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Abstract Robotics competitions stimulate the next gen-

eration of cutting edge robotics solutions and innovative

technologies. The World Robot Summit (WRS) Indus-

trial Assembly challenge posed a key research challenge:

how to develop adaptive industrial assembly robots.

The overall goal is to develop robots where minimal

hardware or software changes are required to manufac-

ture a new or altered product. This will minimize waste

and allow the industry to move towards a far more flex-

ible approach to manufacturing; this provide exciting

new technologies for the manufacturing industry and

support many new business models and approaches.

In this paper we present an approach where general

purpose grippers and adaptive control approaches have

been developed to move towards this research goal. These

approaches enables highly flexible and adaptive assem-

bly of a belt drive system. The abilities of this approach

were demonstrated by taking part in the World Robot

Summit Industrial Assembly Challenge. We achieved

second place in the kitting challenge and second place

in the adaptive manufacturing challenge and were pre-

sented with the Innovation Award.

Keywords Adaptive Manufacturing · Industrial

Robotics · Manufacturing Competitions

1 Introduction

Increasingly there is a need for industrial robots that

can manufacture or assemble products which are be-

spoke or have a variable design and bill of materials [1].
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Application areas include aerospace, the space industry

and industrial assembly [2, 3], where it useful to man-

ufacture small runs of specific assemblies and rapidly

adapt to changing or evolving designs. Developing adap-

tive manufacturing systems has the potential to reduce

waste, increase the rate of assembly and allow bespoke

design.

There has been much existing work in this area,

in particular with a focus on how dual-arm systems

can work collaboratively with humans to assemble sys-

tems [4–8]. It is now necessary to advance this research

to move towards fully autonomous flexible and adaptive

assembly systems.

It has also been shown that robotics competitions

provide a means of: driving innovation, comparing and

bench-marking different technologies, and quantifying
the quality and applicability of research [9]. The DARPA

robot challenge demonstrated how the limitations of ex-

isting robot systems could be identified, and, how over

time solutions can be developed which ‘solve’ the chal-

lenges posed [?, 10]. There has been a recent increase

in the number of manipulation-based robotics competi-

tions which seek to address: mobile manipulation, ser-

vice manipulation tasks, soft robotic manipulation and

warehouse picking [11–14]. Robot competitions pro-

vides a great opportunity to drive and test robotic re-

search into industrial manipulation. It provides an op-

portunity to develop agile, efficient, lean assembly sys-

tems which enable the production of bespoke assem-

blies [15].

The World Robot Summit (WRS) Industrial As-

sembly Challenge is one such robot competition in the

area of industrial robotics [16]. The competition has

an overall aim of developing robotic technologies, vi-

sion and learning approaches to allow the assembly of

complex systems, and, how the system can respond to
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assembling a varied product. This is both a challenging

research question, and also a novel competition frame-

work. The major focus is on the ability to perform flexi-

ble manipulation opposed to showing high performance

of a single product.

We propose an approach to achieving adaptive man-

ufacturing where general-purpose mechanical grippers

and end effectors are developed to allow a wide range of

tools and different objects to be manipulated. The me-

chanical approaches also seek to minimize the precision

or accuracy required, by utilising material properties

and software based control procedures to reduce the

requirement for high accuracy and precision. This en-

ables unknown and previously unseen parts to be easily

manipulated. Additionally, we have developed modular

and scale-able vision and learning approaches which al-

low rapid detection of previously unknown or unseen

parts.

In this paper the exact competition problem defi-

nition and system overview is given in Section 2. Fol-

lowing this, Section 3 introduces the novel techniques

which have been implemented to achieve adaptive as-

sembly and manufacturing. Section 4 then presents the

results of experimental tests, with the paper finishing

with a discussion and conclusion on the system devel-

oped and also the role of competitions in driving and

testing research in this area.

2 Problem Definition & System Overview

2.1 World Robot Summit Assembly Challenge

The World Robot Summit ([17]) is an international

Robotics Competition which was held for the first time

in October 2018. There were a number of leagues, no-

tably: rescue, service and assembly. The industrial as-

sembly task is the focus of this work. The overall aim

is to develop adaptive industrial robotic assembly sys-

tems. Specifically to develop a robot system which could

manufacture a belt drive system, in an adaptive way

such that if changes are made to the design of the belt

system, minimal changes are required from the robot

in terms of both software and hardware. The belt drive

system which must be assembled is shown in Figure 2.

