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Abstract

The study of supercooled liquids and glasses remains one of the most divisive and

divided fields in modern physics. Despite a vast amount of effort and research time

invested in this topic, the answers to many central questions remain disputed and

incomplete. However, the link between the behaviour of supercooled liquids and

their energy landscapes is well established and widely accepted. Understanding this

link would be a key step towards resolving many of the mysteries and controversies

surrounding the glass transition. Therefore the study of glassy energy landscapes is

an important area of research.

In this thesis, I report some of the most detailed computational studies of glassy

potential energy landscapes ever performed. Using geometry optimisation tech-

niques, I have sampled the local minima and saddle points of the landscapes for

several supercooled liquids to analyse their dynamics and thermodynamics.

Some of my analysis follows previous work on the binary Lennard-Jones fluid

(BLJ), a model atomic liquid. BLJ is a fragile glass former, meaning that its

transport coefficients have super-Arrhenius temperature dependence, rather than

the more usual Arrhenius behaviour exhibited by strong liquids. The difference

in behaviour between these two classes of liquid has previously been attributed to

differing degrees of structure in the relevant energy landscapes.

I have studied models for both fragile and strong glass formers: the molecular

liquid ortho-terphenyl (OTP) and viscous silica (SiO2) respectively. My results for

OTP agree closely with trends observed for BLJ, suggesting that the same diffusion

mechanism is applicable to fragile molecular liquids as well as to atomic. However,

the dynamics and energy landscape of OTP are made complicated by the molecu-

lar orientational degrees of freedom, making the analysis more challenging for this

system.

Dynamics of BLJ, OTP and silica are all dominated by cage-breaking events:

structural rearrangements in which atoms change their nearest neighbours. I propose

a robust and general method to identify cage breaks for small rigid molecules, and

compare some properties of cage breaks between strong and fragile systems.

The energy landscapes of BLJ and OTP both display hierarchical ordering of
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potential energy minima into metabasins. These metabasins can be detected by

the cage-breaking method. It has previously been suggested that metabasins are

responsible for super-Arrhenius behaviour, and are absent from the landscapes of

strong liquids such as SiO2. My results indicate that metabasins are present on the

silica landscape, but that they each contain fewer minima than metabasins in BLJ

or OTP.

Metabasins are associated with anticorrelated particle motion, mediated by re-

versed transitions between minima of the potential energy landscape. I show that

accounting for time-correlation of particle displacement vectors is essential to de-

scribe super-Arrhenius behaviour in BLJ and OTP, but also required to reproduce

strong behaviour in silica. I hypothesise that the difference between strong and frag-

ile liquids arises from a longer correlation timescale in the latter case, and I suggest

a number of ways in which this proposition could be tested.

I have investigated the effect on the landscape of freezing the positions of some

particles in a BLJ fluid. This “pinning” procedure induces a dynamical crossover

that has been described as an equilibrium “pinning transition”, related to the hypo-

thetical ideal glass transition. I show that the pinning transition is related to (and

probably caused by) a dramatic change in the potential energy landscape.

Pinning a large fraction of the particles in a supercooled liquid causes its energy

landscape to acquire global structure and hence structure-seeking behaviour, very

different from the landscape of a typical supercooled liquid. I provide a detailed

description of this change in structure, and investigate the mechanism underlying

it.

I introduce a new algorithm for identifying hierarchical organisation of a land-

sape, which uses concepts related to the pinning transition but is applicable to

unpinned liquids as well. This definition is complementary to metabasins, but the

two methods often identify the same higher-order structures. The new “packings”

algorithm offers a route to test thermodynamic theories of the glass transition in

the context of the potential energy landscape.

Over the course of this thesis, I discuss several different terms and methods to

identify higher-order structures in the landscapes of model glass formers, and in-

vestigate how this organisation varies between different systems. Although little

variation is immediately apparent between most glassy landscapes, deeper analy-

sis reveals a surprising diversity, which has important implications for dynamical

behaviour in the vicinity of the glass transition.
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Glossary of Abbreviations

AA Angle-Axis system

AG Adam-Gibbs theory

BLJ Binary Lennard-Jones fluid

BKS van Beest, Kramer, and van Santen model
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CRR Cooperatively Rearranging Region

DF Dynamical Facilitation theory

DNEB Doubly Nudged Elastic Band

EMB Energy Metabasin
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KCM Kinetically Constrained Model
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LJ Lennard-Jones potential

MB Metabasin

MCB Molecular Cage Break
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MCT Mode Coupling Theory

MEP Minimum Energy Pathway

m.s.d. Mean Square Displacement

NEB Nudged Elastic Band

NMR Nuclear Magnetic Resonance Spectroscopy

OTP Ortho-terphenyl

PEL Potential Energy Landscape

PELE Python Energy Landscape Explorer

PTBH Parallel Tempering Basin-hopping

RDF Radial Distribution Function

REM Random Energy Model

RFOT Random First Order Transition theory

RPGT Random Pinning Glass Transition

SANN Solid Angle Nearest Neighbours algorithm

SCB Site Cage Break

SDP Steepest-Descent Pathway

SHD Spatially Heterogeneous Dynamics

TS Transition State

VTF Vogel-Tammann-Fulcher fitting form
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Frequently-used Symbols

α2(t) The non-Gaussian parameter for measuring ergodicity

∆ri(j) Displacement of particle i in the jth time interval

∆S(T ) Entropy difference between liquid and crystal

∆t MD time step

∆x Basin-hopping step size

εµν Lennard-Jones energy unit for interaction between atom types µ and ν

ε0 Natural energy unit for the Stoddard-Ford Lennard-Jones potential

η Viscosity

Σ Complexity

θjk Angle between displacement vectors in time intervals j and k

ρIS(V ) Density of local minima identified by basin-hopping

σµν Lennard-Jones distance unit for interaction between atom types µ and ν

τs Structural relaxation time

τα α-relaxation time constant

τMB Average metabasin lifetime

τ Non-ergodic time interval

Ω(t) Mountain-Thirumulai energy fluctuation metric

Cp(T ), Cv(T ) Constant-pressure and constant-volume heat capacities

c Fraction of pinned particles

c∗(T ) Critical pinned fraction

cs Correction factor for correlated cage breaks

D(T ) Self-diffusion constant
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D(τ, T ) Reduced-time diffusion constant

D∗(τ, T ) Correlation-corrected reduced-time diffusion constant

DCB(T ) Effective cage-breaking diffusion constant

D∗CB(T ) Correlation-corrected cage-breaking diffusion constant

Dprod(T ) Productive cage-breaking diffusion constant

D(k, l) Euclidean distance between two system configurations, k and l

dc Displacement cutoff to define nearest-neighbour changes

drev Threshold parameter for detecting reversed cage breaks

e Electronic charge

F (k, t) Intermediate scattering function

f(T ), f̃(T ) Frustration metric, renormalised frustration metric

f̃p(T ) Packings frustration metric

G(r, t) van Hove correlation function

g(r) Radial distribution function

gIS(V ) Potential-energy density of inherent structures

gMB(V ) Potential-energy density of metabasins

g(X) Potential energy gradient

gband Elastic band energy gradient

gNEB, gDNEB Nudged and doubly-nudged elastic band energy gradients

H(X) Potential energy Hessian matrix

kB Boltzmann’s constant

kspr (D)NEB spring constant

L Simulation cell side length

l Cage break reversal chain length

m Lennard-Jones mass unit

N Number of atoms in a system

Nr Number of rigid bodies in a molecular system

N Number of accessible quasistates

peqα (T ) Equilibrium occupation probability of minimum α
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p̃eqα Renormalised occupation probability of minimum α

Q(Xi,Xj) Overlap between two configurations

Q0(X) Overlap with the reference minimum

Qp(i, j) Overlap between two packings

Q∗ Critical overlap to define structural similarity

qµ Atomic charge on atom type µ

R
(m)
i SANN nearest-neighbour cutoff for atom i with m nearest neighbours

ri(t) Position vector of particle i at time t

〈r2(t)〉 Mean squared displacement at time t

rij Distance between particles i and j

rc Cutoff distance for pairwise potentials

rNN Cutoff distance to define the nearest-neighbour shell

SIS Landscape entropy

Svib Vibrational entropy

TVTF VTF divergence temperature

Tc MCT critical temperature

Tg Kinetic glass transition temperature

TK Kauzmann temperature

Tm Melting temperature

T0 Pinning reference temperature

T ∗(c) RPGT transition temperature

Tbh Basin-hopping temperature

Tbh,i Replica temperature in PTBH

tp Caging plateau time

tv Vibrational time

tc Correlation time for cage breaks

U(u, v) UNTRAP weight for a pair of minima u and v

V (X) Potential energy landscape

Ṽ (X) basin-hopping transformed energy landscape
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Vi Potential energy of minimum i

〈VIS〉 Average inherent structure energy

Vij(rij) Isotropic pair potential

Vband Elastic band energy

V †uv Energy of the highest TS on the lowest-energy path between minima u and v

vi(t) Velocity of particle i at time t

W (u, v) Dijkstra weight for a connection between minima u and v

X Vector containing coordinates of a single system configuration

X∗ Pinning reference structure

X0 Pinning reference minimum

Z(T ) Total partition function
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Chapter 1

Introduction

1.1 The Glass Transition

A structural glass is a mechanically solid material that lacks the long-range periodic

order of a crystal. There are several naturally-occurring glasses, notably obsidian1

and other volcanic materials. A much larger number of synthetic glasses are known,

with a huge variety of uses, from the ubiquitous silica glass through to more exotic

metallic glasses2 and amorphous organic solids used as pharmaceuticals.3

The commercial and industrial significance of glasses would be sufficient to mo-

tivate their study, but amorphous solids are also a subject of intense theoretical

interest, because they are among the simplest physical systems that exist out of

thermodynamic equilibrium on experimentally accessible time scales.

Crystals are more stable than liquids at low temperatures because the periodically-

repeating pattern of strong chemical bonds (or other intermolecular forces) gives the

crystal structure a low potential energy. In liquids, the lack of translational sym-

metry often reduces the number of favourable nearest-neighbour contacts and raises

the energy. Of course, this disorder ensures that liquids have higher entropy than

crystals. At high temperatures the entropy term dominates the free energy of the

system, so the liquid becomes the thermodynamically preferred state.

A glass has a disordered molecular structure, similar to a liquid, but exists at low

temperatures where entropy is less important than potential energy. Consequently,

glass has higher free energy than the corresponding crystal and is a metastable,

out-of-equilibrium phase.

The concept of equilibrium depends on the time scale of observation.4 Given suf-

ficient time, a glass will relax to the more stable crystal. For a material to qualify as

a glass, its structural relaxation time must be large enough that this crystallisation

is negligible on any reasonable experimental time scale. The structural relaxation
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time, τs, is a measure of how quickly the system recovers from an applied pertur-

bation. Different measurement techniques yield different values of τs, but for the

present discussion all values are similar enough that we may consider this quantity

to be well defined. τs ∝ η, the viscosity. It is generally agreed that η > 1012 Pa s

is sufficient to define glassy behaviour.5,6 The equivalent criterion in the relaxation

time is approximately τs > 100 s.7

How does one obtain a metastable glass? At low temperatures, a crystal will

form if the system is allowed time to explore its entire configuration space, so glasses

must be prepared rapidly to break ergodicity. The most common approach is rapid

cooling of a liquid, so that crossing diffusive energy barriers becomes a rare event

and atomic transport slows down, dramatically retarding crystallisation. A liquid

may thus be supercooled below its melting temperature without forming the stable

crystal.

On continued cooling, transport coefficients decrease further and the material

becomes mechanically solid (vitrifies) near to η = 1012 Pa s. The corresponding

temperature Tg, identifies the kinetic glass transition. However, this event is not

an equilibrium phase transition, because Tg varies with cooling rate. Difficulties in

measuring large viscosities mean that Tg is often determined calorimetrically (see

§1.2.2). In many cases Tg ≈ 2Tm/3, where Tm is the melting point.8

The kinetic glass transition corresponds to a frustration of the intermolecular

bond network, which remains disordered as in the liquid, but rearrangements are

so slow that conversion to the crystal is essentially impossible. The requirement

to frustrate the bond network means that only certain types of liquid form glasses

easily. Single-component atomic materials (e.g. silicon and most metals) very rarely

form glasses because the interatomic interactions in these materials are isotropic

and uniform between particles. Molecular liquids and binary mixtures, on the other

hand, are much easier to frustrate and hence vitrify at cooling rates slow enough to

be experimentally achievable.9,10

Alternative methods of preparing glasses are known, particularly vapour depo-

sition.11,12 The mechanism of formation of these materials is clearly rather different

from vitrification of supercooled liquids, and so lies beyond the scope of this thesis,

despite being a fascinating and important problem.

Supercooled liquids and the kinetic glass transition have been studied for many

years. In that time, a qualitative picture has emerged of the origins and nature of

the transition, supported by the simple thermodynamic arguments outlined above.

But a single quantitative theory to predict the behaviour of supercooled liquids and

glasses is still lacking. Instead, a plethora of competing and possibly contradictory
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approaches have developed that attempt to explain some or all aspects of glass

transition phenomenology. Each theory has failures as well as successes, and there

is no clear explanation for many of the fundamental discrepancies between them.

Resolving the conflicts between the different theories of the glass transition is,

in my opinion, one of the key challenges of the coming decades for the condensed

matter community. It seems likely that many of these theories are compatible, and

probably describe the same phenomena, but in different ways and with different

regimes of applicability. One of the objectives of this thesis (particularly chapters 3-

4) is to draw links between different methods of identifying the structural transitions

that contribute to diffusion in model glass formers.

Both experimental and computational studies of glass-forming liquids have re-

vealed multiple types of anomalous behaviour, and explaining them is a key task

of simulation and theory. Some of these anomalies will be relevant to the results

presented in later chapters, and so a few of the most important and most relevant

issues will be introduced in the following section. In §1.3-§1.6, some of the main

theories of the glass transition are discussed. Particular emphasis will be given to

methods based on the potential energy landscape (§1.6.1), which I have used in this

work.

1.2 Phenomenology of Supercooled Liquids

1.2.1 Dynamical Properties

Since the laboratory glass transition is an out-of-equilibrium kinetic event, it is no

surprise that many of the phenomena associated with it are dynamical and kinetic

in nature. The volume of literature concerning these phenomena is so large that a

comprehensive survey is impractical, but here I introduce several unusual properties

of supercooled liquids that will be particularly relevant to the subsequent discussion.

1.2.1.1 Super-Arrhenius Behaviour

The essential characteristic of a kinetic glass former is the rapid variation of its

structural relaxation time with temperature. Relaxation is readily measured in

computer simulations, through diffusion coefficients13–16 and calculated scattering

functions.17–19 Transport coefficients such as viscosity20 are accessible to experiment,

as are relaxation times measured by NMR21 and dielectric loss spectroscopy.22–24

Transport processes related to crossing a fixed energy barrier obey the Arrhenius

law: their rates vary with temperature according to e(±B/T ) for constant B. However
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Figure 1.1: Schematic figure showing the difference between transport properties in strong
liquids (Arrhenius temperature-dependence) and fragile (super-Arrhenius).

a stronger “super-Arrhenius” temperature dependence is observed in the supercooled

regime. This behaviour is often modelled using the Vogel-Tammann-Fulcher (VTF)

equation:25,26

τs = τ0 e
DTTVTF/(T−TVTF). (1.1)

Here τs represents a structural relaxation time, for example τα measured from the

intermediate scattering function. τ0 is a constant that depends on the method

of measuring τs, and TVTF is a constant that depends on the liquid. DT is the

“strength parameter”25 which is used to classify liquids as strong or fragile. High

DT and/or low TVTF correspond to a strong liquid, showing approximately Arrhenius

behaviour over a wide temperature range, while a fragile liquid with low DT and

high TVTF shows a highly non-linear increase in logτs as T → Tg. This distinction

is demonstrated in fig. 1.1, which represents the viscosity η ∝ τs as a function of

inverse temperature.

Strong molecular liquids seem to be quite rare,8 and it has been hypothesized that

strong liquids are those with highly directional intermolecular/interatomic forces,

while fragile liquids have isotropic interactions.27,28

Note that the VTF form (eq. (1.1)) implies a divergence of the relaxation time
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at T = TVTF, where the system enters permanent dynamic arrest. This divergence

is incompatible with the metastable nature of laboratory glasses, which probably

indicates that the VTF form does not describe relaxation processes correctly at

temperatures close to Tg.
29 However, some authors have equated the divergence

temperature TVTF with the Kauzmann temperature TK that corresponds to the

hypothetical “ideal glass transition”.30–32 This theory will be discussed in detail in

§1.2.2.2 and §1.4.

A quantitative explanation of super-Arrhenius behaviour is desirable because

understanding the temperature dependence of relaxation processes is fundamental

to understanding the kinetic glass transition. Moreover, fragility seems to be a good

predictor for other properties of supercooled liquids.8

Super-Arrhenius behaviour is observed in the viscosity, relaxation time and the

diffusion constants, D(T ). In simple liquids, these three properties have the same

temperature dependence, but near to Tg they appear to decouple, violating both the

well-known Stokes-Einstein relation D ∝ T/η and the common approximation τs ∼
η/T .14,33 This thesis is primarily concerned with the diffusivity of model supercooled

liquids, and therefore the question of decoupling from other transport coefficients is

set aside.

Super-Arrhenius behaviour must arise from one of two possible routes: either in-

dividual particles experience temperature-dependent energy barriers to relaxation,

or each particle relaxes with Arrhenius temperature dependence but different par-

ticles have different average barrier heights for relaxation.34 The latter idea is one

manifestation of “dynamic heterogeneity”, discussed further in §1.2.1.4.

