p, because the covariance matrix Ct0 in Eq. (2.3)
is generally nonzero even when i and j belong to different
data subsets. For instance, inclusive jet, Z pT , and Drell–
Yan measurements from the same experiment (ATLAS, or
CMS) are correlated amongst themselves by the common
luminosity uncertainty. Finally, partial αs values are corre-
lated through the underlying PDFs, implying that the pulls
should not be expected to combine additively into the final
result.

Even with all these caveats, Fig. 4 shows that the very
accurate αs (mZ ) value from the global dataset is obtained

from a combination of pulls which correspond to values of
αs (mZ ) dispersed about the global best-fit value, without
signs of tension or inconsistency, and subject to significant
fluctuations which are suppressed when constructing the total
χ2. This supports our conclusion that the current determina-
tion of αs (mZ ) from a global fit is more precise and accurate
than determinations based on subsets of data relying on pre-
existing PDF sets.

Finally, we compare the current NNLO determination of
αs (mZ ), Eq. (3.1) and Fig. 4, with the one found using the
method of Refs. [17,18]. We fix αs and add the contribution
to the χ2 from each standard PDF replica for that αs value.
We then determine the total χ2(αs), fit a parabola to it, and
determine the best-fit and uncertainty as the minimum and
�χ2 = 1 interval. For simplicity, we do this without using
batch minimization, i.e. we compute the total χ2 from one of
the batches (batch II, see Sect. 3.2 below) which then enter
the batch minimization procedure. Using this method we find

αNNLO
s (mZ ) = 0.1180 ± 0.0004 (0.3%),

αNLO
s (mZ ) = 0.1203 ± 0.0004 (0.3%). (3.3)

Also in this case we can repeat the determination for different
data subsets based on the partial χ2

p, and the corresponding
results are compared in Fig. 5.

As expected, and discussed in the introduction and in
Sect. 2.1, we find that the best-fit values of αs (mZ ) deter-
mined with the old method [17,18] and with the new corre-
lated replica method are in good agreement, both for the
global dataset and for the data subsets. The small differ-
ences in central values are most likely due to uncertain-
ties related to the finite size of the replica sample, which,
as discussed in [17,18], can be non-negligible when the
old method is used. On the other hand, also as expected,
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Fig. 5 Comparison of the NNLO determination of αs (mZ ) using the method of [17,18], which neglects the correlation between αs and PDFs,
and the current one based on the correlated replicas

Fig. 6 The NNLO cumulative differences, χ2
p(αs) − χ2

p(0.1185),

between the partial χ2
p values evaluated at αs (mZ ) and at best-fit value

αs (mZ ) = 0.1185 for different families of processes. In the part of
the plot above (below) zero, only contributions from experiments for

which the cumulative difference is positive (negative) are shown (see
text). The plot is displayed either with a wider (left) or narrower (right)
choice of range on the y axis

neglecting the correlation between αs and PDFs as in the old
method leads in general to an underestimate of the uncer-
tainty on αs . This effect is more marked for processes such
as fixed-target Drell–Yan and neutrino DIS that have a lim-
ited sensitivity to αs , because in this case the difference
in length of the semi-axes of the error ellipse in Fig. 1 is
large.

This determination of αs (mZ ) from the total χ2 also
offers a complementary way of quantifying how much each
family of processes constrains the final best-fit value, by
plotting the contribution of each data subset to the total
χ2. Specifically, we show in Fig. 6 the cumulative dif-
ferences at NNLO, χ2

p(αs) − χ2
p(0.1185), between each

partial χ2
p and its value computed at the global best-fit

αs (mZ ) value, neglecting cross-correlations between differ-
ent data subsets. The plot is divided into two halfs: above

zero, only positive differences are shown, and below zero,
only negative ones. Thus, when all differences are pos-
itive the plot shows the breakdown of the total χ2 into
the contribution of different experiments (up to neglected
cross-correlations), while when some of them are negative
the lower part of the plot shows by how much the χ2 of
the individual experiments shown has improved in com-
parison to their value at the global minimum αs(Mz) =
0.1185). In order to increase readability, the plot is dis-
played twice, with two different choices of scale on the y
axis.

