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Symmetry breaking in a 3D bluff-body wake

By G. Rigas†, L. Esclapez AND L. Magri

The dynamics of a three-dimensional axisymmetric bluff-body wake are examined at
low Reynolds regimes where transitions take place through spatio-temporal symmetry
breaking. A linear stability analysis is employed to identify the critical Reynolds num-
ber associated with symmetry breaking, and the associated eigenmodes, known as global
modes. The analysis shows that the axisymmetric stable base flow breaks the rotational
symmetry through a pitchfork m = 1 bifurcation, in agreement with previously reported
results for axisymmetric wakes. Above this threshold, the stable base flow is steady and
three-dimensional with planar symmetry. A three-dimensional global stability analysis
around the steady reflectionally symmetric base flow, assuming no homogeneous direc-
tions, predicts accurately the Hopf bifurcation threshold, which leads to asymmetric
vortex shedding. DNS simulations validate the stability results and characterize the flow
topology during the early chaotic regime.

1. Introduction

Bluff-body flows are of fundamental importance to many industries, in particular the
transport industry, where the aerodynamic drag arising from such flows can be the
dominant source of vehicle fuel-burn and CO2 emissions. Recent advances in hydrody-
namic stability have further aided understanding and controling laminar and transitional
regimes (Sipp et al. 2010; Luchini & Bottaro 2014; Sipp & Schmid 2016), particularly for
two-dimensional (2D) flows. However, flows of practical and industrial interest involve
three-dimensional (3D) wakes and high Reynolds numbers. Despite their turbulence and
complexity, such flows exhibit organization, which manifests as coherent flow structures.
These structures are usually associated with increased noise, structural fatigue and drag.

During the transitional regime of laminar wakes, continuous spatial and temporal sym-
metries are spontaneously broken through a sequence of bifurcations. Specifically, the
axisymmetric 3D wake undergoes a steady bifurcation followed by an unsteady one with
azimuthal wavenumbers |m| = 1 at low Reynolds numbers prior to the emergence of
chaos (Fabre et al. 2008; Meliga et al. 2009; Bohorquez et al. 2011; Bury & Jardin 2012).
These bifurcations break spatial-rotational and time-translation symmetries, giving rise
to a reflectionally symmetric steady flow and unsteady vortex shedding. Similar transi-
tional behavior has also been observed in 3D bluff bodies with reflectional symmetries,
such as square plates (Marquet & Larsson 2015).

Perhaps surprisingly, it was shown recently that the turbulent dominant dynamics of
3D wakes can be linked to the hydrodynamic instabilities observed during the transi-
tional regimes at low Reynolds numbers, including axisymmetric geometries (Rigas et al.
2014, 2015) and square ones, such as the Ahmed body (Grandemange et al. 2013). Un-
derstanding the wake dynamics in the laminar and transitional regimes is paramount for
the development of control strategies, which can be appropriately extended to turbulent
cases (Brackston et al. 2016).
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In this study, global linear stability analysis (LSA) and direct numerical simulation
(DNS) are employed to study the intrinsic dynamics leading to chaotic/turbulent be-
havior in a 3D axisymmetric bluff-body wake. The remainder of this paper is structured
as follows. Section 2 briefly outlines the computational set-up. Section 3 presents the
predictions of the LSA. Section 4 describes the transitional regimes obtained from DNS.
Finally, conclusions are drawn in Section 5.

2. Computational setup

The geometry employed in this study is a 3D axisymmetric bluff body (Figure 1) with
a blunt trailing edge, which has been studied experimentally in Rigas et al. (2014, 2015)
and Oxlade et al. (2015). The length-to-diameter ratio, L/D, is 6.48. The bluff-body
nose employs a modified super-ellipsoid with an aspect ratio AR = 2.5, given by the
revolution of y = (1 − z/AR)m + y2 = 1, 0 < z < AR, m = 2 + (z/AR)2 around the
centerline (Lin et al. 1992). Cylindrical (r, θ, z) and Cartesian (x, y, z) coordinates with
the origin taken at the center of the base of the body are used in the subsequent analysis.