The specific tasks in the competition include:

– Task board. This is to demonstrate the key compo-

nents which must then be integrated to achieve full

assembly of the belt drive system. Each of the indi-

vidual parts are placed on a task mat. The specific

parts must be identified, classified and then manip-

ulated and placed on the task board, which repli-

cates the physical task required in the full assembly

Fig. 1: The four tasks which make up the WRS Industrial As-
sembly challenge: task board, kitting, assembly and adaptive
assembly.

challenge. For example, screws must be picked up,

manipulated and screwed into the task board, and

shafts inserted in to holes.

– Kitting. Given a bill of materials the correct parts

must be picked from parts bins where the parts

are arranged randomly. This involves picking small

items (e.g. washers, nuts, bolts), larger items (e.g.
motors, pulleys, shafts) and also flexible items (the

pulley belt). The objects must also be placed into

kitting trays, for example bolts must be placed with

accuracy into screw holders.

– Assembly. For a known set of parts and assembly

details, a belt drive system must be assembled au-

tonomously (including pick up the parts). The main

parts which form the belt assembly include: a motor,

output pulley, shaft housing, shaft, end cap, large

pulley and belt. This must be completed to both a

high standard, and also as quickly as possible.

– Surprise Assembly. Given an altered assembly,

for example with different sized parts or an assem-

bly with a different structure, the updated belt drive

should be assembled. Only one hour preparation

time is given with the new parts to allow develop-

ment and testing. Thus, the robot should be de-

signed to be adaptive so only minimal changes are

required in the mechanics and software to achieve

this assembly challenge.
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Fig. 2: Overview block diagram of the system showing the
vision, control and mechanical parts of the system.

In this paper we focus on the three most challeng-

ing aspects: kitting, assembly and, the most interesting

aspect from a research perspective, flexible assembly.

2.2 System Overview

The system developed uses two 6 axis robotic arms

(UR5, Universal Robots) working collaboratively to-

gether. Custom arm control and motion planning soft-

ware has been developed. Three custom end-effectors

have been developed which are controlled via micro-

controllers. A single 4K Ultra HD Camera (BRIO, Log-

itech) is used above for vision and the internal force

feedback from the arms are used to enable complex

multi-arm movements. A block diagram of the system

is shown in Figure 2, with the entire setup shown in

Figure 3.

The custom grippers are mounted on the end of the
UR5 arms. These are controlled by the micro-controllers

which communicate with the main computer over serial.

The pincer gripper uses a DC motor and threaded rod

mechanism to move two fingers to provide high force

pinching gripping to pick up objects of different sizes.

The micro-controller uses current feedback from the DC

motor to control the position and detect when the grip-

per closes.

The second gripper, a custom rotating gripper has

a variable size aperture which also allows infinite rota-

tion. This has been designed to allow for grasping and

manipulation of a wide variety of different objects of

different sizes and shapes with a minimal control re-

quirement.

The final gripper, the tack gripper uses sticky Blu-

tack to grasp small parts for the kitting challenge. A

servo is then controlled by the micro-controller to re-

move the item. This allows for robust, high speed pick

and place of many varied parts with very minimal con-

trol and with a low reliance on precision.

This research aims to investigate how agile and adap-

tive manufacturing can be achieved by:

– Reducing the control complexity by developing me-

chanical systems which are flexible to changes in

locations or parts and size and shape of parts

– Achieving agility through general purpose grippers

and software which allow a wide range of objects to

be manipulated.

– Developing robotic manipulators which can used a

wide range of tools of different sizes, which all use

the same underlying control approaches.

– Using a kitting approach which is general for all

parts, requiring low precision and enables the same

control and manipulation approach to be used for

all

– Flexibility and adaptability through modular soft-

ware and vision system

3 Adaptive Manufacturing Methods

3.1 Adaptive Assembly Grippers

The first gripper, the pincher gripper (Figure 4b), is

a simple parallel plate mechanism with reinforced 3d

printed fingers. The fingers are shaped and elongated

to pick in a variety of parts including: motors, fixing

plates and smaller parts such as bolts. This gripper uses

an Mbed micro-controller to communicate with the PC

and to control the single motor and read the motor

current and switch. The motor current defines the end-

stops and the force applied to any object in the gripper.

