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Abstract

The distribution of gases such as ozone and water vapour in the stratosphere — which affect 

surface climate — is influenced by the meridional overturning of mass in the stratosphere, the 

Brewer–Dobson circulation. However, observation-based estimates of its global strength are 
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difficult to obtain. Here we present two calculations of the mean strength of the meridional 

overturning of the stratosphere. We analyze satellite data that document the global diabatic 

circulation between 2007– 2011, and compare these to three re-analysis data sets and to 

simulations with a state-of-the-art chemistry-climate model. Using measurements of sulfur 

hexafluoride (SF6) and nitrous oxide, we calculate the global mean diabatic overturning mass flux 

throughout the stratosphere. In the lower stratosphere, these two estimates agree, and at a potential 

temperature level of 460 K (about 20 km or 60 hPa in tropics), the global circulation strength is 

6.3–7.6 × 109 kg/s. Higher in the atmosphere, only the SF6-based estimate is available, and it 

diverges from the re-analysis data and simulations. Interpretation of the SF6 data-based estimate is 

limited because of a mesospheric sink of SF6; however, the reanalyses also differ substantially 

from each other. We conclude that the uncertainty in the mean meridional overturning circulation 

strength at upper levels of the stratosphere amounts to at least 100 %.

Previous calculations of the strength of the stratospheric circulation from data have relied on 

indirect measures. Observational estimates of the strength of the overturning have been 

limited to qualitative descriptions based on tracer distributions1–4 or quantitative measures 

of limited regions, such as the vertical velocity over a narrow range in the tropics5–7. Free-

running climate models vary widely in stratospheric circulation metrics, including the 

tropical upwelling mass flux at 10 hPa and 70 hPa, though the multimodel mean is relatively 

close to some reanalysis products8. Reanalyses, meanwhile, differ substantially in their 

mean tropical upwelling velocity, with the magnitude of the mismatch depending on how it 

is computed9. Here we consider the diabatic circulation of the stratosphere; because the 

stratosphere is stratified, vertical motion moves air across potential temperature surfaces and 

thus must be associated with warming/cooling in the ascending/descending branches. Hence 

the net meridional overturning of mass is tightly linked to diabatic processes. We use 

potential temperature as our vertical coordinate, and the meridional overturning becomes 

explicitly the diabatic circulation in this framework.

The diabatic circulation has been shown to be related to the idealized tracer “age of air”10–

11, which is a measure of how long an air parcel has spent in the stratosphere12. The 

difference between the age of the air that is upwelling and downwelling through an 

isentropic surface is inversely proportional to the strength of the diabatic circulation through 

that surface, in steady-state and neglecting diabatic diffusion.

In this paper, we apply this age difference theory to calculate the mean magnitude and 

vertical structure of the global overturning circulation of the stratosphere using observations 

of sulfur hexafluoride (SF6) and nitrous oxide (N2O). We demonstrate the validity of the 

theory and explore limitations of the tracer data with a coupled chemistry-climate model. We 

calculate the global overturning directly from the diabatic vertical velocity from three 

reanalyses to compare with the data and model results. Information on the data products, 

model, and reanalyses is given in Table 1.

1 Age of air observations and model

A trace gas that is linearly increasing in time in the troposphere and has no stratospheric 

sinks can be converted to age following age of air theory12. Carbon dioxide (CO2) and SF6 
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are both approximately linearly increasing in the troposphere and have minimal sinks in the 

stratosphere. We use age derived from SF6 measurements (henceforth SF6-age) from the 

Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat4. We 

interpolate SF6-age onto isentropic surfaces using simultaneously retrieved pressure and 

temperature from MIPAS13–14. The resulting SF6-age on the 500 K surface is shown in 

Figure 1a. Age is young in the tropics, older in the extratropics, and oldest at the winter 

poles, consistent with the pattern of upwelling in the tropics and the majority of 

downwelling in the winter polar region. The SF6-age at high latitudes in wintertime is older 

than observations of age based on CO2 measurements15–16. SF6 is not conserved in the 

mesosphere, and its sink will result in a high bias in SF6-age in areas with mesospheric 

influence17, such as the poles and the upper stratosphere.

