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Abstract

Direct numerical simulation of particulate �ows in
viscoplastic media
Arndt Ryo Koblitz

The oil�eld primary cementing process is vital to successful and safe extraction.
It is the �rst cementing operation performed after the casing string has been
placed in the newly drilled wellbore, and is critical to prevent loss of well con-
trol or contamination of water sources. While a conceptually simple operation,
real-world cementing operations are complicated by a slew of operation speci�c
issues such as high wellbore deviation, weak formation walls, and high bottom
hole formation pressure. This makes a quantitative understanding of the ce-
ment slurry rheology imperative. Cement slurry rheometry can be di�cult in
practice due to its non-linear stress-strain behaviour. Complicating matters fur-
ther, the cement slurries we are interested in contain suspensions of relatively
large particles—micro beads—that are problematic for conventialmeasurement
tools such as concentric cylinder rheometers. This motivates a computational
treatment.

There are two overriding aspects to modelling suspensions in viscoplastic �uid
�ows. Firstly, for fully resolved particle suspensions—regardless of the carrier
�uid—the discretisation scheme must cope with disparate length scales at the
particle boundaries and wider �ow �eld. In this work we adopt the overset
grid method, allowing each particle to be explicitly represented with a curvi-
linear grid, thereby enabling cost-e�ective resolution of boundary layer �ows.
Secondly, the governing equations of viscoplatic �uid �ow are non-linear, even
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in the absence of inertia, requiring specialised solution strategies. We adopt
an augmented Lagrangian approach that allows for an exact treatment of the
constitutive equation, enabling truly unyielded zones in our solutions.

Even with an e�cient discretisation scheme, the solution of viscoplatic �uid
�ow problems remains prohibitively expensive. In this work, we are primarily
interested in yield stress e�ects, and so we use the ideal Bingham constitutive
model as a proxy for our cement slurry. We begin by investigating the viscoplatic
squeeze �ow between approaching particles, �nding that under certain condi-
tions yield stress e�ects external to the closing gap contribute greatly to the
lubrication force. This enables viscoplastic lubrication theory to be used as a
sub-grid scale model in coarse grained suspension simulations.

By restricting ourselves to quasi-steady, non-inertial, two-dimensional suspen-
sions of in�nite circular cylinders we are able to simulate suspension �ows with
two orders ofmagnitudemore particles than in the literature.We�rst investigate
the yielding transition in negatively buoyant suspensions under quiescent �ow
conditions. We identify three distinct sedimentation regimes, including a mixed
regime where clusters of particles preferentially settle while isolated particles
remain �xed. Finally, we investigate neutrally buoyant suspensions under shear,
where we �nd that unyieldedmaterialmay act as additional particles, increasing
the apparent solid volume fraction, and extend an existing micro-mechanical
model to take this in to account.
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1 Introduction

The oil and gas industry uses many complex �uids in a wide range of applica-
tions. These �uids are usually Wn-Newtonian in character and possess a variety
of characteristics which are not well understood, such as viscoelasticity (poly-
meric �uids such as those used in hydraulic fracturing), viscoplasticity (yield
stress �uids such as cement slurries) and time-dependency (structure forming
�uids such as drilling mud). Many of these characteristics originate from local
microscopic interactions in the �uid, particularly in complex �uids containing
particle or polymer molecule additives. In such �uids the interactions between
the suspended material, the suspension �uid, and the domain boundaries give
rise to non-Newtonian characteristics of the bulk �uid.

The objective of this project is to better understand the physics of viscoplastic �u-
ids containing non-colloidal particles. Particle-laden �uids are encountered in a
large number of relevant oil�eld operations, including well cementing (both pri-
mary and remedial), hydraulic fracturing, wellbore cleanup, and gravel packing.
This work is focused on the primary cementing operation.

1.1 Primary cementing process

The oil�eld primary cementing process is vital to successful and safe extraction.
It is the �rst cementing operation performedafter the steel casing string has been
lowered into the newly drilledwellbore. The primary objective is to ensure zonal
isolation between di�erent parts of the rock formation, viz. the prevention of
uncontrolled �uid (liquid and gas) communication between zones, by forming
a hydraulic seal between the casing and cement, and the cement and formation.
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Failure to do so can result in loss of well control or contamination of water
sources (Abbas et al., 2002). Other objectives include preventing corrosion of the
casing, providing strength for installation of wellhead equipment, and providing
pressure integrity.

Figure 1.1: Schematic of the basic primary cementing operationwithout plugs
(Malekmohammadi et al., 2010).

Figure �g. 1.1 shows a schematic representation of the basic primary cement-
ing operation. After a new stage of the well has been drilled the drill pipe is
removed and a casing string run down the length of the borehole, typically with
an annular gap of approximately 2 cm between the outside of the casing and the
formation wall (Malekmohammadi et al., 2010), although this can vary between
3–80mm due to casing eccentricity (Roustaei et al., 2015). At this stage, a se-
quence of �uids is pumped into the well to displace the drilling mud and clean
the formation and casingwalls. Generally, a low viscosity spacer �uid is pumped
�rst, where the low viscosity allows for turbulent pipe �ow bene�cial to mud
displacement at practical pumping rates (Bittleston, 1991). This is followed by
a cement slurry and �nally drilling mud. The cement is pumped down to the
bottom of the casing and back up the annular gap between formation wall and
casing at least past the production zone, but typically higher in order to prevent
casing corrosion or freshwater contamination. A few meters of cement are left
in the bottom of the hole, which is later drilled out when drilling of the new
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wellbore stage is commenced.

From the late 1970s onward there has been increasing interest in horizontal well
bores, with a fairly recent surge as producers seek to maximise production from
existing sites and tap harder to reach reserves. Cased completion in horizontal
wells is necessary because, generally, the formations are horizontally hetero-
geneous. In fact, the heterogeneity can be exploited by guiding the wellbore
through natural fracture systems. This requires zonal isolation to prevent �uid
loss (Brown et al., 1990). Zonal isolation may be achieved through a number
of means other than primary cementing, such as casing packers and slotted or
perforated liners. However, cementing remains the most successful means of
ensuring zonal isolation and is, in fact, mandatory for injection wells unless sub-
stantial evidence that no contamination of underground drinking water would
result (40 C.F.R. §146.32).

The success of a primary cementing operation depends heavily on the ability
to control the rheology of the cement slurry. The schematic shown in �gure
1.1 is an idealisation that does not convey the immense challenges faced by
real world cementing operations: with longer/deeper wells �uid loss from the
cement slurry to the formation becomes more problematic; as mentioned be-
fore, wells can be highly deviated and even horizontal, making gravitational
settling of suspendedmaterial an important consideration; formation walls may
have imperfections (washouts) that negatively impact mud removal and thus
cementing; high bottom hole formation pressure can make it di�cult to control
well �uids without increased slurry density, conversely, low density slurries may
be needed to reduce hydrostatic pressure where formations are weak. Initially,
cementing guidelines were based on �eld observations and basic experimenta-
tion (Bittleston, 1991). While these guidelines were—to an extent—successful,
they failed to prevent problems in many primary cementing jobs (Bittleston,
1991). As well bores become more ambitious in their reach, deviation angle and
surrounding formations, �exibility in cement performance is required (Nelson,
1990; Brown et al., 1990). To achieve this, additives are continually developed
to control properties of the set cement, such as strength, porosity and durability,
and physical properties of the slurry, such as density, viscosity and yield stress.
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1.2 Motivation and outline

Increasingly di�cult drilling operations and resulting high performance cement
requirements necessitate a quantitative understanding of the cement slurry rhe-
ology in order to improve cementing guidelines. To that end, there has been
growing interest in performing resolved direct numerical simulations of partic-
ulate �ows in non-Newtonian carrier �uids in order to predict the macroscopic
e�ect of added non-Brownian particles on the �ow properties of cement. From
a numerical standpoint, there are two overriding aspects of the problem that are
particularly challenging: the particle–particle, particle–wall, and particle–�uid
interactions; and the non-linear behaviour of the viscoplastic carrier �uid.

The investigations in this work are relevant to the �nal two stages of the cement-
ing operation depicted in �gure �g. 1.1. An important aspect of the penultimate
displacement stage is the shear response of the slurry mixture. We investigate
this in Chapter chapter 8 through an idealised system of neutrally buoyant, rigid
particles in a Bingham plastic �uid under simple shear. Likewise, we investi-
gate the stability of suspended bodies in the slurry mixture after the cessation
of pumping through an idealised system of negatively buoyant, rigid particles
in a Bingham plastic �uid in Chapter chapter 7. The squeeze �ow behaviour
investigated in Chapter chapter 6 is relevant to both the displacement and �ow
cessation stages of the basic primary cementing process.

The dissertation is organised as follows. Chapter 2 provides an overview of dis-
cretisation techniques used in �uid structure interaction problems, and Chapter
3 an overview of viscoplastic modelling techniques, both in the context of parti-
cle laden �ows. Chapter 4 explores the numerical methods used in this work in
more detail, starting with a thorough description of the discretisation method
chosen for the �uid structure interaction before examining the Newtonian and
non-Newtonian �ow solvers. The overset grid methodology is evaluated for par-
ticle laden �ow simulations in Chapter 5, using Newtonian carrier �uids only.
In the following three chapters we explore viscoplastic particle laden �ows be-
ginning with micro-scale particle–particle interactions in chapter 6 before ex-
ploring large scale suspension sedimentation and shear experiments in Chapter
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7 and 8, respectively. The dissertation concludes with a summary in Chapter 9.

1.3 Main contributions

The main scienti�c contributions of this work are as follows.

Aspects of the work in this dissertation have been presented in the following
publications with co-author contributions made explicit where applicable:

• A.R. Koblitz, S. Lovett, N. Nikiforakis & W.D. Henshaw 2017
Directnumerical simulation of particulate �owswithan overset gridmethod.
J. Comp. Phys. 343, 414–431.
An e�cient overset gridmethod is evaluated for two- and three-dimensional
simulations with arbitrarily moving rigid bodies. The method is found to
perform favourably in terms of accuracy and e�ciency for problems in-
volving large domains and where moving bodies are strongly in�uenced
by the resolution of boundary layers.

ARK and SL conceived of the idea. WDH developed and implemented
the code. ARK planned and carried out the simulations and analysed the
data.ARKwrote themanuscript in consultationwithWDH, and SLwhile
NN supervised the project.

• A.R. Koblitz, S. Lovett & N. Nikiforakis 2018Viscoplastic squeeze
�ow between two identical in�nite circular cylinders. Phys. Rev. Fluids. 3,
023301.
The interstitial squeeze �ow between two approaching cylinders in a
viscoplastic medium is studied numerically and semi-analytically. Yield
stress e�ects external to the gap—not picked up by viscoplastic lubrication
theory—are found to signi�cantly a�ect the lubrication pressure.

ARK and SL conceived of the idea. SL and ARK performed the analytic
calculations, while ARK designed and carried out the simulations. ARK
and SL analysed the data and developed the narrative jointly. ARK wrote
the manuscript in consultation with SL and NN.
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• A.R. Koblitz, S. Lovett & N. Nikiforakis 2018 Direct numerical
simulation of particle sedimentation in a Bingham �uid. Phys. Rev. Fluids.
3, 093302.
Two-dimensional numerical simulations of a suspension of sedimenting
particles in a Bingham �uid �nd three possible regimes: all, a fraction,
and none of the particles sedimenting.

ARK conceived of the idea, planned, and carried out the simulations.
ARK and SL analysed the data and developed the narrative jointly. ARK
wrote the manuscript in consultation with SL and NN.

• A.R. Koblitz, S. Lovett & N. Nikiforakis 2018 Reduced e�ec-
tive viscosity in viscoplastic suspension �ows: a shadow region e�ect. (in
preparation)

ARK and SL conceived of the idea, and planned the numerical experi-
ments. ARK carried out the simulations and analysed the data. ARK
developed the narrative, and wrote the manuscript in consultation with
SL and NN.

and additionally at the following conferences:

• A.R. Koblitz, S. Lovett, N. Nikiforakis 2017 Interacting circu-
lar cylinders in viscoplastic media British Society of Rheology Mid-Winter
Meeting, Bristol, U.K.

• A.R. Koblitz, S. Lovett, N. Nikiforakis 2018 Direct numerical
simulations of non-colloidal suspensions in viscoplastic �uids. British So-
ciety of Rheology Non-Newtonian Club Meeting, Cambridge, U.K.

• A.R. Koblitz, S. Lovett, N. Nikiforakis 2018 Direct numerical
simulations of particle suspensions in Bingham �uids. Non-Newtonian
Fluid Mechanics Special Interest Group Meeting, Cambridge, U.K.

as well as at Schlumberger internal meetings in Cambridge, U.K. (September
2015, May 2016, July 2017).
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Flows of �nite-sized particles in viscous �uids are common to many industrial
as well as natural processes, such as primary cementing in the oil and gas indus-
try (Nelson & Guillot, 2006) and blood �ow (Bagchi, 2007). Being so ubiquitous,
particulate-�ow problems span a large range of material and �ow properties. Of
interest to this work are laminar �ows of an incompressible generalised Newto-
nian �uid at �nite Reynolds numbers,where the Reynolds number describes the
relative strength of inertial to viscous forces, ladenwith rigid, spherical (circular)
particles.

Direct numerical simulation1 methods designed for such �ow regimes broadly
�t into two categories: thosemethods that use a static grid that is unalignedwith
the particle boundaries, and those that use boundary-conforming grids. Below
we give a brief overview of these two classes of methods and their application
to particulate �ow problems.

2.1 Body conformal methods

Arbitrary Lagrangian Eulerian (ALE) methods were developed for deforming
boundary problems as a response to the di�culties encountered when using
fully Lagrangian schemes in problems with large amounts of circulation, see
for example, Behr & Tezduyar (1994). The ALE method belongs to the class of

1The de�nition of what constitutes a direct numerical simulation is taken to be that of a simu-
lation within a �nite Reynolds number regime where no sub-grid closure models, such as
turbulence or wall models, are used and the governing equations can be directly solved such
that all continuum time- and length-scales can be resolved through grid re�nement alone.
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boundary conformal methods, to which the boundary integral method (only ap-
plicable to inviscid, irrotational �ow) and the overset grid method belong. The
semi-discrete, viz. �nite element in space and �nite di�erence in time, method
of Hughes et al. (1981) has proved popular with general �uid structure inter-
action (FSI) problems and has been continually developed over the last few
decades. In this ALE approach, nodal velocities explicitly enter the convective
terms of the momentum equations allowing the underlying grid to distort with
the moving boundary, while an Eulerian description can be used in regions of
large circulation. Hu et al. (2001) used an ALE method with a combined �uid–
solid formulation to simulate pairs of spheres interacting in Newtonian and
viscoelastic liquids, and 2D sedimentation simulations of 90 circular particles.

This ALE method can be considered a special case of the deforming spatial do-
main or stabilised space time (DSD/SST) method developed by Tezduyar et al.
(1992), where a �nite element formulation is used both in space and time. By
extending the �nite element formulation in time any grid deformation is auto-
matically accounted for (Tezduyar et al., 1992). To avoid turning a three dimen-
sional problem into a four dimensional problem courtesy of the time dimension,
a discontinuous-in-time space-time �nite element formulation of the problem
is solved for one space-time ‘slab’ at a time. Johnson & Tezduyar (2001) used
the DSD/SST method to simulate up to 125 spheres in tri-periodic domains.

Both the conventional ALE and DSD/SST methods use unstructured grids to
explicitly represent the particle surface. Unstructured grids allow for complex
surfaces to be represented but are generally not amenable to fast elliptic solvers,
such as geometric multigrid.

The distortion of the underlying grid inevitably causes elements to become in-
creasingly skewed. Highly skewed elements can often cause problems relating
to accuracy and stability, requiring a new grid to be computed on to which the
solution is then projected. Both the regridding and projection steps are costly
procedures and are the main drawbacks of ALE and DSD/SST type methods
(Haeri & Shrimpton, 2012). Particulate �ow simulations generally encounter
large deformations, requiring frequent regridding.

Various approaches have been developed to improve the quality of the deformed
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mesh. Johnson & Tezduyar (1996), for example, used the equations of linear
elasticity to govern the deformation of the grid for their particulate �ow sim-
ulations. The grid distortion was controlled through a sti�ness parameter, ef-
fectively weighting distortion towards larger elements. This preserved smaller
elements in the surface regions that are important to the accuracy of the overall
solution. By promoting less important elements, i.e. those far away from the par-
ticle surfaces, to distort more easily, regridding is reduced since the grid quality
is, potentially, preserved for longer. However, this comes at the cost of solving
an additional partial di�erential equation for the grid deformation.

2.2 Static grid methods

Due to the complexities and costs of the unstructured regridding associatedwith
boundary-conforming grid methods, the static grid methods have gained favour
with many researchers for approaching FSI problems. Static grid methods can
be split into two categories based on the treatment of the solid–�uid interface:
di�use interface and sharp interface methods. An e�cient class of di�use inter-
face methods is the immersed boundary (IB) method. The original IB method
of Peskin (1972) was developed to study �ow patterns around heart valves. The
entire computational domain is represented by a Cartesian grid and the inter-
face is represented by a collection of massless Lagrangian points. The velocity
of these Lagrangian points is used to compute the stress on the elastic interface
through a constitutive relation, such as Hooke’s law. This singular force distri-
bution is transmitted from the Lagrangian interface points to the Eulerian �uid
through a forcing term in the momentum equation. The information transfer is
facilitated by a discrete Dirac delta function, smoothly spreading the force from
the Lagrangian to the Eulerian grid. Aside from inherent stability bene�ts, this
approach is attractive because only the right-hand side of the momentum equa-
tion is a�ected, so no changes to the underlying solver are required. Assuming
constant density across the entire domain also allows fast Poisson solvers to be
used without modi�cation (Kempe & Fröhlich, 2012b).

Directly applying Peskin’s original IB method to rigid boundary problems is not
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straightforward because the constitutive relation for the elastic boundary is gen-
erally not well behaved in the rigid limit (Mittal & Iccarino, 2005). Uhlmann
(2005) used the direct forcing formulation ofMohd-Yusof (1997)whilst retaining
the smooth information transfer between Lagrangian and Eulerian grid points.
Direct forcing methods use a virtual forcing term determined by the di�erence
between the desired interface velocities and the velocities interpolated from the
underlying Eulerian grid. Uhlmann proposed evaluating the forcing term at
the Lagrangian interface points before smoothly transferring it to Eulerian grid
points in order to reduce spatial oscillations common to direct forcing methods.
With this direct forcing IB method, Uhlmann & Doychev (2014) performed sed-
imentation simulations with O(104) spherical particles in tri-periodic domains.

Kempe & Fröhlich (2012b) modi�ed the interpolation and spreading procedure
of Uhlmann (2005), greatly improving on the Courant–Friedrichs–Lewy (CFL)
time step restriction and the stability for light bodies, achieving particle–�uid
density ratios as low as �r = 0.3 for spherical particles. With this IB method
Vowinckel et al. (2014) investigated turbulent channel �ow with mobile beds
consisting of O(104) spherical particles.

Glowinski et al. (2001) developed a distributed Lagrange multiplier/�ctitious
domain method (DLM/FD) reminiscent of Peskin’s IB method using the princi-
ple of variational inequality in a �nite element context. A combined variational
formulation of the �uid-solid coupling was used—similar to that of Hu (1996)—
but the rigidity was enforced in the particle subdomains through Lagrange mul-
tipliers, thereby allowing the governing equations to be solved on stationary
grids. The original DLM/FD method imposed velocity on the particle subdo-
main. Patankar et al. (2000) imposed the deformation-rate tensor instead in
order to simplify treatment for irregularly shaped particles, while Wachs (2009)
used this formulation in conjunction with a discrete elementmethod to develop
an improved collision mechanism for irregularly shaped bodies.

The smoothing intrinsic to di�use interface methods reduces the solution accu-
racy in the immediate vicinity of the interface. This can be addressed through
increased grid resolution, but at the cost of greatly increased calculation size
given the grid uniformity. This problem is particularly severe in high Re �ows,
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where the viscous boundary layer is thin. One popular way to improve accuracy
at the interface is through the use of sharp interface methods which generally
reconstruct the solution near the interface, thereby enforcing the boundary con-
ditions strongly.

Fadlun et al. (2000) developed a hybrid approach that borrowed on the momen-
tum forcing approach of Peskin (1972) but with the goal of enforcing boundary
conditions exactly. Fadlun et al. (2000) used the direct forcing formulation of
Mohd-Yusof (1997), but imposed boundary conditions by directly modifying the
coe�cients of the linear system rather than explicitly calculating the forcing.
This was done in order to avoid solving an implicit system for the forcing, which
comes about because of the implicit treatment of the viscous terms in their
fractional step time advancement scheme (Fadlun et al., 2000). In e�ect, this is
equivalent to applying momentum forcing inside the �uid domain, leading to
problems with moving grids when previously ‘solid’ grid points are converted
to ‘�uid’ points.

Yang & Balaras (2006) demonstrated that unphysical information carried by a
previously solid point into the �ow �eld makes the evaluation of the right-hand
side of the momentum equation in the fractional step algorithm problematic.
They developed a ‘�eld extension’ strategy, whereby the velocity and pressure
�elds are extended into the solid phase at the end or beginning of each sub-step.

Recently, Yang & Stern (2015) improved on this �eld extension strategy through
the introduction of temporary non-inertial reference frames attached to the solid
phases. This is based on the �uid–solid coupling strategy of Kim & Choi (2006)
and allows the velocity coupling to be done in a non-iterative fashion. Crucially,
Yang & Stern (2015) only use the non-inertial reference frame for the forcing,
solving the �ow �eld on the inertial reference frame and thereby allowing for
an arbitrary number of solid phases. By allowing non-iterative methods to be
used for the forcing and rigid-body motion calculations, Yang & Stern (2015)
improved the performance by up to an order of magnitude. However, such �eld
extension strategies reduce the sharpness of the immersed boundary, diminish-
ing the advantage over di�use methods (Seo & Mittal, 2011).

All of the �ow reconstruction based sharp interface methods su�er from force
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oscillations in moving boundary problems (Luo et al., 2012). This is caused
by the instantaneous role reversal of a grid point from an interpolation to a
discreteNavier–Stokes point, and vice versa,when crossed by the boundary. This
role reversal involves an immediate change in computational stencil, causing
a temporal discontinuity (Luo et al., 2012). Even the �eld extension of Yang &
Balaras (2006) does not address this (Luo et al., 2012).

An interesting semi-analytical approach is that of Tagaki et al. (2003), where
an analytical Stokes solution is combined with a numerical Navier–Stokes so-
lution to provide an e�cient solution methodology to inertial particulate �ow
simulations. Tagaki et al. (2003) argue by continuity that the no-slip boundary
condition results in a region adjacent to the particle surface where the inertial
terms of the Navier–Stokes equations are small enough that, locally, the velocity
and pressure satisfy the Stokes equations. By de�ning two sets of points sur-
rounding the particle surface, an inner and outer set, the outer velocities of the
Navier–Stokes solution can be used as boundary conditions to calculate the an-
alytical Stokes solution on the inner set. In practice this is done by computing
the coe�cients of the stream function solution to the Stokes �ow to match the
velocities of the Navier–Stokes solution on the outer points in an iterative pro-
cess. These coe�cients are then used to calculate the analytical Stokes solution
on the inner set of points. Zhang & Prosperetti (2003) successfully extended this
semi-analytical approach to arbitrarily moving cylinders; however, it is yet to
be applied to three-dimensional problems.

Much recent e�ort has been focused on static grid methods for particulate �ow,
owing to the high e�ciency of suchmethods and the desire to simulate engineer-
ing �ows containing huge numbers of particles. Broadly speaking, boundary
conformal methods can o�er superior accuracy near the solid/�uid interface
but may be ine�cient for problems with large spatial deformations due to the
costs associatedwith re-meshing at each time step. On the other hand, static grid
methods, which can be highly e�cient, have di�culty resolving the boundary
layers near particles and may require very �ne grids or adaptive mesh re�ne-
ment to obtain accurate results (Wachs et al., 2015).

In chapter chapter 5 we will evaluate the overset grid, or Chimera grid, method
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for viscous particulate �ow. Overset grid methods have been widely used for
problems with moving geometries. They were recognised early on to be a use-
ful technique for treating rigid moving bodies, such as aircraft store separa-
tion (Dougherty & Kuan, 1989), and have subsequently been applied to many
other moving-grid aerodynamic applications, see for example Meakin (1993);
Henshaw & Schwendeman (2006); Zahle et al. (2007); Chan (2009); Chandar
& Damodaran (2010); Lani et al. (2012). The basic approach of moving overset
grids used in this dissertation was developed for high-speed compressible and
reactive �ows by Henshaw & Schwendeman (2006) and included the support
for adaptive mesh re�nement. The deforming composite grid (DCG) approach
was developed in Banks et al. (2012) for treating deforming bodies with overset
grids, and a partitioned scheme was developed for light deforming bodies that
was stable without sub-iterations. A method to overcome the added-mass insta-
bility with compressible �ows and rigid bodies was developed in Banks et al.
(2013). More recently, stable partitioned schemes for incompressible �ows and
deforming solids have been developed (Banks et al., 2014a,b; Li et al., 2016) and
extended to non-linear solids (Banks et al., 2016).

