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Abstract
Background: In molecular profiling studies of cancer patients, experimental and clinical data are
combined in order to understand the clinical heterogeneity of the disease: clinical information for
each subject needs to be linked to tumour samples, macromolecules extracted, and experimental
results. This may involve the integration of clinical data sets from several different sources: these
data sets may employ different data definitions and some may be incomplete.

Methods: In this work we employ semantic web techniques developed within the CancerGrid
project, in particular the use of metadata elements and logic-based inference to annotate
heterogeneous clinical information, integrate and query it.

Results: We show how this integration can be achieved automatically, following the declaration of
appropriate metadata elements for each clinical data set; we demonstrate the practicality of this
approach through application to experimental results and clinical data from five hospitals in the UK
and Canada, undertaken as part of the METABRIC project (Molecular Taxonomy of Breast Cancer
International Consortium).

Conclusion: We describe a metadata approach for managing similarities and differences in clinical
datasets in a standardized way that uses Common Data Elements (CDEs). We apply and evaluate
the approach by integrating the five different clinical datasets of METABRIC.

Background
The METABRIC study (Molecular Taxonomy of Breast
Cancer International Consortium) is an example of
molecular profiling studies on cancer patients that aim to
associate experimental results with clinical datasets in
order to understand the clinical heterogeneity of the dis-
ease. The patient cohorts used are large and the clinical

information is consolidated from a number of hospital
databases that use different data definitions and often
hold incomplete datasets. Patient information is often
scattered in different databases within a hospital, or even
between different hospitals, as patients are not necessarily
treated by the same hospital throughout the course of
their disease and/or relapse. Moreover, patient cohorts
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usually span a large period of time and depending on
when the hospital started to record patient data electroni-
cally, this can result in incomplete clinical datasets. In
addition to these, standard treatment and diagnosis pro-
cedures have changed throughout the last three decades,
resulting in different types of information being accumu-
lated over time. An example is the HER2 bio-marker assay,
which has been a standard test, recorded at diagnosis, in
our collaborating hospitals in Canada for the last few
years, whereas only recently it has started being assessed
regularly in the collaborating UK hospitals.

The different hospital databases have not been designed
to conform to some agreed standards for data representa-
tion and meanings. They have been developed to fulfill
the specific requirements of the hospital unit, and the data
is described according to the definitions of assessments
and concepts that are used locally. An example, is the use
of Nottingham Prognostic Index (NPI) [1] versus the TNM
classification scheme [2]. The databases we encountered
in this study record either of those but never both. In addi-
tion to this, the TNM classification scheme is updated
every few years, so any samples obtained at different times
will have been classified by different TNM versions. The
lack of common standards for cancer data representation
and also the lack of a standardised means for relating from
one classification scheme to another makes data sharing
and integration a challenging task.

The semantic web is a term used to describe a collection of
initiatives and technologies aimed at associating data with
some representation of its meaning, so that we might
access or process the data on the basis of its semantics,
rather than its form or location. Although the technolo-
gies of the semantic web, such as the Resource Description
Framework (RDF) [3,4] and the Web Ontology Language
(OWL) [5] are still very much under development, they
are already being applied widely in business, government,
and scientific contexts [6].

Two Cancer Informatics projects, caBIG [7-10] and Can-
cerGrid [11-13], are employing semantic web technology
aiming to develop tools that assist the management of
cancer data and the interoperability of different hospitals
and research centres.

Both caBIG and CancerGrid have developed tools that
assist in the development of standardised methodologies
for data integration and sample tracking in the context of
cancer clinical trials. In each case, there has been an
emphasis upon standardising the way in which proce-
dures and observations are described, rather than upon
agreeing a single set of common procedures. The only dif-
ference is that the process for arriving at standardised
descriptions is, at present, centralised in caBIG, and dis-
tributed in CancerGrid: in the former, descriptions are

standardised by reference to a single, global classification
scheme; in the latter, researchers are free to construct a
scheme that reflects their local purpose and immediate
needs, and then relate this scheme to others as and when
necessary. This has meant in turn that there is a greater
emphasis in CancerGrid upon support for the evolution
of descriptions and protocols - with software artifacts
(such as forms and queries) being generated to match suc-
cessive versions of a model.