From this comparison, we observe that the LHC data
significantly contribute to constraining αs . In particular, it
is interesting to note that the 13 data points from top-
quark pair production lead to a significant contribution to
the total χ2 away from the best-fit, even though the global
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dataset contains almost 4000 data points. Similar consid-
erations apply to the Z pT distributions. This means that
there is a small range of values of αs where these two
groups of processes are consistent with the rest of the data
entering the fit, thereby providing a tight constraint on
αs .

3.2 Methodological uncertainties

In view of the rather small experimental uncertainty on the
final value of αs (mZ ), Eqs. (3.1)–(3.2), we need to assess
possible uncertainties associated to the various aspects of our
methodology described in Sect. 2. Specifically, we discuss
here the methodological uncertainties associated to c-replica
selection, batch minimization, the quadratic approximation
to χ2 profiles, and the treatment of correlated systematics.

The replica selection algorithm determines an optimal
value of Nmin, the minimal number of αs for which results
must be available for a given c-replica to be selected. We
have varied this value from its minimum Nmin = 3 (needed
in order to fit a parabola) to a high value Nmin = 18 (mean-
ing that at most three values αs can be missing in order for a
c-replica to be retained). Results for the number of c-replicas
passing the criterion and the ensuing value of αs are collected
in Table 2 for a number of choices. In each case we also show
the finite-size uncertainty �αs on the best-fit αs estimated by
bootstrapping, Eq. (2.12).

The number of surviving c-replicas varies significantly; all
the starting 400 c-replicas pass the loosest criterion (i.e., it is
always possible to fit a parabola to any c-replica), but only
Nrep = 12 c-replicas pass the most restrictive criterion. How-
ever, even with this most restrictive criterion the finite-size
uncertainty is below the permille level. For the value selected
by the algorithm, the finite-size uncertainty is of order 0.03%,
i.e. by almost a factor 20 smaller than the experimental uncer-
tainty Eq. (3.1) and it does not decrease further even when
all c-replicas are kept. The finite-size uncertainty on the αs

uncertainty �σ itself Eq. (2.13) is comparable in all cases.
The value of αs (mZ ) and its experimental uncertainty are

hence very stable; the shift of central value and uncertainty
when the selection criterion is varied is always smaller than
the finite-size uncertainty. This stability can be understood
by observing that each c-replica consists of at least Nmin

correlated PDF replicas, so each of the determinations shown
in Table 2 is obtained from more than Nmin × Nrep PDF
replicas. We thus estimate that the bootstrapping uncertainty,
and the related but smaller uncertainty due to choice of replica
selection, to be of order �αs = 0.00003 (0.03%), one order
of magnitude smaller than the experimental uncertainty.

We next turn to discuss batch minimization. The results
shown in Table 2 all correspond to the NNLO baseline which
uses batch minimization with three batches. In order to assess
the impact of batch minimization, in Table 3 we compare

Table 2 Dependence of the NNLO determination of αs (mZ ) on the
minimum number of αs values per c-replica Nmin (see Sect. 2.2). In
each case, the best fit value and statistical uncertainty on αs are shown,
together with the number of surviving c-replicas Nrep and the bootstrap-
ping uncertainty �αs Eq. (2.12). The value chosen using the selection
criterion of Sect. 2.2, which leads to the final vale of αs (mZ ) Eq. (3.1),
is Nmin = 6 (third row of the table, in boldface)

Nmin αs (mZ ) Nrep �αs

18 0.11842 ± 0.00031 (0.3%) 12 0.00009

15 0.11844 ± 0.00044 (0.4%) 92 0.00005

6 0.11845 ± 0.00052 (0.5%) 379 0.00003

3 0.11844 ± 0.00056 (0.5%) 400 0.00003

Table 3 Results for the NNLO determinations of αs (mZ ) using differ-
ent combinations of the three available batches. In each case we show
both the best-fit value of αs (mZ ), the minimum number of αs values
per c-replica Nmin, and the corresponding number surviving c-replicas
Nrep. The last row (in boldface) corresponds to our final result Eq. (3.1)