Themethod described in this dissertation retains much of the e�ciency of static
structured grid methods whilst still allowing for sharp representation of solid
boundaries. The overset grid method can be seen as a bridge between the static
and boundary conformal grid methods described previously; the curvilinear
particle grids allow for higher than �rst-order accuracy and boundary condi-
tions to be implemented strongly, while grid connectivity with the static Carte-
sian background grid is only locally updated. Since the grid connectivity is only
updated locally, the regridding procedure is less costly and complex than for
unstructured body conformal methods, such as ALE. Local grid re�nement al-
lows boundary layers to be fully resolved without appreciably a�ecting the total
grid point count. This is in contrast with general static grid methods where the
solver e�ciency is o�set by the unfavourable scaling associated with uniform
grids, making large fully resolved simulations very costly (Wachs et al., 2015).
For these reasons, we evaluate the suitability of the method for fully resolved
simulations of incompressible �uid �ow with rigid particles.
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The system of interest to this work consists of non-colloidal, inert particles trans-
ported by an oil�eld cement slurry. The cement slurry is itself a highly concen-
trated suspension of solid particles in water, usually consisting of tricalcium sil-
icate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino-ferrite
mineral components (Ban�ll, 2006), all ofwhich reactwithwater. Thoughwe are
principally concerned with �ows in small physical domains of order O(10 cm),
the disparate lengthscales of the inert particles (O(500�m)) and cement par-
ticles (O(50�m)) allows for a continuum treatment of the cement slurry. The
state of this �uid evolves with the familiar continuum conservation laws ofmass
and momentum but with a di�erent treatment of the constitutive relationship
between stress and strain that gives the �uid its non-Newtonian character. In
this work, we consider simple (time independent) yield stress �uids in viscously
dominated �ow regimes.

This chapter will begin by examining some of the basic �uid mechanics describ-
ing important characteristics of the slurry, before putting the current work into
context by examining numerical methods used to approach such problems, and
previous work in the literature.

3.1 Yield stress fluids

We begin with a discussion on viscosity and the de�nition of a Newtonian �uid
before considering the non-Newtonian yield stress �uids of interest. In a �uid at
rest the stress tensor, �, is comprised solely of the hydrostatic pressure, p, such
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that
� = −pI, (3.1)

where I is the identity tensor. For a �uid in motion the stress tensor takes the
form of � = −pI + �, where p is a scalar mechanical pressure (not the same as
the thermodynamic pressure) and � a traceless deviatoric stress tensor, existing
solely due to the �uid motion (Batchelor, 1967).

The deviatoric stress tensor represents a transport ofmomentum and is assumed
to only depend on the instantaneous local �uid velocity distribution,∇u. To de-
rive a constitutive relationship between � and ∇u we make the approximation
that � is a linear combination of the various velocity gradient components, pro-
vided that these have su�ciently small magnitudes. Thus, the deviatoric stress
tensor is linked to the velocity distribution by a tensor coe�cient that depends
directly on the local state of the �uid but not the velocity distribution as a whole
(Batchelor, 1967):

�ij = Aijkl
)uk
)xl

. (3.2)

Here, the tensor coe�cient is necessarily symmetrical in i, j (since � is) and,
under the assumption that the �uid is isotropic it is symmetrical in k, l too. This
allows (3.2) to be reduced to

� = �̇ + �(∇ ⋅ u), (3.3)

where � is the scalar viscosity coe�cient, � the second coe�cient of viscosity
and ̇ is the rate-of-strain tensor ∇u + ∇uT.

Finally, for an incompressible �uid the conservation ofmass reduced to∇⋅u = 0,
and so the constitutive equation for a Newtonian incompressible �uid becomes

� = �̇ . (3.4)

A non-Newtonian �uid exhibits behaviour departing from the above linear
model, e.g. a non-linear �(̇) �ow curve or one that does not pass through the
origin. In this work we are concerned with simple (time independent) yield
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3.1 Yield stress �uids

stress �uids.

A yield stress �uid is not a true �uid in the sense that it does not �ow under an
imposed stress unless it exceeds a threshold value (Bonn et al., 2017). Such �uids
behave as solids until their yield stress is exceeded, after which they �ow under
a state transformation that is reversible in the absence of chemical reactions
(Coussot, 2014).

There has beenmuchcontroversy surrounding the existence of a true yield stress,
that is to say a critical separation point between a true solid and �uid state. This
was fuelled when improvements in measurement device capabilities allowed ex-
perimentalists tomeasure stain rates ofO(10−9) s−1, �nding so-called transitions
to Newtonian �ow curves well below the supposed yield stress (Barnes & Wal-
ters, 1985). The implication is that the yield stress marks a temporary transition
between two Newtonian �uids with radically di�erent viscosities, rather than
�uid/solid regimes (Barnes & Walters, 1985; Barnes, 1999). However, Møller
et al. (2009) demonstrated that these low stress Newtonian viscosities are in fact
artefacts arising in non-steady state experiments and the consensus seems to be
that in experimental time scales a true yield stress model is appropriate.

The simple Bingham viscoplastic �uid model is used in this work. Here, the
�ow curve is linear after the imposed stress exceeds the material yield stress.
As is common in the literature, dimensionless numbers are maintained in the
same form as the Newtonian ones, where the viscosity is replaced by the plastic
viscosity parameter of the Bingham model (Thompson & Soares, 2016). The
exception being the Bingham number:

Bn =
�yℒ
�U , (3.5)

where L andU are appropriate length and velocity scales, �y is thematerial yield
stress, and � is the scalar plastic viscosity coe�cient. This is the only dimension-
less number used that characterises the �uid plasticity. Recently, a characteristic
stress de�nition, e�ectively including the yield stress in all viscous e�ect related
dimensionless number, has been proposed by Thompson & Soares (2016). This
will be helpful in problems where appropriate velocity scales are not readily
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Figure 3.1: Flow curves on linear (left) and log (right) scales for the ideal (−)
and regularised Binghammodel (−), demonstrating the improved
approximation with decreasing regularisation parameter, �.

apparent but characteristic stresses may be, such as shear induced particle sedi-
mentation.

Other rheological models exist which demonstrate non-linear �(̇) �ow curves,
for example, the shear-thinningHerschel-Bulkleymodelwhichhas been used as
a continuummodel for cement. The framework used here is su�ciently general
to allow for more exotic models than the Bingham model.

For a Bingham plastic, we have a discontinuous constitutive relationship where
for an imposed stress below the yield stress the material is a rigid solid, such
that

̇ = 0, if ||�|| ≤ �y (3.6)

while after the yield stress is exceeded

� = (� +
�y

||̇||) ̇ , if ||�|| > �y (3.7)

where � is the plastic viscosity, and �y the yield stress. The discontinuous nature
of this apparently simple model is challenging as it requires the application of
two di�erent constitutive laws across a priori unknown yield surfaces (Papanas-
tasiou, 1987).
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3.2 Regularisation

Empirically, Herschel-Bulkley �ts are found for a wide variety of systems within
the exponent range n = 0.2–0.8 (Bonn et al., 2017). Numerically, the extension
of the solvers presented in the following section to the Herschel-Bulkley model
is trivial:

� = (K||̇||n−1 +
�y

||̇||) ̇ , if ||�|| > �y (3.8)

whereK is the consistency index, n the �ow index, and n = 1 returns the simple
Bingham model. However, we continue to use the Bingham model because the
experiments presented in the following chapters are purely computational, and
thus there is analogue material to tune Herschel-Bulkley model to.

Bingham type models are not applicable to all yield stress materials. In the ex-
cellent review article of Bonn et al. (2017) three classes are described: soft glassy
materials; jammedmaterials; colloidal gels. Bingham type models may fair well
for some jammed materials, e.g. emulsions, but typically fail for materials ex-
hibiting more exotic behaviour, particularly time or temperature dependence.

3.2 Regularisation

A common approach to circumventing the challenges posed by this discontinu-
ous constitutive relationship is to regularise it such that the �ow curve is forced
through the origin, thereby transforming the problem into a purely viscous one.

Bercovier & Engelman (1980) regularised the constitutive law by perturbing the
rate-of-strain magnitude in (3.7) by some small constant � such that ||̇||� =√
||̇||2 + �2, thereby approximating the unyielded solid regions by a high vis-

cosity �uid.

� = (� +
�y

||̇||�
) ̇ . (3.9)

Lipscomb & Denn (1984) and Gartling & Phan-Thien (1984) developed a bi-
viscosity model that treats the unyielded zones as high viscosity �uids:
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3 Viscoplastic modelling

� =
⎧

⎨
⎩

�
�
̇ , if ||̇|| < ��y∕�,

(� + (1−�)�y
||̇||

) ̇ , if ||̇|| ≥ ��y∕�.
(3.10)

Papanastasiou (1987) regularised the constitutive law by introducing an expo-
nential stress growth governed by an exponent with units time

� = (� +
�y

||̇|| (1 − exp (− ̇� ))) ̇ , (3.11)

which holds uniformly in both yielded and unyielded regions, since

lim
||̇||→0

� =
(
� + �y∕�

)
̇ . (3.12)

Regularisation methods should all approach the ideal Binghammodel as � → 0,
however, in practice this is not attainable as the solution procedure involves the
inversion of amatrix systemwith coe�cients scaling as �y∕�,making the system
progressively ill-conditioned. These numerical realities have the consequence
that with any regularisation method there exists a balance between accuracy
and stability.

Frigaard & Nouar (2005) performed detailed convergence studies on regulari-
sation methods, determining �ow dependent convergence properties. Regular-
isation methods were all found to perform best for �ows in which the devia-
toric stress exceeds the yield stress globally—�ows for which the ideal Bingham
model may be applied without regularisation in the �rst place. The largest er-
rors were found to occur in �ows where large regions of the �ow �eld exhibit
deviatoric stresses close to the yield stress, making yield surface determination
di�cult. It was also shown that regularisation methods are not appropriate for
hydrodynamic stability problems, predicting instability where the ideal Bing-
ham model does not.
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3.3 Augmented Lagrangian Methods

A second class of methods is the so-called Augmented Lagrangian Method de-
veloped by Lions and Glowinski between 1973 and 1984 but only �nding wide-
spread use fairly recently. This class of methods is based on variational inequal-
ities, �rst derived for creeping �ow by Prager (1952) and for fully inertial �ows
by Huilgol (2002). These variational inequalities correspond to a functional that
is minimised by the solution to the initial boundary value problem. A common
strategy is to frame the variational inequality as a constrained minimisation
problemwhereby a Lagrangianmultiplier and quadrature penalisation are used
to relax the velocity gradient computation.

This class of methods has been shown to be robust and can be used without
regularisation, allowing for truly unyielded zones with zero strain rates and ac-
curate detection of yield surfaces. However, they aremore complex to implement
than primitive variable regularisation methods and many ALM approaches are
hampered by slow convergence rates. This is the method used to compute vis-
coplastic �ows in this work, notwithstanding slow convergence rates, and will
be discussed in detail in section 4.5.

3.4 Previous work

In this section we describe applications in the literature of the aforementioned
methods for particulate �ow problems.

Blackerly &Mitsoulis (1997) investigated the creeping �ow of a Bingham plastic
�uid past a sphere in a tube using Papanastasiou regularisation, con�rming an
increase in drag coe�cient with an increase in Bingham number over a range
of 0 ≤ Bn ≤ 1000. Though limited to coarse computational meshes by the
computing power available at the time, yield surfaces were determined for the
unyielded envelope surrounding the cylinder and its growth with decreasing
plasticity was demonstrated.
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Tokpavi et al. (2008) investigated the creeping viscoplastic �ow of a cylinder
travelling rectilinearly between parallel plates using Papanastasiou regularisa-
tion with the commercial Poly�ow (Fluent inc) package, extending the drag
coe�cient results of Mitsoulis (2004) to Bn = 2 × 105. Results were presented
for �ow �eld kinematics, including stress and strain pro�les along axes of sym-
metry. A viscoplastic boundary layer was identi�ed and velocity pro�les across
the layer were compared against theoretical predictions of Piau (2002) and Piau
& Debiane (2004), with discrepancies at large Bn considered to be largely due
to numerical errors.

Nirmalkar et al. (2012) investigated creeping �ow past a square cylinder using
Papanastasiou regularisation, presenting drag coe�cients for Bingham num-
ber ranges spanning �ve orders of magnitude. Similar to Tokpavi et al. (2008),
Nirmalkar examined the extent of viscoplastic boundary layers and provided
approximate expressions for the non-dimensional boundary layer thickness as a
function of Bn, albeit with signi�cant errors (averaging 15%) at Bn below 1000.

The dependence ofmaximumshear rate onnot only the stress growthparameter—
as is expected—but also the mesh quality was demonstrated, highlighting the
di�culty in selecting appropriate model parameters to ensure con�dence in the
numerical results.

Mossaz et al. (2010) used Papanastasiou regularisation with the commercial
Fluent package to investigate inertial viscoplastic �ow past an uncon�ned cir-
cular cylinder using the Herschel-Bulkley model, which is equivalent to the
Binghammodel in the limiting case. Increasing plasticity of the �uid was found
to have a stabilising e�ect, decreasing the shedding frequency of vortices past
the cylinder for a �xed Reynolds number (based on the plastic viscosity �). The
Papanastasiou regularisation was found to present unphysical aberrations in
limiting cases, such as the onset of recirculation behind the cylinder caused by
low strain rates in nominally unyielded regions.

Liu et al. (2003) simulated two in�nite cylinders translating colinearly in a Bing-
ham plastic �uid, investigating the in�uence of separation distance on the drag
coe�cient. It was demonstrated that the range of interaction in a yield stress
�uid is markedly smaller than in a Newtonian �uid, with a drag reduction of
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30% found between the extrema con�gurations. For two approaching cylinders
Liu et al. (2003) noted a decrease in drag with decreased separation distance—
the opposite of what is found in a Newtonian �uid. Liu et al. (2003) attributed
this drag reduction to the shear thinning property of the Bingham �uid, which
would lower the viscosity in the vicinity of the cylinders as they approach. In
chapter chapter 7 wewill �nd that localised shear thinning leads to an increased
settling e�ciencywith solid volume fraction in particle suspensions in viscoplas-
tic media.

Yu&Wachs (2007) performed sedimentation simulations of one and two spheres
in a viscoplastic �uid using an augmented Lagrangian method. Yu & Wachs
(2007) investigated the drag reduction by approaching cylinders noted by Liu
et al. (2003), though at signi�cantly lower Bingham number ranges. The drag
reduction with reduced separation distance was reproduced, however, at separa-
tion distances lower than those investigated by Liu et al. (2003) a drag increase
was found. Yu &Wachs (2007) concluded that the plastic force is indeed shear-
thinning and dominates the drag force until the spheres approach a critical
distance past which the lubrication force dominates. In chapter chapter 6 we in-
vestigate the squeeze �ow between two approaching circular cylinders, � nding
that the lubrication force scales with the Bingham number.

Prashant (2011) performed simulations of two particles sedimenting in a Bing-
ham plastic �uid using dual viscosity regularisation and a Lattice Boltzmann
method. Plasticity e�ects were weak (Bn < 1) but, nevertheless, at lowReynolds
numbers approaching spheres were prevented from touching each other by
the formation of an unyielded zone connecting the spheres at low separation
distances, raising interesting questions regarding particle aggregation in yield
stress �uid suspensions. In chapter chapter 7 we �nd bridged clusters in particle
suspensions in viscoplastic media, leading to increased mobility at high yield
stresses.

Meaningful experimental studies of complex viscoplastic �uid �ow have only
recently become available with improvements in �ow �eld measurement tech-
niques. Carbopol-940 is broadly considered an ‘ideal’ viscoplastic �uid and as
such is themost commonly used. Quantitative comparison, even with Carpobol,
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with theoretical or numerical results is di�cult, with wall slip and possible nor-
mal stress e�ects (usually associated with elastic or thixotropic material) posing
particular challenges.

The �rst experimental study providing quantitative information on the �ow
�eld kinematics is that of Atapattu et al. (1995), where a laser-speckle tracer
method was employed. Yield surface locations were inferred from the velocity
�eld, allowing yield envelopes qualitatively similar to those of Beris et al. (1985)
to be determined. The plasticity e�ects were fairly weak, with 1.87 ≤ Bn ≤ 3.28
and no asymmetry in the �ow �eld was reported, in-line with numerical studies.

Merkak et al. (2006) investigated the interaction of spherical particle pairs in
high yield stress Carbopol-940 solutions at low Reynolds number. Both coaxial
and side-by-side con�gurations were considered and results for the drag coe�-
cient in the former case agreed to within 10% of those of Liu et al. (2003). The
interaction range was found to be signi�cantly shorter than for the Newtonian
equivalent, again similar to Liu et al. (2003). The side-by-side con�guration re-
sulted in a lower drag coe�cient for any separation distance presumed to be
the result of �ow between the spheres preventing the formation of a connecting
rigid zones. No quantitative measurements were taken of the �ow �eld kine-
matics.

Putz et al. (2008) used particle image velocimetry (PIV) to study the viscoplastic
�ow around a sphere. Once again, Carbopol-940 was used as the yield stress
�uid. Most strikingly, strong fore-aft asymmetries were found in the viscoplas-
tic experiments. Inertial in�uence was discounted since equivalent Newtonian
tests showedno such asymmetries in the �ow�eld. Putz et al. (2008) determined
that the asymmetry was due to elastic properties of the Carbopol-940 solution.
Having demonstrated a hysteresis region near the yield stress Putz et al. (2008)
agreed with Harlen (2002), who investigated the negative wake behind a sed-
imenting sphere in a viscoelastic �uid, that relaxation of shear stresses in the
wake promote the asymmetry.

Tokpavi et al. (2009) investigated the sedimentation of a cylinder in Carbopol-
940 with higher plasticity e�ects (20 ≤ Bn ≤ 32). The authors were able to
conclude that elastic relaxation was unlikely to cause the asymmetrical �ow

24



3.5 Conclusions

�eld, agreeing instead with Joseph & Feng (1995) that normal stresses in the
�uid could instead be the cause.

While there exists a consensus amongst experimentalists that viscoelastic ef-
fects are the likely cause for fore-aft asymmetry, the mechanics remain unclear.
However, it is becoming clear that current continuummodels do not adequately
describe the materials for which there exist experimental data. We emphasise
that although a simple model (Bingham plastic) is considered in this report, the
computational framework is su�ciently general to encompass more complex
models as required.

3.5 Conclusions

Much of the work on viscoplastic particulate �ows has been limited to studies of
fewer than �ve particles, in both two and three dimensions, with andwithout in-
ertia, and using both regularised and exact solution methods. While interesting
�ow behaviours have been identi�ed at this scale, e.g. localised shear thinning
leading to a drag reduction for nearby particles; the stabilising e�ect of the
plasticity on unsteady wakes; unyielded material forming connecting ‘bridges’
between nearby particles, such e�ects on larger particle systems has yet to be
explored.

In this work, we aim to make inroads into the regime of particle suspensions
in non-inertial viscoplastic �uids by reducing the complexity of the model and
using state-of-the-art computational approaches. In the following chapter, we
give an overview of the numerical methods used in this work.
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This chapter provides an overview of the overset grid discretisation scheme, the
spatial discretisation using overset grids,and theNewtonian andnon-Newtonian
�ow solvers used in this work. Wemake use of the open source Overture library,
an object oriented toolkit for solving partial di�erential equations on overset
grids (Brown et al., 1999). We begin with an overview of the overset gridmethod
as is applicable to �uid structure interaction.

4.1 Overset grids

Themethod of overset grids (also called overlapping, overlaid or chimera1 grids)
bridges the stationary and boundary conformal grid methods. A complex do-
main is represented by multiple body-�tted curvilinear grids that are allowed
to overlap, as shown in Fig. 4.1. Overset grids bring �exibility to grid genera-
tion since component grids are not required to align along block boundaries.
This �exibility allows component grids to be added in a relatively independent
manner, requiring only local changes to grid connectivity.

A composite grid G consists of logically rectangular component grids Gk, with
k = 1, 2,…Ng. As illustrated in Fig. 4.1 the grid points of G are classi�ed as
interior points, boundary points, interpolation points and exterior or unused
points. The algorithm for generating a composite grid from a collection of com-
ponent grids is intricate; a detailed description is beyond the remit of this work
and so it will be only brie�y discussed, with the intention of showing why the

1In reference to disparate component grids coming together to form a complex body.
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method of overset grids is appropriate for particulate �ow problems. The inter-
ested reader is referred to Chesshire & Henshaw (1990) and Henshaw (1998)
for a full description of the algorithm and implementation.

A composite grid G consists of logically rectangular component grids Gk, with
k = 1, 2,…Ng. All the grid points of Gmust be classi�ed as one of the following:

1. Interior point. An interior point can be discretised in terms of points on
its component grid Gk alone.

2. Boundary point. A boundary point lies on a physical boundary of G and
can be discretised in terms of points on Gk alone.

3. Interpolation point. An interpolation point can be interpolated from inte-
rior, boundary or interpolation points from component grids Gk′≠k

4. Exterior point. An exterior point is neither an interior, boundary, or an
interpolation point. It lies outside the computational domain and is there-
fore unused, reducing the computational cost.

G1

G2

G1

interpolation
ghost
unused

G2

Figure 4.1: Left: an overlapping grid consisting of two structured curvilinear
component grids,x = G1(r) andx = G2(r). Middle and right: com-
ponent grids for the square and annular grids in the unit square pa-
rameter space r. Grid points are classi�ed as discretisation points,
interpolation points or unused points. Ghost points are used to
apply boundary conditions. The physical boundary is represented
by the solid red line.

Interior and boundary points can be collectively referred to as discretisation
points. Finally, discretisation and interpolation points are not mutually exclu-
sive. To facilitate the construction of a valid composite grid, component grids are
labelled k = 1, 2,… , Ng in order of ascending priority, with the idea being that
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higher priority grids are overlayed on top of lower priority grids. The simpli�ed
grid generation algorithm reads as follows:

Step 1 Initially, all component grid points are initialised as discretisation
points.

Step 2 Non-boundary points of grid k (i.e. interior points at this stage) that
lie close to physical boundary points of k′, with k ≠ k′, are marked
as exterior points as they lie outside the computational domain.

Step 3 Starting from the highest numbered grid to the lowest each grid
point is examined to �nd the highest component grid it can be in-
terpolated from.

Step 4 Step 3 results inmore interpolation points than are strictly necessary,
which increases the storage overhead. Working from the lowest grid
upwards, interpolation points that are de�nitely needed by higher
grids are marked.

Step 5 Finally, unnecessary interpolation points are marked as exterior
points and the composite grid can be generated.

When moving grids are used, as is the case in particulate �ow problems where
eachparticle is represented by a separate component grid, the relative position of
overset grids changes continuously. As a result, overlapping connectivity infor-
mation, i.e. Chimera holes (regions of exterior points in the overset component
grids) and interpolation points, must be recomputed at every time-step. Cru-
cially, this is cheaper than complete grid regeneration and the required connec-
tivity information recomputation can be locally con�ned to those grids a�ected
by the moving grid.

Values of the solution at interpolation points are determined by standard tensor-
product Lagrange-interpolation. We use quadratic interpolation (three-point
stencil in eachdirection) for the results in thiswork, as required for second-order
accuracy (Chesshire & Henshaw, 1990). This interpolation is not locally conser-
vative. Locally conservative interpolation on overset grids is possible (Chesshire
& Henshaw, 1994) but has not been found necessary in our experience (Hen-
shaw, 2017). Corrections to ensure global conservation are also possible and
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have been shown to have advantages, see for example (Tang et al., 2003).

4.2 Spatial discretisation

The equations of motion are discretised to second-order accuracy in space using
�nite di�erence methods on overset grids, see Henshaw (1994) and Henshaw
& Petersson (2003). An overset grid consists of logically rectangular grids that
cover a grid region and overlap where they coincide. The solutions between
adjacent grids are connected via interpolation conditions. Each component grid
(numbered k = 1, 2,… , Ng) is associated with a transformation dk ∶ ℝ3 → ℝ3

from the unit square, with coordinates denoted by r = (r1, r2, r3), into physical
space, x = (x1, x2, x3), and denoted by dk(r, t) = x(r, t), which allows for body
�tted grids of non-rectangular shapes. Consider solving the equations in three
space dimensions on a square component gridGk, with grid spacing ℎm = 1∕Nm,
for a positive integer Nm:

Gk = {xi,k | i = (i1, i2, i3), Nm,a,k − 1 ≤ im ≤ Nm,b,k + 1, m = 1, 2, 3},

where i = (i1, i2, i3) is a multi-index and a and b denote the beginning and end
grid line numbers, respectively. Ghost points are included at the boundaries,
im = Nm,a,k or im = Nm,b,k, to facilitate discretising to second order. The compo-
nent grid number k will be dropped in the following discussion.