In this work, we use the model- or metadata- driven
approach employed by the CancerGrid project, since it is
best suited for the clinical data integration in the
METABRIC project. We do not attempt to transform the
data from the five different databases so that they conform
to a common description. This would lead to abstracting
information out of the data and losing detail that might
be important in the interpretation of experiments.
Instead, we develop a method that enables us to store the
data using their original definitions using Common Data
Elements (CDEs).

In order to query the data, we employ SQIV (Crichton, C.,
et al In preparation), a set of CancerGrid tools for Standard-
ization, Querying, Inference and Validation that processes
the data using pre-defined inference rules that model the
relationships between CDEs.

The problem of integrating data from multiple sources is
very similar to those addressed by federated database sys-
tems [14,15]; a simplistic view of these is that they allow
multiple databases, with different schemas, to be queried
using one global schema. In the research context, where
different organisations and even individuals may have dif-
ferent views on the relationships between the schemas,
this type of system is too restrictive. Instead, we feel that
our approach to the classification of data using CDEs,
along with mappings between those CDEs, allows us to
tackle the issue of semantic heterogeneity whilst giving
the individual researcher the freedom to pick the seman-
tics they think is appropriate.

The rest of the paper is structured as follows. First, we pro-
vide a description of the Metadata Repository (MDR)
implementation and SQIV. Then we describe the model
that integrates the five different source database models
and we explain how the data is imported and queried.
Finally, we discuss the usefulness of the approach and
identify directions for future improvements.

Methods
Common Data Elements & Metadata Repository
A Common Data Element (CDE) is a metadata definition
with an informal explanation of its meaning and usage, a
list of alternative names and definitions, units of measure-
ment, and the type of values to be recorded. CDEs can be
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created for any kind of concept, measurement, or applica-
tion, and, although grouped into "Data Element Con-
cepts" for convenience, need not derive their meaning
from their position in a complex hierarchy or graph. This
is in contrast to the ontological approach to data defini-
tion, often used in bioinformatics applications [16,17],
where each subclass is part of a specification for a repre-
sentational vocabulary for a particular domain [18].
Although classifications or ontologies can be added to a
database of CDEs, they can be used to support navigation
and inference on an application-specific basis: there is no
requirement to locate a CDE within an existing domain
ontology before recording the semantics of a data defini-
tion.

The Metadata Repository (MDR) is a database that stores
CDEs. The information stored includes the identifier of
the CDE and more details such as definition, value
domain, unit of measure, property and object class where
the CDE belongs to. Its purpose is to address the seman-
tics, the representation and the registration of the descrip-
tions of data. We are using the metadata repository
implementation developed by the CancerGrid project
http://cancergrid.org/downloads/, whose structure con-
forms to the ISO/IEC11179 international standard for
metadata repositories [19]. The CancerGrid MDR imple-
mentation provides tools for registering, updating and
browsing CDEs, concepts, properties and their defini-
tions, as well as searching and basic classification tools.

CDEs either represent enumerated value domains (as in
Figure 1) or non-enumerated (as in Figure 2). Every CDE
expresses a Data Element Concept. This is a more abstract
description of the CDE or several other related CDEs,
since a Data Element Concept can be expressed by more
than one CDE. An example that illustrates this is the rep-
resentation of the different 'tumour histological type' clas-
sification schemes used by the original databases (Figure
3). Each tumour histological type classification is
described by a CDE. The collection of these CDEs express
the same Data Element Concept 'histological type'.

SQIV
In order to compare and query the data in practice, we
transform it to some agreed dataset definitions by use of

the functions for Data Standardization, Inference and
Querying available in SQIV http://cancergrid.org/down
loads/sqiv/, a command line java tool.