Batches αs (mZ ) Nmin Nrep

I 0.11831 ± 0.00065 (0.5%) 9 310

II 0.11828 ± 0.00062 (0.5%) 14 216

III 0.11822 ± 0.00072 (0.6%) 13 369

I + II 0.11844 ± 0.00054 (0.5%) 11 225

I + III 0.11841 ± 0.00058 (0.5%) 13 158

II + II 0.11841 ± 0.00060 (0.5%) 14 288

I + II + III 0.11845 ± 0.00052 (0.4%) 6 379

results obtained with each of the three batches, with the three
possible pairs, and combining the three batches. In each case
we show the final best-fit αs (mZ ) and experimental uncer-
tainty, the value of Nmin, the minimum number of α

(k)
s values

per c-replica, and the number of surviving c-replicas Nrep.
It is clear from this comparison that as more batches are

combined, results become more stable. The values of Nmin

are on average larger with two batches, and larger still with
three, but without a reduction of the number of surviving c-
replicas Nrep as was observed in Table 2. With three batches,
Nrep is largest even though Nmin is also largest. This means
that, thanks to batch minimization, the number of available
α

(k)
s values per replica is on average higher. It follows that

the finite-size uncertainty is reduced by batch minimization,
thus leading to the very small uncertainties shown in Table 2.

The values of αs (mZ ) behave as expected upon use of
batch minimization. The experimental uncertainty is reduced
when more batches are used and the central values with dif-
ferent combinations of batches are all consistent with each
other within given uncertainties. Furthermore, the differences
in central values with different combinations of batches are
reduced upon use of batch minimization (they are smaller
when using two batches than when using a single batch).
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Table 4 Results for the NNLO determinations of αs (mZ ) when the
Ntrim outer values of αs are not used and the fit is restricted to a smaller
range. In the bottom part of the table we also show results found dis-
carding values asymmetrically, at the upper or lower edge of the range.
In each case we show the number of discarded αs values, the best-fit
value of αs (mZ ), and the number of surviving c-replicas Nrep. The first
row (in boldface) corresponds to our final result Eq. (3.1)

Ntrim Fitted αs (mZ ) range αs (mZ ) Nrep

0 [0.106, 0.130] 0.11845 ± 0.00052 (0.4%) 379

2 [0.108, 0.128] 0.11846 ± 0.00045 (0.4%) 218

5 [0.110, 0.126] 0.11852 ± 0.00051 (0.4%) 290

10 [0.114, 0.124] 0.11869 ± 0.00046 (0.4%) 32

15 [0.115, 0.120] 0.11822 ± 0.00079 (0.7%) 10

4 [0.113, 0.130] 0.11850 ± 0.00058 (0.5%) 296

5 [0.106, 0.124] 0.11855 ± 0.00059 (0.5%) 197

Additionally, the shift in central value when increasing the
number of batches is rather smaller than the uncertainty, and,
finally, the central value is stabilized when increasing the
number of batches, so the difference between two and three
batches is on average smaller than the difference between
one and two batches.

We conclude that the value of αs (mZ ) found using three
batches is the most accurate. We observe that even the shift
between the three-batch value and the single-batch value
which differs most from it is about a third of the finite-size
uncertainty. We take this as further evidence that there is no
extra contribution of methodological origin due to batch min-
imization to be added to the statistical uncertainty. We finally
observe that the two-batch result is in fact consistent within
its very slightly larger uncertainty, thus justifying the use of
only two batches at NLO.

We next turn to the methodological uncertainties related
to the quadratic fitting of χ2 profiles. We have studied this
in three different ways: by removing outer values of αs (mZ )

from the fit; by adding higher order terms to the fitting func-
tion; and by changing the fitting variable. We discuss each in
turn.

First, we have repeated the NNLO determination remov-
ing αs values that are farthest from the best-fit value
αs (mZ ) = 0.1185, fitting a smaller range of values around
the minimum. As a further consistency check, we have
removed αs values asymmetrically. Results are shown in
Table 4; in each case we show the number of discarded αs

values Ntrim, the resulting fitted range, the best fit αs (mZ )

and uncertainty, and the number of surviving c-replicas Nrep.
Here too, the behaviour is consistent with expectations. As
the fitted range is reduced, the experimental uncertainty
increases and the number of surviving c-replicas decreases
(thereby also increasing the finite-size uncertainty). The cen-
tral value, however, is extremely stable; the shift in central

Table 5 Same as Table 2, comparing the default parabolic fitting (in
boldface) of the χ2(αs) profiles with those with a transformed input,
both χ2 (ln(1 + αs)) and χ2 (exp(αs))

αs (mZ ) Nrep

default 0.11845 ± 0.00052 (0.4%) 379

ln 0.11845 ± 0.00052 (0.4%) 379

exp 0.11849 ± 0.00052 (0.4%) 379

value when restricting the range is always more than a fac-
tor two smaller than the experimental uncertainty. In fact,
the shift is never larger than � = 0.00010 (0.08%) unless
the number of surviving c-replicas becomes of order ten, in
which case the finite-size uncertainty (recall Table 2) is of
the same order or larger.

