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Preferences and Cooperation

Alexander Harris

Abstract

Chapter 1: Evolution of reciprocator preferences when agents can pay for in-

formation

A benchmark result in the evolutionary games literature is that a preference for reciprocity

will evolve if preferences are observable (at zero cost), since reciprocators can cooperate with

each other rather than with materialists, thereby achieving a fitness advantage. I investigate

how a preference for reciprocity evolves if individuals can observe an opponent’s preferences

only by bearing a fitness cost. My main result applies when observing an opponent’s type is

cheap, but cooperating only gives a modest fitness advantage or the preference for reciprocity

is intense. In this case, a preference for reciprocity cannot evolve from a small starting share

in the mix of preferences, even if discovering an opponent’s preferences is arbitrarily cheap.

This is in sharp contrast to the benchmark result.

Chapter 2: A theory of conditional cooperation on networks (with Julien Gag-

non)

Chapter 2 is a study of reciprocity on social networks. We model a group of connected

agents who play a one-shot public good game. Some players are materialists and others are

reciprocators. We characterise the maximal Nash equilibrium (ME) of this game for any

network and a broad class of reciprocal preferences. At the ME, a novel concept, the q-linked

set, fully determines the set of players who contribute. We show that influential players are

those connected to players who are sufficiently interconnected, but not too much. Finally, we

study the decision of a planner faced with an uncertain type profile who designs the network to
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maximise expected contributions. The ex ante optimal network comprises isolated cliques of

degree k∗ ≥ 1 , with k∗ decreasing with the incidence of materialists. We discuss an important

application of our results: the workplace.

Chapter 3: Ideological games

Chapter 3 is a theory of ideology. I define a preference type to be a set of first-order preferences

over the outcomes of a ‘game of life’ Γ, together with a set of (‘meta-’) preferences over

all players’ first-order preferences. Players can influence each other’s preferences via costly

investment: if player A invests and B does not, B’s preferences becomes those of A. Players

may invest for instrumental reasons (i.e. to achieve better outcomes in Γ) or ‘ideological’

reasons (i.e. they want their opponents to have the same preferences they do). I characterise

‘strongly ideological’, ‘weakly ideological’ and ‘pragmatic’ types. Weakly ideological types

wish to preserve their own type, as do strongly ideological types, who also seek to convert

others. A pragmatic player, in contrast, is willing to have her type changed if her new type

would prefer the resulting equilibrium of Γ to the status quo. I show that if two players of

different ideological types meet, there is an equilibrium investment profile with lower aggregate

welfare than the no-invest profile. If at least one type is strongly ideological, there is a unique

such equilibrium. Finally, a ‘perfectly ideological’ type is a strongly ideological type which,

if held by all players, results in the best outcome of Γ as judged by that type. If a perfectly

ideological player plays a pragmatic player, aggregate welfare is always greater than in the

no-invest profile.
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Introduction and summary

Two related and overarching topics of enquiry in my thesis are how non-materialistic prefe-

rences support cooperation and how such preferences originate. There is ample experimental

evidence that some people (reciprocators) have a preference for mutual cooperation, whereas

other players (materialists) prefer to free-ride in such situations. I study the evolutionary

origins of a preference for reciprocity in Chapter 1. In Chapter 2, the focus is cooperation on

networks. Reciprocators are replaced with an analogous type of player – conditional coope-

rators – who are influenced towards cooperation and free-riding, respectively, by neighbours

who contribute and free-ride in a public good game. Finally, in Chapter 3, I offer a theory

of ideology in which individuals can seek to change each other’s preferences. A more detailed

chapter-by-chapter summary is as follows.

Chapter 1: Evolution of reciprocator preferences when agents can pay for in-

formation

A benchmark result in the evolutionary games literature is that a preference for reciprocity

will evolve if preferences are observable (at zero cost), since reciprocators can cooperate with

each other rather than with materialists, thereby achieving a fitness advantage. I investigate

how a preference for reciprocity evolves if individuals can observe an opponent’s preferences

only by bearing a fitness cost. My main result applies when observing an opponent’s type is

cheap, but cooperating only gives a modest fitness advantage or the preference for reciprocity

is intense. In this case, a preference for reciprocity cannot evolve from a small starting share in

the mix of preferences, even if discovering an opponent’s preferences is arbitrarily cheap. This

is in sharp contrast to the benchmark result. I offer an interpretation of paying to observe

preferences, using the sociological concept of ‘social distance’: individuals can adopt a policy of

only interacting with others who are close enough socially to them. I also show that individuals
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will pay to observe each other’s preferences only if the population share of reciprocators takes

an intermediate value. Under the ‘social distance’ interpretation of my model, this latter

result generates a prediction: societies with intermediate levels of cooperation should be more

fragmented into identity groups than societies with high or low such levels.

Chapter 2: A theory of conditional cooperation on networks (with Julien Gag-

non)

Chapter 2 is a study of reciprocity on social networks. We model a group of connected

agents who play a one-shot public good game. Some players are materialists and others are

reciprocators. We characterise the maximal Nash equilibrium (ME) of this game for any

network and a broad class of reciprocal preferences. At the ME, a novel concept, the q-

linked set, fully determines the set of players who contribute. We provide a characterisation

of players’ influence at equilibrium, and show that influential players are those connected to

players who are sufficiently interconnected, but not too much. Finally, we study the decision of

a planner faced with an uncertain type profile who designs the network to maximise expected

contributions. We find that the ex ante optimal network comprises isolated cliques of degree

k∗ ≥ 1 , with k∗ decreasing with the incidence of materialists. We discuss evidence in support

of our results in the context of one important application: the workplace.

Chapter 3: Ideological games

Chapter 3 is a theory of ideology. I define a preference type to be a set of first-order preferences

over the outcomes of a ‘game of life’ Γ , together with a set of (‘meta-’) preferences over

all players’ first-order preferences. Players can influence each other’s preferences via costly

investment: if player A invests and B does not, B’s preferences becomes those of A. Players

may invest for instrumental reasons (i.e. to achieve better outcomes in Γ) or ‘ideological’

reasons (i.e. they want their opponents to have the same preferences they do). I characterise

‘strongly ideological’, ‘weakly ideological’ and ‘pragmatic’ types. Strongly ideological types
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always seek to convert others and to preserve their own type, whereas weakly ideological types

do not always seek to convert others but do wish to preserve their own type. A pragmatic

player, in contrast, is willing to have her type changed if her new type would rank the resulting

equilibrium of Γ more highly than she currently ranks the status quo equilibrium. I show that

if two players of different ideological types meet, there is an equilibrium investment profile in

which aggregate welfare is lower than in the no-invest profile. If at least one type is strongly

ideological, there is a unique such equilibrium investment profile. I then introduce a ‘perfectly

ideological’ type, a strongly ideological type which, if held by all players, results in the best

outcome of Γ as judged by that type. If a perfectly ideological player plays a pragmatic player,

there is a unique equilibrium in which aggregate welfare exceeds that of the no-invest profile.

Finally, I sketch how ideological games provide a new mechanism through which a preference

for cooperation might evolve, expanding the framework of Chapter 1 to incorporate the notion

of cultural or memetic (as opposed to genetic) evolution.

3
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Chapter 1 Evolution of reciprocator preferences

when agents can pay for information

Alexander Harris1

1.1 Introduction

Human beings cooperate in many situations, even when doing so yields no personal gain in

the present or the future. A wealth of experimental evidence establishes that this is so because

some people have a preference for reciprocity. In other words, some people are reciprocators :

they willingly bear material costs to bestow a benefit on others (i.e. cooperate) precisely

when they believe that others will do likewise. In contrast, self-interested (materialist) players

never want to cooperate with others, though they would like others to cooperate with them.

Models in evolutionary game theory explain how, and under what conditions, a preference for

reciprocity can evolve. If players know each other’s preferences, reciprocators can cooperate

with each other rather than with materialists, thereby achieving a fitness advantage over the

latter. A benchmark result in the literature is that a preference for reciprocity will evolve if

preferences are observable with a high enough fixed probability, and if cooperating bestows a

sufficiently large benefit on one’s opponent. The model I introduce in this chapter reveals a

major constraint on this result, however.

I investigate how a preference for reciprocity will evolve if information about each other’s

preferences is endogenous. To do this, I consider in particular what happens if a “discovery

1I am very grateful to Robert Evans for his suggestions and for numerous and lengthy discussions on this
topic. I would also like to thank Aytek Erdil, Julien Gagnon, Edoardo Gallo, Hamid Sabourian, seminar
participants in Cambridge and conference participants at King’s College London for their helpful comments.
I am grateful for the financial support I received from the Economic and Social Research Council.
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technology” is introduced, meaning individuals can pay (i.e. bear a fitness cost) to improve

their chance of discovering an opponent’s preferences. It turns out that such a technology may

help or hinder the evolution of a preference for reciprocity, depending on parameter values. If

gaining information is expensive, then players will not use the technology, so it will make no

difference. If gaining information about an opponent’s type is cheap, and mutual cooperation

has large fitness benefits, then the discovery technology supports the evolution of a preference

for reciprocity, as it helps reciprocators discern between different types of opponent.

The main result in this chapter characterises when the discovery technology undermines

the evolution of a preference for reciprocity, which happens when information is cheap but

the fitness benefit b of mutual cooperation is relatively low or the preference for reciprocity

is intense (Theorem 1.1). Even if players can observe each other’s preferences perfectly at

arbitrarily low cost, a preference for reciprocity cannot evolve from a small starting share in

the mix of preferences. The reason is that having a preference for reciprocity makes individuals

willing to ‘overpay’ to use the technology. Their willingness stems from the fact they value

mutual cooperation above the direct fitness benefit it gives them, which is the very feature

of a preference for reciprocity needed for it to evolve at all. This result is in sharp contrast

to the theory of preference evolution under costless observability of preferences, in which a

preference for reciprocity evolves for all permissible values of b. In other words, my model

yields a significant negative result for the theory that preferences for reciprocity, which drive

much cooperative behaviour, evolved via preference observability.

A related (and counterintuitive) result in my model is that if b is relatively low, or the

preference for reciprocity is intense, then the evolutionary success of a preference for reci-

procity is increasing in the cost of observing others’ preferences. Despite the fact that lower

costs of information help reciprocators ceteris paribus, reciprocators respond by incurring such

costs at a lower population share, where they have less of an inherent fitness advantage over

materialists. This further limits how far they can grow their share of the population.

A second line of enquiry is: under what general circumstances will individuals use the
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discovery technology? The answer is intuitive: when ε, the share of individuals with a prefe-

rence for reciprocity, takes an intermediate value (Proposition 1.1). However, the reasoning is

subtle. The incentive for reciprocators to use the technology depends on what they plan to do

if they do not learn their opponent’s type. At high population shares ε, reciprocators ‘blindly’

cooperate when ignorant of their opponent’s preferences, since it is likely a player of unknown

preferences is in fact a fellow reciprocator. For the same reason, at low population shares,

reciprocators do not blindly cooperate. The reason to use the discovery technology is therefore

entirely different at low population shares (where the incentive is to detect other reciprocators,

and therefore increases in ε) compared with high population shares (where the technology is

useful in helping detect materialists, an incentive decreasing in ε). Interestingly, however,

despite the very different incentives to use the technology depending on ε, reciprocators only

use the technology over a contiguous region of population shares.

I offer two interpretations of the discovery technology. One is that it reflects a wide range

of situations where people may expend time and effort to try to discern each other’s motives

or character. For example, while criminal trials typically seek to find out who has a committed

a crime, in many cases they also seek to discern whether the person was ‘of good character’,

to establish a motive or to ascertain whether the crime was committed intentionally. Other

examples include credit provision and trade, where information about a potential partner’s

preferences may establish the trust necessary for a trading relationship. In Rohner, Thoenig

and Zilbrotti (2013), for example, traders may acquire such information at a cost. In general,

the discovery technology simply relaxes the (strict) assumption that information about other

people’s preferences is entirely exogenous.

Another interpretation makes use of the sociological concept of social distance, i.e. the

extent to which two individuals or groups differ in terms of such attributes as language, social

class, religious or ethnic background and nationality. Under this interpretation, individuals

can adopt a policy of only interacting with others who are close enough socially to them,

making it easier to guess their opponent’s preferences. The result from the model that the

discovery technology is used at a contiguous region of population shares then yields a pre-
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diction. Societies with intermediate levels of cooperation should be more fragmented into

identity groups – e.g. towns and villages should be stratified by class or split along religi-

ous lines – whereas interactions between people in societies with either low or high levels of

cooperation should be less conditioned on social distance.2

My model takes as its starting point uniform random pairing to play a Prisoner’s Dilemma

(PD) in fitness payoffs, where all players have a non-zero probability of learning their oppo-

nent’s type. Different types of reciprocators are possible, as a preference type θ is simply

defined by the utility it attaches to mutual cooperation. The higher the type, the greater the

utility from mutual cooperation; preferences for reciprocity can thus vary in intensity. For

simplicity I restrict attention to the case that each player is either a materialist or is of a par-

ticular reciprocator type, and then consider what happens when that particular reciprocator

type is allowed to vary. The main novel feature of my model is that the probability with which

a player learns her opponent’s type takes one of two (non-zero) values. Players can choose

to “research” their opponent, i.e. to pay a cost so as to learn the opponent’s type with the

higher probability rather than the lower probability.3

I first examine under what conditions players do research, and when they cooperate. To

this end, I select a unique equilibrium, namely the one that maximises cooperation, and con-

sider different type distributions as characterised by the population share of reciprocators.

Specifically, I compare the model including the discovery technology with an alternative ver-

sion in which there is no discovery technology: instead, there is a single, fixed probability of

type revelation. I then analyse the model from an evolutionary perspective, via the novel con-

cept of reciprocators’ attainable share. This is the largest reciprocator population share below

which, in the maximal cooperation equilibrium, reciprocators enjoy strictly higher average

2The key result of my model, which constrains evolutionary accounts of cooperation via observability of
preferences, is orthogonal to this prediction. The latter is premised upon the experimentally-confirmed fact
that a preference for reciprocity, whatever its origins, is widespread (but not universal). The prediction of
a non-monotonic relationship between social fragmentation and cooperation suggests that empirical studies
that estimate linear relationships between such variables (e.g. Alesina, Gennaioli and Lovo, 2017) may benefit
from a model specification that allows for non-monotonicity.

3In either case, the probability of learning an opponent’s type is independent of the chance with which
one’s own type is revealed.

8



fitness than materialists. It is an attractive metric because it represents how far the recipro-

cator population grows under any payoff-monotone fitness dynamics (such as the replicator

equation), given an arbitrarily small initial population share.

Related literature

The no-technology version of the model, incorporating an interior fixed probability of type

revelation, has not itself been previously studied to my knowledge.4 However, it is closely

related to existing work. For instance, Ockenfels (1993) uses the evolutionary approach to

examine reciprocator-materialist type distributions, but where types are perfectly observable.

If preference types are perfectly observable, and assuming reciprocators coordinate strategies,

reciprocators will enjoy higher fitness than materialists at all population shares. This result is

a special case of the results of Dekel, Ely and Yilankaya (2007), whose set of preference types

comprises all orderings over the outcomes of a generic one-shot two-player symmetric game.

In the rest of this section I outline different attempts in the theoretical literature to account

for cooperative behaviour. As I explain below, theories of preference evolution are a valuable

way to understand its origins. Additionally, they can explain the origin of moral action.

1.1.1 Theories of cooperative behaviour

There are a number of explanations for the existence of cooperative behaviour between un-

related individuals. These explanations fall into three broad categories: theories involving

bounded rationality, theories involving punishment (often in the context of repeated inte-

raction) and theories involving non-material preferences.

The adoption of strategies under bounded rationality can sustain cooperation. Alexander

(2007) provides a number of examples of how cooperation may be maintained on networks

when players update their strategies according to learning rules. Nowak and May (1992)

4While the no-technology results are therefore novel, they are rather narrow in application, as I only
consider a two-type distribution. The reason for doing so is to keep the full model, whose primary purpose is
to investigate the strategic and evolutionary impact of allowing players to pay for information, tractable.
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dispense with strategic play and learning altogether, studying the evolution of cooperation

on a lattice in which each individual plays a PD against its neighbours. The relative payoffs

determine whether cooperation or defection proliferates, or whether clusters of cooperation

and defection emerge side by side. In general, the assumption that individuals have bounded

rationality can apply in cases of repeated interaction or one-off interaction. It seems more

plausible the more complex the environment.

A second kind of theory allows for agents to punish each other. Punishment strategies

have been much-studied in the context of repeated games. In a repeated game setting, it is

well known that players can enforce cooperation by credibly threatening to punish unilateral

defectors, if players are sufficiently patient. Seminal work in this area of theory includes Axel-

rod and Hamilton (1981) and Fudenberg and Maskin (1986). In a one-off setting, punishment

may or may not be a viable option for players, but experimental evidence shows that even

in the absence of punishment options, one-shot cooperation does take place to some extent.5

In light of this, explaining the presence of cooperative behaviour by appealing to preferen-

ces – the third approach listed above – may be desirable for two reasons. Firstly, if agents

are acting rationally when they cooperate in a one-shot setting, they must prefer a mutually

cooperative outcome over the higher material returns that would accrue if they were to defect.

Secondly, explanations in terms of preferences may shed light on how we conceive of people

acting morally, construed in a strong sense, i.e. whereby a person internalises a moral rule,

rather than simply pays lip-service to it for the sake of expediency.6

A third explanation for cooperative behaviour, then, is that agents have preferences that

do not simply track individual material payoffs. These “non-materialistic” preferences could,

for example, contain a degree of altruism (see e.g. Becker, 1976), describe inequity aversion

5There is some debate as to precisely what extent one-off cooperation between strangers who are unable
to punish each other is observed experimentally. For a flavour of the debate on this topic, see for example
Binmore and Shaked (2010). For a extended review, see Fehr and Falk (2002).

6Alexander (2007) sketches how theories in which cooperation arises via learning on networks might explain
the existence of moral rules, which function as heuristic devices. People grow accustomed to such rules and
may then apply them in one-off settings in which it would be rational for them to act otherwise. He notes
that this explanation cannot account for moral intuition, or for moral action in a strong sense, however.
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(Fehr and Schmidt, 1999), characterise a desire to reward generosity and punish meanness

(Sobel, 2005) or may reflect deliberate adherence to some moral rule.

1.1.2 Evolution of preferences

Much experimental work has been done to explain the proximate causes of observed behaviour

by appealing to different types of preferences. To take just one example, Charness and Rabin

(2002) use laboratory data to calibrate a utility function that at once represents preferences

over the levels and distribution of material payoffs and over other players’ adherence to fairness

or reciprocity norms. Evolutionary models offer deeper explanations of observed behaviour

and (relatedly) the basis of people’s moral intuitions. The established approach to quantitative

theoretical study of preference evolution, which I take as my starting point, is the indirect

evolutionary approach of Güth and Yaari (1992).7 Under this approach, the distribution of

preference types in a population leads to equilibrium behaviour, which determines fitness

payoffs that in turn determine the evolution of preferences among the population. In the

case of perfectly observable preference types, the authors show that preferences that are not

aligned with fitness payoffs can be evolutionarily stable. This stability can arise because

such preferences enable credible commitment to outcomes that are efficient in fitness payoffs,

despite their underlying actions being fitness-dominated.8

Güth and Yaari (1992) consider non-materialistic preference types relating to fairness in a

bargaining game. Other early papers to use the indirect evolutionary approach examine other

specific games, the choice of which is often motivated by the aim of modelling a particular

flavour of preference. Bowles and Gintis (1998) examine preferences for strong reciprocity, i.e.

punishing free-riding, in a group setting. Sethi and Somnathan (2001) consider interdependent

7An alternative evolutionary account of non-materialistic preferences could in fact be predicated on the
existence of punishment options. For example, if punishment arose in early societies as a repeated game
effect, then over time, people may have internalised norms of cooperation and punishment such that they
develop non-materialistic preferences. The internalisation process would be evolutionary in the sense that it
would arise from patterns of behaviour in early societies and psychological effects that themselves have an
evolutionary basis.

8In a similar spirit, action profiles that are not Nash equilibria in fitness payoffs can be sustainable.
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preferences. This chapter of my thesis, in studying the effect of endogenous information on the

evolution of reciprocator preferences, extends this area of the literature. To my knowledge,

the only other investigations of the effect of allowing for costly type discovery relevant to

the indirect evolutionary framework are by Güth (1994) and Guttman (2000). Both study

sequential games. Güth (1994) allows the first player in a trust game access to a costly, perfect

type-detection technology, with types otherwise private information. Guttman (2000) models

a market transaction in which players can, under different treatments, variously monitor each

other’s types and moves, which result in either an all-reciprocator or all-materialist population.

I study a simultaneous-move equilibrium in a PD in fitness payoffs, and allow for interior

probabilities of type revelation, which allows for a range of interior solutions with respect to

population shares.

Ok and Vega-Redondo (2001) consider a general setting in which agents are randomly

assigned into a large number of subgroups of the population. The members of the subgroup

play a game among themselves. If preferences are not observable, and players can only con-

dition strategies on the distribution of types in the population as a whole, then materialistic

preferences, and only materialistic preferences, are stable in a wide class of environments. The

intuition for this result is that if preferences are not observable, they cannot facilitate credible

commitment, and so agents’ fitness is maximised when action profiles are Nash equilibria in

fitness, or “Nash outcomes” for short. The authors conclude that this stability condition pro-

vides a rationale for the evolution of materialistic preferences, though they note that it covers

only the case of random matching and entirely unobservable preferences.

Dekel, Ely and Yilankaya (2007) consider the indirect evolutionary approach in another

general environment, in which players are paired to play a symmetric one-shot game, and

the set of preference types consist in all orderings over the game’s outcomes. The authors

investigate the robustness of stability conditions with respect to zero, full and partial obser-

vability of preferences. One result is that for all non-zero levels of observability, efficiency

in fitness payoffs is necessary for an outcome to be stable. Consequently, introducing even a
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small chance of observing preferences can destabilise a Nash outcome if it is not efficient. It

follows that if agents are randomly matched to play a PD in fitness payoffs and there is some

observability of preferences, it cannot be stable for all agents to defect all the time.9

Under uniform random matching, as in my model, types must be at least partly observable

for non-materialist preferences to develop among a population. If types are entirely unobserva-

ble, the alternative way non-materialist preferences can develop is via a non-uniform matching

process.10 Alger and Weibull (2013), building on the approach of Bergstrom (2003), study

how non-materialist preferences can evolve under exogenous assortative matching. Assortative

matching means that players of a given preference type are more likely to be matched with

a same-type than an other-type opponent. The authors show that when preference types are

unobservable, the stable preference type is one whose utility function is a weighting between

actual material (fitness) returns and the material returns that would accrue were all other

players to adopt the same strategy as the player in question, with the weighting equal to the

degree to which the matching process is assortative. The latter component can be thought of

as relating to Kant’s categorical imperative to act such that one could rationally will that the

action were adopted as a general maxim. Assortative matching in the indirect evolutionary

framework can therefore account for moral (specifically Kantian) non-materialist preferences.

My model does not prescribe whether the evolutionary selection at work is genetic or

cultural. Cultural selection may be less familiar to most readers than natural selection at a

9I do not study stability, but rather specify a weaker concept of “attainability”, to focus simply on the
salient fitness effects in my model. However, the intuition from Dekel, Ely and Yilankaya’s result applies
in my model, in that for any non-zero baseline probability of type revelation, there is always a high enough
reciprocator type who cooperates in some equilibrium at arbitrarily small population shares. In both my
model and theirs, no types can do better in fitness terms than the lowest reciprocator type for whom such
cooperation is feasible. However, which type is the lowest such type depends on other parameters in the model,
which are themselves likely to vary between real-world environments. This variability partly motivates my
focus on a broad set of reciprocator types, rather than any specific such type.

10One tempting conclusion from the main result of this chapter, which restricts the conditions under which
reciprocity can evolve through observability of preferences, is that the alternative evolutionary theory in terms
of a matching process can thereby be regarded as epistemically strengthened. However, such an inference is
not entirely clear. After all, it seems possible that endogenising the matching process in the latter theory via
(even small) frictional costs, as I have in the case of observable types, could impose analogous constraints on
type evolution. Indeed, the interpretation I offer of the type discovery technology as representing ‘screening’
by social distance has the flavour of a matching process. This may be a fruitful area for further research.
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genetic level, and it is not obvious what determines “fitness” in a cultural context. A simple

way to make sense of this notion is to suppose that fitness payoffs are equivalent to material

success, which correlates with the ability of people of a certain preference type to persuade

others to adopt their ways, an idea I explore further in Chapter 3 of this thesis. However, we

need not assume this has to be the case: fitness payoffs may instead be taken to refer to some

other mechanism through which preference types reproduce.11

A difficulty for theories of preference evolution that appeal to observability of types is

that they are a form of “green beard” explanation.12 Imagine that some individuals inherit

a visible characteristic, such as having a green beard, and are predisposed to cooperate with

other green-bearded individuals. At first, they may enjoy a fitness advantage. Yet if nature

can generate mutually-cooperating types with green beards, there is no obvious reason why it

should not generate materialists with green beards, in effect making preferences unobservable.

However, there may in fact be a barrier to such imitation by materialists. For example,

suppose that observing a preference type does not involve observing a fixed visible trait, but

rather an inference made on the basis of interacting with others, e.g. through conversation. In

this case, observing preference types may be costly, but so too may be imitating a preference

type that is not one’s own. With this environment in mind, the green beard problem may be

a reason for extending observable-type models by making type observation a costly activity,

as in my model. The alternative approach would be to allow players to imitate types, as in

Wiseman and Yilankaya (2001), in whose model the population shares of types are cyclical.

Their work builds on that of Robson (1990).

In section 1.2, I present the model. In section 1.3, I define equilibrium play and impose

assumptions to select a unique equilibrium, which I then analyse. Section 1.4 deals with the

evolution of preferences given the unique equilibrium. Section 1.5 concludes the chapter.

11Dennett (1995) argues that cultural evolution and genetic evolution can be thought of as instances of the
same phenomenon; the mechanism through which cultural evolution takes place is much less readily identified,
however. A recent account of such a mechanism can be found in Boyd and Richerson (2009).

12The term “green beard” is due to Dawkins (1976).
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1.2 The model

1.2.1 Outline

A continuum [0, 1] of agents undergoes uniform random pairing to play a two-player symmetric

game Γ with action set {c, d}. The game Γ thus has four outcomes: (c, c), (c, d), (d, c) and

(d, d), where I adopt the labelling convention that the first entry is the action of player

i and the second that of player j 6= i where i, j ∈ [0, 1]. Denote an arbitrary outcome

z = (zi, zj) ∈ {c, d}2. Each player has a preference type. The game Γ specifies a set of

fitness payoffs over the four outcomes, and specifies a set of “subjective” payoffs – i.e. von

Neumann-Morgernstern (vNM) payoffs – for each preference type over the four outcomes.

1.2.2 Fitness payoffs

The fitness payoffs of the game Γ form a PD, as in Figure 1, where if an agent plays c (i.e.

she cooperates) then she incurs a cost (normalised to 1) in the form of a reduction in her own

fitness, but in so doing gives a fitness benefit b > 1 to her opponent.

Figure 1: Structure of fitness payoffs forming PD

Player 2
c d

Player 1
c b-1 , b-1 -1 , b
d b , -1 0 , 0

Playing d (i.e. defecting) is thus strictly dominant in fitness payoffs. Mutual cooperation

(i.e. action profile (c, c)) is efficient in fitness payoffs, since total fitness for the two players is

2(b− 1), which is greater that of (b− 1) from (c, d) or (d, c), which is in turn greater than the

total fitness of zero from the mutual defection profile (d, d).

For example, setting b = 3 yields the table of fitness payoffs in Figure 2.
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Figure 2: Example of fitness payoffs: b = 3

Player 2
c d

Player 1
c 2 , 2 -1 , 3
d 3 , -1 0 , 0

1.2.3 Research choices

In the model with technology (the “full” model), before agents undergo uniform random

pairing to play Γ, every player i makes a private “research choice” ri ∈ {p, p}, where the

baseline probability of type revelation p ∈ (0, p) and p ≤ 1. If ri = p we say that i does

research. The research choice ri is the probability with which i learns her opponent j’s

preference type. Define 4p := p− p ∈ (0, 1). In other words, 4p is the additional probability

an opponent’s type is revealed due to doing research.

The probability ri that i observes her opponent j ’s type is independent of whether j

observes i ’s preference type. Research choice ri imposes a fitness a cost k(ri) on i, where:

k(ri) =

0 ri = p

k ri = p

(1.1)

where, in turn, k > 0 is a constant. In the no-technology model, players do not make

a research choice. Instead, they simply undergo uniform random pairing whereupon every

player i learns her opponent j’s preference type with probability p, before playing Γ.

1.2.4 Preference types

All players in the full model have preferences over the research cost k(·) and the four possible

outcomes of the game Γ.13 These preferences can be represented by vNM utilities, called

13In the no-technology model, all players have preferences over the four possible outcomes of the game Γ. I
omit definitions of utility functions and strategies for the no-technology model as these are analogous to those
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“subjective payoffs”. For all agents, subjective payoffs from outcomes (c, d), (d, c) and (d, d)

are equal to the fitness payoffs, respectively−1, b and 0; the subjective payoff from the research

cost is fixed to be the fitness payoff−k(·).14 Player i has utility function ui : {c, d}2×[0, 1]→ R

from outcomes together with research costs to the reals.

Preference types are characterised by the remaining subjective payoff, that from outcome

(c, c). One preference type, known as the materialist preference type, is denoted M . All other

preference types, known as reciprocator preference types, are denoted θ, where θb − 1 is the

agent’s subjective payoff from (c, c). Let θ be a (reciprocator) preference type of player i.

Then her subjective payoffs can be written

ui(r, z) = uθ(r, z) = −k(r) +



θb− 1 if z = (c, c)

−1 if z = (c, d)

b if z = (d, c)

0 if z = (d, d)

(1.2)

where θ ≥ 1 + 1
bp

.15 The subjective payoffs of a materialist (type M) player can be written

ui(r, z) = uM(r, z) = −k(r) +



b− 1 if z = (c, c)

−1 if z = (c, d)

b if z = (d, c)

0 if z = (d, d)

(1.3)

in the full model, and the no-technology model is intended simply as an expositional aid in presenting the
results of the full model.

14Agents are thus risk-neutral with respect to gambles over research cost.
15While the condition θ ≥ 1 + 1

b is sufficient to ensure that a reciprocator finds c to be a best response to an
opponent’s playing c, I adopt the condition θ ≥ 1 + 1

bp to ensure there is an equilibrium in which cooperation

takes place at arbitrarily small reciprocator population shares. This in turn motivates the simple metric of
attainability that I use to characterise the evolutionary implications of the discovery technology. Specifically,
it permits the interpretation of attainability as the maximum population share which an arbitrarily small
invasion of reciprocators into a materialist population will attain under payoff-monotone fitness dynamics.
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Reciprocators are thus defined to be all players whose subjective payoff from (c, c) is at least

as great as that from (d, c). The set of all reciprocator types is denoted Θ(b, p) ≡ [1 + 1
bp
,∞),

with arbitrary element denoted θ ∈ Θ(b, p).

Figure 3: Structure of subjective payoffs for two players of type θ ∈ Θ(b, p)

Player 2
c d

Player 1
c θb− 1 , θb− 1 -1 , b
d b , -1 0 , 0

Figure 4: Example of subjective payoffs for two players of type θ = 2, where b = 3

Player 2
c d

Player 1
c 5 , 5 -1 , 3
d 3 , -1 0 , 0

If two reciprocators (i.e. two players with types θ ≥ 1 + 1
bp

) meet, the game they play is

therefore a coordination game in subjective payoffs.

I focus solely on distributions that contain at most two types, which are in general denoted

(θ,M, ε), where θ ≥ 1 + 1
bp

is the first type (a reciprocator type), M is the second type (the

materialist type) and ε ∈ [0, 1] is the population share of reciprocators. Recalling that the set

of players is modelled as the unit interval [0, 1], let [0, ε] represent those players of type θ –

the reciprocators – and let (ε, 1] represent those players of type M , the materialists.

1.2.5 Strategies

Fix a reciprocator type θ ≥ 1+ 1
bp

. Denote player i ’s strategy (ri(ε), ai(ε)). Denote a strategy

profile (r(ε), a(ε)) = (ri(ε), r−i(ε); ai(ε), a−i(ε)), where −i denotes all players other than i, so

that (r−i(ε), a−i(ε)) is the profile of strategies of all players other than i. Player i’s strategy

has two stages.
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Stage 1 strategy: research choice before playing Γ

The first stage ri(ε) is a mapping [0, 1] −→ {p, p} from type distributions to research choices.

In other words, an agent makes her research choice ri(ε) ∈ {p, p} with knowledge of the type

distribution, which is specified by ε ∈ [0, 1]. A first stage strategy profile (“research profile”)

is denoted r(ε) = (ri(ε), r−i(ε)). Players make their research choices simultaneously and they

do not observe other players’ research choices.

Stage 2 strategy: conditional action in Γ

In stage 2, i has three information sets: either she learns her opponent is a reciprocator,

she does not learn her opponent’s type or she learns her opponent is a materialist.16 Define

player i’s conditional action vector to be a triple ai = (aθi , a
0
i , a

M
i ) ∈ [0, 1]3, where aθi ∈ [0, 1]

is the probability with which i plays c (i.e. cooperates) after receiving information that the

opponent is of (reciprocator) type θ, a0
i ∈ [0, 1] is the probability she plays c after receiving

no information about the opponent’s preference type and aMi ∈ [0, 1] is the probability she

plays c after receiving information that the opponent is a materialist. The components of

i’s conditional action vector ai, i.e. aθi , a
0
i and aMi , are known as i’s conditional actions. To

save on notation, when denoting pure conditional action vectors I will simply write the triple

(1, 0, 1) as cdc, and so on.

The second stage of i’s strategy, ai(ε), is a mapping [0, 1] −→ [0, 1]3 from type distributi-

ons to conditional action vectors.17 The type distribution from which a player’s opponent is

16In the model, players do not condition their second stage strategies on their first stage actions. Making this
simplification does not change the set of distributions over outcomes in Γ that can be induced in equilibrium
for a pair of players, compared with the alternative of allowing such conditioning. This can be proved simply,
as follows. Suppose contrary to the model that players do in fact condition their second stage strategies on
their first stage actions, so that stage 2 strategies are mappings [0, 1] × [0, 1] −→ 4{[0, 1]3} from first stage
actions and type distributions to conditional actions. The equilibrium condition that applies to second stage
strategies is condition 2. However, this condition is independent of i’s first stage action (research choice) ri.
Consequently, if i knows she is off the equilibrium path in stage 2 (having made a research choice that is
not played in equilibrium), her optimal continuation strategy is the same as it would be on the equilibrium
path. Hence constraining stage 2 strategies to be mappings [0, 1] −→ 4{[0, 1]3} from type distributions to
conditional actions does not restrict the set of equilibrium second stage conditional action profiles.

17In the no-technology model, this is i’s entire strategy.
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selected (under uniform random matching) is assumed to be the same for all agents indepen-

dent of the agent’s preference type and research choice. A profile of conditional action vectors

– or conditional action profile – is denoted a(ε) ≡ (ai(ε), a−i(ε)). Given such a profile, and

fixing the preference type distribution (θ,M, ε), define

aθ(ε) :=
1

ε

ε̂

i=0

ai(ε) di (1.4)

aθ(ε) the expectation of all the conditional action vectors played by reciprocators. This

is because reciprocators are those players of type θ, whom we recall are indexed by i ∈ [0, ε].

The right hand side of (1.4) integrates over just those players in [0, ε], with a normalisation

factor of 1/ε, and thus gives the expected conditional action among these players. If a player

knows her opponent is a reciprocator, she believes her opponent’s expected conditional action

vector to be aθ(ε). As the vector aθ(ε) takes expectations over 3× 1 vectors, it is itself a 3× 1

vector. Its first element, aθθ(ε) ∈ [0, 1], is for example the expected probability with which c

is played by a reciprocator conditional on meeting another reciprocator.

Similarly, define

aM(ε) :=
1

1− ε

1̂

i=ε

ai(ε) di (1.5)

aM(ε) is the expectation of all the conditional action vectors played by materialists. Define

a0(ε) := εaθ(ε) + (1− ε)aM(ε) =

1̂

i=0

ai(ε) di (1.6)

a0(ε) is thus the expected conditional action vector played by an opponent of unknown

type given the conditional action profile a(ε). Given a0(ε), the element aM0 (ε) ∈ [0, 1], for

example, is the expected probability with which c is played by a randomly chosen player

conditional on meeting a materialist.

Finally, define
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rθ(ε) :=
1

ε

ε̂

i=0

ri(ε)di (1.7)

and

rM(ε) :=
1

1− ε

1̂

i=ε

ri(ε)di (1.8)

rθ(ε) and rM(ε) are the average research choices made by reciprocators and materialists

respectively at ε ∈ [0, 1]. By construction, for any ε ∈ [0, 1], rθ(ε) ∈ [p, p] and rM(ε) ∈ [p, p].

When it comes to considering relative fitness in an evolutionary setting, I assume throug-

hout (as is standard in the literature) that any learning happens in a short amount of time

compared to the underlying evolutionary process, so that the fitness of any preference type

in the population can be calculated on the basis that players’ strategies are always in (Bayes-

Nash) equilibrium.18 Bayes-Nash equilibrium is the appropriate solution concept here, as

opposed to Perfect Bayesian Equilibrium (PBE), due to two features of the game. The first

feature is that players do not observe each other’s actions in the first stage, and move si-

multaneously in the second stage, and so a player gains no additional information from the

first stage with which she can update her beliefs about her opponent’s type when she co-

mes to play in the second stage. The second relevant feature of the game is that all players

have a correct prior belief about the type distribution ex ante. These two features uniquely

determine players’ beliefs for each information set in the second stage. Consequently, the

equilibrium condition of consistency for PBE would be redundant; PBE would not refine the

set of Bayes-Nash equilibria in this game.