To explore the limitations of using SF6-age, we compare SF6-age to ideal age of air in a 

coupled chemistry-climate model, the Community Earth System Model 1 Whole 

Atmosphere Community Climate Model (WACCM). This fully coupled state-of-the-art 

interactive chemistry climate model18–19 includes the physical parameterizations and finite-

volume dynamical core20 from the Community Atmosphere Model, version 4 21. The 

model domain extends from the Earth’s surface to the lower thermosphere (140 km). The 

WACCM simulations are based on the Chemistry Climate Model Initiative REF-C1 

scenario22. WACCM models only one of the two sinks of SF6 in the mesosphere; photolysis 

at Lyman-alpha wavelengths is included, but associative electron attachment, recently shown 

to be the dominant loss mechanism for SF6 below 105 km 23–24, is not. The impact of the 

mesospheric sink of SF6 on stratospheric SF6 will be determined by the strength of the 

dynamical coupling between the stratosphere and the mesosphere. We calculate SF6-age 

using the same methods as were used to calculate MIPAS SF6-age1 (for details see 

Methods). Although WACCM is missing the dominant SF6 loss mechanism, the difference 

between SF6-age and ideal age will qualitatively illustrate the sense and location of any bias 

introduced by using SF6 as an age tracer.

Age on the 500 K surface between 2002 and 2012 is shown for WACCM SF6-age in Figure 

1c, and for WACCM ideal age of air in Figure 1d. The agreement between ideal age and 

SF6-age on the 500 K surface suggests that SF6-age is a good proxy for ideal age here. The 

temporal correlation at each latitude on the 500 K surface is high (r = 0.93), and only at the 

poles is SF6-age older than ideal age by up to half a year. Where there is more mesospheric 

influence, the correlation is weaker and no longer one-to-one: higher in the stratosphere and 

at the highest latitudes (r = 0.52 and age has only 35% of the magnitude of variations of SF6-

age at 1200 K, 85° N). Since WACCM is missing the dominant sink of SF6, these 

differences represent a lower bound on the bias from using SF6-age as a proxy for ideal age.

The difference between the MIPAS SF6-age and WACCM SF6-age is substantial. MIPAS 

SF6-age has been shown to be consistently older than in situ CO2 and SF6 age observations, 

though typically within error estimates1,4 (see Supplementary Information). In the tropics, 

these known high biases are almost the same as the difference between WACCM SF6-age 

and MIPAS SF6-age. In the polar region, a similar amount of bias exists at low levels, and at 

upper levels there are no in situ measurements for comparison. In WACCM, the dynamical 

coupling of the stratosphere and mesosphere has been shown in certain events to be too 
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weak25–26 and in another case to be accurate16, and so the reliability of the model’s 

transport of mesospheric air into the stratosphere is unclear.

Given the potential biases of SF6-age and the MIPAS data, other age tracers are desirable to 

corroborate the circulation strength calculations from SF6-age. CO2 is currently not retrieved 

from satellites with enough accuracy and spatial coverage to calculate age of air 

differences27. Instead, we determine age from N2O, which demonstrates a compact 

relationship with age, like other long-lived stratospheric tracers28. We use a relationship 

between age of air and N2O calculated empirically from balloon and aircraft 

measurements29, accounting for the linear growth in tropospheric N2O. Following the 

procedure outlined in the Methods, we calculate age of air from the Global OZone 

Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS) N2O data 

for 2004–201330. Because of the range of tracer values over which the empirical 

relationship holds, global coverage exists for a small range in potential temperature (about 

450 K–500 K, Figure S8). An additional empirical relationship31 is explored in the 

Supplementary Information.

The age on the 500 K surface calculated from its empirical relationship with N2O is shown 

in Figure 1b. The Southern Hemisphere winter polar coverage is limited because N2O 

concentrations are below 50 ppb, the lower limit of the empirical fit. Age from the N2O data 

is generally younger than MIPAS SF6-age, though older than age from WACCM. The 

temporal correlation of MIPAS SF6-age and N2O-age at every latitude on the 500 K surface 

is around r = 0.5, except in the Northern Hemisphere midlatitudes, where the correlation is 

not significant.

