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This document includes: background theory for calculating the free energy of the liquid and crystalline phases;
a detailed workflow; results obtained with the TIP4P/2005 water model; and best-fit coefficients for density
vs pressure. We also present a discussion on impulsive forces.

S1. BACKGROUND THEORY FOR CALCULATING THE FREE ENERGY OF THE LIQUID AND CRYSTALLINE
PHASES

To help set notation, and highlight slight differences in approach compared to previous studies, we will briefly cover
some of the theory underlying the free energy calculations performed in the main article.

A. Liquid

As we consider rigid water molecules, the position of all atoms in molecule i can be specified entirely by the location

of its oxygen atom r
(O)
i ≡ Ri and its orientation Ωi. The translational and rotational momentum of molecule i are

denoted pi and Li, respectively. The partition function for a system comprising N indistinguishable molecules can
thus be written as

Q =
1

h6NN !

∫
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∫
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∫
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where h6N defines a volume element in phase space, Kt and Kr are the translational and rotational kinetic energy,
respectively, and U is the potential energy. For non-linear rigid molecules like the water models considered,
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i |2
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, (S3)

where the superscripts indicate different principal axes of rotation, and I(1) indicates the moment of inertia around
axis 1 etc. The ideal contribution to the partition function is then
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If the total mass of a molecule is m, then we can write e.g.,(
2πmkBT
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Thus,
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where we have defined

ηr ≡
(
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I(1)I(2)I(3)

)1/2
1

8π2
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Let us now write η
1/6
r Λ = Λ̄0T

−1/2, such that Λ̄0T
−1/2
0 = 1 Å1/2. Then,
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The ideal free energy can then be written as,

βAid

N
= βaid = ln

(
ρ̄(T0/T )3

)
− 1, (S8)

where it is understood that (T0/T ) carries units of Å. The choice of reference temperature T0 is arbitrary provided
it is chosen consistently. This approach differs from the common ‘set Λ = 1 Å’ encountered in the literature.1 By
adopting this approach we use, e.g., the full enthalpy when performing thermodynamic integration (c.f. Ref. 2).

The excess part of the partition function is

Qex =
1

(8π2V )N

∫
dRN

∫
dΩNe−βU(R

N ,ΩN ). (S9)

Note that, if U is independent of Ω e.g., we turn off the charges in our water model, then Qex reduces to that of
a simple mono-atomic system. This means we are free to use equations of state for the standard LJ liquid where
appropriate; we make use of this fact to calculate the excess free energy of the liquid by thermodynamic integration.

B. Ice

Unlike liquid water, the molecules in the crystalline phase are distinguishable by virtue of their association with a
particular set of lattice sites. This leads to a straightforward modification of the partition function:

Q =
1

h6N

∫
dpN

∫
dLN

∫
dRN

∫
dΩNe−βKt(p

N )e−βKr(L
N )e−βU(R

N ,ΩN ) (S10)

Instead of dealing with ‘ideal’ and ‘excess’ quantities, it is now useful to consider ‘kinetic’ and ‘configurational’
quantities:

Qkin =
1

Λ6NηNr
, (S11)
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Note that Qkin and Qcon have dimensions of hyperdensity and hypervolume, respectively; it is important that units
are chosen consistently. The factor 1/(8π2)N is still included in Qcon to ensure a consistent definition of ηr. By similar
reasoning to above, we can write the kinetic contribution to the free energy as

βAkin

N
= βakin = ln

(
(T0/T )3

)
. (S13)

As detailed below, we have used the Frenkel-Ladd approach,3 adapted by Vega and co-workers for rigid SPC water
models,1,4,5 to calculate the difference in free energy between a non-interacting crystal with its atoms tethered to
their equilibrium positions by harmonic springs, and the fully interacting crystal. The potential energy of the former,
‘reference’, system is

Uref(RN ,ΩN ) =

N∑
i

∑
α

k(α)

2

(
Ri + ∆r

(α)
i (Ωi)− r

(α,0)
i

)2
, (S14)

where ∆r
(α)
i = r

(α)
i −Ri, r

(α,0)
i is the equilibrium position of atom α of molecule i (recall that r

(O)
i ≡ Ri), and k(α)

determines the strength of the harmonic potential that tethers atom α to r
(α,0)
i . The rigid body constraints mean

that the free energy of this reference system is analytically intractable. We therefore define a ‘sub-reference’ system
with the following potential energy,