In order to define (Bayes-Nash) equilibrium, first, for any pair of conditional actions

(ai, aj) ∈ [0, 1]2, define player i’s value vi(ai, aj) as follows.

18Like the assumption that agents always know the distribution of types, the assumption that they play in
equilibrium gives a tractable way of modelling optimal behaviour that has been learned on a short timescale
in evolutionary terms.
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vi(ai, aj) := aiajui(c, c) + ai(1− aj)ui(c, d) + (1− ai)ajui(d, c) + (1− ai)(1− aj)ui(d, d) (1.9)

Player i’s value is her interim expected utility when she and her opponent play conditional

actions ai and aj respectively, i.e. cooperate with probabilities ai and aj respectively. The

right hand side of (1.9) is the sum of i’s expected utility for each outcome weighted by

the probability of each outcome occurring in this situation. Note that vi(ai, aj) is strictly

increasing in aj for fixed ai. This is a defining feature of a PD: whatever action i plays, she

is better off in expectation the more likely j is to cooperate.

The definition of value via (1.9) can be used to characterise i’s continuation value at each

of her information sets, given a second stage strategy profile a(ε). Suppose i is a reciprocator,

with type θ ∈ Θ.19 Define i’s continuation value on observing a reciprocator, vθi (r(ε), a(ε)),

as follows.

vθi (r(ε), a(ε)) := rθ(ε)vi(a
θ
i (ε), a

θ
θ(ε)) + (1− rθ(ε))vi(aθi (ε), a0

θ(ε)) (1.10)

The first term on the right hand side of (1.10) is the product of rθ – the expected probability

with which j learns i’s type – and i’s value from playing aθi (ε) when her reciprocator opponent j

learns i is a reciprocator. The second term on the right hand side of (1.10) is the probability

the reciprocator opponent does not learn i’s type multiplied by i’s value from playing aθi (ε) in

this situation. A notable property of vθi (r(ε), a(ε)) is that it is strictly increasing in aθθ(ε) and

a0
θ(ε) for fixed rθ(ε) because vi(ai, aj) strictly increases in aj. Player i’s continuation value

on observing a materialist, vMi (a(ε)), is analogously defined.

vMi (r(ε), a(ε)) := rM(ε))vi(a
M
i (ε), aθM(ε)) + (1− rM(ε))vi(a

M
i (ε), a0

M(ε)) (1.11)

Finally, player i’s continuation value when not learning her opponent’s type, v0
i (a(ε)), is

defined as follows.

19Definitions of continuation values in the case that i is a materialist type are closely analogous to those
where she is a reciprocator, and are hence omitted for the sake of clarity.
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v0
i (ε, r(ε), a(ε)) := ε(rθ(ε)vi(a

0
i (ε), a

θ
θ(ε)) + (1− rθ(ε))vi(a0

i (ε), a
0
θ(ε))

+ (1− ε)(rM(ε)vi(a
0
i (ε), a

θ
M(ε)) + (1− rM(ε))vi(a

0
i (ε), a

0
M(ε))

(1.12)

The continuation value v0
i (ε, r(ε), a(ε)) is the convex combination of i’s value when unkno-

wingly meeting a reciprocator, and that when unknowingly meeting a materialist, with the

respective weights ε and (1− ε) those of the population shares of reciprocators and materia-

lists. Like the continuation value on observing a reciprocator vθi (r(ε), a(ε)), the continuation

value when not learning the opponent’s type v0
i (ε, r(ε), a(ε)) is strictly increasing in aθθ(ε) and

a0
θ(ε) for fixed rθ(ε).

The expressions for i’s value at each of her three information sets in stage 2 allow us to

define player i’s ex ante expected utility Eui[ε, r(ε), a(ε)] induced at ε by (r(ε), a(ε)):

Eui[ε, r(ε), a(ε)] := ri(ε)ε[v
θ
i (r−i(ε), a(ε))] + ri(ε)(1− ε)[vMi (r−i(ε), a(ε))]

+(1− ri(ε))v0
i (ε, r−i(ε), a(ε))− k(ri(ε))

(1.13)

The first term on the right hand side of (1.13) is i’s continuation value (given (r(ε), a(ε)))

when she discovers that her opponent is a reciprocator, multiplied by ri(ε)ε, the probability of

reaching that information set (since ri(ε) ∈ {p, p} is the probability with which she discovers

her opponent’s type, and ε is the probability that her randomly matched opponent is a reci-

procator). The second term is her continuation value of observing a materialist multiplied by

the probability of reaching that information set, ri(ε)(1−ε). The third term on the right hand

side of (1.13) is her continuation value when not learning her opponent’s type, multiplied by

(1− ri(ε)), the probability with which she does not learn her opponent’s type. The final term

arises from the cost of research.

Substituting the two possible values of ri(ε) ∈ {p, p} into (1.13) and taking the difference

immediately yields an optimality condition with respect to i’s research choice. Denote by

∆r
i (ε, r−i(ε), a(ε)) i’s incentive to do research at ε given strategy profile (r(ε), a(ε)), defined
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as follows.

∆r
i (ε, r−i(ε), a(ε)) :=

4p
(
εvθi (r−i(ε), a(ε)) + (1− ε)vMi (r−i(ε), a(ε))− v0

i (ε, r−i(ε), a(ε)
)
− k

(1.14)

The first term on the right hand side of (1.14) represents the increase in continuation

value given the conditional action profile in stage 2 as a result of changing the probability

distribution over information sets due to doing research. Specifically, it is the product of (a)

the increase in probability of observing the opponent’s type from doing research, 4p, and (b)

the difference between the expected continuation value when learning the opponent’s type,

ε[vθi (r−i(ε), a(ε))] + (1 − ε)[vMi (r−i(ε), a(ε))], and the continuation value when not learning

the opponent’s type, v0
i (ε, r−i(ε), a(ε)). The second and final term is simply the cost of doing

research. Player i finds it optimal to do research iff ∆r
i (ε, r−i(ε), a(ε)) ≥ 0. Her incentive to

do research is increasing in her continuation values at the two information sets at which she

learns her opponent’s type and decreasing in the continuation value at the other information

set.

A strategy profile (r(ε), a(ε)) ≡ (ri(ε), r−i(ε), ai(ε), a−i(ε)) is an equilibrium if, for any

ε ∈ [0, 1], any player i ∈ [0, 1], for any conditional action vector a′ ∈ [0, 1]3 and for any

research choice r′ ∈ {p, p}, the following two inequalities hold.20

1. Eui[ε, ri(ε), r−i(ε), ai(ε), a−i(ε)] ≥ Eui[ε, r
′, r−i(ε), a(ε), a−i(ε)]

2. Eui[ε, ri(ε), r−i(ε), ai(ε), a−i(ε)] ≥ Eui[ε, ri(ε), r−i(ε), a
′, a−i(ε)]

Condition 1 requires that when players simultaneously make their research choices in stage

1, whatever the reciprocator population share ε ∈ [0, 1], the expected utility any player i

receives from playing ri(ε) must be weakly greater than that from research choice r′ ∈ {0, 1},
20The definition of equilibrium, and that of a strategy profile, is over all ε ∈ [0, 1]. As equilibrium conditions 1

and 2 apply at each ε ∈ [0, 1] independently, I will in general talk about equilibrium selection and characterise
equilibria at a particular ε ∈ [0, 1] or for intervals of ε, on the understanding that properly speaking, this
identifies the class of all strategy profiles that meet the two equilibrium conditions and are as characterised at
the particular value or interval of ε.
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taking into account both the induced distribution over outcomes of Γ and research costs.

In other words, given i’s second stage strategy ai(ε) and the other players’ strategy profile

(r−i(ε), a−i(ε)), there cannot be any profitable deviation for i in terms of first stage research

costs, whatever the preference type distribution. Condition 2 requires that i’s expected utility

be maximised by her conditional action vector in stage 2.21

Remark 1.1 A property of condition 2 that simplifies equilibrium analysis is that it is inde-

pendent of i’s own research choice ri(ε). The condition is equivalent to requiring that each

component of ai(ε) maximise i’s expected utility at her respective information sets, which

does not depend on her research choice. Because of this property, we know that if a player

were off the equilibrium path after stage 1, it would still be optimal for her to play her stage

2 equilibrium strategy. In other words, condition 2 implies that on learning her opponent is

a reciprocator, in expectation aθi (ε) must be better than any alternative conditional action

a′ ∈ [0, 1], and similarly for a0
i (ε) and aMi (ε) at their respective information sets.22

In general, there may be zero, one or many equilibrium strategy profiles in the second

stage, depending on parameter values. As a consequence, in studying optimal behaviour in

the next section, I deal with equilibrium selection. The equilibrium played is uniquely selected

by requiring that reciprocators do maximal cooperation, along with two technical tie-breaking

assumptions. In this equilibrium, all players of a type play the same pure strategy. Because

the indirectly evolutionary framework involves a continuum of players, and because my model

endogenises the probability of type revelation, which requires a sequential game, it takes some

work to derive the unique equilibrium formally. Much of the material in subsections 1.3.1, 1.3.2

and 1.3.3 is devoted to this task, which I undertake for the sake of generality. Specifically, those

subsections establish that a pure strategy equilibrium symmetric with respect to preference

21In the no-technology version of the model, the only play is in stage 2 and so equilibrium condition 1 does
not apply. Equilibrium condition 2 then applies with fixed research choices rj = p for all players j ∈ [0, 1].

22By the definition of ex ante expected utility in (1.13), the requirement in respective of aθi (ε) is formally
that for any ε ∈ [0, 1] and any a′ ∈ [0, 1], rθvi(a

θ
i (ε), a

θ
θ(ε)) + (1− rθ(ε))vi(aθi (ε), a0θ(ε)) ≥ rθvi(a′, aθθ(ε)) + (1−

rθ(ε))vi(a
′, a0θ(ε)), which, by inspection, is independent of i’s research choice ri(ε).
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type is played, which is the starting point for subsection 1.3.4.23

1.3 Equilibrium analysis

This section characterises equilibrium play in a population comprising reciprocators and ma-

terialists. Throughout, let a pair of preference types θ ∈ Θ(b, p) and M be fixed.

1.3.1 Materialists’ strategies

As d is the strictly dominant second-stage action for the materialist type, then for the recipro-

cator type, if i ’s opponent is revealed to i to be a materialist, i ’s optimal action is also to play

d. It follows that a materialist’s expected subjective payoff is decreasing in her research choice

r, since research is costly; materialists can do no better than to set rM = p. This result is a

specific instance of the following necessary condition, which holds for any type distribution.

Lemma 1.1 In any equilibrium, if for any player i, aθi (ε) = a0
i (ε) = aMi (ε), then ri(ε) = p.

Proof : The result follows straightforwardly from observing (i) that the opponent j’s

strategy is independent of ri; (ii) i’s optimal second stage action is independent of whether i

learns j’s type; and (iii) arg min
r∈{p,p}

{k(r)} = p, i.e. ri = p uniquely minimises costs for i . �

Lemma 1.1 says that if a player’s optimal second stage strategy is to play some fixed action

regardless of information about her opponent’s type, then her optimal research choice is zero.

Research can only be valuable to an agent by raising the likelihood that an agent will learn

her opponent’s type before playing her action. If information does not influence an agent’s

optimal action choice then costly research cannot be optimal.

Recall that player i’s conditional action vector ai is a triple of second-stage actions, with

the first element the action in case the opponent is revealed to be the reciprocator type θ,

23An alternative approach would be simply to assume that a pure strategy equilibrium symmetric with
respect to preference type is played. Subsections 1.3.1, 1.3.2 and 1.3.3 establish that such an assumption is
implied by Assumption 1.1 (which assumes maximal coordination by reciprocators).
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the second element the action if the opponent’s type is not revealed and the third element

the action if the opponent is revealed to be type M . The triple ddd thus refers to the pure

conditional action to play d whatever information there is on the opponent’s type, for example.

In similar fashion, ccd is the conditional action to play c (with probability 1) conditional on

no information, c if the opponent is seen to be a reciprocator and d if one’s opponent is seen

to be a materialist.

From Lemma 1.1, we have the following result.24

Lemma 1.2 Fix a pair of preference types θ ∈ Θ(b, p) and M . Then, in any equilibrium,

rM(ε) = 0 and aM(ε) = ddd for all ε ∈ [0, 1].

Proof : Fix an arbitrary value of ε ∈ [0, 1]. As d is a strictly dominant action for M in Γ

by construction, aM(ε) = ddd in any equilibrium. Lemma 1.1 then implies that ri = p for all

i with type θ, and so by (1.8), rM(ε) = p for any ε ∈ [0, 1]. �

Having established materialists’ equilibrium strategy, let us move on to reciprocators’

strategies and equilibrium selection.25

1.3.2 Selecting among equilibria

Recall that reciprocator types are θ ≥ 1 + 1
bp

. Reciprocators face a coordination problem,

explained as follows. Take a pairing of two reciprocators, and suppose that each player knows

their opponent is a reciprocator. Furthermore, suppose each believes it is highly likely that

their own type has been revealed to their opponent. Even in this situation, however, a player

may fear that her opponent does not trust her to play c, in which case she believes her

opponent’s rational response is to play d, and so her own rational action is also to play d.26

24An immediate consequence of Lemma 1.2 is that in any equilibrium a(ε), the continuation value on meeting
a materialist vMi (r(ε),a(ε)) = 0, for any player i ∈ [0, 1].

25Rather than prove the existence of equilibrium in general before discussing equilibrium selection, I wait
until subsection 1.3.4 to demonstrate the existence of different symmetric pure-strategy equilibria.

26Failure of coordination due to mutual distrust, which becomes self-reinforcing, is sometimes known as
“Schelling’s dilemma”, after Schelling (1960).
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In order to rule out situations of this kind, first let us define the average ex ante expected

utility among reciprocators E[uθ(ε, r(ε), a(ε))] induced at population share ε by strategy pro-

file (r(ε), a(ε)), as follows.

Euθ[ε, r(ε), a(ε)] :=
1

ε

ε̂

i=0

Eui[ε, r(ε), a(ε)] di (1.15)

It will also be useful to define i’s incentive to cooperate given aj, 4c
i(aj), as follows.

4c
i(aj) := vi(1, aj)− vi(0, aj) (1.16)

When facing an opponent j who plays aj in expectation, i finds it optimal to cooperate iff

4c
i(aj) ≥ 0. Substituting from (1.9) yields

4c
i(aj) = aj(ui(c, c)− ui(d, c)) + (1− aj)(ui(c, d)− ui(d, d)) (1.17)

Recall that for all players, ui(d, d) > ui(c, d). In addition, for reciprocators, by definition

ui(c, c) ≥ ui(d, c). Equation (1.17) therefore establishes that the incentive to cooperate is

strictly increasing in aj if i is a reciprocator. This property is unsurprising; reciprocators rank

mutual cooperation as the best outcome of Γ while they rank cooperating with a defector as

the worst, so the return on cooperation is higher the more likely the opponent is to cooperate.

The following assumption ensures maximal cooperation among reciprocators.27

Assumption 1.1 If Euθ[ε, r(ε), a(ε)] > Euθ[(ε, r(ε), ā(ε)] where (r(ε), a(ε)) and (r(ε), ā(ε))

are equilibria, then (r(ε), ā(ε)) is not played. Subject to this, if a player is indifferent between

27I also make the (minor) assumption, to ensure a unique equilibrium is selected, that at ε = 0, if aθ(0) = cdd
can be played in equilibrium, it is. The tie-breaking rule in Assumption 1.1 that indifferent players cooperate is
needed to ensure that a unique (stage 2) conditional action profile is always selected, as the following example
makes clear. Let (r(ε),a(ε)) be an equilibrium in which all reciprocators cooperate at a given information
set (e.g. conditional on no information about the opponent’s type) at a certain value of ε, and suppose they
are indifferent in doing so. Now consider a second-stage profile a′(ε) under which, at ε, a finite number
of players defect for sure, but which otherwise is the same as a(ε). Then the new stage 2 strategy profile
a′(ε) meets equilibrium condition 2, and as aθ(ε) (which takes expectations over the second stage strategy
profile) is unchanged, equilibrium condition 1 still holds true for r(ε). In this case the equilibrium-constrained
maximisation of aθθ and a0θ would not select between (r(ε),a(ε)) and the latter equilibrium. The second tie-
breaking rule, requiring that any player in indifferent between doing research or not in stage 1 do research,
addresses an analogous issue, and is used in the proof of Lemma 1.4.
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cooperating and not at any information set, then she cooperates. If a player is indifferent

between doing research and not, she does research.

Assumption 1.1 says that reciprocators always coordinate with each other in stage 2 as

much as it is possible for them to do so with no profitable unilateral deviations. Equivalently,

this means that cooperation is maximised. To show this equivalence, let us take reciprocator i’s

strategy as fixed, and fix arbitrary ε ∈ [0, 1]. Her ex ante expected utility is strictly increasing

in the ex ante probability rθ(ε)a
θ
θ(ε)+(1−rθ(ε))a0

θ(ε) with which she can expect a reciprocator

opponent to cooperate (recalling that by Lemma 1.2, materialists never cooperate). It fol-

lows that if there are two equilibria (r(ε), a(ε)) and (r(ε), ā(ε)) such that Euθ[ε, r(ε), a(ε)] >

Euθ[(ε, r(ε), ā(ε)], then rθ(ε)a
θ
θ(ε) + (1 − rθ(ε))a0

θ(ε) > rθ(ε)a
θ
θ(ε) + (1 − rθ(ε))a0

θ(ε). In ot-

her words, more cooperation happens in the former equilibrium. Assumption 1.1 yields the

following Lemma.28

Lemma 1.3 At any given ε ∈ [0, 1], either aθ(ε) = ddd, aθ(ε) = cdd or aθ(ε) = ccd.

Proof : See Appendix A.1. The fact Assumption 1.1 implies that symmetric pure strategy

profiles are played is not surprising given the ex ante symmetry of the two-stage game with

respect to players of a given type. The fact that aθi (ε) ≥ a0
i (ε) is also to be expected, as a

player’s continuation value at the information set where she does not learn her opponent’s

type is a convex combination of her continuation values at her other two information sets, and

vMi (a(ε)) = 0 in any equilibrium.

1.3.3 Constrained-optimal research choices for reciprocators

Having considered the incentive to cooperate, I now consider how an individual reciprocator’s

incentive to do research depends on the research choices that other reciprocators make. To

this end, take the partial derivative of ∆r
i (ε, r−i(ε), a(ε)) with respect to rθ(ε) for fixed ε,

rM(ε) and a(ε), as follows.

28Lemma 1.3 relies on the fact that all reciprocators are of a single preference type θ; it would not hold in
the case of a distribution with support from two or more types in Θ(b, p).
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∂∆r
i (ε, r−i(ε), a(ε))

∂rθ(ε)
= ε4p

(
[v(aθi , a

θ
θ)− v(aθi , a

0
θ)]− [v(a0

i , a
θ
θ))− v(a0

i , a
0
θ))]
)

(1.18)

To interpret (1.18), first recall from (1.14) that i’s incentive to do research, net of the cost

of research, can be expressed as the product of 4p and the difference between the expected

value if the opponent’s type is known, εvθi (r−i(ε), a(ε)) + (1 − ε)vMi (r−i(ε), a(ε)), and that

when it is unknown, v0
i (ε, r−i(ε), a(ε)). Now consider a small increase in rθ(ε), the average

research done by reciprocators. This increases the chance that a reciprocator opponent ob-

serves i’s type θ and hence that the opponent plays aθθ rather than a0
θ. Player i’s value at

the information set where she learns her opponent is a reciprocator, vθi (r−i(ε), a(ε)), therefore

increases in proportion to the difference v(aθi , a
θ
θ)− v(aθi , a

0
θ). In similar fashion, a small incre-

ase in rθ(ε) increases i’s value at the information set where she does not learn her opponent’s

type. Specifically, v0
i (r−i(ε), a(ε)) increases in proportion to the difference v(a0

i , a
θ
θ)−v(a0

i , a
0
θ)

multiplied by the probability ε ∈ [0, 1] that i is paired with a reciprocator. The partial deri-

vative
∂∆r

i (ε,r−i(ε),a(ε))

∂rθ(ε)
thus represents the increase in expected value when the opponent’s type

is known minus the increase in expected value when it is not known.

Assumption 1.1 yields the following result, which will enable a tractable characterisation

of equilibria by different regions of parameter values.

Lemma 1.4 For any share of reciprocators ε ∈ [0, 1], either rθ(ε) = p or rθ(ε) = p.

Proof : See Appendix A.1. Lemma 1.4 says that whichever equilibrium second strategy

profile is played, either all reciprocators do research, or none do. The result follows from

Assumption 1.1 and the fact that reciprocators’ research choices are weak complements: if it

is optimal for one reciprocator to do research given second stage strategies, then it is optimal

for all of them to do research.

Remark 1.2 Assumption 1.1 ensures that the research profile played maximises the ex ante

probability of mutual cooperation for a given second stage strategy profile, just as it ensures
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that the second stage profile played maximises the probability of mutual cooperation. If

aθ(ε) = ddd, then cooperation never takes place, so any research profile trivially maximises

cooperation. If aθ(ε) = ccd, then the level of mutual cooperation is independent of research,

since mutual cooperation can only happen when two reciprocators meet, and they will always

cooperate when they meet regardless of whether they observe each other’s type. Finally, if

aθ(ε) = cdd then mutual cooperation only takes place if two reciprocators meet and observe

each others’ types. This happens with probability rθ(ε)
2, so selecting the research profile that

maximises rθ(ε) maximises the ex ante probability of mutual cooperation.

1.3.4 Characterising equilibria

I now show that the assumption reciprocators can coordinate their strategies determines a

unique equilibrium, which I characterise. Recall that as all materialists do no research and

play ddd, an equilibrium can be identified by specifying reciprocators’ strategies only. Lemmas

1.3 and 1.4 together imply that any given reciprocator population share ε ∈ [0, 1], aθ(ε) = ddd,

aθ(ε) = cdd or aθ(ε) = ccd and rθ(ε) = p or rθ(ε) = p. Lemma 1.1 rules out the possibility

that (rθ(ε), aθ(ε)) = (p, ddd), so there are five possible equilibria (rθ(ε), aθ(ε)) to consider: (i)

(p, ddd); (ii) (p, cdd); (iii) (p, cdd); (iv) (p, ccd); and (v) (p, ccd).29

Applying the selection criteria of Assumption 1.1 to the candidate equilibria determines a

unique equilibrium, as summarised in Proposition 1.1.

Proposition 1.1

1. With or without a technology, reciprocators blindly cooperate (i.e. play aθ(ε) = ccd) iff

their population share ε ≥ 1
(θ−1)b

; otherwise, they play aθ(ε) = cdd.

2. With a technology, reciprocators do research iff k
4p ≤ 1− 1

(θ−1)b
and ε ∈ [ε′, ε′′] ⊂ [0, 1],

where ε′′ ≥ 1
(θ−1)b

and ε′ < 1
(θ−1)b

.

29Furthermore, by the tie-breaking rules in Assumption 1.1, if (rθ(ε),aθ(ε)) = (p, cdd) then the equilibrium
played is the one in which all reciprocators (not just any set of reciprocators of measure 1) play r(ε) = p and
a(ε) = cdd, and so on for the other cases.
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Proof : See Appendix A.1. Proposition 1.1(1) says that reciprocators blindly cooperate

when their population share is large enough, and that the population share at which this

happens – the free-riding threshold – is inversely proportional to (θ − 1)b. It follows that

the higher the benefit from one’s opponent cooperating, the lower the free-riding threshold.

Equally, the higher the subjective benefit from mutual cooperation, the lower the free-riding

threshold. The free-riding threshold is the point at which ε(θb − b), the expected net bene-

fit from mutual cooperation with other reciprocators that arises if all reciprocators blindly

cooperate, equals one, the gross cost of cooperation.

Notably, the free-riding threshold is independent of the cost of research k, the baseline

probability of type revelation p and the probability of type revelation induced by research p.

In short, reciprocators’ decision to blindly cooperate is unaffected by the discovery techno-

logy. The reason for this is that the decision to blindly cooperate relates to the information

set at which a player does not learn her opponent’s type, whereas the discovery technology

determines how likely this information set is to be reached.

Proposition 1.1(2) says first that reciprocators do research if the effective cost of research

k
4p – i.e. the cost of research k scaled by the extent 4p to which research increases type

revelation probability – is low enough. For very high reciprocator types, i.e. high values of θ,

the effective cost of research k
4p can be almost equal to one while making research optimal.

This is because very high types blindly cooperate at low population shares, in which case

doing research reduces the expected chance of being free-ridden by almost 4p. In the case

of low reciprocator types, in contrast, the effective cost of research must be lower, with the

“correction term” equal to the ratio between the cost of cooperation (equal to one) and the

expect net benefit of cooperation of (θ−1)b. Proposition 1.1(2) then says that research is done

over a contiguous interior interval of population shares. This is because at high population

shares, where reciprocators blindly cooperate, their incentive to do research decreases in their

population share, while at low population shares, where reciprocators blindly defect, their

incentive to do research increases in population share.
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Remark 1.3 One way of interpreting the use of the discovery technology is that individu-

als interrogate each other or ask around to find out about a potential partner’s reputation,

thereby hoping to discern their character (i.e. whether they have pro-social preferences). An

alternative interpretation is that individuals’ use of the discovery technology is done by ‘scree-

ning’ opponents by social distance. Social distance is a concept from sociology (see Simmel,

1950; for an early attempt to measure social distance, see Bogardus, 1924). It is a symme-

tric relation between individuals or groups, comprising a collection of features observable or

discernible to both entities such as language(s) spoken, gender, social class, ethnicity, religion

and nationality. Under this interpretation, players can adopt a policy of refusing to interact

with others unless they are ‘close enough’ socially, as this improves the probability with which

they discover their opponent’s preferences. The cost involved can therefore be thought of as

a form of search cost.

Figure 5: Equilibrium played by reciprocators for different values of k and ε, where θ = 2,
b = 2, p = 1

2
and p = 1.

Figure 5 illustrates the equilibrium played for selected parameter values. Going from left
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to right in the (ε, k) plane at a given height in the diagram traces increasing reciprocator

population share ε, while descending represents decreasing the cost of research k
4p . The

vertical line at ε = 1
2

is the free-riding threshold 1
(θ−1)b

, to the right of which reciprocators

blindly cooperate. The region formed by the triangle with bottom edge given by the horizontal

axis is where research takes place; the incentive to do research where reciprocators blindly

defect is increasing in reciprocator population share since research is more likely to yield

cooperation the higher the value of ε. Reciprocators will therefore find it worthwhile to do

research at higher costs as their population share increases to the left of the vertical line at

ε = 1
2
. To the right of this line, the maximum tolerable research cost is downward-sloping in

reciprocator population share, as the value of research lies in preventing being free-ridden by

materialists.

Figure 6: Equilibrium played by reciprocators for different values of k and ε, where θ = 3,
b = 2, p = 1

2
and p = 1.

Figure 6 shows what happens for a higher reciprocator type, i.e. one which derives greater

utility from mutual cooperation than the type in Figure 5. The free-riding threshold 1
(θ−1)b

is

further to the left, as higher types find the additional mutual cooperation brought about by
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blind cooperation more attractive for a given risk of being free-ridden. (Recall that materialists

are only able to free-ride to the right of the vertical line at 1
(θ−1)b

= 1
4
.) At the free-riding

threshold, where the incentive to do research is strongest, reciprocators of this higher type

(θ = 3) tolerate higher research costs than do the lower type (θ = 2) of Figure 5. Note that

the upper boundary of the triangular region on the left hand side, in which reciprocators play

(p, cdd), has a steeper upper boundary than before, because the higher type is willing to pay

more to use the discovery technology. In contrast, the downward sloping line to the right

of the vertical line, representing the maximum cost reciprocators are prepared to pay to use

the technology when they blindly cooperate, has the same slope as in figure 5, since doing

research in this region has the sole purpose of reducing the risk of being free-ridden, for which

all types suffer the same disutility.

Figure 7: Equilibrium played by reciprocators for different values of k and ε, where θ = 2,
b = 2, p = 1

2
and p = 3

4
.

Figure 7 returns to the case that θ = 2 but now considers what happens when the type

discovery technology is less effective: specifically, p = 1
2

as before, but p = 3
4
, less than before,

so that 4p = 1
4
. In this case, one clear effect is that k, the cost of research, now represents
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a lower effective cost of research k
4p , and so reciprocators will not tolerate such high research

costs as before. Another, more subtle, effect is that in the region where reciprocators blindly

defect, their tolerance of research costs is reduced even further than in the region where they

blindly cooperate. This is because their incentive to do research is driven by their subjective

payoff from mutual cooperation, which is larger in magnitude than the disutility from being

free-ridden that underpins the incentive to do research in the region on the right hand side.

As such, their tolerance of costs is more sensitive to a reduction in p in the region on the left

hand side.

Importantly, in the full model, the free-riding threshold 1
(θ−1)b

is independent of the choice

of parameter values k > 0, p ∈ (0, p) and p ∈ (p, 1). It is exactly the same as the free-riding

threshold in the no-technology model. In the no-technology model, there is a simple reason

why the free-riding threshold is independent of p: if all reciprocators play ccd at some ε ∈ [0, 1],

then whether a reciprocator finds it optimal to deviate to playing a0
i (ε) = d (i.e. uninformed

defection) depends only on her incentives when she does not learn her opponent’s type. The

probability of type revelation only determines how likely she is to reach this information set,

not her incentives when she arrives at it.

However, in the full model, the fact 1
(θ−1)b

is independent of k, p and p is by no means

obvious. Continuing to suppose all reciprocators play ccd, research is optimal iff ε ≤ 1− k
4p .

Equally, the values of k and 4p determine whether doing research would be optimal were a

reciprocator to deviate to play cdd. In other words, at the information set where a reciprocator

does not learn her opponent’s type, we need to take all the possible incentives to deviate into

account, including those pure strategies that entail changing research choice. Indeed, at large

reciprocator population shares research will not be valuable when playing ccd (since the risk

of free-riding is low) but will be especially valuable in facilitating cooperation if deviating to

cdd. Conversely, at low population shares, research will be highly valuable when playing ccd

but not if deviating to cdd. While the incentives to do research are different at either side of

the free-riding threshold, this difference does not affect the free-riding threshold itself.
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1.4 Attainable type distributions

In this section, I introduce the concept of attainability to analyse how a discovery technology

affects the evolution of a preference for reciprocity. I then characterise the attainability of

different preference type distributions, given the unique equilibrium identified in Proposition

1.1. To keep things simple, I do not specify evolutionary dynamics, but rather I examine the

maximum population share an arbitrarily small initial share of reciprocators will reach under

payoff-monotone dynamics.

1.4.1 Definition of attainability

The indirect evolutionary approach typically involves identifying stable type distributions, i.e.

those that are resilient against mutation, in some suitably-defined sense. Stability conside-

rations also provide a basis for considering the dynamics of some specified type distribution

of interest. Dekel, Ely and Yilankaya (2007) characterise a concept of stable configuration.

Informally speaking, this is a distribution of preference types together with a Bayesian Nash

equilibrium in which (i) all types present in the distribution receive the same fitness payoffs,

and (ii) no small invasion of a new preference type can move the configuration “far away”.

Condition (ii) requires that the fitness of any new preference type not exceed that of the

incumbents. It also requires that following an invasion, there is an equilibrium in which be-

haviour is not drastically different, in a sense made formal in the paper. As I have already

imposed restrictions to select unique equilibria given any type distribution, and focus solely on

two-type distributions, I am able to adopt a simpler notion of attainability that takes account

of the particular form of equilibria characterised in the previous section.

To define this concept, first fix a distribution (M, θ, ε) and define by Fθ(ε, rθ(ε), aθ(ε)) the

expected fitness that a player of type θ receives in (M, θ, ε) given the uniquely selected equili-

brium (rθ(ε), aθ(ε)) specified in Proposition 1.1 and given that materialists play (p, ddd).30 Si-

30Algebraic expressions for Fθ(ε, p, cdd), Fθ(ε, p, ddd) and Fθ(ε, p, ccd) and Fθ(ε, p, ccd) are given in sub-
section 1.4.2.
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milarly define by FM(ε, rθ(ε), aθ(ε)) the expected fitness that a materialist receives in (M, θ, ε)

given that reciprocators play (rθ(ε), aθ(ε)), and given that materialists play (p, ddd). Define

the relative fitness 4F (ε, rθ(ε), aθ(ε)) as follows.

4F (θ, ε, rθ(ε), aθ(ε)) := Fθ(ε, rθ(ε), aθ(ε))− FM(ε, rθ(ε), aθ(ε)) (1.19)

Different reciprocator types can have different relative fitness because they may play diffe-

rent strategies, as reflected in rθ(ε) and aθ(ε), which depend on θ. A positive relative fitness

means that each reciprocator, on average, enjoys higher fitness than each materialist.

Let us temporarily fix θ ∈ Θ(b, p). If we imagine reciprocators starting with an arbitrarily

small population share, and the type distribution following dynamics that are monotone in

fitness, such as the replicator equation, then in finite time reciprocators of type θ will reach

their attainable share ε(θ), defined as follows.31

ε(θ) := sup
ε∈[0,1]

{{0} ∪ {ε : ∀ε̂ ∈ (0, ε) , 4F (θ, ε̂, rθ(ε̂), aθ(ε̂)) > 0}} (1.20)

If we now allow θ to vary, from (1.20) we obtain a function ε(.) : Θ(b, p) −→ [0, 1] from

reciprocator types to reciprocator population shares. For a given reciprocator type, ε(θ) is

the upper bound of the set containing zero and the contiguous region of population shares

with infimum zero in which reciprocators enjoy strictly higher fitness than reciprocators.32

Clearly, if population dynamics are such that 4F (θ, ε, rθ(ε), aθ(ε)) > 0 implies dε
dt
> 0, and

we suppose that initially ε < ε(θ), the reciprocator population share will increase up to ε(θ).

31The replicator equation applied to the model gives dε
dt = ε[Fθ(ε, rθ(ε),aθ(ε))− (εFθ(ε, rθ(ε),aθ(ε)) + (1−

ε)Fθ(ε, rθ(ε),aθ(ε)))] = ε(1− ε)4F (θ, ε, rθ(ε),aθ(ε)). Hence both at ε = 0 and at ε = 1, dεdt = 0, as one might
expect. This is why the definition in (1.20) needs to use an interval which is open at the lower end and has
an infimum of zero, rather than an interval containing zero. The reason it uses a supremum rather than a
maximum is due to the fact the equilibrium (r(ε),a(ε)) of Proposition 1.1 involves at least one discontinuous
change in one element of aθ(ε), at the free riding threshold. It may also imply discontinuous changes in rθ(ε)
(if, for example, p < 1, as in Figure 7). As a result, there is the possibility that 4F (θ, ε, rθ(ε),aθ(ε)) > 0 for
all ε in an interval [ε′, ε′′) ⊂ [0, 1], or an interval (ε′, ε′′) ⊂ [0, 1], but that 4F (θ, ε, rθ(ε

′′),aθ(ε
′′)) < 0.

32Also, reciprocators never enjoy strictly higher fitness than reciprocators in the equilibrium played. Given
this, the set over which the supremum is taken always includes zero, to ensure that ε(θ) is always defined.
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1.4.2 Expected fitness and attainable shares

Here I analyse the expected fitness for each type in the equilibrium identified in the previous

section. First, I characterise relative fitness for each of the four pure strategy profiles that can

be played by reciprocators in equilibrium, as follows.

• 4F (θ, ε, p, cdd) = εp(b− 1) > 0

• 4F (θ, ε, p, cdd) = εp(b− 1)− k

• 4F (θ, ε, p, ccd) = εp(b− 1)− (1− p)

• 4F (θ, ε, p, ccd) = εp(b− 1)− (1− p)− k

The first two expressions are straightforward to understand; if reciprocators play a0
θ = d,

then cooperation only arises in reciprocator-reciprocator pairs, and all materialists have zero

fitness. Relative fitness is therefore given by the expected benefit εrθ(ε)b to a reciprocator

from being paired with another reciprocator who observes her preference type (with probability

rθ(ε) ∈ {p, p}), minus the expected cost of cooperation of εrθ(ε) (and, in the second expression,

minus the cost of research k).

The last two expressions for relative fitness, for which a0
θ = c, require a little more interpre-

tation because blind cooperation by reciprocators gives materialists non-zero expected fitness.

Taking the expression for 4F (θ, ε, p, ccd), for example, the first term on the right hand side

arises from cooperation due to the conditional action aθθ = c, as in the first two expressions.

The second term on the right hand side arises from the fact that due to reciprocators’ blind

cooperation, which they do with probability (1 − p), materialists gain expected fitness of εb

while reciprocators gain expected fitness of only εb− 1.

One notable feature from comparing the relative fitness for the pure strategy profiles is that

in each case, the relative fitness is strictly linearly increasing in the reciprocator population

share ε, a property that can be explained as follows.33 If a0
θ = d, relative fitness is simply

33This property proves useful in deriving results, because ε(θ) can therefore be obtained by calculating the
relative fitness at each lowermost population share for which a given symmetric pure strategy profile is played,
and selecting the largest of these values such that it and all lower values induce positive relative fitness.
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proportional to the probability ε that a reciprocator meets a fellow reciprocator, as materialists

never get to free-ride. If a0
θ = c, then there will be a (negative) component of relative fitness

proportional to −(1− ε)− εb = −1− ε(b− 1) resulting from free-riding, where the first term

is the cost to reciprocators and the second is the benefit to materialists. Note, however, that

the actual contribution to relative fitness from free-riding must be scaled down, because a

materialist free-rides only if her type is not revealed. At the same time reciprocators’ fitness

from mutual cooperation is simply ε(b − 1). Hence the fitness difference is strictly linearly

increasing in ε. The fact that type revelation reduces the scope for free-riding but not mutual

cooperation also explains why reciprocators’ fitness at (p, cdd) and (p, ccd) increases in p and

that at (p, cdd) and (p, ccd) increases in p. Furthermore, as the contribution of free-riding

and mutual cooperation to relative fitness are both linear in ε(b− 1), the fact that free-riding

happens less frequently because types are sometimes revealed explains why relative fitness is

increasing in b.