1.2.1.2 Diffusion of Supercooled Liquids

Translational self-diffusion of particles is the most fundamental transport process in

a supercooled liquid, and the subject of extensive investigation. There are several

experimental approaches to compute the diffusion constant, D(T ), also called the

diffusivity. For example, D(T ) may be inferred from the signal strength of stimu-

lated echo NMR experiments,21,35,36 or by fitting the measured relaxation time of a

concentration gradient to Fick’s law.37,38

D(T ) is sometimes obtained from simulations using a Green-Kubo relation:39

D(T ) =

∫ ∞

0

〈vi,u(t) · vi,u(0)〉i,u dt (1.2)

where vi,u(t) is the velocity of particle i in Cartesian direction u at time t. 〈. . . 〉i,u in-

dicates an average over particles, Cartesian directions and time origins, so 〈vi,u(t) · vi,u(0)〉i,u
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Figure 1.2: Plot of mean squared displacement 〈r2(t)〉 against time for simulations of the
BLJ fluid at a range of temperatures.

is the velocity autocorrelation function, which is accessible to molecular dynamics

simulation.40–42

The most direct method of determining D(T ) is using the Einstein equation:

D(T ) = lim
t→∞

1

6t

〈
|ri(t)− ri(0)|2

〉
, (1.3)

where ri(t) is the position of atom i at time t. 〈. . . 〉 represents an average over

particles and time origins. I will use the shorthand notation 〈r2(t)〉 to denote the

mean square displacement, 〈|ri(t)− ri(0)|2〉.
〈r2(t)〉 is very simple to extract from a simulation,10,14,17,43 but very challenging

to determine experimentally for atomic or molecular glasses, since it requires direct

observation of individual molecular trajectories. However, colloidal suspensions can

be used to model hard-sphere glass formers, and confocal microscopy has been used

to measure 〈r2(t)〉 in these systems.44–46

The temperature variation of 〈r2(t)〉 for the binary Lennard-Jones (BLJ) fluid is

shown in fig. 1.2 (see also [10,44]). At all temperatures, the mean squared displace-

ment is quadratic in t at short times, indicating a ballistic regime where each atom

behaves like a free particle with its motion largely unaffected by the forces acting

on it. At long times, 〈r2(t)〉 ∝ t, corresponding to diffusive motion. In this regime

the effect of intermolecular collisions and interactions is averaged out, so that each

particle follows an effective random walk.
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At high temperatures, the ballistic and diffusive regimes are connected directly,

but at low temperatures they are separated by a plateau in 〈r2(t)〉 where the system

is in temporary dynamical arrest. This time regime corresponds to particle caging.

Each particle is confined in a cavity by repulsive interactions from nearby particles,

and when ballistic motion brings the central particle to the walls of this “cage” it

will usually be reflected. The plateau in 〈r2(t)〉 represents a time scale on which

most particles are confined in their cages, so particle displacements on this timescale

are strongly negatively correlated47 and the net motion is close to zero.

For a particle to escape from its cage (known as a cage breaking process) requires

crossing a relatively high energy barrier. These events are consequently quite rare,

particularly at low temperatures. The diffusive regime begins once every particle

has had time to execute multiple cage breaks, so that the dynamics appear smooth

and continuous rather than consisting of discrete jumps. The width of the caging

plateau increases with decreasing temperature.

Particle caging is a fundamental component of the mode-coupling theory of the

glass transition (§1.3.1) and must be reproduced by any other successful theory

of supercooled liquid dynamics. Cage-breaking motions have been studied by a

number of different approaches (§1.3.2) and will be very important to the subsequent

arguments of this thesis.

As noted above, many fragile glass formers are molecular, meaning that they

undergo both translational and rotational diffusion. The temperature dependence

of these two components is identical at high temperatures, but decouples in the

supercooled regime. However, the observed decoupling effect seems to vary with the

method of measuring the rotational diffusion constant.13,36,44,48,49

The origin and nature of translational-rotational decoupling is still a matter

of debate. Chapter 3 concerns a molecular glass former, but the analysis will be

confined to translational diffusion to facilitate comparison with atomic glass formers,

so translational-rotational decoupling will not be discussed in much detail.

1.2.1.3 Relaxation in Supercooled Liquids

In addition to the super-Arrhenius behaviour of characteristic structural relaxation

times, the shapes of the corresponding relaxation functions are often anomalous. For

undercooled liquids, a generic relaxation process θ(t) is approximately exponential

and characterised by a single time τs. For glass-forming liquids near or below Tm

this is often not the case.7,50

Structural relaxation can be measured in several ways. Here, I will focus upon

the intermediate scattering function F (k, t), which measures correlations in the local
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log10 t

Figure 1.3: Idealised plot of the intermediate scattering function F (k, t) against time for
an arbitrary value of k and a range of temperatures. The arrow indicates decreasing
temperature. The time regions corresponding to α and fast-β relaxations are indicated.
Experimental and simulation data are reported in the references.17,19,52

density as a function of time and correlation length scale:

F (k, t) =
1

N
〈ρk(t)ρ−k(0)〉 (1.4)

where ρk(t) is the Fourier transform of the fluid density:

ρk(t) =

∫
eik.r

∑

i

δ(r− ri(t))dr

=
∑

i

eik.ri(t). (1.5)

k is the wavenumber (with dimensions of inverse length) that characterises the length

scale of the density correlations.

F (k, t) is accessible from scattering experiments.51 The time variation of F (k, t)

for typical k is shown in fig. 1.3.

Since F (k, t) is a correlation function, it has its maximum value at t = 0 and

decays as the system relaxes. At high temperature F (k, t) displays simple liquid

behaviour: exponential decay with a single time scale τs.

At lower temperatures, three distinct time regimes are apparent, analogous to

those in fig. 1.2. Initial exponential decay of F (k, t), called the fast-β relaxation,4

corresponds to the ballistic regime in fig. 1.2 and leads swiftly to a plateau caused

by particle caging. The width of this plateau increases with decreasing temperature,
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as before. Decay of F (k, t) away from the plateau, described as the α relaxation,53

corresponds to cage escape motion. The relaxation function in this regime is not

exponential, and instead is often fitted by a stretched exponential form:54,55

F (k, t) ≈ F (k, tp) exp

(
− t

τα

)βs
for t > tp. (1.6)

tp is the time at which the plateau terminates, τα is the characteristic time of the

decay and βs is the stretching parameter. βs increases with temperature, recovering

the simple-liquid limit βs = 1 at T > Tm.22,56

Dielectric loss experiments57–60 yield similar information on structural relaxation.

They suggest, however, that the slow cage-escape regime in fig. 1.3 is actually com-

prised of two relaxation processes: the α relaxation described above, and a “slow-β”

or “Johari-Goldstein β” process at times intermediate between the two.57,60

It is generally assumed that the three different relaxation processes (fast-β,

Johari-Goldstein β and α) each correspond to different structural mechanisms. The

fast process is assigned to exploration of a nearest-neighbour cage. The Johari-

Goldstein process has been the subject of some debate,58–61 but it seems clear that

the slowest process, the α relaxation, is the one that controls glass formation.

1.2.1.4 Dynamic Heterogeneity

Non-exponential relaxation in eq. (1.6) shows that more than one time scale is

required to describe the relaxation process.50 This observation is explained by the

presence of spatially heterogeneous dynamics (SHD) over anomalously long time

scales,50 meaning that different local regions of the system relax at different rates.

Indirect evidence for SHD is available through experiments.62–65 For example,

multidimensional NMR analyses slow- or fast-moving particles selectively,66,67 and

dynamic hole-burning68,69 can selectively excite a subensemble of particles and fol-

low their time evolution. Both methods show that fast particles remain spatially

correlated for long time periods.

SHD are observed directly in simulations.70–74 Single-particle relaxation times

and diffusivity measured on short time scales can vary by several orders of magni-

tude between different regions of a sample, even separated by several nm.53 Over

longer periods of time, particles can sample both more- and less-mobile dynamic

“environments”, with the result that the dynamics appear homogeneous on these

time scales.75

The size of dynamically correlated domains defines a length scale that grows

with decreasing temperature.73,76 This growth may be related to breakdown of the
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Stokes-Einstein relation, because different transport coefficients correspond to dif-

ferent averages over the distribution of local relaxation times.73

Reproducing SHD is an important test for any first-principles theory of super-

cooled liquids, particularly thermodynamic theories that require growing charac-

teristic length scales as temperature decreases. Several computational methods for

detecting fast and slow dynamical regions will be introduced in §1.3.3.

1.2.2 Thermodynamic Properties

The fact that Tg depends on the cooling rate tells us that the laboratory glass

transition occurs out of equilibrium, and therefore there is no immediate reason to

expect a role for equilibrium thermodynamics. However, thermodynamic quantities

calculated for structural glass formers display two surprising features near the glass

transition, which have led many authors to consider the possibility of an associated

equilibrium phase transition that is not experimentally accessible.30,31,77,78 A brief

review of these ideas is given in §1.4, but first the key findings of experiment and

simulation will be discussed.

1.2.2.1 Heat Capacity Feature

Several thermodynamic response functions, including the specific volume and refrac-

tive index, change abruptly close to the laboratory glass transition of some liquids.79

We consider the constant-pressure heat capacity, Cp(T ), typically measured using

differential scanning calorimetry.80,81

Fig. 1.4 shows the behaviour of Cp(T ) when a fragile liquid is first cooled through

its kinetic glass transition, and subsequently heated back above Tg. The drop in Cp

on cooling is sudden but monotonic, suggesting a discontinuous jump related to a

thermodynamic transition. However, fig. 1.4 also exhibits hysteresis: the heating

curve displays a peak before regaining the liquid-like value of Cp, but the cooling

curve does not. This asymmetry indicates that the heat capacity crossover is out

of equilibrium, although it could still be connected to a different thermodynamic

transition nearby in parameter space.79

The Cp peak detected during heating is a distinctive feature of the kinetic glass

transition in fragile liquids. The onset temperature of this peak is easily reproducible

and varies only slowly with heating rate so that it is often used as an alternative def-

inition of the transition temperature Tg. The values of Tg obtained by this approach

and by measuring the viscosity (§1.1) usually agree quite well.79

Strong liquids, particularly network glass formers such as silica,28 have a very
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Figure 1.4: Pictorial representation of Cp(T ), the constant-pressure heat capacity, for a
fragile glass former. Data such as these are obtained by differential scanning calorimetry,
first cooling from liquid to glass and then heating from glass to liquid. Experimental data
may be found in [82–84].

different Cp(T ) profile: there is no sharp transition, no significant peak, and the

limiting values of Cp for solid and liquid are closer than for fragile glasses. This

difference has been taken to indicate a smaller liquid density of states in the strong

case, brought about by the network structure.28

1.2.2.2 The Kauzmann Paradox

The idea that the kinetic glass transition masks a true equilibrium phase transition

dates back at least to Kauzmann,77 who integrated the experimental heat capacities

of several liquids and crystals to compute the corresponding entropies. He demon-

strated that when these data are extrapolated to a temperature TK far below Tg, the

entropy of the disordered supercooled liquid falls below that of the ordered crystal

- an apparent paradox.

TK is too low to be accessed by equilibrium experiments: the kinetic glass tran-

sition always intervenes at higher temperature. However, Kauzmann’s scenario has

stimulated extensive research because TK coincides remarkably closely with TVTF,

the fitted divergence temperature of the VTF equation, for many liquids.31,53,85 If

one accepts the extrapolation of both the entropy and diffusivity below their exper-

imentally accessible temperature range, one could conclude that structural arrest

arises from the “entropy crisis” occuring at TK , which would then correspond to an

11



Introduction

equilibrium phase transition.

The entropy of a crystal arises mostly from vibration of the particles around a

single equilibrium structure. In contrast, the entropy of liquids includes a significant

contribution from the large number of amorphous structures explored. To achieve

the condition ∆S(TK) = Sliquid(TK) − Scrystal(TK) = 0, some workers believe that

the liquid must be confined to a single amorphous structure, known as an “ideal

glass”. Therefore the event at TK is sometimes referred to as an “entropy-vanishing

transition”. This argument is described more fully in §1.4. The qualitative phase

behaviour predicted by the Kauzmann scenario is shown pictorially in fig. 1.5.

Subsequent studies of hard sphere crystallisation have demonstrated that there

is nothing paradoxical about the entropy of a crystal exceeding that of a liquid,

because the greater free volume available to each particle in a crystal can lead to

a greater vibrational density of states.86–89 Moreover, there are plausible mecha-

nisms by which the entropy crisis may be avoided, for example the kinetic spinodal

argument32 suggests that the kinetic glass transition must always and inevitably

intervene before TK is reached. It is also possible that the entropy extrapolation

is simply wrong, although recent experiments90 and simulations91 that obtain equi-

librium measurements very close to TK are broadly consistent with Kauzmann’s

scenario.

The hypothetical ideal glass transition is probably the most controversial topic in

the glasses literature today.74,79,92 Although it has limited practical use, the existence

or otherwise of this transition has been promoted as a clear test for the various

theories discussed in subsequent sections.

1.3 Dynamical Theories of the Glass Transition

In this section, I will introduce several key theories of supercooled liquids that make

no explicit use of equilibrium thermodynamics. These theories are diverse both in

their objectives and their mathematical approaches, so it is unsurprising that they

have different regimes of validity.

Mode coupling theory (§1.3.1) and dynamical facilitation theory (§1.3.4) are the

most comprehensive methods in this section, predicting observable quantities such as

Tg by fitting experimental data to predicted functional forms. Mode coupling theory

has been remarkably successful at predicting relaxation behaviour at mildly super-

cooled temperatures, but fails at lower temperatures where dynamical facilitation

theory becomes more accurate.

Other methods described in §1.3.2 and §1.3.3 are more limited in scope. They
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Figure 1.5: Pictorial phase diagram showing S(T ) for a model glass former. The melting
temperature, Tm, kinetic transition temperature, Tg, and extrapolated ideal glass tem-
perature, TK , are all shown. The red curve indicates liquid-like states, the green curve
indicates an equilibrium crystal and the blue curve shows a representative kinetic glass (re-
call that Tg and the S(T ) of the kinetic glass both depend on the cooling rate). The dashed
red line is an extrapolation of the supercooled liquid entropy below the measurement limit
of Tg.

seek to obtain mathematical descriptions of phenomena such as dynamical hetero-

geneity and the caging plateau, and to predict rates of diffusion and relaxation in

the corresponding time and temperature regimes.

1.3.1 Mode Coupling Theory

One of the most common kinetic models for the behaviour of supercooled liquids is

mode coupling theory (MCT), which attempts to explain transport properties by de-

riving analytical expressions for density autocorrelation functions and fluctuations.

Most importantly, MCT predicts the intermediate scattering function F (k, t),

eq. (1.4), which is the main property measured by scattering experiments.51 There-

fore the predictions of MCT are easily tested.

Application of the projection operator formalism to Hamilton’s equations yields

an exact integro-differential equation for F (k, t). With several approximations this

equation may be reduced to a soluble form,93 the mode coupling equations, which

comprise a damped harmonic oscillator and a nonlinear term in the memory kernel,

m(k, t). This kernel contains most of the approximations associated with MCT, and
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accounts for two time scales of relaxation: fast local relaxations and the “viscosity

feedback” effect.4

Viscosity feedback arises from the caging effect described in §1.2.1.2: each atom is

caged by its nearest neighbours but also forms part of their cages, so the vibrational

modes of different cages are dynamically coupled. This feedback means that escape

from cages must be partly cooperative, and hence that relaxation time depends on

viscosity as well as viscosity depending on relaxation time.94

When the mode coupling equations are solved numerically, the temperature-

and time-dependence of F (k, t) is obtained.95 The three regimes corresponding to

ballistic, caged and diffusive motion are all reproduced correctly at moderately low

temperatures, including correct prediction of stretched-exponential relaxation in the

α regime.

The caging plateau grows with decreasing T , and the original formulation of

MCT predicts that the size of this plateau diverges when T = Tc, the MCT critical

temperature. At this temperature, all particles are trapped within a particular set

of cages with infinite lifetime, and the system enters dynamic arrest. According to

the theory, Tc = Tg and the MCT critical point corresponds to the kinetic glass

transition. However, fitting experimental and simulation data to MCT functional

forms reveals that Tc and Tg do not coincide, and the absolute structural arrest

predicted by MCT does not occur even below Tg.
28,96–98

This failure of MCT occurs because the idealised expression for m(k, t) neglects

activated rearrangements, i.e. transitions across energy barriers. In the MCT liter-

ature these rearrangements are termed hopping events.95 Activated processes domi-

nate the dynamics at lower temperatures, allowing mass transport to continue after

the collective modes described by MCT have arrested.

Some attempts have been made to extend MCT to account for hopping processes

and other omissions.95,99 These generalisations predict that F (k, t) decays to zero

at long times for all temperatures, and so also fail to predict the glass transition

correctly.

Nevertheless, the original form of MCT has proved remarkably successful at pre-

dicting properties of liquids for weakly supercooled temperatures and/or short times.

Several other theories (e.g. §1.4.3) only describe dynamics below Tc, because they

consider MCT to be exact for T > Tc where continuous liquid-like rearrangements

of a glass former are possible.31,74

Molecular dynamics simulations are often restricted to the time regime in which

MCT is successful, hence they agree very well with MCT. In general MCT is better

at predicting the properties of fragile liquids than strong.7
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1.3.2 Caging and Jumping

The concept of particle caging was introduced in §1.2.1.2 and §1.3.1 to explain

the plateaux in 〈r2(t)〉 and F (k, t), respectively. As the temperature of a liquid de-

creases, particles spend increasingly long times trapped within cages of their nearest

neighbours and long-time diffusion must occur via motions that disrupt these cages.

Such motions become rarer as T decreases, eventually dominating diffusion.47,100

Consequently, low-temperature dynamical behaviour of glasses should be pre-

dictable using properties of the cage jumping processes, and methods to identify

these events are of interest. Caging refers to the trapping of each particle by its

nearest neighbours, hence methods based on changes to the nearest neighbours of

an atom are particularly promising.

Rabani et al. developed a cage correlation function using this concept, which

estimates the typical residence time within a given configuration of cages.101,102 This

function was used to reproduce non-exponential relaxation behaviour for fragile glass

formers.103,104

Widmer-Cooper et al. used neighbour changes to diagnose irreversible reorgani-

sations in simulations of hard-disc glass formers.105 They determined that the prob-

ability of a particle recovering its original environment after losing four nearest

neighbours was small (< 5%), and used this as a criterion for structural change

(i.e. cage breaking).

De Souza and Wales proposed a more sophisticated definition of a cage-breaking

processes using changes to the nearest neighbours of an atom. Extending and

analysing their method is an important part of this thesis, so the original defini-

tion is presented in full in §1.7.2.

Doliwa and Heuer used single-particle three-time correlation functions to de-

tect the negative correlations in particle displacements that arise from caging mo-

tion.47,106 This method, and the Rabani approach, have both been tested on exper-

imental hard-sphere colloid systems.45,46

1.3.2.1 Single-particle Jumps

Near to Tc, small jumps may be seen in plots of |ri(t) − ri(0)|2 for an individual

particle, i. Each particle spends long periods oscillating around a fixed position,

before suddenly jumping to a new position.53

These jumps are significantly smaller than the typical interparticle distance, so

they are probably not the same processes that are probed by measures of dynamical

heterogeneity.107 This observation also questions whether these small jumps actually

describe cage-breaking motion, as is often claimed.108 Nevertheless, attempts have
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been made to approximate diffusion behaviour as a continuous time random walk

(CTRW) of uncorrelated jumps.100,109,110

Jumps may be identified in a simulation or microscopy experiment by averaging

an atomic position over a time interval comparable with the vibrational period. A

measure of the maximum movement over this time period is compared with a cutoff

to determine whether a jump has taken place. There are several cutoffs, and several

measures of jump size, in use.100,110–112

Alternatively, some authors have identified jumps by dividing the trajectory of

each particle into segments such that the centres of mass of the segments have

maximal separation.113,114 Jumps occur at the junctions between segments.