The switch defines the home position, this central po-

sition saves time when opening and closing.

The second gripper, the rotary gripper (Figure 4a),

is a more specialised design. This gripper design uses

two motors, one to open and close the fingers and one

to rotate the fingers. The fingers can rotate continu-

ously and independently of the position, enabling the

screwing in motion for assembly. The fingers contain

springs which force the grippers open, this is exploited

to enable another method of picking by gripping from

the inside of a part. When the position bearing is ex-

tended, the fingers are squeezed together. This manip-

ulator excels at picking up cylinders and triangular or

hexagonal prisms. The limits of the open and closed

position of the gripper are detected by monitoring the

current in the motor. The rotations of the fingers are

tracked by a single micro-switch, this also allows posi-

tion calibration of the rotating head. The gripper en-

ables the robot to adapt, by picking tools of different

heads and sizes, and perform agile assembly with new

parts.



4 Josie Hughes et al.

Fig. 3: Pictures showing the overall system setup with the two arms(UR5, Universal Robots), overhead camera, lighting and
three custom grippers.

Fig. 4: The custom grippers developed for flexible assembly. (a) rotary gripper, (b) two finger pincher gripper and (c) kitting
gripper.

The key task which this gripper enables is the use of

tools, specifically the use of Allen Keys to allow screw-

ing of bolts. We have developed an innovative approach

to enabling bolts to stay on the end of Alley Keys.

This is the use a grease. The Allen key is dipped in

grease and then inserted into bolt heads. When lifted

the screw remains attached to the bolt. This combina-

tion of the rotary gripper and tool usage makes this

gripper very powerful and highly adaptive to many dif-

ferent tool types.

3.2 Adaptive Kitting Grippers

One fixed size gripper has been designed which allows

kitting of all of small parts (washers, nuts, bolts etc.) .

This gripper has a soft adhesive pad (made from Blu-

tac) which allows parts to be picked using adhesion.

Adhesion has been previously shown to be an effective

method for pick and place ([18]) and also for achieving

climbing or holding on to walls ([19]).

To remove the part from the pad, a servo controlled

sleeve can push the part off the adhesive pad. The size

of the adhesive pad has been designed to have sufficient

adhesive and tack force to lift a single piece of all the

small parts whilst also only allow picking of one piece to

minimize the precision required from the vision system.

Figure 4c shows the gripper developed. This method

achieves adaptive gripping as the same gripper can be

used to grip many parts of different form factors with

no physical changes required. It also requires minimal

accuracy and precision from the vision to minimise the

development of custom systems.
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Fig. 5: Two hand manipulation to enable screwing of a motor
in to the motor plates.

3.3 Collaborative Arm Control

Collaborative two arm control is required to achieve

some of the complex assembly tasks. This provides the

ability to:

– Pass parts between grippers so they can be held in

an optimum position or by an alternative gripper

– Hold certain parts stable while another gripper screws

or otherwise interfaces with other parts

– Perform sub-assemblies, for example put washers

on a screw held in another hand before this sub-

assembly can then be integrated with the rest of

the system

To achieve this, the two arms were calibrated to-

gether by determining the co-ordinates for the two robots

at three separate points. One point is the base point, the

other two points form vectors which are used to extrap-

olate the positions of the robots relative to each other.

This allows the two hands to move together or move

relative to each other. Figure 5 shows collaborative two

arm and gripper control which enables complex move-

ments including the assembly and bolting of a motor to

a motor bracket.

3.4 Force-Feedback

Force feedback algorithms for insertion and hole finding

have been developed to remove the need for high pre-

cision and hard coding. The reduction of the need for

hard coding makes the system more adaptive when the

parts which must be assembled are changed. The force

measurements from the UR5 are imprecise and fluctu-

ate especially when accelerating. This is overcome by

monitoring the difference in forces and thresholding.

The hole finding function, Figure 6, attempts to find

the hole by moving towards it until a force limit has

been exceeded or the final position has been reached. If

Fig. 6: Flowchart for basic hole finding function using force
feedback.

the final position has not been reached the end-effector

will hunt, the end effector moves in circles of increasing

radii until the force has dropped below a fraction of the

force measured at the start. The drop in force indicates

the hole has been found, the robot then attempts a final

force move to fully insert into the hole.