Derivatives with respect to r are standard second-order centred �nite di�erence
approximations, for example,

)u
)rm

≈ DrmUi ∶=
Ui+em −Ui−em

2ℎm
,

)2u
)r2m

≈ DrmrmUi ∶=
Ui+em − 2Ui +Ui−em

ℎ2m
,

where em is the unit vector in the m-th coordinate direction and Ui is the nu-
merical approximation of u. Using the chain rule the derivatives with respect
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to x are de�ned as

)u
)xm

=
∑

n

)rn
)xm

)u
)rn

≈ DxmUi ∶=
∑

n

)rn
)xm

DrnUi,

)2u
)x2m

=
∑

n,l

)rn
)xm

)rl
)xm

)2u
)rn)rl

+
∑ )2rn

)x2m
)u
)rn

≈ DxmDxmUi ∶=
∑

n,l

)rn
)xm

)rl
)xm

DrmrlUi +
∑

n
(Dxm

)rn
)xm

)DrnUi,

where the entries in the Jacobian matrix, )rm∕)xn are obtained from the map-
ping x = dk(r, t).

4.3 Newtonian flow solver

In chapter chapter 5 we make use of the CGINS (version 24) incompressible
�ow solver built upon theOverture frameworkHenshaw (2010). Incompressible
�ow is governed by the Navier–Stokes equations,

)u
)t + (u ⋅∇)u = −1�∇p + �∇2u + f,

∇ ⋅ u = 0,

where u is the vector of Cartesian components of the velocity ui, p the pressure
�eld, � the �uid density, and � = �∕� the kinematic viscosity. For discretising
the equations on a moving grid (on an overset grid some grids are static while
others are attached to, andmovewith the body),wemake a change of dependent
variables x and t to a frame that moves with the grid. As a result, on moving
domains, the governing equations transform to

)u
)t + ((u −w)) ⋅∇u = −1�∇p + �∇2u + f, (4.1)

∇ ⋅ u = 0, (4.2)

where w is the velocity of a point attached to the moving domain. The partial
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derivative in time in the moving frame, as appearing in (4.1), is therefore the
derivative in time when keeping the spatial location �xed to a point that is
attached to the moving domain.

We solve an alternative formulation of system (4.1)-(4.2). A pressure Poisson
equation is derived by taking the divergence of the momentum equation (4.1)
andusing (4.2). The resulting velocity–pressure formulation of the initial-boundary
value problem is

)u
)t + ((u −w) ⋅∇)u + 1

�∇p − �∇2u − f = 0, ∀x ∈ Ω, (4.3)

J(∇u) + 1
�∇

2p − ∇ ⋅ f = 0, ∀x ∈ Ω, (4.4)

B(u, p) = 0, ∀x ∈ )Ω, (4.5)
∇ ⋅ u = 0, ∀x ∈ )Ω, (4.6)

u(x, 0) = u0(x), at t = 0, (4.7)

where J(∇u) ≡ ∇u ∶ ∇u and Ω denotes the �uid domain in nd space dimen-
sions. There are nd primary boundary conditions, denoted by B(u, p) = 0. The
velocity–pressure formulation requires an additional boundary condition for
the pressure. Here, the velocity divergence (4.6) is applied as the boundary con-
dition on the pressure, making the velocity–pressure formulation equivalent
to the velocity–divergence formulation (Henshaw, 1994). For the second-order
accurate scheme used here, boundary conditions are required to determine u
and p at a line of �ctitious (ghost) points outside the domain boundary. Some
of the numerical boundary conditions are compatibility conditions, derived by
applying the momentum and pressure equations on the boundary.

The motion of a rigid body immersed in the �uid is governed by the Newton–
Euler equations,

dxb
dt = vb, mb

dvb
dt = F, Ad!dt = −! × A! + T, dei

dt = ! × ei.

Here xb(t) and vb(t) are the position and velocity of the centre of mass, respec-
tively,mb is the mass of the body, ! is the angular velocity, A is the moment of
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inertia matrix, ei are the principal axes of inertia, F(t) is the applied force, and
T(t) is the applied torque about the centre of mass of the body. The principal
axes of inertia are integrated over time to �nd the rotation matrix which is used
to update positions, velocities and acceleration of points attached to the body
surface.

The force and torque on the body are determined from both body forces, such as
gravity, and hydrodynamic forces arising from the stresses exerted by the �uid
on the body surface, Γ,

F =∫
Γ
(−pn + � ⋅ n) ds + fb, T =∫

Γ
(x − xb) × (−pn + � ⋅ n) ds + tb,

where x is a point on Γ, � = �(∇u + (∇u)T) is the viscous stress tensor, n is
the unit normal vector to the body surface (outward pointing from the �uid
domain), fb is any external body force and tb is any external body torque.

LetUi ≈ u(xi, t),Wi ≈ w(xi, t), and Pi ≈ p(xi, t) be the numerical approxima-
tions to u, w and p, respectively. The momentum and pressure equations are
discretised with second-order �nite di�erence stencils, such that the discretised
governing equations are

d
dtUi + ((Ui −Wi) ⋅∇2)Ui +

1
�∇2Pi − �∇2

2Ui − fi = 0,

1
�∇

2
2Pi + J(∇2Ui) − ∇2 ⋅ fi = 0,

where ∇2Ui = (Dx1Ui, Dx2Ui, Dx3Ui), ∇2
2Ui = (Dx1x1 + Dx2x2 + Dx3x3)Ui, and

∇2 ⋅Ui = Dx1U1,i + Dx2U2,i + Dx3U3,i.

4.3.1 Temporal discretisation

The method of lines is used for solving the equations in time. After discretising
the governing equations in space they can be regarded as a system of ODEs,

d
dtU = F(U, t),
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where pressure is considered a function of the velocity, P = P(U). The equa-
tions are integrated in time using either a fully explicit or semi-implicit scheme,
depending on the stability restriction imposed by the viscous time-step charac-
teristic to the problem. The explicit scheme uses a second-order accurate Adams-
Bashforth predictor followed by a second-order accurate Adams-Moulton cor-
rector. For light rigid bodies, multiple correction steps are used to stabilise the
scheme, under-relaxing the computed forces on the bodies. The semi-implicit
scheme treats the viscous term of the momentum equation implicitly with
a second-order Crank-Nicolson method, which is once again combined with
Adams-Moulton corrector steps if under-relaxed sub-iterations are required. To
illustrate this we will use the momentum equations as an example. Splitting the
equations into explicit and implicit components we have

du
dt = −((u −w) ⋅∇)u − 1

�∇p + �∇2u ≡ FE + FI,

where FE and FI are the explicit and implicit components, respectively

FE = −((u −w) ⋅∇)u − 1
�∇p, FI = �∇2u. (4.8)

The equations are integrated using either fully explicit or semi-implicit schemes.
The explicit integration scheme used in the present work is the second-order
in time Adams predictor–corrector method. It consists of an Adams–Bashforth
predictor

up − un
∆t = �0Fn + �1Fn−1,

with the constants �0 = 1+ ∆t
2∆t1

and�1 = − ∆t
2∆t1

chosen for second-order accuracy
even with a variable time-step where ∆t1 = tn − tn−1, and an Adams–Moulton
corrector

un+1 − un
∆t = 1

2F
p + 1

2F
n.

Though only one corrector step was taken here, one may in practice correct
multiple times. In fact, this is necessary when dealing with moving, light rigid
bodies and partitioned �uid–solid coupling, as will be discussed later.

A semi-implicit approach is taken in some di�usion dominated problems where
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4.3 Newtonian �ow solver

the explicit di�usive time-step is overly restrictive. Generally, this is the case
when the Reynolds number is very low or the grid is highly re�ned near solid
boundaries. Here, the non-linear convective terms are treated with the explicit
Adams predictor–corrector method while the viscous terms are treated with
the implicit second-order in time Crank–Nicolson method. Using the notation
introduced in (4.8) then the time-step consists of a predictor,

up − un
∆t = �0Fn

E − �1Fn−1
E + �Fp

I + (1 − �)Fn
I ,

and a corrector

uc − un
∆t = 1

2F
p
E +

1
2F

n
E + �Fc

I + (1 − �)Fn
I ,

where the superscript c denotes the corrected solution and � = 1
2
gives the

second-order Crank–Nicolson method.

The basic Navier–Stokes solver uses a solution algorithm that decouples the
pressure and velocity �elds Henshaw (1994); Henshaw & Petersson (2003) in a
similar fashion tomany fractional-step andprojection schemes, cf. Almgren et al.
(1998); Ferziger & Perić (2002); Patankar & Spalding (1972) and many others.
The advantage of the current scheme over typical projection schemes is that the
boundary conditions for the pressure are well-de�ned and it is straightforward
to obtain full second-order accuracy for all variables.

Assume that at time t − ∆t the values of U(t − ∆t) and P(t − ∆t) are known
at all points in the solution domain and the values of F(U(t − ∆t), t − ∆t) are
known at all interior points. To advance the solution in time to t the fully explicit
algorithm proceeds as follows:

Step 1 Determine an intermediate solution U∗
i (t) at all interior nodes using a

predictor sub-step

U∗
i (t) = Ui(t − ∆t) + �∆tFi(Ui(t − ∆t), t − ∆t), ∀i ∈ Ω

Step 2 DetermineU∗(t) at the boundary and ghost nodes by solving the boundary
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conditions

U∗
i (t) − uB(xi, t) = 0

∇2 ⋅U∗
i (t) = 0

Extrapolate ghost values of t� ⋅U∗
i

⎫
⎪
⎬
⎪
⎭

∀i ∈ )Ω

where � = 1,… , nd − 1 and only the tangential component of the momen-
tum equation is used.

Step 3 Determine Pi(t) by solving the pressure Poisson equation along with the
remaining boundary conditions

∇2
2Pi(t) = − J(∇2U∗

i (t)) + ∇2 ⋅ fi(t), ∀i ∈ Ω

n ⋅∇2Pi(t) = − n ⋅ [
)U∗

i (t)
)t + ((U∗

i (t) −Wi(t)) ⋅∇2)U∗
i (t)

+ �∇2 × ∇2 ×U∗
i (t) − f(t)], ∀i ∈ )Ω.

The normal component of the momentum equation is used here as a Neu-
mann boundary condition for the pressure Poisson equation. The �∆u
term has been replaced by −�∇ × ∇ × u to avoid a viscous time-step re-
striction2, see (Petersson, 2001) for more details.

Step 4 GivenU∗(t) andP(t) the pressure gradients can be computedandF(U∗(t), t)
found at interior nodes.

Step 5 Correction steps can now be taken to either increase the time-step, or as
needed, to stabilise the algorithm for light rigid bodies. The correction
steps consists of the Adams-Moulton corrector for the velocity followed by
an additional pressure solve. For light bodies, when addedmass e�ects are
large, under-relaxed sub-iterations are used during these corrector steps to
stabilise the scheme. Typically 3–7 corrector steps are used in the present
work, depending on the signi�cance of added mass e�ects in the problem.

For moving grids, additional steps in the algorithm are required to evolve the
2Solving the momentum and pressure equations of the velocity-pressure formulation sepa-
rately requires boundary conditions for the pressure. When treating viscous terms implicitly,
ie in a semi-implicit manner, careful consideration of the pressure boundary condition is
required to ensure a time step restriction governed by the convective term only.
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4.3 Newtonian �ow solver

rigid-body equations (as discussed in the next section) and subsequently move
the component grids. After the component grids have been moved the over-
set grid connectivity information is regenerated. Note that since the governing
equations are solved in a reference frame moving with the grid, no additional
interpolation is needed to transfer the solution at discretisation points from one
time step to the next. As grids move, however, some unused points may become
active and values at these exposed-points are interpolated at previous times as
discussed in Henshaw & Schwendeman (2006)

For small problems (number of grid points O(104)) the linear systems of equa-
tions for the velocity components and the separate system of equations for the
pressure are e�ectively solved using direct solution methods. Larger problems
necessitate iterative approaches; we use Krylov subspace methods from the
PETSc library (Balay et al., 2013), algebraic multigrid solvers from the the Hypre
package (Falgout & Yang, 2002) and the geometric multigrid solvers for overset
grids from Overture (Henshaw, 2005).

4.3.2 Fluid-solid coupling

This system of ODEs governing the particle motion is discretised in time us-
ing a Leapfrog predictor and Adams–Moulton corrector scheme. The predictor
consists of

vpb = vn−1b + 2∆t
mp

Fn,

xpb = 2xnb − xn−1 +
∆t
mp

Fn,

!p = !n−1 + 2∆t(−!n × A!n + Tn),
epi = en−1i + 2∆t(!n) × eni ,
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and is performed before Step 1 in the time-stepping algorithm of Section 4.3.1.
The corrector is

vn+1b = vnb +
∆t
2mp

(Fn + Fp),

xn+1b = xnb +
∆t
2mp

(vnb + v
p
b ),

!n+1 = !n + ∆t
2 (−!

n × A!n + Tn − !p × A!p + Tp),

en+1i = eni +
∆t
2 (!

n × eni + !p × e
p
i ).

and is performed after Step 3 (pressure solve) in the time-stepping algorithm. A
predictor-corrector scheme is used to facilitate the �uid-solid coupling, and to
allow for sub-time-step iterations for light bodies as discussed next.

Low solid/�uid density ratios can cause the standard time-stepping routine to
become unstable, owing principally to the added-mass instability (Banks et al.,
2014a). To alleviate this, under-relaxed sub-iterations are performed during
the correction stages (i.e. �uid velocity solve and pressure solve) of the time-
stepping algorithm. These sub-iterations are thus relatively expensive although
the implicit systems are not changed during these iterations. The approach
used here is similar to that used by many previous authors, although we pre-
fer to under-relax the force on the rigid-body as opposed to under-relaxing the
entire state of the rigid-body. Note that more sophisticated approaches exist to
reduce the required number of sub-iterations such as those based on Aitken
acceleration (Küttler & Wall, 2008; Borazjani et al., 2008).

We illustrate the relaxed sub-iteration through consideration of the rigid-body
velocity equation, though this is performed for the angular velocity equation
as well. The force-relaxation sub-iteration replaces the update for vn+1b in the
corrector step above by the iteration

vn+1,kb = vnb +
∆t
2 (F

n + Fn+1,k), k = 1, 2,…

where k denotes the iteration count. The iterative forcing used to evolve the
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4.3 Newtonian �ow solver

equation is
Fn+1,k = (1 − �)Fn+1,k−1 + �F̃k, � ∈ (0, 1]

where � is a relaxation parameter and F̃k
is the forcing at step k, which initially

is simply the predicted force from the previous �uid solve step, i.e. F̃1 = Fp. Dur-
ing each sub-iteration, the �uid velocity and �uid pressure are recomputed and
these updated �uid values are used to compute the next approximation to the
force on the rigid body. A small � can ensure stability—at the cost of increased
iterations. An optimal value of � is problem dependent and some experimen-
tation is required to reach a good compromise between stability and computa-
tional cost. For example, a value of 0.1 was used in the pure wake interaction
test case of §5.1.4 where the maximum number of sub-iterations was 39 during
the �rst few time-steps, likely due to the non-smooth forcing at start up, and
the minimum and average number of sub iterations were 5 and 7, respectively.
Iterations are performed until the absolute or relative change in the force fall
below their respective convergence criteria, ∆Fk < �a, or ∆Fk∕(|Fk| + �F) < �r,
where ∆Fk = |Fn+1,k − Fk|.

Collision model

Ahard-sphere collisionmodel based on the linear conservation ofmomentum is
used to handle cases in which particles touch3. During the predictor step of the
particle advancement scheme the new positions are used to determine whether
or not particles breach the minimum separation distance, as stipulated by the
requirements of the interpolation stencils. If this minimum separation distance
is breached, a collision is deemed to have occurred and the particle velocities
are corrected. The velocity corrections are calculated by

v̂n+1b,A = vn+1b,A + [vnA − vn+1A −
(1 + er)mb,B

mb,A +mb,B
(vnA + vnB)]nA,

v̂n+1b,B = vn+1b,B + [vnB − vn+1B −
(1 + er)mb,A

mb,A +mb,B
(vnA + vnB)]nB,

3 Note that in principle the particles should never actually touch, but resolving the near contact
would require a very �ne grid.
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where vA = vb,A ⋅ nA, vB = vb,B ⋅ nB, er is the coe�cient of restitution and
nA = −nB is the unit normal vector pointing from the centre of mass of particle
A to the centre of mass of particle B. In this work, collisions were modelled as
perfectly elastic with a coe�cient of restitution of er = 1. This is a frictionless
model, so tangential forces are assumed to be zero during the collision, and
angular velocities are not corrected by the model. This hard-sphere model is
also restricted to the contact of only two particles at any given moment in time.

4.4 Non-Newtonian flow solver

Forviscoplastic �uid�owswe limit ourattention to incompressible,non-inertial,
and time-independent �ow. As with the Newtonian �uid, the �ow is governed
by conservation of mass and momentum:

( ⋅ � + ∇p = f, ( ⋅ u = 0, (4.9)

where, as before, u is the velocity vector, p the pressure �eld, and � the shear
stress tensor. We choose the Bingham model to close our system:

⎧

⎨
⎩

� = (� +
�y

||̇||) ̇ if ||�|| > �y,

̇ = 0 if ||�|| ≤ �y,
(4.10)

where �y is the material yield stress, � the plastic viscosity, and  the rate of
strain tensor de�ned as ̇ ≔ (∇u + ∇u⊺), and || ⋅ || is the induced norm of the
Frobenius inner product:

a .. b ≔ 1
2
∑

ij
AijBij, (4.11)

such that ||̇|| =
√
̇ .. ̇ .

When posed in the mobility sense, i.e. by prescribing a force rather than a ve-
locity on an embedded body, we impose null force and torque constraints on
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4.4 Non-Newtonian �ow solver

the body, solving for the hydrodynamic force and torque using two additional
equations:

F =∫
)P

(−pn+� ⋅n) ds+fb, T =∫
)P

(x−xb)×(−pn+� ⋅n) ds+ tb, (4.12)

where n is the unit normal vector to the body surface, andfb and tb are external
body force and torque, respectively.

We treat the viscoplastic Stokes problem exactly, i.e. without regularisation of
the plastic dissipation term, by utilising a standard augmented Lagrangian for-
mulation. Following Olshanskii (2009); Muravleva (2015) �rst, the viscoplastic
Stokes equations are posed as a variational inequality, then, with the introduc-
tion of the following convex set

V = {v ∈ H1(Ω)2|( ⋅ v = 0}, (4.13)

and the functional J ∶ V → ℝ, we have the following minimisation problem

J(v) = �
2∫

Ω

|̇(v)|2 dx + �y∫
Ω

|̇(v)| dx −∫
Ω

f ⋅ v dx, (4.14)

where L2(Ω) denotes the space of square integrable functions on Ω and the
Sobolev spaceH1(Ω) is de�ned as:

H1(Ω) = {v|v ∈ L2(Ω), )v)xi
∈ L2(Ω), ∀i = 1,… , d} (4.15)

The velocity solutionu of the viscoplastic Stokes problem (4.9)–(4.10)minimises
J on the convex set V:

u = argmin
v∈V

J(v). (4.16)

We introduce the following functional space Q = {q|q ∈ L2(Ω)2×2; q⊺ = q} and
auxiliary tensor q = ̇(v) ∈ Ω, and a Lagrange multiplier �eld � ∈ L2(Ω)2×2,
homogeneous to a plastic stress, that relaxes the constraint on the auxiliary
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tensor q. This leads us to the augmented Lagrangianℒr ∶ U ×Q×Q→ ℝ given
by

ℒ(v; q; �) = �
2∫

Ω

|q|2 dx + �y∫
Ω

|q| dx + 1
2∫

Ω

(̇(u) − q) .. � dx

+ r
2∫

Ω

|̇(u) − q|2 dx, (4.17)

where r > 0 is a penalty parameter. Through the augmented Lagrangian formu-
lation we have now posed the initial boundary value problem to a saddle point
problem. We solve this using a standard Uzawa type algorithm:

Step 1 Given qn ∈ Q and �n ∈ Q �nd the solution un+1, pn+1 of the discrete
Stokes problem:

r∆un+1 + ∇pn+1 = ( ⋅ (�n − rqn), (4.18)

( ⋅ un+1 + �pn+1 = 0, (4.19)

u|)Ω = ub, (4.20)

where � ≪ 1 is a stabilisation term and ub are the problem dependent
boundary conditions.

Step 2 Compute the auxiliary tensor qn+1 ∈ Ω via the fully explicit computation:

qn+1 ∶=
⎧

⎨
⎩

0, if |� + ṙ(un+1)| < �y,

(1 − �y
|�n+ṙ(un+1)|

) �n+ṙ(un+1)
�+r

, otherwise.
(4.21)

Step 3 Explicitly update the Lagrange multiplier �n+1:

�n+1 ∶= �n + r(̇(un) − qn). (4.22)

Step 4 If |�n+1 − �n| > � for � > 0, go to step 1, else end.

If working in the mobility sense, we have an additional outer iteration loop:

Step 1 Given unp, !np, qn, �n, �nd the solution to the discrete Stokes problem.
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Step 2 Compute the auxiliary tensor qn+1.

Step 3 If |� + ṙ(un+1)| < �y update the Lagrange multiplier �n+1.

Step 4 Compute the hydrodynamic force Fn+1p and torque Tn+1p on the particle
and set the particle velocityun+1p andangular velocity!n+1p . If |Fn+1−Fn| >
� or |Tn+1 − Tn| > �, go to step 1, else end.

Because the viscoplastic computations are steady, we do not require a collision
model as in the Newtonian case.

In recent years, there have been several attempts at accelerating both genuinely
non-smooth and regularised solution methods. Aposporidis et al. (2011) re-
placed the optimisation techniques of the classic ALM typemethodswith Picard
iterations, while Saramito (2016) proposed a damped Newton method. In both
methods the di�culties posed by non-di�erentiability and a non-unique stress
�eld are transferred from the ‘outer’ loop to the ‘inner’ Stokes problem loop. Ac-
cordingly, these methods show faster convergence in the outer loop than ALM
methods, however, su�er from slow convergence in the ‘inner’ loop due to singu-
lar linear systems (Treskatis et al., 2018). Treskatis et al. (2016) proposed an accel-
erated ALM approach based on Nesterov (1983) predictor-corrector scheme and
the fast iterative shrinkage-thresholding algorithm (FISTA) of Beck & Teboulle
(2009). There, insteadof the velocity (primal) based formulation, the stress (dual)
based formulation is solved using the accelerated �rst-order optimisation algo-
rithm FISTA, belonging to the class of proximal gradient methods. FISTA was
shown to outperform classical ALM by up to two orders of magnitude, with
the provably worst case convergence rate increased from O(1∕

√
k) to O(1∕k2),

where k is the iteration counter.

Very recently, Bleyer (2018) applied an interior-point optimisationmethod to the
primal dual formulation of the viscoplastic �ow problem, showing even better
performance than FISTA. Although regularised, the regularisation is, in a sense,
adaptive such that a much smaller regularisation parameter is achieved than
with traditional regularisation schemes (Treskatis et al., 2018). Bleyer (2018)
note that in practice, many pitfalls of regularisation do not appear to a�ect this
interior-point method.
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4.5 Conclusions

In this chapterwe have given an overview of the computational strategies for the
meshing—allowing for discrete particle representation—and the viscoplastic
�uid solver—allowing for exact yield surface computation.

In the following chapter, we will �rst evaluate the overset grid method for par-
ticulate �ow simulation using a Newtonian carrier �uid, making use of existing
benchmark cases, before exploring viscoplastic particulate �ows in the remain-
ing results chapters.
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overset grids

Approximate solution methods have been applied to both high and low particle
Reynolds number �ow regimes, where by neglecting viscous or inertial con-
tributions, respectively, the equations of motion can be linearised and solved
with powerfulmathematical tools; see Sangani &Didwania (1993); Kushch et al.
(2002); Brady (1988) for examples in both �ow regimes. It is the intermediate
�ow regime, where such approximations are not valid, that the full incompress-
ible Navier–Stokes equations must be solved.

Awide range of numerical techniques have been developed for simulating partic-
ulate �ows through solution of the full Navier-Stokes equations. These include
arbitrary Lagrangian–Eulerian (ALE) methods (Takashi & Hughes, 1992; Hu
et al., 2001; Vierendeels et al., 2005), methods based on level-sets (Coquerelle &
Cottet, 2008; Gibou & Min, 2012), �ctitious domain methods (Glowinski et al.,
1999, 2000, 2001), embedded boundary methods (Costarelli et al., 2016) and
immersed boundary methods (IBM) (Kajishima & Takiguchi, 2002; Uhlmann,
2005; Kim & Choi, 2006; Lee et al., 2008; Borazjani et al., 2008; Breugem, 2012;
Kempe & Fröhlich, 2012b; Yang & Stern, 2012; Bhalla et al., 2013; Yang & Stern,
2015; Wang & Eldredge, 2015; Kim & Peskin, 2016; Lācis et al., 2016). An exten-
sive overview may be found in Koblitz et al. (2017a).