The above characterisation of relative fitness at each of the pure symmetric strategy profiles

played in equilibrium lays the groundwork for Lemma 1.5, which characterises the attainable

share in the absence of a discovery technology. Its purpose is to provide a reference point for

the main result of this chapter, in Theorem 1.1.

Lemma 1.5 Fix a reciprocator type θ ∈ Θ(b, p). Let p = 1, so research reveals an opponent’s

type for sure, and fix p < 1. Without a technology, if θ < 1 +
p(b−1)

b(1−p) , then εno tech(θ) = 1

(reciprocators drive out materialists); otherwise εno tech(θ) = 1
(θ−1)b

∈ (0, 1).

Proof : See Appendix A.1. Lemma 1.5 can be understood as follows. At low population

shares, where reciprocators do blind defection, materialists cannot free-ride, and so recipro-

cators have a fitness advantage. At higher population shares, where reciprocators blindly

cooperate, materialists are able to free ride, whenever they meet reciprocators who happen

not to observe their preferences. Higher reciprocator types will switch to blind cooperation

at a lower population threshold than will lower types, precisely because higher types derive

greater utility from mutual cooperation. If the population threshold is too low – i.e. recipro-
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cators of a given type switch too soon – then they will be prey to free-riding by materialists

so often that they suffer lower fitness on average than materialists. The threshold type in

this case is increasing in the probability of type revelation p, since observability of types helps

reciprocators; in the limit p → 1, any reciprocator type will drive out materialists from the

population.

I now present the main result of this chapter, in Theorem 1.1. I set p = 1, so that research

reveals an opponent’s type for sure: in other words, I assume a perfect discovery technology.

This simplifies the statement of the theorem by equalising the maximum tolerable research

cost in the region of population shares where reciprocators blindly defect to that in the region

where they blindly cooperate.34 Another motivation for setting p = 1 is that it means if

the technology is used, preferences are perfectly observable. Consequently, if the technology

were free to use, it would enable any type of reciprocator to drive out materialists. This

benchmark case is useful for comparison, allowing for ready interpretation of the results and

clearly demonstrating the effect of introducing frictional costs into the model. For p < 1

a weaker version of the main qualitative result holds, namely that depending on parameter

values the discovery technology can raise or lower the attainable share, and that in the latter

case, as k → 0, ε(θ)→ 0. Figures 19 and 20 in Appendix A.2 provide examples for p = 1
2
.

Theorem 1.1 Assume a perfect discovery technology, i.e. fix p = 1 and p < 1. Fix a

reciprocator type θ and let k
4p ≤ 1 − 1

(θ−1)b
, so reciprocators do research at some population

share. Then ∃ θ′ ∈ Θ(b, p) such that:

1. If p(b+ 1)− p2 − 1 ≤ 0 or θ ≥ θ′, the technology reduces reciprocators’ attainable share:

ε(θ) < εno tech(θ) . Furthermore, as k → 0, ε(θ)→ 0.

2. If p(b+ 1)− p2 − 1 > 0 and θ < θ′, then ε(θ) ≥ εno tech(θ).

34In other words, the technology is used in a region like the one one in Figures 5 or 6, rather than like the
one in Figure 7 where p < 1.
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Proof : See Appendix A.1. Theorem 1.1 assumes a perfect discovery technology and

assumes that k
4p ≤ 1 − 1

(θ−1)b
, which by Proposition 1.1 is necessary and sufficient for reci-

procators to do research at some population share. Theorem 1.1(1) identifies the conditions

under which reciprocators’ attainable share is lower as a result of the technology. One suffi-

cient condition is that the baseline probability of type revelation p is low enough: specifically

p(b+ 1)− p2− 1 ≤ 0. Note that the left hand side is an increasing function in p and in b over

their joint domain; intuitively, the former improves observability of preferences, the channel

through which a preference for reciprocity may evolve, while the latter makes mutual coope-

ration more evolutionarily advantageous. Note also that the first term on the left hand side

involves the product of the two variables, which are clearly complements. Theorem 1.1(1) says

that if these variables are not high enough, then reciprocators will do worse, in evolutionary

terms, than materialists. Put another way, if the fitness benefit b of mutual cooperation is low

relative to the baseline probability of type revelation, then a preference for reciprocity will

not evolve.

Importantly, moreover, the final statement in Theorem 1.1(1) is that for a given value

of b, an arbitrarily cheap research cost will yield an arbitrarily small attainable share for all

types of reciprocator if p is low enough. This means that for small research costs to inhibit

the evolution of a preference for reciprocity, the type discovery technology must be not only

cheap but also effective, in that 4p = 1− p must be large enough.35 As discussed in section

1.3.4, at lower population shares where reciprocators blindly defect, they may lose out to

materialists because their incentive to do research is misaligned with the fitness benefits it

brings them. Specifically, reciprocators’ incentive to use the costly technology is to facilitate

mutual cooperation, which by definition they ‘overvalue’ in evolutionary terms.

35The fact that a low baseline probability of type revelation (specifically, p such that p(b + 1) − p2 − 1 ≤
0) guarantees all reciprocator types do worse when the technology is present is linked to another result:
if εno tech(θ) = 1, then ε(θ) = 1. Intuitively, if in the absence of the technology reciprocators drive out
materialists, then their fitness advantage is too strong to be undermined by overusing the costly technology
when it is present. The intuition is that for technology to undermine the evolution of reciprocity, the type
discovery technology must be not only cheap but also effective, which is qualitatively the same condition as
for the result in Theorem 1.1(1) that ε(θ)→ 0 as k → 0.
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Figure 8 illustrates the possibility that for certain values of research cost k, the discovery

technology reduces the attainable share of a reciprocator type, for example parameter values.

As can be clearly seen by the upward-sloping solid line in the left of the diagram, reciprocators’

attainable share is in fact increasing in research cost k and becomes very small close to zero.

Intuitively, reciprocators find it optimal to do research at very low population shares if the

research cost k is very low, for which they pay a fitness cost that exceeds the expected fitness

benefit it brings. Notably, in this example this ‘research trap’ holds for all reciprocator types,

even those with low intensity; it is straightforward to verify that the condition p(b+1)−p2−1 =

−1
9
≤ 0 in Theorem 1.1(1) is met.

Figure 8: A research trap: attainable share ε(θ) for variable research cost k, where p = 1
3
,

p = 1, b = 2 and θ = 3, together with attainable share in absence of technology, εno tech(θ).

To gain insight into how the equilibrium behaviour characterised in section 1.3.4 determines

the attainable share, Figure 9 shows the relative fitness enjoyed by reciprocators at different

population shares for each of the symmetric pure strategy profiles (p, cdd), (p, cdd), (p, ccd)

and (p, ccd), represented by coloured dashed lines, where p = 1
3
, p = 1, b = 2 and θ = 3 as

in Figure 8. For the profiles in which research is done, k is set equal to 0.1. I choose this

value simply because it is a research cost for which ε(θ) < εno tech(θ) given the other example

parameter values above. The dotted black line gives the relative fitness in the model without

a discovery technology, where every player is constrained to play r = p in the first stage.
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Note the free-riding threshold at 1
(θ−1)b

= 1
4
; this is where reciprocators switch from blind

defection to blind cooperation, resulting in a drop in relative fitness as materialists’ attempts

to free-ride meet with some success. For all the symmetric pure strategy profiles, relative

fitness is linearly increasing in reciprocator population share, as discussed above. The values

of relative fitness for the two strategy profiles (p, cdd) and (p, cdd) in which r = p coincide;

this is unique to the case p = 1, as perfect type observability ensures that the information set

where an opponent’s type is not observed, which is the only point at which the two strategy

profiles differ, is never reached. At small population shares, these profiles imply negative

relative fitness because cooperation is very rare, yet reciprocators still bear the research cost

of k = 0.1. Relative fitness for these two strategy profiles is steeper than for the two profiles

in which rθ = p, because rθ gives the marginal fitness benefit to reciprocators arising from a

small increase in their population share.

Relative fitness when (p, cdd) is played is proportional to reciprocators’ population share;

no free-riding takes place and no research costs are incurred, so relative fitness depends solely

on the level of cooperation (which happens among reciprocators only). Finally, relative fitness

when (p, ccd) is played, while increasing linearly in population share, is always negative for

the parameters chosen. In particular, the baseline probability p = 1
3

results in too much

free-riding by materialists for reciprocators to overcome.
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Figure 9: Relative fitness by reciprocator population share in the absence of a technology
where p = 1

3
, b = 2 and θ = 3, together with relative fitness for strategy profiles where p = 1

and k = 0.1.

Figure 10 shows relative fitness when a discovery technology is introduced to the model

with the parameters as in the previous two figures, including cost of research k = 0.1. The

‘research trap’ is clearly evident immediately to the left of the free-riding threshold. For lower

values of k, this trap would move leftwards in the diagram, preventing an arbitrarily small

share of reciprocators from growing to a large share of the population. Despite the fact that

lower costs of information are in themselves better for reciprocators than higher such costs,

reciprocators respond by incurring such costs at a lower population share, where their inherent

fitness advantage over materialists is more slight.
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Figure 10: Relative fitness by reciprocator population share with technology present, where
p = 1

3
, b = 2, θ = 3, p = 1 and k = 0.1

In summary, even small frictional costs can generate a research trap. Suppose a preference

for reciprocity spontaneously arises (mutates) in a small number of individuals within a society

where materialistic preferences are widespread. If preferences are freely observable, then on the

rare occasion two reciprocators meet, they can collaborate on productive projects. However,

if preferences are observable only at a small cost, reciprocators will bear this small cost many

times, in many interactions with others. Most of the time, incurring the cost does not bear

fruit, as reciprocators are rare in the society. The only exception is if the collaborative

projects individuals can undertake together are highly productive, more than making up for

the cumulative frictional costs.

1.5 Conclusion

In this chapter, I introduced a model that extends the literature on preference type evolution

using the indirect evolutionary framework pioneered by Güth and Yaari (1992). I considered

a population in which each player has one of two preference types: a reciprocator type –
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which attaches greater utility to mutual cooperation than to free-riding – and a materialist

type. The benchmark case for comparison is that under complete information, or if types

are revealed with sufficiently high probability, then a preference for reciprocity will drive out

materialistic preferences. In my model, such information is available to players via a “discovery

technology”, but only if they pay a cost, which reduces their evolutionary fitness.

I first studied the conditions under which players choose to bear a cost to improve their

chances of learning their opponent’s type. In general, reciprocators may willingly bear such

a cost, but materialists never do. Reciprocators will do so only over a contiguous interior

region of population shares. If the discovery technology is taken to represent ‘screening’

opponents by social distance, then this result implies that societies with intermediate levels

of cooperation should be more fragmented into identity groups, whereas interactions between

people in societies with either low or high levels of cooperation should be less conditioned on

social distance. In contrast, another (more subtle) aspect of players’ behaviour, cooperating

when an opponent’s preferences are not observed, is entirely unaffected by the discovery

technology.

I then studied how costly information affects the evolution of reciprocity. Surprisingly,

cheaper information can hinder the evolution of reciprocity more than expensive information,

because it can tempt individuals that have a preference for reciprocity to ‘overpay’ for it.

Indeed, if the fitness benefit from mutual cooperation is low, or the strength of preference

for reciprocity is high, this misalignment of personal incentives and evolutionary interests

means that even for arbitrarily cheap access to perfect observability of types, a preference for

reciprocity cannot evolve (if it starts with a small share of the mix of preferences across the

population). Intuitively, despite the fact that lower costs of information help reciprocators

ceteris paribus, reciprocators respond by incurring such costs at a lower population share,

where their inherent fitness advantage over materialists is more slight, resulting in a ‘research

trap’. This is a significant negative result for evolutionary explanations of reciprocity via

preference type observability.
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Chapter 2 A theory of conditional cooperation

on networks

Julien Gagnon and Alexander Harris36

2.1 Introduction

“Reciprocity means that in response to friendly actions, people are frequently much nicer and much

more cooperative than predicted by the self-interest model; conversely, in response to hostile actions

they are frequently much more nasty...” (Fehr and Gächter, 2000b: 159)

Reciprocity, or conditional cooperation, is ubiquitous in social interactions.37 Mauss (1950)

viewed reciprocity as “the human rock on which societies are built”, while Gouldner famously

presented the concept as one of the rare “universal principal components of moral codes”

(Gouldner, 1960: 161). Likewise, Simmel (1950) deemed reciprocity necessary to cooperation

and social cohesion in all societies, and regarded “all contacts among men [as resting] on the

schema of giving and returning the equivalence” (Simmel, 1950; in Gouldner, 1960). In line

with these views, current evidence unambiguously shows that most people display reciprocal

inclinations, even with strangers, when it is costly to them or yields no future benefits.

36We first wish to thank Sanjeev Goyal and Robert Evans for continual support and comments. We also
thank Francis Bloch, Antonio Cabrales, Vasco Carvalho, Matt Elliott, Aytek Erdil, Erik Eyster, Simon
Gächter, Edoardo Gallo, Michael McBride, David Minarsch, Francesco Nava, Charles Roddie, Alex Wolit-
zky and seminar/conference participants in Cambridge, Chapman, Montreal, Nottingham, Paris, and Oxford
for valuable comments. Julien Gagnon thanks the Gates Cambridge Trust and the Social Science and Huma-
nities Research Council of Canada for financial support. Alex Harris is grateful for the financial support of
the Economic and Social Research Council.

37We use the terms “reciprocity” and “conditional cooperation” interchangeably.



Social networks, through their ability to leverage social pressure and individuals’ reciprocal

inclinations, are seen as key to sustain cooperation in groups (see e.g. Granovetter, 2005;

Burt, 1992; Coleman, 1990). However, social connections also make reciprocity fragile: while

most individuals qualify as ‘conditional cooperators’, a few ‘bad apples’ (i.e. free-riders) are

typically sufficient to influence others and derail cooperation in group interactions.38 Given

this tradeoff, under what circumstances will reciprocity-induced cooperation persist? What

social architecture can best support it?

In this paper (i.e. Chapter 2 of this thesis), we argue that the structure of social interactions

is key to the sustaining of reciprocity and cooperation in groups. We develop a model wherein

connected agents can either contribute at a cost to a (local or global) public good or free-

ride. Some players (materialists) care solely about material payoffs and always free-ride, while

others (conditional cooperators) have social payoffs. Social payoffs capture the extent to which

conditional cooperators feel influenced or pressured by the behaviour of players locally: their

social payoffs from contributing increase with the number of their neighbours who contribute,

and decrease with the number of their neighbours who free-ride. Social payoffs of this general

form capture conditional cooperators’ reciprocal preferences.39

We begin with a simple question: how can a network with both conditional cooperators

and materialists support cooperation? A first observation is that since contribution is costly,

any conditional cooperator i must have sufficiently high social payoffs to choose to cooperate.

In particular, i must: one, be connected to enough other contributing players; and two, have

a high enough proportion of her links with other contributing players. We find that at the

unique maximal equilibrium (ME), a novel measure, the q-linked set, fully determines the

set of players who cooperate (Theorem 2.1). The q-linked set consists in the largest set of

conditional cooperators with both enough cohesion and enough density. The need for density

38Gächter (2006) shows that most experimental studies on reciprocity - despite differences in experimen-
tal design - yield a similar distribution of individual types, with about 55% of subjects being “conditional
cooperators”, 20% “free-riders”, and the rest either “always contributors” or “triangle contributors”.

39In Appendix B.2, we show that our model can be seen as a reduced form of an infinitely repeated local
public good game where players are either forward-looking or myopic but have only material payoffs.
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is driven by the (net) cost of contribution γ, which necessitates that enough social pressure be

applied on conditional cooperators for them to cooperate. The need for cohesion is driven by

conditional cooperators’ reciprocal preferences, which requires enough positive social influence

in their neighbourhood. We demonstrate that adding a link between a player in the γ-linked

set and a player outside it can either increase or decrease cooperation (Proposition 2.1).

We then explore how a player’s position in the network, for a given type profile, determines

her influence on other players. We define a player i’s influence as the proportion of players

who are susceptible to i, i.e. players who would change their action at equilibrium if i’s

type changed. We show that a player i is susceptible to another player j if and only if she

is connected to enough other players who are also susceptible to j (Proposition 2.2), and

that susceptible players cannot be too interconnected (Corollary 2.1). Hence, a player i is

influential if she connected to a set of players interconnected enough (allowing her influence

to spread), but not too much (or her influence would be too diluted). Note that a player’s

influence and her centrality are not necessarily related.

Our analysis next leads us to examine how social interactions can be best structured to

support reciprocity and cooperation. We consider a designer wishing to maximise cooperation

and choosing the network at no cost. If the designer knew players’ types, he could trivially

group conditional cooperators and isolate materialists. Matters are more complex in the more

realistic case where the designer only has the prior that each player’s type is i.i.d. with ex ante

probability p of being a materialist. We find that the ex ante optimal network is always formed

by isolated cliques of degree k∗ (p), with k∗ (p) always above a threshold k ≥ 1 (Theorem 2.2).

The intuition is that a network of cliques maximises the chances of clustering of conditional

cooperators and minimises the extent and risk of contagion of free-riding.

We then study the effect of p on k∗ (p). To fix ideas, note that the designer faces a tradeoff

when choosing k∗. On the one hand, increasing k∗ entails the possible benefit of increasing

the maximal number of materialists allowed in a clique for cooperation not to break down.

On the other hand, increasing k∗ entails the cost attached to an increasing number of ‘draws’
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and, thus, expected number of materialists in the clique. We find that k∗ (p) is decreasing

in p (Proposition 2.4). This result is subtle: observe that increasing p yields two opposing

effects on k∗ (p). First, a higher p raises the expected incidence of materialists. This effect

pushes k∗ (p) down, as the designer wants to reduce the expected number of materialists in the

clique. However, a higher p also reduces the expected incidence of conditional cooperators.

This pushes k∗ (p) up, as the designer wants to increase the expected number of conditional

cooperators in the clique. The former effect, it turns out, always dominates the latter.

Our model features a coordination game on networks and, as such, its results can be

applied to a broad range of situations characterised by social interactions and behavioural

contagion.40 However, the model applies especially well to reciprocal social preferences, for

three reasons. First, payoffs in the game are decomposed into “material” and “social” payoffs,

with the latter capturing the defining features of reciprocal preferences. Second, contribution,

unlike free-riding, is individually costly and entails positive externalities. Third, while condi-

tional cooperators have coordination preferences, our model displays materialists who hamper

coordination on the efficient outcome, in line with the empirical evidence on reciprocity.

We apply our results to one important application: work morale and peer influence at

the workplace. Social preferences at the workplace are well-documented, and several models

directly address social preferences and norms within firms (e.g. Kandel and Lazear, 1992;

Huck et al., 2012; see Rotemberg, 2006, for a review). Our paper fills a gap in this literature

by shedding light on a number of phenomena pertaining to networks and cooperation at the

workplace. In particular, it explains how ‘bad apples can spoil the barrel’ by influencing

workers around them, who in turn influence their own co-workers, and so on. It also explains

why certain network structures, e.g. dense teams, are particularly vulnerable to such ‘bad

apples’, while others are more robust by limiting their potential propagation. We discuss in

40In general terms, our model features a game of strategic complements on networks. Strategic complemen-
tarity has been the object of much study in the theory of supermodular games (see e.g. Topkis, 1979; Milgrom
and Roberts, 1990; for a survey see Vives, 2005). Strategic complementary guarantees unique minimal and
maximal equilibria in our game, as established by Topkis (1979). Our characterisation of the ME in terms of
network structure and type profile is novel, and generalises results by Morris (2000) and Bollobas (1984).

54



detail in Section 2.6 the compelling evidence for our main results.

Related literature

Our paper is at the nexus of two major strands of research in economics. The first deals with

social preferences, and more particularly with the role of reciprocal preferences in cooperation.

There is a vast empirical literature establishing that most individuals display such preferences,

i.e. they prefer to cooperate only when others do too (for surveys of the evidence, see e.g.

Chaudhuri, 2011; Gächter, 2006; Fehr and Gächter, 2000b). Several well-established theo-

ries seek to capture reciprocal preferences by founding them either in distributional concerns

(e.g. Charness and Rabin, 2002; Bolton and Ockenfels, 2000; Fehr and Schmidt, 1999) or

in preferences over co-players’ perceived intentions (e.g. Dufwenberg and Kirchsteiger, 2004;

Rabin, 1993). Our model incorporates in a simple yet general way an essential feature of

these models: players’ inclination for cooperation decreases with the presence of free-riders,

and increases with the presence of cooperators. To our knowledge, it is the first study of

reciprocal preferences on networks.

The second main area of economics literature relevant here is games on networks (for recent

surveys, see Bramoullé and Kranton, 2015; Jackson and Zénou, 2013). Recent papers address

cooperation in repeated public good games on networks (Wolitzky, 2013; Ali and Miller, 2016,

2013; for a survey, see Nava, 2015). These papers extend earlier work on social sanctions,

repeated interactions and cooperation (e.g. Ellison, 1994; Kandori, 1992). A common key

finding of these papers is that denser networks, by allowing information (e.g. on defection) to

better travel among players, foster cooperation. For this reason, central players tend to be the

most cooperative. Our approach departs from these papers in several crucial ways. First, our

model rests on reciprocal preferences, which enables us to account for some key stylised facts

in line with the aforementioned empirical evidence.41 Second, our model shows that network

density may have adverse effects on cooperation if some players have reciprocal preferences.

41Reciprocity, as a behavioural trait, is prevalent even in absence of repeated interactions. Even in such
settings, evidence suggests that the main driving force behind cooperation and social sanctioning is reciprocity
(see e.g. Hopfensitz and Reuben, 2009; Fehr and Gächter, 2002, 2000a).

55



The reason is that denser networks allow bad behaviour, not just good behaviour, to propagate

more easily. As a result, we show for instance that a player’s influence on cooperation is not

necessarily related to her centrality, and that the network that maximises ex ante contributions

is not the complete network in general, as it is typically not robust to free-riders. Lastly, our

model enables us to explore how to design networks to best support cooperation.42

Lastly, our paper closely relates to a large literature in the natural sciences on cooperation

in structured societies. A major strand of this literature looks at the evolution of cooperation

on fixed networks (for a survey, see e.g. Nowak, 2012). A key finding of these papers is that

structured societies can permit some clustering of cooperative players, thereby sustaining

some cooperation. In line with this work, recent experimental investigations have emphasised

the role of conditional co-operators in sustaining cooperation on fixed networks, and have

showed that “both cooperation and defection were contagious in fixed networks” (Jordan et

al., 2013: 7) in non-repeated games among strangers (Rand et al., 2014; Jordan et al., 2013;

Gracia-Lazaro et al., 2012; Suri and Watts, 2011; Fowler and Christakis, 2010; Grujic et

al., 2010).43,44 To our knowledge, our paper is the first to provide a formal framework of

conditional cooperation on general fixed graphs. It allows us to formalise intuition regarding

the mechanisms at play in these findings. It is also the first to formally investigate optimal

network design in that context.

The rest of this chapter is divided as follows. Section 2.2 introduces the model. Section 2.4

explores the concepts of susceptibility and influence. Section 2.5 presents the study of optimal

network design. We discuss our main application in Section 2.6. Section 2.7 concludes.

42Our results echo those of Haag and Lagunoff (2006) who study a repeated local prisoner’s dilemma on
networks where agents display heterogeneous discount factors. Our model and extension (Appendix B.2)
allow for a wider class of preferences and payoffs. Our results also relate to those of recent papers on network
formation and financial contagion (e.g. Cabrales et al., 2016; Erol and Vohra, 2014). Erol and Vohra (2014), in
particular, build a model where forming links yield expected benefits to agents but also higher vulnerability.
There is a similar tradeoff in our model. However, the authors here assume an exogenous condition for
defaulting (“strong contagion”), i.e. a single agent defaulting entails that all nodes in her component default.

43Recent studies have also explored the role of endogenous network formation in sustaining cooperation (e.g.
Gallo and Yan, 2015; Jordan et al., 2013; Rand et al., 2011; Fu et al., 2008).

44In contrast, the experimental literature in economics on the effect of network structure on cooperation has
to date been modest (Falk et al, 2013 ; Carpenter et al., 2012 ; and Cassar, 2007, are a few notable exceptions).
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2.2 The model

In this section, we develop a model to investigate how network structure influences reciprocity

and cooperation in the context of public good provision. In particular, we explore the effect

of having ‘bad apples’ in a group or team, i.e. players who never cooperate and influence their

neighbours towards free-riding.

Network . Let N = {1, 2, ...n} be the set of players, with n ≥ 3. Denote by G an

(undirected and unweighted) network, with a row vector gi = {gi1, gi2, ... gin} where gij ∈

{0, 1} for all j, i ∈ N . Players i and j are connected iff gij = 1, and we assume gii = 1. Define

by Ni (G) = {j ∈ N : j 6= i ∧ gij = 1} player i’s neighbourhood, and let ki = |Ni (G) | be her

degree. There exists a path between players i and j either if gij = 1 or if there exists a set of

players {i1, i2, ...ij} such that gii1 = gi1i2 = ... = gi`j = 1.

Game and actions. Players interact in a one-shot public good game (PGG). Player

i has action set Xi = {0, 1}. We denote i’s action by xi ∈ Xi and the action profile of all

players by x ∈ X = {0, 1}n. If xi = 1 (xi = 0), we say that i contributes (free-rides). The

contribution level for a given action profile x is
∑

i∈N xi. For a given x, player i ’s local action

profile is denoted by xj∈Ni(G), and we denote by ci and di, respectively, the number of i’s

neighbours who contribute and free-ride:

ci = ci
(
xj∈Ni(G)

)
:=

∑
j∈Ni(G)

xj (2.1)

di = di
(
xj∈Ni(G)

)
:=

∑
j∈Ni(G)

(1− xj) = ki − ci (2.2)

Payoffs . Player i’s payoffs are given by:

πi (x|θi) =
∑

j∈N\{i}

xj − γxi + Ψ (xi, ci, di|θi) (2.3)

where γ > 0 is the (net) cost of contribution.45 Player i’s type θi ∈ Θi = {θM , θR} is ascribed

45Since the PG is assumed to be linear, all our results would hold even if it were a local PG. Further, while
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by nature at the beginning of the game, with θM and θR referring respectively to materialist

and reciprocator (or conditional cooperator) types. A type profile is denoted θ ∈ Θ. The

function Ψ (·|θi) captures i’s social payoffs.

Assumption 2.1 Players’ payoffs are given by (2.3), where: (1) Ψ (·|θM) = 0;

(2) Ψ (0, ci, di|θR) = 0; (3) Ψ (xi, 0, 0|θR) = 0; and (4) Ψ (1, ci, di|θi) is (weakly) increasing

in ci and is (weakly) decreasing in di.

We highlight some key elements of Assumption 2.1. First, note that since γ > 0, Assump-

tion 2.1(1) guarantees that free-riding is always a strictly dominant strategy for materialist

players. Second, Assumption 2.1(2) states that players who free-ride always have zero social

payoffs. This is a simplification for ease of exposition.46 Third, we assume that isolated play-

ers have no social payoffs. In that respect, an isolated player is viewed as immune to any

social influence/pressure. Fourth, Assumption 2.1(4) captures, in a general and parsimonious

way, preferences for conditional cooperation and reciprocity: conditional cooperators’ social

payoffs from contributing increase (decrease) with the number of neighbouring contributors

(free-riders). Fifth, note that we assume the social payoffs function to be the same for all

conditional cooperators. All of our insights are robust to introducing heterogeneity in the

social payoffs function, as long as it satisfies Assumption 2.1 for every conditional cooperator.

We now provide an example of a social payoffs function satisfying Assumption 2.1.

Example 2.1 Conditional cooperator i’s social payoffs are given by:

Ψ (xi, ci, di|θR) = xi (αci − βdi) (2.4)

with α > 0 and β > 0.

we impose linearity, all of our results straightforwardly hold in the case of weakly convex global PG functions.
46Appendix B.2 relaxes Assumption 2.1(2). Furthermore, note that our insights, to hold, only require that

cooperation exhibit strategic complementarity, which Assumption 2.1(2) and 2.1(3) together guarantee. For
example, we could assume Ψ (0, ci, di|θR) to be increasing (decreasing) in ci (di), which would capture, inter
alia, the increasing (decreasing) guilt of conditional cooperators when more neighbours contribute (free-ride).

58



Equation (2.4) offers a special case of a broad class of utility functions with interdependent

preferences (see Sobel, 2005). Given our setup it is close to the reciprocity models offered in

e.g. Charness and Rabin (2002) and Fehr and Schmidt (1999).

Equilibrium . We assume G and θ to be common knowledge among players.47 Given

G, θ and γ, an action profile x ∈ X is an equilibrium if for every i ∈ N and every x′i ∈

Xi, πi (xi,x−i|θi, G) ≥ πi (x
′
i,x−i|θi, G). Observe that local complementarity in x entails

potential coordination failures: in particular, the case where no player contributes is always

an equilibrium. An equilibrium x∗ is a maximal equilibrium (ME) if there does not exist

another equilibrium x′ ∈ {0, 1}n such that
∑

i∈N x
∗
i <

∑
i∈N x

′
i.

For the rest of this chapter, we restrict attention to ME. Three reasons motivate this

focus. First, theoretical work on supermodular games shows that the ME is an upper bound

on which play will converge for a very wide range of learning processes (Milgrom and Roberts,

1990). Second, the “all-free-ride” action profile is always an equilibrium for any network in our

model; therefore, the ME implicitly characterises the range of equilibrium contribution levels

(as it would if we allowed for mixed strategies in addition to pure ones). Third, the algorithm

provided below, which ensures convergence to the ME, finds strong support in the experimental

literature, which shows that conditional cooperators typically begin by cooperating before

switching to free-riding if they observe too many free-riders.

2.3 Equilibrium characterisation

We now study the existence, uniqueness and properties of ME of this game. Consider a player

i in a network G, and let q be some positive real number. Recall from Assumption 2.1 that

Ψ (1, ci, di|θR) is an increasing function of ci and a decreasing function of di. Therefore, observe

that either Ψ (1, ki, 0|θR) < q, or there exists a unique minimal ci ∈ [1, ki], such that:

47In Appendix B.3, we relax the assumption of knowledge of the type profile and assume that types are
private and i.i.d. Our analysis yields a characterisation of a unique maximal Bayesian Nash equilibrium (BNE)
analogous to that of the unique ME in our model. Our main results on comparative statics also hold in the
case of this maximal BNE.
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Ψ (1, ci, (ki − ci)|θR) = q (2.5)

For any q ∈ R+, we define the q-linked set of G, denoted by Qq (G) ⊆ N , as the largest set of

players such that for each i ∈ Qq (G),

Ψ (1, sqi , (ki − s
q
i )) ≥ q (2.6)

where sqi :=| {j ∈ Ni(G) ∩ Qq (G)} | is the number of i’s neighbours in the set Qq (G). Note

that no materialist player can be in Qq (G), as Ψ (·|θM) = 0. Note also that for arbitrary G

and θ, the q-linked set is uniquely defined.

We provide an algorithm for the construction of the q-linked set of any network G, which

we illustrate with Figure 11. Consider the payoff function (2.4), and let α = 1.25 and β = 1.

Suppose that θi = θR for all i ∈ N . We find the 2.6-linked set.

Algorithm 1 Fix initial profile x0, with x0
i = 1 for all i ∈ N . For a given q ∈ R, assign

x1
i = 0 for all i such that Ψ (1, ci(x

0), di(x
0)|θi) < q, and denote the new profile by x1. Then,

assign x2
i = 0 for all i such that Ψi (1, ci(x

1), di(x
1)|θi) < q, and denote the new profile by x2.

Iterate until step k where xk = xk+1. The nodes with xki = 1 form the q-linked set.

Theorem 2.1 Suppose that Assumption 2.1 holds. For any γ ∈ R+, G and θ, a ME always

exists and is unique. At the ME, a player contributes if and only if she is in the γ-linked set.

Proof : All proofs for this chapter are in Appendix B.1.

Theorem 2.1 states that the decision to contribute for any conditional cooperator is uni-

quely determined by her belonging to the γ-linked set.48 To contribute at the ME, a conditional

cooperator must thus: one, be connected to enough other players in the γ-linked set; and two,

have a high enough proportion of her links with other players in the γ-linked set. To see

48In any equilibrium, if a player cooperates, she must be in the γ-linked set. In particular, the set of
cooperating players at any non-maximal equilibrium, say A, must be such that A ⊂ Qγ and all players in A
have enough links and in high enough proportion to other players in A.
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Figure 11: The 2.6-linked set

Top left: initial graph, with ψ (x0) for all nodes. Top right: Nodes with ψ (x0) < 2.6 are switched, and ψ (x1) are computed

for remaining nodes. Bottom left: iteration. Bottom right: the 2.6-linked set obtains when no further iteration is possible.

why, consider again the payoffs function (2.4), and assume α = 1.5 and β = 1. Suppose that

θi = θR for all i ∈ N , and fix γ = 1.6. Figure 12 illustrates the ME of a graph for these

parameter values. At the ME x∗, x∗i = 1 if and only if i ∈ Q1.6 = {7, 8, 10, 11}. Note that

the proportion of neighbours of players 9 and 12 in Q1.6 is 100%: however, their total number

of links to other players in Q1.6 is insufficient for them to be in Q1.6. Note also that player 5

has 4 links to players in Q1.6, higher than any other player. However, the proportion of her

neighbours who are in Q1.6, namely 4
9
, is too low for her to be in Q1.6.

The concept of q-linked set is novel and combines the concepts of q-core (Bollobas, 1984)

and q-cohesive set (Morris, 2000). The q-core is defined as the maximal set of players with at
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Figure 12: Theorem 2.1 illustrated

Left: Initial graph. Right: the ME for α = 1.5, β = 1, and γ = 1.6.

least q links to other players in the q-core. The q-cohesive set is the maximal set of players

having a proportion of at least q ∈ [0, 1] of their links with other players in the q-cohesive

set. The q-linked set has a similar recursivity. However, a first critical difference is that

the q-linked set necessitates both enough cohesion and density. On the one hand, the need

for density is driven by the (net) cost of contribution γ, which requires that enough social

pressure be applied on conditional cooperators to push them to cooperate. On the other

hand, the need for cohesion is driven by conditional cooperators’ reciprocal preferences, which

necessitate enough positive social influence (coordination) in their neighbourhood. A second

key difference is that the necessary proportion of neighbours in the q-linked set for a player to

be in the q-linked set depends on her degree. In the example introduced on Figure 12, player 5

would require at least 47% of her neighbours in the 1.6-linked set to be in it. This proportion

rises to 56% for players 7 and 8, while players 1 to 6, 9 and 12 simply don’t have enough

neighbours to be in the 1.6-linked set.

Our next result summarises the comparative statics at the ME.
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Proposition 2.1 Suppose that Assumption 2.1 holds. At the unique ME, total contributions

are weakly decreasing in γ. For fixed γ and n, the maximal contribution level:

1. Weakly decreases (stays the same) with the deletion (addition) of a link between two
players in the γ-linked set;

2. Weakly increases with the addition or the deletion of a link between two players outside
the γ-linked set;

3. May increase or decrease (stays the same) with the addition (deletion) of a link between
a player in the γ-linked set and a player outside the γ-linked set.

Note first that a decreasing γ always increases players’ incentives to contribute as it de-

creases the cost of contribution. Decreasing γ makes the requirement on players’ minimal

neighbourhood influence less stringent. This weakly increases the set Qγ, therefore increasing

total contributions at equilibrium.

The effects of network structure on the ME are more subtle. First, the effect on total

contributions of adding (or removing) a link depends on its effect on the γ-linked set. In

particular, adding a link between two players already in the γ-linked set will leave it unchanged,

while removing a link between two such players can only reduce it. Second, adding or removing

a link between two players outside of the γ-linked set can never reduce it, as it does not impact

the payoffs of any player in the γ-linked set. However, it can increase the γ-linked set: in

particular, adding a link between two players outside the γ-linked set may result in both

players joining it, while removing a link between a materialist and a conditional cooperator,

for example, can induce the latter to switch to contribution. Lastly, adding a link between

a player in the γ-linked set and another one outside the γ-linked set can increase, decrease,

or have no effect on total contributions. To see why, consider a contributing conditional

cooperator i and a free-riding conditional cooperator j. If, in the initial ME, i has only a

small net incentive to contribute whereas j has a large net incentive to free-ride, then linking

the players will lead i to switch to xi = 0. Conversely, if the magnitude of the incentives

happens to be the other way round, then the reverse will hold, and if both players have large

incentives for their respective initial actions, then adding a link will make no difference. Figure
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Figure 13: The effect of adding a link on the γ-linked set

Top panel: Adding a link between players A and B increases total contributions at the ME. Bottom panel: Adding a link

between players A and B drives total contributions to 0 at the ME.

13 shows that adding one link to the graph of Figure 11, even when all players are conditional

cooperators, can have either positive or negative impact on the ME.

2.4 Susceptibility and influence

We now turn our attention to players’ influence. In particular, in a given network, who are

the most ‘influential’ players? How does a player’s influence depend on how ‘central’ she is?

Consider a network G, and fix γ ∈ R+ and θ ∈ Θ. Denote the ME by x∗. Take a player i

with θi = θR, and switch her type to θM .49 Denote the new ME by x′, with x′i = 0 and x′j ≤ x∗j

for all j ∈ N . We study how and whether i’s switch to a materialist type induces other players

49The opposite case, i.e. where θi = θM initially, is analogous and is thus omitted.
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to switch to free-riding, and how this influence depends on the network structure.