This insert function has many different input pa-

rameters which can be tuned for different holes and en-

vironments, including the: force limit, circle radii, speed

of rotation and whether the hunting continues if the

final force move in Figure 6 does not reach the final

position.

This insert function is used widely within the as-

sembly. It is used to insert Allen keys into bolt head,

the pulley on to the motor shaft, bolts into bolt holes,

the shaft into the shaft housing and much more. The

universal nature of the function allows it to be used for

different parts, different locations and to serve different

overall functions.

3.5 Vision

Vision is used to detect and localise the different parts.

It was important to develop a vision and learning sys-

tem which can be rapidly expanded to include new or

altered parts.

3.6 Data-set and Image Pre-Processing

A core part of the object recognition process is image

pre-processing. The data-set used for the experiments

comprises 1500 RGB images of dimension 1920×1080×
3. Each image was taken by a camera directly above

the work space, facing perpendicularly downwards on

the object mat (see Figure 7a). For each image in the

data-set the mat was shifted and rotated manually at

random, moreover, the objects are relocated in different

positions. The labelling of the data-set is achieved by

selecting a bounding box over each object on the origi-

nal images, a method which decreases labelling times.
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Work-space

Round Belt 4mm Bearings with Housing

9mm Spacer for barings M3 screw

Pre-processed example images

Fig. 8

Before feeding the data to a network it is neces-

sary to make the objects in the data-set comparable to

each other. First, we convert the RGB images into grey

scales, reducing the dimensionality of the input layer

and thus training time, and forcing the network to focus

on geometrical information, rather than color discrim-

ination. We choose an object-detection image size of

300× 300, based on the dimension of the largest object

in the figures, i.e. the belt, and automatically crop each

object based on its labelled bounding box. Each object

image is padded on each side, to reach the 300 × 300

standard dimension. As shown in Fig.7b, the object will

thus be at the center of the image, surrounded by ‘0’

pixel values. Here, the dimension of the outer padding

provides useful information for object discrimination.

Moreover, ‘0’ pixels do not excite any weight units in

the network and will thus be naturally discarded for

discrimination. After the pre-processing procedure the

data-set corresponds to 15200 images, each containing

a single object.

3.7 Inception Convolutional Neural Network for

Object Recognition

To perform object recognition and to cope with ob-

jects of different sizes, we devised a shallow Inception

Convolutional Neural Network. The ICNN devised is

comprised of an input layer, an inception layer, two

convolutional layers with 3x3 kernels with 32 channels

(shallow convolutions) and two fully connected layers

before an output layer classifying each object into its

class with a softmax function. The inception layer is

formed of 4 parallel convolution layers, with 20 chan-

nels and increasingly larger kernels of 2x2, 3x3, 5x5 and

7x7. The relative size of kernels allows the network to

learn local features at different scales, thus coping with
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Fig. 9: The network design for the object recognition in flex-
ible assembly

the varying size of the objects in the dataset. All units

in the network perform a ReLu non linear transforma-

tion.

4 Experimental Results & Demonstration

In this section we include experimental results of the

system and also demonstration of the performance and

abilities of the system.

4.1 Vision

4.2 Object Recognition

We use TensorFlow [20] to create the network described

in Section 3.7, and train the network with 75% of the

images in the dataset, each pre-processed, padded, and

containing a single object at its center. We use RM-

SProp[21] with decay = 0.9, ε = 1e−10, learning rate =

0.0001 and no momentum, and perform gradient de-

scent on the soft-max cross entropy between the logits

in output by the neural network and the one-hot en-

coding of the object labels.

Similarly, we devise a new Convolutional Neural Net-

work, identical to the network designed in Section 3.7,

but substitute the inception layer devised by a 5x5 con-

volution layer with 80 channels. We train both networks

to compare their performance and early stop only when

the validation error, computed over 25% of the data-

set, does not improve for over 10 epochs. Figure 10 and

Figure 11 show the validation error and accuracy of

both networks over all epochs before early stopping. As

clear from the figure, the ICNN performs overall better

than its convolutional counterpart. Finally, the classic
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Fig. 10: Comparative validation error of the CNN and ICNN
networks.
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Fig. 11: Comparative validation accuracy of the CNN and
ICNN networks.