Given model distributions of jump lengths and waiting times between jumps,

the CTRW model predicts a jump rate and average jump length, from which the

diffusion constant and relaxation time may be calculated.107 Helfferich et al. have

shown that the Gamma distribution ψ(t) = Atα−1eλt is a good choice for the waiting

time distribution.110

The CTRW model allows global long-time quantities (e.g. the diffusivity) to be

predicted from local, short-time information (the properties of rapid cage-jumping

events).100 This property extends the range of temperatures that can be studied to

include “aging” dynamics below Tg.
115

The major weakness of CTRW is its assumption of markovian behaviour and its

neglect of correlations between jumps, whereas simulation evidence suggests that

single-particle jumps are clustered in time and space.107,113,114 Moreover, a clus-

ter of nearby jumps can facilitate another cluster a short time later, creating an

“avalanche” that propagates through the system. These avalanches correspond to

mobile regions in the SHD picture.107

Significant correlations have also been observed in sequences of jumps for individ-

ual particles. In particular, jump directions are negatively correlated so that jumps

are often reversed.111 Reversals can be detected when a particle returns to a previ-

ously occupied time-averaged position.112 The CTRW method may be improved by

excluding reversed jumps.109,110

The proportion of reversed jumps becomes much larger in low-temperature sim-

ulations of glasses.111,112 This observation is attributed to slower relaxation of cold

liquids, so that each jump leaves an empty space behind which may be quite long-

lived.112 The mobile particle is then very likely to jump back into this cavity. The

same mechanism is believed to govern reversals of the larger cage-breaking motions,

and this idea is elaborated significantly in §1.7 and the remainder of this thesis.

Given the omission of correlation effects, the CTRW gives surprisingly good
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agreement with simulations of very simple model glass formers116 and experiments

on colloidal suspensions117 at moderately supercooled temperatures.

1.3.3 Slow and Fast Particles

There are several approaches to detect and classify dynamical heterogeneities by di-

viding a supercooled liquid into slow and fast spatial domains. The main theoretical

objective of this classification is to identify growing correlation length scales (i.e. do-

main sizes) as the temperature is decreased. If these lengths diverge at low T , then

the kinetic glass transition may be related to a fixed sharp transition temperature.

The simplest way to divide particles into fast and slow is to compute a local

relaxation time,118 the average time taken for a particle to move by more than rc.

However, the success of these definitions depends heavily on the choice of rc. Less

subjective measures often make use of the van Hove correlation function,10,119

G(r, t) =

〈
1

N

N∑

i=1

N∑

j=1

δ(r− [rj(t)− ri(0)])

〉
(1.7)

= Gs(r, t) +Gd(r, t), (1.8)

where δ is the Dirac delta function and 〈· · · 〉 indicates an ensemble average. Gs(r, t)

is the self part of the function, i.e. the sum of the terms in eq. (1.7) for which

i = j, and Gd(r, t) is the distinct part (the sum of terms for which i 6= j). All

parts of this function are straightforward to extract from a simulation. G(r, t) and

its components are often spherically averaged to produce two-dimensional functions

e.g. G(r, t), where r(t) = |r(t)|.
For undercooled liquids, Gs(r, t) is Gaussian to a good approximation, but “fat

tails” appear in the function at lower temperatures and intermediate times, particu-

larly at large r.53,70 These tails indicate a population of particles that are significantly

more mobile than expected in the Gaussian approximation.

Glotzer et al. showed that these mobile particles are correlated in space, forming

mobile clusters.70 They plotted the contribution of the mobile particles to Gd(r, t),

and found that a strong peak appears at r = 0 for t = t∗,120 indicating that mobile

particles replace each other on times comparable to t∗. Mobile particles are grouped

into elongated strings, rather than compact regions. Motion within a string is highly

collective, with each particle moving to take the place of its nearest neighbour along

the string.120

The average number of particles in a string increases with decreasing temper-

ature,120 which indicates a growing length scale. This growth may explain super-
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Arrhenius behaviour: the typical energy barrier to a collective motion probably

increases with the number of participating particles, and so increasing the average

string length increases the observed activation barrier.120

The existence of strings suggests that particles in a supercooled liquid are corre-

lated not by their positions but by their positions and velocities. Therefore, correla-

tion functions describing the glass transition should employ information on both of

these variables.72 One example121,122 is the four-point susceptibility χ4(t),
72 which

measures the extent of replacement dynamics and space-time correlation.

For a BLJ system, χ4(t) reveals that velocity correlations of nearby particles

reach a maximum around the characteristic caging time.72 These correlations are

dominated by clusters of slow-moving particles. The height of the peak in χ4(T )

scales approximately as (T−Tc)−0.8. This scaling suggests that correlations between

slow-moving particles may diverge when T = Tc,
123 although this prediction requires

an ambitious extrapolation.

χ4 and the string picture provide convenient descriptions of space-time correla-

tions in fragile atomic glass formers. For strong liquids such as silica, the behaviour

of χ4(t) is much the same as for BLJ,124 indicating that dynamics are still hetero-

geneous on the time scales of cage events. However, strings of mobile particles are

much shorter and less relevant in silica.125 This observation agrees with the earlier

suggestion that string motion can be used as an explanation for super-Arrhenius

behaviour.

There are several other methods for identifying fast-moving particles or regions

in a supercooled liquid. Widmer-Cooper et al. plotted maps showing the prob-

ability of a particle undergoing an irreversible reorganisation (see §1.3.2). This

probability was determined by averaging over an isoconfigurational ensemble of 100

simulations which start from the same initial configuration but with different mo-

menta.105 Regions of high mobility were attributed to the presence of soft modes

(i.e. low-energy vibrations) in the initial configuration that were mostly localised on

particular atoms.

Other authors have used similar approaches, to study both supercooled liq-

uids126,127 and the closely-related problem of jammed soft discs under shear stress.128

Low-frequency modes were used to identify regions of the sample where the particles

are particularly mobile, which correlate well with structural relaxations and which

are long-lived compared to the intervals between rearrangements. This approach

links SHD to the instantaneous structure of the liquid, and also to properties of the

potential energy landscape. Mosayebi et al. related soft modes to the metabasin

concept (see §1.6.2.3) noting that the spatial localisation of soft modes for different
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inherent structures within a metabasin are similar, but modes in different metabasins

are very different.127

In a similar spirit, Cubuk et al. have used an unsupervised machine learning

method to identify particles with a high propensity for rearrangement.129,130 Their

program is trained on a particular system using liquid configurations extracted from

a simulation, and constructs a softness parameter, si, using a combination of lo-

cal structural indicators, e.g. nearest neighbour properties and bond angles. si is

found to correlate well with rearrangement probability in simulations that were not

part of the training set.130 Particles with similar si are spatially correlated, indi-

cating SHD.131 The most important indicator for BLJ turns out to be the density

of nearest neighbours: fewer neighbours implies a weaker cage and more probable

rearrangement.

A final class of structure-based methods for identifying slow particles makes

explicit the connection between nearest-neighbour contacts and single-particle dy-

namics. The locally favoured structures (LFS) approach of Royall and co-workers

seeks to identify low-energy structural motifs within a liquid, typically resembling

the preferred structures of atomic clusters.132

The number of LFS in a configuration is negatively correlated with the po-

tential energy.132 LFS are long-lived and aggregate into kinetically slow domains,

which grow in size and lifetime with decreasing T . The emergence of these domains

has been associated with the onset of super-Arrhenius behaviour133 and with the

trajectory-space first order transition of dynamical facilitation theory (see §1.3.4).134

For a 50:50 BLJ fluid the dominant LFS are icosahedra. They are so persistent

that Pinney et al. constructed a coarse-grained model of this system as a popu-

lation of rigid icosahedra that aggregate into domains.135 Although the validity of

this model is difficult to assess, it makes some interesting predictions. Neither the

relaxation time nor the lifetime of the aggregate domains show signatures of low-

temperature divergence, and neither scales with the system size. These results are

inconsistent with a thermodynamic ideal glass transition.

1.3.4 Dynamical Facilitation Theory

The dynamical facilitation (DF) theory of Chandler and co-workers was originally

inspired by one-dimensional kinetically constrained models (KCMs): lattice spin

systems where a cell can only change state if certain conditions of its environment

are fulfilled.136 Kinetic constraints usually come with an energy penalty, so that

fewer spins can flip in a low-energy state than a high-energy state, and the system

dynamics slow down as the average energy decreases.
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Several of the methods described in the previous section suggest that structural

rearrangement in an real liquid mostly occurs in regions of reduced density where

the confining effect is weaker. This density requirement can be viewed as a kinetic

constraint, allowing KCMs to be used as analytically-soluble models for atomic glass

formers.137

DF theory for KCMs is formulated in trajectory space. A trajectory is a path

through configuration space that lasts for a fixed length of time. The set of possible

trajectories given an initial condition constitutes an ensemble (similar to the isocon-

figurational ensemble of Harrowell and coworkers).138 The probability of following

a particular trajectory is determined by its action, S0, relative to the partition sum

(a sum of probabilities for all possible trajectories).

At low temperatures this partition sum is dominated by trajectories that contain

dynamically slow domains, where few particles satisfy the kinetic constraint. The

domain sizes and lifetimes grow as the temperature decreases. Therefore, DF theory

predicts dynamic heterogeneity.

The probability distribution of S0 for different trajectories is Gaussian with a

long exponential tail at low action.139 When the structural relaxation time is shorter

than the trajectory length (i.e. the observation time), the Gaussian part dominates

and the number of available trajectories is exponential in the system size. Below

Tg, where the relaxation time exceeds the trajectory length, only the exponential

tail of the action distribution is accessible to the system so the number of possible

rearrangement trajectories becomes sub-exponential. The kinetic glass transition in

the DF approach is an entropy-vanishing transition in trajectory space, rather than

static configuration space. For KCMs this event is a first-order dynamical transition

in Ruelle’s thermodynamic formalism of trajectory space.140,141

Unlike many other theories of the glass transition, DF theory is able to predict

Tg quantitatively because it explicitly includes the observation time as a parameter

(i.e. the length of the trajectories being considered). Predictions for the height of

the Cp peak at Tg agree qualitatively with experimental values.137

In atomistic model glass formers (as opposed to KCMs), the dynamical transition

is associated with a set of space-time “order parameters”, e.g.:

K = ∆t

tobs∑

t=0

N∑

i=1

|ri(t+ ∆t)− ri(t)|2, (1.9)

where tobs is the observation time and ∆t is a coarse-graining time step. K measures

the total mobility of the system in short time periods through the trajectory.

The DF dynamic transition may be shifted into computationally-accessible tem-
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perature regimes using a bias parameter, s, to reweight an equilibrium distribution

obtained by transition path sampling142,143 in favour of low-K trajectories.74 This

process reveals signatures of a transition between a high-K “phase” containing both

high- and low-activity trajectories, and a non-ergodic glassy phase where only low-

mobility trajectories are possible. In off-lattice models, where the kinetic constraint

may be violated by paying an energy penalty, coexistence between these phases is

only possible at a small positive s, however the influence of the transition extends

into equilibrium measurements.74

Breaking K up into components that are local in time and space reveals het-

erogeneous dynamics which are facilitated (i.e. the presence of a highly-mobile do-

main allows nearby regions to become mobile soon afterwards) and hierarchical

(i.e. small-amplitude motions are faster and more frequent than large).74 The fast

regions identified by this mobility field clearly resemble elongated strings.

Facilitated dynamics may be sufficient to explain breakdown of the Stokes-

Einstein relation. The relaxation time τs = 1/η is determined by the waiting time

until a fast rearrangement, but the diffusivity D(T ) is related to the average waiting

time between consecutive rearrangements, and facilitated dynamics causes the ratio

between these two waiting times to increase as temperature decreases.74

Another key prediction is that the relaxation time τs is length-scale dependent:

relaxation processes measured over large distances correspond to Fickian diffusion

controlled by facilitated rearrangements, but on short length scales the relaxation

is dominated by non-facilitated waiting times and τs increases anomalously. This

crossover between Fickian and non-Fickian behaviour has been observed several

times by different methods.73,144–146

DF theory provides a description of the glass transition that does not invoke

any changes in structure or equilibrium thermodynamics, and which accounts for

many of the phenomena discussed in §1.2. However, debate continues regarding the

experimental evidence for and theoretical basis of DF theory.147–150

1.4 Thermodynamic Theories of the Glass Tran-

sition

Although the kinetic glass transition occurs out of equilibrium, several features

suggest that it may be accompanied by a thermodynamic event. These observations

include the sharpness of the kinetic glass transition, which resembles behaviour near

a critical point, and the features discussed in §1.2.2.

Thermodynamic theories of the glass transition make an explicit connection be-
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tween static equilibrium properties and the emergence of glassy behaviour. Here, I

briefly review two of the most popular models.

1.4.1 Entropy and the Ideal Glass Transition

Both of the models in this section invoke the idea of an “entropy-vanishing” ideal

glass transition at the Kauzmann temperature TK (§1.2.2.2), where a supercooled

liquid is hypothetically confined to a single amorphous structure. To quantify the

discussion, it is essential to define the relevant entropy. Unfortunately, the literature

is imprecise and occasionally contradictory on this subject.

Thermodynamic theories of the glass transition typically divide the entropy of

a glass former into a component from the multiplicity of different stable configu-

rations, and a component that arises from the vibrations around those configura-

tions.6,30,32,96,151 This division arises naturally from the energy landscape concept

(see §1.6), where the stable configurations correspond to local potential energy min-

ima. Then S = Svib +SIS, where Svib is the vibrational part and SIS is the landscape

entropy, which enumerates the local minima accessible to the system. However, this

number of minima is always large, even below Tg, so SIS does not vanish at the

Kauzmann temperature.4,92

Instead, thermodynamic theories use the concept of a long-lived amorphous

structure, or metastable state.30,32,152 These states are well defined for mean-field

model glass formers, but not for realistic finite-dimensional liquids. Therefore an

approximate definition of metastable states, called quasistates, is required.153 Unlike

mean-field metastable states, quasistates have a finite characteristic lifetime, which

should not be negligible compared to the structural relaxation time.32 Possible def-

initions of quasistates will be discussed in chapter 5.

The number of quasistates accessible to the system is denoted N (T ), and the

associated entropy is called the complexity :32,154

Σ(E) =
1

N
lnN (E), or (1.10)

Σ(T ) = −
N∑

i

pi(T ) ln pi(T ). (1.11)

In eq. (1.11), pi(T ) is the occupation probability of quasistate i.

We shall see that thermodynamic theories generally predict Σ(TK) = 0, which

requires thatN (TK) be sub-exponential in N . The ideal glass transition is then asso-

ciated with thermodynamic trapping of the system in a small number of amorphous
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structures.

The glasses literature frequently refers to the “configurational entropy”, Sc, usu-

ally defined by Sc = S − Svib.6,30,32,96 Depending on the method of calculating Svib,

Sc may be equal to either SIS or to Σ(T ) for some definition of a quasistate. To avoid

this ambiguity, and to avoid confusion with the configurational entropy related to

the total volume in configuration space (which includes vibrational coordinates), I

will refrain from using the symbol Sc in this thesis.

1.4.2 Adam-Gibbs Theory

As noted above, the VTF divergence temperature TVTF and the extrapolated Kauz-

mann temperature TK are found to be similar for many glass formers,31,53,85 possibly

suggesting a link between the kinetic anomaly of super-Arrhenius behaviour and the

thermodynamic Kauzmann paradox. These two concepts are linked theoretically155

by the Adam-Gibbs (AG) relation.30

The key assumption in the AG theory is that supercooled liquids can be separated

into co-operatively rearranging regions (CRRs) - defined as the largest region that

can rearrange its configuration independently of the rest of the system.30,32 Making

the reasonable but uncontrolled assumption that the energy barrier to rearrangement

scales with the number of particles in the CRR (denoted n), the relaxation time is

given by:

τs = τ0 exp(−A〈n〉/kBT ) (1.12)

where τ0 and A are constants. To compute τs, an expression for 〈n〉 is required.

Let Ωi be the number of metastable quasistates accessible to a CRR with index

i. Adam and Gibbs assumed this number to be roughly constant in T and n, but

greater than one.30,32 Then the number of states available to the whole system is

N =

N/〈n〉∏

i∈CRRs

Ωi = 〈Ω〉N/〈n〉. (1.13)

Note that N/〈n〉 is the total number of CRRs. Then the complexity Σ = 1
N

lnN =

ln〈Ω〉/〈n〉, which rearranges to 〈n〉 ∝ 1/Σ.

Substituting this result into eq. (1.12), we obtain the Adam Gibbs equation:

τs = τ0 exp

(−B
T Σ

)
. (1.14)

Here, B is a new positive constant. The AG relation was one of the first serious

attempts to connect the dynamics (τs) and thermodynamics (Σ) of a glass.

23



Introduction

If the VTF equation is correct, τs diverges at temperature TVTF ≈ TK . In

eq. (1.14), this divergence implies that Σ(TK) = 0, which corresponds to the entropy-

vanishing interpretation of the Kauzmann event, discussed in the previous section.

The AG relation unifies the Kauzmann and AG pictures. Indeed, making some

further assumptions regarding the entropies of the liquid and crystal, eq. (1.14) may

be recast in exactly the VTF form.32

The AG relation provides an attractive link between glassy behaviour and equi-

librium thermodynamics. However, its derivation relies on several uncontrolled

and occasionally dubious assumptions, which lead some authors to reject it.29,32

It has had some success at correlating relaxation data with thermodynamic mea-

surements,8,151,156 but has largely been superceded by the related RFOT theory.154

1.4.3 RFOT Theory

The random first order transition (RFOT) theory of Wolynes and coworkers31,32,154

was originally developed by translating analytical results for the p-spin mean-field

model into real-space concepts,32,152,157–159 and subsequently refined by Mézard and

Parisi using a replica coupling method.78 RFOT theory is exact for mean field mod-

els, but testing its applicability to realistic finite-dimensional systems is an open

problem.32 A substantial body of evidence from simulation and experiment now

supports this approach.65,160,161

The key prediction of RFOT theory is that the kinetic glass transition is related

to two equilibrium transitions. Similar to the CRRs of AG theory, this approach

divides a supercooled liquid into a “mosaic” of weakly-interacting subsystems or

domains that each adopt different amorphous structures (quasistates).