2 Age difference and the diabatic circulation

In steady state, the diabatic circulation (ℳ) through an isentropic surface wholly within the 

stratosphere can be calculated as the ratio of the mass above the surface (M) to the 

difference in the mass-flux-weighted age of downwelling and upwelling air on the surface 

(ΔΓ, or age difference).11

(1)

ℳ is the total mass flux upwelling (or downwelling, as in steady-state these must be equal) 

through the isentropic surface. (See Figure 1 of ref. 11 for a diagram.) Intuitively this 

reflects the idea of a residence time; the age difference is how long the air spent above the 

surface, and it is equal to the ratio of the mass above the surface to the mass flux passing 

through that surface.

The real world is not in steady-state, and so averaging is necessary for this theory to apply. A 

minimum of one year of averaging was necessary for the theory to hold in an idealized 

model11. As the MIPAS instrument has five years of continuous data, the longest average 

possible for this study is five years. To test the validity of applying the steady-state theory to 

five-year averages, we have calculated the 2007–2011 averages of ideal age difference and 
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the ratio of the total mass above each isentrope to the mass flux through that isentrope from 

WACCM output. These are shown in the blue lines (solid and dotted respectively) in Figure 

2. The total overturning strength is calculated from the potential temperature tendency, 

which is the total all sky radiative heating rate interpolated onto isentropic surfaces. The 

upwelling and downwelling regions are defined where  is instantaneously positive or 

negative, and the mass fluxes through these regions are averaged to obtain the total 

overturning mass flux, ℳ. If the age difference theory held exactly, the two blue lines in 

Figure 2 would be identical. In the upper stratosphere, these two calculations agree closely; 

in the lower stratosphere, the ratio of the mass to the mass flux is greater than the ideal age 

ΔΓ. This behavior is consistent with the neglect of diabatic diffusion, which is greater in the 

lower stratosphere32. Using area weighting of ideal age, since mass-flux weighting is not 

possible with data, results in about a 10% low bias of ΔΓ compared to the mass-flux 

weighting shown here.

We calculate the five year average (2007–2011) of the difference in area-weighted age of air 

in the regions poleward and equatorward of 35° from the SF6-age from both MIPAS and 

WACCM, and from the N2O-age. (See Supplementary Information and Figure S1 for a 

discussion of this latitudinal extent.) The results of this are shown in Figure 2. The MIPAS 

SF6-age ΔΓ is different from the other estimates except around 450 K. At 400 K, it is 

smaller, in part because of older tropical air at that level (see Supplementary Information, 

Figure S10). Above 500 K, MIPAS SF6 ΔΓ is much greater than the model ΔΓ using either 

ideal age or SF6-age. Age difference for N2O is calculated only where data is available over 

the entire surface at almost all times, 450–480 K (extended in Figure S9). In this limited 

range, the age difference from N2O-age is greater than the age difference from WACCM and 

agrees with the age difference calculated from MIPAS SF6-age.

To gain insight into the role of the mesospheric sink, we compare the ideal age ΔΓ with SF6-

age ΔΓ in WACCM. The ideal age ΔΓ is the mass-flux-weighted age difference between 

upwelling and downwelling regions, and the SF6-age ΔΓ from WACCM is calculated in the 

same way as the MIPAS SF6-age ΔΓ. Because of the area-weighting, we expect the SF6-age 

ΔΓ to be 10% lower than the ideal age ΔΓ. This is true from 450–550 K, but above that, the 

SF6-age ΔΓ is either equal to or greater than the ideal age ΔΓ, and at 1200 K SF6-age ΔΓ is 

50% greater. Since WACCM does not include the dominant sink of SF6 for the mesosphere, 

we cannot estimate an upper bound on the true bias.

All three calculations of ΔΓ from the model as well as the ΔΓ from MIPAS SF6-age show a 

peak in the middle stratosphere. This peak indicates a relative minimum of the diabatic 

velocity at that level, and so this provides evidence that there are indeed two branches of the 

circulation33.