Convolutional Neural Network reaches a maximum ac-

curacy level of 78.33% and minimum error of 0.8873,

in comparison to the ICNN which reaches a max vali-

dation accuracy of 89.5 and minimum error of 0.6198,

thus improving performance on both accounts.

This vision system was used in the task board and

kitting task, to accurately detect the parts and the lo-

cation.

4.3 Kitting

To test the kitting system, the reliability of the system

to pick a single item and place it in a kitting tray tested

for the different items. The vision system was used to

identify a specific part to pick. For circular items (wash-

ers, nut, spacers etc.) the edge of the circular part was

chosen as the grasping point. For other parts (bolts)

the head was chosen as this provides the greatest con-

tact area. The bluetack gripper was moved above the

part, and then lowered until the force feedback indi-

cates that the gripper had made contact with the part

(a minimum force threshold was met.) The results can

be found in Table 1.

Item
Picking
Success

(%)

Release
Success
(%)

Average
Number Picked

Washer 90 85 1.2
Bolt M3 95 90 1.1
Bolt M4 95 100 1
Large Washer 100 100 1
Spacer Cylinder 100 100 1
End Cap 100 100 1
Nut 100 100 1

Table 1: Results from the kitting experiments showing the
success of picking the different items, success when removing
and also the average number of items picked. This experiment
was repeated 20 times for each item, with the average results
given.

Fig. 12: Pictures showing the successful picking of a wide
variety of different parts as required for the kitting challenge.

The gripper was highly successful with the larger

parts (e.g. nut and end cap) where the parts are larger

than the gripper and have a large surface area. Al-

though washers could be reliably picked, often more

than one could be picked, as the washers are smaller

in diameter than the diameter of the soft adhesive, ad-

ditionally, in some cases it the release mechanism did

not remove the item as the item is smaller than the size

of the adhesive unit. Pictures showing the gripping of

these items are shown in Figure 12.

This approach provides a universal method to kit-

ting and enables simple control strategies to be used to

achieve a complex and challenging manipulation proce-

dure.
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4.4 Assembly Manipulation Tasks

Adaptive manipulation is achieved by using the grip-

pers which show a huge range of abilities to pick and

place, and perform various manipulation of different

parts and tools. The abilities to achieve these tasks in a

varieties of scenarios are shown in Figure 13. The ability

to pick up parts of highly varying form factor (diameter

and height) is shown in Figure 13 (a-c) where a large

pulley, thin shaft and washer are all picked using the

same gripper and using the same control function where

the gripper is closed until the current feedback of motor

rises above an appropriate threshold. To pick up parts

where there is an inner hole or lip, the gripper can be

closed tight lowered into the hold and then the lips of

the gripper open, so the part can be gripped from the

inside. This is shown in Figure 13d where is possible to

pick up the large and troublesome shaft housing using

the inner lips of the gripper. Finally it is also possible

to pick up tools and Allen Keys of a range of sizes. This

is shown in Figure 13(e-g).

The adaptive nature can be quantified. It can pick

up parts with a diameter or maximum diameter of upto

40mm and likewise parts can be picked up using an

inner hold with a minimum diameter of 30mm. This

includes the holding of prism shaped tools (e.g. allen

keys/sockets) which are within these size limits.

4.5 Adaptive Manufacturing

The abilities of the system to perform adaptive, flexi-

ble manufacturing were tested in the final round of the

WRS competition when it was necessary for the robot

system to manufacture a belt drive system which has

some changes in design which were not seen until 1 hour

before the competition.

The original assembly (Figure 14 top) and the adapted

system which was manufactured during the competition

are shown in Figure 14. With only 1 hour practise time

with these new updated parts, and then only 20 min-

utes of competition time the assembly shown was man-

ufactured. This included a assembly of a sprocket on

the output shaft of the motor and also an M3 screw to

hold this onto the motor shaft. Additionally a new shaft

and spacer were inserted into the bearing housing. Al-

though additional sub-assembly tasks were developed,

this was not achieved during the time allotted in the

competition.

4.6 Competition Results

The performance of the system was tested and bench-

marked against other systems at the WRS competition.