2.1. Stability calculations

The fluid motion is governed by the incompressible Navier-Stokes (NS) equations

∂tu + u · ∇u +∇p− Re−1∇2u = 0, ∇ · u = 0. (2.1)

In the stability analysis, u = (ur, uθ, uz)
T where ur, uθ, uz are the radial, azimuthal

and axial components of the velocity. The stability analysis examines the evolution of
infinitesimal perturbations around fixed-point solutions of (2.1), known as base flows.

The base flow q0 = (u0, p0)T is a steady solution of the NS equations

u0 · ∇u0 +∇p0 − Re−1∇2u0 = 0 and ∇ · u0 = 0. (2.2)

The linear perturbation equations read

∂tu
′ + u0 · ∇u′ + u′ · ∇u0 +∇p′ − Re−1∇2u′ = 0 and ∇ · u′ = 0, (2.3)

which, in compact form, read

B∂tq′ +Aq′ = 0. (2.4)

Assuming no homogeneous directions, the solutions are sought as normal modes with
linear growth rate σ and frequency ω

q′ = q̂3D(r, θ, z)e(σ+iω)t + c.c. (2.5)

For an axisymmetric base flow, the azimuthal coordinate can be further Fourier-trans-
formed in terms of the azimuthal wavenumber m, where m is an integer parameter,
as

q′ = q̂2D(r, z)e(σ+iω)t+imθ + c.c. (2.6)

Substituting the normal-mode decompositions into Eq. (2.3) leads to 3D and 2D gener-
alized eigenvalue problems with appropriate boundary conditions. These read

(σ + iω)Bq̂ +A(m)q̂ = 0. (2.7)

For each global mode q̂ the correspondent adjoint mode q̂† is computed from

(σ − iω)B†q̂† +A†(m)q̂
† = 0. (2.8)
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Figure 1. (a) DNS computational domain. (b) Mesh in a y-normal plane.

The adjoint operators can be either derived analytically from the direct equations (Eq. (2.3)),
which is known as the continuous adjoint, or formed from the numerically discretized op-
erator, which is known as the discrete adjoint (Luchini & Bottaro 2014). For this flow
configuration and the numerical schemes adopted, the discrete-adjoint formulation is
adopted. Hence, the adjoint operators are given by the complex conjugate of the dis-
cretized direct operators. The adjoint equations can be used to evaluate the effects of
generic initial conditions and forcing terms on the time-asymptotic behavior of the sys-
tem. Moreover, once the direct and adjoint modes are computed, the sensitivity of the
global modes to local feedback (structural sensitivity, Giannetti & Luchini (2007)) and
base-flow modifications (Bottaro et al. 2003; Marquet et al. 2008) can be examined.

The spatial discretization of the base flow and the linear equations is performed in
the finite-element software FreeFem++ (Hecht 2012), interfaced with PETSc for parallel
calculations, using a continuous Galerkin scheme with P2 − P1 Taylor-Hood elements.
Results presented here were obtained using an unstructured mesh with approximately
500,000 tetrahedra elements. The base-flow solution of the steady nonlinear equations
(2.2) is obtained using an iterative Newton method and the direct linear solver MUMPS
(Amestoy et al. 2001). Convergence is reached when the L2-norm of the residual of the
governing equations becomes smaller than 10−12. Eigenvalue problems (2D and 3D) are
solved with SLEPc (Hernandez et al. 2005) using a shift-and-invert method.

2.2. Direct numerical simulations

The low-Mach-number solver Vida (Cascade Technologies, Inc.) is used to solve the in-
compressible NS equations by setting constant density. It is a finite-volume, unstructured,
massively parallel LES/DNS solver for reacting and non-reacting flows, fourth-order ac-
curate in space and second-order accurate in time (Ham et al. 2007). The equations
are solved in Cartesian coordinates, with z being the streamwise direction. Standard
air properties at T = 20◦ C; ν = 15.11 × 10−6 m2/s; ρ = 1.205 kg/m3 are utilized.
The computational domain is shown in Figure 1(a): it consists of a 50-diameter × 20-
diameter cylinder with a half-sphere inlet. A uniform velocity profile boundary condition
is imposed at the inlet, no-slip at the bluff-body walls, convective at the outlet and slip
conditions at the outer radial boundary. Several meshes of increasing spatial resolution
were used and velocity statistics were found to converge with a mesh of about 5 million
cells for Re up to 1000 and of about 10 million cells for higher Re. The former mesh
has a grid point distribution in axial, radial and azimuthal directions of 300 × 50 × 60
(Figure 1(b)), the latter has a grid point distribution of 600× 70× 120.
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Figure 2. Base flows (fixed point solutions of the Navier-Stokes equations) at Re = 500. Stream-
wise velocity component Uz and streamlines in the xz plane. Top: rotationally symmetric (ax-
isymmetric) base flow. Bottom: reflectionally symmetric base flow with respect to the xz plane.