A different way of testing for deviations from quadratic
behaviour is to apply a criterion to assess fit quality to both
quadratic and cubic fits. Here we use the Akaike Informa-
tion Criterion (AIC) [38], which estimates the expected rela-
tive distance between a given fitted model and the unknown
underlying law [39]. The AIC score balances goodness of fit
against simplicity of the model. A lower score corresponds to
a lower expected distance measured by the Kullback–Leibler
divergence. The AIC score is defined by

AIC = 2r − 2 ln L + 2r(r + 1)

n − r − 1
, (3.4)

where r is the number of degrees of freedom of the model, n
is the number of fitted points, and ln(L) is the log-likelihood
associated with the model.

In our case, we fit to χ2(k)(αs), Eq. (2.5), viewed as a
function of αs using either a parabola (as in our default deter-
mination) or a higher order polynomial. The log-likelihood
is then in each case just the χ2 of this fit. Computing the AIC
score for each fitted profile, averaging over c-replicas, and
taking the variance of results as a measure of the uncertainty,
we find AIC = 169 ± 37 for the default quadratic fit and
AIC = 173 ± 35 for a cubic fit. We conclude that there is no
evidence that a cubic fit is better than a quadratic one.

We perform a final test based on the observation that any
transformation of the error function profile of the form

χ2(αs) → χ2( f (αs)), (3.5)

where f is sufficiently smooth and monotonic, should lead
to the same best-fit value of αs . The results of fitting αs from
the transformed profiles Eq. (3.5) with f (αs) = exp(αs) and
f (αs) = ln(1 + αs) are shown in Table 5. The argument of
the log is shifted so that f (αs) admits a Taylor expansion in
powers of αs .

Reassuringly, we find extreme stability with respect to
these transformations of the fitting argument.
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Fig. 7 Top: probability distributions for the best-fit α
(k)
s values (same

as Fig. 3) and bottom: values of the partial αs (mZ ) and corresponding
uncertainties (same as Fig. 5) in both cases comparing NNLO results

from a single batch found using either a consistent or an inconsistent
definition of the χ2

Combining results from Tables 4 and 5 and the analysis
based on the AIC score we can conservatively take as an
estimate of the uncertainty related to parabolic fitting the
largest shift observed in Table 2, neglecting the cases with
Nrep < 100 which are dominated by finite-size uncertainty,
namely

�par = 0.00010 (0.08%). (3.6)

We finally turn to the uncertainty related to the treatment of
experimental correlated systematic errors. As mentioned in
Sec. 2.1, the covariance matrix in the presence of multiplica-
tive uncertainties should not be identified with the experimen-
tal covariance matrix, in order to avoid biasing the fit [23]. We
thus adopt the t0 method, introduced in [24], benchmarked
in [25], and used for the determination of all NNPDF sets
from NNPDF2.0 [40] onwards. In this procedure, the nor-
malization of the multiplicative uncertainties that enter the
covariance matrix is iteratively determined from a prior the-

ory prediction. Because the PDFs and αs are now determined
on the same footing, the same covariance matrix is used for
both. It is clear that the same χ2 definition must be used in
Eq. (2.9) as in Eqs. (2.7)–(2.8) in order for the same minimum
to be found.