The characteristic domain size, ξ∗, is determined by the balance between inter-

facial energy and complexity. Decreasing ξ∗ increases the number of domains and

hence the total number of states N accessible to the system. Σ turns out to be

extensive in the number of domains, favouring small ξ∗. However, different amor-

phous structures are energetically incompatible and interfaces between them carry

an energy penalty (e.g. in silica, the bonding network is disrupted at an interface

where the amorphous structure changes). As ξ∗ decreases, the interfacial area grows

and the energy increases, opposing the entropic effect from Σ. At low temperature,

the energy term dominates and the domains grow in size.

Physical arguments predict that the interfacial energy vanishes above the mode-

coupling critical point Tc.
32 At these high temperatures, activated motion no longer

dominates diffusion and the lifetimes of metastable states become very short, so

the mosaic state is not a valid description of the system. The first phase transition
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predicted by RFOT occurs at Tc, where the mosaic domains first become stable,

and is first-order in a localisation parameter α.31,162 However, the new state is not a

single ordered phase but rather a collection of distinct microphases each randomly

selected from the ensemble of amorphous structures, so the transition is described

as “random first order”.

Structural relaxation in the mosaic state consists of domains slowly changing

their quasistate, either via nucleation of a new amorphous phase within a domain,163

or by rare rearrangement modes with a length scale ξ > ξ∗ that can mix and destroy

domains.154 These processes become less favourable with increasing domain size,

and hence become rarer with decreasing temperature.

RFOT predicts a second thermodynamic transition at the Kauzmann tempera-

ture TK , where ξ∗ diverges and there exists only one domain, which spans the system.

The number of amorphous structures in this domain is certainly sub-exponential,

so Σ(TK) = 0 in agreement with AG theory. This prediction combines a diverging

length scale (ξ∗), diverging time scale (τs) and a free energy singularity, so it has all

the characteristics of a thermodynamic phase transition to an ideal glass state.31

Bouchaud and Biroli154 present a convenient quantitative formulation of the

RFOT theory using the random energy model (REM) as inspiration. They consider

a domain as being the set of particles within a sphere of radius ξ, and all particles

outside this sphere are frozen in place (an early application of the pinning procedure

described in §1.5). The frozen particles impose a boundary condition on the mobile

particles, which must pay an energy penalty whenever the amorphous structures

within and outside the domain differ.

The partition function of the mobile domain then decomposes into a term where

the mobile domain matches its boundary condition, and a term where the amor-

phous structure differs either side of the interface. When ξ is large, the latter term

dominates and the domain will be stable in a randomly-selected amorphous struc-

ture distinct from its surroundings. ξ∗ is the smallest radius for which such a distinct

structure is possible. From this comparatively simple model, most of the results of

the RFOT theory may be derived.

RFOT theory explains several phenomena of glass-forming liquids, including

super-Arrhenius behaviour and non-exponential relaxation.31 Its quantitative pre-

dictions for properties such as fragility indices164 and stretched-exponential βs pa-

rameters165 agree fairly well with simulation and experiment for a wide range of

materials. Moreover, numerous studies have reported evidence of growing static

length scales in supercooled liquids,166,167 some of which appear to scale in the man-

ner predicted for ξ∗.168,169
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Many aspects of the RFOT theory, particularly the presence of the entropy-

vanishing transition at TK , remain controversial. However, it is certainly the most

popular thermodynamic approach to explain the glass transition.

1.5 The Pinning Transition

In recent years, the method of random pinning has stimulated renewed theoretical

interest in the concept of an ideal glass transition. The method is conceptually

simple: a fraction c of the configurational degrees of freedom in a glass former are

artificially fixed, establishing a constant external field in which the remainder of the

system evolves. For an atomistic liquid, this procedure is equivalent to freezing the

positions of some atoms.

There are various approaches to selecting which atoms to pin, and where to pin

them,170 but most involve obtaining a “reference configuration” from an equilibrium

ensemble and pinning a subset of atoms at their positions in this reference. Several

geometries for pinned subsets are possible,170 but the discussion here will assume

that atoms to be pinned are selected uniformly at random.

The pinning procedure was originally used in atomistic simulations to model

the presence of interfaces or porous solid matrices,171,172 but was quickly adapted

to test various aspects of the RFOT theory154 and to probe “point-to-set” length

scales (roughly equivalent to ξ∗ in the RFOT theory).169,170,173 Even for small pinning

fraction c, relaxation times increase dramatically,174 and it was suggested that these

times might diverge at a critical temperature and pinning fraction, corresponding

to structural dynamical arrest and a thermodynamic phase transition.170,175

Pinning some particles inhibits the dynamics of the remainder because the pinned

particles act as immovable barriers. Moreover, freezing particles reduces the entropy,

because many possible positions of the mobile atoms are blocked by pinned atoms.

Therefore a sufficiently high value of c might cause an entropy-vanishing phase

transition.

Cammarota and Biroli175 explained that in the RFOT picture, a true divergence

of the relaxation time is expected at a critical pinning fraction c∗(T ) > 0 (or equiv-

alently T ∗(c) > TK). This random pinning glass transition (RPGT) is analogous to

the entropy-vanishing transition predicted at T ∗(0) = TK , and corresponds to the

entire system adopting a single amorphous structure.

Renormalisation group analysis for the mean-field REM proves that the RPGT

occurs in equilibrium, and that it connects with the RFOT Kauzmann-like transition

when c = 0.175 Various aspects of the behaviour of pinned systems have since been
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studied, particularly their dynamical properties16,175–179 and structural features such

as amorphous order and growing length scales.173,180,181

The mean field approach assumes infinite dimensionality and introduces unphys-

ical energy barriers. Therefore, an important next step is to establish whether the

pinning transition remains thermodynamic for more realistic model glass formers.

Attempts have already been made to compute such a phase diagram180,182 but de-

bate continues over the nature and validity of the transition lines that have been

obtained.183–185

An attractive aspect of the pinning method is that increasing c raises T ∗ to

sufficiently high temperatures that equilibrium simulations of dynamics are compu-

tationally accessible - unlike simulations in the region of TK for an unpinned glass

former. If the RPGT is an extension into the (T, c) plane of the ideal glass transition,

then construction of a phase diagram in this plane and extrapolating the transition

line towards (TK , 0) will be much easier than extrapolating in T .175

The pinning method continues to be of great interest to the theoretical and com-

putational community. Chapter 5 describes the effect of pinning on the potential

energy landscape of a structural glass former, providing a qualitative explanation

for the changes in dynamics under the pinning operation and suggesting some com-

plementary approaches for identifying the pinning transition.

1.6 Potential Energy Landscapes

The concept of a potential energy landscape (PEL) that controls the behaviour of

a physical or chemical system has found many uses in a wide variety of fields of the

past several decades.4,186–192 This approach converts the problem of describing the

behaviour of a many-body system into a real analysis problem, with the complication

that the function to be analysed has very high dimensionality, so that sophisticated

numerical techniques are required to extract useful information.

The PEL idea has been used to explain the behaviour of supercooled liquids and

glasses for longer than it has been used in some other fields,193–195 and many of

the theories outlined in the previous sections may be reformulated in terms of PEL

concepts.

Some fundamental aspects of PEL theory will be laid out in §1.6.1, and their

applications to glass formers discussed in §1.6.2.
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1.6.1 Introduction to Potential Energy Landscape Theory

The PEL of a system is simply its potential energy expressed as a function of all

its degrees of freedom, V (X), where X is a vector containing all the configurational

coordinates. The PEL gradient vector is defined by g(X) = ∇V (X), and the Hessian

matrix, H, is defined by Hij = ∂2V/∂Xi∂Xj. Note that H is real and symmetric.

X contains all the configurational degrees of freedom, which for an unconstrained

system of N atoms is 3N (Cartesian) coordinates. Therefore V (X) may be thought

of as a surface in 3N + 1 dimensions (the last being the energy). Any given con-

figuration corresponds to a single value of X, i.e. a single point on the landscape.

g(X) gives the slope of the landscape, and the eigenvalues of H give the curvature

in the directions of the corresponding eigenvectors. As the system evolves under the

influence of the force F = −g(X), the configuration changes. The system can be

represented as a “state point” moving across the landscape as a function of time.

The Schrödinger equation tells us that all properties of a system are determined

by its wavefunction, which is uniquely specified by the corresponding Hamiltonian,

Ĥ = T̂ + V̂ . The kinetic energy operator T̂ has the same form for all systems, and

thus all details of a quantum system are encoded in the potential energy operator

V̂ , which is equivalent to the PEL.4 Hence there is a one-to-one correspondence

between a closed physical system and the corresponding PEL, and V (X) uniquely

determines the equilibrium and dynamical properties.

Extracting these properties typically requires evaluating V (X) at a great many

configurations, so using the correct quantum PEL is often impractical. Instead,

simple model potentials are commonly used, often parameterised using experimental

data, to describe the motion of atoms classically.

In this thesis I will not attempt to verify whether these models provide realistic

descriptions of the systems they represent. This omission is because glassy behaviour

is reproduced satisfactorily for very simple potentials. Glassy phenomenology in

these models will be explained qualitatively, and quantitative predictions regarding

real materials will not be made.

The PEL is a function of the configuration space alone, which depends on the

number and density of the particles, but not their masses or the temperature. How-

ever, the motion of the state point on the PEL is affected by temperature, causing

different regions of the PEL to be explored as T decreases.

The high dimensionality of PELs for non-trivial systems means that analysing

their behaviour at all points in space is impractical. However, observable properties

can be approximated very accurately using only knowledge of the stationary points

of V (X), where g(X) = 0. The important types of stationary points will now be
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discussed.

1.6.1.1 Minima of the PEL

Minima of V (X) are stationary points for which H has no negative eigenvalues:

any infinitesimal coordinate displacement raises the energy. Consequently, each

minimum corresponds to a mechanically stable structure lying at the bottom of a

basin of attraction.4 These basins completely partition the configuration space, so

nearly any point can be uniquely mapped to a minimum by a steepest-descent path

(SDP).

An SDP is a curve in configuration space that always lies antiparallel to the

gradient vector, defined as the solution to a first-order differential equation:

dX

ds
∝ −g(X), (1.15)

where s is a variable parameterising the path length. The SDP terminates when

g(X) vanishes (usually at a local minimum). In practice, SDPs are determined from

the configurations visited by a numerical minimisation algorithm (see §2.2.1).

Under constant-temperature conditions, the equilibrium occupation probability

of states is given by the Boltzmann distribution. As temperature decreases, this

distribution is increasingly weighted towards low-V regions of configuration space

and hence the system mostly explores the bottoms of the basins of attraction. At

low T , the structural ensemble explored by the system is approximated reasonably

well by the set of local minima. The continuous PEL is then replaced by a set of

discrete energy levels (minima), with relative populations given by the Boltzmann

distribution. The minimum of V (X) with the lowest energy is the global minimum,

and the rest are local minima.

The number of local minima is generally exponential in the number of degrees of

freedom.196,197 For all viable models of condensed matter this number is far too large

to enumerate systematically, and the structural ensemble is approximated using a

representative sample. Methods for obtaining such a sample are discussed in §2.2.1.

Energetically, the global minimum would always be the preferred structure, and

the behaviour of many systems can be predicted simply by identifying it and char-

acterising its properties.4 However, at finite temperature the equilibrium population

of the global minimum may be significantly less than the total weight of the other

local minima. Also, the energy barriers to reach the global minimum may be too

large to surmount quickly, which leads to kinetic trapping in one or more local min-

ima. In these situations, having a representative sample of local minima becomes
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important.

The number of minima at a particular energy will turn out to be a useful quantity.

gIS(V ) is defined such that gIS(V )dV gives the number of minima with energies in

the range [V, V + dV ]. gIS(V ) is continuous because the total number of minima is

essentially infinite for a macroscopically large system.4

1.6.1.2 Thermodynamics from the PEL

A finite system is uniquely specified by its PEL, therefore V (X) must contain infor-

mation on the entropy of the system as well as on the potential energy. This entropy

is divided into two parts: the vibrational entropy associated with each minimum,

determined by the phase volume contained within the basins of attraction, and the

landscape entropy, SIS. This latter quantity is defined by SIS(V ) = kB ln gIS(V ).198

Both SIS and the separation S(T ) = Svib + SIS were previously encountered in the

discussion of the Kauzmann paradox, §1.2.2.2. This separation is only exact when

the average vibrational frequencies of minima do not depend on their energy,199 but

seems to be a reasonable approximation for some popular model glass formers.198

The superposition approach calculates both Svib and SIS, allowing global ther-

modynamics to be approximated using an appropriately weighted sample of local

minima.4 In this approach, the total partition function is obtained by summing over

the partition functions associated with each minimum, which are approximated us-

ing a model form for V (X) in the basins of attraction. The most popular model is the

harmonic superposition approximation (HSA)4,200,201 which assumes that all basins

are harmonic and non-overlapping. The vibrational partition function of this model

is analytic, and requires only knowledge of the energies and Hessian eigenvalues of

the local minima.

The HSA allows partition functions (and hence most other thermodynamic quan-

tities) to be estimated quickly once a database of minima has been obtained. Its

accuracy depends on the validity of the harmonic basin model. This approxima-

tion can be improved at significant computational expense by fitting anharmonic

corrections to the potential energy,202 or by using perturbation theory to apply a

temperature-dependent correction to the normal mode frequencies.203

Equilibrium properties of the system may be obtained by computing averages of

the form:

〈A〉 =
∑

α

peqα (T )Aα =
∑

α

Zα(T )

Z(T )
Aα (1.16)

where Aα is the value of quantity A for minimum α, and peqα (T ) = Zα/Z is the

occupation probability of α. Zα(T ) is the partition function for minimum α, and
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Z(T ) =
∑

α Zα(T ).

1.6.1.3 Transition States

Knowledge of the potential energy minima allows equilibrium structural and thermo-

dynamic properties to be calculated fairly accurately. To compute out-of-equilibrium

and dynamical properties, knowledge of the energy barriers and pathways between

these minima is also required.

Simple kinetic theory tells us that the transition rate across a single constant

barrier depends exponentially on the height of that barrier, and so the ensemble of

possible transition paths between a pair of minima is dominated by the pathway

that has the lowest energy barrier.

The Murrell-Laidler theorem204 shows that this minimum-energy pathway be-

tween two minima always passes through a saddle point of V (X) with Hessian index

one, i.e. a stationary point where the landscape has one unique direction of negative

curvature and positive curvature in all other directions. Such a point is hereafter

referred to as a transition state (TS). A representative sample of transition states

provides important information about the dynamics of a system.

Unlike local minima, TSs cannot be located by solving a differential equation, and

more complex search methods are required (see §2.2.2). Moreover, it is not always

clear what is the correct sample needed for an accurate description of dynamics.4

Therefore, studies of transition states are still comparatively rare.

The methods described in §2.2.2.3 provide two coherent approaches for sampling

transition states to explain dynamic behaviour qualitatively. The discrete path

sampling approach205 is a quantitative method for obtaining global dynamics of

systems that have well-defined “reactant” and “product” structures.

There are always exactly two SDPs leading downhill away from a TS,4 which

are located by stepping an infinitesimal distance away from the TS either parallel

or antiparallel to the direction of negative curvature. Each of these SDPs leads to

a local minimum (or another saddle point, with vanishing probability). The energy

barriers between two minima are the energy differences between the minima and the

TS that connects them.

Once the lowest energy barrier between a pair of minima is known, unimolecular

rate theory may be used to predict the rate constant for the transition between them.

Given a network of minima and the transition rates between them, with an initial

distribution of occupation probabilities, the exact dynamics are given by a set of

coupled first-order differential equations. This master equation can be solved either

by diagonalising a symmetrised transition matrix,4 or using graph transformation
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Figure 1.6: 1-dimensional cartoon of a funnelled landscape. The horizontal coordinate
represents an arbitrary direction in configuration space.
A: Global minimum. B: Downhill barrier. C: Uphill barrier.

methods.206,207

Calculating transition rates from the PEL is often more efficient than the alter-

native molecular dynamics or transition path sampling142,143 approaches, because

determining energy barriers using geometry optimisation methods is independent

of the structural relaxation time. Therefore the rates of very slow processes may

be calculated quite accurately,4,208 in problems where conventional methods would

require unfeasibly long simulation times.

1.6.1.4 Funnel Structures

A “funnel” is a group of minima for which the downhill energy barriers (barriers to

go from one minimum to a lower minimum) are smaller on average than the uphill

barriers. Relaxation to the lowest-energy minimum in the group is rapid, because

it is accessible from other minima via relatively small energy barriers. Escape from

the lowest minimum is slow due to the higher uphill barriers.

Local funnels are mainly used as a qualitative concept for visualisation on dis-

connectivity graphs (see §2.2.4) and hence have not been rigorously defined. A

cartoon depiction of a local funnel is shown in fig. 1.6. Minima within a local funnel

are typically close in configuration space and can often be grouped together using

an “order parameter”, which may be defined using structural measures or chemical

characteristics, such as NMR shifts.209

For many systems, including small atomic clusters and many biomolecules, the
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PEL contains a single large funnel.208,210 These systems are “structure seekers”,

which exhibit relaxation to the global minimum. This efficient relaxation explains

the rapid folding of many proteins to the native structure, and thus provides a

resolution to Levinthal’s paradox.4,211,212 The protein folding problem was probably

where the idea of a funnelled landscape was first proposed.

Glassy systems have PELs that are not globally funnelled. Although there may

be low-energy minima corresponding to crystal structures, which are probably sur-

rounded by local funnels,213 these structures occupy a small region of configuration

space and relaxation to this region exceeds the observation time scale.

1.6.1.5 System Sizes for PEL exploration

Atomistic computer models of liquids usually simulate N atoms under periodic

boundary conditions, as explained in §2.1.2. This technique introduces errors known

as finite size effects, with different magnitudes for different computed properties. To

reduce these errors, we wish to make N as large as possible, but for calculations

that explore the PEL directly this may not be desirable.

The number of minima of V (X) increases dramatically with N and so extracting

useful information becomes more difficult for larger systems. Moreover, Heuer has

argued197,214–217 that many properties of the PEL which relate to local dynamics are

lost when the system studied becomes too large.