Usub(RN ) =

N∑
i

k(O)

2

(
r
(O)
i − r

(O,0)
i

)2
. (S15)

The configurational partition function for this sub-reference system is just that of the standard Einstein crystal,

Qsub =

∫
dRN exp

(
−βUsub(RN )

)
, (S16)

resulting in the following free energy per particle:

βasub = −3

2
ln

(
2π

βk(O)

)
. (S17)

S2. WORKFLOW: FREE ENERGY CALCULATIONS OF ICE Ih

The procedure described below was performed for both truncation schemes described in the main article and both
water models, i.e., for TIP4P/ice(8.5→∞), TIP4P/ice(8.5), TIP4P/2005(8.5→∞), and TIP4P/2005(8.5). Unless otherwise
stated, all simulations used the LAMMPS simulation package.6 The particle-particle particle-mesh Ewald method was
used to account for long-ranged interactions,7 with parameters chosen such that the root mean square error in the forces
were a factor 105 smaller than the force between two unit charges separated by a distance of 0.1 nm.8 The geometry
of the water molecules was constrained using the RATTLE algorithm.9 A time step of 2 fs was used throughout.

A. Obtaining average cell parameters

A proton disordered ice Ih structure comprising 768 molecules was generated using the GenIce software package.10

After equilibration of at least 0.5 ns, the average cell parameters were obtained from a 10 ns simulation at p = 0 bar and
temperature T = Ti, with Ti = 272 K for TIP4P/ice, and Ti = 252 K for TIP4P/2005. Temperature was maintained
with a Nosé-Hoover chain thermostat11,12 with a damping constant 0.2 ps, and the pressure was maintained with a
Parrinello-Rahman barostat13 with a damping constant 2 ps. The latter was applied such that all cell lengths and
angles could fluctuate independently.

B. Obtaining the reference ice structure

The simulation cell parameters were fixed to their average values, and the structure was ‘minimized’ by running short
(approximately 10-20 ps) simulations at T = 0.1 K. The damping constant of the Nosé-Hoover chain thermostat was
reduced to 20 fs. As explained in the main text, this approach was adopted as standard minimizers available in LAMMPS
are incompatible with the RATTLE algorithm used to constrain the rigid geometry of the water molecules. Simulation
settings were otherwise the same as above.
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C. Thermodynamic integration from the non-interacting to interacting crystal

Atoms were tethered to their positions in the reference ice structure with force constants k(O) = 4.8 kcal/mol-Å2 and
k(H) = 6.0 kcal/mol-Å2 (see Sec. S1 B). For each water model and truncation scheme considered, we constructed the
following potential energy function:

Uλ(RN ,ΩN ) = λU(RN ,ΩN ) + (1− λ)Uref(RN ,ΩN ), (S18)

where U is replaced with U (rc→∞) or U (rc) as appropriate (see Eqs. 5 and 8). The Helmholtz free energy difference
between the reference and interacting systems is then,

∆r2ia =
1

N

∫ 1

0

dλ 〈∆U(RN ,ΩN )〉λ, (S19)

where ∆U(RN ,ΩN ) = U(RN ,ΩN ) − Uref(RN ,ΩN ), and 〈· · · 〉λ denotes a canonical ensemble average according to
the Hamiltonian specified by Uλ. The integral in Eq. S19 was evaluated using 11-point Gauss-Legendre quadrature,
and simulations for each value of λ were 20 ns in length. Temperature was maintained through Langevin dynamics
as implemented in LAMMPS,14,15 with a damping constant 100 fs. The total random force was set exactly to zero to
ensure the center-of-mass of the system did not drift.