Indeed, it is interesting to note that using an inconsis-
tent definition of the covariance matrix significantly biases
the result of αs (mZ ). In Fig. 7 we compare the distribu-
tion of NNLO αs (mZ ) values as well as the total and par-
tial best-fit values and uncertainties, computed for a single
batch, either consistently using the t0 covariance matrix (see
Figs. 3, 5 for the corresponding results with three batches) or
inconsistently using the experimental covariance matrix. We
find that the inconsistent definition leads to a much broader
distribution for the total χ2, thereby signaling the lack of
consistency, and, more importantly, a biased central value
αs(mZ ) = 0.114 ± 0.001exp (0.9%), shifted by about 9-
σ in comparison to the correct result Eq. (3.1). The fact
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Table 6 Best-fit value of αs (mZ ) and experimental uncertainty found
using three different forms of the t0 covariance matrix (see text); the
second row corresponds to the central result Eq. (3.1). The number of
c-replicas selected in each case is also shown

t0 αs (mZ ) Nrep

I 0.11844 ± 0.00052(0.4%) 379

II 0.11845 ± 0.00052(0.4%) 379

III 0.11841 ± 0.00051(0.4%) 356

that a downward shift of αs (mZ ) is observed when using
the inconsistent definition can be understood based on the
observation that the bias [23] typically leads to the best-fit
undershooting the data, essentially because with multiplica-
tive uncertainties a lower prediction has a smaller uncer-
tainty [41]. Indeed, inspection of the partial best-fit values
shows that the bias is much stronger for collider experiments
than the fixed-target ones. This is what one would expect,
because systematic uncertainties are multiplicative for col-
lider experiments, while they are mostly additive for fixed-
target [25], so any effect or bias related to the treatment of
multiplicative uncertainties should be mostly seen in collider
data.

The use of the t0 procedure in principle leads to a fur-
ther methodological uncertainty related to the choice of the
prior used for the construction of the t0 matrix, which should
therefore be assessed. In order to determine the final result
Eq. (3.1) the t0 matrix was constructed using the best-fit PDF
set from batch II of Table 3. We have repeated the deter-
mination constructing the t0 matrix from the best-fit PDF
set of either of the other two batches. Results are collected
in Table 6. It is clear that, using the consistent t0 method,
results are extremely stable. We can conservatively estimate
the uncertainty due to the choice of t0 from the largest shift
seen in Table 6 as �t0 = 0.00004 (0.03%).

In summary, we conservatively estimate methodological
uncertainties by adding in quadrature the finite-size uncer-
tainty�αs = 0.00003, the uncertainty related to the parabolic
approximation �par = 0.00010 and the uncertainty related
to the treatment of correlated systematics �t0 = 0.00004,
with the result

σmeth = 0.00011 (0.09%). (3.7)

Therefore, we find that, at NNLO, methodological uncertain-
ties are smaller than the experimental uncertainties Eq. (3.1)
by a factor five.

3.3 Theoretical uncertainties from missing higher orders

A determination of αs (mZ ) is dependent on the perturbative
order of the QCD calculations on which it relies. Therefore,
at any fixed order it is affected by a missing higher order

uncertainty (MHOU). In older, and also some more recent
determinations of αs (mZ ) (specifically for determination in
PDF fits see Refs. [17,42,43]) no attempt was made to esti-
mate the MHOU, and sometimes NLO or NNLO values of
αs (mZ ) were quoted with the understanding that they might
differ by an amount greater than the quoted uncertainty due
to this missing uncertainty. However, as the experimental
uncertainty decreases, an estimate of the MHOU becomes
mandatory, and in the context of PDF fits it was done e.g.
in Ref. [18]. Indeed, this uncertainty, usually estimated by
scale variation, is typically dominant in more recent deter-
minations [9–15].

In the present case, a first handle on the MHOU associated
to αs is provided by the difference between the NLO and
NNLO results Eqs. (3.1) and (3.2), namely

�α
pert
s ≡ |αNNLO

s − αNLO
s | = 0.0022, (3.8)

which corresponds to a 2% shift of the NNLO central value.
This is about four times larger than the experimental uncer-
tainty in Eq. (3.1), thereby suggesting that even at NNLO the
MHOU on the αs (mZ ) determination might be comparable
to, or larger than the experimental uncertainty.

In our previous determination of αs Ref. [18] the MHOU
was estimated using the Cacciari–Houdeau (CH) method [44],
which relies on a Bayesian estimate of the missing higher per-
turbative orders based on the behaviour of the known orders.
Use of exactly the same method of Ref. [18], to which the
reader is referred for details, leads to the values

�CH, NLO = 0.003, (3.9)

�CH, NNLO = 0.0004, (3.10)

for the 68% confidence level MHOU on αs(MZ ). The rather
large difference in the MHOU estimate between NLO and
NNLO stems from the fact that there is a significant shift
when going from LO to NLO, but a much smaller one when
going from NLO to NNLO.