First, a player j is susceptible to player i, or i-susceptible, if and only if x∗j 6= x′j; thus j

is i-susceptible if and only if j switches to free-riding following i’s switch to θM . Second, we

define i’s influence, denoted by Ii (·), as the proportion of i-susceptible players in N \ {i}:

Ii (θ, γ,G) =

∑
j 6=i
(
x∗j − x′j

)
n− 1

(2.7)

=
|S i (G) |
n− 1

where S i (G) denotes the set of i-susceptible players (excluding i) at the unique ME x∗.50

Lastly, denote by r∗j (·) the minimal number of j’s neighbours switching to free-riding necessary

for j to switch to free-riding at the unique ME:

r∗j (θ, γ,G) := min
r∈N0

{
r : Ψ

(
(c∗j − r, ), (d∗j + r)

)
≤ γ

}
(2.8)

If r∗j = 0, then j does not need any more neighbours switching to free-riding to prefer free-

riding herself. This means that j is already free-riding, i.e. x∗j = x′j = 0.

Remark 2.1 Suppose that Assumption 2.1 holds, and fix γ and G. Then any player i has

positive influence if and only if x∗i = 1 and there exists some player j ∈ Ni (G) such that

r∗j = 1.

Remark 2.1 states two jointly necessary and sufficient conditions for player i’s influence to

be greater than 0. First, i must be i-susceptible herself. Otherwise, her type switch does not

affect her action (as x∗i = x′i = 0), which trivially leaves the equilibrium unchanged. Second,

i must have at least one “unconditional follower” in her neighbourhood, i.e. a player j who

only needs i to switch her action to switch hers. If i does not have such a neighbour, then

even if she switches her action, none of her neighbours (and, thus, none of her neighbours’

neighbours, and so on) will switch theirs. Hence i’s switch will not spread.

50Note that if x∗i 6= x′i, we say that i is herself i-susceptible. Note also that materialist players, by definition,
are never susceptible to other players as they always free-ride at any equilibrium.
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Proposition 2.2 Suppose that Assumption 2.1 holds, and fix γ and G. Consider a player i

with positive influence. Then, a player j 6= i is i-susceptible if and only if r∗j > 0 and j is

connected to at least r∗j other i-susceptible players.

Corollary 2.1 The set of players S i (G) contains no non-empty subset A ⊆ S i (G) such that

every j ∈ A has strictly fewer than r∗j links with players in S i (G) \ A.

Together, Proposition 2.2 and Corollary 2.1 offer an important result: essentially, S i (G)

contains players who are sufficiently interconnected, but does not contain any overly- inter-

connected sub-group. In other words, a player i is influential if she is connected to a large set

of players whose interconnection will be enough to allow her influence to spread (Proposition

2.2), but not so much as to allow players of a subgroup of players to mutually ‘immunise’

each other (Corollary 2.1). Put metaphorically, a player in a network is influential if she can

‘divide just enough to conquer ’.

The subtlety of these results warrants more detailed discussion. Proposition 2.2 tells us

that to be i-susceptible, player j must be connected to enough other i-susceptible players.51

If j is connected to too few i-susceptible players (i.e. fewer than r∗j ), then, from (2.8), j

will not be influenced enough to prefer to switch her own action. Corollary 2.1 tells us that

i-susceptible players must not be too interconnected; the following reasoning explains why.

Suppose a contrario that there exists a subset A ⊆ S i (G) such that for all j ∈ A, the number

of links that j has with players in S i (G) \A is smaller than r∗j . Observe that if all players in

A contribute, it follows from definition (2.8) that they then prefer to contribute, which entails

that they must contribute at the new ME. Therefore, while some interconnection is necessary

for influence, too much interconnection kills it.

51Note that Si (G), like the q-core introduced in Section 2.2, is defined reflexively. A major difference,
however, is that Si (G) is defined with respect to a single player, i, who is always in Si (G) whenever the set
is non-empty. Also, while the q-core is a maximal set, Si (G) is “minimal” in the sense of Corollary 2.1.
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Proposition 2.3 Suppose that Assumption 2.1 holds, and fix γ and G. Then, for any i ∈ N ,

i’s influence:

1. Weakly decreases with the addition or deletion of a link between two i-susceptible players;

2. Weakly increases with the addition or the deletion of a link between two non-i-susceptible
players if the ME is left unchanged, and may go either way otherwise;

3. May increase, decrease or stay the same with the addition or the deletion of a link
between an i-susceptible player and a non-i-susceptible player.

Proposition 2.3 explores how changes to the network affect a player i’s influence. Propo-

sition 2.3(1), first, states a robust result: adding or removing a link in the set of i-susceptible

players always reduces i’s influence. Adding a link increases the interconnection between

i-susceptible players, which Corollary 2.1 tells us can reduce i’s influence. Conversely, remo-

ving a link between two i-susceptible players reduces the interconnection between i-susceptible

players, which we know from Proposition 2.2 can also reduce i’s influence. Second, note that

Proposition 2.3(2) stems from Corollary 2.1: fixing the ME, removing a link between a pair of

non-i-susceptible players may decrease their interconnection enough for i’s influence to spread

(e.g. by turning one or both of them into being i-susceptible). Likewise, adding a link between

two non-i-susceptible players, e.g. one contributing player i and one materialist j, may make

the latter i-susceptible, therefore increasing i’s influence. Proposition 2.1, however, tells us

that adding or removing a link can change the maximal equilibrium: in such case, i’s influ-

ence may ultimately increase or decrease.52 Finally, Proposition 2.3(3) states that adding or

removing links between i-susceptible players and non-i-susceptible players has an ambiguous

effect on i’s influence.

We conclude with an observation on how a player’s influence relates to her centrality (e.g.

degree, eigenvector, betweenness centrality). A first intuitive guess would be that the more

central a player is, the more influential she must be. This intuition, however, is incorrect.

52For example, adding a link between a contributing conditional cooperator k and a materialist player j
may induce k to switch to free-riding. This can reduce i’s influence by inducing in turn an i-susceptible player
to switch to free-riding (recall that already free-riding players cannot be i-susceptible). Conversely, k’s switch
can also decrease r∗l for some player l who may then become i-susceptible, which increases i’s influence.
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Table 1: Figure 14 and nodes’ centrality and influence

Players Degree Eigenvector Betweenness Ii (γ = 0.4) Ii (γ = 1.5)

1 0.71 0.47 0.63 1.00 1.00

2 & 3 0.29 0.14 0.06 0.14 1.00

4 & 5 0.29 0.12 0.02 0.14 1.00

6 & 7 0.43 0.36 0.25 1.00 1.00

8 1.00 1.00 1.00 0.00 1.00

9 to 12 0.57 0.77 0 0.00 0.00

Players’ centrality/influence indices expressed in proportion to the highest centrality/influence among nodes.

Remark 2.2 In general, a player’s influence and her centrality do not necessarily coincide.

Remark 2.2 rests on two key ideas. First, note that for a given r∗ =
(
r∗1, ...r

∗
j , ..r

∗
n

)
, the

vector of the minimal numbers of additional free-riding neighbours necessary for players to

switch to free-riding at the ME, S i (G) is solely determined by G, as in the case of centrality

metrics. However, r∗ also depends on γ and θ. Hence, for any i, the set of i-susceptible players,

and thus i’s influence, depend on G, γ and θ. Second, our concept of influence captures

something novel: a player is influential if she is connected to players who are interconnected,

but not too much. This contrasts with, for instance, eigenvector centrality, which rests on the

idea that central players are those who are well-connected to other central players.

Table 1 explores this distinction by presenting the degree, eigenvector, and betweenness

centralities of players in Figure 14, as well as their influence for different values of γ. Suppose

that preferences are given by (2.4) with α = 1 and β = 1.5. A first remark is that player 8

is, by all measures, the most central player; nevertheless, she has no influence when γ = 0.4.

Conversely, players 6 and 7 have relatively low degree, eigenvector and betweenness centrality,

but have the highest influence (for both γ = 0.4 and γ = 1.5). Note also that the increase

in γ from 0.4 to 1.5 pushes the influence of all players up: this is because when the cost of

contributing is higher, contributing players require fewer free-riding neighbours to prefer to

free-ride. In other words, it takes less to convince them to switch.
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Figure 14: Influence

Left: initial graph, ME with θi = θR for all i ∈ N , and γ = 0.4. Right: ME with θ1 switched to θM .

2.5 Network design

In this section, we turn to the problem faced by a planner who has to design the network and

wishes to maximise the expected contribution level for some fixed number of players. We seek

to answer the following question: What network structure maximises expected contributions?

In particular, are denser structures more resilient to ‘bad apples’ (i.e. materialists) than

sparser ones? Are disconnected networks more robust to free-riding than connected ones?

How does the optimal network structure change with the incidence of materialist players?

Suppose that players’ types are i.i.d., and the probability of any player being a materialist

is given by p ∈ (0, 1) (so the probability of being a conditional cooperator is 1 − p). The

designer’s decision boils down to choosing G so as to maximise the ex ante probability that

any player i ∈ N cooperates given G. This problem is symmetric for all i ∈ N , and we thus

restrict attention to regular networks.53 Formally, the designer’s problem is to choose G (N)

so as to:

max
∑
i∈N

Ep,θ̃
(
x∗i

(
θ̃, γ, G (N)

))
(2.9)

where x∗i (·) is i’s action at the unique ME x∗ for the chosen network G (N), given γ and

53For simplicity, we assume that the designer’s decision yields no remainder.
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θ, and expectations are taken over type profiles θ̃. Lastly, define a clique of degree k as a set

of k + 1 players all connected to one another. An isolated clique is a clique of players who

have no links to players outside the clique. We define a network of cliques of degree k as a

network comprising only isolated cliques of degree k.

Theorem 2.2 Suppose that Assumption 2.1 holds and that players’ types are i.i.d., with p ≡

Pr (θi = θM) ∈ (0, 1) for all i ∈ N . For any γ > 0 and generic p, there exists a unique integer

k∗ (p) ∈ {k, . . . , n − 1} such that the network of cliques of degree k∗ (p) maximises ex ante

total contributions, where k is the smallest integer such that Ψ (1, k, 0|θR) ≥ γ.

Theorem 2.2 underscores two crucial elements of the designer’s decision. First, any player

must be minimally connected: this stems from the fact that any player with fewer than k

connections to other players is sure to free-ride. Hence, the designer can always do better ex

ante by raising all players’ degree to at least k.

Second, the network that maximises ex ante total contributions is always the network of

cliques of degree k∗ (p), with k∗ (p) ∈ {k, . . . , n−1}. The reason is that the network of cliques

of degree k∗ (p) is the network that both maximises the chances of clustering of conditional

cooperators (enabling them to contribute at equilibrium) while minimising materialists’ ex-

pected influence. The intuition underlying the proof is as follows: in a clique of degree k, the

probability that any conditional cooperator i cooperates depends solely on the probability that

enough other players in the clique (i.e. in i’s k connections) are also conditional cooperators.

This is due to the clique’s maximal cohesion. In any other network, that probability must be

adjusted for (and hence reduced by) the probability that those k players are also connected to

enough cooperating players, since players’ neighbourhoods do not necessarily coincide. The

probability that any player i cooperates in this case is thus always lower than in the clique of

degree k as free-riding can easily spread, while its effect is contained in the clique. Figure 15

illustrates this argument, assuming that player 1 is a conditional cooperator and that k = 3.

We next ask how the size of the cliques in the the unique optimal network of cliques

of degree k∗ (p) changes with p. To fix ideas, note that the designer faces a tradeoff when
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Figure 15: Isolated cliques vs regular networks

Network A: A clique with ki = 3 for all i ∈ N . Player 1, assumed to be a conditional cooperator, cooperates if and only if

players 2, 3 and 4 are conditional cooperators. The probability of this event is (1− p)3. Network B: A regular network with

ki = 3 for all i ∈ N . Player 1 cooperates if and only if not only players 2, 3 and 4, but also 5 and 6 are conditional cooperators.

The probability of this event is (1− p)5.

choosing k∗. On the one hand, an increasing k∗ entails the benefit of increasing the maximal

number of materialists allowed in a clique for cooperation not to break down. On the other

hand, an increasing k∗ also comes with the cost attached to an increasing number of “draws”

and, thus, expected number of materialists in the clique.

Proposition 2.4 Suppose that Assumption 2.1 holds and that players’ types are i.i.d., with

p ≡ Pr (θi = θM) ∈ (0, 1) for all i ∈ N . For any γ > 0 and p, the size of the cliques in the

unique optimal network of cliques of degree k∗ (p) weakly decreases with p.

Proposition 2.4 presents a subtle result. Indeed, observe that increasing p yields two op-

posing effects on k∗ (p). First, a higher p raises the expected incidence of materialists. This

effect pushes k∗ (p) down, as the designer wants to reduce the expected number of materi-

alists in any conditional cooperator’s neighbourhood. However, a higher p also reduces the

expected incidence of conditional cooperators. This pushes k∗ (p) up, as the designer wants

to increase the expected number of conditional cooperators in any conditional cooperator’s

neighbourhood. The former effect, it turns out, always dominate the former. To provide

intuition, observe that when p is low, materialists are unlikely and their effect can likely be

more than offset by the presence of conditional cooperators. Hence, the optimal cliques are

large. Conversely, when p is high, the designer knows that a large clique will probably result in
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Figure 16: Network Design

a “spoiled barrel” due to a large (expected) number of materialists. In such case, the designer

prefers smaller cliques: while each of those cliques is likely to be “spoiled”, there is a chance

that some will not, resulting in higher cooperation (on average) than in any other network.

We proceed with an example to illustrate our results. Suppose that a designer needs to

choose G (N) for N = 12, and let γ = 1.1. Theorem 2.2 tells us that the designer’s candidate

options are given by the networks A, B, C and D on Figure 16. Suppose that conditional

cooperators’ social payoffs are given by (2.4) with α = 1.25 and β = 1. It can first be shown

that B always dominates A. The reason is that the designer knows that cooperation in any

clique in A breaks down at equilibrium with any materialist, while any clique in B admits (at

most) one materialist. The tradeoff between increased number of draws and increased allowed

number of materialists is thus trivial: with probability p, the additional player is a materialist,

and the likelihood of cooperation in the clique of size 4 is the same as in the clique of size 3.

With probability 1 − p, the additional player is a conditional cooperator, and the likelihood

of cooperation in the clique of size 4 is then strictly higher than in the clique of size 3. Hence,

the designer can always raise his expected payoffs by increasing the cliques’ size from 3 to 4.

Whether the designer prefers B, C or D however depends on p, and it can be easily computed

that the designer prefers B for any p ∈ [0.5, 1] and D for any p ∈ [0, 0.5].
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2.6 Discussion: social influence at the workplace

In this section, we discuss our results in the context of an important application: work mo-

rale and peer influence at the workplace. We show that our model brings novel insights to

many questions related to co-workers’ interactions and their impact for team performance. In

particular, how do co-workers influence each other with respect to productive effort within

firms? When can a ‘bad apple’ spoil team spirit and productivity in a team? How can one

best structure a team to best promote desirable behaviour and prevent contagion of shirking?

We map a typical workplace situation onto our model as follows. Nodes are co-workers.

In a firm, any given worker is likely to interact only with a subset of all other workers:

links represent work relationships. Each worker decides whether to exert effort (x = 1) or

not (x = 0). We suppose that the manager cannot observe employees’ effort directly, while

workers do observe the effort of the co-workers they are linked to. Lastly, we assume that

exerting effort creates material positive externalities on all other workers: for example, efforts

increase the team or firm’s profits or likelihood of success, from which all workers benefit.

2.6.1 Reciprocity, work morale and networks

Evidence unarguably demonstrates the existence of reciprocal preferences at the workplace.

Productive or cooperative workers increase their co-workers’ motivation to work hard (or make

them feel guilty when they do not exert effort), while shirkers create a feeling of inequity:

. . . [in the presence of a] withholder of effort, teammates are unlikely to be mo-
tivated to contribute to the collective pool of ideas. . . perception of inequity will
arise when group members compare their own contributions to those of a withhol-
der of effort in their team, and will result in a desire to restore equity by reducing
contributions. (Felps et al., 2006: 191-203)

Our first main finding, Theorem 2.1, yields a key insight with respect to reciprocity and effort

at the workplace: to exert effort, a worker must be connected enough, and in high enough

proportion, to co-workers who themselves exert effort. This prediction finds support in the

empirical literature. Hesselius et al. (2009) exploit a large natural random experiment and
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report clear evidence that workers display a “reciprocal type of preferences and/or display

fairness concerns” (p. 585). They show that “observing a sudden increased absence level” in

a worker’s network of co-workers “may induce resentment and lead to ill feelings towards the

shirking co-workers” (Hesselius et al., 2009: 585-91), which in turn further fosters shirking.

Ichino and Maggi (2000) argue that an agent’s shirking level increases with the shirking level

of her co-workers’ in her network. In contrast, when a worker “is surrounded by a group that

works very hard, shirking may induce... a sharper feeling of guilt” (Ichino and Maggi, 2000:

1066). Bandiera et al. (2010) and Mas and Moretti (2009), similarly, find that more (less)

productive workers increase (decrease) the productivity of their peers in their network.54

2.6.2 ‘Bad apples’ and workers’ influence

Our framework brings novel insights to the study of workers’ influence, especially ‘bad apples’,

on their peers. Our analysis, summarised in Proposition 2.2 and Corollary 2.1, offers the fol-

lowing prediction: a player will be influential if she is connected to players who are sufficiently

interconnected, but not too much. This criterion is likely to be satisfied in small, dense and

interdependent teams, where all workers are connected to one another, but not to enough

workers elsewhere to be unsusceptible to a single bad apple. This prediction finds support in

the empirical literature: “[a bad apple’s] destructive behaviour [is] particularly impactful in

small groups... in interdependent teams where people depend on each other, [...] intense psy-

chological reactions [to bad apples] are more likely to spill over” (Felps et al., 2006: 180-190;

italics added). Our analysis also suggests that workers with low degree (and therefore low

r∗j ) will be particularly susceptible to bad apples. Felps et al. (2006) and Brass et al. (1998)

review evidence supporting this result. They propose that a worker’s susceptibility to a bad

apple depends on the ratio of contacts said worker has with the bad apple compared to those

54Theorem 2.1 yields another insight: due to network effects, a worker’s effort decision may depend on the
impact of distant workers in the network. Experimental evidence strongly suggests the existence of such a
contagion effect for both free-riding (Gracia-Lazaro et al., 2012; Suri and Watts, 2011; and Grujic et al., 2010)
and cooperation (Rand et al., 2014; Jordan et al., 2013).
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she has with other co-workers.55

Lastly, evidence suggests that workers often take action to reduce a bad apple’s “degree”

or influence on their group. A typical response to shirkers is rejection, aiming at “reducing

social interaction. . . [or to] restructure work to decrease task interdependence” with those

who withhold effort (Felps et al., 2006:186; see also Lepine et al., 1997). Likewise, “companies

fire shirkers... to re-establish the work morale of the rest. . . [M]otivated workers may prefer

that bad apples are fired because they do not like being suckered by their colleagues and

because it re-establishes beliefs about others’ team-spirit.” (Gächter, 2006: 22). This is in line

with our analysis.

2.6.3 Optimal team design

Our model provides several novel insights with respect to optimal team design, summarised

in Theorem 2.2 and Proposition 2.4. A first result is that teams with a certain level of

interdependence (i.e. minimal degree) are always preferable to isolated workers. The available

empirical evidence is compelling: Falk and Ichino (2006) find clear evidence that on average,

workers are less productive when isolated than when in teams. They explain that “people

working in groups feel some pressure to keep up with the efforts of those around them, and/or

the most productive workers pressure others into working harder” (Falk and Ichino, 2006: 40),

which is consistent with our result.

Second, our analysis suggests that when ‘bad apples’ are numerous, interdependence (i.e.

density) in a large network of workers comes with higher risk of contagion. Experiments of

PGGs on complete networks demonstrate that when the proportion of “unconditional free-

riders” (i.e. bad apples) in the population is significant, the global contribution level of the

population is driven to zero due to the negative influence free-riders exert on conditional

cooperators (see e.g. Fehr and Gächter, 2000b, for review). In contrast, Rand et al. (2014)

55This prediction is supported in other contexts, e.g. crime and teenage delinquency. For example, Rees
and Pogarsky (2011) find that teenagers, when faced with bad behaviour by their best friends, are less likely
to behave badly themselves the greater the number of other social contacts they have (see also Akers and
Jensen, 2006). This is consistent with our analysis.
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show that cooperation can be maintained in sparser networks. They explain that “when

interactions are structured, such that people only interact with their network neighbours

rather than the whole population, the emergence of clustering is facilitated” (Rand et al.,

2014: 17093). In other words, reducing the interdependence of workers imposes a limit on

how influential a bad apple can be in a team or network. This can result in greater cooperation,

as our results show.56

Conversely, our analysis predicts that when the risk of bad apples is low, limited inter-

dependence (e.g. in small isolated cliques) might make workers unnecessarily susceptible to

potential bad apples. For example, in a small clique, a single bad apple may be sufficient

to drive cooperation to zero, as discussed above. In contrast, experimental evidence suggests

that groups consisting only of conditional cooperators are characterised by high and sustained

cooperation (Gunnthorsdottir et al., 2007; Gächter and Thöni, 2005). Grouping workers in

large interdependent units is thus optimal when shirkers are uncommon.

2.7 Conclusion

In Chapter 2, we undertook the study of conditional cooperation on social networks. We

characterised the (unique) maximal Nash equilibrium (ME) of a one-shot public good game for

any fixed network, assuming only weak conditions on conditional cooperators’ utility functions

that capture the defining features of reciprocity. At the ME, a novel measure of network

structure, the q-linked set, fully determines the set of players who contribute. The q-linked set

consists in the largest set of conditional cooperators with both enough cohesion and density.

We gave a novel characterisation of a player’s influence on others, and showed that while

the set of players whom i influences must be interconnected to some extent, it must not be

too interconnected. We then studied the decision of a manager who designs the network to

56Note that our result on small isolated cliques when p is high relates strongly to the optimal architecture
of terrorist or revolutionary organisations, i.e. in isolated “cells”. Cells’ main advantage is the robustness to
outside threats (e.g. police) they bring to the whole network, as detection does not spread to other cells (see
Baccara and Bar-Isaac, 2008). The tradeoff we have is similar, but we highlight the role of internal threats:
when some members shirk, they can entail the breakdown of the whole organisation.
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maximise expected contributions under an uncertain type profile. We showed that the ex

ante optimal network is formed by isolated cliques of degree k∗, with k∗ decreasing with the

probability of any player being a materialist. Lastly, we discussed our results in the context

of one important application: work morale and peer influence at the workplace. Our results

yield testable predictions that accord well with the available evidence.
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29. Gächter, S. and C. Thöni, 2005. Social Learning and Voluntary Cooperation Among

Like-Minded People. Journal of the European Economic Association, vol. 3(2-3), pp.

303-14.
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Chapter 3 Ideological games

Alexander Harris57

3.1 Introduction

Ideologically-motivated behaviour underlies many social, historical and economic phenomena.

In sociology and political science, affiliation to ideological positions can explain outcomes

ranging from decisions by justices of the US Supreme Court (Segal and Cover, 1989) to the

willingness of local officials to learn from others’ mistakes in setting policy on public planning

(Butler et al., 2017). A person’s ideological stance is not necessarily static: individuals are

influenced by those around them, and often try to influence others in turn. The possibility

of influencing people’s ideological affiliation leads to the notion of “culture wars”, in which

rival groups within a society attempt to ensure that their own cultural and ideological values

prevail among the population (Hunter, 1991). Historical study, meanwhile, highlights the

important role played by ideology in diverse major events in the modern era, from the French

and American revolutions to foreign policy in the Cold War (Cassels, 1996). In economics, the

existence of entire economic systems for the production and allocation of goods, such as state

socialism, is explained, at least in part, by ideological beliefs. Yet there is little theoretical

work within economics to explain, or even describe, how ideology drives decision-making, how

ideologies are sustained and how they can spread at each other’s expense. One reason there

currently exists little economic theory concerning ideologically-based decision-making may be

a long-running perception among researchers that agents influenced by ideology are in some

sense “irrational” (Roucek, 1944), in which case they are not the proper object of economic

study.

57I would like to thank Robert Evans for his extensive comments on this chapter. I also gratefully ackno-
wledge helpful ideas and comments from Matt Elliot, Aytek Erdil, Julien Gagnon, Edoardo Gallo, Sanjeev
Goyal, Dan Quigley, Paulina Sliwa and seminar participants in Cambridge. I am grateful for the financial
support I received from the Economic and Social Research Council.
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In this chapter, I set out a theory of ideology. A necessary starting point is to provide a

formal definition. The two main existing approaches in the literature to modelling ideology

cast it as a constraint on an agent’s choice set (Roemer, 1985) or as a distortion in beliefs

(Bénabou, 2008). My approach, in contrast, assumes agents have complete information and

unconstrained choice sets, yet nonetheless embeds the notion of ideology in an expected-utility

framework, laying the foundations for quantitative models of how ideologies can spread among

a population. To do this, I draw on an observation by Sen (1977) regarding a key feature of

moral positions: that they require an agent to hold them ‘deeply’. In other words, a moral

position not only prescribes a ranking over outcomes, but also requires its holder to prefer

holding this ranking to holding other rankings. I represent ideology along these lines: in my

model, a preference type is a set of first-order preferences over the outcomes of a game Γ,

together with a set of (‘meta-’) preferences over all players’ first-order preferences; preference

types meeting certain conditions qualify as ideologies. Before playing Γ, there is an initial

round of play in which a player chooses whether to invest in changing her opponent’s first-

order preferences. I refer to the resulting two-stage game as an ideological game. Studying

ideological games provides a clear account of two reasons why rational players may expend

time and effort influencing each other’s preference types. The first reason is instrumental:

players may be able to achieve better outcomes in Γ if they change their opponent’s type.

The second is ‘ideological’: players may simply prefer that their opponents share their first-

order preferences.

In section 3.2, I first provide an extended example to motivate my theory of ideology.

In this example, I consider an ascetic religion, which stresses the value of rejecting material

possessions and consumption wherever possible in one’s life. ‘Devout’ players, who follow

the religion, interact with each other and with ‘secular’ (non-religious) players in their daily

lives. These routine interactions are represented by Γ, the “game of life”. I use this example

to set out in intuitive terms my conception of ideology and to consider the ways in which

it determines equilibrium behaviour when different preference types have the opportunity to

invest in changing each others’ types before playing Γ. In addition to changing others’ types,
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investment simultaneously ensures a player retains her own type, if enough same-type players

also invest.

In section 3.3 I then move to a general setting and provide formal definitions of the con-

cepts introduced in the extended example. I provide a taxonomy of types as being “strongly

ideological”, “weakly ideological” or “pragmatic” and relate these concepts to the notion of

homophily (Proposition 3.1). I show that in each case, the incentive for a player to invest in

changing others’ types can be decomposed into an “instrumental” component associated with

the change in equilibrium outcome of Γ that would result, and an “ideological” component

associated with a direct payoff from the change in type profile. A player’s incentive to invest

to retain her own type can be decomposed along similar lines. A weakly ideological player

always prefers to retain her own type, regardless of any instrumental benefits that may result

from a better equilibrium outcome in Γ. Strong ideology is a refinement of weak ideology: a

strongly ideological player also prefers to change other players’ types, regardless of any chan-

ges in payoffs in Γ she might receive. A pragmatic player, in contrast, is indifferent between

all type profiles and is willing to have her type changed if, according to her new type, she

would prefer the resulting equilibrium in Γ to that which would result if her type remained

unchanged. I study the investment profiles supported in pure-strategy equilibrium, which in

general contain at most two investing types (Proposition 3.2).58 I define a notion of efficiency

according to which an investment profile has positive efficiency if it improves aggregate welfare

over the no-invest profile. In any two-player ideological game in which players have different

types, if both types are ideological, there is an equilibrium investment profile with negative

efficiency (Theorem 3.1), since ideological players finds it optimal to invest to retain their own

type. If at least one type is strongly ideological, and costs are low enough, then the negative

efficiency equilibrium is the only equilibrium. Finally, I define “perfectly ideological” types

as strongly ideological meta-payoffs which, if held by all players, result in the best outcome

of Γ as judged by that type. In any pairing of a perfectly ideological player with a pragmatic

58This simplifying result is a consequence of the way I choose to specify the “conversion technology”, the
function that determines final types based on initial types and investment choices.
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player, if the cost of investment is low enough to induce the former to invest, there is a unique

equilibrium with positive efficiency.

Related literature. Roemer (1985) models revolution as a two-player game through

which he suggests two alternative rationalisations of ideological behaviour, where ‘ideologi-

cal”’ is taken to be roughly synonymous with ‘apparently irrational’. The first is that being

known to have an ideology can allow an agent to pre-commit, which is useful in helping achieve

his goals; the second is that seemingly extreme actions in the model can in fact be optimal.

Bénabou (2008) follows a different approach. Noting that ideologies tend to correlate with

important economic and societal outcomes, but are nonetheless often ‘immune’ to relevant

evidence, ideologies in his model are distorted beliefs that are, nonetheless, individually ratio-

nal, in that agents can gain utility from ignorance. My model also seeks to explain seemingly

irrational behaviour in terms of expected-utility maximisation, but, in contrast to Bénabou’s

approach, always assumes agents have correct beliefs. In so doing, it follows groundbreaking

contributions to rational choice theory by Becker and others to show how the expected-utility

framework can explain, for example, criminal behaviour (Becker, 1976), reproductive choices

(Becker, 1981) and addiction to narcotics (Becker and Murphy, 1988; for empirical support,

see Gruber and Koeszegi, 2001). Unlike Becker, however, in my model I need not assume

that people are entirely self-regarding, though self-regarding ideologies can be accommodated

within the framework presented here, as for example in Appendix C.3.

A key feature of my model is that people can influence each other by altering each other’s

preferences. In the two-player ideological game of my model, I investigate the hallmarks of

players’ preferences that determine how much they try to influence their opponents. Alonso

and Camara (2016) provide a theoretical model in which a player can design a signal to try

to persuade others to take an action she prefers. The authors’ description of ideology thus

centres on beliefs, whereas my own takes preferences as characterising an ideology and assumes

complete information. One key difference between Alonso and Camara’s account of ideology

and mine is that in my model, agents may want to spread their ideology even if it achieves
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nothing instrumentally. For example, a religious enthusiast may try to convert others even

though his interactions with them will be unaffected. Theories of persuading others are closely

related to models of commitment, in which an agent plays a game against her future self (see

e.g. Bénabou and Tirole, 2004; Gul and Pesendorfer, 2001; Dekel, Lipman and Rustichini,

2009).

A possible application of my model is in evolutionary theory. In Appendix C.3, I explore

how ideological preferences can be introduced into the indirect evolutionary model of Chapter

1 of this thesis, pointing the way towards future study of the evolutionary origins of ideology.

I consider the possibility that ideological (meta-) preferences can be the object of evolutionary

selection, in a setting in which agents can invest in persuading others to adopt their ideology.

Once a new ideology “mutates”, in that an individual forms a meta-preference that she and

those around her rank outcomes a certain way, she may find it optimal to persuade others

to share this outlook. The approach is novel in allowing preferences to evolve by agents

competing directly over what preferences each of them holds. This idea has roots in work

by Dawkins (1976), but has not previously been addressed quantitatively, to the best of my

knowledge.59

A key distinction in this chapter is between first-order and meta-preferences, which is

needed in order to model agents as expected utility maximisers when their ‘future selves’ (i.e.

final-stage types) are determined endogenously. In the framework I will present, first-order

preferences are defined over the space of lotteries of the set of outcomes in the second stage of a

game. Meta-preferences, which players have in the first stage, are then defined over these first-

order preferences together with lotteries over final-stage outcomes. I characterise ideological

types as sets of meta-preferences in which a player prefers her initial (first-order) preference

type to the alternative. However, my definition of meta-payoffs in general allows for a player to

prefer that his future self (or the future selves of other players) hold the alternative preference

type. Harsanyi (1955) envisages ‘ethical’ preferences as those which one would choose to

hold based on ‘social considerations’ alone, as opposed to one’s ‘subjective’ preferences (i.e.

59Indeed, Dennett (1995) voices scepticism as to the feasibility of such an account.
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those preferences that one actually holds). With Harsanyi’s notion in mind, we can think of

ideological payoffs as being a subset of ethically-motivated (or moral) payoffs. In my theory,

a defining feature of ideology is that it involves preferring the first-order preference ranking

one actually holds to the alternatives. More specifically, in my account strong ideology is

viewed as a special case of morality: in addition to requiring its adherent to prefer to hold it,

as a point of personal duty, an ideology also requires that its adherent prefer to spread the

ideology by converting others.

Because the theory of ideology I provide uses notions such as meta-payoffs that may be

unfamiliar, I begin in section 3.2 with an informal extended example. The core concepts in the

theory are introduced with a limited amount of notation and mathematical definition as a way

to account intuitively for features in the preferences held by adherents to an ascetic religion

and their secular counterparts. This lays the groundwork for a formal and more general theory

of ideology in section 3.3.

3.2 Motivating example: an ascetic religion

In this section, I provide an extended motivating example that illustrates the notion of ideology

I wish to focus on. The motivating example uses some concepts – such as meta-payoffs – that

will be formally defined in section 3.3, but to begin with my aim is to present a relatively

informal account to aid intuition.

Suppose there are n individuals, each of whom decides whether or not to abide by a code of

behaviour in their everyday lives. This code of behaviour is prescribed by an ascetic religion,

according to which an individual should eschew physical possessions and worldly comforts

other than those needed for survival, on the basis that doing so will help him or her achieve

spiritual enlightenment. In the “game of life” Γ – which represents players’ everyday lives and

interactions – each player has action set Z = {0, 1}, where the action 0 represents refraining,

which means consuming only plain food in modest quantities, wearing simple, rough-hewn

clothes and keeping very few and basic personal possessions. The action 1, in contrast, repre-

90



sents indulging, i.e. acquiring and consuming goods and services without practising self-denial

beyond consumption-smoothing. There are two preference types of player: Θ = {0, 1}, where

type 0 is a devout player and type 1 is a secular player. Devout players (θ = 0) prefer to

refrain (z = 0), whatever other players choose, while secular players (θ = 1) always prefer to

indulge (z = 1). However, a player’s payoffs can depend on others’ actions. For devout play-

ers, the greater the number of other players playing indulge, the greater the temptation they

face from the visible consumption of goods and services they see taking place around them.

Although devout players still find it optimal to resist temptation, they bear a psychological

cost in doing so. Suppose for simplicity that secular players, on the other hand, have payoffs

unaffected by others’ actions in the game of life Γ.

More formally, let z = (zi, z−i) ∈ Zn denote an action profile and let θ = (θi, θ−i) ∈ Θn

denote a type profile. Assume that devout players have utility

udev(0, z−i) = 1− 1

n

∑
j 6=i

zj (3.1)

udev(1, z−i) = 0 (3.2)

Note that the payoff a devout player receives from refraining is always strictly positive, as

the psychological cost represented by the second term on the right hand side of (3.1) can be

at most n−1
n
< 1 in absolute magnitude. As her payoff from indulging (zi = 1) is always zero,

regardless of other players’ actions, she finds refrain (zi = 0) to be a strictly dominant action.

To begin with, we will suppose that secular players have the payoffs

usec(0, z−i) = 0 (3.3)

usec(1, z−i) = 1 (3.4)

for any z−i ∈ Zn−1. Clearly, a secular player has a strictly dominant action to indulge

(zi = 1). As both types of player have a strictly dominant action in this example, there is a
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unique Nash equilibrium, denoted z∗, where 60

z∗i =

0 if i is devout

1 if i is secular

Now suppose that before they choose whether to refrain or indulge in the game of life Γ,

players can attempt to influence each other’s type. In particular, each player chooses whether

to invest or not invest. Investment by a devout player involves preaching and otherwise

attempting to convert the secular players they see around them to become followers of the

religion. Investment by a secular player, similarly, might involve talking to devout players

and questioning the basis for their beliefs. Suppose for simplicity that there is the following

conversion technology :

• If player i invests, she will not change type – her investing is a way of consolidating her

own stance on religious matters.

• If i does not invest, then she changes type only if more other-type players invest than

same-type players.

Investing can thus convert others, in addition to immunising oneself from being converted.

Finally, suppose that investing incurs a cost of c ≥ 0 regardless of the player’s type.

To analyse equilibrium play in this situation, we need to ask: would a devout player i

be better off if her type changed? At first glance, the answer may appear to be Yes: secular

players’ payoffs are independent of other players’ actions, and so they can guarantee a payoff of

1 by not investing and indulging (z = 1). In fact however, the question is as yet indeterminate.

Consider the payoffs

60Throughout this chapter, I make the simplifying assumption (formalised in section 3.3) that Γ has a unique
Nash equilibrium for any given type profile.
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u
′
(0, z−i) = −4 (3.5)

and

u
′
(1, z−i) = −3 (3.6)

for any z−i ∈ {0, 1}n−1. As u
′
(.) is a positive affine transformation of usec(.), it represents

the same set of preferences. But now secular players can only receive negative payoffs. The

problem is one of incomplete specification: to be able to assess whether a player would wish to

change type, we need to know how players compare payoffs across types. Player i’s comparison

of payoffs across types is encoded by her meta-payoffs, which are von Neumann-Morgernstern

(vNM) utilities as a function of outcome profiles Zn and preference type profiles θn. To avoid

confusion, I will refer to her payoffs defined simply over the set of outcome profiles Zn, such

as those in (3.1) to (3.6), as first-order payoffs.