Standardization is a process that takes data formatted in
XML according to an XML schema that is annotated with
CDE identifier and produces equivalent RDF for further
processing, for example querying or inference. RDF, the
Resource Description Framework, is one of the core tech-
nologies of the semantic web.

The Querying process takes RDF and allows this to be que-
ried using SPARQL, or to be converted back into XML
using an XML schema annotated with CDE identifiers to
define the output format.

Finally, the Inference process allows reasoning about
semantically annotated data, in order to produce richer
data, or data in terms of other meta-data identifiers. In
METABRIC, we use the inference function to map the orig-
inal data definitions to the METABRIC specific ones, as
demonstrated in later sections.

Results
Clinical Data
The METABRIC project (Molecular Taxonomy of Breast
Cancer International Consortium) collects clinical and
genomic data on breast cancer tumours from five different
hospitals/research centres in the UK and Canada.
METABRIC has been approved by the 'NHS National
Research Ethics Service, Cambridgeshire 4 Research Ethics
Committee' with reference number: 07/MRE05/35. The
aim of the project is to generate a robust molecular taxon-
omy of clinically annotated breast cancers. METABRIC
will analyse 2000 breast tumours using a combination of
high resolution array-CGH, expression profiling, sequenc-
ing and tissue microarray analysis, and correlate the
molecular profiles obtained with the clinical outcome of
the tumours.

The clinical data used for this study are being obtained
from five different sources: in the UK the Cambridge
Breast Unit at Addenbrooke's Hospital (Cambridge),
Guy's Hospital (London) and Nottingham University City
Hospital and in Canada the Tumour Bank of British

Clinical M StageFigure 1
Clinical M Stage. An enumerated CDE description of whether there are distant metastases at time of diagnosis.
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Columbia (Vancouver) and the Manitoba Tumour Bank.
The clinical information required was determined by the
aim of the molecular profiling study and it includes sur-
vival data, such as date and cause of death, treatment
information, such as chemotherapy, surgery and radio-
therapy type and bio-marker information such as ER, PR
and HER2 status.

Data collection has been a complex process in some cases,
since information about a patient was stored in different
specialised databases (for example, pathology informa-
tion, radiotherapy, chemotherapy, clinical trials data-
bases) within the same hospital that were not managed by
a central system. The data had to be extracted from all of
these and related to each other, in order to achieve a single
clinical dataset from each hospital.

Moreover, the vocabularies of the five different data
sources differed significantly in parts. There were cases
where similar fields were defined using different classifica-
tion schemes, the most striking example being 'tumour
histological type', which was defined differently in each
one of the five sources. Other differences included com-
pound measurements that use different types of assess-
ment. For example the Estrogen Receptor levels are
recorded using either an immunohistochemistry method
or a biochemical assay. Some hospitals record it using one
method, others using the other and there are cases where

one method was used in earlier breast cancer cases and
then it was replaced by a new assessment.

Instead of transforming the data into a common classifi-
cation scheme for each one of these fields, we create CDEs
that record each field definition from each data source.
We represent each field of each one of the source data-
bases by a Common Data Element (CDE). This process
resulted in 50 CDEs and 33 data element concepts.

In addition to the CDEs that represent each field from
each data source, we also record 29 CDEs that define the
type of information required by the METABRIC minimum
dataset definition (i.e. the clinical information required
by the METABRIC study, in the format described by the
METABRIC collaborators). CDEs have been curated by the
investigators, clinicians and pathologists contributing to
the METABRIC study.

Clinical Database Model
The database holds the pathological data about the
tumour sample and the linked clinical information of the
patient. The model of the database contains two main
classes 'patient' and 'tumour sample', see Figure 4. Each
'patient' is linked to a 'tumour sample'. A 'patient' can also
be linked to 'trials', if appropriate. The class 'data source'
holds information about the original databases, from
which the data (patient, trial and tumour sample) were
extracted. This is the database location information, as
well as contact information for the database managers of
the original databases.