3 Circulation from Reanalyses, Model, and Age

Figure 3 shows the total overturning circulation strength calculated using the ratio of the 

total mass above the isentrope to ΔΓ for the MIPAS SF6-age and the N2O-age. Total mass is 

determined from the simultaneously retrieved pressure in the former case and from pressure 

from the Modern Era Retrospective analysis for Research and Applications (MERRA34) for 

Linz et al. Page 5

Nat Geosci. Author manuscript; available in PMC 2018 February 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



N2O. Also shown is the directly calculated overturning circulation strength from the three 

reanalysis products MERRA, Japanese 55-year Reanalysis (JRA 5535) and the ECMWF 

Reanalysis Interim (ERA-Interim36), and from WACCM. The total overturning strength is 

calculated from the potential temperature tendency,  from the total diabatic heating rates 

from JRA 55 and ERA-Interim forecast products and from total temperature tendency 

provided by MERRA, and then following the same procedure as above for WACCM.

These six estimates of the strength of the circulation are quite different, as can be seen by 

examining the circulation at individual levels. At the lowermost levels, the reanalyses tend to 

agree, while the MIPAS SF6-age circulation estimate is much greater because of its very low 

ΔΓ. In the range where we have estimates from both observational data sets, they agree 

closely and are flanked by the reanalyses, which vary more widely (see Supplementary 

Information for more details). At 500 K and above, the MIPAS SF6-age based circulation 

strength has the lowest value, and at 900 K and above, it is lower by a factor of three. The 

circulation strength from MIPAS SF6-age ΔΓ is biased low, consistent with the sink of SF6 

in the mesosphere24. The disagreement at 1200 K would require that the bias be nearly 

300% for the model and reanalyses to agree with the data. In addition to the disagreement of 

MIPAS SF6-age circulation strength with the model and reanalyses, there is significant 

disagreement between different reanalyses. MERRA has a distinct vertical structure, with 

weaker circulation in the lower stratosphere and stronger circulation in the mid-stratosphere. 

JRA 55 and ERA Interim have a similar vertical structure; JRA 55 is stronger by around 

3×109 kg s−1, except above 800 K, where it decreases more quickly with potential 

temperature than ERA-Interim so that they converge by 1200 K. The shading is the standard 

deviation of the annual averages that make up the five year average, and it shows the small 

interannual variability.

4 A lower stratospheric benchmark and the need for more data

The strength of the stratospheric circulation helps determine transport of stratospheric 

ozone, stratosphere-troposphere exchange, and the transport of water vapor into the 

stratosphere37. Stratospheric water vapor has been demonstrated using both data38 and a 

model39 to impact the tropospheric climate. The stratospheric ozone hole recovery is also 

influenced by the strength of the circulation40.

We have calculated the strength of the overturning circulation of the stratosphere from 

observations, reanalyses, and a model. We find that at 460 K (about 60 hPa or 20 km in the 

tropics), the total overturning circulation of the stratosphere is 6.3–7.6 ±0.3 ×109 kg/s based 

on the agreement of two independent global satellite data products to within 4% and 

accounting for the potential high bias induced by the method. Despite this wide range, two 

of the three reanalysis products lie outside of this range, suggesting deficiencies in their 

lower stratospheric transport (see Supplementary Information Table S1). This value can be 

used as a metric to determine the accuracy of the mean transport of climate models. Because 

the diabatic circulation and not the residual circulation is used, the computational demands 

for this metric are minimal, requiring only monthly mean total diabatic heating and 

temperature on pressure levels.
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The global SF6 data have enabled this first quantitative calculation of the diabatic circulation 

in the middle and upper stratosphere. However, the interpretation of age from SF6 is limited 

because we cannot quantify the impact of the mesospheric sink of SF6, which is important 

above 550 K. This makes the age difference a minimum of 60% too high at 1200 K, which 

would imply a 35% low bias in the overturning strength at 1200 K, and we cannot estimate 

an upper bound on the bias. The reanalyses may correctly represent the stratospheric 

circulation where they agree at the uppermost levels, although the data becomes more 

limited there41. Beneath 900 K, however, the reanalyses disagree with each other as well as 

with the circulation strength implied by data; it is clear that the data assimilated into these 

reanalyses are not sufficient to constrain estimates of the circulation.