In this chapter we will evaluate the overset grid, or Chimera grid, method for
viscous particulate �ow. As described in chapter chapter 4, overset gridmethods
have been widely used for problems with moving geometries. They were recog-
nised early on to be a useful technique for treating rigid moving bodies, such
as aircraft store separation (Dougherty & Kuan, 1989), and have subsequently
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been applied to many other moving-grid aerodynamic applications, see for ex-
ample Meakin (1993); Henshaw & Schwendeman (2006); Zahle et al. (2007);
Chan (2009); Chandar & Damodaran (2010); Lani et al. (2012). English et al.
(2013) present a novel overset grid approach using a Voronoi grid to link Carte-
sian overset grids. This di�ers to the method used here, where interpolation
stencils are directly substituted into the coe�cient matrix and solid boundaries
are represented using curvilinear grids. The basic approach of moving overset
grids used in this chapter was developed for high-speed compressible and re-
active �ows by Henshaw & Schwendeman (2006) and included the support
for adaptive grid re�nement. The deforming composite grid (DCG) approach
was developed in Banks et al. (2012) for treating deforming bodies with overset
grids, and a partitioned scheme was developed for light deforming bodies that
was stable without sub-iterations. A method to overcome the added-mass insta-
bility with compressible �ows and rigid bodies was developed in Banks et al.
(2013). More recently, stable partitioned schemes for incompressible �ows and
deforming solids have been developed (Banks et al., 2014a,b; Li et al., 2016) and
extended to non-linear solids (Banks et al., 2016).

The overset grid method described in chapter 4 retains much of the e�ciency
of static structured grid methods whilst still allowing for sharp representation
of solid boundaries. The overset grid method can be seen as a bridge between
the static grid methods such as IBM and boundary conformal grid methods; the
curvilinear particle grids allow for higher than �rst-order accuracy and bound-
ary conditions to be implemented strongly, while grid connectivity with the
static Cartesian background grid is only locally updated. Since the grid connec-
tivity is only updated locally, the regridding procedure is less costly and complex
than for unstructured body conformal methods, such as ALE. Local grid re�ne-
ment allows boundary layers to be fully resolved without appreciably a�ecting
the total grid point count. This is in contrast with general static grid methods
where the solver e�ciency is o�set by the unfavourable scaling associated with
uniform grids, making large fully resolved simulations very costly (Wachs et al.,
2015). For these reasons, we evaluate the suitability of the method for fully re-
solved simulations of incompressible �uid �ow with rigid particles. Note that
the scheme described here is implemented in the Cgins solver that is available
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as part of the Overture framework of codes (overtureFramework.org). Al-
though past works have described the use of Cgins for bodies undergoing spec-
i�ed motions (e.g. Broering et al. (2012)), the discussion here of the algorithm
involving freely-moving rigid-bodies is new.

In section 2 the overset grid method is summarised, before stating the mathe-
matical formulation in section 3. These equations are discretised in space and
time in section 4 and 5, respectively, while section 6 presents the �uid–solid
coupling methodology. A grid convergence study is performed in section 7.1
using a representative test case to determine appropriate spatial resolutions for
the wake structures captured by the background grid, and boundary layer cap-
tured by the particle grid. Following this, validation cases in both two and three
space dimensions are presented, comparing against published experimental and
numerical results. The results of our evaluation are summarised in section 8,
along with an outlook towards future work.

5.1 Numerical results

5.1.1 Convergence study

To accurately simulate viscous �ows the grid resolution must be �ne enough
to fully capture boundary layers adjacent to solid surfaces. These can be very
thin, depending on the Reynolds number of the problem as the boundary layer
depth scales approximately as 1∕

√
Re, see Batchelor (1967). A major advantage

of boundary-conformal over static grid methods is the ability to selectively re-
�ne the grid near solid boundaries. In a detailed grid independence study of
viscous �ow past a static cylinder, Nicolle (2010) investigated how re�nement
of di�erent areas of the grid a�ected the behaviour of the cylinder. Predictably,
the surface resolution was found to most a�ect the cylinder behaviour, but the
downstream wake resolution was found to a�ect the vortex shedding frequency
of the upstream cylinder. Nonetheless, large ratios between surface and wake
resolution were found to give very accurate results.

47



5 Newtonian particulate �ows with overset grids

4D

40
D

38
.4
D

D
g

Figure 5.1: Left: Cropped view of GR4, showing the boundary layer grid
(green), transition grid (red) and background grid (blue)with inter-
polation points. Right: Geometry of the convergence study prob-
lem.

In the present work, emphasis is placed on the grid characteristic length scales
to optimise run time. Following Nicolle & Eames (2011) we use two grid length
scales to quantify the quality of the computational grid: the domain length scale
(DLS) is the background grid element size while the surface length scale (SLS)
is the grid element size on the surface of the particle.

The grid independence study is �rst performed using a grid with nearly uni-
form grid spacings and is then repeated using grid re�nement near the particle
boundary. Descriptions of the grids used are provided in table 5.1. Because curvi-
linear grids are used to represent the particles, the cells are slightly distorted in
physical space. Thus, table 5.1 provides minimum, average and maximum cell
volumes (areas).

The test used in both convergence studies is as follows: the domain is a rect-
angular channel of dimensions (W∗, H∗) = (4D, 40D) �lled with an a priori
quiescent �uid of density �f = 1 g∕cm3 and kinematic viscosity of 0.05 cm2∕s.
The particle (D, �p) = (0.25 cm, 1.5 kg∕cm3) is released from rest at (x∗0 , y∗0) =
(D, 38.4D) with the gravitational constant set to g = 981 cm∕s2 in the nega-
tive y-direction. The problem geometry can be seen in Fig. 5.1. The results are
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Table 5.1: Description of the uniform and re�ned grids used in the conver-
gence study.

Grid Node count Cell volume DLS SLS

min ave max
GU1 1497931 0.66 0.678 0.678 D∕96 D∕96
GU2 670984 1.47 1.53 1.53 D∕64 D∕64
GU3 380394 2.58 2.71 2.71 D∕48 D∕48
GU4 171724 5.65 6.10 6.10 D∕32 D∕32
GU5 98102 9.90 10.8 10.9 D∕24 D∕24
GU6 44967 21.3 24.4 24.4 D∕16 D∕16
GR1 679685 0.67 1.52 1.53 D∕64 D∕96
GR2 390285 0.78 2.68 2.71 D∕48 D∕96
GR3 191265 0.78 5.68 6.10 D∕32 D∕96
GR4 123095 0.71 9.09 10.9 D∕24 D∕96
GR5 63935 0.78 18.2 24.4 D∕16 D∕96
GR6 31455 0.78 39.5 97.7 D∕8 D∕96

non-dimensionalised as follows:

u∗ = u
UT

, v∗ = v
UT

, x∗ = x
D , y∗ = y

D , !∗ = !D
UT

, t∗ = tUT
D (5.1)

where UT = 8.60 cm s−1 is the measured terminal settling velocity.

Under the action of gravity the particle rotates in a counterclockwise sense, as
if rolling up the wall—this is known as the ‘anomalous rolling’ e�ect and is
well-known in the literature (Luo et al., 2007; Goldman et al., 1967; Liu et al.,
1993; Tatum et al., 2005). Luo et al. (2007) studied the �ow �eld around parti-
cles released near vertical walls in inertial Newtonian �uids and found that the
‘anomalous rolling’ is due, in part, to the presence of the near wall. Post release,
two attached vortices form behind the particle (at �nite Reynolds number). The
presence of the near wall suppresses the growth of the closer of the two vortices,
leading to a torque on the particle that rotates it in a counterclockwise sense,
i.e. the so-called ‘anomalous rolling’. Immediately after release it moves a short
distance towards the nearwall beforemigrating towards its equilibrium position
along the channel centreline.

The wake remains attached but is unsteady. This is re�ected in the oscillatory u∗

and!∗ velocity time histories, shown in �gures 5.3 and 5.2. The angular velocity
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Figure 5.2: Left: Normalised angular velocity history for the convergence
study at increasing grid resolutions. Right: Position of the disk
in the channel for the convergence study at increasing grid reso-
lutions.

time history exhibits a large initial peak after which it is rapidly damped to low
amplitude oscillations about !∗ = 0. After a very small negative peak, the u∗

time history exhibits a large positive peak,much like!∗,with damped successive
peaks. However, unlike in !∗, the following u∗ oscillations have a non-zero
mean value as the disk drifts towards its equilibrium position. In contrast, the
vertical velocity, v∗, shows the particle rapidly reaching a steady settling velocity,
una�ected by the attached unsteady wake.

Fig. 5.4 show relative errors (meaning di�erences compared to the reference
solution) in v∗ and !∗, which were calculated as �v = (v∗ − v∗ref)∕v

∗
ref and �! =

(!−!∗ref)∕!
∗
ref, where data from theGU1 simulation are used as reference values.

Relative errors in v∗ and !∗ taken early on in the simulation, at t = 0.2 s, and
late in the simulation, at t = 1.0 s, show greater than second order convergence
for both components early on but a decrease in convergence rate for !∗ as the
simulation progresses. The gravitational acceleration is impulsively turned on
at t = 0, and this non-smooth forcing could have a detrimental e�ect on the
convergence rates.

The test was repeated using a series of re�ned grids. These were constructed
using a �ne grid immediately surrounding the particle surface, smoothly con-
nected to a coarse background grid using a transition grid. This construction
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Figure 5.3: Left: Normalised horizontal velocity history for the convergence
study at increasing grid resolutions. Right: Normalised vertical
velocity history for the convergence study at increasing grid reso-
lutions.

can be seen in Fig. 5.1. Detailed descriptions of the grids are provided in table
5.1, where uniform grids are denoted by the pre�x GU and re�nement grids by
GR.

Table 5.2: Absolute values and relative errors for the convergence study taken
at t = 1.0 s.

Grid v∕UT u∕UT !D∕UT × 10−4 �v × 10−4 �u �!
GU1 1.0000 0.0033 6.4761 — — —
GU2 0.9994 0.0034 6.1663 5.9299 0.0288 0.0521
GU3 0.9994 0.0034 6.8561 14.000 0.0969 0.2275
GU4 0.9957 0.0041 9.2127 43.000 0.2775 0.4609
GU5 0.9900 0.0046 9.4015 100.00 0.4513 0.6093
GU6 0.9734 0.0052 0.0016 266.00 0.6329 1.7913
GR1 0.9995 0.0034 6.5961 1.1599 0.0292 0.0277
GR2 0.9998 0.0033 6.4250 1.6028 0.0141 0.0069
GR3 1.0000 0.0031 6.4250 0.0755 0.0186 0.0062
GR4 1.0002 0.0031 5.8773 2.3025 0.0161 0.0061
GR5 1.0006 0.0032 6.1766 6.0949 0.0013 0.0573
GR6 1.0043 0.0026 6.9848 43.000 0.1915 0.1956

Table 5.2 shows absolute values of u∗, v∗ and !∗ at t = 1.0 s as well as relative
errors, where data from GU1 were taken as reference values. As before, it is
evident that v∗ is fairly insensitive to the grid resolution, while u∗ and!∗ show a
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Figure 5.4: Left: Comparison of relative errormagnitude in v∗ and!∗ at t = 1 s
against required CPU time using uniform and re�nement grids.
Right: relative vertical and angular velocity errors at early (t =
0.2 s) and late (t = 1.0 s) stages of the simulation.

large dependence on the near surface resolution. With a high resolution surface
grid capturing the boundary layer, the motion of the disk can be captured quite
accurately, even with a large surface to background grid resolution ratio. In fact,
the GR5 grid with a resolution ratio of 6 ∶ 1 reproduced solutions of GU1 with
a maximum error of 5%, with a more than 23 fold reduction in number of grid
points. Fig. 5.4 shows the relative error in v∗ and !∗ at t = 1 s against the total
CPU time of the calculation.

5.1.2 Settling disk impacting a wall

This test simulates the fall of a rigid circular disk in a bounded domain and
its impact with the bottom boundary. This test has been performed by other re-
searchers using DLM/FDM (Glowinski et al., 2001), an FEM�ctitious boundary
method (Wan & Turek, 2006), and an immersed boundary lattice Boltzmann
method (Hu et al., 2015). The computational domain has a width ofW = 8D,
a height of H = 24D and grid characteristic length scales DLS = D∕16 and
SLS = D∕96, whereD = 0.25 cm is the disk diameter. The disk is initially placed
along the centreline of the domain, 8D from the top boundary. The disk has den-
sity �d = 1.25 g∕cm3 and the kinematic viscosity of the �uid is � = 0.1 cm2∕s.
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The results are non-dimensionalised as in eq. (5.1), where the characteristic
velocity scale Us is an estimated terminal velocity,

Us =

√
√√√�D

2 (
�d − �f
�f

) g. (5.2)

The present results (Fig. 5.5) are in good agreement with the previous studies.
The disk reaches the terminal settling velocity at t∗ = 20,with a terminal particle
Reynolds number of ReT = 17. 45, consistent with the literature. As the disk
approaches the bottom wall the results di�er slightly. The studies compared
against in Fig. 5.5 all exhibit a rebound of the disk from the bottom boundary
while the present results do not.
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Figure 5.5: Histories of the y∗-coordinate and v∗ component of the centre of
the disk for a low Reynolds number sedimentation of a symmetri-
cally placed disk test case with data from Hu et al.Hu et al. (2015)
(□),Wang et al.Wan&Turek (2006) (◦),Glowinski et al.Glowinski
et al. (2001) (◊) and the present study (−).

In the present study the grid around the disk and along the bottom of the tank
is very �ne (SLS = D∕96 for both the disk and the bottom of the tank), allow-
ing the lubrication forces and �ow in the gap to be better resolved. This slows
the particle down more before “contact” is made with the wall1. Additionally,
1In fact an in�nitely smooth disk with �ow governed by the Navier-Stokes equations should
never actually contact the wall but in this settling case only approach the wall algebraically
slowly with the gap becoming ever thinner.
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the present study used a conservation of linear momentum based hard-sphere
collision model approach to model the collision between the disk and the bot-
tom boundary. The previous studies compared against here all used repulsive
potential type methods. We can estimate a Stokes number for the particle to
comment on the “correctness” of the present results. The Stokes number, Stk,
is the ratio between the particle and �uid relaxation times, �p and �f, respec-
tively. Taking �f = R∕UT, where R is the disk radius, �p = mv∕Fd, and Fd is
the drag force on the disk, then Stk = mv2∕(RFd). Once the disk reaches its
terminal settling velocity the drag force balances with the force due to gravity,
so Fd = �R2g(�d − �f) and thus the Stokes number is Stk = v2∕(Rg(1 − �f

�d
)).

Here, the Stokes number is approximately 2. It has been demonstrated that for
3D cases particles settling with Stk < 10 there is no rebound after contact is
made with the bottom boundary (Ardekani & Rangel, 2008; Joseph et al., 2001).
Assuming this holds true for the 2D equivalent, then the above results indicate
that the repulsive potential collision model is a poor sub-grid model for low
speed impacts. The rebound evident in the study of Glowinski et al. (Glowinski
et al., 2001) indicates that a higher grid resolution is required to adequately re-
solve the lubrication forces than the hydrodynamic interactions during free-fall.
While the current approach is adequate here it is clear that in many situations
resolving the gap is not practical and prohibitively expensive. Qiu et al. (2015)
presented a novel solution to computing incompressible �ow in thin gaps using
pressure degrees of freedom on virtual solid surfaces to provide solid–�uid cou-
pling in the gap region, which when extended to no-slip boundaries could be a
good alternative for this sort of problem.

5.1.3 Settling of two offset disks

Two o�set cylinders settling in a quiescent �uid are simulated to demonstrate
the drafting, kissing, tumbling behaviour observed experimentally by Fortes
et al. (1987). This is a di�cult problem to simulate owing to the non-linear
nature of the particle motion and the particle–particle and particle–wall in-
teractions. Results are compared to previous studies of Patankar et al. (2000);
Patankar (2001), Wan & Turek (2006), Niu et al. (2006), Zhang & Prosperetti
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(2003) andFeng&Michaelides (2004) for a lowReynolds numbercase,andUhlmann
(2005) for a moderate Reynolds number case. The low Reynolds number case
uses a computational domain of width 10D and height 40D, with the particles
of diameter 0.2 cm placed along the vertical centreline, 4D and 6D from the
top boundary. The high Reynolds number case uses a computational domain of
width 8D and height 24D, with the particles of diameter 0.25 cm placed 4D and
6D from the top boundary, and o�set by D∕250 and −D∕250 from the vertical
centreline. For the low Reynolds number case, the grid characteristic length
scales areDLS = D∕19 and SLS = D∕76whilst for the moderate Reynolds num-
ber case DLS = D∕24 and SLS = D∕128. In each case, both the top and bottom
particles have the same density ratio. For the low Reynolds number case, the
density ratio is �r = 1.01 and the �uid has kinematic viscosity � = 0.1 cm2∕s.
For the moderate Reynolds number case, the density ratio is �r = 1.5 and the
kinematic viscosity is � = 0.01 cm2∕s. In both cases the gravitational constant
was taken as g = 981 cm∕s2 and the results are non-dimensionalised as in (5.1),
where the characteristic velocity, Us, is again calculated using (5.2).

t = 1 t = 2 t = 3 t = 4 t = 5

Figure 5.6: Settling of two disks in a quiescent �uid. Contours of the vortic-
ity at �ve di�erent time, with a vorticity scale between −3.6 ≤
�D∕Us ≤ 3.6.

Fig. 5.6 shows the positions of the particles as they sediment, interacting with
each other and the domain boundary, along with instantaneous vorticity con-
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Figure 5.7: Histories of the (a) v∗ and (b) u∗ velocity components of the centre
of the disks for the low Reynolds number drafting, kissing, and
tumbling test case, with �d = 1.01, � = 0.1 where the solid line
denotes the (initially) top disk and the dashed line the bottom disk,
with data from: (a) Patankar (2001) (◊), Patankar et al. (2000) (□)
and Feng & Michaelides (2004) (◦); (b) Patankar et al. (2000) (□)
and Feng & Michaelides (2004) (◦) overlayed.
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Figure 5.8: Time histories of the (a) v∗ and (b) u∗ velocity components of the
centre of the disks for the low Reynolds number drafting, kissing,
and tumbling test case with �d = 1.01, � = 0.1, where the solid
line denotes the (initially) top disk and the dashed line the bottom
disk, and data from Zhang & Prosperetti (2003) overlayed (◦).
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tours. The observed dynamical interactions are in good agreement with those
observed in the quasi two-dimensional experiments in Fortes et al. (1987). Ini-
tially, the two particles begin moving from rest under the in�uence of gravity
with the same acceleration. As the wake forms behind the lower particle the
top particle becomes shielded in the resultant low pressure region. This allows
the top particle to draft behind the lower particle, similar to cyclists in a pelo-
ton. This is the “drafting” stage. Eventually, the top particle makes near contact
with the lower particle (they “kiss”) and e�ectively form an elongated bodywith
axis parallel to the fall. This con�guration is inherently unstable and the elon-
gated body rotates to align its long axis perpendicular to the fall. This is the
“tumbling” stage described in Fortes et al. (1987). The particles separate and the
lower particle is overtaken by the top particle, which continues to sedimentwith
a slightly negative u∗ velocity. The other particle impacts the wall, after which
it, too, sediments with a slightly negative u∗ velocity.

The results for the low Reynolds number case compare well qualitatively with
those of Patankar et al. (2000); Patankar (2001); Feng & Michaelides (2004) but
not quantitatively (see Fig. 5.7). Though quantitative agreement is not necessar-
ily apparent amongst the results of these studies themselves, what is apparent is
that their settling velocities are all lower than those found in the present study.
Although di�erent methods were used, all three of these simulations used low
grid resolutions around the particles, particularly Feng & Michaelides (2004).
The study in Zhang & Prosperetti (2003) used a higher resolution grid, with 20
computational nodes per particle diameter. Very good quantitative agreement
is found between that study and the present one, as is evident from �gure 5.8,
though there is a discrepancy in the duration of the “kissing” contact and the
onset of “tumbling”. The onset of “tumbling” is caused by the build up of numer-
ical error, so this is expected to be solver speci�c. In the absence of numerical
error, or bias introduced by the grid, the disks would not leave the “kissing”
stage, which is why we adopt the approach of Uhlmann (2005) and Zhang &
Prosperetti (2003) whereby the particles are initialised slightly o�set from the
centreline so as to promote an earlier onset of tumbling in a high resolution
simulation.
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Figure 5.9: Time histories of x∗, y∗, v∗, u∗ and !∗ for the moderate Reynolds
numberdrafting,kissing,and tumbling test casewith�d = 1.5,� =
0.01, where the solid line denotes the (initially) top disk and the
dashed line the bottom, and data from Uhlmann (2005) overlayed
(◦).

Results for the moderate Reynolds number case are shown in Fig. 5.9. These
are compared to results from Uhlmann (2005), who used an immersed bound-
ary method on high resolution grids. Both qualitatively and quantitatively the
results are in excellent agreement for the particle positions and u, v velocity
components, with the only di�erences found during the initial contact and sub-
sequent “kissing” stage, due to the di�erent collision models. All of the afore-
mentioned studies used a repulsive force based model, while a conservation
of linear momentum model is used here. Fig. 5.9 shows good qualitative but
poor quantitative agreement for the angular velocity component. This is a very
sensitive metric (Uhlmann, 2005) and it is likely that the di�erences are due,
in large part, to the di�erent collision mechanisms used. The novel approach
of Kempe & Fröhlich (2012b), which uses a sub-grid lubrication force correc-
tion and conserves angular momentum, would probably be a more appropriate
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collision mechanism for this case.

5.1.4 Two particle wake interaction

0.
65
D

0.
65
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10
D

50D

g

Figure 5.10: Problem geometry for the two particle wake interaction test case.

This is a case presented by Uhlmann (2005) to test the �uid–structure inter-
action, with particular emphasis on examining the e�ect of wake interactions
between the particles on the angular velocity. Two particles of di�ering densi-
ties settle in an otherwise quiescent �uid. The heavier particle passes the lighter
particle, subjecting it to perturbations from its wake. The particles do not collide
and therefore no collision model is required, making it an attractive benchmark
case.

The computational domain, shown in Fig. 5.10, has a width of 10D, a height
of 50D and the grid characteristic length scales are DLS = D∕40 and SLS =
D∕100, where the particle diameter is D = 0.2m. A heavier particle of density
ratio �r,1 = 1.5 is initially positioned at x = (−0.65D, 4D) from the channel
centreline and top boundary respectively, while the lighter particle of density
ratio �r,2 = 1.25 is positioned at x = (0.65D, 6D). Both particles are initially
at rest and the �uid of kinematic viscosity � = 0.0008m2∕s is quiescent at t =
0 s. The gravitational constant is set to g = 9.81m∕s2. The results are non-
dimensionalised as in (5.1), where the characteristic velocity Us is calculated
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Figure 5.11: Contours of vorticity at times t = 0.8 s, t = 3.2 s, t = 5.6 s, t =
8.0 s for the pure wake interaction test case compared to plots
fromUhlmann (2005) taken at the same times andwith the same
vorticity extrema. Left: present study using a quasi uniform grid
with DLS=D/40 and SLS=D/40. Right: results from Uhlmann
(2005) computed on a uniform grid of resolution D∕40.

using (5.2) and the density ratio of the heavier disk, viz. �r,1 = 1.5.

The maximum particle Reynolds numbers of the heavy and light particle are
280 and 230, respectively (Uhlmann, 2005). Uhlmann (2005) used a uniform
grid resolution of DLS = D∕40, allowing for fewer than three grid points across
the estimated boundary layer depth for both the light and heavy particles. Given
the �ndings of the convergence study in section 5.1.1 it is not likely that the
solutions at this grid resolution are grid independent. A brief convergence study
was performed, shown in table 5.3, and solutions were found to converge at
SLS = D∕100, allowing for 6 points across the boundary layers for both the light
and heavy particle.

Fig. 5.11 shows successive snapshots of the instantaneous vorticity �eld with
snapshots from Uhlmann (2005) below. The evolving �ow �eld and particle
positions match well. Fig. 5.12 shows the time histories of the particles position,
velocity and angular velocity.
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Figure 5.12: Time histories of x∗, y∗, v∗, u∗ and !∗ for the pure wake interac-
tion test case with �r,1 = 1.5, �r,2 = 1.25, � = 0.0008m2∕s and
data from Uhlmann (2005) overlayed.