The UML model was used to automatically create XML
schemas for the different components of the database. The
'patient' XML schema contains all the attributes and XSD
Elements within the 'patient' class, as well as all the XSD
Complex Type elements linked to the 'patient' XML
schema via a 'compose relationship' (Figure 5). This rep-
resentation allows for 'generalise relationships' between
complex type elements. An example is shown in Figure 6,
where a 'tumour receptor' can be one of 'HER2', 'PR', 'ER'
complex types.

The XML schemas describe the structure of the XML docu-
ments that are used to record the information for the
patients and tumour samples. Each element on each XML

Tumour Sample Storage DateFigure 2
Tumour Sample Storage Date. A non-enumerated CDE description of the date when the tumour sample was stored.

Histological Type of TumourFigure 3
Histological Type of Tumour. The histological type of 
tumour is defined using the different classification systems of 
the five original databases. 'nottingham' stands for the classifi-
cation in Nottingham University, 'manitoba' for Manitoba 
Tumour Bank, 'guys' for Guy's Hospital, 'addenbrookes' for 
Addenbrookes Hospital, 'vancouver' for Tumour bank of 
British Columbia (Vancouver).
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schema is mapped with the appropriate CDE identifier by
means of SAWSDL references, making use of the recent
extension of XML schema: Semantic Annotations for the
Web Services Description Language WSDL (SAWSDL)
[20] that supports semantic annotation.

For the reasons discussed earlier in the Background Sec-
tion, some fields have been defined differently by some or
all five sources. For example 'menopausal status at diag-
nosis' is described as 'clinically determined' in some data-
bases. In others the 'menopausal status at diagnosis' is
inferred by the 'age at diagnosis', with patients over 50
years old recorded as post-menopausal and patients less
than 50 described as pre-menopausal.

Both 'inferred' and 'clinical' elements are modeled as parts
of the complex element 'menopausal status at diagnosis'
to record the data according to the format in which it was
described by the original database.

However, at the level of XML schema, the 'clinical' meno-
pausal status element is associated with the 'clinical men-
opausal status' CDE identifier, whereas the 'inferred'
menopausal status element is associated with the 'inferred
menopausal status' CDE identifier.

Similarly, in the cases of 'histological type of tumour' and
'relapse type', different databases have used different clas-
sification schemes. Some databases use the same classifi-
cation for all three types of relapse (local, regional,
distant). Others only record distant relapse type (using a
different classification scheme) and others record local
and distant relapse types only, again using different classi-
fication schemes. The different classification schemes are
modeled as sub-classes to a more general class 'relapse', in
a similar fashion to the 'menopausal status at diagnosis'
element.

Importing Data
The clinical datasets that are used in METABRIC are
received in batches, in tabular format from the different
hospital databases. Direct access to the clinical databases
is not granted due to the participating hospitals' security
regulations involving the protection of patient informa-
tion. The tabular data sets are then converted into XML
documents according to the related CDE-annotated XML
schemas in a semi-automated manner, using the built-in
functionality of excel or relational database management
systems for XML export and XSLT documents. The specif-
ics of the transformation method depend on the schema
and data vocabulary of the data source.

Using the inference functionality of SQIV we can pre-
process the data in an automatic way, in order to perform
any transformations that do not result in information loss
but will decrease redundancy in the database (e.g. trans-
form all tumour size values to centimeters). In more
detail, we first standardize the data to an RDF format. The
Standardization function of SQIV takes as input the XML
document containing the original data, the XML schema
document that is annotated with the CDE identifiers for
each element and outputs an RDF file that contains the
mappings between the XML data and the CDE identifiers.
Once the data is standardized, we can use the inference
tool of SQIV in order to make any transformations
required. For this we develop rules that map the CDE
annotated data to values of the agreed METABRIC CDEs
using the Jena Semantic Web Framework [21]. The Jena
Semantic Web Framework is a Java API, employed by the

The Database ModelFigure 4
The Database Model. The model consists of two main 
entities, the 'patient' and the 'tumour sample' that contain the 
clinical and pathological information. Entities 'trials' and 'data 
source' provide additional information about the trials that 
patients were part of and the original source of the data.