The NLO estimate of the MHOUs in Eq. (3.9) is reassur-
ingly in good agreement with the observed shift Eq. (3.8). The
NNLO uncertainty Eq. (3.10) is also consistent with expec-
tations based on the CH uncertainty estimate of Ref. [18],
where the value of αs (mZ ) determined using the NNPDF2.1
set was found to lead to �CH, NNLO = 0.0009. Indeed, PDF
uncertainties in the NNPDF3.1 set are generally smaller than
those on NNPDF2.1 by a factor of two or more, due to sig-
nificant impact of LHC data in the more recent determina-
tion.

In addition, the shift between NLO and NNLO PDFs is
found to be smaller in NNPDF3.1 than in previous NNPDF
sets [45], presumably because MHO terms pull in differ-
ent directions and thus partly cancel each other to a greater
extent in a more global fit. Indeed, we find a similar increase
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of perturbative stability of PDFs and of the associated
αs (mZ ) by repeating the analysis presented here for reduced
datasets [46]. Therefore, the reduction of the MHOU by a
comparable factor in Eq. (3.8) in comparison to Ref. [18] is
expected.

Nevertheless, the very small value of the MHOU at
NNLO, Eq. (3.10), even smaller than the already small
experimental uncertainty Eq. (3.1), may seem rather too
optimistic. There are furthermore several reasons of prin-
ciple and practice why the reliability of the CH method
in the present case is dubious. The main one is that the
implementation of the method suggested in Ref. [18] relies
on a guess for an underlying “true” value α

(0)
s , and for

a leading-order value αLO
s , neither of which is known.

The result Eqs. (3.9–3.10) is obtained by varying αLO
s ∈

[0.10, 0.14]. and α
(0)
s ∈ [0.110, 0.125]. These are, how-

ever, largely arbitrary choices, and the final answer relies
on them.

We therefore prefer to adopt a more conservative estimate.
Namely, we assume that the MHOU on the NNLO result
is half the difference between the NLO and NNLO results
Eq. (3.8):

�αth
s = 0.0011 (0.9%), (3.11)

about twice the size of the corresponding experimental uncer-
tainty Eq. (3.1). Whereas this is surely a very crude estimate,
we do not feel that any of the available methods can lead to
a more reliable conclusion.

On top of the missing higher fixed-order QCD corrections,
several other aspects of the theory used in the simultaneous
determination of αs (mZ ) and PDFs also lead to uncertain-
ties. These include the values of the heavy quark masses,
standard model parameters (specifically CKM matrix ele-
ments and electroweak couplings), electroweak corrections,
QCD resummation corrections [47,48], QCD power correc-
tions, and nuclear corrections. Many of these uncertainties
were assessed in the NNPDF3.1 PDF determination that we
are relying upon [16], and found to be smaller than PDF
uncertainties. In particular, the dependence on the charm
mass in previous PDF determinations is substantially reduced
in NNPDF3.1 and likely rather smaller than the MHOU,
thanks to the presence of an independently parametrized
charm PDF [49], and electroweak corrections are carefully
kept under control thanks to the choice of suitable kine-
matic cuts. But PDF uncertainties mix with the experimen-
tal uncertainty on αs (mZ ), with which they are strongly
correlated, and are in fact indistinguishable from it, as dis-
cussed in Sect. 2.1, so the hierarchy of uncertainties on PDFs
and αs (mZ ) is the same. We conclude that we have evi-
dence that most of these theoretical uncertainties are sub-
dominant in comparison to the experimental uncertainty

Eq. (3.1), and thus even more so in comparison to the MHOU
Eq. (3.11).

3.4 Final results and comparisons

We can now collect results. Combining the NNLO value
and experimental uncertainty Eq. (3.1), the methodolog-
ical uncertainty Eq. (3.7) and the theoretical uncertainty
Eq. (3.11) we get

αNNLO
s (mZ ) = 0.1185 ± 0.0005exp ± 0.0001meth ± 0.0011th

= 0.1185 ± 0.0012 (1%), (3.12)

where in the last step we have added all uncertainties in
quadrature. For a comparison to other determinations, such
as the PDG average, we recommend using only the exper-
imental uncertainty (the methodological uncertainty being
negligible), which reflects the limitations of our result and
procedure, but not the limitation due to the fact that our result
is obtained at NNLO. For precision phenomenology, how-
ever, we recommend use of the total uncertainty in order to
conservatively account for the MHOU.