D. Thermodynamic integration from the sub-reference to reference system

As molecules in both the sub-reference and reference systems are non-interacting, we need only consider the behavior
of a single water molecule. Specifically, we construct the following energy function:

uλ(R1,Ω1) = λU (N=1)
ref (R1,Ω1) + (1− λ)U (N=1)

sub (R1,Ω1), (S20)

where U (N=1)
ref and U (N=1)

sub are given by Eqs. S14 and S15 with N = 1. The change in Helmholtz free energy is then
given by:

∆s2ra =

∫ 1

0

dλ 〈∆u(RN ,ΩN )〉λ, (S21)

with ∆u = U (N=1)
ref −U (N=1)

sub , and 〈· · · 〉λ now denotes a canonical ensemble average at temperature Ti according to the
Hamiltonian specified by uλ. The integral in Eq. S21 was again evaluated using 11-point Gauss-Legendre quadrature,
using a bespoke Metropolis Monte Carlo (MC) code. In brief, after 104 MC moves for equilibration, production
simulations of 5 × 107 MC moves were performed for each value of λ. For each MC move, the water molecule was
either translated or rotated with equal probability. For translations, a displacement along each Cartesian direction

was randomly chosen in the interval [−
√

2/βk(O),
√

2/βk(O)). For rotations, three angles (α, β, γ) were randomly
chosen in the interval [0, π/6), and a rotation matrix was constructed as R = Rz(α)Ry(β)Rx(γ), where Rx(γ) is a
rotation about the x-axis etc. With equal probability, the molecule was then rotated about its oxygen position using
either R or its transpose. Note that, as ∆s2ra is independent of truncation scheme, we only computed it once for each
water model.

E. Computing βµice(T )

With an estimate of βiµice(Ti) obtained from thermodynamic integration, βµice(T ) is computed from the Gibbs-
Helmholtz relation (Eq. 12). For TIP4P/ice(8.5→∞) and TIP4P/ice(8.5), simulations in the temperature range T =
267 K, 268 K, . . . , 277 K, and T = 267 K, 268 K, . . . , 282 K, respectively, were performed, while for TIP4P/2005(8.5→∞)

and TIP4P/2005(8.5) we adopted the temperature range T = 247 K, 248 K, . . . , 267 K. Simulations were initialized
from the reference structure, starting at 0.1 K with the temperature steadily increased to T over 1 ns at constant
volume. An equilibration period of 0.5 ns at constant T and p = 0 bar was then performed (see Sec. S2 A), followed
by a production run of 20 ns. The integrand in Eq. 12 was then fitted to a quadratic polynomial, from which βµice(T )
was obtained by analytic integration.
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S3. WORKFLOW: FREE ENERGY CALCULATIONS OF LIQUID WATER

The procedure described below is again appropriate for both truncation schemes and both water models. Simulation
details were broadly similar to those specified throughout Sec. S2.

A. Obtaining the average density of liquid water

A 20 ns simulation of liquid water was performed after at least 0.5 ns equilibration at temperature Ti and p = 0 bar.
A Nosé-Hoover chain thermostat was used to maintain the temperature, and an isotropic Parrinello-Rahman barostat
was used to maintain the pressure.

B. Thermodynamic integration from the LJ fluid to water

To compute the excess free energy of liquid water, we exploit the fact that the equation of state for the LJ fluid has

been computed previously, which provides a
(rc→∞)
LJ,ex . The density of the fluid is fixed to its average (see Sec. S3 A) at

temperature Ti and p = 0 bar, and thermodynamic integration is performed with the following energy function:

Uλ(RN ,ΩN ) = U(RN ,ΩN ) with charges multiplied by λ1/2. (S22)

(We reuse the notation Uλ as it should be clear from context what is intended.) Again, U is replaced with U (rc→∞)

or U (rc) as appropriate. The free energy difference ∆LJ2wa between water and the LJ fluid is then given by an
expression analogous to Eq. S19, with the integral evaluated by 9-point Gauss-Legendre quadrature. For each value
of λ, 〈∆U(RN ,ΩN )〉λ was averaged over a 20 ns simulation, following a 0.5 ns equilibration period.

C. Thermodynamic integration from the ‘truncated + tail corrections’ LJ fluid to ‘cut-and-shift’ LJ fluid

For systems employing the ‘cut-and-shift’ truncation scheme, we also computed the free energy difference between

the fluid with interactions described by u
(rc→∞)
LJ and u

(rc)
LJ . As dynamics in the canonical ensemble are unaffected by

this choice of truncation scheme, we simply have (see Eq. S22)

∆tc2csa =
〈
U

(8.5)
λ=0 (RN ,ΩN )− U (8.5→∞)

λ=0 (RN ,ΩN )
〉
, (S23)

which we calculated from a 20 ns simulation, following a 0.5 ns equilibration period.