Compose RelationshipFigure 5
Compose Relationship. The complex type element 
'patient', contains the complex element 'lymph nodes'. 'lymph 
nodes' contains the elements 'positive' and 'removed' (inte-
gers), corresponding to the number of nodes positive and 
the number of nodes removed from a patient.

Generalise RelationshipFigure 6
Generalise Relationship. The 'HER2', 'PR', 'ER' complex 
type elements generalise into the 'tumour receptor' element.
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inference tool of SQIV that performs reasoning and in this
case transforms the data according to our rules. The result
is an RDF file with the new CDE annotations and values,
which can then be converted to XML using the Querying
tool of SQIV and a METABRIC XML schema. The resulting
XML documents are then stored into an eXist database
[22].

An example illustrating data transformation that uses
SQIV is the mapping of "Nodal Radiotherapy" CDE with
values (yes/no) and "Local Radiotherapy" CDE with val-
ues (yes/no) from the Nottingham dataset into a com-
bined "Chest Wall-Lymph Node Radiotherapy" CDE
created for METABRIC with values (CW (Chest Wall)/
Nodal/CW-Nodal/None). Figure 1 and Additional file 1
show the standardized data before inference and Figure 8
shows the data after the inference process.

Querying Data
The eXist database system, where the clinical data is
stored, supports standard querying tools for XML data,
such as XQuery and XPath. However, in order to query
across differently defined data fields that are annotated
with CDEs we employ the use of reasoning tools.

Once the data has been transformed according to a
METABRIC schema, we can use SQIV to query across dif-
ferently defined data fields by mapping the differently
defined data fields into a common classification scheme.
An example that illustrates how this transformation can
take place is the following: The histological type of

tumour is a field that is described using classification
schemes of different detail across the five data sources in
METABRIC. We formulate rules that map the differently
defined data fields into a common classification scheme
using the Jena Semantic Web Framework. The data is then
transformed according to those rules using the inference
tool of SQIV. Figure 9 shows an example of four patients
whose histological tumour type is recorded according to
"Nottingham classification" and how its values (1-15)
correspond to the more general "Histological Type of
Tumour" CDE with ID temp:TumourType. The integers in
the Nottingham classification for histological type of
tumour correspond to tumour type descriptions and can
be found in the data dictionary of the Nottingham Data-
base. Their mappings to more general "Histological Types
of Tumour" were made with the assistance of a patholo-
gist.

Discussion
This work demonstrates how data from different sources
can be integrated using semantic annotation, in order to
support a large scale collaborative study. For the
METABRIC study we developed 79 CDEs that correspond
to 33 different data element concepts. Currently, we are
testing the method on larger datasets, of about 2000
patients, as we are collecting clinical data from the five
collaborating centres of the project and populating the
database. At the same time we are enriching the set of
inference rules to cater for more cases and we are testing
more thoroughly the inference and standardisation func-
tionalities of SQIV. Our experience with the import of

The structure of standardized dataFigure 7
The structure of standardized data. The structure of standardized data for two patients including: patient ID (CDE id: GB-
CANCERGRID-MB-5A7ED4C15-0.1), local radiotherapy (CDE id: temp:rt_local) and nodal radiotherapy (CDE id: temp:rt_nodes). 
The original graph on four patients is availbale in Additional File 1. The graph was drawn using GraphViz and the input file to 
GraphViz was created by using the DOT output format option of SQIV.
Page 6 of 10
(page number not for citation purposes)



BMC Medical Genomics 2009, 2:66 http://www.biomedcentral.com/1755-8794/2/66

Page 7 of 10
(page number not for citation purposes)