This loss of information arises because a large enough system with finite-range in-

termolecular forces can always be decomposed into subsystems217,218 whose energies

and dynamics are largely independent. Each subsystem explores different regions of

its PEL, so measuring a PEL property across the entire supersystem corresponds to

an average of several independent stochastic quantities, removing fluctuations and

disguising features of interest.197

Determining an appropriate system size that minimises finite size effects while

retaining important PEL properties is not straightforward. Thermodynamic proper-

ties of simple model glass formers are often unchanged for system sizes greater than

N ≈ 100,216 but errors in dynamical properties can persist to significantly larger

systems.219,220 In this thesis, we focus on systems of size N ∼ O(100) to limit finite

size effects, while allowing reasonably straightforward analysis of the PEL.

1.6.2 Potential Energy Landscapes of Glass Formers

The use of the PEL framework to study structural glass formers has a long history.

The current section is presented broadly in chronological order.
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1.6.2.1 Statistical Theory of Landscapes

The first reference to the PEL in the context of glasses was probably made by

Goldstein,193 who argued convincingly (but without direct numerical evidence) that

dynamics in the supercooled regime are influenced by high potential energy barriers.

Stillinger and Weber made the first quantitative studies of glassy PELs by us-

ing local energy minimisation to map the configurations of a simulated trajectory

onto the corresponding minima of the PEL.194 They described this procedure as

“quenching”, because the mapping is equivalent to relaxation of the system after

instantaneous cooling to absolute zero. Local minima were referred to as inherent

structures (ISs) because they reveal stable positions of particles that are normally

obscured by vibrational motion.194 This name is still common in the glasses litera-

ture.

By examining the properties of consecutive local minima visited in a simulated

trajectory, Stillinger and Weber concluded that elementary rearrangements between

minima usually involve small numbers of atoms.195 They also realised that the num-

ber of minima increases exponentially with system size, and that the waiting time

between minimum-minimum transitions decreases with N .

Finally, they proposed that glass-forming behaviour can be explained by the fact

that the PEL of a supercooled liquid contains a huge number of minima correspond-

ing to amorphous structures, and comparatively few corresponding to crystalline

configurations. Even though the latter are much lower in potential energy, rapid

cooling traps the system in an amorphous region of the landscape, and transition

rates between minima are too small for the system to locate the crystalline region

on the experimental time scale.195

These observations were combined to produce a statistical theory of glassy land-

scapes27,92,221 using the “basin evaluation function”, σb(V ), which is related to SIS.

The theory may also be expressed in terms of the density of minima, gIS(V ), if

one assumes that all basins of attraction have equal curvature. Then the partition

function in the superposition approximation can be written as

Z(T ) =

∫
〈Zα(T, V ) 〉gIS(V ) dV. (1.17)

〈Zα(T, V )〉 is the average value of the partition function for a single minimum at

energy V , which may be obtained using the harmonic approximation with or with-

out anharmonic corrections (see §1.6.1.1) or by numerical methods such as nested

sampling.222,223 Other thermodynamic quantities are straightforward to obtain from

Z(T ).198 Eq. (1.17) must often be solved using a maximum-term approximation for
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the integral in eq. (1.17), but this is often reasonable for macroscopic systems.92,199

Stillinger used the statistical theory to argue that a second-order transition in

which the landscape entropy SIS vanishes, as originally proposed by Adam and

Gibbs, is impossible.92 This scenario corresponds to freezing in the lowest-energy

amorphous minimum, but this concept is actually not well-defined because there

exists a continuous range of minima connecting the amorphous configuration space

with the crystal.213 Stillinger argued that the number of excitations out of this

hypothetical lowest minimum must be at least exponential in the system size, and

that the corresponding excitation energies are linear in N . The density of accessible

minima, gIS(V ), would then have an infinite slope at the energy of the “ideal glass”,

and hence SIS(TK) > 0. Even if a well-defined lowest amorphous minimum did exist,

Stillinger’s argument would not affect more recent thermodynamic theories, since

they are framed in terms of a quasistate complexity Σ, rather than the landscape

entropy.32

Heuer et al. have reported accurate measurements of gIS(V ) for both strong and

fragile glass formers (the BKS model of silica and BLJ fluid, respectively).201,215

They first obtain the distribution of IS energies visited by a simulation, and then

reweight this distribution to remove the Boltzmann factor at each value of V , ob-

taining gIS(V ) up to a constant of proportionality. This constant is eliminated by

performing the analysis at several temperatures, and scaling the distributions for

each so that they overlap. If the anharmonic contribution to the average partition

function 〈Z(T, V )〉 is significantly temperature-dependent, the collapse of the dis-

tributions upon scaling will be poor, so this method provides a simple way to assess

the importance of the anharmonic terms.197

It turns out that gIS(V ) is approximately Gaussian for many supercooled liq-

uids.27,201 This Gaussian behaviour persists to very low energies for BLJ , but for

silica the distribution has a low-energy cutoff where gIS(V ) suddenly drops to a

negligible value.197,215 This cutoff corresponds to the disappearence of coordination

number defects, and it was suggested that increasing the concentration of these

defects is the primary mechanism for exciting the silica system into higher-energy

minima.215 The limit of zero defects therefore represents a lower limit to the energy

of an amorphous configuration. At higher densities of silica the network structure

disappears, and so the concept of a coordination defect is not well defined. At these

densities, there is no low-energy cutoff to gIS(V ).224

The presence or absence of a low-energy cutoff in gIS(V ) turns out to be a key

factor in determining strong or fragile dynamical behaviour for a liquid - see §1.6.2.4.

However, the cutoff is only apparent for small system sizes: when N is large enough
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for non-interacting subsystems to exist, the cutoff in each may have slightly different

values which are averaged out when gIS(V ) is calculated for the whole system.

1.6.2.2 Inherent Structure Trajectories

PEL minima of supercooled liquids are typically sampled using inherent structure

trajectories produced by quenching a molecular dynamics simulation. Sastry et al.225

used this method to prove Goldstein’s assertion that potential energy barriers influ-

ence the dynamics of supercooled liquids. They calculated the average energy, 〈VIS〉,
of inherent structures visited by a system with decreasing temperature. Idealised

results are shown in fig. 1.7.

At mildly supercooled temperatures, most energy barriers are too small to af-

fect the dynamics, and 〈VIS〉 is roughly constant with T . On further cooling the

system enters a landscape-influenced regime225 where barriers to reach some regions

of configuration space are not crossed on the observation time scale, and 〈VIS〉 de-

creases significantly with decreasing T . This regime has been linked to the onset of

super-Arrhenius behaviour in fragile liquids.197

At a sufficiently low temperature (which has been claimed to correspond to the

mode coupling Tc)
123 many potential energy barriers are larger than the thermal

energy, and 〈VIS〉 reaches a plateau. Transitions between minima still occur in this

landscape dominated regime, so the plateau does not correspond to the kinetic glass

transition, but the transitions are much slower and the system is unable to “anneal”,

i.e. cross higher barriers into lower-energy regions, on the simulation time scale. The

plateau value of 〈VIS〉 varies with the cooling rate, because lower rates allow more

time for annealing to occur before reaching the landscape-dominated regime.

Jund and Jullien226 obtained inherent structure trajectories for viscous silica in

which they measured the properties of the SDPs during quenching. At low tem-

peratures, the energy difference and Cartesian distance between an instantaneous

configuration and the corresponding minimum both depended linearly on temper-

ature. At higher T , however, the temperature dependence was much stronger and

the differences between the minimised and unminimised configurations grew rapidly.

This crossover was attributed to the onset of anharmonicity in the PEL basins. In

the case of silica, this temperature coincides quite closely with the “fragile-to-strong

crossover” (see chapter 4), hinting that both these effects may arise from anharmonic

features of the landscape.

Büchner and Heuer227 obtained inherent structure trajectories for a BLJ glass

former at a high time-resolution and low temperature, and found that the inherent

structure energy remains relatively constant for long periods of time, repeatedly
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Figure 1.7: Idealised plot showing how the average energy in an inherent structure trajec-
tory varies with temperature. Three different cooling rates are shown, the rate decreases
in the direction of the arrow.

hopping between a small number of inherent structures. These “immobile” periods

are separated by brief excursions to minima at much higher energies, where no

such revisiting of minima was detected. They concluded that the immobile periods

correspond to exploration of “valleys” on the PEL, and the excursions correspond

to the system crossing high barriers between valleys. This idea was subsequently

developed into a robust definition of metabasins.

1.6.2.3 Energy Metabasins

The idea that some supercooled liquids have PELs with minima organised into

groups, called metabasins, was first proposed by Stillinger221 as an explanation for

the difference between strong and fragile liquids. He took the VTF expression for

the diffusion constant, eq. (1.1), and argued that strong glass formers have TVTF ≈ 0

while fragile liquids have TVTF ≈ Tg. He hypothesised that strong liquids have “uni-

formly rough” landscapes, with many amorphous minima but only a single charac-

teristic barrier height. In contrast, the minima of a fragile liquid were supposed to

be grouped into metabasins, corresponding to landscape funnels. The high barriers

between metabasins would be harder to surmount at low temperatures, producing

a finite TVTF for fragile liquids. Stillinger’s picture is represented in fig. 1.8.

This picture has several problems. Firstly, it assumes that the VTF equation
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Figure 1.8: One-dimensional cartoons showing Stillinger’s speculation for how the PELs
of strong and fragile liquids would differ.

describes the diffusion constant down to very low temperatures, even for strong

glass formers, which is only predicted within the Adam-Gibbs and RFOT theories.

Secondly, the presence of two characteristic barrier heights on the PEL does not

explain why the effective barrier height increases at reduced temperature. However,

the idea of a clear structural difference between the landscapes of strong and fragile

glass formers was appealing, and began a substantial effort to explain and properly

characterise the structure of glassy landscapes.197,228–233

Heuer explained the importance of reversed minimum-minimum transitions using

model single-funnel landscapes with a similar form to fig. 1.6.197 The process of

escaping from a low-lying minimum that is surrounded by higher-energy minima

will involve many reversed transitions, because the downhill barriers are smaller

than the uphill barriers. Therefore, the system may still return to the lower energy
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starting minimum even after many elementary transitions, and hence the waiting

time in an inherent structure is not well correlated to the structural relaxation time.

By considering instead the waiting time within a metabasin that contains both

a low-energy minimum and all nearby higher-energy minima, this problem can be

avoided. All the back-and-forth motion is then contained within the metabasin and

every jump between metabasins contributes to a structural relaxation.197,229,231

Metabasins may be identified by grouping together all sets of minima that are

revisited by the trajectory:197,229

1. For each minimum i, determine the time interval [t∗i , t
†
i ] between its first and

last occurrence in the IS trajectory

2. Calculate the overlap qMB,ij = [t∗i , t
†
i ] ∩ [t∗j , t

†
j] for each pair of minima j > i.

3. If qMB,ij < τmol, truncate the two intervals such that qMB,ij = 0. τmol is an

estimate for the time scale of molecular motion.

4. Otherwise, assign minimum j to the metabasin of minimum i.

Minima that are visited sequentially, without being revisited, each represent a

metabasin with one member. Whenever the trajectory revisits a minimum one

or more times, all the intervening minima are included in the same metabasin.

Using this algorithm, the inherent structures explored by the system are divided

into sets that mutually interconvert easily, here referred to as energy metabasins

(EMBs). By analogy to model funelled landscapes, we expect that each EMB has

a single low-energy minimum surrounded by a group of higher-energy minima. By

definition, transitions between EMBs are unreversed on the time scale of the inherent

trajectory, so the system wanders between EMBs via a random walk.

EMBs are present for both BLJ and silica models,234 implying that the land-

scapes of both models contain two scales of energy barrier, and contradicting Still-

inger’s view that the PEL of the fragile liquid would be more structured than the

strong. The results of chapter 4 will demonstrate that in fact Stillinger’s picture was

partly correct, but the difference between the two types of landscape is quantitative

rather than qualitative and more subtle than he envisaged. This conclusion is in

agreement with recent numerical work not based on the PEL description.235,236

Other methods exist for defining metabasins, one of which will be described

in detail in §1.7 and used throughout this thesis. A third approach uses the dis-

tance matrix,237 ∆(t′, t′′) = 〈|ri(t′′)− ri(t
′)|2〉. Metabasins are indicated by intervals

[t′, t′′] for which ∆(t′, t′′) is small, indicating proximity in configuration space. The

metabasins defined by this approach are compact, contradicting the string approach
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described in §1.3.3.238 Their boundaries are sharp, indicating that metabasin tran-

sitions are abrupt in real space as well as in configuration space.

1.6.2.4 CTRW for Metabasins

The EMB definition is trajectory-dependent: different inherent trajectories across

the same landscape might produce different sets of EMBs. However, the average

properties of the EMB energy distribution gMB(V ), the jump length distribution, and

the waiting time distribution all seem to be unchanged when multiple simulations

are compared.197 Measuring these properties allows the calculation of observable

quantities.

The CTRW model used previously for single-particle jumps has also been applied

to EMB transitions. This method requires that jumps between EMBs are uncorre-

lated, both in waiting time and configuration space, which seems to be true for the

simple glass formers studied so far.230,231,239,240 Elementary minimum-to-minimum

transitions, on the other hand, are negatively correlated in space, and the size of

the correlations is temperature-dependent.197,241

The CRTW model predicts that D(T ) ∝ 1/τMB, the average metabasin waiting

time. Fitting an idealised form for gMB(V ) to the simulation data allows these

quantities to be calculated. It turns out that a purely Gaussian gMB(V ) (as observed

for BLJ) gives super-Arrhenius behaviour of D(T ), but a Gaussian with a low-energy

cutoff (e.g. silica) produces Arrhenius temperature dependence.197,215 Hence, the

difference between strong and fragile liquids arises directly from the PEL.

Stokes-Einstein violation, stretched-exponential relaxation, and the form of the

van Hove correlation function are all predicted by the EMB CTRW approach.197,242,243

This model gives a remarkably complete description of supercooled dynamics.

1.6.2.5 Structure of the PEL

The main subject of this thesis will be the elucidation of higher-order structure in

the PELs of supercooled liquids. To aid in the subsequent discussion I will briefly

summarise the key results from earlier work.199,228,232,244

The number of minima on a glassy landscape is exponential in the system size

N ,4,196,197 and the vast majority of these minima correspond to amorphous struc-

tures. Usually there will also be one or more low-energy regions of the landscape

which correspond to crystal structures. One example of a pathway between such

a crystalline region and the amorphous region has been characterised.213 The crys-

talline regions have low entropy and the energy barriers to reach them are large, so
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crystallisation in glass-forming liquids is slow and easily avoided by simulation and

experiment.

Outside the crystalline region, the PEL of a supercooled liquid is highly “frus-

trated”: it contains many competing low-energy minima separated by barriers that

are comparable with kBT in the supercooled region.193,197,233 The distribution of lo-

cal minimum energies and barrier heights is broad, and the landscape is not globally

funnelled.233,245

Single-funnel landscapes permit efficient relaxation to the global minimum, whereas

frustrated landscapes do not. A metric for landscape frustration was recently pro-

posed,246 based on databases of stationary points, which quantified the greater frus-

tration of glassy landscapes compared with most proteins and atomic clusters.

A significant development over the past two decades has been the recognition of

local structure in glassy landscapes. Following Heuer’s work on metabasins, an alter-

native definition using both geometrical and dynamical information was proposed

by de Souza and Wales.233 This method is discussed in §1.7.3. Both definitions

require that transitions between minima within a metabasin are reversible, while

transitions between metabasins are irreversible. It is now clear that metabasins are

present in the PELs of both strong and fragile glass formers.234,245

Both metabasin definitions correspond roughly to local funnel structures on the

PEL, as introduced in §1.6.1.4. Disconnectivity graphs for the BLJ fluid233 indicate

that glassy landscapes contain a large number of funnels corresponding to different

low-lying amorphous structures. Presumably the lowest minimum in each funnel

corresponds to a locally-optimal disordered arrangement of atoms, and the higher-

energy minima consist of relatively small perturbations of that arrangement.

The presence of local funnels indicates hierarchical ordering of the PEL minima.

A major aim of this thesis will be to investigate characteristics of this ordering, in

particular its generalisation to other types of glass former.

1.6.2.6 Alternative Characterisations of the PEL

The discussion of PELs has focussed upon properties of minima and transition states,

since these encode the equilibrium thermodynamics and dynamics of the system. For

completeness, two contrasting approaches to the PEL will now be mentioned. These

methods are not used in this thesis, for reasons that will be made clear.

The first approach is to consider the properties of all stationary points, not just

minima and transition states. These points are obtained from a simulated trajectory

by minimising the auxiliary function W (X) = 1
2
|g(X)|2.247 The Hessian index of

each configuration is calculated to classify it.
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The mean Hessian index is large at high T , indicating that the system samples

high-energy configurations near to saddle points. At low T , the average Hessian

index is near to 0, i.e. configurations near minima now dominate the structural

ensemble. Linear extrapolation suggests that the average index reaches 0 at Tc, the

MCT critical temperature,248 but in fact the index continues to follow an Arrhenius

law at lower temperatures so this extrapolation is misleading.197,229

Various “universal” relationships have been reported249 connecting dynamical

properties (such as the activation energy of diffusion) to properties of the stationary

points. However, the sample of stationary points obtained by minimising W will

inevitably include many high-order saddles. The Murrell-Laidler theorem tells us

that such saddles must always lie higher in energy than the minimum energy barrier,

therefore their contribution to the dynamics must be small, and the theoretical basis

underlying the use of these configurations is questionable.

Another, qualitatively different, approach to studying the PEL is the instan-

taneous normal mode (INM) theory. Normal modes for a liquid are given by the

mass-weighted eigenvectors of H(X) evaluated at a minimum. INMs are obtained by

performing the same operation at a configuration that is not a stationary point,250,251

and therefore include some negative eigenvalues corresponding to unstable directions

on the PEL with imaginary vibration frequency.

INM theory attempts to relate dynamical quantities such as D(T ) and relaxation

times to the density of states of these unstable modes (or “free directions”).251

Equilibrium static properties are obtained from the density of states for the stable

modes.250

Assumption of a locally harmonic PEL is inherent in the INM approach, which

is unlikely to be true away from energy-minimised configurations. It was suggested

that this problem might be mitigated by identifying and discarding so-called “shoul-

der modes”, i.e. INMs that arise from anharmonicities rather than pointing towards

a saddle point.251,252 The other significant problem with the use of INM theory is

that not all minimum-minimum transitions contribute significantly to diffusion, and

therefore not all free directions are relevant to long-time dynamics.