An arbitrary meta-payoff for player i is denoted wi(zi, z−i, θi, θ−i). For the case that i is

secular, let us suppose her meta-payoffs are as follows.

wprag sec(0, z−i, 0, θ−i) = 1− 1

n

∑
j 6=i

zj (3.7)

wprag sec(1, z−i, 0, θ−i) = 0 (3.8)

wprag sec(0, z−i, 1, θ−i) = 0 (3.9)

wprag sec(1, z−i, 1, θ−i) = 1 (3.10)

for any z−i ∈ Zn−1 and any θ−i ∈ Θn−1, where wprag sec(0, z−i, 0, θ−i)) denotes the (meta-)

payoff that a secular player assigns to the outcome (0, z−i) on the counterfactual that she were

instead devout (i.e. θi = 0), and so on. Comparing equations (3.7) and (3.10), we see that a

secular player is indifferent between switching to be a devout player (with θi = 0) subject to

the outcome she would then regard as the best (i.e. all players refraining), and continuing to

be secular (θi = 1) subject to the outcome she regards as the best (i.e. any profile in which she
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indulges). Equally, from (3.8) and (3.9), a secular player is indifferent between switching to be

devout subject to the outcome she would then regard as the worst (i.e. all players indulging),

and continuing to be secular subject to the outcome she regards as the worst (i.e. any action

profile in which she refrains). On this specification, a secular player is pragmatic in evaluating

whether she would prefer to change types, placing equal value on her future self regardless of

what preferences that self might possess.

While secular players adopt this pragmatic approach to comparing payoffs across types,

devout players evaluate the possibility of changing type differently. To the devout ascetic,

adherence to the religion is a core part of her identity, which she should seek to preserve

regardless of whether she would find life easier, given others’ behaviour, were she to change

type.61 In particular, she would prefer to remain devout even if everyone else around her

were indulging and she were subject to temptation. One possible suitable specification of

meta-payoffs for devout players is thus

wweak dev(0, z−i, 0, θ−i) = 1− 1

n

∑
j 6=i

zj (3.11)

wweak dev(1, z−i, 0, θ−i) = 0 (3.12)

wweak dev(0, z−i, 1, θ−i) = −2 (3.13)

wweak dev(1, z−i, 1, θ−i) = −1 (3.14)

for any z−i ∈ Zn−1 and any θ−i ∈ Θn−1. Under this specification, we see that a devout

player would always rather remain devout, as the minimum meta-payoff she assigns to being

devout (of zero) is greater than the maximum meta-payoff she assigns to being secular (of

−1). We say that devout players with meta-payoffs of this sort are ideological. The ascetic

religion can be thought of as an ideology.

The specification of devout players’ meta-payoffs above assumes that they do not care

61If an attribute – in this case a preference type – forms part of one’s identity, then seeking to preserve it
can be thought of as akin to self-preservation.
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directly about other players’ preference types. Formally, the meta-payoffs wweak dev(.) are

independent of θ−i. In general, if i’s payoffs are (a) ideological and (b) independent of θ−i,

we say they are weakly ideological. This may be reasonable if, for instance, preference types

are not themselves observable.62 Another reason the above specification may be reasonable

is simply that the religion could be focused on the self; the individual is concerned with her

own spiritual enlightenment, not that of others. Note that a player with the meta-payoffs

wweak dev(.) as specified in equations (3.11) to (3.14) does nonetheless have an incentive to

convert other players, since assuming all players play their dominant actions in Γ, she will

receive a higher meta-payoff (3.11) if there are fewer secular players j playing zj = 1. This

incentive is known as an instrumental incentive to convert.

For comparison, consider the alternative specification under which devout players have the

meta-payoffs

wstr dev(zi, z−i, θi, θ−i) = wweak dev(zi, z−i, θi, θ−i)−
1

n

∑
j 6=i

θj (3.15)

In other words, aside from evaluating the outcome z of the game of life Γ and evaluating

their own preference type θi, devout players also attach value directly to the preference types

of other players in the profile θ−i. Specifically, they attach a disutility of 1
n

for every one of

the other players who are secular. If devout players have meta-payoffs of this sort – or more

generally have meta-payoffs under which they are (a) ideological and (b) for any fixed actions

(zi, z−i) and number of players n, their meta-payoffs increase in the number of same-type (i.e.

devout) opponents – we say they are strongly ideological. Note that a strongly ideological

devout player with payoffs given by (3.15) thus benefits in two ways if she converts her secular

opponents to become devout. First, she benefits directly from a reduction in the magnitude of

62 If preference types are not observable, however, the analysis is complicated somewhat without yielding

much extra insight, so I assume complete information throughout. Players may be able to discern whether

players are secular from conversations, say, or from observing that they do not follow any customs of the

ascetic religion that are in place in addition to the code of behaviour that requires restraint in consumption.
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the penalty term 1
n

∑
j 6=i θj . This effect is known as player i’s ideological incentive to convert.

Second, if play continues in equilibrium she benefits from an improvement in outcome in Γ,

via a reduction in the magnitude of the term 1
n

∑
j 6=i zj in (3.11). As before, the improvement

in payoff she receives in Γ is known as her instrumental incentive to convert. In having both

an ideological and instrumental incentive to convert, strongly ideological devout players differ

from weakly ideological devout players, whose only incentive to convert is instrumental.

A final point to note is that we can relate the concept of ideology to the concept of

homophily, i.e. the preference for sharing attributes in common with one’s neighbours. If

someone prefers that others share her preference type, even if such a change would move her

from the best to the worst outcome of Γ, she displays homophily, a notion I define formally in

section 3.3. By inspection of the payoff functions for each of the preference types above, only

the strongly ideological players display homophily, because only they care directly about the

preference types of the other players.

Now that meta-payoffs are specified, it is possible to analyse equilibrium play. Suppose

that before investments take place, nd players are devout and ns = n− nd are secular. Recall

that in the round of simultaneous investments before Γ is played, if i invests then she incurs

a personal cost of c ≥ 0. Investing shores up her own ideological position, ensuring that she

will not change type. If she does not invest, however, then she changes type only if more

other-type players invest than same-type players.

Case 1

First, consider the case where:

• devout players possess the weakly ideological meta-payoffs wweak dev(.); and

• secular players possess the pragmatic meta-payoffs wprag sec(.).

In this case, consider the decision facing a secular player. Recall that secular players are

pragmatic, so they are indifferent between being either preference type while receiving that
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type’s best outcome in Γ (and similarly with respect to types’ worst outcomes). A secular

player i derives a meta-payoff of 1 − 1
n

∑
j 6=i zj from being converted to being devout and

playing refrain (zi = 0), the dominant action for a devout player, compared to a meta-payoff

of 1 from remaining secular and playing her dominant action of indulge (zi = 1). Note,

however, that if i is converted, then all other secular players who do not invest will also be

converted. Consequently, if no secular players invest, they will all jointly find not investing

strictly optimal, as they will receive their maximum meta-payoff of 1, compared with a net

meta-payoff 1−c from investing. Turning to devout players, from (3.11) we see that the benefit

to a devout player from the conversion of all the secular players is ns
n

, as converted secular

players j will play zj = 0 as their dominant action. Thus, provided the cost of investing c < ns
n

,

no devout player has a profitable deviation if precisely one devout player invests. There is

then a set of nd subgame perfect equilibria in which precisely one devout player invests, no

secular players do, all secular players are converted to being devout and players then play

their dominant action of refrain in the game of life Γ.63 If c > ns
n

, on the other hand, then

the only equilibrium is one in which no player invests.

These are in fact the only pure Nash equilibria. To see why, first consider the case where

ns < nd, and suppose a contrario that some strictly positive number k ≤ ns of the secular

players invest in equilibrium. A mutual best response for devout players is if precisely k + 1

of them invest, provided c < ns
n

.64 Otherwise, they best-respond if none invest. In either case,

now taking devout players’ investments as the fixed portion of the investment profile, secular

players’ best response is for all to choose not to invest. It follows that no secular player invests

in equilibrium if ns < nd. Turning to the case where ns ≥ nd, we also need to consider the

63In general I restrict attention to pure strategies. If we allow for mixed strategies in this instance, however,
if c < ns

n there is also clearly a symmetric subgame perfect equilibrium in which each devout player invests
with probability p, where p is the unique root of the equation ns

n (1 − p)nd−1 = c subject to the constraint
p ∈ [0, 1]. The left hand side of this equation is the product of the benefit from converting the secular players
of ns

n and the probability that a devout player’s investment is pivotal of (1− p)nd−1 If this product equals the
cost c of investing then devout players are indifferent between investing and not, which is required for a mixed
strategy to be weakly optimal.

64Another mutual best response is if none invest, i.e. devout players fail to coordinate, which is also the
(unique) best reponse when c ≥ ns

n .
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case where k secular players invest such that nd < k ≤ ns. In this case, all devout players will

be converted regardless of their investment choice, and so all best-respond by not investing.

But then any secular player finds a unilateral deviation strictly optimal, and so it cannot be

that k secular players invest in equilibrium.

Case 2

Second, consider the case where:

• devout players possess the strongly ideological meta-payoffs wstr dev(.); and

• secular players possess the pragmatic meta-payoffs wprag sec(.).

Equilibrium analysis follows the same lines as in the previous case, except that now the benefit

to a devout player from the conversion of all the secular players is 2ns
n

, twice its previous value.

The minimum cost needed to ensure that no player invests is thus 2ns
n

.

Case 3

Finally, let us examine the possibility that secular players too could be ideological. Their

ideological meta-payoffs could perhaps reflect a conviction that the philosophy of self-denial

is inherently wrong, and that asceticism goes against the natural order. However, when

playing the game of life Γ, their payoffs are as before; devout players suffer a cost in resisting

temptation if other players indulge, whereas secular players are indifferent to others’ actions.

In particular, the meta-payoffs of secular players are now as follows.

wweak sec(0, z−i, 0, θ−i) = −1− 1

n

∑
j 6=i

zj (3.16)

wweak sec(1, z−i, 0, θ−i) = −2 (3.17)

wweak sec(0, z−i, 1, θ−i) = 0 (3.18)

wweak sec(1, z−i, 1, θ−i) = 1 (3.19)
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Note that these meta-payoffs assign a maximum and minimum possible values of −1 and

−2 respectively to the case where the secular player changes type to become devout (i.e.

switches from θi = 1 to θi = 0). In this way, they mirror the calibration of payoffs across

types of the devout player; there is an effective penalty of absolute size 2 associated with a

change in type in either case. This ensures that the payoffs are ideological. They are also

clearly weakly ideological, since they do not depend on any θj for j 6= i. In addition to

supposing secular players have these weakly ideological meta-payoffs, I suppose that devout

players possess the weakly ideological meta-payoffs wweak dev(.).

It turns out that for intermediate values of the cost in case 3, multiple investment levels are

possible in equilibrium. (For a more detailed equilibrium analysis of case 3, see Appendix C.2.)

This is driven by the fact that players of either type, being ideological, have an ideological

incentive to retain their own type, while players of at least one type (in this case, devout

players) have an instrumental incentive to convert their opponents. If the cost c of investment

is not too high, there is thus a ratchet effect: devout players wish to invest until their combined

investment just exceeds that of the secular players, whereas secular players – who have no

instrumental incentive – wish to invest until their combined investment matches that of the

devout players. If there are at least as many secular players as devout players, then once all

devout players invest, the secular players match them and an equilibrium is reached. Clearly,

the higher the level of investment, the more inefficient the equilibrium, as the costly investment

in these equilibria does not affect either the outcome of Γ or the type profile. If, however, the

number of devout players exceeds that of secular players, then the ratchet process collapses

into a cycle: once the secular players are unable to match the number of devout players, their

best response is not to invest at all.

How general are these results? Section 3.3 below investigates ideological games in greater

generality. It turns out that regardless of the first-order payoffs in Γ, if there are two ideological

types, any pure-strategy equilibrium will either be one in which exactly one player invests,

or will be an equilibrium described in case 3. As ever, if costs are prohibitive for both types,
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neither will invest. For any cost beneath this level, if the more numerous type finds it optimal

to convert the other type, either the other type finds it optimal to preserve their type (so there

is no pure-strategy equilibrium) or not (in which case, one player of the former type invests).

If there are the same number of players of each type, or if the more numerous type finds it

optimal to preserve their type but not to convert, then there can be inefficient equilibria in

which investment by players on both sides “cancels out”.

If one type is pragmatic and the other ideological, on the other hand, and if the ideological

type has equilibrium payoffs in Γ that are maximised when all players are of the ideological

type (in which case the type is known as a perfectly ideological type) the results will be as in

case 1 or case 2. This time the result is driven by the conversion technology we have assumed,

whereby all players of a type are converted if and only if strictly more of the other-type players

invest. Crucially, if a perfectly ideological type finds it optimal to convert a pragmatic type

and does this successfully, then pragmatic players will enjoy their maximum meta-payoff since

all players will receive their maximum first-order payoff as the ideological type in Γ. If, in

contrast, the ideological type has equilibrium payoffs in Γ that are not maximised when all

players are of that type, it is possible that the pragmatic type will find it optimal to preserve

their type, or may even have an (instrumental) incentive to convert the ideological type, if

their equilibrium first-order payoffs in Γ are improved by having other players of their own

type. At the same time, it is also possible that the ideological type may not wish to convert

the pragmatic players, though by the definition of ideology they will want to preserve their

own type.

In the next section, I provide a formal account of ideology, building on the intuition from

the extended example above, by identifying a class of finite games known as “ideological

games”. In this framework, I then provide a decomposition of the incentives faced by players

with ideological preferences and use this to characterise sets of equilibria, at once generalising

and formalising the results of section 3.2.
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3.3 Formal model

3.3.1 Ideological games

An ideological game has two stages. Let N = {1, . . . n} be the set of players. Play is as

follows.65

Initial (first) stage. Before play begins, each player has a preference type known as

her initial type; player i’s initial type is denoted θ
(1)
i ∈ Θ, where Θ is a finite set of (at least

two) types, and the initial type profile is denoted θ(1) ∈ Θn. In the first stage, the players

simultaneously choose whether to invest. Player i’s investment choice is denoted xi ∈ {0, 1};

the profile of investment choices is denoted x = (xi,x−i).
66 Define

Xθ(x) :=
∑

xj

{j∈N :θ
(1)
j =θ}

(3.20)

Xθ is known as the total investment by (type) θ.

Final (second) stage. Immediately following investment choices in the first stage,

players’ preference types can change; a player’s type in stage 2 is called her final type. Player

i’s final type, θ
(2)
i ∈ Θ, is determined by the investments that i and j make, as follows.

Assumption 3.1 (Conversion technology) The final type profile θ(2) = f(θ(1),x), where the

function f : Θn × {0, 1}n → Θn is defined as follows.

65Time is not included in the model and throughout this chapter players do no discounting. It is natural
to think of investments as leading to future payoffs in the second stage, however, and so I use time-related
language in interpreting the features of the model and the results. Allowing for discounting of final-stage
payoffs in the first stage would not lead to any substantive changes to the model’s results, as it would be
equivalent merely to a shift in the cost of investment c.

66An alternative approach to modelling investment in this context would include a second dimension, so
that a player chooses both whether to ‘attack’ - that is, to attempt to influence others – and to ‘defend’ – that
is to make oneself less prone to being influenced. In my model, a player’s choice of investment is along one
dimension. In support of this simplification, I note that drawing others’ attention to a line of argument, or
exposing them to advertising or propaganda, say, may often involve focusing one’s own attention on the same
object.
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f(θ(1),x) =

θ
(1) if ¬∃θ′ such that ∀θ 6= θ

′
, Xθ′ > Xθ

(θ
′
, . . . , θ

′
) if ∃θ′ such that ∀θ 6= θ

′
, Xθ′ > Xθ

(3.21)

The function f(.) is known as the conversion technology. Assumption 3.1 implies that if

one type of player invests strictly more than any other type of player, then all players convert

to that type; otherwise, all players retain their initial types. The fact that the conversion

technology takes this deterministic form simplifies the analysis below.67

Once the final type profile θ(2) has been determined, the players simultaneously play a

finite, one-shot game Γ. Purely to economise on notation, assume Γ is symmetric and let Z

denote the (finite) action set of Γ, with zi ∈ Z denoting an arbitrary action. The game is one

of complete information. In particular, the initial type profile θ(1) is assumed to be common

knowledge among players, as are investment choices and the final type profile (once they are

realised). The game Γ is assumed to satisfy the following simplifying assumption.68

Assumption 3.2 (Unique Nash equilibrium) Given any final type profile θ(2) ∈ Θn, the con-

tinuation of Γ has a unique Nash equilibrium.

Assumption 3.2 thus ensures that the final type profile θ(2) determines a unique final-stage

action Nash profile z∗(θ(2)).

67However, the results of this section and elsewhere can also be obtained, for instance, via a conversion
technology in which a player of initial type θ has an independent probability of switching to any given type
θ′ 6= θ that is linearly increasing in Xθ′ . A sufficient condition for Proposition 3.2 and Theorem 3.1, for
example, would then be that meta-payoffs be linear in the numbers of each type in the final type profile.
Another point to note is that the conversion technology in the extended motivating example, according to
which an investment by i immunises her from being converted, yields the same equilibria as Assumption 3.1.
This is especially clear in the case of a two-player game, where the two technologies are exactly the same, as
in equation (C.1) in Appendix C.3.

68A weaker but slightly less simple assumption than Assumption 3.2 that would have the same effect is
that if a continuation of Γ contains more than one Nash equilibrium, one of them is specified as always being
selected.
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Figure 17: Sketch of extensive form for case of two players with different initial types

Example 3.1 Suppose that Θ = {θA, θB}, there are two players and the initial type profile

is θ(1) = (θA, θB). In this case, the subgame of Γ in which the players have final type profile

θ(2) = (θA, θB) is denoted ΓAB, and so on. The extensive form of the game is then that sketched

in Figure 17.

�

Preferences . Let � be any (first-order) preference relation over ∆Zn, the space of simple

lotteries over outcomes of Γ.69 A compound lottery over a pair of simple lotteries L1 and L2 is

denoted simply as a convex combination of the two. Assume further that � meets the axioms

of von Neumann-Morgernstern (vNM) rationality, as follows.

Assumption 3.3 (First-order continuity) For any three lotteries L1, L2, L3 ∈ ∆Zn, if L3 �

L2 � L1, then ∃α ∈ [0, 1] such that αL1 + (1− α)L3 ∼ L2

69By definition, a preference relation is a complete and transitive binary relation. I assume the relation does
not entail indifference between all lotteries.
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Assumption 3.4 (First-order independence) For any three lotteries L1, L2, L3 ∈ ∆Zn, if

L2 � L1, then ∀α ∈ [0, 1], αL2 + (1− α)L3 � αL1 + (1− α)L3

By the vNM Utility Theorem, the preference relation � can thus be represented by vNM

payoffs. With every θ ∈ Θ there is associated a unique vNM first-order preference relation �θ
over ∆Zn. Let us denote by uθ(.) : Zn → R a utility function that represents �θ.

Now let �∗ be any preference relation (known as a meta-preference relation) over the

domain L∗ := ∆[Zn ×Θn], the space of lotteries over the Cartesian product of the outcomes

of Γ and the set of type profiles, with arbitrary element λ ∈ L∗. Assume that �∗ satisfies the

following rationality axioms.

Assumption 3.5 (Meta continuity) For any three lotteries λ1, λ2, λ3 ∈ L∗, if λ3 �∗ λ2 �∗

λ1, then ∃α ∈ [0, 1] such that αλ1 + (1− α)λ3 ∼∗ λ2

Assumption 3.6 (Meta independence) For any three lotteries λ1, λ2, λ3 ∈ L∗, if λ2 �∗ λ1,

then ∀α ∈ [0, 1], αλ2 + (1− α)λ3 �∗ αλ1 + (1− α)λ3

With every θ ∈ Θ there is associated a unique meta-preference relation �∗θ over L∗, which

can be represented by vNM payoffs. Formally, there exists a function w : Zn ×Θn → R that

maps from 2n-tuples (zi, z−i; θ
(2)
i , θ

(2)
−i ) to the reals, unique up to a positive affine transforma-

tion, such that for any two lotteries λ1, λ2 ∈ L∗, λ1 �∗ λ2 if and only if E[w(λ1)] ≥ E[w(λ2)].

The function w : Zn × Θn 7→ R is known as a meta-utility function. The numbers

w(zi, z−i; θ
(2)
i , θ

(2)
−i ) are known as meta-payoffs, which are the second-order analogue of the

vNM representation of (first-order) preferences over a standard set of outcomes or states. The

completeness and transitivity properties of �∗ together with Assumptions 3.5 and 3.6 are

necessary and sufficient for the representation.

In summary, every type θ ∈ Θ is thus characterised by a unique first-order preference

relation �θ, which can be represented by a vNM utility function uθ(.), and a unique meta-

preference relation �∗θ, which can be represented by a vNM utility function wθ(.).
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To simplify the study of meta-preferences, I will restrict the class of admissible meta-utility

functions by appealing to a notion of consistency between a decision-maker’s first-order and

meta-preferences. I wish to rule out certain combinations of first-order preference relations

�θ and meta-preference relations �∗θ. Consider, for example, a player’s rankings over the

outcomes of Γ supposing that she retains her current type when playing Γ. Her first-order

preference relation �θ ranks lotteries over the outcomes of Γ, as does her meta-preference

relation �∗θ. If these rankings are inconsistent, then the type θ is, in a sense, ill-defined,

for both rankings specify how she evaluates outcomes as an agent of type θ. For θ to be a

meaningful type, it is therefore necessary to rule out inconsistency of this kind.70

To this end, for arbitrary lottery λ ∈ L∗, denote by λactions ∈ ∆Zn the marginal distribu-

tion of λ over Zn, denote by λtypes ∈ 4Θn the marginal distribution of λ over Θn.

Assumption 3.7 (Independence of preferences over action profiles and over others’ types)

For any player i ∈ N , let λ1, λ2 ∈ L∗be two lotteries in which player i has type θ with

probability 1. If λtypes1 = λtypes2 , then λ1 �∗θ λ2 iff λactions1 �θ λactions2 .

We then have the following Lemma.

Lemma 3.1 (Identifying first-order with meta payoffs) For any player i of some type θ ∈ Θ,

fix a representation uθ(z) of �θ. Then there exist (i) a representation wθ(.) of �∗θ and (ii) a

70An obvious stronger assumption on marginal distributions would be as follows. Let λ1, λ2 ∈ L∗ be two
lotteries where λtypes1 = λtypes2 and λactions1 = λactions2 . Then for any type θ ∈ Θ, λ1 ∼∗θ λ2. In other words, a
decision-maker is indifferent between any two lotteries that have the same marginal distribution over actions
and the same marginal distribution over types. Such an assumption implies that for any player i of some type
θ ∈ Θ, any representation wθ(z; θi, θ−i) of �∗θ can be expressed in the form wθ(z; θi, , θ−i) = ṽθ(z)+vθ(θi, θ−i),
where the function ṽθ(.) : Zn−1 → R maps from the set of outcomes of Γ to the reals and the function
vθ(.) : Θn−1 → R maps from the set of profiles of other players’ types to the reals. The proof is analogous to
that of Assumption 3.7. This alternative assumption is implausibly restrictive, however, as it implies that an
agent derives utility from the outcomes of Γ depending only on her own initial type, and not on the final type
profile. This would rule out, for instance, the three cases analysed in section 3.2, as all the meta-preference
types considered have meta-payoffs that depend on other players’ actions in Γ only if the player’s final type
is devout. The reason that all the meta-preferences types considered in section 3.2 have this feature arises
from the specification of first-order preferences. In other words, devout players, by definition, care about other
players’ actions in Γ, whereas secular players do not. On the other hand, if all types in Θ are pragmatic,
as defined by equations (3.26) to (3.29), then players’ preferences meet the stronger assumption on marginal
distributions.
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function vθ(.) : Θn−1 → R mapping from the set of profiles of other players’ types to the reals

such that for any z ∈ Zn, wθ(z; θ, θ−i) = uθ(z) + vθ(θ−i).

Proof : Let wθ(.) be a representation of �∗θ. I establish the result by showing that (i) for

any z, z′ ∈ Zn, the difference wθ(z; θ, θ−i)−wθ(z′; θ, θ−i) is independent of (θi, θ−i) ∈ Θn; and

(ii) for any θ−i, θ
′
−i ∈ Θn−1, the difference wθ(z; θ, θ−i)−wθ(z; θ, θ

′
−i) is independent of z ∈ Zn.

Fix arbitrary z, z′ ∈ Zn, and θ−i, θ
′
−i ∈ Θn−1. Let λ1 ∈ L∗ be the lottery in which (z; θ, θ−i)

occurs with probability 1
2

and (z′; θ, θ
′
−i) occurs with probability 1

2
. Let λ2 ∈ L∗ be the

lottery in which (z′; θ, θ−i) occurs with probability 1
2

and (z; θ, θ
′
−i) occurs with probability

1
2
. We have that λtypes1 = λtypes2 and λactions1 = λactions2 , with the latter equality implying

both λactions1 �θ λactions2 and λactions2 �θ λactions1 . As in both lotteries, i is of type θ for sure,

Assumption 3.7 then implies that λ1 ∼∗θ λ2. As wθ(.) is a representation of �∗θ, we have

1

2
wθ(z; θ, θ−i) +

1

2
wθ(z

′; θ, θ
′

−i) =
1

2
wθ(z

′; θ, θ−i) +
1

2
wθ(z; θ, θ

′

−i) (3.22)

i.e. (i) wθ(z; θ, θ−i) − wθ(z′; θ, θ−i) = wθ(z; θ, θ
′
−i) − wθ(z′; θ, θ

′
−i). Rearranging yields (ii)

wθ(z; θ, θ−i)− wθ(z; θ, θ
′
−i) = wθ(z

′; θ, θ−i)− wθ(z′; θ, θ
′
−i). �

The meta-utility function, unique up to a positive affine transformation, which represents

�∗θ is denoted wθ(.). Assumption 3.7 allows us to identify a type with a set of first-order payoffs

and with a set of meta-payoffs in a consistent, meaningful way. It means that a player, when

choosing whether to invest ex-ante, anticipates the first-order payoffs they will have in the

game of life Γ and, conditional on these payoffs (i.e. aside from any preference for a particular

final type profile) acts as an expected utility maximiser accordingly.

Initial stage payoffs. A player’s stage 1 (ex-ante) payoffs represent the preferences a

player possesses in stage 1 of the ideological game. Players suffer a cost c ≥ 0 from investing

(i.e. from playing x = 1 in the initial stage.) The initial (ex-ante) payoffs of a player i with

a given initial type θ ∈ Θ are as follows.

πθ

(
xi; zi, z−i; θ

(2)
i , θ

(2)
−i

)
= −cxi + wθ

(
zi, z−i; θ

(2)
i , θ

(2)
−i

)
(3.23)
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The first term on the right hand side of (3.23) reflects that all players, regardless of type,

suffer a disutility of c in stage 1 if and only if they invest; additionally, they receive a second-

order payoff, which is the second term on the right hand side. In other words, for a player of

a given initial type, her initial stage payoffs depend on her own first-stage investment costs,

the outcome of Γ in the final stage, her own initial type and the final type profile.71

Final stage payoffs. Recall that the utility function u(.) specifies the payoffs over the

outcomes of Γ for each final preference type.

Strategies and summary. Define the set of histories H = {0, 1}n × Θ2n; an arbitrary

element is denoted h ∈ H and is called a history. A history is a tuple comprising an investment

profile, initial type profile and final type profile; we can write it explicitly as h = (x; θ(1); θ(2)).

A strategy is a pair (x(.), z(.)), where the initial stage strategy x : Θ → {0, 1} is a mapping

from initial types to investment actions, and the final stage strategy z : H →4Z is a mapping

from histories to final stage actions.

The features of an ideological game set out above can be summarised in the following

formal definition.

An ideological game is a tuple
〈
N,X,Θ, θ(1), c, f(.), Z, {�θ}θ∈Θ, {�∗θ}θ∈Θ

〉
, where

• N = {1, . . . , n} is the set of players

• X = {0, 1} is the initial stage action set

• Θ is the finite set of types

• θ(1) ∈ Θn is the initial type profile

• c ≥ 0 is the investment cost

71 To see why it is necessary to define stage 1 payoffs in addition to stage 2 payoffs, note that the ex-post

payoffs in stage 2 for either preference type – such as the set of payoffs {uA(z)}z∈Z – are only unique up to a

positive affine transformation. In order to model players as expected utility maximisers in stage 1 as well as

in stage 2, it is thus necessary to ‘fix’ the sets of stage 2 payoffs for each final type relative to each other. In

other words, some assumption about comparability of preferences across types is needed. This job is done by

the second-order preference functions wA(.) and wB(.)
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• f : Θn × {0, 1}n → Θn is the conversion technology

• Z is the (finite) final stage action set

• {�θ}θ∈Θ are the first-order preference relations associated with each type

• {�∗θ}θ∈Θ are the meta-preference relations associated with each type

The final-stage game Γ is given by the tuple 〈N,Z,Θ, {�θ}θ∈Θ〉.

3.3.2 A taxonomy of meta-payoffs: homophily and ideology

In this section, I construct a categorisation of meta-payoffs in terms of two concepts: ho-

mophily and ideology, each with gradations of intensity. The formulation I give here of these

concepts is not intended to be exhaustive or fine-grained; it is largely guided by the aim of

a set of categories that readily permit equilibrium analysis. I begin with a short qualitative

discussion of the concepts before moving on to formal definitions.

Homophily involves the tendency of individuals to seek to associate with others who display

similar traits or preferences. It has been widely theorised and observed in a variety of settings,

including learning and in the formation of friendships (Currarini, Jackson and Pin, 2009) and

among those who share ideological material online on social networks (Bakshy et al, 2015).

In the present context, the object of homophily will be (first-order preference) types. Below

I consider the case of an agent who, conditional on maintaining her own type, prefers that

her opponent share this type; this notion will then form the basis for a formal definition of

Partial Homophily (PH). A natural way to strengthen the definition is then to suppose that

whatever her final type, she prefers a same-type pairing; I formally define Full Homophily

(FH) along these lines. Intuitively, an agent adhering to FH prefers to fit in, ahead of any

concerns that her present type should proliferate; in this sense, there appears to be a tension

between homophily and the notion of an ideologically-motivated agent.

The concept of ideology, as I will develop it here, focuses on two concerns. At its most

basic level, an ideology requires its adherents to be motivated to retain their own preferences.

In this respect, I work on the basis that all ideology has, by its nature, a defensive character.
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This defensive character neither conflicts with nor requires homophily assumptions, since it is

purely inward-looking. The second (and perhaps more obvious) concern of an ideology, which

can be included as a condition to strengthen the concept, is that its adherents be motivated to

persuade or convert others to one particular way of evaluating the world. A “strong” ideology

of this sort is at odds with the notion of FH, since it requires an agent to prefer her opponent

to convert to her initial type, even if she fears that she herself may be converted out of it. It

does, however, imply PH, as it motivates agents to convert others to their own initial type.

Let us turn to a formal account of homophily. Define the count Cθ(Θ) of a type profile

Θ with respect to a type θ ∈ Θ to be the number of times θ appears in Θ. In addition to

imposing Assumptions 3.3 to 3.7, let us assume the following.

Assumption 3.8 (Impersonality) For any z ∈ Zn, any θ ∈ Θ and any two θ−i, θ
′
−i ∈ Θn−1

that have the same count with respect to every type, wθ(z; ., θ−i) = wθ(z; ., θ
′
−i).

Assumption 3.8 says that while players may care directly about how many players are of

each type, beyond that they do not care which players are of which type.

I now examine two alternative restrictions. The first alternative restriction, which is

strongly intuitive and which is supported by empirical evidence such as that referred to above,

is as follows.

Assumption 3.9 (Partial Homophily) For any z ∈ Zn and any θ ∈ Θ, wθ(z; θ, θ−i) is incre-

asing in Cθ(θ−i) .

The assumption of PH is simply that, on condition that a player maintains her type θ

from the initial to the final stage, she prefers that her opponent share this type. The natural

alternative to this assumption is to strengthen it to yield the following.

Assumption 3.10 (Full Homophily) For any z ∈ Zn and any θ, θ
′ ∈ Θ, wθ(z; θ

′
, θ−i) is

increasing in Cθ′ (θ−i) .
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Note that in this case, even in situations where a player of type θ changes to some other

type θ
′
, her ex-ante preference (as type θ) is for her opponents to share her final type θ

′
. FH

clearly implies PH, since it includes the case that θ
′

= θ, which reduces to the definition of

PH. Put simply, FH means that whatever a player’s final type, she would rather that her

opponent share that final type.

I now turn to categorising meta-payoffs via ideology. I first formally define three categories

of meta-payoff: “ideological”, “strongly ideological” and “pragmatic”. I then discuss how to

interpret the categories and consider the properties of each kind of ideological payoff under

each alternative homophily assumption.

A player’s meta-payoffs (and her accompanying meta-preferences) are ideological, with

respect to her initial type θ, iff, whatever the other players’ final type profile θ−i ∈ Θn−1,

min
z∈Zn

wθ (z; θ, θ−i) > max
z∈Zn

wθ

(
z; θ

′
, θ−i

)
(3.24)

for any type θ
′ 6= θ. In this case θ may be referred to as an ideological type, and players

with ideological payoffs are themselves said to be ideological.

A player of initial type θ and the associated meta-payoffs wθ(.) are strongly ideological if

and only if (i) they are ideological and (ii) the following inequality of “Strong Ideology” (SI)

holds, for any final type θ
′ ∈ Θ and for any type profiles for the other players θ̃−i, θ̂−i ∈ Θn−1

such that Cθ(θ̃−i) > Cθ(θ̂−i).

min
z∈Zn

wθ

(
z; θ

′
, θ̃−i

)
> max

z∈Zn
wθ

(
z; θ

′
, θ̂−i

)
(3.25)

In other words, if SI holds, then ex-ante a player prefers that other players switch to her

initial type even if she herself is converted to a different type (since θ
′

may be different from

the player’s initial type θ). Note that SI implies PH; this is clear by considering the case

that θ
′

= θ, as inequality (3.25) then implies that for any given z ∈ Zn, wθ

(
z; θ, θ̃−i

)
>

wθ

(
z; θ, θ̂−i

)
provided Cθ(θ̃−i) > Cθ(θ̂−i), which is simply a restatement of PH. If a player is

ideological but not strongly ideological, she is weakly ideological.
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If, on the other hand, a player (with initial type θ) has meta-payoffs such that for any

θ
′ ∈ Θ, any θ−i ∈ Θn−1, any θ

′
−i ∈ Θn−1 and any z ∈ Zn, the following four conditions hold:

wθ (z; θ, θ−i) = wθ

(
z; θ, θ

′

−i

)
(3.26)

and

max
z∈Zn

wθ (z; θ, θ−i) = max
z∈Zn

wθ

(
z; θ

′
, θ−i

)
(3.27)

and

min
z∈Zn

wθ (z; θ, θ−i) = min
z∈Zn

wθ

(
z; θ

′
, θ−i

)
(3.28)

and

wθ

(
z; θ

′
, θ−i

)
= wθ′

(
z; θ

′
, θ−i

)
(3.29)

then we say the player is pragmatic.

In the case of ideological payoffs as defined by (3.24), a player has an ideological type if

in the initial stage she judges that no outcome of the final-stage game Γ obtained while being

the other (rival) type is better than any outcome obtained while she possesses her initial

type. Intuitively, agents are ideological if they would rather possess their current preferences

regardless of what outcomes ensue when interacting with other people. For instance, a die-hard

monarchist living in a proud republic might prefer the current world, in which he maintains

his current beliefs but is ostracised by wider society, to one in which he himself becomes a

republican and is embraced by one and all.72 Although the agent can envisage changing his

mind and outlook – and may even envisage being content in doing so – he does not currently

value that future self as much as the one who shares his current preferences. Put simply, really

believing in a principle requires one to hold true to it.

Additionally, an agent’s meta-payoffs (which could reflect, for instance, the adoption of

a moral or ideological principle) may also extend to the future selves of other agents. In

the case of strongly ideological payoffs – inequality (3.25) – this entails preferring that one’s

72This sort of situation would be represented by a game Γ in which a same-final-type pair of players enjoys
a good Nash outcome (as ranked by that preference type).
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opponent ends up adopting one’s current preferences, regardless of what happens to oneself.

Note that as defined here, although being strongly ideological implies preferring that one’s

future self have one’s initial preference type (as having strongly ideological payoffs implies

that the payoffs are ideological), it is consistent with the agent attaching more weight to her

opponent’s final type than his own. For instance, an ideological agent might prefer that her

opponent adopt the agent’s current type, even if this comes at the expense of her own future

self having a different type. A reason for such a preference could be, say, that the opponent

occupies a position of great importance or influence in society.73

In the case of pragmatic payoffs, condition (3.26) says that a pragmatic player does not

care about other players’ types directly, while conditions (3.27) and (3.28) say that in her

ex-ante decision-making, such a player calibrates her sets of final-stage payoffs for each final

type such that their ranges coincide. Condition (3.29) says that a pragmatic player of type

θ, conditional on having final type θ
′
, ranks outcomes of Γ in the same way as θ. Recall that

Assumption 3.7 requires that any type θ, conditional on having final type θ
′
, ranks outcomes

of Γ via their meta-payoffs the same way as in their first-order payoffs. Condition (3.29) for

a pragmatic type is effectively a generalisation of this assumption, requiring that pragmatic

players derive ex-ante utility from a given outcome of Γ conditional on being converted to any

type as they would do in the second stage having been so converted. Put simply, the idea

is that a pragmatic player puts herself in the shoes of any other given type of player. Note

that the reason conditions (3.27) and (3.28) are needed in addition to condition (3.29) is that

without them, it could be the case that a pragmatic player ranked all outcomes of Γ conditional

on being one type higher than all outcomes of Γ conditional on being another type.74 Such a

possibility goes against the notion of pragmatism, according to which a decision-maker should

73An ideologically-motivated spy, for instance, might find it worthwhile to try to “turn” senior figures in
the enemy’s government, even if he knew that, in so doing, he would be at risk of being “turned” himself, and
becoming a double agent.