The structure of inferred dataFigure 8
The structure of inferred data. The structure of inferred data for four patients including: patient ID (CDE id: GB-CANCER-
GRID-MB-5A7ED4C15-0.1), local radiotherapy (CDE id: temp:rt_local), nodal radiotherapy (CDE id: temp:rt_nodes) and the 
inferred CDE Chest wall-Lymph Node Radiotherapy (GB-CANCERGRID-MB-4B7A69283-0.1).
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Inferred data of tumour histological typeFigure 9
Inferred data of tumour histological type. The structure of inferred data for four patients including: patient ID (CDE id: 
GB-CANCERGRID-MB-5A7ED4C15-0.1), Nottingham histological type of tumour (CDE id: GB-CANCERGRID-MB-8A8C655CE-0.1) 
and the inferred CDE 'Tumour Type' (temp:TumourType). The meanings of the numerical values of the CDE representing the 
nottingham histological type of tumour are: 1 for 'Invasive ductal/No special type', 14 for 'Mixed nst and lobular', 4 for 'Atypical 
medullary' and 12 for 'Invasive cribriform'.
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2000 patient records, in batches ranging from 300 to 900
records from five different hospitals has so far been suc-
cessful.

For the quantities of information we are dealing with in
METABRIC (and related research studies) the integration
process and the technology used scale up satisfactorily.
Integrating more heterogeneous data from a significantly
larger number of sources would require the creation of a
large number of inference rules that relate CDEs. The
speed of SQIV inference would decrease with larger
number of records and/or more complex Jena rules. Such
cases, dealing with millions of records and a large number
of CDE relations, may be tackled by standard optimisa-
tion methods and caching.

The ISO/IEC11179 standard for metadata registries
employed here provides a simple metadata schema for
elements, concepts, value domains and properties. Issues
associated with the ISO/IEC11179 include the lack of any
structuring of data elements, apart from their association
with data element concepts. The question on how to
extend (or simplify) ISO/IEC11179 to allow for informa-
tion structuring in a usable and understandable way is a
subject of ongoing research [23]. Here, we were able to
overcome this issue by formulating rules in Jena that
relate multiple CDEs and deduce the values of inferred
CDEs.

The value of this work, as we see it, is that it enables
researchers to create and use CDEs and also provide
semantics describing the relationship between CDEs that
is appropriate to the scope of their current research
project. We believe that this 'bottom-up' approach is par-
ticularly useful in a research environment, where defini-
tions and semantics change frequently. Different CDEs, as
well as their subsequent versions, are given unique identi-
fiers and the relations between them can be formulated
on demand and according to their usage, while older ver-
sions of CDEs and relations are stored.

Alternative 'top down' approaches, such as ontologies,
could be used to model the relationships between CDEs
in a more systematic way. Such methods would require
that the relationships between CDEs are   defined in
advance and could be limiting in research situations,
where competing views about what relationships between
CDEs must exist.

In this context, and after our experience with the inference
rules in METABRIC, the main direction for future work is
on structuring the information between CDEs, by storing
the relationships between them at a higher level that
reflects the inference patterns that are actually being used.
We plan to construct an ontology of CDE relations,
reflecting the Jena rules used in METABRIC with the view

of developing a generalised approach of extracting a struc-
ture of CDEs from the existing relations between them.
Further planned improvements to the metadata registry
and SQIV tool include improving support for XML
schema custom simple types and their use for data valida-
tion and support for the direct standardization of a wider
range of data sources.

Conclusion
Researchers and clinicians in different hospitals and
research centres use different ways of describing and rep-
resenting their data, for reasons ranging from adhering to
a certain local (or national) terminology to the scope of
the database they develop. Moreover, these data descrip-
tions change regularly as new methods for medical tests
become available. Semantic annotation of the data,
ensures that meaning and usage of the data is recorded
and enables re-use of the data, and integration with other
resources.

We described a general approach for integrating and man-
aging similarities and differences between different data-
sets using CDEs and inference rules. This approach
ensures no information loss, since the datasets are stored
according to their original definitions and classification
schemes, but at the same time enables data comparison.
We apply the approach on clinical data where concepts
are described using different classification schemes. How-
ever, the approach can be applied for integrating any type
of data where similar concepts have been described differ-
ently or the data is incomplete.
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