Neither the INM approach nor the use of higher-index saddles can provide the

same insight into supercooled dynamics that can be obtained from analysis of local

minima and transition states.
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1.6.3 Outlook

The PEL concept as a quantitative tool has declined slightly in popularity in recent

years,79 because it is framed in terms of configuration space and not real space,

which leads to difficulties in accounting quantitatively for dynamic heterogeneity,98

and because static length scales associated with the PEL do not seem to grow with

decreasing temperature.73

However, heterogeneities in the PEL/EMB framework arise naturally from de-

composition of the liquid into non-interacting subsystems, each of which explores a

different region of the PEL with a different average mobility. Even a simple model

with two subsystems, that can each occupy either a fast state or a slow state, is

sufficient to produce the expected Stokes-Einstein violations.197

Heuer has suggested that decreasing the temperature causes the mobilities of

adjacent subsystems to become increasingly correlated,197,218 due to exchange inter-

actions between them. In this case, the subsystems are no longer really independent

and it may be more appropriate to describe this effect as a growth of the subsys-

tems with decreasing temperature. The subsystem size is therefore a growing static

length scale.

The energy landscape framework holds a unique position among theories of the

glass transition in that many of the other methods described in this chapter may

be described using PEL concepts. This universality of the energy landscape idea

offers the possibility of a bridge between several of the different approaches, using

Goldstein’s original principle supercooled liquids are strongly influenced by potential

energy barriers. A major ongoing task is to use PEL methods to find connections

between different theories, and to validate or falsify some of the numerous alternative

models.

1.7 Diffusion and Energy Landscape of a Fragile

Atomic Glass Former

Much of the work presented in this thesis follows on from the efforts of de Souza

and Wales, who conducted an extensive study of the dynamics and PEL of the Kob-

Andersen binary Lennard-Jones (BLJ) fluid10 - probably the most popular atomic

model fragile glass former.

Kob-Andersen BLJ is an 80:20 mixture of large A atoms and small B atoms,

which interact via the 12-6 Lennard-Jones potential253 that provides a crude model

for dispersion interactions and short-ranged repulsion. The A-B interaction is stronger
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than the A-A or B-B interactions, to prevent phase-separation and therefore pro-

mote glass formation. On the simulation time scale crystallisation may safely be

neglected for the densities and temperatures considered here. Full details of the

potential and simulation conditions can be found in the original papers.26,254,255

Part of the motivation for this project was to establish whether the conclusions

reached for BLJ also apply to other types of glass former. For ease of reference

in subsequent chapters, the important conclusions of the BLJ study will now be

reviewed.

1.7.1 Correlation Effects in BLJ Diffusion

The first part of the BLJ study investigated the timescale dependence of the self-

diffusion constant D(T ).26,254,255

The diffusivity was evaluated over short time intervals of length τ (see chap-

ter 6 for details). This quantity neglects correlations in particle motion between

different time intervals, with the surprising result that super-Arrhenius temperature

dependence of the diffusion constant disappeared.254,255 On short time scales, the

liquid experiences a constant free energy barrier to diffusion, producing Arrhenius

behaviour. As the observation time τ increases, increasing negative correlations of

the particles’ displacement causes the diffusion constant to decrease, and hence the

apparent activation barrier increases.

It turns out that only correlations between adjacent short time intervals are

significant, which allows the correlation effect to be quantified.254,255 A first-order

correction term was obtained, that reintroduces this average correlation to the short-

time diffusivity. The correction term is simple to compute from short MD trajecto-

ries and is quite effective, allowing the long-time diffusive behaviour of BLJ to be

approximated from short, non-ergodic simulations.

The success of the correlation correction method is convincing evidence that

negative correlation of particle displacement vectors over short time intervals is

responsible for super-Arrhenius curvature of the diffusion constant. The next stage

of the investigation was to examine the source of this correlation behaviour.

1.7.2 A Geometric Definition of Cage Breaks

Reviewing the standard plot of mean squared displacement against time, fig. 1.2, the

time regime in which reversals of particle direction are most expected is the caging

plateau. Diffusive motion only occurs on a time scale long enough for particles to

break out of their nearest-neighbour cages. At low temperatures, this process can
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be very slow.

De Souza and Wales proposed a microscopic definition of a cage-breaking rear-

rangement for BLJ, using only the initial and final configurations of the system.233

These configurations are first mapped onto local minima of the PEL to remove the

effects of vibrational “rattling” motion.

Since each molecule resides in a cage made by its nearest neighbours, the defini-

tion of a cage-breaking process must involve changes to these neighbours. For BLJ,

atom j is a nearest neighbour of atom i when |rj − ri| < rNN(α, β). Here α and β

are the atom types of i and j. rNN(α, β) is the position of the first minimum in the

radial distribution function (RDF) for atom types α and β.233 Since the RDF has a

small value either side of rNN(α, β), the nearest-neighbour shell is well defined.

A cage break (CB) is defined as a rearrangement where an atom loses or gains

two nearest-neighbours. This requirement ensures that when a single atom moves,

it can only produce a single cage break.

To prevent small movements of neighbours near the edge of the nearest-neighbour

shell from being registered as neighbour changes, a displacement cutoff dc(α, β) is

used. dc(α, β) is set equal to the equilibrium pair separation of two atoms of types

α and β.

Consider a rearrangement (elementary or otherwise) in which a nearest neighbour

j of atom i moves to a new position r′j. The neighbour is only considered lost if

|r′j − r′i| > rNN(α, β) and also |r′j − rj| > dc(α, β). For a nearest neighbour k to be

gained, we require |r′k − r′i| < rNN(α, β) and |r′k − rk| > dc(α, β).

To analyse diffusion, cage breaks are identified in an inherent structure trajectory.

Each molecule is classified as either cage-breaking or non-cage-breaking for each

pair of consecutive minima. An effective cage-breaking diffusion constant can be

calculated:

DCB(T ) =
1

6t

N∑

i

1

NCBs,i

NCBs,i∑

j∈CBs

∆r2i,j, (1.18)

where the index j runs over the list of cage-breaking jumps made by atom i. NCBs,i

is the number of cage breaks made by i and ∆ri,j is the displacement vector of i in

its jth cage break.

DCB(T ) was found to overestimate D(T ) quite significantly, and also fails to

reproduce super-Arrhenius behaviour. This is because DCB(T ) neglects negative

correlation in ∆ri,j. This correlation is accounted for by identifying and discarding

all CBs that are immediately reversed. Reversals can be “direct”, meaning that

the molecule returns to its original cage via a second CB, or “indirect” where the

return step is by one or more non-cage-breaking transitions. Direct reversals were
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identified when the total squared displacement for a particular particle after two

consecutive CBs was less than drev = 10−5 σ2
AA.233 Indirect reversals were identified

when the total squared displacement after two consecutive CBs was identical within

drev to the squared displacement in either of the individual CB events. This scenario

indicated that the atom returned to its original position during the interval between

the two CBs, and hence that a non-cage-breaking reversal took place.

A CB that is not subsequently reversed is called productive. Dprod(T ) is defined

by eq. (1.18) with the sum in j restricted to run over productive CBs only. Dprod(T )

was found to approximateD(T ) quite well, especially at low temperatures, indicating

that productive CBs provide a good description of the transport processes involved

in long-time diffusion. The geometrical cage-breaking approach is an efficient and

comparatively simple method for identifying important local rearrangements.

At lower temperatures, cage-breaking transitions become less common because

they are associated with high energy barriers (see §1.7.3). Additionally, reversal

events become more likely at lower temperatures because the caging particles rear-

range more slowly following an escape of the central particle, so that immediately

returning to the original position is energetically and entropically favourable. Since

productive cage breaks dominate the diffusion constant, reduced frequency of cage

breaks and increased reversal probability at lower temperature increases the effective

energy barrier to diffusion and leads to super-Arrhenius behaviour.112

Cage-breaking analysis yields a simplified microscopic description of diffusion in

BLJ that complements the coarse-grained picture provided by short-time diffusion

constants. These two methods give similar explanations for the origin of super-

Arrhenius behaviour in this system.

1.7.3 Cage Breaks on the PEL

Beyond their dynamical significance, de Souza and Wales showed that cage breaks

are fundamentally linked to the structure of the BLJ potential energy landscape.

Transition states in a PEL database may be classified as either cage-breaking, if

one or more atoms undergo a CB during the transition, or non-cage-breaking if no

atoms break their cages.

Energy barriers that pass through a cage-breaking transition state are system-

atically larger than non-CB barriers,233 which explains why CB motion dominates

diffusion at low T : crossing the high CB barriers becomes the limiting factor in

transport across the energy landscape.

It turns out that removing cage-breaking transition states splits the stationary

point database into many small disconnected fragments, most of which are confined
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to a single funnel on the PEL. This fragmentation indicates that cage-breaking

motion is necessary to traverse the entire landscape, and in particular it is necessary

to cross between funnels. In contrast, removing non-cage-breaking transition states

has almost no effect on the connectivity of the landscape and all local funnels remain

connected. Cage-breaking motion is therefore sufficient to traverse all important

regions of the PEL.

The landscape databases used in this study were produced by finding discrete

paths of transition states and intermediates between each pair of consecutive minima

in an inherent trajectory (see §2.2.1 and §2.2.2 for details). This procedure preserves

the time-ordering of minima and transition states visited by the system, so that re-

versed cage breaks can be identified. CB rearrangements are then classified either

as productive transition states, in which no cage-breaking atoms undergo any rever-

sals, or as unproductive transition states in which at least one CB is subsequently

reversed.

It turns out that most of the cage breaks within local funnels are easily reversible.

Therefore removing the productive CB transition states causes the landscape to

fragment into regions that closely match the landscape funnels visible on a discon-

nectivity graph (see §2.2.4). This result is significant for several reasons. Firstly,

productive cage-breaking transition states represent the first simple numerical tool

capable of defining a funnel structure on a disconnectivity graph, and hence provide

direct evidence of hierarchical structure on the PEL.

Secondly, the regions of the landscape whose boundaries are defined by produc-

tive cage breaks seem to be analogous to the metabasins detected by Heuer and

others, which are also hierarchical structures of minima.229,230,238 A key character-

istic of metabasins is that transitions between them are not reversed on the obser-

vation time scale, which is also true of productive cage breaks. Productive cage

breaks therefore allow diffusion to be described as a random-walk process between

landscape funnels: a potentially powerful theoretical description of glassy dynamics.

The diffusion constant of BLJ has been estimated from a random walk model using

only the average CB waiting time and proportion of reversed cage breaks - both

local quantities that can be determined from short simulations.

A useful attribute of the cage-breaking definition of metabasins is that the impor-

tant jumping process is identified for a single particle. This opens the possibility to

detect metabasin transitions in large simulated systems, whereas the EMB definition

becomes increasingly difficult to apply when multiple subsystems are present.218
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1.7.4 The Role of Connectivity

To obtain a more rigorous quantitative explanation of the entropic barrier that

promotes reversals of particle motion at low temperatures, de Souza and Wales

studied the effective connectivity of local minima as a function of temperature.256

They performed extensive local sampling of the PEL using short microcanonical

MD trajectories originating at a local minimum, and recorded the first minimum

visited by each trajectory which was separated from the starting point by a cage

break. From these simulations, they estimated the number of cage-breaking routes

out of each minimum, which depends strongly on the temperature because many

fewer diffusive routes are available at low temperature than high.

An “effective connectivity” for each minimum was obtained by combining the

number of CB connections with the probabilities of taking each escape route. The

decrease of this quantity with T causes super-Arrhenius behaviour, although it is

unclear whether this effect completely accounts for the anomaly observed for D(T )

in BLJ.

The temperature dependence of effective connectivity is affected by the density

of the fluid, which correlates with the fragility in BLJ. Number densities of 1.1 and

1.3σ−3AA were compared, and it was found that the connectivity decreases much faster

with T in the more fragile system, consistent with this decrease being a cause of

super-Arrhenius behaviour.

The result of this study is a coherent, simplified picture of diffusion in BLJ, which

describes the origin of super-Arrhenius transport behaviour using the three concepts

of cage breaking rearrangements, negative correlation of displacement vectors, and

connectivity on the potential energy landscape. A major objective of this project,

which is the subject of chapters 3, 4 and 6, was to take the conclusions of the BLJ

study and determine whether they apply to other model glass formers.
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Chapter 2

Methods

Exploring the configuration space of model glass formers is a common theme through-

out this thesis. Two principle methods are used for this exploration: molecular dy-

namics simulation, which attempts to replicate true dynamic behaviour and which

can generate an unbiased ergodic sample of the available configuration space if run

for sufficiently long times, and energy landscape exploration, which is explicitly

guided by the details and structure of the PEL to obtain a simplified mathematical

description of dynamics and thermodynamics.

In this chapter, several important tools within these two approaches are intro-

duced and explained. The focus is on methods that sample configurations, rather

than methods of analysing those configurations. Details of the analysis methods are

presented in the appropriate results chapters.

2.1 Molecular Dynamics

Molecular dynamics (MD) simulation is one of the most common approaches to

model properties of a physical system, and by far the most common method to

simulate atomistic dynamics.257 There are many different MD protocols, which have

been extensively discussed and compared.39,258–260

2.1.1 Fundamentals of Molecular Dynamics

Classical dynamics are governed by Newton’s equations of motion, particularly the

second law:

mir̈i = −gi(X) = −∂ V (X)

∂ ri
, (2.1)

where mi and ri are the mass and position of particle i, V (X) is the potential energy

for the system configuration X = {ri} and g(X) is the gradient of V . All of the
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potential energy functions used in this thesis are pairwise additive and isotropic, i.e.

V (X) =
N∑

i

N∑

j>i

Vij(|ri − rj|), (2.2)

where Vij(r) is a pair potential acting between atoms i and j.

Eq. (2.1) determines the instantaneous acceleration of each particle. In principle,

continuous integration of this equation with respect to time, starting from initial

conditions X(t = 0) and Ẋ(t = 0), would generate the correct classical motion of

the system.

In practice, MD programs perform numerical integration in discrete time steps,

solving eq. (2.1) for r̈i at time t and hence calculating the positions and velocities of

each particle at time t+ ∆t. This process is repeated many times, and the resulting

time series of position and velocity vectors consitute an MD trajectory. The timestep

∆t is the most important parameter of an MD simulation, and must be significantly

smaller than the period of the fastest process being studied, if the dynamics are to

be described correctly.

There are many different numerical integration schemes employed by MD pack-

ages.261–264 In this thesis the velocity Verlet integrator258,261,262 is used to simulate

atomic systems (BLJ and silica). The equations used to update the system are:

ri(t+ ∆t) = ri(t) + ∆tvi(t) +
∆t2

2mi

Fi(t)

vi(t+ ∆t) = vi(t) +
∆t

2mi

[Fi(t) + Fi(t+ ∆t)], (2.3)

where Fi(t) = −gi(t) is the force on atom i at time t, and vi(t) = ṙi(t) is the velocity

of i.

Numerical errors arising from discrete time integration can cause slow drift in

quantities that should be conserved, such as the total energy.39,259 Different inte-

gration schemes have different magnitudes of drift. Good integrators respect time-

reversal symmetry and are symplectic - i.e. they conserve the areas of shapes in

phase space during time integration and thus obey Liouville’s theorem.258 Velocity

Verlet satisfies both conditions.258

MD simulation is simple to implement, can be made very efficient, and generates

very complete information about the system. However, two major approximations

limit its usefulness. The first is that Newton’s equations neglect quantum dynamical

effects such as delocalisation and tunnelling. Fortunately, these effects are unimpor-

tant for most structural glasses, since the particles involved are too heavy, and the
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temperatures too high, for quantum effects to be significant.

The second major approximation of MD is the use of discrete time to solve the

equations of motion. MD algorithms with finite ∆t suffer from “Lyapunov instabil-

ity”, i.e. two trajectories with nearly-identical initial conditions will diverge expo-

nentially over time.39,259 Consequently, MD simulations should not be considered to

reproduce uniquely the correct dynamics, but instead they generate representative

possible trajectories in configuration space that the system might follow.

Despite these problems, MD trajectories are widely used to investigate dynamic

behaviour. They can also be used to compute static equilibrium properties by virtue

of the ergodic hypothesis, which states that in the long time limit a system visits

all of its accessible microstates with equal probability.258 If ergodicity is satisfied,

the time average of any dynamic variable over the trajectory will be equal to the

equilibrium ensemble average. A long MD trajectory with constant total energy E

will sample all configurations that are accessible without crossing barriers greater

than E. A density of states can then be calculated for this configuration space.258

Methods for confirming whether the trajectory being used is long enough to calculate

average properties are discussed in §2.1.4.

2.1.2 Practical Considerations

The simplest MD algorithms generate configuration space samples that correspond

to the microcanonical ensemble - conditions of constant system size, volume and en-

ergy. Using the equipartition principle,259,265 the instantaneous kinetic temperature

may be calculated according to

T (t) =
1

3kBN

N∑

i=1

miv
2
i (t). (2.4)

In general, one is interested in properties of systems at constant temperature rather

than constant energy. In moderately supercooled liquids, T (t) is often quite con-

stant, so microcanonical simulation is sufficient for a reasonable description of dy-

namics and thermodynamics.

For more complex energy landscapes, T (t) may vary considerably in which case

the MD algorithm must be extended to generate the canonical ensemble, which

replaces constant energy conditions by constant temperature. This ensemble is

enforced using a stochastic algorithm to adjust the total energy, such as the Ander-

sen266 or Nosé thermostats.267,268

The computational cost of an MD simulation depends strongly on the system
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Simulation Cell

(a) Illustration of PBCs. Every image
of the blue atom moves between images
of the simulation cell. The number of
atoms in each cell is conserved.

i

j
r > rc

r < rc

rc < L/2

L

(b) The truncation radius rc must
be small enough that the interaction
spheres for the different images of atom
i do not overlap.

size N (since evaluating a naive pairwise potential scales as N2). Condensed-phase

systems containing O(1023) particles are represented using periodic boundary con-

ditions (PBCs): explicit simulation is confined to N atoms in a primary simulation

cell (which in our case is cubic with side length L), and the complete liquid is

represented by infinitely many identical copies of this cell, tiling three-dimensional

space.

When a particle passes out of the primary simulation cell through one of its walls,

another copy (or “image”) of the same particle simultaneously enters the simulation

cell with identical velocity through the opposite wall - see fig. 2.1a. PBCs are

efficient and simple to implement, but they impose limits on the potential: to avoid

double counting, the pair potential Vij(rij) must therefore be truncated at a distance

rc < L/2 (see fig. 2.1b). If Vij(rc)� 0, this truncation can cause discontinuities and

serious inaccuracies in V (X).