The converged solutions of the present studymatchwell with those in Uhlmann
(2005), although a phase shift is apparent in the oscillatory components and the
settling velocity is slightly higher in the present study.

The largest di�erences are found in the horizontal velocity components, par-
ticularly for the light particle. These di�erences are probably due in large part
to the di�erences in the angular velocity components, which will a�ect vortex
shedding and lift on the particles. The amplitudes of the angular velocity com-
ponent oscillations for the heavier particle match well but a slight phase shift is
apparent. This is re�ected in the horizontal velocity components for the heavier
particle by matching amplitudes but markedly di�erent periods of oscillation.
The angular velocity components of the lighter particle di�er in both ampli-
tude and period of oscillation, leading to more pronounced di�erences in the
horizontal velocity components of the two studies.
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Table 5.3: Absolute values and relative errors for disk 2 taken at t = 1 s of the
wake interaction grid independence study.
SLS u∕Us v∕Us !D∕Us �u �v �!

D/200 0.14550 -0.36470 -0.01123 — — —
D/150 0.14554 -0.36483 -0.01225 0.00028 0.00033 0.00181
D/100 0.14567 -0.36518 -0.01132 0.00121 0.00130 0.00831
D/50 0.14680 -0.36705 -0.01205 0.00896 0.00643 0.07353
D/40 0.01479 -0.36847 -0.01293 0.01644 0.01033 0.15205

5.1.5 Settling sphere

As a �nal validation case we compare experimental (ten Cate et al., 2002) and
numerical (Yang & Stern, 2015) results on the motion of a single sphere in a
closely con�ned container to numerical results produced by the currentmethod.
The sphere of diameter D = 15mm and density � = 1120 kg∕m3 is positioned
centrally with the bottom of the sphere 120mm from the bottom of the tank,
which has depth × width × height dimensions of 100 × 100 × 160mm. Four
cases were run, with Reynolds numbers ranging from 1.5 to a moderate 31.9.
The material parameters used in each case are detailed in table 5.4, with g =
9.81m∕s2 throughout. For each case the grid characteristic length scales are
DLS = D∕10 and SLS = D∕38, allowing for approximately six points across the
estimated boundary layer depth for the highest Reynolds number case.

Table 5.4: Parameters used for the four settling sphere cases.

Case number �f �f Re Stk
[kg∕m3] [Ns∕m2] [–] [–]

1 970 0.373 1.5 0.19
2 965 0.212 4.1 0.53
3 962 0.113 11.6 1.50
4 960 0.058 31.9 4.13

The sphere undergoes three distinct periods of motion after its release from rest:
an initial acceleration followed by a period of steady fall at a terminal settling
velocity and �nally a deceleration as it approaches the wall. As the Reynolds
number is increased the three stages become progressively shorter. Similar Yang
& Stern (2015) the wall collisions were not considered here and the simulations
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Figure 5.13: Left: non-dimensionalised vertical position of the sphere com-
pared to numerical results of Yang & Stern (2015) (◊) and experi-
mental results of ten Cate et al. (2002) (◦). Right: dimensional
vertical velocity of the sphere compared to numerical results
of Yang & Stern (2015) (◊) and experimental results of ten Cate
et al. (2002) (◦).

stopped before the sphere made contact with the wall.

The present results are shown in Fig. 5.13 and match satisfactorily with the
experimental results of ten Cate et al. (2002) although some slight di�erences
remain: the terminal settling velocity in case 1 is found to be approximately
4.6% lower here and in case 2 the sphere begins the wall induced deceleration
sooner than in ten Cate et al. (2002). This earlier deceleration in case 2 is also
present in the results of Yang & Stern (2015), as is the lower terminal settling
velocity of case 1. The bene�t of using overset grids is again evident; the grid
used above consists of 5.18 × 105 grid points while the results are as good as
those produced on a uniform grid over three times the size.

5.2 Conclusion

We evaluated the overset grid method for DNS of viscous, incompressible �uid
�ow with rigid, moving bodies. Several FSI benchmark test cases were carried
out for veri�cation and validation purposes. A systematic convergence test was
carried out using six uniformly re�ned grids and six with local re�nement near
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5 Newtonian particulate �ows with overset grids

the particle surface. Local re�nement was found to produce results deviating no
more than �ve percent from the reference solutions, with a more than 23 fold
decrease in grid point count and a subsequent 13 fold decrease in CPU time.

Results compared favourably with those from the literature for the symmetri-
cally placed disk settling in a tank. Discrepancies in the approach and rebound
behaviour are due to the hard-sphere collision model and the selective grid re-
�nement, allowing lubrication forces to be better resolved in the current study.
The present method compared well with high resolution studies for the drop-
ping, kissing, tumbling test cases and the purewake interaction test case. Finally,
results for a sphere settling in a small tank at various Reynolds numbers com-
pared well with both experimental results of ten Cate et al. (2002) and recent
numerical results of Yang & Stern (2015), using only one third the number of
grid points as the latter study.

The popular test cases presented in this work are all, to varying degrees, iner-
tially dominated and exhibit viscous boundary layers that must be fully resolved
to accurately simulate the behaviour of the rigid bodies in the �ow. The second-
order accurate boundary �ttedmethod demonstrated here was found to produce
reasonably converged results with approximately six grid points across the es-
timated boundary layer depth. By using a coarse—but �ne enough to resolve
wake structures—Cartesian background grid and re�ned, boundary-�tted grids,
grid point counts were greatly reduced, even in two-dimensional problems.

The overset grid method has shown promising capabilities for fully-resolved
DNS of small numbers of rigid particles. With a more sophisticated collision
mechanism, e.g. the multi-scale approach of Kempe & Fröhlich (2012a) or the
DEM approach of Wachs (2009), fully-resolved DNS of larger numbers of arbi-
trarily shaped particles could be performed. Without modi�cation to the under-
lying discretisation technique other types of �ow, for example arbitrarilymoving
bodies in non-Newtonian �ows, could be examined.

In this chapter we have applied the overset grid method to particulate �ow
problems in Newtonian �uids. In subsequent chapters we will extend this to
particles in viscoplastic �uids, starting with two particle systems in the next
chapter before moving on to larger suspensions.
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6 Viscoplastic squeeze flow

between infinite circular

cylinders

Complex �uids are ubiquitous in natural and industrial processes, from food
processing, to lava or debris �ows, to oil and gas applications. The mechanical
behaviour of these �uids arises from themicrostructure of the �uid, for example
emulsion droplets and clays in drilling muds, or polymer chains in viscoelastic
�uids. When non-colloidal particles much larger than the �uid microstructure
are added, the system can be thought of as a particulate suspension in a complex
(continuum) �uid. Examples of these types of systems include fresh concrete
and debris �ows (Ovarlez et al., 2015). The hydrodynamic interaction between
particles a�ects the suspension bulk properties and dynamics and is of great
interest. In the case of a Newtonian �uid, analytical solutions exist for slow �ow
past spheres and cylinders (Stimson & Je�ery, 1926; Umemura, 1982) and the
squeeze �ow between them using asymptotic analysis. Viscoplastic �uids, of
interest to this work, are characterised by a discontinuous nonlinear constitutive
equation thereby introducing additional complexities when analytical solutions
are sought.

So far, studies on interacting spheres and cylinders in viscoplastic �ows have
largely focused on drag and pressure drop (in the case of �ow past arrays) of
collinear arrangements, aligned either parallel or perpendicular to the �ow (Liu
et al., 2003; Horsley et al., 2004; Jie & Ke-Qin, 2006; Merkak et al., 2006; Yu &
Wachs, 2007; Tokpavi et al., 2009; Jossic & Magnin, 2009). Numerical studies
using the Bingham constitutive law have been found to be in good agreement

65
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Figure 6.1: Schematic showing the problem geometry for the entire �ow sys-
tem (Ω1) investigated throughnumericalmethods and the reduced
system (Ω2) investigatedwith both analytical and numericalmeth-
ods.

with experimental work using Carbopol 940 gels, developing drag correlations
and stability criteria (with respect to sedimentation) (Liu et al., 2003; Merkak
et al., 2006; Tokpavi et al., 2009; Jossic & Magnin, 2009). Viscoplastic squeeze
�ow between coaxial cylindrical disks has been studied analytically for both
planar (Muravleva, 2015) and axisymmetric (Smyrnaios & Tsamopoulos, 2001;
Muravleva, 2017) con�gurations. The con�guration of collinearly approaching
bodies in a viscoplastic �ow has received only cursory attention in numerical
studies, eg Tokpavi et al. (2009); Yu &Wachs (2007), with no examination of the
interstitial squeeze �ow.

This study therefore examines the two-dimensional squeeze �ow between two
approaching in�nite circular cylinders in a Bingham viscoplastic �uid by direct
numerical simulation. The con�guration studied is such that the gap between
the two cylinders is small (1% of the cylinder radius), as seen in �g. 6.1. We also
make use of the asymptotic analysis by Balmforth (2017) to compute leading
order lubrication solutions for the squeeze �ow between two approaching cylin-
ders in a Bingham �uid. We compare the analytical and numerical solutions
and demonstrate that in a quasi-uncon�ned system the squeeze �ow is greatly
a�ected by �ow external to the gap, but that the asymptotic solution may be
recovered under certain �ow conditions in the wider domain. This is contrary
to the Newtonian equivalent, and has implications on using the viscoplastic
lubrication force approximation as a sub-grid-scale model in coarse simulation
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techniques.

The chapter is organised as follows. In section 6.1 we present the problem of
interest and brie�y describe the solution strategy employed for the direct nu-
merical simulations, and the lubrication theory calculations. In section 6.2 we
present direct numerical simulations of the quasi-uncon�ned system. These are
compared to simulations of the domain restricted to the gap only, and to the
asymptotic solutions from lubrication theory. These comparisons demonstrate
the in�uence of the wider �ow �eld on the lubrication pressure. In section 6.3
we discuss the results and the implications for sub-grid-scale modelling.

6.1 Mathematical formulation and solution

We consider the slow, steady �ow of an incompressible viscoplastic �uid around
two rigid, in�nite circular cylinders. The �uid has velocity û(x̂), pressure p̂(x̂)
and a symmetric total stress tensor �̂ − p̂� , where variables with a hat are di-
mensional. In the absence of inertia, the conservation of mass is

)û
)x̂ +

)v̂
)ŷ = 0, (6.1)

and the conservation of momentum is

)�̂xx
)x̂ +

)�̂xy
)ŷ − )p̂

)x̂ = 0, (6.2)

)�̂yx
)x̂ +

)�̂yy
)ŷ − )p̂

)ŷ = 0. (6.3)

As a constitutive law we use the Bingham model

⎧

⎨
⎩

�̂ij = (�̂ + �̂Y
̂̇
) ̂̇ij if �̂ > �̂Y,

̂̇ij = 0 if �̂ ≤ �̂Y,
(6.4)

where �̂Y and �̂ are the yield stress and the plastic viscosity of the �uid, respec-
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6 Viscoplastic squeeze �ow between in�nite circular cylinders

tively, ̂̇ij is the rate of strain tensor associated with the velocity �eld, and

̂̇ij =
)ûi
)x̂j

+
)ûj
)x̂i

, ̂̇ =
√

1
2
̂̇ij ̂̇ij, �̂ =

√
1
2 �̂ij�̂ij. (6.5)

The problem geometries are depicted in �gure 6.1, where the inset highlights
the portion of the system considered in the analytical investigation. Aligning the
systemmid-plane in a Cartesian coordinate system the two cylinders are placed
with their centres located at (−H∕2−D∕2, 0) and (H∕2+D∕2, 0), whereH is the
minimum separation distance and D the cylinder diameter. The computational
domain for the whole system has dimensions 10D × 5D, which is su�ciently
large for the cylinders to be essentially uncon�ned: waning stresses away from
the moving cylinders lead to the formation of a yield envelope in the immediate
vicinity of the cylinders, outside of which the �uid forms a rigid plug attached
to the domain walls. Because the �uid in the far �eld is unyielded for the range
of yield stresses explored in this study, we set no-slip boundaries at y ± 2.5D
and pressure inlets and outlets at x±5D. The cylinders have a constant relative
approach velocity of V.

6.1.1 Large-scale non-dimensionalisation

Choosing a velocity scale of V, length scale of D, shear rate scale of V∕D, and
stress scale of �̂V∕D, we obtain the dimensionless equations

)u
)x +

)v
)y = 0, (6.6)

)�xx
)x +

)�xy
)y − )p

)x = 0, (6.7)

)�yx
)x +

)�yy
)y − )p

)y = 0, (6.8)
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⎧

⎨
⎩

�ij = (1 + Bn
̇

) ̇ij if � > Bn,

̇ij = 0 if � ≤ Bn,
(6.9)

where
Bn ∶= �̂YD

�̂V (6.10)

is a Bingham number for the macroscopic �ow external to the gap.

6.1.2 Computational method

We numerically compute the solution of equations 6.6–6.9 for two approaching
cylinders with a small gap size (H∕R = 0.01 where R ≡ D∕2 is the cylinder
radius), and calculate the resulting forces on the cylinders. To handle the dis-
parate length scales of this problem in a computationally e�cient manner we
use the method of overset grids (also called overlapping, overlaid or Chimera
grids) in a �nite di�erence framework to discretise the domain. This method
and grid generation algorithm is discussed in detail in Chesshire & Henshaw
(1990), Henshaw (1998), and Koblitz et al. (2017b) where its e�cacy for par-
ticulate �ow simulations was demonstrated. Brie�y, the overset grid method
represents a complex domain using multiple body-�tted curvilinear grids that
are allowed to overlapwhilst being logically rectangular. The overlapping aspect
brings �exibility and e�ciency to grid generation, which is bene�cial for mov-
ing body problems. Here, since the cylinders are static, the chief bene�t of the
overset grid method is that the grids can be locally re�ned near the gap whilst
keeping the grids logically rectangular. The resultant linear systems are solved
using the MUMPS library (Amestoy et al., 2001), a massively parallel direct lin-
ear solver. We use meshes with a minimum of 15 points across the narrowest
part of the gap and cluster grid points near the cylinder surfaces and wider gap
region by stretching the constituent grids.

Applying a standard �nite di�erence method to equations (6.6)–(6.9) is not
straightforward,due to the non-di�erentiable plastic dissipation term. A straight-
forward way of dealing with this numerical di�culty is to regularise equation
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6 Viscoplastic squeeze �ow between in�nite circular cylinders

(6.9) by removing the singularity at ̇ = 0. This approach has been used in
studies of viscoplastic �ows past blu� bodies, see Tokpavi et al. (2008); Zisis &
Mitsoulis (2002); Mossaz et al. (2010). However this can yield inaccurate results,
especially for lubrication-type �ows or if �ow stability or�nite-time stoppage are
of critical interest Frigaard & Nouar (2005); Putz et al. (2009); Wachs & Frigaard
(2016). Instead, we use an iterative method based on the variational form of the
Bingham problem, established by Duvaut & Lions (1972), which forms the basis
for the widely used augmented Lagrangian (AL) �rst proposed by Glowinski
(1984). This formulation is commonly known asALG2 and is used extensively in
the literature, see Yu &Wachs (2007); Chaparian & Frigaard (2017); Muravleva
(2015) and references therein, so we do not give details here. For its solution we
use the Uzawa type algorithm of Olshanskii (2009) andMuravleva &Olshanskii
(2008).

6.1.3 Lubrication flow in the gap

The problem shown in the inset of �gure 6.1, i.e. the narrow gap between two
symmetric surfaces approaching with relative speed V, has an asymptotic so-
lution due to Balmforth (2017), if the gap H is small compared to the cylinder
radius R. In this section we give an overview of this solution; in section 6.2 we
will compare this to fully numerical solutions both in the restricted domain
(inset of �gure 6.1) and the full domain. Note that this section considers a non-
dimensionalisation of the governing equations appropriate to the gap scale; the
non-dimensionalisation given previously in section 6.1.1 is appropriate for the
macroscopic �ow. We take x to be the coordinate across the gap and y the coor-
dinate along the gap, consistent with the setup shown in �gure 6.1.

We write û ≡ (û, v̂) and without loss of generality

�̂ ≡ (
�̂  ̂
 ̂ −�̂

) . (6.11)
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Following the approach in Balmforth (2017), variables are scaled as

x = x̂∕ℋ, y = ŷ∕ℒ, u = û∕U, v = v̂∕(U∕�), p = p̂∕P, (6.12)

where � ≡ ℋ∕ℒ is a small parameter. This implies the scaled continuity equa-
tion is

)u
)x +

)v
)y = 0. (6.13)

The stress scale is chosen as � = �̂∕(�P), which implies

)p
)x = �)�)x + �2) )y ,

)p
)y = ) 

)x + �)�)y , (6.14)

so that the main force balance (to O(�)) is between the axial pressure gradient
and transverse shear stress gradient. Strain rates are scaled by (U∕�)∕ℋ, giving

̇ =

√

(�2)u)y +
)v
)x)

2
+ �2 (2)u)x)

2
. (6.15)

The above scaling implies in the yielded regions

�ij = ( �̂U
�2Pℋ + �̂Y

�Ṗ) ̇ij. (6.16)

The velocity scale is set by the motion of the cylinders as U ∶= V and therefore
the pressure scale is chosen as

P ∶= �̂V
�2ℋ . (6.17)

We additionally �x the characteristic length and gap scales asℒ = R andℋ = H,
respectively. This gives the scaled constitutive equation as

⎧

⎨
⎩

�ij = (1 + B∗

̇
) ̇ij if � > B∗,

̇ij = 0 if � ≤ B∗,
(6.18)

71



6 Viscoplastic squeeze �ow between in�nite circular cylinders

where
B∗ ∶= �̂Y

�P (6.19)

is a Bingham number for the squeeze �ow in the gap1. Note that B∗∕Bn = �2∕2;
the squeeze �ow ‘sees’ a much lower Bingham number than the macroscopic
�ow around the cylinders.

Leading-order solution

The components of the shear rate tensor are

 ≡ ̇xy = �2)u)y +
)v
)x , (6.20)

� ≡ ̇xx = 2�)u)x . (6.21)

Therefore, discarding terms of O(�), the shear rate magnitude is

̇ =
|||||||
)v
)x

|||||||
, (6.22)

and in the fully yielded part of the �ow  ≫ �. Equation 6.18 is used to write

 = )v
)x + B∗ sgn ()v)x) , (6.23)

and the main force balance reduces to

)p
)x = 0 ⇒ p = p(y), )p

)y = ) 
)x ⇒  = x)p)y , (6.24)

the constant vanishing by symmetry, meaning that the pressure gradient is, to
leading order, constant across the gap and balanced along the gap by the trans-
verse shear stress. Exploiting the symmetry of the con�guration, in the quadrant
x > 0, y > 0 we must then have v > 0, )v

)x
< 0, and so from the main force bal-

1Though the problem is quasi steady state the gap Bingham number is time dependent since
it depends on both the approach velocity and the separation distance.
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ance and constitutive law we �nd the velocity pro�le across the gap

)v
)x = x)p)y + B∗, (6.25)

which may be integrated to give

v =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

− 1
2
)p
)y

( 1
2
ℎ − x

) ( 1
2
ℎ − 2X + x

)
, X < x ≤ 1

2
ℎ(y)

− 1
2
)p
)y

( 1
2
ℎ − X

)2
, 0 ≤ x ≤ X,

− 1
2
)p
)y

( 1
2
ℎ − X

)2
, 0 ≥ x ≥ −X,

− 1
2
)p
)y

(
− 1
2
ℎ − x

) (
− 1
2
ℎ + 2X + x

)
,−X ≥ x ≥ − 1

2
ℎ(y),

(6.26)

where X ≡ B∗∕| )p
)y

| is the plug boundary location, and we have used a no-slip

boundary condition at the cylinder surface, located at x = 1
2
ℎ(y). The continuity

equation and boundary conditions imply a �ow rate constraint

)
)y∫

1
2
ℎ

− 1
2
ℎ
v dx = 1 (6.27)

which, when evaluated using the velocity solution, gives a cubic equation for
the pressure gradient )p

)y
(y):

− 1
12
)p
)y (ℎ + X)(ℎ − 2X)2 = y. (6.28)

It can be shown that the plug in the region |x| < X undergoes O(�) plastic �ow,
which is not present in the above asymptotic solution. This may be recovered
by keeping terms O(�) and is sometimes referred to as a pseudo-plug; it does
not change the equation for the pressure gradient to leading order (Balmforth,
2017).

For two converging cylinders the non-dimensional separation distance is

ℎ(y) = 1 + 2
�
(
1 −

√
1 − y2

)
, 0 ≤ |y| < 1. (6.29)
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We numerically evaluate equation 6.28 to compute )p
)y
(y) and thence p(y), with

an additional ambient pressure constraint outside the disks enforced asp(1) = 0.
The leading-order lubrication force is then numerically computed as 2∫ 1

0 p dy.

6.1.4 Flow field diagnostics

In order to classify the structure of the numerically-calculated �ow �elds we
make use of an invariant measure of the velocity gradient tensor that gives an
indication of the relative strength of the shear rate tensor and vorticity �eld
(Davidson, 2004)

Q = −12
)ûi
)x̂j

)ûj
)x̂i

= −12
( ̂̇ − !̂

)
, (6.30)

where !̂ is the vorticity. We use the normalised form of (6.30)

Λ =
̂̇ − !̂
̂̇ + !̂

, (6.31)

such that values ofΛ = −1, 0, 1 correspond to �ow dominated by rotation, shear,
and strain, respectively (De et al., 2017).

The rate of working the �uid, ̂̇W, is calculated by integrating the rate of viscous
dissipation, Φ̂ = �̂ij ̂̇ij, over a suitable control volume

̂̇W(Ω) =∫
Ω−VC

�̂ij ̂̇ij dV, (6.32)

where VC is the volume occupied by the cylinders. This is scaled by the force on
the cylinders and the closing velocity,W = FV, while the viscous dissipation
is scaled using a characteristic energy density scale ℰ = �V2∕ℋ2.

6.2 Results

We investigate the squeeze �ow between two in�nite circular cylinders in three
di�erent cases based on the set-up shown in �gure 6.1. Non-dimensionalisation
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is as described in section 6.1.1. The external Bingham number Bn is varied
between 0 and 2000 in all cases, with the minimum separation distance kept
constant at 0.01 non-dimensional units (i.e. 1% of the cylinder radius), resulting
in a gap Bingham number B∗ range of 0 to 0.1.

Two cases use the full computational domain, labelled as Ω1 in �gure 6.1, with
di�ering far �eld boundary conditions. The quiescent case (meaning here that
the �ow is zero outside a �nite yield envelope) has velocity outlets at the ver-
tical domain boundaries, imposing an ambient pressure of p = 0. No-slip and
no-penetration conditions are imposed on the horizontal domain boundaries,
allowing the cylinders to be surrounded by a bounded yielded region enclosed
by a yield envelope.

The shear �ow case considers the same geometry as the quiescent case but with
the introduction of a macroscopic �ow to raise the stress above the material
yield stress in the far �eld, thus removing the yield envelope. This is done by
imposing wall velocities ±Uw on the horizontal domain boundaries, resulting
in a macroscopic shear rate of ̇ = 5.

Finally, we consider the reduced domain labelled as Ω2 in �gure 6.1, only in-
cluding the gap between the cylinders. No-slip and no-penetration conditions
are applied on the cylinder surfaces, and symmetry conditions at x = ±1 in a
similar manner to Frigaard & Ryan (2004) and Muravleva (2015).

We begin in section 6.2.1 with a detailed description of the �ow �eld kinematics
for the two cylinder system using the DNS results in the full computational do-
main. We then investigate the validity of the small gap approximation used to
develop a leading order viscoplastic lubrication solution in section 6.2.2. Follow-
ing this we compare pressure pro�les along the the axis of symmetry, and the
resultant normal force exerted on the cylinders, to solutions from viscoplastic
lubrication theory in section 6.2.3. Finally, we investigate viscous dissipation in
the system in section 6.2.4.
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6 Viscoplastic squeeze �ow between in�nite circular cylinders

6.2.1 Flow field kinematics

Figure 6.2 shows a binary yielded/unyielded mask in grey overlaid on colour
maps of the velocity magnitude for the quiescent and sheared systems, with
the Bingham number increasing from left to right. The unyielded regions are
identi�ed as areas where the second invariant of the shear stress falls below the
yield stress, plus some small constant which we take as 0.1% of the yield stress.

The top row in �gure 6.2 corresponds to the quiescent case, where for Bn ≥ 50
classical features of moving bodies in yield stress �uids can be seen: unyielded
caps on the stagnation points, unyielded plugs in the equatorial planes of the
cylinders, and a yield envelope fully surrounding the two cylinder system (Tok-
pavi et al., 2008; Putz & Frigaard, 2010; Chaparian & Frigaard, 2017; Beris et al.,
1985; Ansley& Smith, 1967; Adachi &Yoshioka, 1973). As the Binghamnumber
increases the unyielded stagnation caps and the equatorial plugs growwhile the
yield envelope shrinks.