Climate models predict an increase in the strength of the Brewer–Dobson circulation of 

about 2% per decade42–43, and much effort has recently gone towards calculating trends in 

the stratospheric circulation based on observations and reanalyses to see if such a trend can 

be detected2,9,44–45. However, the mean diabatic circulation strength is not known except 

at one level. At upper levels, the circulation is uncertain to within at least 100%. We suggest 

cautious interpretation of trends in light of this uncertainty. More global age of air tracer 

data, in particular CO2, would provide an independent estimate of age difference and thus 

the strength of the diabatic stratospheric circulation. High altitude balloon and aircraft 

measurements could be very useful; further characterization of compact relationships 

between age and long-lived tracers, such as N2O or methane, would provide additional 

constraints on the circulation in the lower stratosphere by enabling more complete utilization 

of current global satellite data.

Methods

MIPAS SF6

For more details on validation and methods, we refer the readers to the papers on this 

product47,1,4. We note that the vertical resolution is 4 to 6 km at 20 km, 7 to 10 km at 30 

km, and 12 to 18 km at 40 km altitude. Noise error on individual profiles is of the order 

20%, but because of the many profiles, meaningful SF6 has been obtained by using monthly 

and zonal mean averages in 10 degree bins.

N2O

An empirical fit between N2O and age from an extensive record of NASA ER-2 aircraft 

flights and high-altitude balloons from 1992–1998 has been calculated29. Age is based on 

CO2, and for details of the conversion from CO2 to age, we refer the reader to the original 

study29. The fit holds well for 50 ppbv < N2O < 300 ppbv and is given by the equation 

Γ(N2O) = 0.0581(313 − N2O) − 0.000254(313 − N2O)2 + 4.41 × 10−7(313 − N2O)3, where 

313 ppbv was the average tropospheric mixing ratio for 1992–1998. Although different 

tracer-tracer relationships are expected in the tropics and the extratropics31,44, the limited 

tropical data used to calculate this relationship were not treated separately. In order to 

account for the increase in tropospheric N2O, we calculate the trend from the data product 

provided by the EPA Climate Indicators48, a combination of station measurements from 

Cape Grim, Australia, Mauna Loa, Hawaii, the South Pole, and Barrow, Alaska. The slope is 
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0.806±0.014 ppbv/yr. (One standard error on the slope is reported. Using only Mauna Loa, 

the tropical station, does not change the fit much, since N2O is quite well mixed in the 

troposphere.) We linearly adjust the GOZCARDS N2O data using this slope to account for 

the growth in tropospheric N2O, although simply subtracting the mean difference in 

tropospheric N2O between 2009 and 1995 yielded very similar results. Then we apply the 

empirical relationship between 2004 and 2012 to obtain age estimates. Age difference is 

calculated only on those levels for which there are very few gaps in age. Only 460 and 470 

K have no gaps at all. This method relies on several potentially problematic assumptions: the 

compact relationship from the 1990s is assumed to be applicable over a decade later; the 

tropics are assumed be represented by this relationship well enough to obtain unbiased 

estimates of age difference; and linearly adjusting the data is assumed to sufficiently account 

for the changing tropospheric source.

WACCM SF6

The method to calculate age from SF6 in WACCM is as follows: The SF6 on pressure levels 

is zonally averaged and then averaged in the same latitudinal bins that were used for MIPAS. 

That zonally averaged SF6 is then converted to age1. The reference curve for SF6 is the 

zonal mean value in the tropics at 100hPa just north of the equator (0.5° N) with a one year 

low-pass fourth order Butterworth filter applied to remove the weak seasonal cycle. Results 

are insensitive to the filtering provided the filter is sufficient to obtain a strictly increasing 

reference curve. We use the same method for correcting the age of air for the nonlinear 

tropospheric growth, with a Newtonian iteration (see ref. 1 equation 3). The nonlinearity 

correction is insensitive to the choice of constant parameter used to describe the relationship 

of the width of the age spectrum with the age. Once the age is determined, it is interpolated 

to isentropic levels using zonal mean temperatures that have also been binned by latitude 

according to the MIPAS grid. No attempt is made in this work to adjust the age for the 

mesospheric sink.