D. Computing βµliq(T )

Using the same temperature ranges described in Sec. S2 E, the Gibbs-Helmholtz equation was evaluated in an analogous
manner to βµice(T ). For each temperature, a 0.5 ns equilibration period was performed followed by a 20 ns production
run. The pressure was maintained with an isotropic barostat (see Sec. S3 A).

S4. WORKFLOW: LOCATING THE MELTING POINT

For each water model and truncation scheme, βµice(T ) and βµliq(T ) were each fitted to a quadratic polynomial, and
the melting temperature was obtained by solving the resulting simultaneous equations.

S5. WORKFLOW: HAMILTONIAN GIBBS-DUHEM INTEGRATION

With T
(8.5)
m determined from the free energy approach described above, T

(9.25)
m and T

(10.0)
m were subsequently deter-

mined by Hamiltonian Gibbs-Duhem integration. Specifically, we define the potential energy function

Uλ(RN ,ΩN ) = λU (rc,1)(RN ,ΩN ) + (1− λ)U (rc,0)(RN ,ΩN ), (S24)
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and the quantity,

x(λ)α =
1

N

〈
U (rc,1)(RN ,ΩN )− U (rc,0)(RN ,ΩN )

〉
λ
, (S25)

where α indicates sampling of the ice or liquid phase. The derivative of the melting temperature with respect to λ is
then

dT
(rc,λ)
m

dλ
=
T
(
x
(λ)
ice − x

(λ)
liq

)
h
(λ)
ice − h

(λ)
liq

, (S26)

where h
(λ)
ice and h

(λ)
liq are the enthalpies per particle of ice and liquid, respectively, obtained from trajectories using Uλ.

Starting from T
(8.5)
m , T

(9.25)
m was obtained by integrating Eq. S26 by fourth-order Runge-Kutta integration. This was

then repeated, starting from T
(9.25)
m , to obtain an estimate for T

(10.0)
m . We implemented Uλ by tabulating the potential

at 0.0005 Å intervals for 1.8 Å < r < 10.1 Å, but otherwise, simulation settings were the same as those described in
Secs. S2 A and S3 A. Simulations were 5 ns, following 0.5 ns equilibration.

S6. WORKFLOW: LIQUID-VAPOR SIMULATIONS

Simulations to produce Figs. 3b and S1b comprised 512 water molecules, using TIP4P/ice and TIP4P/2005, respec-
tively. Simulation details are broadly similar to those described in S3. The cross sectional (xy) area of the simulation
box was 19.7× 19.7 Å2, and its length normal (z) to the liquid-vapor interface was 90 Å. To facilitate post-processing
analysis, repulsive walls as described in Ref. 16 were placed at the edges of the simulation cell along z to prevent
molecules escaping the primary simulation cell. The electric displacement field along z was set to zero, using the
implementation given in Refs. 17 and 18; this is formally equivalent to the commonly used slab correction of Yeh and
Berkowitz.19 Production simulations were performed for 20 ns following at least 0.5 ns equilibration. A Nosé-Hoover
chain thermostat was used to maintain the temperature at 300 K. ‘Tail corrections’ were formally applied, but as
discussed in the main text, this produces the same dynamics as the ‘cut-and-shift’ potential.

S7. RESULTS FOR TIP4P/2005

In this section, we present results obtained with TIP4P/2005. While quantitative differences are expected, and indeed

observed, our general conclusions are unaffected by the choice of water model. At p = 0 bar, we find T
(8.5→∞)
m =

251.9 K in good agreement with Tm = 252 ± 6 K reported previously for p = 1 bar. We also see a modest increase

in melting temperature when using TIP4P/2005(8.5), with T
(8.5)
m = 253.4 K and T

(MF,8.5)
m = 254.0 K. The predictions

of the mean-field prediction are supported by Hamiltonian Gibbs-Duhem integration. Note that, unlike the results
for TIP4P/ice(rc) reported in the main paper (Fig. 5b), the Hamiltonian Gibbs-Duhem simulations performed for

TIP4P/2005(rc) were initiated from T
(MF,8.5)
m instead of T

(8.5)
m (indicated by the blue star in Fig. S4).