This result can be compared to the previous one [18]
based on NNPDF2.1, αNNLO

s (mZ ) = 0.1173 ± 0.0007exp ±
0.0009th. In comparison to this older result, the central value
of αs(mZ ) has increased by �αs = +0.0012 . As far as
uncertainties are concerned, both the theoretical and exper-
imental uncertainties on this previous result are larger, if
one compares like with like. The experimental uncertainty
should actually be compared to Eq. (3.3) as it was obtained
with the same method. The uncertainty is somewhat under-
estimated because it neglects the correlation between PDFs
and αs , while the theory uncertainty should be compared to
Eq. (3.10) which is also based on the CH method.

We conclude that, in comparison to Ref. [18], the cur-
rent result is more precise, though with more conservatively
estimated uncertainties.

In Fig. 8 we compare the NNLO result of Eq. (3.12) to
our previous result [18], to the current PDG average [3], and
to two recent determinations obtained from simultaneous fit
of PDFs and αs (mZ ), ABMP16 [43] and MMHT2014 [42].
We find good agreement with the PDG average as well as
with the MMHT14 and NNPDF2.1 determinations. It has
been suggested [50,51] that the lower ABMP16 value can be
partly explained by the use of a fixed-flavour number scheme
with N f = 3 for the treatment of DIS data. It is interesting to
observe that the current AMBP16 value is higher than previ-
ous values of αs (mZ ) obtained by the same group [52], from
which the ABMP16 analysis in particular differs because of
inclusion in Ref. [43] of LHC top production and W and Z
production data (described with N f = 5).

Interestingly, the αs (mZ ) determination from the
NNPDF3.1 fit is higher than any other recent determination
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Fig. 8 Comparison of the present NNLO determination of αs (mZ ),
Eq. (3.12), with the PDG average and with the previous ABMP16,
MMHT14, and NNPDF2.1 results. For the NNPDF values, the inner
(darker) error bar correspond to experimental uncertainties, while the
outer (lighter) one indicates the sum in quadrature of experimental and
theoretical uncertainties

from PDF fits. Inspection of Figs. 4 and 6 strongly suggests
that this increase is driven by the high-precision LHC data,
especially for gauge boson production (including the Z pT
distribution) but also for top and jet production.

4 Summary and outlook

In this work we have presented a new determination of the
strong coupling constant αs (mZ ) jointly with a global deter-
mination of PDFs which, by relying on NNPDF3.1, for the
first time includes a large amount of LHC data using exact
NNLO theory in all cases. In comparison to a previous deter-
mination based on NNPDF2.1, our results exploit the new
correlated replica method that is equivalent to the simultane-
ous fit of PDFs and αs . This new method thus fully accounts
for the correlations between PDFs andαs in the determination
of the best-fit value of αs and of the associated uncertainty.

We find that the determination of αs (mZ ) is considerably
stabilized by the use of a wide set of different processes and
data, and we provide evidence that a global simultaneous
determination of αs (mZ ) and PDFs leads to a more stable
and accurate result than the one obtained from subsets of
data. We thus obtain a value of αs (mZ ) which is likely to be
more precise and more accurate than previous results based
on similar techniques. We find that the LHC data consis-
tently lead to an increase in the central value of αs (mZ ), and
observe good overall consistency between the datasets enter-
ing the global fit. Our NNLO determination turns out to be
in agreement within uncertainties with previous results from
global fits and with the PDG average.

The main limitation of our result comes from the lack
of a reliable method to estimate the uncertainties related to

missing higher order perturbative corrections. Theoretical
progress in this direction is needed, and perhaps expected,
and would be a major source of future improvement. For the
time being, even with a very conservative estimate of the
theoretical uncertainty, our result provides one of the most
accurate determinations of αs (mZ ) available, and thus pro-
vides valuable input for precision tests of the Standard Model
and for searches for new physics beyond it.
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