Initial conditions for MD simulation of glasses are often obtained by starting

from a periodic lattice structure with random particle velocities, and performing an

initial MD run at high temperature, to break up the lattice and reach a liquid-like

structure. The main MD run begins from this liquid configuration, and further

configurations are saved every n time steps.
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2.1.3 Molecular Dynamics of Rigid Bodies

The model of ortho-terphenyl (OTP) studied in chapter 3 is a rigid molecule com-

posed of triangles of atoms with fixed internal geometry. There are two possible ways

to treat this system in an MD simulation. Each atom may be simulated explicitly,

with molecular geometries enforced by additional constraints added to the equations

of motion - for example the SHAKE269 and RATTLE270 algorithms. Alternatively,

each molecule may be treated in the equations of motion as a single particle with

its position and orientation described by a set of generalised coordinates. The po-

tential energy evaluation is the only part of the simulation that takes account of the

positions of individual atoms.

The second approach is used in this thesis, because it is computationally cheaper

and more compatible with geometry optimisation methods (see §2.3). Constant

temperature MD simulations of OTP were performed using a program written by

Dr Dwaipayan Chakrabarti. The discrete-time numerical integrator used in this

program was developed by Okumura et al.271 for canonical ensembles of rigid body

particles. The position of the rigid bodies is specified by centre-of-mass Cartesian

coordinates. The orientation is specified by quaternions, because of their numerical

stability.272

The algorithm combines a symplectic integrator with the Nosé-Poincaré thermo-

stat, leading to a complicated Hamiltonian that depends on positional, orientational

and thermostat degrees of freedom. Okumura et al. provide equations of motion to

update the values of each of these components in discrete time steps.

2.1.4 Determining Local Ergodicity

As explained in §2.1.1, computing static equilibrium properties of a system requires

an ergodic trajectory. However, supercooled liquids are never truly ergodic, since

this would require exploring the entire configuration space - including the crystal

region. Simulations of a model glass former should therefore achieve local ergodicity:

complete exploration of the liquid-like regions of the potential energy landscape so

that a time average over the trajectory corresponds to an ensemble average over this

restricted phase space.4,26

Often, local ergodicity is assumed when the simulation time exceeds 10 τα −
100 τα, the slowest structural relaxation time. Where possible, we have used more

rigorous methods to test local ergodicity: the Mountain-Thirumalai energy fluctua-

tion metric26,273 and the non-Gaussian parameter for translational displacement.254,274
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2.1.4.1 Mountain-Thirumalai Fluctuation Metric

The energy fluctuation metric is defined as:273

Ω(t) =
1

N

∑

α

Nα∑

j=1

[εj(t;α)− ε̄(t;α)]2, (2.5)

where ε̄(t;α) =
1

Nα

Nα∑

j=1

εj(t;α)

and εj(t;α) = t−1
t∫

0

Ej(t
′;α)dt′.

α denotes the particle type in multicomponent systems (e.g. α = Si or O in silica).

Ej(t;α) is the energy of the jth particle at time t: kinetic energy plus half of each

pairwise potential term involving j. εj(t;α) is the time average of Ej(t;α), and

ε̄(t;α) is the α-particle average of εj(t;α).

Ω(t) measures how far the time-averaged energies of individual particles deviate

from the ensemble average, which need not cover the entire configuration space.

Ω(t) vanishes at long times for any trajectory which is ergodic within a particular

region.

We diagnose a locally ergodic trajectory when Ω(t)/Ω(0) < 0.01.275 However, we

also follow de Souza and Wales’ argument that any trajectory for which Ω(t) tends

to a non-zero value, no matter how small, is not locally ergodic.26 Therefore, if any

trajectory reaches a plateau in Ω(t) we continue the simulation until Ω(t) is once

again decreasing.

Fig. 2.2 shows the decay of Ω(t)/Ω(0) for OTP trajectories at several temper-

atures. The curve for the 260 K trajectory remains significantly higher than the

others and decays at a slower rate. This trajectory may not be locally ergodic, so

results arising from it will be treated with caution.

2.1.4.2 Non-Gaussian Parameter

An alternative test of local ergodicity, that measures very different properties to the

energy fluctuation metric, uses the non-Gaussian parameter:274

α2(t) =
3〈|ri(t)− ri(0)|4〉
5〈|ri(t)− ri(0)|2〉2 − 1. (2.6)

As usual, ri(t) is the position vector of particle i at time t, and 〈...〉 denotes an

average over particles and time origins.
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Figure 2.2: Mountain-Thirumalai fluctuation metric plotted against inverse time for MD
trajectories of OTP at several temperatures. tmax is the total simulation time.

α2 quantifies the deviation of particle displacements from the Gaussian distri-

bution expected for isotropic diffusion. At long times, α2 decays to 0 for ergodic

trajectories. At very short times, particles move ballistically, so motion is homoge-

neous and α2 = 0 again. Between these limits there is heterogeneous behaviour due

to the cage effect, and α2 reaches a maximum.70,254,255

Fig 2.3 shows the time variation of α2 for several OTP simulations. All trajec-

tories decay towards zero at long times, suggesting local ergodicity, but the three

lowest temperatures reach a non-zero plateau for which there is no clear interpre-

tation. At short times all trajectories adhere to a master curve, α2 ∝ t
1
2 , which

indicates the extent of the caging region. Departure from the master curve occurs

later at lower temperatures, reflecting increased difficulty in escaping cages. As-

signing local ergodicity on the basis of α2(t) is not straightforward, but the small

value of the parameter at long times suggests that all of these trajectories are locally

equilibrated.

The α2 parameter probes the dynamics of the system, rather than the extent to

which its configuration space is explored. For that reason, the Mountain-Thirumalai

metric was preferred for diagnosing local ergodicity, although this was often con-

firmed using α2(t).
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Figure 2.3: Non-Gaussian parameter plotted against time (in dimensionless units) for
MD trajectories at several temperatures. A master curve α2 = c

√
t is also shown, where

c ≈ 0.1, which fits the short-time data for all temperatures.

2.2 Potential Energy Landscape Exploration

Knowledge of every stationary point of a PEL would tell us most properties of the

corresponding system. However, the number of these stationary points is exponential

in N ,4,196,197 and generally much too large for exhaustive exploration. Instead,

geometry optimisation methods aim to generate a representative sample of local

minima and transition states.

Identifying local minima of V (X) is fairly straightforward (see §2.2.1) but ob-

taining an unbiased and meaningful sample of different regions of the landscape can

be challenging. Transition states are much harder to locate numerically. Since the

methods used to locate these two types of configuration are rather different, they

will be discussed separately.

The landscape studies in this thesis were all carried out using the Cambridge

Energy Landscapes Software package (CELS), which comprises the three Fortran

programs GMIN,276 OPTIM277 and PATHSAMPLE,278 or using the Python Energy Land-

scape Explorer (PELE).279

2.2.1 Identifying Local Minima

Local minima of V (X) are easily identified by applying the L-BFGS algorithm to

a starting configuration. L-BFGS (the limited memory Broyden-Fletcher-Goldfarb-
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Shanno algorithm)280,281 is a very efficient quasi-Newton opimisation method that

requires only the first derivatives of the objective function, but which uses a numer-

ical estimate of the curvature to accelerate convergence.282

The method of choosing configurations to minimise is very important. There are

several approaches to generate a meaningful sample of minima,195,283–285 which are

each suitable for addressing different problems.

To describe the diffusion dynamics of a model glass-former (chapters 3 and 4) we

wish to sample the same minima that the diffusing system explores. This sampling

is achieved by first generating a locally ergodic MD trajectory, then applying the

L-BFGS algorithm to configurations extracted from the trajectory at regular inter-

vals of simulated time. This process is known as quenching. The resulting series

of minimized configurations is known as an inherent structure trajectory (or simply

inherent trajectory) after Stillinger and Weber.195 The process is shown schemat-

ically in fig. 2.4. Because the original MD trajectory was (locally) ergodic, the

minima contained in the inherent trajectory constitute an equilibrium sample of the

configuration space accessible to the supercooled liquid.

The PEL is temperature-independent object, but the inherent trajectory ap-

proach can depend quite strongly on the temperature of the original MD trajectory,

since systems at different temperatures may explore different regions of the PEL.225

At low temperatures, the system may reside in each basin of attraction for long

periods of time, hence many successive quenches lead to the same local minimum.

The limitation of the inherent trajectory approach is that sampling of the land-

scape can only be as complete as the original MD trajectory, and that obtaining

locally ergodic trajectories at low temperatures may be very expensive. Methods

that rely entirely on geometry optimisation can be significantly more efficient than

MD-based sampling.

2.2.1.1 Basin-hopping Global Optimisation

The principal geometry optimisation method for obtaining local minima is basin-

hopping global optimisation,284 which is a stochastic method that explores a trans-

formed landscape. It does not aim to sample the equilibrium distribution of minima

gIS(V ), nor does it attempt to represent true dynamics of the system. Instead, basin-

hopping is an efficient method for locating low-energy PEL minima, particularly the

global minimum.

The basin-hopping transformation is equivalent to applying L-BFGS minimisa-

tion to every point in configuration space, Ṽ (X) = min{V (X)}. This transfor-

mation removes all downhill energy barriers between minima, so basin-hopping is
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(a) Choropleth of model 2D landscape
(darker colour indicates lower energy)
with three local minima. The black line
indicates an MD trajectory. Black circles
indicate configurations to be quenched.
Dashed red lines indicate the boundaries
of the basins of attraction.

13

14

14

(b) Model 2D landscape with inher-
ent structure trajectory shown in red.
Dashed red lines indicate the boundaries
of the basins of attraction. The numbers
indicate how many quenches map to each
local minimum.

Figure 2.4

more efficient than MD for seeking out low-energy regions of the landscape. The

transformation is shown schematically in fig. 2.5.

In practice, we do not transform the entire landscape, but only the sequence

of configurations visited by the algorithm. Each basin-hopping step consists of a

structural perturbation followed by energy minimisation to identify a local minimum.

This new minimum is accepted with probability given by the Metropolis criterion,

min{1, exp (−∆E/Tbh)}. min indicates the minimum of the two arguments, ∆E is

the energy change from the last-accepted minimum to the new minimum, and Tbh

is a fictitious “temperature” used to control the acceptance rate.

If the new minimum is accepted, it is stored in a database and the next basin-

hopping step begins at this configuration. If the minimum is rejected, it is not stored

and the next step starts from the last-accepted minimum.

The basin-hopping algorithm does not obey detailed balance between minima

unless all basins of attraction have equal volume in configuration space. Instead,

exploration is deliberately biased towards the most important low-energy minima,

and those with the largest basin volumes.

We denote the distribution of minima obtained from basin-hopping by ρIS(V ).
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Figure 2.5: Schematic of the basin-hopping landscape transformation. The true landscape
is shown in black, as a function of distance along an (arbitrary) trajectory in configuration
space. The dashed blue line represents the transformed landscape Ṽ (X). The red arrows
A and B represent energy barriers from minimum 1 to the global minimum 0. Arrow A
corresponds to the barrier in V (X), B corresponds to the barrier in Ṽ (X). Arrow B is
smaller, hence the transformed landscape is easier to explore.

Without normalisation, ρIS(V ) ≤ gIS(V ), and gIS(V ) = 0 =⇒ ρIS(V ) = 0. For a

sufficiently long basin-hopping calculation, we expect that ρIS(V ) ≈ gIS(V ), partic-

ularly at low V .

The structural perturbation used to generate new minima is normally a random

perturbation for each component of X, selected from a uniform distribution on

[−∆x,∆x], where ∆x is the maximum step size parameter.

Both ∆x and Tbh may be varied during the calculation so that the rate at which

new minima are accepted remains roughly constant. Typically, ∆x is linked to the

fraction of basin-hopping steps that generate a trial minimum different from the

last-accepted minimum. ∆x is increased when this fraction is smaller than a pre-

defined limit, or decreased when the fraction is larger than that same limit. Tbh is

varied in the same way to maintain a constant acceptance rate of the Metropolis

criterion, typically around 50%.

2.2.1.2 Parallel Tempering Basin-hopping

Basin-hopping may not be sufficient to explore a complex PEL with many funnels.

The algorithm will usually search downhill within a funnel rather than jumping to a

different funnel, and may therefore miss the global minimum. This problem can be
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avoided by increasing Tbh so that high-energy minima are accessible, but then the

algorithm may not explore the lowest-energy minima in each funnel, and a major

advantage of basin-hopping is lost.

To achieve effective exploration of many funnels without compromising the search

for low-energy minima, parallel tempering basin-hopping (PTBH) may be employed.286

Similar to conventional parallel-tempering simulations,39 Nr replicas of the basin-

hopping calculation are propagated independently with different basin-hopping tem-

peratures {Tbh,1, Tbh,2, ...Tbh,Nr}. Every Ne steps, an exchange of last-accepted con-

figurations is attempted between two replicas with neighbouring temperatures. An

exchange between replicas i and j = i+ 1 is accepted with probability

min{1, exp(−(T−1bh,i − T−1bh,j)(Vi − Vj))}, (2.7)

where Vi is the potential energy of the last local minimum accepted by replica i.

Careful selection of Tbh,i and Tbh,j is required to obtain significant overlap between

the energy distributions of minima visited by replicas i and j. When this overlap is

small, the acceptance probability is negligable.

PTBH allows effective sampling of multi-funnel landscapes and generates a dis-

tribution of minima ρIS(V ) that is quite accurate at low V . However, with many

high-temperature replicas there may be significant over-sampling of high-energy min-

ima relative to gIS(V ).

2.2.2 Transition State Searches

As discussed in §1.6.1, the local minima of a PEL control its thermodynamic prop-

erties but the dynamical properties are determined by the transition states (TSs)

- saddle points with exactly one negative Hessian eigenvalue. These configurations

are harder to locate than minima, because they cannot be obtained by either lo-

cal minimisation or local maximisation algorithms. However, several methods have

been developed to identify the TSs that lie on minimum-energy pathways between

a pair of known minima.4,287–290 The ability to compute accurate energy barriers by

precise identification of transition states is one of the major strengths of geometry

optimisation methods.

The minima-searching methods described in §2.2.1 are used to define the region of

configuration space being searched. Transition states within this region are identified

by finding low-energy pathways between the set of known minima. Transition state

searches are performed by the OPTIM package.

In this thesis, all transition state searches are double-ended: given a pair of
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“endpoint” minima A and B, we attempt to find a discrete path between them.

A discrete path is a sequence of transition states and intermediate minima, with

each adjacent pair of points connected by a steepest-descent path. There are many

discrete paths between any pair of minima, and the search strategy implemented

in OPTIM does not guarantee to find the minimum-energy pathway (MEP), though

it will usually find a fairly short and direct path. The connection algorithm is as

follows:

1. The doubly-nudged elastic band (DNEB) method is used to obtain an approx-

imate MEP between A and B, identifying candidate TS structures.

2. The TS candidates are refined by Hybrid Eigenvector Following.

3. Pushoff paths are used to identify the pair of minima connected by each TS.

4. If a complete discrete path between A and B is now known, exit successfully.

5. Use a modified Dijkstra algorithm to choose a new pair of minima to connect.

6. Go back to step 1 with the new pair of minima.

This approach is fairly robust, but in the case of paths with many transition

states or very high energies, it may take many iterations of steps 1-5 to complete.

One iteration is called an OPTIM cycle. Each step of the algorithm will now be

discussed in detail.

2.2.2.1 Double-Ended Transition State Searches

There are numerous double-ended methods for generating transition states and ap-

proximate MEPs between known endpoints. The nudged elastic band (NEB)287,288

and doubly-nudged elastic band (DNEB)289,290 approaches are two of the most ro-

bust and popular. Both algorithms use a chain of Ni “images” (replicas of the

system): two fixed endpoint minima and (Ni − 2) free images which can move in

coordinate space. The initial coordinates of the free images are determined by linear

interpolation between the endpoints.

Neighbouring images are connected by a harmonic spring potential with force

constant kspr, so the total energy of the chain (the “elastic band”) is given by:

Vband({Xi}) =

Ni∑

i=1

V (Xi)

︸ ︷︷ ︸
landscape energy

+
1

2
kspr

Ni∑

i=2

|Xi −Xi−1|2,
︸ ︷︷ ︸

spring energy

(2.8)
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where Xi is the coordinate vector of image i.

The (D)NEB procedure is to relax the band by using the L-BFGS algorithm to

minimise the gradient gband = ∇Vband with respect to the image coordinates. The

resulting path is an approximate MEP, and the images that sit at maxima on this

path are candidate transition states.290

The spring potential in eq. (2.8) maintains approximately equal separation be-

tween all pairs of adjacent images, and prevents images from sliding down the land-

scape gradient towards local minima. If kspr is too small, the resulting path will be

poorly constrained in the high-energy regions of the landscape, but if it is too large

then the band will take the shortest path between the endpoints rather than the

lowest-energy path. kspr is often varied dynamically during an NEB calculation to

avoid both extremes.

Vband defined by eq. (2.8) suffers from coupling between the landscape and spring

energies, which results in undesired corner-cutting of the MEP and images slid-

ing down towards the minima.289,290 These problems are reduced by minimising a

“nudged” gradient gNEB in place of gband. In gNEB, the components of the landscape

gradient that are parallel to the path are projected out, as are the components of

the spring gradient that are perpendicular to the path:

gNEB
i = g⊥i + g

‖
i , (2.9)

where g⊥i = gPEL
i − (gPEL

i · τ̂ i)τ̂ i (2.10)

and g
‖
i = (gspr

i · τ̂ i)τ̂ i.

Here, gNEB
i is the component of gNEB due to the coordinates of image i. g

‖
i is

the component of the spring gradient that is parallel to the path, which maintains

roughly equal image separation, and g⊥i is the perpendicular component of the land-

scape gradient, which causes the band to relax to lower energies. gPEL
i = ∇iV (Xi)

is the gradient of the landscape energy with respect to the coordinates of image i.

τ̂ i is a tangent vector to the chain of images at image i. gspr
i is the gradient of the

spring energy:

gspr
i =

∂V spr
i

∂Xi

=
kspr
2

∂

∂Xi

(
|Xi −Xi−1|2 + |Xi −Xi+1|2

)
. (2.11)

The difference between the NEB and DNEB methods is that in DNEB a second

“nudging”, or gradient modification, is applied. Retaining a component of the spring

gradient perpendicular to the path improves the stability of the algorithm by holding
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Figure 2.6: Representation of the DNEB algorithm applied to two minima of the LJ31
cluster. Each line represents the energy profile of the elastic band after a certain number
of L-BFGS steps. Points on each line represent images. Images indicated by arrows are
candidate TSs. The 3D structures represent the endpoint minima.

the path straighter.289 So gDNEB is minimised in place of gNEB:

gDNEB
i = gNEB

i + g∗i , (2.12)

where g∗i = gspr,⊥
i − (gspr,⊥

i · ĝ⊥i )ĝ⊥i

and gspr,⊥
i = gspr

i − g
‖
i

Here, g∗i is the DNEB correction to the gradient. gspr,⊥
i is the perpendicular com-

ponent of the spring gradient (not to be confused with g⊥i ). ĝ⊥i is a unit vector in

the direction of the previous quantity.