74Conditions (3.27), (3.28) and (3.29) therefore together require that for a pragmatic type to be well-defined,
all types must have the same maximum and minimum meta-payoffs conditional on retaining their initial type.
That this requirement can be achieved is clear from the fact that meta-payoffs are a unique representation of
their respective meta-preferences up to a positive affine transformation, and so in specifiying an ideological
game, we can set any two meta-payoffs for a given type to any required distinct values.
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value all her future selves equally.

The definition of a pragmatic type, consisting in conditions (3.26) to (3.29), implies the

following Lemma.

Lemma 3.2 Suppose all types in Θ are pragmatic and let i be a player of an arbitrary prag-

matic type θ ∈ Θ. Then there is a representation wθ (.) of �∗θ and a representation uθ′ (.) of

�θ′ such that for any θ
′ ∈ Θ, wθ

(
z; θ

′
, θ−i

)
= uθ′ (z). There exist numbers w and w > w such

that for any θ
′ ∈ Θ, min

z∈Zn
uθ′ (z) = w and max

z∈Zn
uθ′ (z) = w .

Proof : Let θ ∈ Θ be a pragmatic type and suppose all types in Θ are pragmatic.

Inequality (3.27) implies that a player of this type is indifferent between being any type whose

best-ranked pair (z, θ−i) ∈ Zn × Θn−1 obtains. Call this payoff w. Inequality (3.28) implies

that a pragmatic player is indifferent between being any type whose worst-ranked outcome

of Γ obtains. Call this payoff w. Then for all θ
′ ∈ Θ, θ−i ∈ Θn−1, and z ∈ Zn, a player

of type θ has meta payoffs wθ
(
z; θ

′
, θ−i

)
∈ [w,w]. By Lemma 3.1, for every type θ

′ ∈ Θ,

there is a first-order preference representation uθ′ (z) = wθ′
(
z; θ

′
, θ−i

)
− vθ′ (θ−i) ∈ [w,w]. By

inequality (3.26), a pragmatic player is indifferent between different profiles of other players’

types and so vθ′ (θ−i) is a constant; set vθ′ (θ−i) = 0, so wθ (z; θ, θ−i) = uθ(z). By inequality

(3.29), wθ
(
z; θ

′
, θ−i

)
= wθ′

(
z; θ

′
, θ−i

)
= uθ′ (z). �

Given any particular final stage outcome z, among all possible pragmatic types, the prag-

matic player of type θ most prefers to be that pragmatic type θ
′
whose first-order payoff uθ′ (z)

takes the greatest value. Informally, we can think of pragmatic meta-payoffs as capturing a

situation in which an agent has a particular set of (first-order) preferences, but has no atta-

chment to those preferences in principle. In particular, it follows from inequalities (3.26) to

(3.28) when a player evaluates among her possible future selves at the initial stage, she would

simply rather become the future self for which z yields the greatest utility gain over that self’s

worst outcome.

The two alternative homophily assumptions imply different properties for ideologies, as

follows.

113



Proposition 3.1 (Homophily and ideology) Full homophily is inconsistent with strong ideo-

logy. Partial homophily is implied by strong and weak ideology.

Proof : See Appendix C.1. To see why strong ideology and FH are inconsistent, consider

a scenario in which a player of initial type θ prefers a type profile in which he is the only

player of type θ to the profile in which he and all other players are of some other type θ
′
.

This meta-preference, which is a necessary condition for a strong ideology, clearly implies the

falsity of FH. Because the notion of strong ideology is theoretically appealing, allowing us to

account for a desire to convert others, and because PH, not FH, is the strain of homophily for

which there is empirical evidence, I henceforth assume PH.

The connection between homophily and ideology can be brought out most clearly in the

case of two players of different types. If investment is cheap enough (i.e. c ≥ 0 is sufficiently

small), a strongly ideological player will always want to invest regardless of her opponent’s

investment level, since she both wants to maintain her own type and to convert her opponent.

One key point of note is that even when investment is cheap, there may exist a no-invest equili-

brium among a pairing of two different weakly ideological types, in addition to the both-invest

equilibrium, provided that PH does not hold. The reason for this is that weakly ideological

players, unlike strongly ideological ones, may be primarily defensive in their motivation. They

seek to sustain their initial type profile without concerning themselves with converting others.

There thus exists the possibility that two weakly ideological players, even though of different

types, opt for peaceful coexistence.75 Note, however, that the existence of multiple equilibria

requires that both types be only “minimally” ideological: their only overriding ideological

motivation is to maintain their own type. If, on the other hand, PH holds for at least one

type and investment is cheap enough, both types invest in equilibrium, ruling out peaceful

coexistence. Similarly, even if neither type satisfies PH, if we consider decreasing the cost

75The phase “peaceful coexistence” was famously used by Nikita Khrushchev during the Cold War (e.g.
Khrushchev, 1959). Communist ideology in the Soviet Union had by the 1950s become primarily defensive
in its outlook, in contrast to the earlier doctrine, promoted by Leon Trotsky, of “permanent revolution”,
by which the Soviet Union should attempt to foment revolutions in other other societies (Lerner, 1964).
Peaceful coexistence between two ideologies, on my characterisation, can result only if both ideologies are
weak; permanent revolution results from a strong ideology.
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c > 0 of investment, then instrumental incentives – i.e. the possibility of investing to achieve

a better outcome in Γ – may induce investment.

3.3.3 Equilibrium analysis

Under the assumption of complete information, the natural solution concept for an ideological

game is that of subgame-perfect equilibrium. Recall that a strategy is a pair (x(.), z(.)), where

x : Θn → {0, 1} is a mapping from initial types to investment actions, and z : H → Z is a

mapping from histories to final stage actions. A strategy (x(.), z(.)) is an equilibrium if and

only if the following two conditions are met for all players i ∈ N , for any initial type profile

θ(1) ∈ Θ and any history h ∈ H = {0, 1}n ×Θ2n.

1. For every z′ ∈ Z,

ui (zi(h), z−i(h)) ≥ ui (z
′, z−i(h))

where i’s type is her final type in the history h.

2. For x′ 6= xi,

wi
(
(xi, x−i)(θ

(1)), z(h(xi, x−i)
)

≥ wi
(
(x′, x−i)(θ

(1)), z(h(xi, x−i))
)

where h(xi, x−i) is the history induced by investment choices (xi, x−i) according to the con-

version technology f(.) given the initial type profile θ(1).76 Throughout this section I take

the initial type profile θ(1) as arbitrarily fixed. The existence of an equilibrium is guaranteed

by the fact that an ideological game, as defined here, has a finite set of players and a finite

strategy set.

76 I use the notational shortcut that ui(.) = uA(.) and wi(.) = wA(.) if θ
(1)
i = θA; ui(.) = uB(.) and

wi(.) = wB(.) if θ
(1)
i = θB .
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Recall that Assumption 3.2 ensures that any final type profile induces a unique Nash profile

in the second stage. As equilibrium condition 1 requires that second stage actions form a Nash

equilibrium, in characterising equilibria we can simply restrict attention to Markov final-stage

strategy profiles (zi(θ
(2)), z−i(θ

(2))), and in particular to the unique equilibrium final-stage

strategy profile denoted z∗(θ).

Denote by x−θ the (partial) investment profile among all players not of initial type θ.

Define

X−θ := max
θ′∈Θ

[Xθ′ (x−θ)] (3.30)

recalling that Xθ′ (x−θ) is the total investment by type θ
′

in x−θ, known as the maximum

other-type investment (relative to type θ). Finally, for an arbitrary fixed investment profile x

define

X := max
θ′∈Θ

[Xθ′ (x)] (3.31)

The following Lemma will help simplify equilibrium analysis.

Lemma 3.3 (Mutual best responses) Fix an arbitrary initial type profile θ(1) containing at

least one player of initial type θ, and fix a partial investment profile x−θ. Then in any mutual

best response among type-θ players in pure strategies, either no type-θ players invest, or X−θ

players do, or X−θ + 1 players do.

Proof : No total investment level between zero and X−θ by type-θ players alters the

outcome, so all such investing players would be strictly better off not investing. Likewise, any

investment level above X−θ + 1 will yield the same final type profile as if X−θ type-θ players

invested, and so any such investing player would be strictly better off not investing. �

The final definitions needed for the purpose of characterising equilibria relate to the mar-

ginal benefit to investing. It will be notationally convenient to denote by A ∈ Θ an arbitrary

type. First, define
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∆convert
A := wA(z∗(A); A)− wA(z∗(θ(1)); θ(1)) (3.32)

where A ∈ Θn is the final type profile in which all players are of type A. ∆convert
A denotes

the ex-ante net benefit to a type-A player from a final type profile (and the induced outcome

z∗(A) of Γ) in which all her opponents are converted to her own type, compared with the

status quo (i.e. the initial type profile and the outcome it would induce). Second, let B ∈ Θ

be an arbitrary type and define

∆retain
A,B := wA(z∗(θ(1)); θ(1))− wA(z∗(B); B)) (3.33)

where B ∈ Θn is the final type profile in which all players are of type B. ∆retain
A,B denotes

the ex-ante net benefit to a type-A player to retaining the status quo compared with a final

type profile and outcome in which she and all other players are of type B. Note that if A is

an ideological type, then by (3.24), ∆retain
A,B > 0.

We can relate ∆convert
A and ∆retain

A,B to players’ investment incentives as follows. First, take an

arbitrary player i of type A and fix a partial investment profile x−i such that XA(x−i) = X−A.

Recall that XA(x−i) is the total investment by type A in x−i, i.e. the total investment by

players of type A excluding player i.77 X−A is the total investment by the type other than A

that does the most investing. This means that type-A players other than i invest, in aggregate,

as much as players of the most-investing type other than A. Given the investments x−i of all

players other than i, player i’s investment decision is therefore pivotal between the status quo

final type profile and and the all-A final type profile. ∆convert
A can be expressed as follows.78

∆convert
A := E [πA(xi = 1,x−i)]− E [πA(xi = 0,x−i)] + c (3.34)

where x−i is such that XA(x−i) = X−A(x−i). The quantity ∆convert
A is thus the individual

77(3.20) defines XA(x); substituting x−i for x yields Xθ(x−i) :=
∑
xj

{j∈N\{i} : θ(1)j =θ}
78(3.35) and (3.34) use shorthand notation, where e.g. πA(xi = 1,x−i) denotes πA(xi, zi, z−i; θ

(2)
i , θ

(2)
−i ) given

that xi = 1, the final type profile (θ
(2)
i , θ

(2)
−i ) is that implied by the initial type profile, the investment profile

(xi,x−i) and the conversion technology, and (zi, z−i) = z∗(θ(2)).
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marginal benefit from investing, neglecting the cost of investment c, to each type-A player

when together type-A players invest marginally more (i.e. have one more unit of aggregate

investment) than the next-most-investing type(s).

Second, fix a partial investment profile x−i such that of all the types other than A, B has

strictly the highest level of investment. Formally, x−i is fixed such that XB(x−A) = X−A and

there is no type C ∈ Θ such that C 6= B and XC(x−A) = X−A. Furthermore, x−i is fixed such

that XA(x−i) = XB − 1. In other words, given x−i, i’s investment decision is pivotal between

the status quo final type profile and a final type profile in which all players are of type B. We

have that

∆retain
A,B := E [πA(xi = 1,x−i)]− E [πA(xi = 0,x−i)] + c (3.35)

where x−i is such that XA(x−i) = X−A(x−i)−1. The quantity ∆retain
A,B is thus the individual

marginal benefit from investing, neglecting the cost of investment c, to each investing type-A

player when they invest as much as type-B players and type-B players are the most-investing

other type. Given other players’ investments, i needs to invest to retain her own type.

Note that if ∆convert
A > c, then the best response of i (recalling that she is of type A,

by assumption) to x−i is to invest, and type-A players will have a total investment level of

X−A + 1.79 If ∆convert
A ≤ c and there exists some type B such that ∆retain

A,B > c then XA is

the total investment level in the mutual best response by type B. Otherwise, the mutual best

response of type-B players is that none of them invest.

Proposition 3.2 At most two types invest in any pure equilibrium.

Proof : Suppose a contrario that three or more types have non-zero investment. Then

either three types have total investment equal to X(x∗), or fewer than three do, in which case

by hypothesis there is some type θ for which Xθ(x
∗) > 0 and Xθ(x

∗) < X(x∗). In the former

case, all investing players have a strictly profitable unilateral deviation to not investing, since

79Here I assume players do not invest in the case of indifference.
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the final type profile would be unaffected were they to do so. In the latter case, all investing

players of type θ have a strictly profitable unilateral deviation to not investing. �

The intuition for Proposition 3.2 is straightforward: the conversion technology means that

at most one type can successfully ‘attack’, and if two types are successfully ‘defending’, any

further ‘defence’ is redundant.

To gain further insight into the incentives involved in ideological games in generality, fix an

equilibrium investment profile x∗ and again consider ∆convert
A . Intuitively, this is the marginal

benefit from investing for a type-A player who has the “casting vote” between converting all

other types and retaining the initial type profile. We have the following decomposition

∆convert
A =

ideological incentive to convert︷ ︸︸ ︷
[wA(z∗(A); A)− wA(z∗(A); θ(1))]

+ [wA(z∗(A); θ(1))− wA(z∗(θ(1)); θ(1))]︸ ︷︷ ︸
instrumental incentive to convert

= ∆
conv (id)
A + ∆

conv (in)
A

(3.36)

where the ideological incentive ∆
conv (id)
A = wA(z∗(A); A)−wA(z∗(A); θ(1)) and the instru-

mental incentive ∆
conv (in)
A = wA(z∗(A); θ(1)) − wA(z∗(θ(1)); θ(1)). By (3.26), the ideological

incentive ∆
conv (id)
A = 0 if A is pragmatic. To understand this decomposition, first consider i’s

expected increase in meta-utility if the final type profile remained the same as the initial one

(i.e. θ(1)) but there were an off-equilibrium path deviation from this final-stage outcome to

the outcome z∗(A). This expected increase in i’s meta-utility is the “instrumental” term in

the decomposition. Second, now taking this off-equilibrium path deviation as a starting point

consider a shift in the final type profile from θ(1) to A, i.e. to the final type profile that indu-

ces outcome z∗(A) in equilibrium. The resulting increase in meta-utility – attributable to the

shift in final types, as opposed to actions – is the ideological incentive in the decomposition.

In a similar fashion, ∆retain
A,B can be decomposed as follows.
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∆retain
A,B =

instrumental incentive to retain︷ ︸︸ ︷
[wA(z∗(θ(1)); θ(1))− wA(z∗(B); θ(1))]

+ [wA(z∗(B); θ(1))− wA(z∗(B); B)]︸ ︷︷ ︸
ideological incentive to retain

= ∆
ret (id)
A,B + ∆

ret (in)
A,B

(3.37)

The decomposition of ∆retain
A,B can be understood as follows. Starting this time with the

ideological incentive, consider i’s expected increase in meta-utility in moving from the final

type profile B (which will occur if she does not invest) to the status quo of θ(1), but holding

constant the action profile as that induced by B. This term captures the increase in meta-

utility for i if we consider the direct impact of B only and neglect the indirect effect via the

resultant switch in the outcome of the game of life Γ. From this off-equilibrium path starting

point, we can then consider a subsequent shift in the action profile, which is picked up by the

instrumental incentive.

So far I have considered ideological games in a very wide-ranging setting, to provide a

general theory of the notions of ideology and pragmatism. To investigate the way ideology

and pragmatism determine equilibrium investment behaviour, I will focus on the case of two

players of different types, i.e. N = {1, 2} and Θ = {A,B}, and set the cost of investment

c = 0.80 I restrict attention to this setting partly because doing so shows the core differences

between pragmatism and ideology in terms of players’ investment incentives, without needing

to consider potentially complicated mixed equilibria. Additionally, in a two-player setting, the

conversion technology is a natural assumption with no compelling alternative specification: a

player is converted iff her opponent invests and she does not.81 In this sense, the results derived

are intuitively appealing. In the case of several players of several types, in contrast, there

do appear to be natural alternative specifications to the conversion technology considered.82

80For simplicity, I assume players do not invest, given other players’ investments, in the case of indifference.
81An alternative would be that a player is converted with some interior probability iff her opponent invests

and she does not, but clearly this would not change the analysis in a material way.
82One such alternative technology would be that a player is converted to a given type with a probability

given by a Tullock contest function.
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Different specifications would drive different results.

To arrive at a sufficient condition for one player to convert the other, we need to make a

refinement of the concept of strong ideology. A player of initial type θ ∈ Θ and the associated

meta-payoffs wθ(.) are perfectly ideological if and only if (i) they are strongly ideological and

(ii) the following inequality holds.

z∗(θ, θ−i) = arg max
z∈Zn

wθ (z; θ, θ−i) (3.38)

where θ−i is the profile of other players’ types in which all players are of type θ.83 (3.38) says

that if all players are of type θ, the unique Nash equilibrium z∗(θ, θ−i) is the highest-ranked

outcome of Γ for type θ. We then have the following result.

Proposition 3.3 Suppose two players of different types play an ideological game where c = 0.

(1) If both types are (weakly or strongly) ideological, then there exists an equilibrium in which

both invest. (2) If both types are strongly ideological, equilibrium requires that both invest.

(3) If one type is perfectly ideological and the other is pragmatic, only the perfectly ideological

player will invest.

Proof : Let A and B be the two types. To prove Proposition 3.3(1), first suppose A

and B are ideological. By definition, the ideological payoffs wA (.) and wB (.) each satisfy

(3.24), which implies that ∆retain
A,B > 0 and ∆retain

B,A > 0. Suppose the type-A player invests.

Then the other player’s best response is to invest, as ∆retain
B,A > 0. This is an equilibrium

investment profile, as ∆retain
A,B > 0. Turning to Proposition 3.3(2), now suppose that in ad-

dition to satisfying (3.24), wA (.) and wB (.) each satisfy (3.25), implying that ∆convert
A > 0

and ∆convert
B > 0. As ∆convert

A > 0 and ∆retain
A,B > 0, investing is strictly dominant for the

type-A player; as ∆convert
B > 0 and ∆retain

B,A > 0, investing is also strictly dominant for the

type-B player. Hence the unique equilibrium is the profile in which both players invest in

the first stage and play z∗(A,B) in Γ. Finally, to prove Proposition 3.3(1), now suppose

83The strongly ideological devout type in section 3.2, for example, is perfectly ideological, since if all players
possess strongly devout preferences, all abstain, which is the best outcome of the game of life Γ as judged by
that preference type.
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instead that A is perfectly ideological and B is pragmatic. In this case, since strong ideo-

logy is a necessary condition of perfect ideology, investing is strictly dominant for the type-A

player. For the type-B (pragmatic) player, investing is optimal iff wB (z∗(A,B); (A,B)) >

wB (z∗(A,A); (A,A)) = wA (z∗(A,A); (A,A)), where the last inequality follows from the con-

dition in (3.29). However, (3.38) implies that z∗(A,A) = arg max
z∈Z2

wA (z; (A,A)), while (3.25)

implies that (A,A) = arg max
θ∈Θ2

wA (z; (A,A)) for any z ∈ Z. As wA (z∗(A,A); (A,A)) is there-

fore the highest payoff wA (.), by (3.27), wB (z∗(A,A); (A,A)) is the highest payoff in wB (.)

and so wB (z∗(A,B); (A,B)) ≤ wB (z∗(A,A); (A,A)). Hence the type-B player does not invest

in equilibrium. �

Proposition 3.3(1) says that for two players of different ideological types, there is an equi-

librium in which both invest. The reason for this is that an ideology requires its holder to

want to retain her type at all costs; the ideological instrumental incentive to retain one’s type

outweighs any instrumental benefit from being converted. Consequently, even if neither player

has a positive incentive to convert (which can be the case for players of weak, but not strong,

ideologies) there exists an (inefficient) equilibrium in which both invest. Proposition 3.3(2)

is simple to interpret: strong ideologies involve a preference to convert others and to defend

one’s own type, which outweighs any instrumental considerations. Consequently, investing

is strictly dominant for a strongly ideological player whenever facing an opponent of a dif-

ferent type. Proposition 3.3(3) considers a perfectly ideological player against a pragmatic

player. For a perfectly ideological player, ideological and instrumental incentives to convert

are perfectly aligned. When facing an opponent of the same (perfect) ideology, the resulting

equilibrium in Γ is the best possible outcome for the two players. This harmonious outcome is

the reason why a pragmatic player finds it optimal to be converted in such a setting. Pragma-

tists “look through” their present identity in the sense that they evaluate ex-ante on the basis

of their future preferences in Γ only, and are entirely indifferent as to other players’ types in

their own right.84

84In general, two players of different pragmatic types may result in any (pure) equilibrium investment
profile, depending on the specification of the pragmatic types. The only general constraints regarding the
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One remaining question I will consider in generality is how ideology can affect welfare, in

the sense of ex-ante (meta-) payoffs summed over all players. Formally, define the ex-ante

efficiency E(x) of an investment profile as follows.

E(x) :=
∑
i∈N

[
wi(z

∗(θ(2)(x)); θ(2)(x)))− cxi
]
−
∑
i∈N

wi(z
∗(θ(1)); θ(1))) (3.39)

where, as before, θ(2)(x) is the final type profile induced by investment profile x according

to the conversion technology f(.), and c ≥ 0 is the cost of investment. Ex-ante efficiency is the

difference between the first sum on the right hand side of (3.39), which gives the total ex-ante

payoffs among all players when their investment choices are given by x, and the second term,

which is the sum of players’ ex-ante payoffs when their investment choices are constrained to

be zero (i.e. investment is not allowed). We then have the following result.

Lemma 3.4 Fix an arbitrary type profile. (1) If precisely one type invests in equilibrium, then

E(x∗) may be positive, negative or zero. (2) If two types invest in a pure strategy equilibrium

then E(x∗) < 0.

Proof : To prove Lemma 3.4(1), I first construct the case where E(x∗) > 0. Let there

be two players, one of type A and one of type B, where ∆convert
A > c and ∆retain

B,A = 0. In

equilibrium, the player of typeA invests and the other player does not, in which case the type-A

player is strictly better off and the other player is indifferent, according to their ex-ante meta-

preferences. Hence E(x∗) > 0. The case where E(x∗) = 0 occurs if for instance ∆convert
A > c

and ∆retain
B,A = −∆convert

A . The case that E(x∗) < 0 occurs if for instance ∆convert
A = c′ < c and

incentives to invest for a pair of players of different pragmatic types is that (i) if both have an incentive
to convert, only one can have an incentive to retain, and (ii) if both have an incentive to retain, only one
can have an incentive to convert. Each constraint is established by similar reasoning. Taking the exam-
ple of the latter constraint, consider a type profile (A,B) where A and B are pragmatic types. Suppose
both players invest in an equilibrium investment profile x∗. Equilibrium requires ∆retain

A,B ≥ 0 which implies

wA(z∗(θ(1)); θ(1)) ≥ wA(z∗(B);B). By Lemma 3.2, ∆retain
A,B ≥ 0 iff uA(z∗(θ(1))) > uB(z∗(B)). Likewise

∆retain
B,A ≥ 0 iff uB(z∗(θ(1))) > uA(z∗(A)). Hence uA(z∗(A)) > uA(z∗(θ(1))) iff uB(z∗(θ(1))) > uB(z∗(B)).

But in this case, ∆convert
A ≥ 0 implies ∆convert

B < 0. If both types have an incentive to convert and player 1 has
an incentive to retain, then (x1, x2) = (1, 0). If instead both have an incentive to convert and player 2 has an
incentive to retain, then (x1, x2) = (0, 1). If both players have an incentive to retain and one has an incentive
to convert, then (x1, x2) = (1, 1). The two constraints do not rule out there being a pair of pragmatic types
in which neither has an incentive to retain nor to convert, in which case (x1, x2) = (0, 0).
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∆retain
B,A ∈ (0, c′). Turning to Lemma 3.4(2), consider the general case of n > 1 players with

an arbitrary initial type profile θ(1) ∈ Θn, where Θ is an arbitrary set of types. If two types

invest in any equilibrium x∗ then θ(1) = θ(2); otherwise, investing would not be optimal for

players of at least one type, as their investment would not be pivotal. As the status quo is

preserved, E(x∗) = −
∑
i∈N

cxi < 0. �

One point to note is that in cases where all types with support in the set of players

are pragmatic, it can happen that in any equilibrium there is negative efficiency, just as for

type distributions where ideological types are present. In the case of two players, one of

pragmatic type A and the other of pragmatic type B, this can happen if for instance player

A’s receives a better outcome in Γ by playing a same-type player, i.e. wA(z∗(A,A); (A,A)) >

wA(z∗(A,B); (A,B)), while player B receives the best outcome in Γ from playing an other-type

player, i.e. wB(z∗(A,B); (A,B) > wB(z∗(A,A); (A,A)) = wA (z∗(A,A); (A,A)).

If just two players of different types are present, we can adapt the results of Proposition

3.3 to elicit a clearer difference in terms of efficiency between pragmatic and ideological types,

as set out in Theorem 3.1.

Theorem 3.1 Suppose two players of different types play an ideological game. (1) If both

types are (weakly or strongly) ideological, then there exists a c′ > 0 such that for any cost of

investment c ∈ (0, c′), there exists an equilibrium x∗ such that E(x∗) < 0. (2) If both types are

strongly ideological, then there exists a c′ > 0 such that for any cost of investment c ∈ (0, c′),

there exists a unique equilibrium x∗ such that E(x∗) < 0. (3) If one type is perfectly ideological

and the other is pragmatic, there exists a c′ > 0 such that for any cost of investment c ∈ (0, c′),

there exists a unique equilibrium x∗ such that E(x∗) > 0.

Proof : See Appendix C.1. The results in each case arise from the fact that for an

arbitrarily small non-zero cost of investment, equilibrium investment profiles are those of

Proposition 3.3. Because investment is nonetheless costly, if both types invest – as in Theorem

3.1(1) and 3.1(2) – then the final type profile is unchanged but both players are worse off than

if they had not invested, as proved in Lemma 3.4. Theorem 3.1(3) simply follows from the fact
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that for an arbitrarily small non-zero cost of investment, the perfectly ideological player finds

investing strictly dominant and achieves her best payoff, while pragmatic player also achieves

her best (meta-)payoff as a result of being converted to the perfect ideology.

3.4 Conclusion

In this chapter I defined the class of ideological games. In such games, a preference type is a set

of first-order preferences over the outcomes of a game Γ, together with a set of meta-preferences

over all players’ first-order preferences. Rational players may bear costs to influence the type

profile for two reasons. The first reason is instrumental: players may be able to achieve better

outcomes in Γ if they change their opponent’s type. The second is “ideological”: players may

have direct preferences over type profiles.

I provided a taxonomy of types as being “strongly ideological”, “weakly ideological” or

“pragmatic” and related these concepts to the notion of homophily (Proposition 3.1). A weakly

ideological player always prefers to retain her own type, regardless of any instrumental benefits

that may result from a better equilibrium outcome in Γ. This conception is based on an insight

by Sen (1977). Strong ideology is a refinement of weak ideology: a strongly ideological player

also prefers to change other players’ types, regardless of any changes in payoffs in Γ she might

receive. A pragmatic player, in contrast, is indifferent between all type profiles and is willing to

have her type changed if, according to her new type, she would prefer the resulting equilibrium

in Γ to that which would result if her type remained unchanged. An equilibrium investment

profile contains at most two investing types (Proposition 3.2). I studied a measure of efficiency

according to which an investment profile has positive efficiency if it improves aggregate welfare

over the no-invest profile. In any two-player ideological game in which players have different

types, if both types are ideological there is an equilibrium investment profile with negative

efficiency (Theorem 3.1), since ideological players find it optimal to invest to retain their own

type. If at least one type is strongly ideological, and the cost of investment is low enough,

then the negative efficiency equilibrium is the only equilibrium. Finally, I defined “perfectly
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ideological” types as strongly ideological meta-payoffs which, if held by all players, result in

the best outcome of Γ as judged by that type. In any pairing of a perfectly ideological player

with a pragmatic player, if the cost of investment is low enough to induce the former to invest,

there is a unique equilibrium with positive efficiency.
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A Appendix to Chapter 1

A.1 Proofs

Proof of Lemma 1.3

Suppose there exists some equilibrium (r(ε), a(ε)) in which aθi (ε) ∈ (0, 1). At (r(ε), a(ε)), reci-

procators must therefore be indifferent as to whether to cooperate, so on observing a recipro-

cator opponent, i’s incentive to cooperate is 4c
i [rθ(ε)a

θ
θ(ε)+(1−rθ(ε))a0

θ(ε)] = 0. Let a′(ε) be

the conditional action profile which is identical to a(ε) except that aθθ(ε) = 1 (i.e. a randomly-

selected reciprocator cooperates for sure on observing a reciprocator opponent). Then at

(r(ε), a′(ε)), i’s incentive to cooperate on observing a reciprocator opponent is 4c
i(1) > 0, i.e.

cooperation is strictly optimal. By symmetry, the same is also true for all other reciprocators.

As the only one of i’s three continuation values to depend on aθθ(ε) (on which it has positive de-

pendence) is vθi (r(ε), a(ε)), by (1.14) we have that ∆r
i (ε, r−i(ε), a

′
(ε)) > ∆r

i (ε, r−i(ε), a(ε)) for

all reciprocators. Let r′(ε) be a research profile such that r′i(ε) = p iff ∆r
i (ε, r−i(ε), a

′
(ε)) ≥ 0,

which is a requirement of any equilibrium containing a′(ε). By symmetry, either r′i(ε) = p

for every reciprocator i or r′i(ε) = p or every reciprocator i. It follows that r′θ(ε) ≥ rθ(ε),

and hence at (r′(ε), a′(ε)), i’s incentive to cooperate is on observing a reciprocator oppo-

nent 4c
i(a

θ
θ(ε)) = r′θ(ε)a

θ
θ(ε) + (1 − r′θ(ε))a

0
θ(ε)) > 0, and so (r′(ε), a′(ε)) meets equilibrium

condition 2. By construction of r′(ε), equilibrium condition 1 is also met, so (r′(ε), a′(ε))

is an equilibrium. By Assumption 1.1, the former equilibrium, (r(ε), a(ε)), is not played.

Analogous reasoning holds true in respect of equilibria in which a0
i (ε) ∈ (0, 1). Lemma

1.2 established that materialists play d at every information set, implying aMθ (ε) = d in

equilibrium. To complete the proof, it remains to rule out equilibria with aθ(ε) = dcd.

Suppose a contrario that such an equilibrium exists. Then for an arbitrary reciprocator i,

4c
i(rθ(ε)a

θ
θ(ε) + (1 − rθ(ε))a0

θ(ε)) < 4c
i(εrθ(ε)a

θ
θ(ε) + (1 − rθ(ε))a0

θ(ε)) + (1 − ε) × 0), where

the final zero comes from the fact that materialists never cooperate). But this inequality is

false, as ε ≤ 1. �
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Proof of Lemma 1.4

Fix arbitrary ε ∈ [0, 1] and suppose a contrario that rθ(ε) ∈ (p, p), which implies that some

non-zero measure of reciprocators play r(ε) = p and some non-zero measure of reciprocators

play r(ε) = p. Let i be some arbitrary reciprocator who plays r(ε) = p and fix θ. Then i’s

incentive to do research must be non-negative: ∆r
i (ε, r−i(ε), a(ε)) ≥ 0. By symmetry, this

must also be true for any other reciprocator. Lemma 1.3 states there are three second-stage

profiles to consider: aθ(ε) = ccd, aθ(ε) = cdd and aθ(ε) = ddd.

Suppose first that aθ(ε) = ccd. In this case, v(aθi , a
θ
θ) = v(aθi , a

0
θ) = u(c, c) and v(a0

i , a
θ
θ) =

v(a0
i , a

0
θ) = u(c, c), and so by (1.18),

∂∆r
i (ε,r−i(ε),a(ε))

∂rθ(ε)
= 0, i.e. ∆r

i (ε, r−i(ε), a(ε)) is inde-

pendent of rθ(ε). As a result, if all reciprocators play r(ε) = p, for each reciprocator i,

∆r
i (ε, r−i(ε), a(ε)) ≥ 0 as before, and so research profiles with rθ(ε) = p meet equilibrium

condition 1. As aθθ(ε) = c = a0
θ(ε) by hypothesis, i’s incentive to cooperate at each of her

information sets is unaffected, so equilibrium condition 2 holds. Assumption 1.1 implies that

the new research profile is played.

Second, suppose that aθ(ε) = cdd. In this case,
∂∆r

i (ε,r−i(ε),a(ε))

∂rθ(ε)
= ε4p([u(c, c)− u(c, d)]−

[u(d, c)− u(d, d)]) > 0, which means that the incentive to do research for each reciprocator is

strictly increasing in rθ(ε). Again, if all reciprocators play r(ε) = p, then for each reciprocator

i, ∆r
i (ε, r−i(ε), a(ε)) ≥ 0 as before, and so research profiles with rθ(ε) = p meet equilibrium

condition 1. As i’s incentive to cooperate at all information sets is non-decreasing in rθ(ε),

aθθ(ε) = c still meets equilibrium condition 2. If a0
θ(ε) = d no longer meets equilibrium

condition 2, then ccd is played in which case rθ(ε) = p, as argued above. If a0
θ(ε) = d meets

equilibrium condition 2, Assumption 1.1 implies that rθ(ε) = p is played; by the tie-breaking

rule, every reciprocator chooses ri(ε) = p.

Third, and finally, suppose that aθ(ε) = ddd. In this case, Lemma 1.1 implies that ri(ε) = p

for every reciprocator. �
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Proof of Proposition 1.1

To prove Proposition 1.1, I will first characterise the regions of parameter values for which each

of the five candidate pure symmetric equilibria is played in the fully model, before applying the

equilibrium selection criteria in Assumption 1.1 to obtain the unique equilibrium in question.

The results in the case of the no-technology model then follow trivially.

To this end, it will be helpful to define 4(r′i,a
′
i)(ε, r, a), the incentive to deviate:

4(r′i,a
′
i)(ε, r, a) := ui(ε, r

′
i, r−i, a

′
i, a−i)− ui(ri, r−i, ai, a−i) (A.1)

where i is a reciprocator, r ∈ {p, p} is a research choice, a ∈ [0, 1]3 is a conditional action

vector and (r−i, a−i) is a profile of (stage 1) research choices and (stage 2) conditional action

vectors for all players other than i, in which all materialists play (p, ddd) and all reciprocators

except i play (r, a).85 The quantity 4(p,ddd)(ε, p, ccd), for example, is the incentive for a

reciprocator to deviate unilaterally from playing (p, cdd) to playing (p, ddd), when all other

reciprocators play (p, cdd) (and all materialists play (p, ddd)), given the share of reciprocators

in the population is ε ∈ [0, 1]. If and only if 4(p,ddd)(ε, p, ccd) > 0, then i strictly prefers

playing (p, ddd) to playing (p, cdd) in such a setting.

(i) Parameter values for which (p, ddd) is an equilibrium

Recall that since (d, d) is a Nash equilibrium of Γ for all preference types, (p, ddd) is an

equilibrium for all parameter values.

(ii) Parameter values for which (p, cdd) is an equilibrium

Let the strategy played by all reciprocators be fixed as (rθ(ε), aθ(ε)) = (p, cdd). In the

second stage, reciprocators always defect when meeting materialists and receive zero payoff

from all such encounters. Non-zero payoffs only arise if a reciprocator is paired with another

85I continue to use the shorthand whereby conditional action vector (1, 0, 1) is denoted cdc, with analogous
notation for the other pure conditional action vectors.
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reciprocator, which happens with probability ε ∈ [0, 1]. Each reciprocator has expected utility

ε[p2(θb− 1) + p(1− p)b− p(1− p)]. The first term within the square brackets is the product

of the probability p2 which which a pair of reciprocators observe each other’s type, and the

payoff from mutual cooperation (θ−1)b. The second term is the probability that reciprocator

i meets a reciprocator j who does not observes i’s type while i observes j’s, multiplied by the

corresponding payoff u(d, c) = b. The third term is the probability p(1 − p) that j observes

i’s type while i does not observe j’s, multiplied by the corresponding payoff u(c, d) = −1.

The incentives for a player to deviate unilaterally to one of the other pure strategy profiles

(excluding (p, ddd), as this is strictly worse for any player than playing (p, ddd)) are as follows.

• Unilateral deviation to (p, ddd) yields expected utility of εpb, as the deviating player

meets a fellow reciprocator with probability ε, who will play c with probability p by

hypothesis, yielding a payoff of u(d, c) = b > 1. The incentive for reciprocator i to

deviate is 4(p,ddd)(ε, p, cdd) = ε(−p2(θ − 1)b+ p), and so deviation is strictly profitable

at any ε > 0 iff (θ−1)b < 1
p

. This inequality is straightforward to interpret. The benefit

to i of cooperating rather than defecting with an opponent known to be a reciprocator,

net of the cost of cooperation, is p(θ−1)b; if this does not exceed the cost of cooperation

(of 1), then i will always find defection preferable.

• Unilateral deviation to (p, cdd) yields expected utility of εpp(θb−1)+εp(1−p)b−εp(1−

p)− k; note the inclusion of the fourth and final term, which is simply the cost of doing

research. The incentive to deviate is 4(p,cdd)(ε, p, cdd) = ε4p(p(θ− 1)b)− 1)− k, which

means that, if (θ − 1)b ≥ 1
p
, then deviation is strictly profitable iff ε < k

4p[p(θ−1)b−1]
.

To understand this inequality, observe that if i is paired with another reciprocator j,

then doing research increases the probability with which i observes j’s type by amount

4p. The opponent j cooperates with probability p, by hypothesis, and so i’s expected

utility increase resulting from increased mutual cooperation is 4p[ui(c, c) − ui(d, c)] =

4pp(θb − 1 − b). If j defects then i’s expected utility increase is 4p(1 − p)[ui(d, d) −

ui(c, d)] = (1 − p); summing these two terms gives the denominator on the right hand
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side of the inequality. If (θ − 1)b < 1
p
, on the other hand, then deviation is strictly

profitable at any ε > 0.