S8. FITTING COEFFICIENTS

In this section, we report the coefficients for the quadratic polynomial r2p
2 + r1p+ r0 obtained using numpy’s polyfit

routine,20 as shown in Figs. 3 and 5 in the main article, and Figs. S1 and S3.

A. Results for TIP4P/ice

• Liquid, 300 K (Fig. 3a):

r2 = −3.822428× 10−9 g/(bar2 cm3);

r1 = 4.460206× 10−5 g/(bar cm3);

r0 = 9.939254× 10−1 g/cm3.

• Liquid, 272 K (Fig. 5a):
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a

b

FIG. S1. Evaluating the impact of rc on ρ̄m for liquid TIP4P/2005 at 300 K. (a) ρ̄m(p) for a homogeneous system. White-filled

circles show results from constant-p simulations of TIP4P/2005(8.5→∞), and the solid blue line indicates a quadratic fit. Dashed
lines indicate MF predictions (Eq. 9) for different rc, as indicated in the legend. Orange squares show results from constant-p

simulations of TIP4P/2005(8.5). The dotted line indicates ρ̄m(0) for TIP4P/2005(8.5), which intercepts the TIP4P/2005(8.5→∞)

results at p ≈ −370 bar. (b) 〈ρm(z)〉 for a film of TIP4P/2005(8.5→∞) in contact with its vapor (only part of the simulation cell
is shown). Spatially averaging 〈ρm(z)〉 in the slab’s interior, as indicated by the shaded region, gives an estimate ρ̄m(0), which
is plotted with the orange-filled circle in (a).

r2 = −4.700729× 10−9 g/(bar2 cm3);

r1 = 5.129812× 10−5 g/(bar cm3);

r0 = 9.898901× 10−1 g/cm3.

• Ice, 272 K (Fig. 5b):

r2 = 1.442316× 10−11 g/(bar2 cm3);

r1 = 8.358199× 10−6 g/(bar cm3);

r0 = 9.056778× 10−1 g/cm3.
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a

b

ice

liqu
id

FIG. S2. βµα(T ) at 0 bar, with α = ‘ice’ or ‘liq’, for (a) TIP4P/2005(8.5→∞) and (b) TIP4P/2005(8.5). Tm is determined from

the point of interception, as indicated by the black dotted lines, with T
(8.5→∞)
m = 251.9 K and T

(8.5)
m = 253.4 K.

B. Results for TIP4P/2005

• Liquid, 300 K (Fig. S1a):

r2 = −4.748523× 10−9 g/(bar2 cm3);

r1 = 4.561509× 10−5 g/(bar cm3);

r0 = 9.973669× 10−1 g/cm3.

• Liquid, 252 K (Fig. S3a):

r2 = −3.051495× 10−9 g/(bar2 cm3);

r1 = 5.587068× 10−5 g/(bar cm3);

r0 = 9.967701× 10−1 g/cm3.

• Ice, 252 K (Fig. S3b):

r2 = −2.226744× 10−10 g/(bar2 cm3);

r1 = 9.123390× 10−6 g/(bar cm3);

r0 = 9.201753× 10−1 g/cm3.

S9. COMMENT ON THE APPARENT ROLE OF IMPULSIVE FORCES

We have remarked in the main article that in the canoncial ensemble, dynamics are unaffected by the choice of
U (rc) vs. U (rc→∞). While we have verified this directly by comparing trajectories, and by checking the forces between

a pair of LJ particles (as implemented in LAMMPS), the form of u
(rc→∞)
LJ given by Eq. 3 suggests the presence of

an impulsive force at r = rc. Here will we demonstrate that including impulsive forces would be inconsistent with
standard implementations of tail corrections.
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a

b

liquid

ice

FIG. S3. ρ̄m(p) at 252 K for (a) liquid water and (b) ice. White-filled circles show results from constant-p simulations of

TIP4P/2005(8.5→∞), and the solid blue line indicates a quadratic fit. Dashed lines indicate MF predictions (Eq. 9) for different
rc, as indicated in the legend, which are used to predict ρ̄m(0) for a given rc, i.e., where the dashed lines intersect the vertical
gray dotted line.