The bottom row of �gure 6.2 corresponds to the shear �ow case, where the back-
ground shear �ow has noticeably changed the yield surface features: stagnation
points have shifted, leading to two caps on the rear of the cylinders, placed sym-
metrically about the longitudinal axis, and one on the front of each cylinder. The
equatorial plugs are no longer present, but two unattached plugs have formed
in the gap openings, placed asymmetrically about the longitudinal axis. For
Bn > 50 central plugs can be seen fore and aft of the two cylinder system.

Figure 6.3 show contour plots of the pressure �eld for a quiescent (right panel)
and shear �ow (left panel) case at Bn = 1000, with the contours drawn at the
same levels in both panels. The quiescent case shows a pressure drop from
the gap to the rear stagnation cap, with roughly equally spaced iso-contours
along shear layers attached to the cylinder surfaces and along the yield envelope
boundary. In contrast, the shear �ow case shows a rapid pressure decay along
the gap with a more uniform pressure �eld outside of the gap.
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Figure 6.4: Left: Ratio of centreline pressure to surface pressure as a function
of the local gap width for Bn = 0 (circles), 50 (diamonds), 500
(crosses), 1000 (triangles), and 2000 (squares). Right: Pressure dis-
tributions over the entire cylinder surface for the limiting Bn = 0
and Bn = 2000 quiescent �ow cases as a function of angle away
from the gap centre.

6.2.2 Small gap approximation

In section 6.1.3 a lubrication approximation was constructed which has, to lead-
ing order, pressure constant across the gap. This approximation relies on the
gap being small, viz. � ≪ 1, which is satis�ed at the gap centre. However, since
the approaching surfaces are elliptic (see equation (6.29)), this condition will
be violated towards the gap exit.

We investigate the validity of this constant pressure solution by examining the
ratio of the pressure at the gap centre to that at the surface of the cylinder as a
function of the local gap width. In the left panel of �gure 6.4 we plot this gap-
to-surface pressure ratio against the normalised gap width as a function of y as
markers for Bn = 0–2000 (B∗ = 0–0.01).

For all cases, the gap-to-surface pressure ratio slowly decreases towards the gap
exit, but is above 0.8 until approximately ℎ̂(ŷ)∕ℒ > 0.1. In the Newtonian case,
the pressure ratio then rapidly decreases away from the gap centre, becoming
negligible at the gap exit. All viscoplastic cases show similar behaviour to one
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another (as indicated by the marker overlap in the left panel of �gure 6.4). The
gap-to-surface pressure ratio remains close to unity close to the gap centre before
slowly decreasing. Unlike for the Newtonian case, no rapid decrease is found
when ℎ̂(ŷ)∕ℒ > 0.1 and as a result the gap-to-surface pressure remains above
0.8 further along the gap for the viscoplastic cases.

The right panel of �gure 6.4 shows the pressure distributions over the entire
cylinder surface, with the gap centre located at � = 0 and the gap exits at � =
(−�∕2, �∕2), for the limiting quiescent and shear �ow cases. The Newtonian
surface pressure distributions of the quiescent and shear �ow cases overlap,
showing a peak at the gap centre and a rapid decay towards the exits. For the
high yield stress cases, the pressure distributions of the quiescent and shear
�ow cases are broadly similar, both showing a pressure peak in the gap centre.
However, towards the gap exit the pressure decaysmore slowly for the quiescent
case than for the shear �ow case.

In isolation, the left panel of �gure 6.4 shows that the leading-order solution
with constant pressure across the gap, presented in section 6.1.3, is valid for only
a small portion of the gap between the approaching cylinders, particularly in
the absence of a yield stress. However, from the surface pressure distributions in
the right panel of �gure 6.4 it is clear that the overwhelming contribution to the
lubrication force comes from a narrow band in the gap,where the gap-to-surface
pressure ratio is above 0.9 for all cases. Therefore we expect the leading-order
solution to capture the lubrication force to a good approximation.

6.2.3 Pressure profiles in the gap

Figure 6.5 presents pressure pro�les through the centre of the gap, i.e. along the
axis of symmetry. The direct numerical simulation (DNS) in the reduced domain
gives a pressure pro�le in excellent agreement with the DNS of the full system
in the macroscopic shear �ow. Both these cases are in good agreement with the
asymptotic solution from lubrication theory: peak pressures in the centre of the
gap match well for the full Bn range explored. At higher Bn, the DNS pressures
of the shear �ow and reduced domain cases remain in agreement but decay
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more slowly than the asymptotic solution as the gap widens up; this is where
the lubrication approximation no longer holds.

The pressure pro�les for the DNS of the full system in the quiescent case are
markedly di�erent to the asymptotic solution forBn > 50: higher peak pressures
and slower pressure decay are evident, as is an exit pressure signi�cantly higher
than the ambient pressure (which is 0).

The relative change in peak pressure and pressure decay for increasing Bn dis-
cussed above is evident in the surface pressure distribution shown in �gure 6.4.
Moreover, it is evident that the pressure contribution outside of the nominal gap
region is negligible. Note that for Bn = 2000 the pressure pro�les look some-
what similar in magnitude between the quiescent and sheared cases. In fact
their integrals di�er by about a factor of two, implying a factor of two di�erence
in the repulsive force; this is discussed next.

Figure 6.6 presents stacked area plots of the total drag force exerted on a cylinder,
decomposed into pressure and viscous contributions. From the left panel it is
clear that the force on the cylinders in quiescent �uid is dramatically underes-
timated when the lubrication �ow in the gap is considered in isolation. Both
viscous and pressure contributions increase with Bn, but the viscous contribu-
tion remains small compared to that of the pressure. Discounting the viscous
friction, the pressure alone—which remains localised to the gap—causes amore
than two-fold increase in the drag force over the predictions from lubrication
theory. However when a macroscopic shear �ow is added (the right panel in
�gure 6.6), the total drag force is close to the asymptotic solution. This mirrors
the trend found in the pressure pro�les in �gure 6.5.

Figure 6.7 shows local shear rates, ̇local, for both the sheared and quiescent
cases for the full range of Bn. We de�ne the local shear rate as an average over
a H × 2H area in the centre of the gap. The dramatic increase in pressure and
drag force is not re�ected in the local shear rate: the local shear rates in the
quiescent and sheared cases remain in close agreement throughout the Bn range
explored. From this we can conclude that the macroscopic �ow does not a�ect
the velocity �eld in the gap. The above computationswere also performedwith a
macroscopic shear rate one order of magnitude higher, showing no appreciable
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6 Viscoplastic squeeze �ow between in�nite circular cylinders

Figure 6.5: Pressure pro�le along the gap centreline for quiescent (diamonds),
sheared (circles), and reduced domain (square) systems with vis-
coplastic lubrication solution overlayed (solid line) with Bn =
50, 500, 1000, 2000 in plots (a) through (d), respectively.

di�erences in the pressure and force results discussed above.
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Figure 6.6: Stacked area plots of the total drag force on a cylinder as a function
of Bn for (a) quiescent and (b) shear �ow background conditions.
Overlaid are the predictions from viscoplastic lubrication theory
(squares).

Figure 6.7: Local shear rates in the gap centre for quiescent (squares) and
sheared (diamonds) systems for Bn = 0, 50, 500, 1000, 2000.
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6.2.4 Viscous dissipation

The left panel of �g. 6.8 shows a colourmap of log10(̇) in a quiescent case, while
the right panel shows a contour plot of the normalised second invariant of the
velocity gradient tensor, indicatingwhere the�uid is irrotational (red), rotational
(blue) and being sheared (white), with the yield surface overlaid. Strain rates
are highest in the thin shear layers along the cylinder surface, along the yield
envelope wall, and surrounding the jet of �uid squeezed out of the gap. Strain
dominated regions are found in the core of the �uid jet squeezed out of the
gap, and in the regions between the rotating plugs and the yield envelope. The
strain rate in these plastic �ow regions is orders of magnitude lower than in the
adjacent shear layers.

The left panel of �g. 6.9 shows a colourmap of log10(|û|∕V) in a quiescent case,
while the right panel shows a contour plot of the streamfunction Ψ with yield
surface locations marked out. The equidistant streamfunction contours in the
vicinity of the unyielded plugs show that the plugs are undergoing rigid body
rotation. These are likely to be artefacts of the Bingham model, as it involves
instantaneous unyielding as �uid parcels enter the plug zone, and yielding as
they leave the plug zone.

We turn now to the energy dissipation in the �uid. The left panel of �gure 6.10
shows the rate ofmechanical dissipation as a function of the topology parameter
Λ. As would be expected, no dissipation occurs in the regions undergoing rigid
body rotation (Λ = −1). Some dissipation is evident in the irrotational regions
(Λ = 1) at high Bingham numbers, this is attributed to pseudo-plug regions
where the �ow is held close to the yield stress (Walton & Bittleston, 1991).

In all cases the dissipation is highest in regions of shear, peaking at Λ = 0.
While the rate of mechanical dissipation decreases monotonically as the �ow
becomes rotationally dominated, for Bn > 0 as the �ow becomes dominated by
strain there exists a second, small peak in dissipation which decays slowly as Λ
approaches 1.

The right panel of �gure 6.10 shows the rate ofworkdone on the �uid in di�erent
regions and�ow structures for the full and reduced systems, as well as the power
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6.2 Results

Figure 6.10: Left: rate of mechanical dissipation per unit Λ. Right: stacked
area plot showing the rate of work done by viscous dissipation in
the shear and plastic regions, scaled byW = FV, with markers
indicating the power required to move the cylinders with the
approach velocity (diamonds), the total viscous dissipation in the
system (dashed line), the viscous dissipation in the gap region of
the full system (squares) and the total viscous dissipation in the
reduced system (triangles).
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required to move the cylinders with the set approach velocity. Shear regions
and plastic regions have been de�ned as areas where −1∕3 ≤ Λ ≤ 1∕3 and
Λ > 1∕3, respectively (De et al., 2017). While the dissipation in plastic �ow is
small compared to that in shear �ow, it still forms a signi�cant source of viscous
dissipation outside of the gap area due to the size of the plastic �ow regions
(see �gure 6.8). Finally, the rate of work done in the gap region is very similar
for both the full (Ω1) and reduced (Ω2) domains. This shows that the excess
drag force on the cylinders in the full domain compared to lubrication theory
(�gure 6.6(a)) arises from energy dissipation external to the gap.

6.3 Conclusions

In this chapter we have presented results on the squeeze �ow between two
in�nite circular cylinders in a Bingham �uid, which we use as a simple model
for the �ow of non-colloidal particles in a viscoplastic �uid. Understanding this
�ow is essential to building models of the large-scale �ow of such suspensions.
Although the calculations presentedhere have been two-dimensional,we expect
similar phenomena will occur in three dimensions (where the particles would
be spheres).

In section section 6.2 we presented results from three numerical experiments:
twomodelling the approaching cylinders within a quiescent and a sheared �uid,
and one modelling just the gap between the approaching cylinders, removing
any external in�uence. We showed that unlike for a Newtonian �uid, themacro-
scopic �ow external to the gap has a large e�ect on the lubrication forces felt
by two cylinders in near-contact. In a quiescent Bingham �uid, the lubrication
forces were approximately double those predicted by viscoplastic lubrication
theory, but were still caused primarily by the localised high lubrication pressure
in the gap, as for a Newtonian �uid. The high lubrication pressure compared
to theory is due to the enclosing yield envelope which forms around the two
particle system and causes a recirculating �ow, introducing signi�cant viscous
dissipation into the system. Most of the extra viscous dissipation occurs in shear
layers along the cylinder surface and yield envelopewalls, although at high Bing-
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ham numbers the contribution from plastic �ow regions near the yield envelope
becomes appreciable.

Introducing amacroscopic shear�owormodelling just the gap area between the
cylinders gave nearly identical results, and agreed closely with the predictions
from lubrication theory. We conclude that the background shear �ow acts to
eliminate the yield envelope in the macroscopic �ow around the particles. This
in turn removes the recirculating �ow and complex �ow structures, where large
sources of viscous dissipation in the quiescent case appear, and hence lowers
the lubrication pressure and resulting lubrication force. The resulting pressure
pro�les in the gap are well-described by lubrication theory local to the gap. The
results indicate that the macroscopic shear rate does not appreciably a�ect the
velocity �eld in the narrow gap region. This conclusion is insensitive to the exact
macroscopic shear rate used, provided the yield envelope is removed.

The above implies that lubrication force models using an e�ective viscosity
based on the local shear rate (such as the approach used for shear-thinning
�uids in Vázquez-Quesada et al. (2016)) may not be accurate for viscoplastic
�uids. Instead, we suggest the use of sub-grid-scale lubrication force models
based on viscoplastic lubrication theory, with the understanding that they may
become invalid in regions without amacroscopic stress above the yield stress, i.e.
where particles become con�ned by their own yield envelopes. This will allow
for a large range of validity, for example in simulations of the type considered
in Vázquez-Quesada et al. (2016); Bian & Ellero (2014) among others, where a
dense suspension is subject to shear,anda sub-grid-scale lubrication forcemodel
is needed due to the close particle-particle approaches. However in other cases,
for example dilute particulate suspensions sedimenting in a quiescent �uid, we
have shown in this chapter that a sub-grid-scale lubrication force model based
solely on lubrication theory in the gap may not be appropriate. Until a more
sophisticated sub-grid-scale model is developed, the only current option is DNS
computations with su�ciently high resolution in the inter-particle gaps.

In this chapter we have examined the viscoplastic squeeze �ow between two
in�nite circular cylinders using an overset grid discretisationmethod andALG2
solution approach. In the next chapter we extend this approach to larger suspen-

89



6 Viscoplastic squeeze �ow between in�nite circular cylinders

sions, investigating the settling of particle suspensions in viscoplastic �uids.
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suspensions in a Bingham fluid

The dispersion of coarse particles in complex (shear dependent) �uids is an im-
portant aspect of both natural and industrial �ows, for example, pyroclastic grav-
ity currents (Dufek, 2016), proppant transport in hydraulic fracturing (Osiptsov,
2017), and fresh cement slurries. Often the suspended phase is (negatively) buoy-
ant and its stability with respect to sedimentation during transport, or after �ow
cessation (Santos et al., 2018), is of fundamental interest. Viscoplastic �uids, by
virtue of a material yield stress, may support such a coarse particle phase indef-
initely. This is governed by a balance between the stress exerted on the �uid
by the particle and the �uid yield stress (Beris et al., 1985), described by the
non-dimensional yield number Y = �̂y∕(�̂p − �̂f)ĝl̂′, where ĝ is gravitational
acceleration, �̂p is the particle density, �̂f the �uid density, l̂′ a characteristic
length scale, and �̂y the material yield stress. Two aspects of buoyant particle
transport in viscoplastic �uids stand out: the conditions for suspension stability,
and the sedimentation behaviour. Both of these have been well characterised for
single particles but not yet for suspensions, particularly under quiescent �ow
conditions.

With regards to stability, it has been shown that for an isolated particle there
exists a critical yield number Y = Y∗

0 at which the buoyancy force exerted by
the particle is balanced by the �uid yield stress. This has been the subject of
many numerical and theoretical works (Tokpavi et al., 2008; Beris et al., 1985;
Jossic & Magnin, 2001) and while there is great variability amongst experimen-
tal studies (Emady et al., 2013; Chhabra, 2007), the theoreticalY∗

0 for a spherical
particle has been corroborated by Tabuteau et al. (2007). Given the non-linear
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rheology of the suspending �uid a key question is whether Y∗
0 is applicable

to suspensions. There has been some work, predominantly numerical and ex-
perimental, investigating model systems of two or more particles posed in the
resistance sense—where �ow is driven by a prescribed velocity—rather than the
more applicable mobility sense—where �ow is driven by applied force—due to
the intrinsic numerical and practical di�culties of the latter. It was found that
particles near each other, particularly in the inline con�guration, experience a
decreased drag force, fromwhich it may be inferred that the same con�guration
would exhibit a higher critical yield number than an isolated particle (Tokpavi
et al., 2009; Liu et al., 2003; Jie &Ke-Qin, 2006). The theoretical work of Frigaard
et al. (2017) investigated this critical yield number for suspensions more directly
through the out-of-plane �owof uniformly distributed particle suspensionswith
prescribed uniform suspension velocity. They inferred a volume fraction, �, de-
pendent critical yield number,Y∗

�. However, the resistance formulation has clear
drawbacks in that individual particle velocities are prescribed a priori. Recently,
Chaparian et al. (2018) investigated inline particle con�gurations for up to 5
particles in the mobility sense, �nding not only that their stability criterion is
strongly in�uenced by separation distance but that particle chains are unlikely
to be stable sedimentation con�gurations.

Settling of suspensions in viscoplastic �uids can be categorised as static settling
or dynamic settling, depending on the background �ow conditions (quiescent
in the former). It is well known in the oil industry that background shear en-
hances settling (Childs et al., 2016) in shear-thinning �uids. For viscoplastic �u-
ids, Merkak et al. (2009) and Ovarlez et al. (2012) demonstrated shear-induced
settling in �uids regardless of the yield number, showing that particles settle as
soon as the �uid yield stress is overcome by macroscopic shear. The latter advo-
cated a suspension settling function, in conjunctionwith aNewtonian hindering
function, incorporating an e�ective viscosity based on the (applied)macroscopic
shear rate. This framework has recently been adopted in a model for solids dis-
persion in hydraulic fracturing �ows (Hormozi & Frigaard, 2017).

In quiescent background conditions, i.e. in the absence of applied macroscopic
shear, a di�erent approach is needed. Single particles settling in viscoplastic �u-
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ids under quiescent conditions have been investigated extensively in viscous and
inertial regimes, both experimentally and numerically (Atapattu et al., 1990; Yu
& Wachs, 2007; Wilson et al., 2003; Arabi & Sanders, 2016). Empirical terminal
velocitymodels have been developed (Wilson et al., 2003; Arabi & Sanders, 2016)
and it has been suggested that these may be combined with Newtonian hinder-
ing functions in dispersion models such as Kaushal & Tomita (2013). However,
studies on suspensions settling in viscoplastic �uids under quiescent conditions
are very sparse (Khabazi et al., 2016) so whether this is a viable approach is not
clear.

In this chapter we present direct numerical simulations of non-colloidal particle
suspensions, in the dilute limit, settling in quiescent viscoplastic �uids. Building
on the out of plane investigation of (Frigaard et al., 2017), we investigate the
stability criterion as a function of solid volume fraction for the in plane �ow
and comment on the transition to settling—which, as far as we are aware, has
not been investigated previously.

7.1 Mathematical formulation and solution

In contrast to Newtonian �uids, very little numerical work has been done on
suspension sedimentation in viscoplastic �uids. Many successful strategies for
large scale suspension simulation in Newtonian �uids (Brady, 1988) rely on
superposition principles to make large scale computations tractable, which are
not applicable to the non-linear viscoplastic system. Coarse-grain approaches
for Newtonian �uids use lubrication force models as sub-grid-scale models for
the under-resolved particle interactions. However, the authors recently found
that such lubricationmodels cannot be straightforwardly applied in cases where
particles are strongly con�ned in their yield envelopes such asmay occur in sedi-
mentation without imposed shear (Koblitz et al., 2018a). This necessitates direct
numerical simulation. We reduce the computational complexity by considering
a quasi-static approximation, justi�ed in the following dimensional analysis.
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7.1.1 Dimensional analysis

Generally, the motion of a solid particle in a �uid is governed by

�̂
( )û
)t̂
+ û ⋅ (̂û

)
= −(̂p̂ + (̂ ⋅ �̂,

(̂ ⋅ û = 0,

m̂ dV̂
dt̂
= F̂,

⎫
⎪
⎬
⎪
⎭

(7.1)

where �̂ is the �uid density, û the �uid velocity, p̂ the pressure, �̂ the deviatoric
stress tensor, m̂ the particle mass (or moment of inertia), V̂ the particle velocity
(or angular velocity), and F̂ the total force (or torque) on the particle. For a
generalised Newtonian �uid, the shear stress is linked to strain via

�̂ = �̂( ̂̇) ̂̇ , (7.2)

where �̂ is an apparent viscosity. We limit ourselves to a fully yielded Bingham
�uid for this dimensional analysis, such that

�̂ = (�̂ +
�̂y
̂̇
) ̂̇ , (7.3)

where �̂ is the plastic viscosity and �̂y the yield stress. We choose the diameter of
the particle,ℒ, as a characteristic length scale, alongwith a suitable velocity scale
U. Scaling time by ℒ∕U and force by �̂Uℒ eq. (7.1) can be made dimensionless

Re
( )u
)t
+ u ⋅ (u

)
= −(p + ( ⋅ (1 + Bn

̇
) ̇ ,

( ⋅ u = 0,

Re ( m̂

�̂ℒ3(1+ Bn
̇
)
) dV

dt
= F,

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(7.4)
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where the Reynolds number is Re = �̂Uℒ∕�̂ and the Bingham number Bn =
�̂yℒ∕U�̂. If Re→ 0 then we retrieve the viscoplastic Stokes equations

(p = ( ⋅ (1 + Bn
̇ ) , ( ⋅ u = 0, F = 0, (7.5)

which is the basis for the quasi-static approach (Feng & Joseph, 1995). However,
This assumes that the unsteadiness is characterised by a time scale T ∼ ℒ∕U,
which is not necessarily the case in particle suspensions. Here, unsteadiness
arrises from particle–particle and particle–wall interactions. A common feature
in such �ows is the movement of solid bodies across undisturbed streamlines
(Feng & Joseph, 1995). Following Feng & Joseph (1995), we assume that the
lateral driving force on a particle is proportional to some characteristic velocity
U

f̂ ∼ �̂Uℒ, (7.6)

then the lateral acceleration is

f̂∕m̂ ∼ �̂Uℒ∕m̂, (7.7)

where m̂ is the sum of mass and virtual mass of the particle. The time needed
for a particle to move a lateral distance of ℒ is

T ∼ ( ℒ
f̂∕m̂

)

1
2

= ( m̂�̂U )
1
2
. (7.8)

Using this time scale in eq. (7.1) we �nd that the unsteady term is

)û
)t̂

= U
T
)u
)t = U ( �̂Um̂ )

1
2 )u
)t , (7.9)
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such that the dimensionless governing equations are

( �̂ℒ3

m̂

)1∕2
(1 + Bn

̇
)
1∕2
Re1∕2 )u

)t
= −(p + ( ⋅ (1 + Bn

̇
) ̇

( ⋅ u = 0

Re1∕2 ( m̂

�̂(1+ Bn
̇
)ℒ3�̂

)
1∕2

dV
dt
= F,

⎫
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⎪
⎪
⎬
⎪
⎪
⎪
⎭

(7.10)

where, as before, as Re → 0 both inertial terms are negligible. However, since
the unsteady inertial term is Re−1∕2 larger than the convective term, then for
a particular Stokes approximation at a small but �nite Reynolds number, the
unsteady inertial term may be required (Feng & Joseph, 1995).

7.1.2 Problem statement and solution

We consider the steady approximation of inertia-less, rigid circular particles
suspended in incompressible viscoplastic �uid from amobility perspective. The
particles are denoted by P; the particle boundaries by )P; and the entire domain
(�uid and particle) by Ω; and the far �eld domain walls by )Ω. The �uid has
velocity û(x̂), pressure p̂(x̂), plastic viscosity �̂, and a total stress tensor �̂ − p̂� ,
where variables with a hat are dimensional. In the absence of both �uid and
particle inertia, and taking the particle buoyancy, (�̂p− �̂f)ĝl̂′, as a characteristic
stress scaleT—where �̂p and �̂f are the particle and �uid densities, respectively,
and l̂′ is a characteristic length scale governed by the particle volume to frontal
area ratio (Tokpavi et al., 2009)—we solve the non-dimensional steady Stokes
equations

( ⋅ � − (p = �r
1 − �r

eg, in Ω ⧵ P, ( ⋅ u = 0, in Ω ⧵ P (7.11)

where eg denotes the unit vector in the direction of gravity, �r = �̂f∕�̂p and
the particles are negatively buoyant, such that �r < 1. We impose no-slip and
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no-penetration boundary conditions on the domain walls, such that

u = 0 on )Ω, (7.12)

and the �uid velocity is continuous with that of each particle, such that

u→ U + ! × (x − xb) on )P, (7.13)

whereU and ! are the a priori unknown linear and angular particle velocities,
x is a point on )P, andxb are the coordinates of the centre ofmass of the particle.
The particle translational and rotational velocities are determined by satisfying
zero force and torque constraints on each particle, F = 0, T = 0. Here, F and T
are de�ned for any given particle by

F =∫
)P
(−pn+� ⋅n) ds+fb, T =∫

)P
(x−xb)×(−pn+� ⋅n) ds+tb, (7.14)

where n is the unit normal vector to the body surface, andfb and tb are external
body force and torque, respectively.