• Unilateral deviation to (p, ccd) yields expected utility of εp(θb−1)−ε(1−p)−(1−ε)(1−p)

and the incentive to deviate is 4(p,ccd)(ε, p, cdd) = (1 − p)(1 − εp(θb − 1)). Deviation

is therefore profitable iff ε ≥ 1
p(θ−1)b

. Intuitively, for deviation to be profitable, the

expected benefit from increased mutual cooperation by cooperating with an opponent

of unknown type net of the cost of cooperation, εp(θ − 1)b, must exceed the cost of

cooperation (of 1).

• Unilateral deviation to (p, ccd) yields expected utility of εp(θb − 1) − ε(1 − p) − (1 −

ε)(1 − p) − k and the incentive to deviate is 4(p,ccd)(ε, p, cdd) = ε(p(1 − p)(θ − 1)b −

4p)−k− (1−p), which is clearly strictly negative for all ε ∈ [0, 1] if (θ−1)b ≤ 4p
p(1−p) . If

(θ− 1)b > 4p
p(1−p) , then the incentive to deviate is strictly positive iff ε > (1−p)+k

(1−p)p(θ−1)b−4p .

By inspection, it is also less than the expected utility from deviating to (p, ccd) iff

ε > 1− k
4p .

Comparing these results, if (θ − 1)b < 1
p
, then (p, cdd) is never an equilibrium because there

is a profitable deviation to (p, ddd). If (θ − 1)b ≥ 1
p

then it must also be the case that

(θ−1)b > 4p
p(1−p) , since4p < (1−p). In this case, (1−p)+k

(1−p)p(θ−1)b−4p >
1

p(θ−1)b
iff k
4p > (1− 1

p(θ−1)b
)

and k
p4p(θ−1)b−4p >

1
p(θ−1)b

iff k
4p > (1− 1

p(θ−1)b
). Consequently, if k

4p ≥ 1− 1
p(θ−1)b

then it is an

equilibrium for ε ≤ 1
p(θ−1)b

and if k
4p < 1− 1

p(θ−1)b
then it is an equilibrium for ε ≤ k

4p[p(θ−1)b−1]
.

For fixed research cost k, if the impact of research4p is sufficiently small then even when ε = 1,

reciprocators do not have a strong enough incentive to do research, if they are constrained to

play aθ(ε) = cdd.

(iii) Parameter values for which (p, cdd) is an equilibrium.

Suppose now that (rθ(ε), aθ(ε)) = (p, cdd). As in the previous case, non-zero payoffs only arise

if a reciprocator is paired with another reciprocator, which happens with probability ε ∈ [0, 1].
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Each reciprocator has expected utility ε[p2(θb− 1) + p(1− p)b− p(1− p)]− k. The incentives

for a reciprocator to deviate are as follows.

• Unilateral deviation to (p, ddd) yields expected utility of εpb. The incentive for recipro-

cator i to deviate is 4(p,ddd)(ε, p, cdd) = ε(−p2(θ − 1)b + p) + k, and so if (θ − 1)b ≤ 1
p
,

then deviation is strictly profitable for any anyε ∈ [0, 1] and k > 0. If (θ− 1)b > 1
p
, then

deviation is strictly profitable iff ε < k
p[p(θ−1)b−1]

.

• Unilateral deviation to (p, cdd) yields expected utility of εpp(θb−1)+εp(1−p)b−εp(1−p).

The incentive to deviate is4(p,cdd)(ε, p, cdd) = ε4p(−p(θ−1)b+1)+k, which means that,

if (θ − 1)b ≥ 1
p
, then deviation is strictly profitable iff ε < k

4p[p(θ−1)b−1]
. If (θ − 1)b < 1

p
,

on the other hand, then deviation is strictly profitable at any ε > 0. Reciprocators

only find research mutually optimal for a large enough population share ε because the

value of undertaking research to reciprocator is in improving the chance of being able

to cooperate if she meets a fellow reciprocator. The more other reciprocators there are,

the stronger this incentive.

• Unilateral deviation to (p, ccd) yields expected utility of εp(θb−1)−ε(1−p)−(1−ε)(1−p).

The incentive to deviate is 4(p,ccd)(ε, p, cdd) = ε((1 − p)p(θb − 1) +4p) − (1 − p) + k.

Deviation is therefore strictly profitable iff ε >
(1−p)−k

(1−p)p(θ−1)b+4p .

• Unilateral deviation to (p, ccd) yields expected utility of εp(θb − 1) − ε(1 − p) − (1 −

ε)(1− p)− k. The incentive to deviate is 4(p,ccd)(ε, p, cdd) = ε(1− p)p(θ− 1)b− (1− p),

which is strictly positive iff ε > 1
p(θ−1)b

.

Comparing these results, first, we see that k
p[p(θ−1)b−1]

< k
4p[p(θ−1)b−1]

(for all allowable para-

meter values) and so if (θ−1)b > 1
p
, then whenever a deviation to (p, ddd) is profitable, one to

(p, cdd) is also profitable. This is hardly surprising; the inequality (θ − 1)b > 1
p

ensures that

cooperation with a known reciprocator is optimal, as discussed in case (ii) above. Another

observation is that if k > (1 − p), it is always profitable to deviate to play (p, ccd), and so

(p, cdd) is not an equilibrium.
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Assume (θ − 1)b > 1
p

(otherwise there is always a profitable deviation to (p, ddd)). Iff

k
4p > 1 − 1

p(θ−1)b
then 1

p(θ−1)b
< k
4p[p(θ−1)b−1]

, and so (p, cdd) is not an equilibrium at any

ε ∈ (0, 1). Iff k
4p ≤ 1 − 1

p(θ−1)b
, then 1

p(θ−1)b
<

(1−p)−k
(1−p)p(θ−1)b+4p .86 It follows that (p, cdd) is an

equilibrium for ε ∈ [ k
4p[p(θ−1)b−1]

, 1
p(θ−1)b

]; deviation to (p, cdd) is profitable below this interval

because the reciprocator population is insufficient to make research generate enough increased

cooperation, whereas deviation to (p, ccd) is worthwhile above this interval because there are

enough reciprocators to make it optimal to cooperate with a partner of unknown type.

(iv) Parameter values for which (p, ccd) is an equilibrium.

Suppose that (rθ(ε), aθ(ε)) = (p, ccd). In this case, if two reciprocators meet always cooperate,

regardless of whether they observe each other’s type. Each reciprocator has expected utility

ε(θb− 1)− (1− ε)(1− p), where the first term is the payoff from mutual cooperation (θb− 1)

multiplied by the probability ε of being paired with a reciprocator and the second term is the

probability of meeting a materialist without learning their type, multiplied by the payoff of

−1 from outcome (d, c). The incentives for a reciprocator to deviate are as follows.

• Unilateral deviation to (p, ddd) yields expected utility of εb. The incentive for reciproca-

tor i to deviate is 4(p,ddd)(ε, p, ccd) = −ε((θ−1)b−p)+(1−p), which is strictly positive

iff ε <
1−p

(θ−1)b−p .

• Unilateral deviation to (p, cdd) yields expected utility of ε(p(θb − 1) + (1 − p)b). The

incentive to deviate is 4(p,cdd)(ε, p, ccd) = −ε(1− p)(θ − 1)b + (1− p), which is strictly

positive iff ε < 1
(θ−1)b

; the threshold arises from the fact that playing a0
i (ε) = c rather

than a0
i (ε) = d has a gross cost of 1 for an expected gross benefit of ε(θ− 1)b. Note that

86If (θ − 1)b > 1
p and k

4p = 1 − 1
p(θ−1)b , then k

4p[p(θ−1)b−1] =
(1−p)−k

(1−p)p(θ−1)b+4p = 1
p(θ−1)b . Why this “triple

point” occurs is as follows. First, if all reciprocators other than i play (p, cdd), then when ε = 1
p(θ−1)b , i

is indifferent between playing a0i = c and a0i = d. Second, if the effective cost of research k
4p equals the

materialist population share (1−ε), then a player is indifferent between research and not when playing ccd, as
paying k for research in such a situation has value solely in reducing the probability (by 4p) of being victim of
free-riding to a materialist. Hence if (1− ε) = k

4p = 1− 1
p(θ−1)b , then i is indifferent between playing (p, cdd)

and deviating to (p, ccd) or (p, ccd). But then she is indifferent between cooperating or not whether or not she
does research, which means deviating to (p, cdd) also leaves her indifferent.
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4(p,cdd)(ε, p, ccd) > 4(p,ddd)(ε, p, ccd); i is better off playing aθi (ε) = c than aθi (ε) = c

because other reciprocators always cooperate with her.

• Unilateral deviation to (p, cdd) yields expected utility of ε(p(θb− 1) + (1− p)b)−k. The

incentive to deviate is 4(p,ccd)(ε, p, ccd) = −ε(1− p)(θ− 1)b− ε4p+ (1− p)− k, which

is strictly positive iff ε <
(1−p)−k

(1−p)(θ−1)b+4p .

• Unilateral deviation to (p, ccd) yields expected utility of ε(θb− 1)− (1− ε)(1− p)− k.

The incentive to deviate is 4(p,ccd)(ε, p, cdd) = (1− ε)4p− k, which is strictly positive

iff ε < 1 − k
4p . The inequality has a simple interpretation. The value of research to

a reciprocator if other reciprocators play a0
θ(ε) = c is in reducing the probability of

being suckered when meeting a materialist (an encounter that happens with probability

(1− ε)), to yield a net expected benefit of 4p[ui(c, d)−ui(d, d)] = 4p. Consequently, if

the cost of research k does not exceed (1−ε)4p, then research is optimal, independently

of other reciprocators’ research choices. For a fixed cost of research k > 0, the threshold

below which research is optimal increases in the impact of research 4p. Likewise, for

fixed impact of research, the threshold decreases in the cost of research.

For all the candidate unilateral deviations, deviation is profitable below a certain threshold.

This is an intuitive result; if we consider an all-reciprocator population (i.e. ε = 1), then

(rθ(ε), aθ(ε)) = (p, cdd) is clearly an equilibrium; research has no value to reciprocators as

there is no risk of suffering a free-riding opponent, and mutual cooperation will happen with

certainty. We have that (p, ccd) is an equilibrium for ε ≥ max{ (1−p)−k
(1−p)(θ−1)b+4p , 1−

k
4p ,

1
(θ−1)b

}.

It turns out that
(1−p)−k

(1−p)(θ−1)b+4p <
1

(θ−1)b
iff k
4p > 1 − 1

(θ−1)b
, which is true iff

1−p−k
(1−p)(θ−1)b+4p >

1− k
4p .87 Consequently, if k

4p < 1− 1
(θ−1)b

, then (p, ccd) is an equilibrium for ε ≥ 1− k
4p . If

87If k
4p = 1 − 1

(θ−1)b , then
(1−p)−k

(1−p)(θ−1)b+4p = 1 − k
4p = 1

(θ−1)b . We can understand why using reasoning

analogous to that in footnote 86. If all reciprocators other than i play (p, ccd), then when the effective cost of

research k
4p equals the materialist population share (1− ε), a player is indifferent between doing research and

not when playing ccd, as paying k for research in such a situation has value solely in reducing the probability (by
4p) of being victim of free-riding to a materialist. Also, if ε = 1

(θ−1)b , then i is indifferent between cooperating

and not when she does not learn her opponent’s type. But then she is indifferent between cooperating or not
whether or not she does research, which means deviating to (p, cdd) also leaves her indifferent.
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on the other hand k
4p > 1− 1

(θ−1)b
, then (p, ccd) is an equilibrium for ε ≥ 1

(θ−1)b
.

(v) Parameter values for which (p, ccd) is an equilibrium.

Finally, suppose that (rθ(ε), aθ(ε)) = (p, ccd). Each reciprocator has expected utility ε(θb −

1)− (1− ε)(1− p)− k. The incentives for a reciprocator to deviate are as follows.

• Unilateral deviation to (p, ddd) yields expected utility of εb. The incentive for recipro-

cator i to deviate is 4(p,ddd)(ε, p, ccd) = −ε((θ− 1)b− p) + (1− p) + k, which is strictly

positive iff ε < (1−p)+k
(θ−1)b−p .

• Unilateral deviation to (p, cdd) yields expected utility of ε(p(θb − 1) + (1 − p)b) > εb.

The incentive to deviate is 4(p,cdd)(ε, p, ccd) = −ε(1 − p)(θ − 1)b + ε4p + (1 − p) + k,

which is strictly positive iff ε < (1−p)+k
(1−p)(θ−1)b−4p .

• Unilateral deviation to (p, cdd) yields expected utility of ε(p(θb− 1) + (1− p)b)−k. The

incentive to deviate is 4(p,cdd)(ε, p, ccd) = −ε(1− p)(θ − 1)b + (1− p), which is strictly

positive iff ε < 1
(θ−1)b

, since for population shares below this threshold the expected gross

benefit of cooperation ε(θ−1)b for a reciprocator who doesn’t learn her opponent’s type

is less than 1, the gross cost of cooperation.

• Unilateral deviation to (p, ccd) yields expected utility of ε(θb− 1)− (1− ε)(1− p). The

incentive to deviate is 4(p,ccd)(ε, p, ccd) = −(1 − ε)4p + k, which is strictly positive iff

ε > 1 − k
4p . As the incentive to do research when playing ccd is to reduce the risk

of cooperating when one’s opponent free-rides, the threshold is independent of other

reciprocators’ research choices.

Comparing the incentives to deviate, we see that (p, ccd) is an equilibrium if both ε ≥

max{ (1−p)+k
(1−p)(θ−1)b

, 1
(θ−1)b

} and ε < 1 − k
4p . If k

4p > 1, then the second of these conditions

cannot be met. If k
4p ∈ (1, 1

(θ−1)b
), then there is no value of ε ∈ [0, 1] for which (p, ccd) is an

equilibrium, since it is always better not to do research when playing ccd in stage 2. If, on

the other hand, k
4p ≤ 1− 1

(θ−1)b
, then (p, ccd) is an equilibrium for ε ∈ ( 1

(θ−1)b
, 1− k

4p).
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Having characterised all the symmetric pure strategy equilibria in the two-stage game, it

remains to apply the equilibrium selection criteria to arrive at a unique equilibrium. Fixing

arbitrary ε, Assumption 1.1 implies that if more than one profile is played, then whichever has

the highest number in the following list is selected: (1) (p, ddd); (2) (p, cdd); (3) (p, cdd); (4)

(p, ccd); (5) (p, ccd). This can be seen as follows. Comparing (p, ccd) with (p, ccd), the only

value of ε at which both strategy profiles can be played is 1− k
4p , at which reciprocators are

(independently of each other’s research choices) indifferent between doing research and not;

the tie-breaking rule of Assumption 1.1 implies that (p, ccd) is played. Comparing (p, ccd)

with (p, cdd), ε(p + (1 − p)) = ε is the ex ante probability i’s opponent cooperates with her

in the former profile, which (provided ε > 0) is strictly greater than 1
2
ε, the probability her

opponent cooperates in the latter. Likewise, (p, ccd) yields an opponent’s ex ante cooperation

probability of ε. The profile (p, ccd) yields an opponent’s ex ante cooperation probability of

pε < 1
2
ε. Finally, (p, ddd) clearly induces zero cooperation.

As (p, ccd) is the highest-ranked profile, if k
4p ≤ 1− 1

(θ−1)b
, it is played at ε ∈ [ 1

(θ−1)b
, 1− k

4p ];

otherwise, it is not played. As the next-highest ranked profile, (p, ccd) is played at ε ≥ 1
(θ−1)b

unless k
4p ≤ 1 − 1

(θ−1)b
in which case it is played at ε ∈ (1 − k

4p , 1]. The third-ranked

profile, (p, cdd), satisfies the two equilibrium conditions (setting aside Assumption 1.1) at

ε ∈ [ k
4p[p(θ−1)b−1]

, 1
p(θ−1)b

] if k
4p ≤ 1 − 1

p(θ−1)b
; otherwise, it is not played in equilibrium. As

either (p, ccd) or (p, ccd) is played at ε ≥ 1
(θ−1)b

, Assumption 1.1 implies that (p, cdd) can only

be played in ε ∈ [ k
4p[p(θ−1)b−1]

, 1
(θ−1)b

]. The interval is non-null only if k
4p ≤ p − 1

(θ−1)b
, so

(p, cdd) is played at ε ∈ [ k
4p[p(θ−1)b−1]

, 1
(θ−1)b

] iff k
4p ≤ p− 1

(θ−1)b
. The profile (p, cdd) is played

at ε < k
4p[p(θ−1)b−1]

if k
4p ≤ p− 1

(θ−1)b
and for ε < 1

(θ−1)b
if k
4p > p− 1

(θ−1)b
.

It remains to show that if research is done in equilibrium, it is done iff ε ∈ [ε1, ε2], where

0 < ε1 ≤ ε2 < 1. If k
4p ≥ 1− 1

p(θ−1)b
, then research is not done if ε < 1

(θ−1)b
, while if ε ≥ 1

(θ−1)b
,

Proposition 1.1(1) implies that research is either not done or it done iff ε ∈ [ 1
(θ−1)b

, 1 − k
4p ].

If k
4p < 1 − 1

p(θ−1)b
, research is done iff ε ∈ [ k

4p[p(θ−1)b−1]
, 1 − k

4p ] = [ k
4p[p(θ−1)b−1]

, 1
(θ−1)b

) ∪

[ 1
(θ−1)b

, 1− k
4p ]. This concludes the proof of Proposition 1.1. �
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Figure 18 illustrates an example equilibrium, where p = 0.3, p = 0.5, b = 4, θ = 2 and

k = 0.025. As k
4p = 0.125 < 5

6
= 1 − 1

p(θ−1)b
, by Proposition 1.1(2), reciprocators play

aθ(ε) = (p, cdd) for ε ∈ [ k
4p[p(θ−1)b−1]

, 1
(θ−1)b

) = [0.125, 0.25) while by Proposition 1.1(1), they

play aθ(ε) = (p, cdd) for ε ∈ [ 1
(θ−1)b

, 1− k
4p ] = [0.25, 0.875].

Figure 18: Equilibrium played when θ = 2, p = 0.3, p = 0.5, b = 4 and k = 0.025

Remark . Reciprocators do research for population shares below the free-riding threshold

only if they also do research at the threshold (where they play ccd). This is because for cdd

to be played at all in equilibrium, it is necessary that (θ − 1)b ≥ 1
p
; otherwise, there is a

profitable deviation to (p, ddd). This implies that the free-riding threshold 1
(θ−1)b

< 1
p
. Now,

if all reciprocators play aθ(ε) = cdd for some ε < 1
(θ−1)b

, each finds research optimal if k ≤
1
p
ε4p(θ − 1)b < p4p. At the threshold, if all reciprocators play ccd, then research is optimal

for each one if k ≤ 4p(1− 1
(θ−1)b

), where 4p(1− 1
(θ−1)b

) > p4p.

Proof of Lemma 1.5

Fix arbitrary p ∈ (0, 1) and p ∈ (0, p). The quantities 4F (θ, ε, p, cdd), 4F (θ, ε, p, cdd),

4F (θ, ε, p, ccd) and 4F (θ, ε, p, ccd) are all strictly increasing in ε > 0. As a result, for given

k, if a single pure strategy is played for ε ∈ [ε1, ε2] ⊆ [0, 1], then

ε(θ) ≡ sup
ε∈(0,1]

{{0} ∪ {ε : ∀ε̂ ∈ (0, ε) , 4F [ε̂, rθ(ε̂), aθ(ε̂)] > 0}} /∈ (ε1, ε2) (A.2)

This property clearly holds if 4F [ε1, rθ(ε), aθ(ε)] ≤ 0, in which case, ε(θ) ≤ ε1. If on the
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other hand 4F [ε1, rθ(ε), aθ(ε)] > 0, then either (i) ∀ε̂ ∈ (0, ε1) , 4F [ε̂, rθ(ε̂), aθ(ε̂)] > 0 or (ii)

∃ε̂ ∈ (0, ε1) : 4F [ε̂, rθ(ε̂), aθ(ε̂)] ≤ 0. In case (i),

sup
ε∈(0,1]

{{0} ∪ {ε : ∀ε̂ ∈ (0, ε) , 4F [ε̂, rθ(ε̂), aθ(ε̂)] > 0}} ≥ ε2 (A.3)

while in case (ii),

sup
ε∈(0,1]

{{0} ∪ {ε : ∀ε̂ ∈ (0, ε) , 4F [ε̂, rθ(ε̂), aθ(ε̂)] > 0}} < ε1 (A.4)

Likewise, if a pure strategy is played for ε ∈ (ε1, ε2] ⊆ [0, 1], then ε(θ) /∈ (ε1, ε2). The

attainable share ε(θ) can therefore be obtained by calculating the relative fitness at each

infimum of the interval of population shares at which a symmetric pure strategy profile is

played, and listing those at which relative fitness is strictly greater than zero. For example,

suppose there are three symmetric strategy profiles played, with infima of 0, ε1 > 0 and

ε2 > ε1, such that relative fitness at ε = 0 and ε = ε2 is strictly positive, but that at ε1 is

negative. The value of ε(θ) is then the supremum of the interval such it and all lower intervals

of symmetric pure strategy profiles have a infimum on the list. In the example, it is the

supremum of the interval whose infimum is zero, i.e. ε(θ) = ε1. Using this technique, I will

prove each part of Lemma 1.5 in turn.

To analyse the version of the model without the discovery technology, let us impose the

constraint r = p on all players in the first stage, so that only the second stage of the game

involves strategic play. Accordingly, equilibrium condition 2 is imposed with research choice

set to r = p for all players. Lemma 1.3, which derives from equilibrium condition 2 and

the incentive to cooperate, still goes through, i.e. reciprocators all play either ddd, cdd or

ccd. In establishing whether any one of these profiles is an equilibrium it is sufficient to

check whether an arbitrary reciprocator has a profitable unilateral deviation to either of the

other two profiles. For arbitrary ε ∈ [0, 1], ccd is therefore an equilibrium if either (p, ccd) or

(p, ccd) is an equilibrium in the full model; similarly, cdd is an equilibrium if either (p, cdd) or

is an equilibrium in the full model. By Proposition 1.1, aθ(ε) = ccd iff ε ≥ 1
(θ−1)b

, while for
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ε < 1
(θ−1)b

, aθ(ε) = cdd if (θ−1)b ≥ 1
p
, which is true by assumption, since Θ(b, p) = [1+ 1

bp
,∞).

We have 4F [θ, ε, (p, cdd)] > 0 for ε > 0, and so εno tech(θ) ≥ 1
(θ−1)b

. Checking relative fitness

at the lower bound of the region where aθ(ε) = ccd is played, i.e. at ε = 1
(θ−1)b

, yields

4F [θ, 1
(θ−1)b

, (p, ccd)] =
p(b−1)

(θ−1)b
− (1 − p). Hence 4F [θ, 1

(θ−1)b
, (p, ccd)] > 0 iff θ < 1 +

p(b−1)

b(1−p) ,

and so εno tech(θ) = 1 iff θ ≤ 1 +
p(b−1)

b(1−p) ; otherwise, εno tech(θ) = 1
(θ−1)b

. �

Proof of Theorem 1.1

Theorem 1.1 characterises ε(θ) in the the full model, when technology is present and where,

by hypothesis, k
4p ≤ 1− 1

(θ−1)b
. The proof uses the technique of the proof of Lemma 1.5, i.e.

calculating the relative fitness at each infimum of the interval of population shares at which

a symmetric pure strategy profile is played.

Setting p = 1, Proposition 1.1 implies that (p, cdd) is played for ε ∈ [ k
4p[(θ−1)b−1]

, 1
(θ−1)b

)

and (p, ccd) is played for ε ∈ [ 1
(θ−1)b

, 1− k
4p ]. At the lower bound of the region where (p, cdd)

is played, 4F [θ, k
4p[(θ−1)b−1]

, (p, cdd)] = k(b−1)
4p[(θ−1)b−1]

−k. Hence 4F [θ, k
4p[(θ−1)b−1]

, (p, cdd)] > 0

iff θ < 1 + 1
b

+ b−1
(1−p)b .

I start by proving Theorem 1.1(1). It can easily be verified that that 1+ 1
b

+ b−1
(1−p)b ≤ 1+ 1

bp

iff p(b + 1) − p2 − 1 ≤ 0, which implies that if p(b + 1) − p2 ≤ 0, ε(θ) = k
4p[(θ−1)b−1]

< 1
(θ−1)b

for any θ ∈ Θ(b) = [1 + 1
bp
,∞). Suppose instead that p(b + 1) − p2 − 1 > 0 and define

θ′ := 1 + 1
b

+ b−1
(1−p)b . In this case, if θ ≥ θ′, then 4F (θ, k

4p[(θ−1)b−1]
, p, cdd) ≤ 0 and so

ε(θ) = k
4p[(θ−1)b−1]

< 1
(θ−1)b

. Consequently, for θ′ = 1 + 1
b

+ b−1
(1−p)b , if p(b + 1) − p2 − 1 ≤ 0 or

θ ≥ θ′, then ε(θ) = k
4p[(θ−1)b−1]

< εno tech(θ). By inspection, as k → 0, ε(θ)→ 0, as required.

The proof of Theorem 1.1(2) is then as follows. If θ < θ′, then relative fitness at the

lower bound where (p, cdd) is played is positive, i.e. 4F (θ, k
4p[(θ−1)b−1]

, p, cdd) > 0, and so

ε(θ) ≥ 1
(θ−1)b

. For any ε ∈ [0, 1], we have that 4F (θ, ε, p, ccd) −4F (θ, ε, p, ccd) = ε4p(b −

1) +4p − k. As k
4p ≤ 1 − 1

(θ−1)b
, 4F (θ, ε, p, ccd) > 4F (θ, ε, p, ccd). Setting ε = 1

(θ−1)b
, if

4F (θ, 1
(θ−1)b

, p, ccd) > 0 then 4F (θ, 1
(θ−1)b

, p, ccd) > 0, and so ε(θ) ≥ εno tech(θ), as required.�
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A.2 Numerical examples with an imperfect discovery technology

Theorem 1.1 assumes a perfect discovery technology, i.e. p = 1. However, for p < 1 it

is in general also possible to find parameter values for which a discovery technology raises

or lowers the attainable share. To illustrate this point, Figures 19 and 20 below provide

examples in which ε(θ) < εno tech(θ) for a (lower) type and ε(θ) > εno tech(θ) another (higher)

type, respectively.

In Figure 19, the discovery technology is used by reciprocators while they still blindly

defect. The boost in relative fitness they receive is represented by the difference between the

lower end of the solid black line at ε = 0.25 and the lower end of the vertical dotted line

beneath it.

Figure 19: Relative fitness by reciprocator population share in equilibrium and for selected
non-equilibrium profiles when k = 0.1, p = 0.25, p = 0.5, b = 6 and θ = 12

3

Figure 20 illustrates Theorem 1.1(2), for the case θ = 4.7. In this case, the reciprocator

type values mutual cooperation enough to do research below the free-riding threshold (which

is at ε = 1
22

); at the lower bound of the interval of population shares where research is done

in equilibrium, reciprocators are too small a share of the population to have positive relative

142



fitness. Importantly, it is only below the free-riding threshold, for low population shares

where reciprocators do blind defection, that doing research can reduce relative fitness for

reciprocators, because it is in this region that they have an incentive to ‘overpay’ for research,

to promote mutual cooperation (as opposed to having the incentive to avoid being free-ridden,

which is the case at higher reciprocator population shares).88

Figure 20: Relative fitness by reciprocator population share in equilibrium and for selected
non-equilibrium profiles when k = 0.1, p = 0.25, b = 6 and θ = 42

3

88In figure 20, the choice of parameters makes the difference ε(θ)−εno tech(θ) fairly small. If I had made the
definition of attainable share weaker, replacing the requirement for strictly positive fitness in (1.20) with one
for weakly positive fitness, this would remove the constraint that (θ− 1)b ≥ 1

p for ε(θ) 6= εno tech(θ), widening

the ranges of parameter values for which ε(θ) < εno tech(θ) for some types and ε(θ) > εno tech(θ) for others.
However, the amended definition of attainable share would be less compelling than the one I have adopted,
as it would not longer capture the population share to which an arbitrarily small initial share of reciprocators
would grow under payoff-monotone fitness dynamics.
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B Appendix to Chapter 2

B.1 Proofs

Proof of Theorem 2.1

Existence . The proof for existence is standard: note that xi = 0 for all i ∈ N is always

an equilibrium. Note also that from (2.6), for any Qγ, the (finite) strategy profile containing

xi = 1 and xj = 0 is always an equilibrium, for all i ∈ Qγ and j /∈ Qγ.

Uniqueness. The uniqueness of the ME can be proved by contradiction, as follows.

Suppose there exist two distinct ME, x and x′ with x 6= x′. Since both x and x′ are ME,

there must exist at least one i and one j such that xi < x′i and xj > x′j. Let us now construct

an equilibrium x̂, whereby x̂i = max{xi, x′i, x∗i } for all i, where x∗i is i’s best-response to x̂−i,

and with x∗i ≥ max {xi, x′i}. To see why x̂ is an equilibrium, note first that since neighbours’

actions are weak local complements, and as i ’s neighbours play 1 in x̂ if they play it either

in x or in x′ , then i ’s best response must be to play 1 if it is her action either in x or in x′.

Second, if i plays 0 in both those profiles, then we simply have that x̂i = x∗i ∈ {0, 1}. Thus x̂

is an equilibrium. Clearly, x̂i ≥ xi, with the inequality strict for at least one j. The same is

true for x′i, contradicting the claim that x and x′ are both ME. That the result holds for any

parameter values is straightforward given the definition of γ and Sγ. �

Characterisation. It remains to prove that x∗, whereby x∗i = 1 iff i ∈ Qγ, is the ME.

We proceed by contradiction. Suppose that there is another equilibrium x
′

that has a higher

contribution level than x∗. Denote by Q′ ⊇ Qγ the set of players who contribute in x′. Then,

there must exist at least one j /∈ Qγ and j ∈ Q′ with x′j = 1 and x∗j = 0, implying the

following claim.

Claim B.1 There must exist one player k ∈ Q′, with x∗k = 1, with

∆
(
x′j∈Nk(G)

)
= −γ + Ψ (xi, c

′
i, d
′
i) < 0 (B.1)
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Proof : Suppose not. Then, this entails that for all i ∈ Q′:

Ψ (xi, ci, di) > γ (B.2)

But by definition of Qγ, expression (B.2) entails that i ∈ Q′ ⇒ i ∈ Qγ . But this

contradicts the hypothesis that j /∈ Qγ and j ∈ Q′. �

Note finally that Claim B.1 entails that x′ is not an equilibrium: indeed player k can

strictly increase her payoffs by switching to x = 0. This completes the proof. �

Proof of Proposition 2.1

We first show that the contribution level at the ME decreases in γ. Note that in any G and

for any θ, an increase in γ always (weakly) reduces | Qγ (G) |, by construction. We know from

Theorem 2.1 that a decrease in | Qγ (G) | yields a decrease in the contribution level.

Second, we provide a sketch proof of Proposition 2.1(1)-2.1(3). Let i, j ∈ Qγ (G) be

two unlinked players and consider adding a link between them so that the resulting network

is G + ij. We can check whether i and j continue to contribute in the ME. Suppose that

x∗i = x∗j = 1. Given these fixed actions, for any player k 6= i, j, sγk(G + ij) = sγk(G) and so

k ∈ Qγ (G+ ij) if and only if k ∈ Qγ (G). Further, we have sγi (G + ij) = sγi (G) + 1 and

sγj (G + ij) = sγj (G) + 1. By Assumption 2.1(4), Ψ (1, sγi , (ki − s
γ
i )) is increasing in sγj , and

so i, j ∈ Qγ (G) by the characterisation via inequality (2.6). Hence the ME is unchanged.

Proposition 2.1(2) can be established by similar reasoning: adding a link between two players

outside Qγ (G) weakly expands Qγ (G), and so does the deletion of a link (e.g. between

a conditional cooperator and a materialist). In both cases, total contributions thus weakly

increase. Lastly, the example provided with Figure 13 in the main text proves Proposition

2.1(3). This completes the proof. �
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Proof of Proposition 2.2

Consider first the minimal number of j’s neighbours changing their action necessary for j to

change her action following i’s change of type, when θi = θR initially:89

r∗j (θ, γ,G) := min
r∈N+

{
r : Ψ

(
xi, (c

∗
j − r, ), (d∗j + r)

)
≤ γ

}
(B.3)

We first show that if r∗j > 0 and j is connected to at least r∗j i-susceptible players, then j is

i-susceptible.90 Suppose a contrario that j is not i-susceptible. Given r∗j > 0, this means that

x∗j = x′j = 1 by definition, where x∗j (x′j) is j’s action before (after) i’s type change.

Denote by rj the number of i-susceptible players j is connected to, with rj ≥ r∗j by

hypothesis. Since x∗j = xj = 1, then for j’s action to be optimal we require

rj < min
r∈N+

{
r : Ψ

(
xi, (c

∗
j − r, ), (d∗j + r)

)
≤ γ

}
(B.4)

But it then follows that rj < r∗j (θ, γ,G) , which contradicts the hypothesis that rj ≥ r∗j . �

Second, we show that if j is i-susceptible, then j is connected to at least r∗j i-susceptible

players. Suppose a contrario that j is i-susceptible but is connected to rj < r∗j i-susceptible

players. Since j is i-susceptible, then by definition x∗j = 1 6= x′j = 0, where x∗j (x′j) is j’s action

before (after) i’s type change.

Since x∗j = 1 6= x′j = 0, then it follows that rj ≥ r∗j (θ, γ,G), which contradicts the

hypothesis that rj < r∗j . �

These two statements together complete the proof. �

89In the other case, that θi = θM initially, susceptible players will be those that switch from x∗j = 0 to
x′j = 1. In this other case, there is simply a sign change in the definition of r∗j ∈ r∗, which is now given

by r∗j (θ, γ,G) := minr∈N+

{
r : Ψ

(
x∗j , (c

∗
j + r, ), (d∗j − r)

)
≥ γ

}
. The proof for this case is analogous and thus

omitted.
90Note that if r∗j = 0, then j is already free-riding, and thus can never be influenced by i’s change of type

and is thus “unsusceptible”.
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Proof of Proposition 2.3

We begin with Proposition 2.3(1). Again we assume that θi = θR initially; the opposite case

is analogous, and the proof is thus omitted. Recall first that if j ∈ S i (G), then x∗j = 1,

and thus j ∈ Qγ. Then, observe that adding a link between a player j and a player k,

with j, k ∈ S i (G), increases r∗j and r∗k, which weakly reduces i’s and k’s susceptibility to i.

Hence S i (G+ jk) ⊆ Si(G), where G + jk denotes the addition of a link between j and k to

G. Second, consider removing a link between a player j and a player k, with j, k ∈ S i (G).

Either (i) j, k ∈ S i (G− jk), or (ii) j /∈ S i (G− jk) or k /∈ S i (G− jk), but not both, or (iii)

j, k /∈ S i (G− jk). In case (i), clearly S i (G− jk) = S i (G); we will show that in cases (ii)

and (iii), S i (G− jk) ⊂ Si(G).

In case (ii), first, suppose without loss of generality that j /∈ S i (G− jk). In this case, either

(ii.a) j contributes before and after i’s switch in network G − ij, or (ii.b) j free-rides before

and after i’s switch in network G− ij (which happens if j /∈ Qγ (G− jk)). In case (ii.a), every

other player has less incentive to switch action following i’s switch than in network G, and so

S i (G− jk) ⊂ Si(G). In case (ii.b), after i’s switch in either network, j and k free-ride, and

so there is the same ME after i’s switch in both G and G− jk, and thus S i (G− jk) ⊂ Si(G).

Second, in case (iii), if j and k play the same action as each other, then the reasoning for case

(ii) directly applies. It remains to consider what happens if one player (say j) contributes

before and after i’s switch in network G− ij while the other (say k) free-rides before and after

i’s switch. First, note that from Proposition 2.1, Qγ (G− jk) ⊂ Qγ (G). Second, note that

every player ` ∈ Qγ (G− jk) has weakly less incentive to free-ride after i’s switch than they

did in network G (since j now contributes after i’s switch). Hence S i (G− jk) ⊂ Si(G).This

completes the proof to Proposition 2.3(1).

Proposition 2.3(2) follows from the following observation: if the ME does not change

following the addition or deletion of a link between two players j, k /∈ S i (G), than it follows

that r∗j is left unchanged for all j ∈ S i (G), and the number of links to i-susceptible players

for any j ∈ S i (G) does not change either. Hence, i’s influence cannot decrease. However, the
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deletion of a link between two contributing conditional cooperators j and k outside S i (G)

strictly decreases r∗j and r∗k, which can make either or both i-susceptible, which increases i’s

influence. Second, the addition of a link between a contributing conditional cooperator j and

a materialist k, for example, also strictly decreases r∗j , which can make j i-susceptible. Hence,

the addition or the deletion of a link between two players j, k /∈ S i (G) either increases S i (G)

or leaves it unchanged when the ME does not change. The example in the main text shows

that if the ME changes, however, than S i (G) may increase or decrease. This completes the

proof to Proposition 2.3(2).

Finally, we prove Proposition 2.3(3) by construction with the following example. Consider

the graph on Figure 21, and suppose that preferences are given by (2.4) with α = 1 and

β = 1.5, and assume γ = 0.4. Figure 21 shows that adding a link between a player j ∈ S i (G)

and a player k /∈ S i (G) can either increase (left network) or decrease (right network) S i (G),

and thus i’s influence. �

Figure 21: Influence and adding links

Left : effect of adding link between players 4 and 9. Right : effect of adding link between players 6 and 9.

Proof of Theorem 2.2

We first show that for any network G (N), there exists a network comprising solely isolated

cliques of degree k, denoted by Ck (N), that yields at least as great an expected contribution
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level.91 Fix γ and let i be a player with maximum expected contribution level in G (N), i.e.

i ∈ argmax
j∈N

{
Eθ̃
(
xj

(
θ̃, γ, G (N)

))}
.