Let us introduce a system with the following potential energy:

U (rc!)(RN ) =

N∑
i<j

u
(rc!)
LJ (|r(O)

ij |) + Uelec(R
N ), (S27)

with

u
(rc!)
LJ (r) = u

(∞)
LJ (r)h(rc − r), (S28)

where h(r) is the Heaviside step function. The potential energy function U (rc!) describes a system where LJ interactions
are described by the unshifted LJ potential for r ≤ rc, and abruptly vanish for r > rc. Forces due to the LJ interactions
are obtained by differentiation,

f
(rc!)
LJ (r) = f

(∞)
LJ (r)h(rc − r) + u

(∞)
LJ (r)δ(rc − r). (S29)

We clearly see an impulsive force at r = rc. Now consider the average virial pressure:

p(rc!) =
2πρ̄2

3

∫ rc

0

dr r3f
(∞)
LJ (r)gOO(r) +

2πρ̄2

3
r3cu

(∞)
LJ (rc), (S30)

=
2πρ̄2

3

∫ rc

0

dr r3f
(∞)
LJ (r)gOO(r) +

8περ̄2σ3

3

[(
σ

rc

)9

−
(
σ

rc

)3
]
, (S31)

where we have assumed that gOO(r ≥ rc) = 1. The second term in Eq. S31, which we will denote ∆p(rc!), is the
impulsive contribution to the virial. For a system where impulsive forces are present (whose dynamics in the NV T
ensemble in principle differ from U (rc) and U (rc→∞) systems), one is required to add ∆p(rc!) to the virial pressure,
which in turn will affect the dynamics in the NpT ensemble. If we attempt to account for neglected interactions
beyond the cutoff in the usual fashion by simply adding the contribution

∆MFp(rc) =
2πρ̄2

3

∫ ∞
rc

dr r3f
(∞)
LJ (r) =

32περ̄2σ3

9

[(
σ

rc

)9

− 3

2

(
σ

rc

)3
]

(S32)
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a

b

ice
liqu
id

FIG. S4. Predicting the effect of rc on the melting temperature of TIP4P/2005 with MF theory. (a) βµ
(MF,8.5)
α (T ) at p = 0 bar,

with α = ‘ice’ or ‘liq’, obtained from Eq. 15. T
(MF,8.5)
m = 254.0 K is determined from the point of interception, as indicated

by the black dotted lines. (b) T
(MF,rc)
m is shown by the solid blue line. The orange circle indicates T

(8.5)
m obtained from

the free energy calculations described in Sec. II, and the blue squares indicate T
(9.25)
m and T

(10.0)
m obtained from Hamiltonian

Gibbs-Duhem integration, starting from T
(MF,8.5)
m , which is marked with the blue star.

to p(rc!), we find an average virial pressure,

2πρ̄2

3

∫ rc

0

dr r3f
(∞)
LJ (r)gOO(r) + ∆p(rc!) + ∆MFp(rc), (S33)

that does not approximately describe the average virial pressure of a U (∞) system.
Now consider a U (rc→∞) system. The LJ pair potential is

u
(rc→∞)
LJ (r) = u

(∞)
LJ (r)h(rc − r) + u

(∞)
LJ (r)h(r − rc), (S34)

with the proviso that interactions for r > rc are evaluated in a mean field fashion. The forces are:

f
(rc→∞)
LJ (r) = f

(∞)
LJ (r)h(rc − r) + f

(∞)
LJ (r)h(r − rc) + u

(∞)
LJ (r)δ(rc − r)− u(∞)

LJ (r)δ(r − rc). (S35)

The impulsive forces at r = rc cancel. Again, we consider the average virial pressure:

p(rc→∞) =
2πρ̄2

3

∫ rc

0

dr r3f
(∞)
LJ (r)gOO(r) + ∆p(rc!) −∆p(rc!) + ∆MFp(rc), (S36)

=
2πρ̄2

3

∫ rc

0

dr r3f
(∞)
LJ (r)gOO(r) + ∆MFp(rc). (S37)

Equation S37 demonstrates that the standard ‘tail correction,’ ∆MFp, is appropriate for a system that employs

u
(rc→∞)
LJ (r) (Eq. 3) to describe explicit LJ interactions for r ≤ rc in which the apparent impulsive force at r = rc is

not included. In this case, dynamics in the U (rc→∞) and U (rc) systems are identical in the NV T ensemble. It would
be inconsistent to use ∆MFp(rc) in combination with a system whose dynamics includes impulsive forces (see S33).
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