3. Linear stability analysis

In the limit of vanishingly small Reynolds numbers, Re � 1, the base flow is steady
(time invariant) and axisymmetric (azimuthally invariant), respecting the axisymmetry
of the bluff-body configuration. The flow is stable, which means that perturbations decay
asymptotically in time i.e., all the eigenvalues of the linearized NS operator have strictly
negative real part, σ < 0. En route to chaos, these symmetries break through a series of
bifurcations that bring about reduced symmetry in space or time. The transition between
the various symmetry groups is characterized here through LSA. For the flow studied in
this paper, when a bifurcation occurs, the base flow (equilibrium) becomes unstable and
a real eigenvalue (steady pitchfork bifurcation) or a complex conjugate pair (unsteady
Hopf bifurcation) attains positive growth rates (σ > 0).

The first symmetry-breaking bifurcation is a steady bifurcation at Rec = 424, which
breaks the rotational symmetry of the axisymmetric 2D base flow and leads to a 3D topol-
ogy. Above this critical Reynolds number the axisymmetric base flow becomes unstable
and a new stable base flow emerges. The stable base flow is characterized by reflectional
symmetry in the azimuthal direction. These two equilibria for Re = 500 are shown in
Figure 2. The growth rate and frequency obtained by examining the stability of these
base flows are shown in Figure 3.

3.1. Global modes of axisymmetric (2D) base flow

Two bifurcations are identified by examining the stability of the axisymmetric flow and
relevant global modes. At Rec = 424 the axisymmetric base flow undergoes a steady
pitchfork bifurcation, with azimuthal wavenumber m = 1 and zero frequency (ωc = 0).
At Rec = 802 the axisymmetric base flow undergoes an unsteady Hopf bifurcation, with
azimuthal wavenumbers m = ±1. A complex conjugate pair of eigenvalues crosses the
imaginary axis of the spectrum, with a critical Strouhal frequency of 0.075. The direct
and adjoint eigenmodes for Re = 600 are shown in Figure 4(a,b).

The two symmetry-breaking bifurcations obtained from the stability of the axisym-
metric base flow are in agreement with the findings of Sanmiguel-Rojas et al. (2011);
Bohorquez et al. (2011) for an axisymmetric body of similar geometry. The threshold
for the steady bifurcation is in agreement with the critical value 420, obtained from the
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Figure 3. Growth rate (left) and frequency (right) of the most unstable global modes against
Reynolds numbers. Steady mode (blue squares) and unsteady vortex shedding mode (red trian-
gles) predictions using the axisymmetric 2D base flow. Unsteady vortex shedding mode using the
reflectionally symmetric 3D base flow (black circles). Critical Re (dashed lines) and frequencies
(filled symbols) from DNS.

DNS. However, the frequency and the critical Reynolds number for the unsteady vortex
shedding do not match the DNS values. This is because the axisymmetric base flow has
become unstable at a lower Re due to the steady bifurcation, thereby not serving as
the correct base solution for predicting the Hopf bifurcation. For the same reason, this
unsteady flow regime cannot be observed as a solution in the asymptotic time regime. An
accurate prediction of the threshold and mode shape of the unsteady bifurcation requires
the solution of the eigenvalue problem around the stable equilibrium, which is 3D, as
explained in the next section.

3.2. Global modes of reflectionally symmetric (3D) base flow

The new emerging stable base flow for Rec > 424 is characterized by reflectional sym-
metry and is fully 3D. We find that at Rec = 605 the reflectionally symmetric base flow
undergoes an unsteady bifurcation. A complex conjugate pair of eigenvalues crosses the
imaginary axis, with a critical Strouhal frequency of 0.113. This is in agreement with
the DNS values for the threshold (600) and frequency (0.113). The associated unstable
unsteady global mode inherits the symmetry properties of the base flow, as shown in
Figure 4(c), and becomes reflectionally symmetric, biased toward the same direction as
the base flow.