We close the system using the ideal Bingham constitutive law

⎧

⎨
⎩

� = (1 + Y
||̇||) ̇ if ||�|| > Y,

̇ = 0 if ||�|| ≤ Y,
(7.15)

where the rate of strain tensor is de�ned as ̇ ∶= (∇u + ∇u⊺), and || ⋅ || is the
induced norm of the Frobenius inner product:

a .. b ∶= 1
2
∑

ij
AijBij, (7.16)

such that ||̇|| =
√
̇ .. ̇ . The force-free and torque-free conditions imply that

the particles adjust their velocities and angular velocities instantaneously (Feng
& Joseph, 1995).
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Unless otherwise stated, we use T∕�̂�̂f, T l̂′∕�̂�̂f, and R̂ as characteristic strain
G, velocity V , and length ℒ scales, respectively, where R̂ is the particle radius
and l̂′ = �R̂∕2.

Lastly, we de�ne the critical yield number at which motion for a suspension of
volume fraction � stops as Y∗

�, where for a single particle we �nd Y
∗
0 = 0.084, in

agreement with the literature (Tokpavi et al., 2008; Randolph & Houlsby, 1984;
Chaparian et al., 2018) (note that Chaparian et al. (2018) use a di�erent length
scale in their de�nition of Y).

We solve (7.11)–(7.15) using the widely adopted alternating direction multiplier
method—also known as ALG2—developed by Glowinski (1984). It is exten-
sively used in the literature, see Yu & Wachs (2007); Chaparian & Frigaard
(2017); Muravleva (2015) and references therein, so we do not give details here.
We follow the implementation of Olshanskii (2009); Muravleva & Olshanskii
(2008).

Wachs & Frigaard (2016) studied the problem numerically for a single sediment-
ing particle in a Bingham �uid, with a particular focus on the critical yield stress
required for cessation of motion. Even with a single particle in two dimensions
with a relatively small mesh (61440 cells), their computations took around 12
hours (wall-time). The limiting problem is the high computational expense of
the ALG2 algorithm typically used for viscoplastic �ow problems; discussion
of ALG2 and related algorithms can be found in Glowinski (2014). In order to
make the larger problem sizes considered in this study tractable we adopt a
steady approximation, as in (Chaparian et al., 2018), and employ an overset grid
discretisation strategy. Brie�y, the overset grid method represents a complex
domain using multiple body-�tted curvilinear grids that are allowed to overlap
whilst being logically rectangular, see �gure 7.1. The overlapping aspect brings
�exibility and e�ciency to grid generation, which is bene�cial for complex do-
mains and moving grid problems. Here, since the cylinders are static, the chief
bene�t of the overset grid methods is that the grids may be locally re�ned near
the cylinder surfaces whilst keeping the grids logically rectangular. The grid gen-
eration procedure is discussed at length in (Chesshire & Henshaw, 1990; Hen-
shaw, 1998), and has been used for Newtonian and viscoplastic particulate �ow
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7.2 Results and discussion

problems by the authors in (Koblitz et al., 2017b, 2018a). The resultant linear sys-
tem is inverted using the MUMPS massively parallel direct linear solver library
(Amestoy et al., 2001). Recently some signi�cantly faster algorithms have been
developed (Saramito, 2016; Treskatis et al., 2016; Bleyer, 2018; Dimakopolous
et al., 2018), and so we expect a rapid expansion in the near future of the size of
problem which can be attempted.

G1

G2

G1

interpolation
ghost
unused

G2

Figure 7.1: Left: an overlapping grid consisting of two structured curvilinear
component grids,x = G1(r) andx = G2(r). Middle and right: com-
ponent grids for the square and annular grids in the unit square pa-
rameter space r. Grid points are classi�ed as discretisation points,
interpolation points or unused points. Ghost points are used to
apply boundary conditions. The physical boundary is represented
by the solid red line.

7.2 Results and discussion

We compute the instantaneous velocity �eld for pseudo-random con�gurations
of in�nite circular cylinders, of diameter D, in a con�ned domain with dimen-
sions (20D, 120D), for solid volume fractions � = (0.01, 0.05) over a yield num-
ber range of Y = (0, 0.173). Five pseudo-random con�gurations are used for
each volume fraction.

Figure 7.2 shows themean settling velocity of the suspension ⟨V̂�,Y⟩—normalised
by the Stokes velocity of a single particle in a Newtonian �uid V̂0,0—averaged
over all con�gurations, for increasing yield number. Here, the yield number is
normalised using the critical yield number required to hold a single particle at
rest, Y∗

0 .
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7 Sedimentation of particle suspensions in a Bingham �uid

Figure 7.2: Left: Close-up view of a representative computational grid used,
showing the overlapping particle and background grids and near-
surface grid re�nement. Right: Mean sedimentation velocity at
increasing yield numbers for � = (0, 0.01, 0.05), with error bars
indicating the standard error of the mean particle sedimentation
velocity.

Figure 7.3: Left: Average e�ective viscosity near the particle surface for Y =
0.043, with longitudinal (dashed line) and lateral (dash-dot line)
axes of symmetries indicated in the � = 0 panel. Right: average
e�ective viscosity along the longitudinal (top) and lateral (bottom)
axes of symmetry for Y = 0.043.
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7.2 Results and discussion

All volume fractions show a decrease in settling velocity as the yield number
increases. This is expected from equation 7.15 where we can see that for any
�nite strain rate, a non-zero yield number leads to an increase in the e�ective
viscosity. Looking at the limiting high yield number behaviour, we can see that
the critical yield number required to hold the suspension at rest, Y∗

� increases
with the solid volume fraction, as was found in Frigaard et al. (2017) for out-of-
plane settling. We �nd an approximately two-fold increase in the critical yield
number for � = 0.05.

As Y → 0 the medium mirrors a Newtonian �uid with viscosity �̂, showing
hindered settling with increased � (Richardson & Zaki, 1954). However, for Y
su�ciently large, we �nd higher settling e�ciency with increasing solid volume
fraction, indicated by the increased mean settling velocity. This is similar to
what has been observed in experimental studies of settling suspensions in shear-
thinning�uids (Moreira et al., 2017). There, settling particles shear�uid, causing
a local decrease in viscosity and thereby allowing nearby particles to settle more
easily.

We investigate possible shear thinning by examining the average local viscosity
in the vicinity of a particle at a given volume fraction at the same yield number,
Y = 0.043, where all particles for all volume fractions are mobile. A rectangular
grid is placed around each particle in the suspension on which || ̂̇|| is found
by means of bilinear interpolation. This is then averaged over all particles in
the suspension, and used to �nd the average local e�ective viscosity, �̂(⟨|| ̂̇||⟩),
where ⟨⋅⟩ denotes an average over all particles. This is plotted as colourmaps
in the left panel of �gure 7.3. The viscosity �eld for the single particle is as ex-
pected: arbitrarily high viscosity peaks (truncated in the plot) at the unyielded
equatorial plugs and the unyielded end-caps. As the volume fraction increases
the viscosity �eld becomesmore uniform and is found to decrease inmagnitude.
The viscosity along the two axes of symmetry shown in the � = 0 plot of �g-
ure 7.3 is further examined in the right panel of �gure 7.3. The average viscosity
decrease with increased solids volume fraction is evident, and the viscosity �eld
is found to be, on average, uniform ℒ away from the particle surface. Near the
surface, the viscosity is high in the longitudinal direction due to the attached
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7 Sedimentation of particle suspensions in a Bingham �uid

unyielded end-caps; however, in the lateral direction the viscosity is low near
the surface due to the viscoplastic boundary layer.

It has been shown experimentally that static suspensions in yield stress �uids
will settle when a macroscopic stress, for example by shearing the system, is
introduced (Ovarlez et al., 2012; Merkak et al., 2009). In the absence of a macro-
scopic �ow, only the buoyancy stress of the individual particles acts on the �uid
to drive the �ow. Studies of small systems of particles in the resistance formula-
tion demonstrated a drag reduction for inline particle arrangements (Liu et al.,
2003; Yu & Wachs, 2007; Tokpavi et al., 2009). Equivalently, the recent study
of Chaparian et al. (2018) demonstrated higher velocities for inline con�gura-
tions in the mobility formulation. The current simulations corroborate this in
so far as structures of vertically clustered particles can clearly be visually identi-
�ed to be settling fastest, for example, see the velocity magnitude colourmaps
in �gure 7.4. By examining the velocity �eld Chaparian et al. (2018) demon-
strated that nearby particles had little e�ect on one another beyond a relatively
small separation distance d̂sep∕ℒ < 20, suggesting that the stress decay in a vis-
coplastic �uid is appreciably faster than in a Newtonian �uid where ||�|| ∼ r−1

as r → ∞ (Tanner, 1993). As the yield number increases the rapid stress de-
cay becomes more relevant. In the left panel of �gure 7.5 the logarithmically-
scaled colourmaps of the strain rate magnitude is shown for a con�guration of
� = 0.01, with the yield number increasing from left to right. As expected, un-
yielded material emerges as the yield number increases. For Y ≳ 0.065 discrete
yield envelopes surround particles, coalescing into larger pockets when parti-
cles are close together. As the yield number increases further we �nd clusters of
particles inside yield envelopes with comparatively isolated particles held static.
For � = 0.05 we see a similar trend in the log10(̇) colourmaps shown in the
right panel of �gure 7.5. However, there are fewer distinct groups of particles
in individual yield envelopes. It is likely that the computational domain is not
su�ciently large for a suspension this dense.

We take a closer look at the suspension morphology nearY∗
0 in �gure 7.4, where

colourmaps of the velocity magnitude with yield surface overlays are shown
for all �ve con�gurations for � = 0.01 (left panel) and � = 0.05 (right panel)
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7 Sedimentation of particle suspensions in a Bingham �uid

Figure
7.5:Colourm

apsoflog
10 (̇∕G)for�

=
0.01

atY
=
(0,0.022,0.065,0.087,0.13)(leftpanel)and

�
=
0.05

at
Y
=
(0,0.043,0.087,0.13,0.17)(rightpanel).
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7.2 Results and discussion

Figure 7.6: Proportion of settling particles in the suspension at increasing
yield strengths with the critical yield number for a single parti-
cle indicated by the dashed line.

at Y = 0.087. All con�gurations for � = 0.01 show both static particles and
yield pockets with sedimentation clusters, while for � = 0.05 no static particles
are present in any con�guration, and velocity peaks are found near vertically
arranged clusters.

This formation of settling pockets of particle-dense regions and isolated static
particles is not evident from themean suspension velocity. In �gure 7.6 we show
the proportion of settling particles for both volume fractions as the yield num-
ber increases, averaged over all con�gurations. In both cases, for Y∕Y∗

0 < 1 the
entire suspension settles as the yield number is below the threshold required to
hold even a single particle static. At Y∕Y∗

0 ≈ 1 the vast majority of the suspen-
sion settles for both cases, with a fraction of static particles evident for � = 0.01.
As the yield number increases beyond Y∕Y∗

0 = 1 more isolated particles are
held static, leading to a decrease in the settling fraction for both volume frac-
tions considered. For � = 0.01 we �nd that the entire suspension is held static
at Y∕Y∗

0 ≈ 1.5. The critical yield number required to hold the entire � = 0.05
suspension static was not reached in this study due to convergence time require-
ments.

Concentrating on � = 0.01, for which we have found the critical yield number,
we can see three distinct �ow regimes: Regime (I) for 0 ≤ Y < Y∗

0 where the
entire suspension is settling; Regime (II) forY∗

0 ≤ Y < Y∗
� where the proportion

of static particles increases as Y → Y∗
�; Regime (III) for Y ≥ Y∗

�, for which the
entire suspension is held stationary. While Y∗

� was not reached for � = 0.05
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7 Sedimentation of particle suspensions in a Bingham �uid

in this study we have no reason to believe that the suspension will not be held
static with a su�ciently high yield number. Experimental studies have worked
with statically held suspensions as dense as � = 0.4 (Ovarlez et al., 2012).

In regime (I) the �uid could be considered as weakly shear-thinning and regime
(III) is trivial, while in regime (II) the strong competition between the yield
stress and buoyancy of groups of particles leads to complex �ow features, which
the larger error bars above Y∕Y∗

0 > 1 in �gure 7.6 indicate. Two examples of the
complex �ow features found in this regime are shown in �gure 7.7. For each
of the two features the left plots show colourmaps of the �uid velocity magni-
tude, while the right plots show colourmaps of the normalised second invariant
of the velocity gradient tensor, Λ—a metric used to describe the character of
the �ow. Negative and positive values of Λ show where �ow is dominated by
enstrophy and strain, where for Λ = −1 �ow is purely rotational, Λ = 0 �ow
undergoes simple shear, and Λ = +1 �ow is purely extensional (Hemingway
et al., 2018). The left panel shows a sedimentation cluster in a � = 0.01 sus-
pension mobilising a lone particle as it moves past. The right panel is from a
� = 0.05 suspension showing a collection of particles settling together, gener-
ating a strong recirculating �ow within the yield envelope. Lone particles are
swept up by this recirculating �ow, and two large unyielded plugs can be seen,
one ofwhich has embedded particles that would have otherwise been held static.
It is �ow features such as these that lead to the larger error bars in �gure 7.6
but also complicate the identi�cation of spatial correlation lengths, for example,
critical separation distances between particles that encourage settling at yield
numbers beyond Y∗

0 .

Following the analysis of Putz & Frigaard (2010); Chaparian & Frigaard (2017);
Roustaei et al. (2016) we examine global �ow properties through the viscous
dissipation, plastic dissipation and buoyancy work functionals, respectively:

a(v,w) =∫
Ω⧵P

̇(v) ∶ ̇(w) dA, j(v) =∫
Ω⧵P

||̇(v)|| dA, L(v) = �V ⋅ ey,

(7.17)
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7 Sedimentation of particle suspensions in a Bingham �uid

Figure 7.8: Convergence behaviour of the functionals a(u,u) (circles), j(u)
(squares), and L(u) (diamonds), for a single particle (blue), � =
0.01 (yellow), and � = 0.05 (red). Symbols are computed and lines
are power-law �ts with exponentm.

where v,w are divergence free vector �elds satisfying the boundary conditions
(7.12) and (7.13), andV is a particle velocity vector. Exploring the static stability
limit Putz & Frigaard (2010) observed that as Y → Y∗−:

a(u,u) ∼ O([Y∗ − Y]2), (7.18)
Yj(u) ∼ L(u) ∼ O(Y∗ − Y), (7.19)

whereO([Y∗−Y]2) is a lower bound on the decay rate of the viscous dissipation
(Roustaei et al., 2016), but it always decays faster than the plastic dissipation
(Putz & Frigaard, 2010). In the following analysis, we approximate the critical
yield numbers for the suspensions asY∗

0.01 ≈ 1.5Y∗
0 andY∗

0.05 ≈ 2Y∗
0 , respectively.

The panels of�gure 7.8 show the convergence of the functionals for� ∈ [0, 0.01, 0.05].
For all volume fractions explored here, the viscous dissipation decays faster than
O([Y∗ − Y]2), the plastic dissipation approximately one order of magnitude
slower and at a similar rate to the buoyancy work functional.

De�ning the particle Bingham number as B = �̂yL̂∕�̂Ûp, where Ûp is a particle
settling velocity, Chaparian & Frigaard (2017) linked themobility and resistance
formulation by rescaling variables by Y∕B, showing that Y → Y∗− and B →∞
are the same limit and are coupled by

B ∼ (1 − Y∕Y∗)−�, (7.20)
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7.2 Results and discussion

Figure 7.9: Convergence at large B for three volume fractions. Symbols are
computed and lines are power-law �ts with exponentm.

where � is some positive exponent.

Using the mean suspension velocity (at a given volume fraction) to compute
a B(�) we show the convergence at large B in �gure 7.9, along with a power-
law �t to the single disk data. For the single disk, �tting the power-law to the
markers for 1 − Y∕Y∗ < 0.5 to limit ourselves to the behaviour near the yield
limit Putz & Frigaard (2010), we recover � ≈ 2, in line with previous results
of Tokpavi et al. (2008) and Chaparian & Frigaard (2017). For the suspensions
it is evident that we lack data su�ciently close to Y∗

� to explore the behaviour
near the yield limit. More computations near the yield limit are required for the
suspensions. However, this is a farmore computational demanding task than for
single disks, as for single disks the resistance problem—which is signi�cantly
cheaper—may be evaluated at arbitrary velocities (see Chaparian & Frigaard
(2017)) while for the suspensions we must evaluate the mobility problem. This,
coupled with the necessarily increased problem size for the suspensions, makes
further exploration of the near yield limit behaviour a computationally arduous
task.

We can take a closer look at the energy dissipation in our system by examining
the local viscous dissipation, Φ, in various �ow structures by utilising the sec-
ond invariant of the velocity gradient tensor, Λ, discussed previously. In �gure
7.10 we show the viscous dissipation per unit volume as a function of the �ow
parameter Λ for a single disk and the suspensions. De�ning a shear �ow as
−1∕3 ≤ Λ ≤ 1∕3 (De et al., 2017), we can see that for a single disk most viscous
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7 Sedimentation of particle suspensions in a Bingham �uid

Figure 7.10: Normalised energy density per unit volume per unitΛ for a single
disk (left), � = 0.01 (middle) and � = 0.05 (right).

Figure 7.11: Probability density functions of Λ with increasing Y for a single
disk (left), � = 0.01 (middle) and � = 0.05 (right).
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7.3 Conclusions

dissipation is con�ned to shear layers, at all Y. For a single disk at low Y there
is some contribution from extensional �ow regions. However, as Y increases,
the viscous dissipation becomes con�ned to shear layers, as is evidenced by the
steepening in the left-hand side of the Φ peak near Λ = 0 . For the two suspen-
sions the viscous dissipation peaks in the shear layers, and the Φ peak steepens
up as Y increases. However, unlike for the single disk, contributions to the vis-
cous dissipation from extensional �ow regions remain signi�cant, particularly
for � = 0.05.

In �gure 7.11 we plot probability density functions of Λ. For the single disk,
the �ow is initially dominated by extensional �ow. As Y increases, the particle
becomes enclosed by a yield envelope, with shear layers developing on the en-
velope interface. This is re�ected as a decrease in the extensional component,
and the development of a peak nearΛ = 0. Increasing the yield number further
results in the growth of unyielded plugs on either side of the particle, with addi-
tional shear layers between the particle and plug, and plug and yield envelope
wall, leading to a rapid decrease in extensional �ow and a large peak nearΛ = 0.
We can see that for a single particle, the limiting �ow, asY → Y∗−, is dominated
by shear layers.

For the suspensions the trend is similar, with shear layers increasing while ex-
tensional �ow decreases asY increases. While we do not have enough data close
enough toY∗

� to determine the limiting �ow characteristics, the trend is certainly
indicative of a shear dominated �ow near Y∗

�. In light of this, it is possible that
with more data near Y∗

�, the power-law behaviour in �gure 7.9 should approach
that of the single disk, ie � ≈ 2, in line with other �ows dominated by simple
shear (Chaparian & Frigaard, 2017; Roustaei et al., 2016; Frigaard & Scherzer,
2000).

7.3 Conclusions

In this chapter we investigated settling of two-dimensional non-colloidal par-
ticles in viscoplastic �uids under quiescent conditions by means of direct nu-
merical simulation. Three �ow regimes were identi�ed, where (I) the entire
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7 Sedimentation of particle suspensions in a Bingham �uid

suspension settles, (II) there exist both static and settling particles in the same
suspension, and (III) the entire suspension is arrested.

In regime (I) for su�ciently high yield numbers we observe enhanced settling
with increased volume fraction, opposite to a Newtonian �uid, which we at-
tribute to shear-thinning. Regime (II) displays complex �ow features such as sed-
imenting clusters, mobilisation of lone particles, and rigid recirculating zones.
For suspension volume fractions greater than zero the transition to regime (III)
is delayed, requiring a higher yield number to hold the suspension static than is
required to hold a single particle static. This corroborates the theoretical work
of Frigaard et al. (2017) and the inferences drawn from studies of small-scale
model systems (Tokpavi et al., 2009; Chaparian et al., 2018).

Further research is required to explore the dynamics of the settling phases in
regimes (I) and (II). Regime (II) is of particular interest since it may lead to het-
erogeneities in the suspension. Understanding this regime and the transition to
regime (III) may play a role in explaining observations in many industrial and
natural problems involving the sedimentation of viscoplastic suspensions un-
der quiescent �ow conditions. The immense computational requirements of the
simulations (up to 10, 000 CPU hours for the most demanding ones) prevented
the solutions from beingmarched forwards in time. We anticipate that new solu-
tionmethods (Treskatis et al., 2016; Bleyer, 2018; Saramito, 2016; Dimakopolous
et al., 2018) will soon enable much larger simulations of such systems, including
the ability to investigate time-evolution and inertia, which were neglected in
this study. Finally, we encourage researchers to investigate this problem experi-
mentally.
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8 Sheared neutrally buoyant

particle suspensions in a

Bingham fluid

Dense suspensions of solid particles are found in a broad range of applications,
both in industrial processes (e.g. food processing) and natural phenomena (e.g.
debris �ows). Understanding the rheological behaviour of such suspensions
is key to predicting how �ows will behave in various applications. The rheo-
logical behaviour is further complicated by the range of particle sizes: small,
colloidal particles may interact to give the bulk �uid a non-Newtonian, often
viscoplastic, behaviour such that the larger, non-colloidal particles may be seen
as a suspension in a complex �uid.

The theory of suspensions of particles in Newtonian �uids has a rich literature
dating back to Einstein (Mueller et al., 2010). However, much less work exists
on suspensions of particles in complex �uids, in particular viscoplastic �uids.
In recent years, there has been progress on modelling the bulk behaviour of
viscoplastic suspensions from a continuum-level closure perspective. Chateau
et al. (2008) utilised a homogenisation approach to develop a constitutive law for
non-inertial, rigid particles suspended in a Herschel-Bulkley �uid, �nding that
the bulk suspension behaviour follows the interstitial power-law behaviour but
with a volume fraction dependent consistency index and yield stress. Agreement
with experimental results (Mahaut et al., 2008; Ovarlez et al., 2015) are generally
good, however, su�er in the concentrated regime due to large experimental
scatters (Dagois-Bohy et al., 2015).

In a similar vein, continuummodels of the so-called frictional type have been
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8 Sheared neutrally buoyant particle suspensions in a Bingham �uid

successful at describing non-colloidal suspensions in Newtonian media (Boyer
et al., 2011; Lecampion & Garagash, 2014). Recent experimental work on dense
suspensions of particles in viscoplastic �uids has indicated that they may be
described in a similar framework (Dagois-Bohy et al., 2015) for solid volume
fraction � > 0.45, showing good agreement with experimental studies in the
concentrated regime up to the jamming transition.

Both the homogenisation and frictional approaches relate the imposed macro-
scopic shear rate, Γ̇, to an average local shear rate, ̃̇, through some function ℱ
such that ̃̇ ∝ ℱΓ̇. Chateau et al. (2008) use an energy dissipation argument
to derive this relation as a function of the volume fraction, ℱ(�), while Dagois-
Bohy et al. (2015) leaveℱ(�) as an unknown function to be determined through
an empirical �t. Dagois-Bohy et al. (2015) �nd good agreement between their
empirical �t and Chateau et al. (2008), albeit with a coe�cient of 2 that is not
justi�ed by the energy dissipation argument (Ovarlez et al., 2015). Dagois-Bohy
et al. (2015) �nd the frictional approach particularly suited to the concentrated
regime but that as � → 0 there is evidence of a more complex variation of ℱ
that needs to be further investigated.

Here, we present a numerical study of two-dimensional, non-colloidal suspen-
sions of rigid particles in a viscoplastic Bingham �uid undergoing simple shear
in the volume fraction range � ∈ [0, 0.3]. We utilise an overset grid discreti-
sation, enabling sharp representation of surfaces and local grid re�nement, al-
lowing for fully resolved simulations with large particle counts. We investigate
the homogenisation approach of Chateau et al. (2008) at increasing Bingham
numbers, paying particular attention to the behaviour of the local shear rate.
The simulations bene�t the study of this aspect by providing access to the lo-
cal values of the �uid velocity. We aim to improve the approximation of the
average local shear rate by mapping the Bingham �uid to a Newtonian one via
purely geometric e�ects to remain consistent with Dagois-Bohy et al. (2015).
Inspired by the so-called shadow regions found in inertial suspensions in New-
tonian �uids that lead to an excluded volume e�ect (Picano et al., 2013), we �nd
that unyielded material in the Bingham �ows may be similarly interpreted as
changes to the e�ective solid volume fraction, thereby allowing us to re�ne the

114



8.1 Mathematical formulation and solution

homogenisation approach for such �uids.