From Theorem 2.1 we know that two necessary conditions for i to contribute are that

θi = θR and that at least c (γ, ki) of her neighbours are conditional cooperators, where c (γ, ki)

is given by (2.5). This condition is however not sufficient, as for i to contribute it is also

necessary (but not sufficient) that at least c (γ, ki) of her neighbours who are conditional

cooperators also have c (γ, kj) conditional cooperators in their own neighbourhood, and so on.

Hence the following inequality:

Eθ̃
(
x∗i

(
θ̃, γ, G (N)

)
|θi = θR

)
= Pr (i ∈ Qγ (G) |θi = θR)

≤ Pr (| {j ∈ Ni (G) : θj = θR} |≥ c (γ, ki)) (B.5)

Consider next the network of isolated cliques of degree ki, Cki (N). Then, it follows from

Theorem 2.1 that necessary and sufficient conditions for i to contribute are that θi = θR and

that at least c (γ, ki) of her neighbours are conditional cooperators. The reason is that if

θi = θR and that at least c (γ, ki) of i’s neighbours are contributors, then these conditions also

hold for her neighbours who are conditional cooperators (since i is in a clique). Hence the

following equality:

Eθ̃
(
x∗i

(
θ̃, γ,Cki (N)

)
|θi = θR

)
= Pr

(
i ∈ Qγ

(
Cki (N)

)
|θi = θR

)
= Pr (| {j ∈ Ni (G) : θj = θR} |≥ c (γ, ki)) (B.6)

Using (B.5) and (B.6), we obtain:

Eθ̃
(
x∗i

(
θ̃, γ, G (N)

)
|θi = θR

)
≤ Eθ̃

(
x∗i

(
θ̃, γ,Cki (N)

)
|θi = θR

)
(B.7)

which completes the proof that a network of isolated cliques of degree k∗ is always optimal.

�
91For conciseness we neglect issues associated with remainder nodes when forming cliques for the proof.
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We next show that k∗ ∈ {k, k + 1, . . . n− 1}. Recall that by definition k is the minimum

degree for which there exists a regular network that supports a non-zero expected contribution

level (i.e. in some ex-post ME, at least one player contributes). Hence k∗ ≥ k, as required. �

Proof of Proposition 2.4

To prove Proposition 2.4, we first compare the expected contribution of any player in two

cliques of different sizes. We show that given social payoffs ψi(.) that satisfy Assumption

2.1(4), either one clique is better than the other for any probability p that a player is a

materialist, or there exists a unique p∗ ∈ (0, 1) such that for all p < p∗, the larger clique is

better than the smaller clique, and vice-versa for p > p∗. We then show that this entails that

for any p, the optimal network of cliques is generically unique, and when p increases, the size

of the cliques in said optimal network must (weakly) decrease.

We start with some notation. As above, denote by Eθ̃
(
xi

(
θ̃, γ,Ck (N)

))
the expected

contribution level per player within an isolated clique of degree k for a given γ, with:

Eθ̃
(
x∗i

(
θ̃, γ,Ck (N)

))
= (1− p)Pr

(
|
{
j ∈ Ni

(
Ck (N)

)
θj = θR

}
|≥ c (γ, k)

)
(B.8)

where c (γ, k) is the minimum number of reciprocating neighbours for any conditional coope-

rator in the clique of degree k to cooperate.

Consider next two cliques of degrees kA and kB, respectively, with kB > kA. For the

remainder of the proof it will be convenient to use the shorthand c(γ, kA) ≡ cA and c(γ, kB) ≡

cB. Assumption 2.1(4) implies that cB ≥ cA. If cA = cB, then the larger clique clearly has

higher expected contributions than the smaller one. Another implication of Assumption 2.1(4)

is that kB − cB ≥ kA − cA. If equality holds, i.e. kB − cB = kA − cA, then the larger clique

can tolerate no more materialists than the smaller one consistent with its players cooperating.

As such the smaller clique trivially dominates the larger one for any p. It thus remains to
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consider the case that cA < cB and kB − cB > kA − cA.

Let Yk be the number of conditional cooperators from k draws, so that Yk,1−p ∼ Bin(k; 1−

p). Let Fk,1−p denote the cumulative distribution of Yk,1−p, so that

Eθ̃
(
x∗i

(
θ̃, γ,Ck (N)

))
= (1− p) (1− Fk−1,1−p(c(γ, k)− 1)) (B.9)

For convenience we write the cumulative distribution Fk−1,1−p(c(γ, k)− 1) in terms of a beta

function, as follows:

Fk−1,1−p(c(γ, k)− 1) = (k − c(γ, k))

(
k − 1

c(γ, k)− 1

) p̂

u=0

uk−c(γ,k)−1(1− u)c(γ,k)−1du (B.10)

Next, consider the following ratio:

R (p) ≡ FkB−1,1−p(cB − 1)

FkA−1,1−p(cA − 1)
= C

IB(p)

IA(p)
(B.11)

where C is a constant with:

C ≡
(kB − c(γ, kB))

(
kB − 1

c(γ, kB)− 1

)
(kA − c(γ, kA))

(
kA − 1

c(γ, kA)− 1

) > 1 (B.12)

and:

IB(p) =

p̂

u=0

ukB−cB−1(1− u)cB−1du (B.13)

and IA(p) defined analogously. Note that this ratio can be used to determine which of

the cliques A and B yields a higher ex-ante contribution level per player. In particular, when

R (p) < 1, the (larger) clique of degree kB yields higher ex-ante contribution level per player

than the (smaller) clique of degree kA; the converse holds true for any R (p) > 1.
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Lemma B.1 For any two cliques of degree kA and kB, with kB > kA and kB − cB > kA− cA,

there exists a unique p∗ ∈ (0, 1) such that for R (p) given by (B.11), R (p∗) = 1, with R (p∗) < 1

for all p < p∗ and R (p∗) > 1 for all p > p∗.

Proof : The proof has the following structure. We establish three properties of R (p):

1. R(p)→ 0 as p→ 0;

2. R(1) = 1;

3. R(p) is strictly increasing up to some unique p̂ ∈ (0, 1) and is thereafter strictly decrea-
sing.

Note that Properties 2 and 3 together imply that R (p) increases up to a point p̂, where it

attains its unique maximum R (p̂) > 1 , and further that R (p) > 1 for all p ∈ [p′, 1). Property

1 then implies the lemma straightforwardly through a fixed-point argument.

We first prove the first property. Clearly, as p → 0, IB (p) → 0 and IA (p) → 0. Also, by

definition we know that both IB (p) and IA (p) are continuous and strictly increasing on the

domain (0, 1]. By the fundamental theorem of calculus, we have that

∂ [IA(p)]

∂p
= pkA−cA−1(1− p)cA−1 (B.14)

∂ [IB(p)]

∂p
= pm1 (1− p)m2 pkA−cA−1(1− p)cA−1 (B.15)

where m1 and m2 are strictly larger than 1. Thus, L’Hôpital’s rule establishes the following:

lim
p→0

IB(p)

IA(p)
= lim

p→0

pm1 (1− p)m2 pkA−cA−1(1− p)cA−1

pkA−cA−1(1− p)cA−1

= lim
p→0

pm1 (1− p)m2 (B.16)

= 0

which proves the first property. Property 2 is straightforwardly established by noting that

when p = 1, FkA−1,1−p(cA − 1) = 1 and FkB−1,1−p(cB − 1) = 1. Hence, when p = 1, R(p) = 1.
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We now turn to Property 3. We first show that IB(p)
IA(p)

and thus R (p) are strictly increasing

on (0, p̂), for some p̂ ∈ (0, 1). Consider the following derivative:

∂

∂p

(
IB(p)

IA(p)

)
=

IB(p)

IA(p)

(
pkB−cB−1(1− p)cB−1

IB(p)
− pkA−cA−1(1− p)cA−1

IA(p)

)
(B.17)

which we can express as

∂
∂p

(
IB(p)
IA(p)

)
=

IB(p)
IA(p)

( (pm1 (1−p)m2 )pkA−cA−1(1−p)cA−1

ṕ

u=0

(um1 (1−u)m2 )ukA−cA−1(1−u)cA−1du
− pkA−cA−1 (1−p)cA−1

ṕ

u=0

ukA−cA−1(1−u)cA−1du
)

(B.18)

and so d
dp

(
IB(p)
IA(p)

)
> 0 if and only if g(p) > 0,where:

g(p) := m (p)

p̂

u=0

ukA−cA−1(1− u)cA−1du−
p̂

u=0

m(u)ukA−cA−1(1− u)cA−1du (B.19)

where, in turn,

m (p) = pm1(1− p)m2 (B.20)

Note that the function m (p) is strictly increasing up to a maximum at p′ = m1

m1+m2
. For

p ≤ m1

m1+m2
, then, it follows that m (u) < m (p) for all u < p, which ensures that g(p) > 0.

Hence, IB(p)
IA(p)

is strictly increasing on the interval (0, p′].

Next, consider the interval (p′, 1]. On this interval we have that
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∂g(p)

∂p
=
∂m(p)

∂p

p̂

u=0

ukA−cA−1(1− u)cA−1du+m (p) pkA−cA−1(1− p)cA−1

−m (p) pkA−cA−1(1− p)cA−1 (B.21)

=
∂m(p)

∂p

p̂

u=0

ukA−cA−1(1− u)cA−1du

< 0

where the inequality follows from the fact that m (p) is strictly decreasing on this in-

terval. Further, we know that g(p) < 0 for a high enough probability p, since the term
ṕ

u=0

m(u)ukA−cA−1(1 − u)cA−1du increases continuously to a positive finite number as p → 1

while the term m (p)
ṕ

u=0

ukA−cA−1(1− u)cA−1du tends to zero. Hence we know that there must

exist a unique p̂ ∈ (p′, 1) such that g(p̂) = 0. It follows that IB(p)
IA(p)

(and hence R (p)) is strictly

increasing on (0, p̂] and strictly decreasing on (p̂, 1). This completes the proof of the third

property.

It follows from the three properties above that R (p) → 0 as p → 0, that R (p) strictly

increases on the interval (0, p̂], reaches a maximum at p = p̂ and then is strictly decreasing on

[p̂, 1), attaining the value of unity at p = 1. It follows from a standard fixed point argument

that there must exists a unique p∗ ∈ (0, 1), such that R (p∗) = 1, R (p) > 1 for p > p∗ and

R (p) < 1 for p < p∗. This completes the proof to Lemma B.1. �

We have shown that for any two pair of cliques of degree kA and kB, with kB > kA, either

one clique is better than the other for any probability p that a player is a materialist, or there

exists a unique p∗ ∈ (0, 1) such that for all p < p∗, the larger clique is better than the smaller

clique, and vice-versa for p > p∗. Proposition 2.4 follows immediately. �
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B.2 Extension: repeated interactions

In this section, we show that our model can be seen as the reduced form of an infinitely

repeated local public good game where players have only material payoffs. We demonstrate

that for any ME x∗ of the one-shot model, there exists a closely related stage game among

materialist players such that x∗ is the maximal equilibrium that can be sustained in the

infinitely repeated version of the stage game. We also relax Assumption 2.1 in an important

way by allowing free-riding players to have social payoffs.

Game and strategies . Let N = {1, 2, ...n} be the set of players, with n ≥ 3. Denote

by G an (undirected and unweighted) network, as before. A player i’s degree is denoted

ki ∈
[
0, k
]
, where k is the maximal degree in N . We assume that the network does not change

over time. Agents play an infinitely-repeated local public good game in discrete time. In

period t, player i chooses whether to cooperate (xit = 1) or not (xit = 0). X t
i = {0, 1}. For a

given profile xt, cit and dit denote respectively the number of i’s neighbours who contribute

and free-ride in period t.

Denote by ht the history of play at the end of period t (i.e. after players have played their

action for that period), where ht = (x1,x2, ...xt−1) At period t, players thus condition their

play on ht: we denote a player i’s strategy by σi(h), where h is a history of arbitrary length.

Let x̃t(σ) be the outcome at t, i.e. the action profile induced at t by strategy profile σ.

Payoffs . At a given period t, a player i’s stage payoffs for a given profile xt are given by:

v (xit,x−it) = ϕ (xit, cit, dit)− γxit (B.22)

where γ > 0 is the net cost of contribution, as before; and where ϕ (·) represents players’

payoffs to the local public good. Define:

φ (cit, dit) = ϕ (1, cit, dit)− ϕ (0, cit, dit) (B.23)

Assumption B.1 Players’ stage-game payoffs are given by (B.22), where: (1) ϕ (xi, 0, ki) =

0 for any ki ∈
[
0, k
]
; (2) ϕ (1, ki, 0)− γ < ϕ (0, ki, 0) for any ki ∈

[
0, k
]
; (3) ϕ (xit, cit, dit) is
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weakly increasing (decreasing) in cit (dit); and (4) φ (cit, dit) is strictly increasing (decreasing)

in ci (di).

We briefly comment on Assumption B.1. Assumption B.1(1) is a normalisation. As-

sumption B.1(2) guarantees that free-riding is always optimal in the stage-game. Assumption

B.1(3) captures the idea of a local public good: a player i incurs a positive (negative) exter-

nality on her neighbours when she cooperates (free-rides). Lastly, Assumption B.1(4) states

that cooperation exhibits strategic complementarity. This assumption may capture different

intuitions, e.g. the cost of cooperating decreases with local cooperation because of learning

opportunities; neighbours’ cooperation or effort increases the marginal returns to own coope-

ration or effort; etc. Observe that Assumptions B.1(1), B.1(3) and B.1(4), together, form a

generalised version of Assumption 2.1.

We write player i’s continuation payoffs at period t as:

ui,t ({xik}∞k=t) =
∞∑
k=t

[δ (θi)]
k v (xit,x−it) (B.24)

where δ (θi) is player i’s discount factor, which depends on her type. Player i’s type

θi ∈ Θi = {θF , θM} is ascribed by nature at the beginning of the game, with θF and θM

referring respectively to forward-looking and myopic types. We assume that δ (θF ) = δ, with

δ ∈ (0, 1), and δ (θM) = 0. Hence, while forward-looking players play “the long game”,

myopic players play the infinite game at each period as if it were only the stage-game. These

types form a close analogy to the “conditional cooperator” and “materialist” types introduced

earlier.

Equilibrium . A strategy profile σ∗ is a (subgame-perfect) equilibrium if at no period

t ≥ 1 does there exist a strategy σ′ such that, for some player i, uti
(
σ′, σ∗−i

)
> uti

(
σ∗i , σ

∗
−i
)
.

An equilibrium σ∗ is maximal if, at any t ≥ 1 and for any other strategy σ′:

∑
i∈N

x̃ti(σ
∗) ≥

∑
i∈N

x̃ti(σ
′) (B.25)
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It is straightforward to see that at any equilibrium, all myopic players defect at every

period. However, forward-looking players may achieve and enforce some cooperation at equi-

librium, depending on their strategy. For simplicity, we restrict attention to equilibria sup-

ported by local trigger strategies.

Assumption B.2 All forward-looking players adopt a local trigger strategy, whereby any

forward-looking player i’s strategy σi (h) is such that: xi,t = 1 if for every k ∈ {1, t − 1},

xj,k = 1 for at least µi neighbours j ∈ Ni (G); and xi,t = 0 otherwise.

Assumption B.2 states that any forward-looking player i cooperates as long as in every

previous period, at least µi neighbours cooperated. We do not specify µi, and so Assumption

B.2 remains fairly permissive.

We now examine the maximal equilibrium that can be supported when forward-looking

players adopt a grim trigger strategy as above. Before stating our result, we adapt our

definition of the q-linked set to the repeated environment. For any q ∈ R+, we define the

generalised q-linked set of G as the largest set of players such that for each i in the repeated

q-linked set:

φ (sqi , (ki − s
q
i )) + δϕ (0, sqi , (ki − s

q
i )) ≥ q (B.26)

where sqi is, as before, the number of i’s neighbours in the repeated q-linked set. Observe

that when δ = 0, condition (B.26) suitably mirrors condition (2.6) from the benchmark model.

Theorem B.1 Suppose that Assumptions B.1 and B.2 hold. For any γ ∈ R+, G and θ, a ME

always exists and is unique. At the ME, a forward-looking player contributes at every period

if and only if she is in the generalised γ-linked set. A local trigger strategy that supports the

ME is such that for every forward-looking player i, µi = sqi .

Proof : The proof of Theorem B.1 follows closely the proof of Theorem 2.1. Suppose that

all players in the generalised γ-linked set cooperated in every period k ∈ {1, 2...t−1}: observe
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that when µi = sqi , then a forward-looking player i in the generalised q-linked set finds it

profitable to continue to cooperate at time t if:

ϕ (1, ci, di)− γ
1− δ

≥ ϕ (0, ci, di) +
δϕ (0, 0, ki)

1− δ
(B.27)

The LHS of condition (B.27) captures i’s discounted future payoffs from cooperating, while

the RHS captures i’s payoffs from deviating (which entails that all i’s neighbours defect forever

from the next period onwards). It is easy to show using condition (B.26) that if i is in the

generalised q-linked set, then condition (B.26) is satisfied. Hence, when µi = sqi , all players in

(outside) the generalised q-linked set find that cooperating (free-riding) is optimal.

We next sketch the proof to the claim that this is indeed the maximal equilibrium. Suppose

a contrario that there exists another equilibrium in local trigger strategies σ′ such that, at

some t ≥ 1,
∑
i∈N

x̃it(σ
′) >

∑
i∈N

x̃it(σ
∗). Then, the set of players Ct contributing at t on the

equilibrium path of σ′ must be strictly larger than the generalised q-linked set. In that case,

for each player i ∈ Ct,

φ (ŝqi , (ki − ŝ
q
i )) + δϕ (0, ŝqi , (ki − ŝ

q
i )) ≥ γ (B.28)

where ŝqi is the proportion of i’s neighbours that are members of Ct. But, by construction,

the generalised q-linked set is the unique largest set for which this is true. This contradicts

the claim that Ct is larger than the generalised q-linked set. �

We conclude this section with a few remarks. First, Theorem B.1 establishes that the

results of our benchmark game can be seen as a reduced form of a repeated game where players

have only material payoffs but display heterogeneous discount factors. Theorem B.1 also shows

that our results are robust to the generalisation of Assumption 2.1 embedded in Assumption

B.1. Lastly, in the repeated setting, “cooperation” is never optimal in the stage-game (as

opposed to our benchmark game). This extension thus yields a different interpretation when

interactions are repeated: cooperation can be sustained by players in the generalised q-linked

set because it is enforced by threat of punishment, implicit in trigger strategies.
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B.3 Extension: private types

In our benchmark model, we assume that players know the type profile. Here we assume that

players do not know each other’s type, and types are i.i.d. over (θM , θR) with probability

distribution (p, 1 − p). We first construct a particular BNE that can be characterised via a

set Q̂γ, which is analogous to the γ-linked set Qγ. We then show that this BNE must be the

unique maximal BNE.

In this setting, a (pure) strategy for player i, denoted yi(.), is a mapping Θi → {0, 1} from

i’s type to i’s action. Denote by Yi the set of all (four) possible such mappings. Fix a set of

players N and a network G. A strategy profile for all n players is denoted y; a type profile

is denoted θ ∈ Θ = {θM , θR}n. Denote by θj∈Ni(G) the local type profile, i.e.. the type profile

among player i’s neighbours. We first make the two following definitions.

Definition B.1 A Bayesian Nash Equilibrium (BNE) is a strategy profile y for all n players

such that, for every i ∈ N and every y′i ∈ Yi, Eθ−i [π (yi,y−i|θi)] ≥ Eθ−i [π (y′i,y−i|θi)].

Definition B.2 A BNE y∗ is maximal if there does not exist another BNE y′ ∈ {0, 1}n such

that Eθ

[∑
i∈N

y∗i (θi)

]
< Eθ

[∑
i∈N

y
′
i(θi)

]
.

Next, we define the expected net benefit from contributing if θi = θR as follows.

Eθ−i
[
∆i

(
yj∈Ni(G)|θi

)]
=
∑
θ∈Θ

f(θ)∆i

(
yj∈Ni(G)

(
θj∈Ni(G)

)
|θi
)

(B.29)

where f (·) is the probability distribution over local type profiles, and ∆i

(
yj∈Ni(G)|θi

)
is

given by:

∆i

(
yj∈Ni(G)|θi

)
= −γ + Ψ (xi, ci, di|θi)

Finally, for any q ∈ R+, we define the Bayesian q-linked set, Q̂q, to be the largest set of

players for whom:

Eθ−i [∆i

(
yj∈Ni(G)

∗|θi
)
] ≥ q (B.30)
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for each player i ∈ Q̂q, where the profile y∗ is defined to be (y∗j (θM), y∗j (θR)) = (0, 1) if

j ∈ Q̂γ and (y∗j (θM), y∗j (θR)) = (0, 0) otherwise.

Theorem B.2 Suppose that Assumption 2.1 holds and that players’ types are private and

i.i.d., with p ≡ Pr (θi = θM) ∈ (0, 1) for all i ∈ N . For any γ ∈ R+, G and p, a maximal

BNE always exists and is unique. At the maximal BNE, a player contributes if and only if

she is in the Bayesian γ-linked set.

Proof : Analogously to the proof of Theorem 2.1. The profile y∗ is clearly a BNE for any

γ ∈ R. It also follows from the proof to Theorem 2.1 that this maximal BNE is unique, which

is implied by the fact that Q̂γ is the unique maximal set containing only members for whom

inequality B.30 holds. �

Remark B.1 Membership of the Bayesian γ-linked set entails that a player contributes only

if she is a conditional cooperator type; players not in the set always free-ride. The expected

contribution level at the maximal BNE is thus (1− p) | Q̂γ |.

The close similarity between the definition of Q̂q and that of Qq ensures that the com-

parative statics result from our main model continue to hold in the case of private types.

First, consider an increase in γ. This makes membership of Q̂γ more stringent, thus reducing

expected contributions. Second, consider adding a link to a network between a player i ∈ Q̂γ
and a player j /∈ Q̂γ. We now argue that, just as in the case of public types, the effect of

adding this link can increase or decrease expected contributions (or keep it the same). If i

only narrowly meets inequality B.30, while j is far from meeting it, then the result will be that

i switches to free-riding regardless of type. In this case, expected contributions decrease. On

the other hand, if i comfortably meets inequality B.30, while j just fails to meet it initially,

then adding a link increases expected contributions. Finally, if neither player is ‘marginal’

with respect to inequality (B.30), then adding the link does not affect expected contributions.
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C Appendix to Chapter 3

C.1 Proofs

Proof of Proposition 3.1

I first prove that FH implies that strong ideology does not hold. Fix arbitrary values of

z ∈ Zn, θ, θ
′ ∈ Θ, where θ 6= θ

′
. Consider θ̃−i, θ̂−i ∈ Θn−1 such that Cθ(θ̃−i) > Cθ(θ̂−i) and

Cθ′ (θ̃−i) < Cθ′ (θ̂−i). FH implies that wθ(z; θ
′
, θ−i) is increasing in Cθ′ (θ

′
, θ−i), which implies

that wθ

(
z; θ

′
, θ̃−i

)
< wθ

(
z; θ

′
, θ̂−i

)
. SI implies min

z∈Zn
wθ

(
z; θ

′
, θ̃−i

)
> max

z∈Zn
wθ

(
z; θ

′
, θ̂−i

)
,

which in turn implies wθ

(
z; θ

′
, θ̃−i

)
> wθ

(
z; θ

′
, θ̂−i

)
.

It remains to prove that strong and weak ideology are consistent with SI. Continuing to fix

arbitrary parameter values as above, SI implies that min
z∈Zn

wθ

(
z; θ, θ̃−i

)
> max

z∈Zn
wθ

(
z; θ, θ̂−i

)
,

which in turn implies wθ

(
z; θ, θ̃−i

)
> wθ

(
z; θ, θ̂−i

)
. Since θ̃−i, θ̂−i ∈ Θn−1 are arbitrarily

fixed given the constraint that Cθ(θ̃−i) > Cθ(θ̂−i), this implies that wθ(z; θ, θ−i) is increasing

in Cθ(θ−i), i.e. PH. Hence strong ideology implies PH. Weak ideology of type θ implies that

there exists some θ
′ ∈ Θ such that wθ(z; θ

′
, θ−i) is not strictly increasing in Cθ′ (θ−i). This

does not however preclude that wθ(z; θ, θ−i) is increasing in Cθ(θ−i), i.e. that PH holds.

For example, a player of weakly ideological type A facing a type-B opponent could have

wA(z;B,A) = wA(z;B,B) but wA(z;A,A) > wA(z;A,B). �

Proof of Theorem 3.1

First suppose A and B are ideological. For arbitrarily small c > 0, ∆retain
A,B > c and ∆retain

B,A > c,

and so there exists an equilibrium x∗ = (1, 1) such that E(x∗) = −2c < 0. This proves

Theorem 3.1(1). Turning to the next part of the Theorem, if both types are strongly ideological

then for arbitrarily small c > 0, ∆convert
A > c, ∆convert

B > c, ∆retain
A,B > c and ∆retain

B,A > c,

implying x∗ = (1, 1) and E(x∗) = −2c < 0. Finally, to prove Theorem 3.1(3) let A be

perfectly ideological and let B be pragmatic. For arbitrarily small c > 0, ∆convert
A > c. As

∆retain
B,A < 0 < c, x∗ = (1, 0) and E(x∗) > 0. �
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C.2 Characterisation of equilibria in case 3 of extended example in

section 3.2

Recall that having weakly ideological meta-payoffs entails that a player always prefers to retain

her type, regardless of any change in outcome in Γ that a change in her type would induce.

Additionally, for the particular weakly ideological types in the example, no players derive

utility directly from their opponents’ types. Turning to equilibrium analysis, we see that if

no devout players invest, then secular players all best-respond if none invests. In contrast,

however, if no secular players invest, then provided investment costs are low enough (c < ns
n

)

devout players each best-respond if precisely one of them invests. This response is driven by

the instrumental incentive to convert their opponents to improve the outcome they achieve

in Γ. Now suppose that k > 0 devout players invest (where k ≤ nd). In this case, secular

players each best-respond if k of them invest, provided c < 2 (as their meta-payoff if they

retain their type is 2 higher than that if they are converted), which must be true if c < ns
n

. If

k secular players invest (where k ≤ ns), then devout players each best-respond if (i) k + 1 of

them invest when c < ns
n

; (ii) k of them invest when c ∈ (ns
n
, 2) and (iii) none of them invest

when c > 2. Note that an investor among a total of k+ 1 devout investors does not deviate if

the cost of investing is less than the instrumental incentive to convert (case (i)), whereas the

ideological incentive is relevant to an investor among a total of k devout investors (case (ii)),

because deviating here will ensure that the devout investor changes type. It follows that:

1. If c > 2, no players invest in equilibrium

2. If c ∈ (ns
n
, 2), an equilibrium investment profile is any in which precisely m devout and

m secular players invest, where m ∈ {0, 1, . . . ,min{ns, nd}}

3. If c < ns
n

and nd ≤ ns, then an equilibrium investment profile is any in which precisely

nd devout and nd secular players invest

4. If c < ns
n

and nd > ns, then there is no pure-strategy equilibrium investment profile
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The extended motivating example of the ascetic religion, and the three different cases consi-

dered above help to illustrate how meta-payoffs can be used to characterise different kinds of

ideology, and how these kinds of ideology affect strategic incentives. Insights from the main

results are summarised as follows. In the first case, where a weakly ideological devout type

meets a pragmatic secular type, there is a threshold value for the investment cost c below

which precisely one player, of the ideological type, invests in equilibrium. Turning to the

second case, if the devout type is instead strongly ideological, this simply strengthens the

incentive of devout players to convert, as their instrumental incentive to convert is coupled

with an ideological incentive to convert, and so the result is much the same as in the first case

but with a reduced threshold cost.

C.3 Example application: selection of meta-preferences

In this section of Appendix C, I consider how the indirect evolutionary model of Chapter 1

can be extended to ideological games. In applying ideological games to this context, I provide

an account specifically of cultural – as opposed to genetic – evolution.

There is a continuum of players, indexed by the interval [0, 1] containing two preference

types: materialists (M), whose (first-order) payoffs are simply the fitness payoffs, and re-

ciprocators (R), who rank mutual cooperation above the other outcomes of the game (see

Figures 23 and 24). Players undergo uniform random pairing to play a game Γ that is a PD

in fitness payoffs, as given in Figure 22. Assuming players have complete information (i.e.

preference types are observable), reciprocators can thrive. A further possibility – and one

that has not been formally studied, to my knowledge – is that selection can take place over

meta-preferences. Ideological games offer a means to study such a mechanism. Specifically,

they enable the study of equilibrium behaviour as resulting from ‘competition’ between ideo-

logies. In this example, Γ is the second and final stage of a two-player ideological game. The

example shows that, just as first-order preference types can be explained via the indirect evo-

lutionary approach, using the framework studied in Chapter 1 of this thesis, meta-preference
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types – and specifically, ideologies – can be explained by extending the indirect evolutionary

approach to ideological games. In particular, the example sets out how ideology can allow

materialist players to gain higher fitness than non-ideological reciprocators at some popula-

tion shares, whereas in the absence of such ideology, materialist players suffer lower fitness at

all population shares, assuming complete information. If reciprocators also have ideological

meta-preferences, however, the range of population shares at which materialists enjoy a fitness

advantage can be decreased.

In any given pair, if both players invest or neither invests, then the final type profile is

unchanged from the initial type profile. If one player invests but the other does not, then in

the final type profile the non-investing player is converted to the type of the investing player.

Formally, the conversion technology is that given by(3.21) in the two-player setting, i.e.

f(θ1, θ2, x1, x2) =


(θ1, θ2) if x1 = x2 ∈ {0, 1}

(θ1, θ1) if (x1, x2) = (1, 0)

(θ2, θ2) if (x1, x2) = (0, 1)

(C.1)

One difference between the present context and that in Chapter 1 is that the effect of

conversions on players’ fitness needs to be taken into account. A simple way to do this is to

assign a negative fitness payoff to the converted player, alongside the resulting fitness payoff

from Γ. An interpretation of this approach is that while a player can convert their opponent

before the two players play Γ, in the future the opponent may subsequently revert back to their

original type. While the probability with which such a reversion takes place is not specified,

the effect is picked up in the fitness by the negative payoff associated with being converted.

Another complication is that, if conversion takes place, the fitness payoff from Γ the converted

player receives is in fact a fitness payoff for the player’s new type. However, we can think of

this as also being taken into account by the negative fitness payoff assigned to the converted

player. I will assign a value of −1 to the fitness of a converted player in this example.

The subgame of Γ in which two reciprocators meet (denoted ΓRR) forms a coordination
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Figure 22: Γ forms a PD in fitness payoffs
zj = 1 zj = 0

zi = 1 (3,3) (-1,4)
zi = 0 (4,-1) (0,0)

Figure 23: Γ forms a coordination game in subjective payoffs when two type-R players meet
zj = 1 zj = 0

zi = 1 (5,5) (-1,4)
zi = 0 (4,-1) (0,0)

game in subjective payoffs. Assumption 3.2 requires that we specify which of the two Nash

equilibria is played; let us suppose it is z∗ = (1, 1), inducing the top-left outcome in the table.

Finally, ΓMR is the game of Figure 24 (with ΓRM symmetric), which clearly has the unique

Nash equilibrium z∗ = (0, 0).

In other words, the type-R (reciprocator) player gains utility in line with fitness payoffs

except for in the case of mutual cooperation, in which case she has a subjective payoff exceeding

all her other possible subjective payoffs in Γ. Suppose that types are common knowledge, and

there is uniform random matching into pairs, among a large population of players, to play

Γ. In such a setting, in the absence of second-order preferences reciprocators do better than

materialists, since they can cooperate when they meet one another but defect when they

encounter materialists.

Benchmark result (Dekel, Ely and Yilankaya, 2006): In a population containing types

M and R only, R gains higher expected fitness than type M .

This difference in fitness will depend on the population shares of the types, denoted εM

and εR for M and R respectively, so that εM + εR = 1. Recall that the fitness payoffs

associated with Γ are those of the PD in Figure 22. The dominant strategy in Γ for a type-

M player is to defect, i.e. play z = 0. For type-R players, by assumption z∗ = (1, 1) is

played in ΓRR, while on meeting a materialist, the best response for a type-R player is to play

z = 0. Consequently, type M players receive zero expected fitness, since any type-M player

defects against a defecting opponent. For type-R players, expected fitness is 3εR ≥ 0, since
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Figure 24: Subjective payoffs when type M (row player) meets type R (column player)
zj = 1 zj = 0

zi = 1 (3,5) (-1,4)
zi = 0 (4,-1) (0,0)

their fitness payoff from Γ is zero if paired with a materialist and 3 if paired with a fellow

reciprocator, which happens with probability εR ≥ 0.

Continuing to develop the application, let us now suppose that in the initial stage of

the two-player ideological game, investment now generates a fitness cost of c, equalling the

disutility it entails for either type of player. For an ideological game to be well-defined, it is

necessary to specify meta-payoffs for each type. Suppose meta-payoffs now have the following

properties.92

• M ′
is (strongly) ideological, with ∆

conv (id)

M ′
= 6, ∆

conv (in)

M ′
= 0, ∆

ret (id)

M ′ ,R
= 6, ∆

ret (in)

M ′ ,R
= 0

• R is pragmatic, with ∆
conv (id)
R = 0, ∆

conv (in)
R = 5, ∆

ret (id)
R,M ′ = 0, ∆

ret (in)

R,M ′
= 0

Assumption 3.7 ensures meta-payoffs replicate first-order payoffs in the event players retain

their type. This ensures that the instrumental incentives to convert and retain follow from

the specifications of first-order preferences illustrated in Figures 22 to 24. In contrast, the

ideological incentives are specified here for the first time.

In the case of the instrumental incentives to convert, for a materialist, equilibrium payoffs

in Γ are the same regardless of the opponent’s type, so ∆
conv (in)

M ′
= 0. Reciprocators, on the

other hand, achieve a better Nash outcome in Γ when facing a same-type opponent, since

uR(z∗(R,R)) = uR(1, 1) = 5 > 0 = uR(0, 0) = uR(z∗(R,M)).93 By Lemma 3.1, we can write

wR(z; θ, θ−i) = uR(z) + vR(θ−i). Hence ∆
conv (in)

R′
= uR(z∗(R,R))− uR(z∗(R,M)) = 5. Let us

suppose that M
′

has the first-order payoffs of type M .94 In this case, the instrumental incen-

92The notation follows that in (3.36) and (3.37).
93Note in particular that ∆

conv (in)
R and ∆

conv (in)
R are determined by R’s (first-order) payoffs in Γ, not the

underlying fitness payoffs, since the former characterise her incentives.
94This is automatically true of type R, given (i) the notational convention I have used that in an ideological

game a type θ is associated with both meta- and first-order payoffs, and (ii) the latter have already been
specified in Γ.
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tives to retain can similarly be calculated as ∆
ret (in)

M ′ ,R
= uM ′(z

∗(M ′,M ′))−uM ′(z∗(M ′, R)) = 0

and ∆
ret (in)

R,M ′
= uM ′(z

∗(R,M ′)) − uM ′(z∗(M ′,M ′)) = 0. Turning to the ideological incentives

to convert and to retain, the particular numerical values are somewhat arbitrary and selected

for illustration. The relevant property is that for type-M
′

players, the incentive to convert is

stronger than for type-R players.95

Suppose first that c = 7. In this case, no players invest and the benchmark result obtains.

Suppose instead that c = 5.5. In this case, investment only takes place by type M ′ when

matched with type R. Expected fitness for M ′ is simply −5.5εR, the expected cost from

investing only when encountering type-R players. Expected fitness for R is +3εR−εM ′ , where

the second term arises from the fact that R is converted, as discussed above. Equating these

two expressions and substituting εR ≡ 1 − εM yields a steady state (i.e. a type distribution

where the two types have equal fitness) of (ε∗R, ε
∗
M ′) = ( 2

19
, 17

19
). If type R has a lower population

share than 2
19

, then materialists enjoy higher fitness than reciprocators.

Allowing for investment in converting one’s opponent’s type, and allowing for M ′ to be

ideological thus allows for M ′ to maintain a stable population share in the long run. Evo-

lutionary pressure, in some form – possibly cultural, as discussed in Chapter 1 of this thesis

– may thus explain how and why ideologies sustain themselves. If ideologies themselves can

be the object of selection pressure, this suggests a further possibility: that other ideologies

may appear (or mutate, in the evolutionary model) based on existing pragmatic types; there

may an ideological “arms race”, in this sense. To illustrate this possibility in the current

setting, suppose now that R is replaced by an ideological reciprocator type denoted R
′
, with

∆
conv (id)

R′
= 6, ∆

conv (in)

R′
= 5, ∆

ret (id)

R′ ,M ′
= 6, ∆

ret (in)

R′ ,M ′
= 0.

Set c = 5.5, as before. Note that if M
′

and R
′

meet, both invest and so they retain their

types. Expected fitness for M
′

is now −5.5εR′ , whereas expected fitness for R
′

is +3εR′ −

5.5εM ′ . This time there is a unique steady state at (ε∗
R′
, ε∗
M ′

) = (11
28
, 17

28
). If type R

′
has a

population share of less than 11
28

, then reciprocators have lower fitness than materialists; if on

95As strong ideology, like weak ideology, requires that (3.24) be satisfied, I set ∆
ret (id)

M ′ ,R
> 0, though this

does not affect the subsequent results.
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the other hand εR′ >
11
28

, then the reverse is true. If both types are ideological, then ideology

is especially damaging to its adherents when they meet opponents, as they engage in a “war

of attrition”. If one type is a small enough part of the population, then a relatively large share

of their encounters will be with other-type opponents, making them fare worse than the other

type.
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