The LSA is valid close to the threshold of the bifurcation (right panel of Figure 3). The
frequency deviation between the DNS results and the linear stability for higher Re is due
to the nonlinear base-flow modification caused by the Reynolds stresses associated with
the global shedding mode. For an accurate prediction of the saturated frequency and
amplitude of the global mode, a weakly nonlinear analysis (Sipp & Lebedev 2007; Meliga
et al. 2009) or a self-consistent model (Mantič-Lugo et al. 2014) would be necessary.
Note that the nonlinear base-flow modifications associated with the first steady mode
above the threshold of the first bifurcation are fully accounted for here because of the
appropriate choice of the stable reflectionally symmetric flow. For the stable and steady
regimes, the axisymmetric base flow, Re < 424, and the reflectionally symmetric base
flow, 424 < Re < 605, obtained by the Newton-Raphson solver, are exact solutions of the
NS equations and correspond to the mean flow, as found also with DNS. The advantages
of using the Newton-Raphson solver over DNS are (i) the low computational cost because



198 Rigas et al.

Global modes of axisymmetric base flow (2D)

Global modes of reflectionally symmetric base flow (3D)

1086420 1086420

Figure 4. Global modes at Re = 600: direct (left) and adjoint (right). Steady symmetry break-
ing of the axisymmetric base flow (top); unsteady vortex shedding around the axisymmetric
base flow (middle); (c) unsteady vortex shedding around the reflectionally symmetric base flow
(bottom). The real part of streamwise velocity component is shown in the xz plane.
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Figure 5. Structural sensitivity of the global modes shown in Figure 4.

the method converges after a few iterations, and (ii) the ability of obtaining unstable base
flows with no further implementation.

3.3. Structural sensitivity

Mathematically, the structural sensitivity is related to the first-order sensitivity of an
eigenvalue to small perturbations of the direct linear operator. When the direct operator,
A, is structurally perturbed by δA, such that A → A+ εδA and σ → σ + εδσ, the first-
order drift of the eigenvalue is given by the Gâteaux derivative (Magri 2015)

δσ ≡ lim
ε→0

[
σ (A+ εδA)− σ (A)

ε

]
. (3.1)

The resulting drifts in the eigenfunctions are assumed to be perturbed as q̂ → q̂ + εδq̂
and q̂† → q̂†+ εδq̂†. By taking the limit ε→ 0 and using the bi-orthogonality condition,
it can be shown that for linear eigenvalue problems (see, e.g., Giannetti & Luchini 2007)

δσ =

〈
q̂†, δAq̂

〉
〈q̂†,Bq̂〉

, (3.2)

where 〈·, ·〉 is an inner product. (The extension of this formula for nonlinear eigenvalue
problems can be found in Magri et al. (2016)). By considering a structural perturbation
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that is localized in space by the identity tensor, we define the structural sensitivity of
the direct operator, A, as (Giannetti & Luchini 2007)

S(x, y, z) =
‖û(x, y, z)‖ · ‖û†(x, y, z)‖

〈q̂†,Bq̂〉
.

Physically, the region in the flow acting as a wavemaker in the excitation of the global
instability can be identified by considering the structural sensitivity of the unstable mode.
This concept, although typically used for oscillatory bifurcations, can be also used for
examining the core region of instability due to a steady bifurcation. At the same time, it
can provide directions for the implementation of passive and localized control strategies.

The structural sensitivities of the global modes identified from global LSA are shown in
Figure 5. The maximum magnitude for the steady bifurcation lies inside the recirculation
bubble. For the unsteady bifurcation computed around the axisymmetric base flow, the
wavemaker region is located closer to the end of the recirculation bubble. Interestingly,
for the reflectionally symmetric base flow, the sensitivity appears to move closer to the
body and becomes asymmetric in accordance with the symmetry of the base flow.

4. Direct numerical simulations

DNS simulations are performed to investigate the transition stages to chaos and vali-
date the LSA predictions. An overview of the simulations performed in terms of Reynolds
number and spatio-temporal behavior is given in Table 1. The simulations span over the
range between Re = 300 and Re = 1500. In Figure 6, instantaneous snapshots of the
normalized streamwise vorticity ω∗z = ωzD/w∞ iso-contours for the various regimes are
shown, in addition to the power spectral density (PSD) of the center of pressure at the
base and half-diameter downstream.