8.1 Mathematical formulation and solution

We consider the steady approximation of inertia-less, neutrally buoyant, rigid
circular particles suspended in incompressible viscoplastic �uid from amobility
perspective. The particles are denoted by P; the particle boundaries by )P; and
the entire �uid domain (�uid and particle) byΩ; and the far �eld domain walls
by )Ω. The �uid has velocity u(x), the pressure p(x), consistency index �, and a
total stress tensor �−p� . We solve the non-dimensional steady Stokes equations

( ⋅ � − (p = 0, ( ⋅ u = 0 in Ω ⧵ P. (8.1)

We impose no-slip and no-penetration boundary conditions on the domain
walls, such that

u = 0 on )Ω, (8.2)

and the �uid velocity is continuous with that of each particle, such that

u→ U + ! × (x − xb) on )P, (8.3)

whereU and ! are the a priori unknown linear and angular particle velocities,
x is a point on )P, andxb are the coordinates of the centre ofmass of the particle.
The particle translational and rotational velocities are determined by satisfying
zero force and torque constraints on each particle, F = 0, T = 0. Here, F and T
are de�ned for any given particle by

F =∫
)P
(−pn+� ⋅n) ds+fb, T =∫

)P
(x−xb)×(−pn+� ⋅n) ds+ tb, (8.4)

where n is the unit normal vector to the body surface, andfb and tb are external
body force and torque, respectively.
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8 Sheared neutrally buoyant particle suspensions in a Bingham �uid

We close the system using the ideal Bingham constitutive law

⎧

⎨
⎩

� = (� +
�y

||̇||) ̇ if ||�|| > Y,

̇ = 0 if ||�|| ≤ Y,
(8.5)

where the rate of strain tensor is de�ned as ̇ ∶= (∇u + ∇u⊺), and || ⋅ || is the
induced norm of the Frobenius inner product:

a .. b ∶= 1
2
∑

ij
AijBij, (8.6)

such that ||̇|| =
√
̇ .. ̇ . The force-free and torque-free conditions imply that

the particles adjust their velocities and angular velocities instantaneously (Feng
& Joseph, 1995). Unless stated otherwise, the wall velocity is used as a charac-
teristic velocity scale, such that the Bingham number is a balance between the
stress imposed at the walls and the material yield stress:

Bn ∶=
�y
Γ̇
, (8.7)

where Γ̇ is the macroscopic shear rate.

For a suspension of particles in a Newtonian �uid of viscosity �(0) in a simple
shear �ow of shear rate Γ̇, the suspension is a priori characterised by stress
components that vary linearly with Γ̇

� = g(�)�(0)Γ̇, (8.8)

where g(�) is theNewtonian response,egKrieger–Dougherty (Krieger&Dougherty,
1959). Assuming no energy dissipation from particle contacts, the density of en-
ergy, e, dissipated at themacroscopic and local scales may bematched. The local
energy dissipation is:

elocal = (1 − �)⟨�localij (x)̇localij (x)⟩ = (1 − �)⟨�(0)̇2local(x)⟩ = (1 − �)�(0) ̃̇2local(x).
(8.9)
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8.1 Mathematical formulation and solution

For a simple shear �ow (with an isotropic interstitial �uid) the macroscopic
energy dissipation is:

eglobal = �(0)g(�)Γ̇2. (8.10)

Matching the local andmacroscopic energy dissipation density we then recover
the following estimate for the local strain rate:

̃̇ = Γ̇
√

g(�)
1 − �. (8.11)

Under simple shear, the shear stress of our generalised Newtonian �uid is

� = �̃( ̃̇)Γ̇, (8.12)

where �̃ is the e�ective viscosity of the interstitial �uid, dependent on the local
shear rate:

�̃( ̃̇) = g(�) [�(0) +
�y(0)
̃̇

] . (8.13)

Substituting (8.11) in to (8.13) we recover an e�ective viscosity function directly
governed by the applied macroscopic shear rate:

�̃(Γ̇, �) = g(�)�(0) +
�y(0)
Γ̇

√
(1 − �)g(�). (8.14)

In order to make the larger problem sizes considered in this study tractable we
adopt a steady approximation, as in (Chaparian et al., 2018), and employ an
overset grid discretisation strategy. Brie�y, the overset grid method represents a
complex domain using multiple body-�tted curvilinear grids that are allowed to
overlap whilst being logically rectangular, see �gure 8.1. The overlapping aspect
brings �exibility and e�ciency to grid generation, which is bene�cial for com-
plex domains and moving grid problems. Here, since the cylinders are static,
the chief bene�t of the overset grid methods is that the grids may be locally
re�ned near the cylinder surfaces whilst keeping the grids logically rectangu-
lar. The grid generation procedure is discussed at length in (Chesshire & Hen-
shaw, 1990; Henshaw, 1998), and has been used for Newtonian and viscoplastic
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G1

G2

G1

interpolation
ghost
unused

G2

Figure 8.1: Left: an overlapping grid consisting of two structured curvilinear
component grids,x = G1(r) andx = G2(r). Middle and right: com-
ponent grids for the square and annular grids in the unit square pa-
rameter space r. Grid points are classi�ed as discretisation points,
interpolation points or unused points. Ghost points are used to
apply boundary conditions. The physical boundary is represented
by the solid red line.

particulate �ow problems by the authors in (Koblitz et al., 2017b, 2018a). The
resultant linear system is inverted using the MUMPS massively parallel direct
linear solver library (Amestoy et al., 2001). Recently some signi�cantly faster
algorithms have been developed (Saramito, 2016; Treskatis et al., 2016; Bleyer,
2018; Dimakopolous et al., 2018), and so we expect a rapid expansion in the near
future of the size of problem which can be attempted.

8.2 Results and discussion

The homogenisation theory of Chateau et al. (2008); Ovarlez et al. (2015) agrees
fairly well with experimental data from Mahaut et al. (2008), particularly at
large solid volume fractions. However, there are gaps/regions where the validity
of the theory (due to various assumptions, largely to do with isotropy) is in
question. It has been conjectured that the isotropy assumption fails at high
volume fractions due to both the non-linearity of the interstitial �uid, and the
increasing importance of particle contacts. Ovarlez et al. (2015) showed that
another assumption used in Chateau et al. (2008) and Dagois-Bohy et al. (2015),
that of a self-similarmicrostructure at low and high shear rates, is not applicable
to yield stress �uids. There is evidence that as � → 0 there exists amore complex
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Figure 8.2: Comparison of local shear rate approximation (solid line) with
computed root mean square values (markers).

variation in the local shear rate than previously taken in to account (Dagois-Bohy
et al., 2015).

In the following we use the Krieger-Dougherty equation as our Newtonian re-
sponse,

g(�) = (1 − �
�max

)
−�max[�]

, (8.15)

where �max[�] = 1.82was used (Kromkamp et al., 2006; Lee et al., 2014) and the
maximum packing fraction, �max = 0.82 was found using a least squares �t.

8.2.1 Local shear rate estimates

The local shear rate estimate is recovered for an isotropic �uid under simple
shear. The Bingham �uid is non-linear, so how well does this approximation
hold?

In �gure 8.2 we compare the local shear rate estimate of (8.11) to the computed
root mean square shear rates of our simulations. While the general trend is sim-
ilar, ie ̃̇ increases with �, it is clear the Bingham �uid has higher ̃̇ for volume
fractions greater than � = 0.01. We explore this further by looking at the shear
rate distributions in our domain. In �gure 8.3 we show colour maps of log(̇∕Γ̇)
(top row) for both a Newtonian (left panel) and Bingham (right panel) �uid. As
expected, the Newtonian �uid has a fairly isotropic shear rate distribution. The
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8 Sheared neutrally buoyant particle suspensions in a Bingham �uid

Figure 8.3: Top row: Colourmaps of log(̇∕Γ̇) for a � = 0.3 case, with a New-
tonian interstitial �uid (left) and Bingham interstitial �uid (right).
Bottom row: Probability density functions of the local shear rate
for a Newtonian interstitial �uid (left) and Bingham interstitial
�uid (right).

Bingham �uid shows signi�cant local variations, with dead zones (pockets of
low shear rate) and thin layers of high shear. In the bottom row are probability
density function plots of ̇∕Γ̇ for both a Newtonian and Bingham �uid. At low
volume fractions, the Newtonian �uid shows a near Gaussian shear rate dis-
tribution, peaking at ̇ = Γ̇. As the volume fraction increases, the distribution
becomes positively skewed but the peak remains at ̇ = Γ̇ and ̇(x) > 0. In
contrast, the Bingham �uid shows non-negligible zero shear rate values. As the
volume fraction increases, so does the zero shear rate contribution. While at
low volume fractions there is a clear shear rate peak around ̇ = Γ̇, the peak
quickly diminishes and the distribution becomes heavily positively skewed as
the volume fraction increases.
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8.2 Results and discussion

Figure 8.4: Left: Comparisons of computed (markers) and predicted viscous
dissipation per unit volume (solid lines), showing consistent over-
estimation for Bn > 0. Right: Colourmap of log(Φ∕Φ0) showing
the local dissipation density.

8.2.2 Suspension viscosity

In the left panel of �gure 8.4 we plot the macroscopic viscous dissipation as pre-
dicted by the micromechanical model (solid lines), with overlaid markers show-
ing the computed dissipation from the simulations. We �nd excellent agreement
for the estimated and computed dissipation for the Newtonian �uid, however,
for Bn > 0 the viscous dissipation is consistently overestimated for all � > 0. In
the right panel we show a colourmap of the local dissipation density for a high
volume fraction and yield stress case. It is evident that, much like the shear rate,
the viscous dissipation is not isotropic; the dissipation in the dead zones identi-
�ed earlier is very low,while dissipation is highest in the thin layers surrounding
the dead zones and particles.

From the macroscopic viscous dissipation estimates in �gure 8.4 it can be ex-
pected that the e�ective viscositywill be similarly overestimatedby themicrome-
chanical model and this is in fact the case, as may be seen in the left panel of
�gure 8.5. In the right panel of �gure 8.5 we focus on the viscoplastic cases,
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8 Sheared neutrally buoyant particle suspensions in a Bingham �uid

Figure 8.5: Left: E�ective viscosity ratios predicted by the micromechanical
model (solid lines) with simulation results overlaid. Right: Com-
parison of the e�ective viscosities computed using the microme-
chanical model with the computed root mean square shear rates
(dotted lines) with the computed viscosities (markers) and the full
micromechanical model estimate (solid lines).

again plotting the predictions of the micromechanical model (solid lines) and
the computed viscosities (square and triangle markers). Additionally, we plot
viscosity estimates computed using the micromechanical model but with com-
puted root mean squared shear rates in lieu of (8.11). Using the computed root
mean squared shear rate improves the e�ective viscosity estimates for all Bing-
ham numbers tested, though agreement generally weakens as the Bingham
number increases. This suggests that an accurate average local shear rate esti-
mate may improve the micromechanical predictions, though at high Bingham
numbers this may lead to under predictions.

8.2.3 Improved local shear rate estimate

In §8.1 we discussed the derivation of the average local shear rate based on
a Newtonian energy balance, where the overriding assumptions are isotropy
of the interstitial �uid, and a shear rate independent viscosity. To improve the
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shear rate estimate for Bingham �uids we wish to take the yield stress in to
account, however, cannot explicitly incorporate the constitutive law if we wish
to utilise this Newtonian energy balance. This is primarily because for us to �nd
an approximate average local shear rate, the local viscosity and shear rate must
be independent, see equation eq. (8.13).

In their work on inertial Newtonian suspension �ows Picano et al. (2013) were
able to demonstrate that shadow regions behind particles could be incorporated
as an addition to the solid volume fraction, thereby improving the predictions
based on a Stokes type model. Though the mechanisms are di�erent, suspen-
sions in Bingham �uids also display shadow regions, see �gure 8.3 where un-
yielded material is found in the form of attached unyielded caps and rigidly
rotating “deadzones”, also visible as a peak at ̇(x)∕Γ̇ = 0 in the probability den-
sity function in the bottom right panel of the same �gure. The unyielded caps
are common features in viscoplastic �ows past blunt bodies, cf. (Koblitz et al.,
2018b; Tokpavi et al., 2009; Beris et al., 1985) amongst others. These are con-
ceptually quite similar to the exclusion zones in the inertial Newtonian �ows,
however, whether the deadzones act as exclusion zones too is not immediately
obvious.

We �nd that the deadzones are the result of overlapping Lagrangian blocking
regions and vortical lobes. The blocking regions are common to �ows past blu�
bodies and are found in Newtonian systems as well (Camassa et al., 2011). These
blocking regions form fore and aft of the particles (in the shear direction) and
have been shown to exist in three dimensional systems (Camassa et al., 2011).
The vortical lobes above and below the particles (with respect to the shear direc-
tion) are evident in Newtonian �ows. However, in a Bingham �uid the vorticity
magnitude is signi�cant and their decay is slower than in a Newtonian �uid,
leading to the elongated lobes seen in the right panel of �gure 8.6. Knowing how
these deadzones form we can set up minimal particle con�gurations to further
examine their in�uence.

The left panel of �gure 8.7 shows the basic particle arrangement necessary to cre-
ate the disturbance velocity, ie the disturbance to the background�ow caused by
the presence of the particles. The deadzones can be seen to rotate and translate
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8 Sheared neutrally buoyant particle suspensions in a Bingham �uid

Figure 8.6: Left: Streamlines superimposed on a colourmap of the �uid veloc-
ity, normalised by the wall velocity, for a freely rotating particle
centrally placed in a Couette cell. Right: Contour plot of the local
vorticity normalised by the background vorticity,Ω, of the Couette
cell.

with the background �ow, imparting only a straining �ow on the �uid, much
like solid particles in non-inertialNewtonian suspension �ows (Batchelor, 1967).
This suggests that the deadzonesmay be considered in the samemanner as rigid
particles. This if further supported in �gure 8.7, where the top right panel shows
the colour map of the normalised second invariant of the disturbance velocity
gradient corresponding to the particle arrangement in the left panel, while the
bottom right panel shows the same metric for a four particle system arranged
in a regular lattice structure. It is evident how closely the deadzone mimics a
solid particle.

We now de�ne an e�ective solid volume fraction �̃ = � + �e, where �e is the
excluded volume fraction of the unyielded material (deadzones and caps) at a
given Bingham number. We plot the computed root mean squared shear rate of
our simulations against �̃ in the left panel of �gure 8.8. The computed values
can be seen to collapse reasonably well on to the universal curve provided by the
Newtonian energy balance. This implies that we can reasonably accurately map
the Bingham plastic �ow to aNewtonian one by implicitly taking the yield stress
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Figure 8.7: Left: Colourmaps of log(̇∕Γ̇) for the two particle system (top)with
deadzones and yield caps visible, and four particle system (bottom)
without deadzones, where in each case Bn = 50 and Γ̇ = 0.1 s−1.
Centre: vectors of the disturbance velocity �eld for the correspond-
ing particle arrangements. Right: Zooms of the highlighted por-
tions showing colour maps of the normalised second invariant of
the disturbance velocity gradient tensor for a system displaying a
deadzone (top panel) and onewith the deadzone volume occupied
by a particle (bottom panel).
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8 Sheared neutrally buoyant particle suspensions in a Bingham �uid

e�ects in to account via the unyielded material volume fraction. This e�ective
solid volume fraction may now be used in equation (8.11) such that

̃̇e = Γ̇
√

g(�e)
1 − �e

, (8.16)

to return an improved estimate of the average local shear rate, shown as the
solid line in the left panel of �gure 8.8.

Using this improved shear rate estimate we can now compute the e�ective vis-
cosity as

�̃(Γ̇, �) = g(�)
⎡
⎢
⎣
�(0) +

�y(0)
Γ̇

√
1 − �e
g(�e)

⎤
⎥
⎦
. (8.17)

The right panel of �gure 8.8 shows the predictions of the homogenisation theory
using the old (solid lines) shear ratemodel and the improved (broken lines) shear
ratemodel,with computed results overlaid.We �nd that the improved shear rate
model allows for a closer �t to the computed data, indicating that the geometric
e�ects taken into account in the new shear rate model go some way towards
addressing themismatchwith theory. Figure 8.9 shows how the e�ective volume
fraction scales with the Bingham number. Though data is limited to � < 0.4,
the e�ective volume fraction may be modelled in a similar fashion to Alghalibi
et al. (2018)

�e = 4.5 × Bn0.25 �3 (1 − �
�max

)
0.5

. (8.18)

However, simulations would have to be performed in three dimensions, span-
ning a greater volume fraction range in order to construct a model that may
be used in practice. The current two dimensional simulations already push the
viscoplastic solver to the limit, with simulations demanding up to 10 000 CPU
hours (at high volume fraction and yield stress). Investigating such suspensions
in three dimensions would require regularisation and coarse graining, where
a sub grid scale lubrication force model as investigated in chapter 6 would be
necessary.
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8.2 Results and discussion

Figure 8.8: Left: local shear rate approximation (solid line) and computed root
mean square values (markers) plotted against the e�ective solid
volume fraction. Right: e�ective viscosity computed using the im-
proved local shear rate estimate.

Figure 8.9: E�ective solid volume fraction plotted against the particle volume
fraction, where markers are the computed values and lines are
predictions. Colours denote the Bingham number, as before.
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8.3 Conclusions

In this chapter we presented direct numerical simulations of neutrally buoyant
suspensions of in�nite circular cylinders in Bingham �uids under simple shear.
We investigated the micromechanical model of Chateau et al. (2008), derived
from homogenisation theory, and found that at high Bingham number (equiv-
alently, low macroscopic shear rate), the e�ective viscosity is over predicted
owing to signi�cant heterogeneities in the shear rate distribution. A central
assumption of the homogenisation theory is that the carrier �uid be isotropic;
at high Bingham number large areas remain unyielded, leading to deadzones
that severely a�ect the average local shear rate approximation. By taking the
unyieldedmaterial in to account, the systemmay bemapped on to an equivalent
one with a solid volume fraction commensurate with the deadzones and parti-
cles, allowing for a more representative average local shear rate approximation.
This in turn allows for better predictions of the e�ective viscosity with the oth-
erwise unmodi�ed micromechanical model of Chateau et al. (2008). However,
two issues need to be addressed for this to be applied to real systems. Firstly, the
calculations presented here were limited to two dimensions; though we expect
the Lagrangian blocking regions to remain in the three dimensional case, since
we know of their existence in the three dimensional Newtonian equivalent (Ca-
massa et al., 2011), the existence—and shape—of the vortical lobes in the three
dimensional case is not self-evident. A relatively simple experimental setup of
a single sphere placed centrally in a Couette �ow of Carbopol may prove illu-
minating in this regard. Though Carbopol is not an ideal Bingham �uid due
to slight elastic behaviour, the e�ect of this should not extend beyond asymme-
tries in the �ow �eld for this case. Secondly, we require a function modelling
the deadzone volume fraction with respect to Bingham number, similar to the
excluded volume model of Alghalibi et al. (2018).
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In this work we aimed to better understand the rheology of particle-laden vis-
coplastic �uids, primarily motivated by the oil and gas industry but relevant to
a host of others, by means of direct numerical simulation. While the non-linear
carrier �uid and relatively large particle size make the problems di�cult to in-
vestigate experimentally, intrinsic numerical issues make the problems di�cult
to tackle computationally as well. Below, we summarise the main �ndings of
this work, and describe several directions for further work.

Overset grid method for fully resolved particulate flow

simulation

To facilitate e�cient gridding and accurate near-wall modelling we chose an
overset grid methodology for the general �uid structure interaction aspect. In
Chapter 5 we evaluated an e�cient overset grid method for two-dimensional
and three-dimensional particulate �ows for small numbers of particles at �nite
Reynolds number. The rigid particles were discretised using moving curvilin-
ear grids overlaid on a Cartesian background grid. This allowed for strongly-
enforced boundary conditions and local grid re�nement at particle surfaces,
thereby accurately capturing the viscous boundary layer at modest computa-
tional cost.

The incompressible Navier–Stokes equations were solved with a fractional-step
scheme which is second-order-accurate in space and time, while the �uid–solid
coupling was achieved with a partitioned approach including multiple sub-
iterations to increase stability for light, rigid bodies. Through a series of bench-
mark studies we demonstrated the accuracy and e�ciency of this approach
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compared to other boundary conformal and static gridmethods in the literature.
In particular, we found that fully resolving boundary layers at particle surfaces
is crucial to obtain accurate solutions to many common test cases. With this
approach we were able to compute accurate solutions using as little as one third
the number of grid points as uniform grid computations in the literature. A de-
tailed convergence study showed a 13-fold decrease in CPU time over a uniform
grid test case whilst maintaining comparable solution accuracy.

The collision model used here was a simple hard-sphere collision model based
on linear conservation of momentum. An immediate improvement would be to
incorporate angular conservation of momentum, to allow for frictional contacts.
However, this hard-sphere collision model is rather limiting, particularly for
multiple simultaneous particle contacts (e.g. in bed formation). The soft-sphere
collision model of Kempe & Fröhlich (2012b) would be advantageous for future
development.

On the applicability of viscoplastic lubrication theory to

suspension flows

In Chapter 6 we presented direct numerical simulations of closely interacting
in�nite circular cylinders in a Bingham �uid, and compared results to asymp-
totic solutions based on lubrication theory in the gap. Unlike for a Newtonian
�uid, the macroscopic �ow outside of the gap between the cylinders was shown
to have a large e�ect on the pressure pro�le within the gap and the resultant
lubrication force on the cylinders. The presented results indicate that the asymp-
totic lubrication solution can be used to predict the lubrication pressure only
if the surrounding viscoplastic matrix is yielded by a macroscopic �ow. This
has implications for the use of subgrid-scale lubrication models in simulations
of non-colloidal particulate suspensions in viscoplastic �uids. This lubrication
solution could be readily extended to the axisymmetric problemof two approach-
ing spheres.
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On the transition to yielding for negatively buoyant particle

suspensions in yield stress materials

In Chapter 7 the settling e�ciency, and stability with respect to settling, of a di-
lute suspension of in�nite circular cylinders in an a priori quiescent viscoplastic
�uid was investigated by means of direct numerical simulations with varying
solid volume fraction, �, and yield number,Y. For Y su�ciently large we found
higher settling e�ciency for increasing �, similar to what is found in shear-
thinning �uids and opposite to what is found in Newtonian �uids. The critical
yield number at which the suspension is held stationary in the carrier �uid was
found to increase monotonically with �, while the transition to settling was
found to be di�use: in the same suspension, particle clusters may settle while
more isolated particles remain arrested. In this regime, complex �ow features
are observed in the sedimenting suspension, including the mobilisation of lone
particles by nearby sedimentation clusters. Understanding this regime, and the
transition to a fully arrested state, is relevant to many industrial and natural
problems involving the sedimentation of viscoplastic suspensions under quies-
cent �ow, e.g. the suspension of microbeads in cement slurries, particularly in
highly deviated drill pipe sections.

While exploring the coupling of the particle Bingham numberB and suspension
yield number Y it became evident that we lacked su�cient data for large B to
de�nitively saywhether the coupling of the two followed the same behaviour for
a suspension as it does for a single body. This coupling is rather useful in that it
allows for the estimation of a critical suspension yield number, without having
to conduct experiments near the yield limit. Therefore, itwould be advantageous
to conduct further simulations closer to the yield limit.

An experimental study of this problem would be highly informative. The mixed
settling regime, where isolated particles remain �xed but clusters settle, has yet
to be investigate experimentally. Preliminary experiments at SchlumbergerCam-
bridge Research using Carbopol-90 in square section cylinders and monodis-
perse bead suspensions showed similar settling behaviour.
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On the rheology of neutrally buoyant particle suspensions in

sheared yield stress materials

In Chapter 8 we presented a numerical study of two-dimensional, non-colloidal
suspensions of rigid particles in a viscoplastic Bingham �uid undergoing simple
shear in the volume fraction range � ∈ [0, 0.3]. We investigated the homogenisa-
tion approach of Chateau et al. (2008) at increasing Bingham numbers, �nding
that the local shear rate is signi�cantly under estimated unless the Bingham
number is small. Inspired by studies of weakly inertial suspensions in Newto-
nian �uids, we investigated the in�uence of regions of low deformation (so-
called ‘deadzones’) on the average local shear rate. By taking the unyielded
material in to account through a modi�ed volume fraction, we showed that
the system may be mapped on to an equivalent one with a volume fraction
commensurate with the unyielded zones, thereby largely taking the non-linear
e�ects of the �uid in to account. This allowed for improved average local shear
rate estimates, improving the e�ective viscosity predictions of the otherwise
micromechanical model of Chateau et al. (2008).

The formation of ‘dead-zones’ was attributed to the interaction of Lagrangian
blocking regions and slowly decaying vortical lobes, both caused by the presence
of the particles in the �ow �eld. It is not clear how strongly this phenomenon is
a�ected by the geometry, so a three-dimensional simulation of the two particle
con�guration would be telling.

Equally, this is something that could be investigated experimentally using a
similar setup to Firouznia et al. (2018), who used a planar Couette-cell with
particle image velocimetry and particle tracking velocimetry to investigate pair
particle trajectories in simple-shear �ows of yield stress �uids.
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