Statistics for 460 K overturning

To calculate the average overturning circulation strength where the two data estimates agree 

most closely (within 5% at 460 K), we average them. The error estimate is based on the 

variability in the total overturning circulation strength from WACCM calculated using SF6-

age to infer the circulation (M/SF6-age ΔΓ). We take the average of five annual averages 

chosen randomly from the annual averages from 1999–2014 100,000 times. The standard 

deviation of the 100,000 resulting mean circulation strength estimates (0.14 ×109 kg/s) is 

taken to be half of the error. We repeated this procedure using the true overturning 

circulation strength (ℳ) and found smaller variations in the standard deviation (0.09 ×109 

kg/s). This error estimate assumes that WACCM represents the variability of the true 

circulation. The standard deviations of the five annual averages that were averaged for each 

data estimate were considerably smaller than these reported error bars. We therefore believe 

this is a conservative representation of the uncertainty in the diabatic circulation strength.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Age of air on the 500 K surface. The different panels show age calculated from (a) SF6 from 

MIPAS, (b) N2O from GOZCARDS (c) SF6 from WACCM, and (d) WACCM ideal age 

tracer. Contours are every half year, and the ages in the Southern Hemisphere winter for 

MIPAS get above 8 years old.
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Figure 2. 
The average age difference between downwelling and upwelling age of air on each isentrope 

between 2007–2011. ΔΓ is plotted in solid lines: MIPAS SF6-age in purple, GOZCARDS 

N2O age in black, WACCM SF6-age in green, and WACCM ideal age of air in the blue. The 

blue dotted line shows the ratio of the total mass above each isentrope to the mass flux 

through the isentrope (M/ℳ) from WACCM. The shading shows one standard deviation of 

the five annual averages that are averaged to get the mean. The mean height of each 

isentrope in the tropics (calculated from MIPAS pressure and temperature) is on the right y-

axis. Where the line for the MIPAS SF6-age difference is thinner, we believe there is a bias 

in either the data or the SF6 to age conversion (see discussion in Supplementary 

Information).
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Figure 3. 
The strength of the total overturning circulation through each isentrope averaged between 

2007–2011. The solid lines are for the data-based estimates MIPAS SF6 is in purple and 

GOZCARDS N2O in black. Reanalyses are shown in dashed lines: JRA 55 in light blue, 

MERRA in green and ERA-Interim in gold. The dotted blue line is WACCM. The shading 

shows one standard deviation of the five annual averages. The details of the calculation for 

each data product, the model, and the reanalyses are described in the text. The mean height 

of each isentrope in the tropics (calculated from MIPAS pressure and temperature) is on the 

right y-axis. Where the line for the MIPAS SF6-age difference is thinner, we believe there is 

a bias in either the data or the SF6 to age conversion (see discussion in Supplementary 

Information).
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Table 1

Data, reanalyses, and model output used in this study. SW is the shortwave radiation and LW is the longwave 

radiation.

Data source Variables Resolution Time period Reference(s)

MIPAS age from SF6; temperature; 
pressure

zonal mean, 10° lat, 41 levels from 8 km to 54 
km

2002–2012 [4], [13], [14]

GOZCARDS N2O zonal mean, 10° lat, 15 pressure levels from 
100 to 0.46 hPa

2004–2014 [30], [29]

EPA Climate Indicators tropospheric N2O in situ surface 1980–2014 [48]

WACCM SW; LW; temperature; ideal 
age; SF6

2.5 ° lon, 1.875 ° lat, 31 pressure levels from 
193 hPa to 0.3 hPa

1979–2014 [18], [19]

JRA 55 SW; LW; temperature 1.25°×1.25° 16 pressure levels from 225 hPa 
to 1 hPa

1979–2014 [35]

MERRA total dT/dt; temperature 1.25°×1.25° 17 pressure levels from 200 hPa 
to 0.5 hPa

1979–2014 [34]

ERA-Interim SW; LW; temperature 1°×1°, 26 pressure levels from 150 hPa to 0.5 
hPa

1979–2014 [36]
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