For Re < 400, the base flow is axisymmetric and steady (not shown here). At Re = 420,
the steady flow is asymmetric and the rotational symmetry is broken. The new flow
topology is characterized by reflectional symmetry around a plane passing through the
axis of the body. The angle of the symmetry plane is determined by the initial conditions.
At Re = 550, the side view in Figure 6 shows that the streamwise vortices are not aligned
in the streamwise direction but exhibit an increasing eccentricity as the downstream
distance from the base increases. The eccentricity increases with the Reynolds number
and can be used to evaluate the Rec of the steady bifurcation (Bohorquez et al. 2011).

For Re ≥ 600, the flow is unsteady and anti-symmetric vortices are shed periodically.
A dominant single frequency appears in the PSD of the center of pressure. The LSA
predictions are in agreement with the DNS.

For Re > 675 the flow is aperiodic, presumably quasi-periodic, i.e., having two incom-
mensurate frequencies, and multiple frequencies appear in the PSD. First, the higher
harmonics of the vortex shedding become stronger. Second, a low-frequency peak at
St = 0.027 is observed. The vortex shedding becomes irregular and bursts of vorticity
occur approximately every 5 vortex shedding cycles, as shown in Figure 6. Interestingly,
the wake preserves the reflectional symmetry. A fully nonlinear characterization of these
solutions can be obtained by advanced techniques from time-series analysis (Hegger et al.
1999), such as phase-space reconstruction, recurrence analysis, Lyapunov analysis and
entropy calculations. This is under way and will be reported in a separate paper.

For Re > 900, high irregularity is observed in space and time. All the spatial and
temporal symmetries of the flow are broken. The PSD of the fluctuations in the near
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Temporal Spatial Re

Steady Axisymmetric 300, 400

Steady Reflectional symmetry 420, 430, 500, 550

Periodic Reflectional symmetry 600, 625, 650

Aperiodic Reflectional symmetry 675, 700, 750, 800

Chaotic No symmetry 900, 1000, 1500

Table 1. Characterization of the DNS solutions for the Reynolds numbers investigated.
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Figure 6. DNS simulations at Re: 550, 600, 800, 1000. Left: Streamwise vorticity contours,
ω∗
z = ±0.05, in the wake of the bluff-body; side (top) and plane (bottom) views. Right: Power

spectral desnity (PSD) versus Strouhal number of the pressure barycenter on the base (black)
and 0.5D downstream of the base (red) for the unsteady cases.

wake show rich energy content around the two main frequencies of the previous regime,
and the energy of the higher vortex shedding harmonics has spread over a wide frequency
range. For Re = 900, the Lyapunov exponents for this flow are calculated in Blonigan
et al. (2016). One Lyapunov exponent is found positive, which indicates that the solution
is low-dimensional chaotic. Furthermore, it is found that the irregular bursts observed
above are associated with discrete peaks with positive finite-time Lyapunov exponent
values, indicating the chaotic transition of the wake.
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5. Conclusions

We have investigated and characterized the transition to chaos of an axisymmetric 3D
bluff-body wake using global LSA and DNS. We have shown that linear stability anal-
ysis is an accurate tool to characterize the early transition and the symmetry-breaking
sequences. For the axisymmetric wake, the two initial symmetry-breaking bifurcations
are associated with spatial symmetry breaking of the rotational symmetry, giving rise
to a steady reflectionally symmetric wake, and temporal symmetry breaking, giving rise
to unsteady vortex shedding. A fully 3D stability analysis was employed in order to
capture accurately the transition from the steady reflectionally symmetric regime to
single-frequency vortex shedding.

For higher Reynolds numbers above the unsteady shedding threshold, Re > 675, DNS
revealed that the wake preserves the reflectional symmetry. However, intermittent bursts,
which interrupt the laminar shedding, were identified. For Re > 900 chaotic behavior is
established. The wake breaks the reflectional symmetry and random reorientations in
the azimuthal direction occur. Interestingly, the laminar symmetry-breaking instabilities
persist even at high Reynolds numbers (Rigas et al. 2014, 2015). Future directions of this
study involve the use of Lyapunov analysis (Blonigan et al. 2016) to extend eigenvalue
stability analysis and sensitivity to turbulent regimes.
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