We came 2nd in the Kitting challenge, and 2nd in the

combined assembly and flexible assembly challenges. In-

deed, we were the only team to demonstrate significant

assembly in the surprise tasks. We were awarded the

Special Innovation award, due to abilities of the system

to achieve flexible assembly and also the innovative and

novel gripper designs.

5 Discussion

5.1 Adaptive Manufacture

This research has demonstrated how adaptive manufac-

turing systems can be developed. This has been achieved

by developing adaptive grippers which can pick up a

wide range of parts and tools, and also accompanying

control strategies which use force-feedback to achieve

resilience to changes in design. We have demonstrated

the ability of the system by demonstrating how it can

be used to assemble an updated assembly with very

minimal changes required to the software and control.

To achieve flexibility in kitting, adhesive material

has been used to develop a ’Blu-tack’ gripper. This

method of picking parts provides an approach to many

parts, with the control uniform across all. This provides

a system which can be rapidly changed if it was neces-

sary to kit of prepare unseen parts.

This system has been tested in a competition envi-

ronment, where, unlike a lab environment, the success

could only be tested in a single run where it must ‘work’.

There are no opportunities to re-run or retest and is a

great benchmark to test the true ’here and now’ ca-

pabilities of the system. However, further exploration

is required to better understand the scope of the flex-

ible assembly behaviour, to understand the extend to

which these general purpose grippers can be used and,

to quantify the scope of this approach.

5.2 Role of Competitions

This work also highlighted how competition can be used

to drive innovation in industrial assembly. By develop-

ing a competition in this area where there is an unseen

and unknown task, in this case the surprise/flexible as-

sembly task, it was possible to truly test research of

agile and flexible assemble. This competition did iden-

tify how challenging this adaptive assembly task is. Per-

forming automated assembly of the belt drive was suf-
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Fig. 13: Rotary gripper picking examples. a) Pulley b) Shaft c) Washer d) Shaft housing e) M4 allen key f) M2 allen key g)
M10 Socket.

Fig. 14: Image of the constructed pulley system (top) and the
assembly with the surprise parts which were given only one
before the start of competition, and was achieved in around
20 minutes of competition time.

ficiently challenge. Further developing this to achieve

adaptive manufacturing was highly complex. The com-

petition identified the remaining research which must

be addressed to solve this problem.

This competition provided an opportunity to bench-

mark different research solutions and approaches. It

also highlighted both the need and requirements from

industry for flexible and adaptive robotic assembly sys-

tems and identified the research which is required to

meet this goal. The inclusion of the flexible assembly

task in the challenge forced teams to design and de-

velop a robotic system which was adaptive and flexible

opposed to hard-coding and engineering a specific solu-

tion to achieve a single task. The design of the compe-

tition in this way was shifted the research direction to

address this more interesting and challenging and prob-

lem. This is an approach which should be used in fur-

ther competitions such that competitions can be used

to drive research innovation. In this way the research

does not become too closely defined by the specific aims

of the competition and innovation and creativity is not

stifled.

Acknowledgements Thanks to the ARM University Pro-
gram for their funding of the project and thanks to the World
Robot Summit for providing funding and also running the
competition.
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nual International Technology, Education and Develop-
ment Conference, INTED2016, vol. 1 (2016), vol. 1, pp.
64–72

16. W.R. Summit. Industrial Robotics Category WRS
. http://worldrobotsummit.org/en/wrc2018/industrial/
(2017). [Online; accessed 12-Nov-2018]

17. T. Kimura, M. Okugawa, K. Oogane, Y. Ohtsubo,
M. Shimizu, T. Takahashi, S. Tadokoro, in 2017 IEEE
International Symposium on Safety, Security and Res-
cue Robotics (SSRR) (IEEE, 2017), pp. 129–130

18. J. Hughes, F. Iida, in 2018 IEEE International Confer-
ence on Soft Robotics (RoboSoft) (IEEE, 2018), pp. 553–
558

19. A. Parness, N. Abcouwer, C. Fuller, N. Wiltsie, J. Nash,
B. Kennedy, in Robotics and Automation (ICRA), 2017
IEEE International Conference on (IEEE, 2017), pp.
5467–5473

20. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al., in OSDI, vol. 16 (2016), vol. 16, pp. 265–283

21. T. Tieleman, G. Hinton, COURSERA: Neural networks
for machine learning 4(2), 26 (2012)