Minimising gDNEB instead of gNEB is significantly more stable and efficient for

finding approximate MEPs.282,289 Fig. 2.6 shows several stages in the relaxation

process.

Successful convergence of the (D)NEB method is highly dependent on careful

selection of various parameters, particularly kspr and Ni. Ideally, each candidate TS

should be a stationary point diagnosed by vanishing of g(X), the landscape gradient.

However, this condition is impossible to guarantee using NEB. Moreover, candidate

TSs obtained from DNEB are usually less well converged than those from NEB.290

To obtain tightly-converged transition states, a refinement step is applied to the

candidate TS structures.
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2.2.2.2 Transition State Refinement

The Hybrid Eigenvector-Following (HEF) algorithm used to refine transition state

candidates is as follows:4,291,292

1. The lowest Hessian eigenvalue and corresponding eigenvector are determined

for the current geometry

2. A step is made parallel to this lowest eigenvector in the uphill direction

3. A (small) number of iterations of the L-BFGS minimiser are performed in the

coordinate subspace perpendicular to the lowest eigenvector

4. Steps 1 - 3 are repeated until the energy gradient at the current coordinates

falls below a given tolerance

Hessian eigenvalues correspond to curvatures of the PEL along the correspond-

ing eigenvectors. Any point that is not a local minimum has at least one negative

eigenvalue. Therefore steps 1 and 2 correspond to an uphill step along the direc-

tion of greatest negative curvature, towards a saddle point or maximum. Step 3

moves downhill, away from maxima or saddle points with index greater than one.

Eventually this procedure converges tightly to a transition state.

The lowest eigenvalue in step 1 can be calculated by diagonalising H(X), but this

process is often expensive. Instead, the eigenvalue may be determined variationally

using the Rayleigh-Ritz ratio:

λ(x) =
xTHx

x2
. (2.13)

Expansion of the small coordinate displacement x in the eigenvectors of H reveals

that λ is an upper bound for the lowest Hessian eigenvalue,4 and so the vector

x which minimises λ is a good estimate for the corresponding eigenvector. The

minimisation is performed using L-BFGS, as usual.

Each continuous symmetry operation of a system corresponds to a zero eigen-

value of H(X). V (X) is flat along the corresponding eigenvector. These zero val-

ues may cause unstable behaviour of the HEF algorithm. For supercooled liquids,

global translation is the only continuous symmetry that is always present, and the

corresponding eigenvectors ex, ey, ez are known analytically. These vectors may be

projected out of x to avoid intefering with the uphill step taking.
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Often, calculating second derivatives to evaluate H(X) is too expensive. Instead,

an approximate gradient-only formulation of the ratio may be employed:293

λ(x) ≈ [g(X + δx)− g(X− δx)] · x
2δx2

. (2.14)

The gradient is usually much cheaper to calculate than the Hessian, hence this

expression is much more efficient than eq. (2.13) - a significant advantage for large

systems.

HEF can converge to a TS structure with precision specified by the user. The pair

of minima that are connected to it are then identified using steepest-descent paths.

The unique negative eigenvalue of the TS is identified, and a small step is taken

away from the TS parallel to the corresponding eigenvector. L-BFGS minimisation

then leads to one of the connected minima. The other minimum is found by stepping

away from the TS antiparallel to the same eigenvector. The two minima obtained

from these “pushoff paths” may be the original endpoints, A and B, but often one

or other of them will be a new minimum that is not currently known.

2.2.2.3 Discrete Paths and Connection Attempts

The DNEB-HEF scheme will usually identify at least one converged transition state

and pair of connected minima. Sometimes, this set of connections is sufficient to

define a full discrete path between the endpoint minima A and B, but this is often

not the case: initial connection attempts can fail because the candidate structures

obtained by DNEB were a long way from real transition states, or because the HEF

procedure converges to a transition state that is not part of the desired MEP.

If the initial connection attempt fails, the known minima form two or more

disconnected sets, and further DNEB-HEF cycles are required to find the missing

connections.

The next pair of minima that OPTIM attempts to connect are selected using the

Dijkstra algorithm.294 The database of known stationary points is represented as a

complete graph. Each minimum is a node, and edge weights are given by:295

w(u, v) =





0 if u and v are connected by a single known TS,

∞ if n(u, v) = nmax,

n(u, v)f(D(u, v)) otherwise.

(2.15)

Here n(u, v) is the number of previous attempts that have been made to connect

minima u and v. nmax is a parameter to limit the number of times that the pro-
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Figure 2.7: Schematic of the Dijkstra algorithm for identifying short missing connections.
The figure shows three OPTIM cycles. Black and blue circles represent endpoint and in-
termediate minima, respectively. Red squares are transition states and solid black lines
represent known steepest-descent paths. Dashed black lines indicate the pairs of minima
selected for connection by the Dijkstra algorithm.

gram will attempt to connect each pair. f is a monotonically-increasing functional,

typically f = D(u, v)n or f = exp(D(u, v)). The exact choice matters little for

supercooled liquids. D(u, v) is a measure of the expected computer time required

to connect u and v, normally the Euclidean distance:

D(u, v) =

(
N∑

i=1

(Xi,u −Xi,v)
2

) 1
2

, (2.16)

where Xi,u is a coordinate of the ith particle in the uth minimum.

The Dijkstra algorithm finds the minimum-weight route between two specified

nodes,294 in this case the endpoint minima A and B. The minimum-weight path

typically contains the fewest pairs of minima without a connecting transition state.

The edge on the path with the smallest non-zero weight is selected for the next

connection attempt. This procedure is illustrated in fig. 2.7.

The Dijkstra algorithm using the weights w(u, v) is generally very successful at

generating discrete paths that contain few transition states in a small number of

cycles. By combining this algorithm with DNEB and HEF, OPTIM is a robust and
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efficient tool for locating discrete paths between pairs of minima.

2.2.3 Database Connection Strategies

Connecting individual pairs of minima is not sufficient to obtain a useful sample of

PEL stationary points. There are several different strategies to select pairs of end-

point minima to connect and hence grow the database, two of which are introduced

here. Note that a “connection attempt” in this section refers to an entire OPTIM

execution, which may comprise many cycles of the DNEB-HEF procedure.

The first method, exhaustive connection, is used in chapter 5. This strategy

makes one connection attempt for each pair of minima in an initial database. This

approach can be time consuming, but it generates a dense sample of the stationary

points within the configuration space spanned by the initial set of minima.

The second method starts from an inherent trajectory, and attempts to connect

every consecutive pair of minima. If the inherent trajectory corresponds to a locally

ergodic MD simulation, the resulting database of stationary points will faithfully

represent the configuration space explored by the system. This inherent trajectory

strategy is unusual in that the sequence of minima and transition states can be

associated with the time ordering of the original trajectory. This strategy is used in

chapters 3 and 4.

Both connection methods are shown schematically in fig. 2.8.

2.2.3.1 The UNTRAP Method

The energy barrier between a pair of minima is usually correlated with the energy

difference between them, but it is often the exceptions that are the most interesting

minima on any particular landscape. OPTIM does not always identify the lowest-

energy discrete path between a pair of minima, so when two minima with similar

energy are separated by a high barrier, it is important to know whether there exists

an unknown discrete path that connects them through a lower-energy transition

state. If this is the case, we say that the landscape is “artificially frustrated”.

The UNTRAP method296 may be used to reduce artificial frustration in a con-

nected database. We first define a “product set” of minima, typically the global

minimum and those minima connected to it by low barriers. Connections are con-

sidered between all pairs of minima u and v, where v lies within the product set and

u does not. These pairs are ranked according to the untrap metric:

U(u, v) =
V †uv − Vu
|Vu − Vv|

(2.17)
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(a) Exhaustive connection method

(b) Inherent trajectory method

Figure 2.8: Schematic representations of two different connection methods. In each case,
nodes represent the local minima that are known at the start of the procedure, and edges
represent the pairs for which discrete paths will be computed. In the right panel, the
time-ordering of minima is shown by arrows on the graph edges.

where Vu is the energy of minimum u. V †uv is the energy of the highest TS on the

lowest-energy discrete path between u and v. U(u, v) is large when u and v are close

in energy but separated by a high barrier.

Connection attempts are made for pairs of minima in decreasing order of U(u, v),

which will generate new discrete paths and hopefully reduce the energy barrier be-

tween u and the product set. Often, the UNTRAP algorithm will be run repeatedly

until the appearence of the landscape on a disconnectivity graph (see §2.2.4) con-

verges.

2.2.4 Representing and Characterising the PEL

Visualising the structure of a high-dimensional energy landscape is important. Most

methods project V (X) onto one or two order parameters or “reaction coordinates”

to obtain a two- or three-dimensional plot. However, this approach risks losing much

information if the chosen coordinates do not discriminate between important regions

of the configuration space. Disconnectivity graphs4,297 avoid the need to select an

order parameter by representing the stationary points of a landscape with their

true connectivity, and preserve energy barriers through knowledge of the transition

states.

To understand the construction of a disconnectivity graph, it is once again con-

venient to represent the database of a connected landscape as a graph. Nodes of the
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graph are minima and the weight of an edge connecting two minima is the energy of

the highest transition state on the minimum-energy pathway between them. Note

that this graph representation differs from that used in the previous section. Taking

a cut through all edges with weights higher than a threshold energy Vp divides the

minima into disjoint subsets, called superbasins.297 The minima within a subset can

be traversed without the potential energy exceeding the threshold. High Vp will

result in a few large superbasins, as few edges are cut. Low Vp cuts many edges and

produces many disjoint sets, some containing a single minimum.

To construct a disconnectivity graph, the superbasin analysis is performed at

evenly-spaced threshold energies V1, V2, ..., Vn. On moving from Vp to a lower thresh-

old Vp−1, superbasins may divide as minima become cut off. Each superbasin at Vp

has a unique parent superbasin at all thresholds Vq > Vp and one or more children

at each threshold Vr < Vp. At successively lower threshold energies, superbasins

continue to divide until they contain only a single minimum. Each superbasin dis-

appears when the threshold energy is lower than the energy of its last minimum.

The vertical axis of a disconnectivity graph is usually the potential energy. At

every threshold energy each superbasin is represented by a single point on the graph.

Superbasins are joined to their parents and children at different threshold energies

by a straight line. Because parents are unique but children are not, the union of

these lines forms a tree structure and it is always possible to order the superbasins

along the horizontal axis such that no lines cross. The horizontal axis has no physical

meaning, but loosely corresponds to proximity in “connection space”: the closer two

points are along the horizontal axis, the fewer transition states lie on the lowest-

energy discrete path between them. The line on the graph for each superbasin

terminates at the energy of the last minimum.

The relationship between a (one-dimensional) energy landscape and the corre-

sponding disconnectivity graph is shown in fig. 2.9a. Energy barriers between a

pair of minima may be rapidly estimated by observing the position on the verti-

cal axis where the relevant superbasins merge. This means that landscape funnels

(see §1.6.1) have a characteristic shape on a disconnectivity graph, as indicated in

fig. 2.9b. The funnel consists of a main vertical “trunk” corresponding to the lowest

minimum of the funnel, with numerous shallow “branches”: minima connected to

the funnel bottom by low energy barriers.

The appearence of a disconnectivity graph provides a simple qualitative descrip-

tion of the properties of a landscape.298 Landscapes for well-folded proteins and

simple atomic clusters contain only a single funnel, with the global minimum at the

bottom. This type of landscape (fig. 2.10a) resembles a palm tree, and describes
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(a) Disconnectivity graph construction
for a model PEL. The original landscape
is shown in black and the disconnectiv-
ity graph in red. Dashed blue lines cor-
respond to the energy thresholds.

V (X)

(b) The disconnectivity graph that re-
sults from the analysis in the first panel.
Dashed blue ellipses indicate the two
funnel structures on this graph.

Figure 2.9

structure-seeking systems with a single preferred conformation.

A second archetypal landscape (which will not be much discussed in this thesis)

is described as a willow-tree. While there is still a clearly-defined global minimum,

the energy barriers to reach it are comparable with the energy barriers to leave. The

global minimum structure can only be obtained by slow quenching from high temper-

ature, to avoid kinetic trapping behind high energy barriers. This class of landscape

is shown in fig. 2.10b, and represents systems such as buckminster fullerene.298

Landscapes of glass formers belong to a third class, known as “banyan tree”

disconnectivity graphs (fig. 2.10c). These graphs contain a large number of local

funnels with a wide distribution of energies and barrier heights. Barriers between

funnels are systematically higher than barriers within funnels. There is no domi-

nant low-energy funnel, and no clear global minimum (since the crystal region is

excluded). These systems do not structure-seek at all.

Classifying disconnectivity graphs according to these three archetypal forms is

usually quick and straightforward, and yields qualitative insight into the structure

and dynamics of a model system.

2.2.4.1 The Frustration Index

Useful quantitative information relating to energy barriers may also be extracted

from disconnectivity graphs. One way of representing these data is to compute a

70



Methods

V (X)

(a) Palm Tree

V (X)

(b) Willow Tree

V (X)

(c) Banyan Tree

Figure 2.10: Cartoon representations of archetypal disconnectivity graphs.

frustration index 246 of the database.

Here, “frustration” describes the existence of competing low-lying potential en-

ergy minima separated by high barriers. Highly frustrated landscapes have many

such minima, which makes relaxation to the global minimum relatively slow. Good

structure-seekers have low frustration, glass formers have high frustration.246

This concept is closely linked to the artificial frustration described in §2.2.3.1

and to the UNTRAP metric. The simplest form of the frustration index is given by:

f(T ) =
∑

α 6=gmin

peqα (T )

(
V †α − Vgmin

Vα − Vgmin

)
, (2.18)

where peqα (T ) is the equilibrium occupation probability of minimum α at temper-

ature T , computed using the harmonic superposition approximation (HSA),4,200

cf. eq. (1.16). Vα is the potential energy of α, and Vgmin is the global minimum po-

tential energy. V †α is the energy of the highest transition state on the lowest-energy

pathway from α to the global minimum, so that the numerator of the fraction in

eq. (2.18) is the downhill energy barrier. Since frustration describes the ease of

transitions into the global minimum, this minimum is excluded from the sum over

α.

f(T ) is simple to calculate from a database of local minima and a disconnectiv-

ity graph. It allows quantitative comparison between landscapes of very different

systems.246 To compare systems with different energy functions the temperature is

rescaled relative to Tm, the melting temperature. Here, Tm is defined as the position

of the highest temperature peak in the heat capacity Cv(T ), which is calculated

using the HSA partition function.

At low temperatures, the equilibrium occupation probability is dominated by
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the global minimum, so that all terms of the sum in eq. (2.18) become small and

f(T ) → 0 as T → 0. This effect is counterintuitive: lowering T should increase

frustration because crossing high barriers to reach the global minimum becomes

more difficult at low T . To correct this effect, a modified frustration index f̃(T )

may be used, where peqα (T ) is replaced by p̃eqα = peqα /(1− peqgmin).

f̃(T ) successfully discriminates between a wide range of systems with different

properties, confirming that simple single-funnelled landscapes have relatively low

frustration, but glasses and jammed colloidal systems have high frustration and show

no structure-seeking behaviour.246 Frustration is a convenient numerical description

of PEL organisation and structure.

2.3 Rigid Body Methods

The OTP model studied in chapter 3 is composed of rigid molecules, which require

special treatment in geometry optimisation methods. As noted in §2.1.3, a rigid

molecule may either be modelled atomistically, with constraints to fix the bond

lengths and angles, or using a generalised coordinate system to describe both position

and orientation of the molecule. The cost of geometry optimisation depends strongly

on the number of degrees of freedom,4 so the latter approach is preferred.

A robust and efficient generalised coordinate system is therefore required.

2.3.1 Coordinate Systems

Euler’s rotation theorem states that the coordinates of any rigid body may be

uniquely described by a translation combined with a rotation. The translation

is a Cartesian position vector for the centre of mass (CoM). The rotation maps a

reference geometry for the rigid body onto the current orientation of the same body,

and hence specifies the orientation of the molecule.

There are several ways to represent this rotation. Rotation matrices are conve-

nient but inefficient for geometry optimisation, as they have many components and

constraints to optimise.

Euler angles describe orientation using rotation angles around three globally

fixed axes. This method has fewer degrees of freedom to optimise, but suffers from

singularities whenever one of the angles becomes equal to 0 or π (the gimbal lock

problem), and so is not suitable for geometry optimisation.299

Rotation quarternions are the preferred orientational coordinate system in MD

simulation.272,300 They are numerically stable, free of singularities,301 and support

an efficient formulation of the equations of motion.271 However quarternions use
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four coordinates rather than the minimal three, and require a normalisation con-

straint during simulation.302 For geometry optimisation problems, minimising the

number of coordinates that must be optimised is very important for efficiency, and

so quarternions are not employed.

In OPTIM, rigid bodies are described using the angle-axis (AA) coordinate sys-

tem.302–304 The rotation between the reference geometry and instantaneous molec-

ular orientation is described by a vector along the rotational axis, with magnitude

equal to the rotation angle. This system allows for easy transformation between

Cartesian atomic coordinates and rigid body coordinates, while retaining the mini-

mal three rotational coordinates.

The disadvantage of the AA system is that g(X) and H(X) are not invariant

under the symmetry operations of the AA vector. For example, adding 2π to the

magnitude of the AA vector leaves the molecular orientation unchanged, but reduces

g(X). For consistency, rotations are always described using the AA vector with the

smallest possible rotation angle θ. Thus −π/2 < θ < π/2.

2.3.2 The Angle-Axis System

OPTIM uses atomistic coordinates to calculate the potential energy, and rigid body

AA coordinates when the configuration of the system is changing, e.g. during an en-

ergy minimisation. For pairwise isotropic potentials, simple expressions are available

to convert X,g(X) and H(X) between these two coordinate systems.305 Therefore

the rigid body constraint is enforced with little additional computational expense.

Since rigidifying a group of atoms eliminates degrees of freedom, the rigid body

scheme improves the efficiency of landscape exploration, especially for biomolecules.306

Rühle et al. have proposed several improvements to the AA framework using

a symmetry-independent metric tensor.304 These improvements include a method

to compute the Euclidean distance from angle-axis coordinates, which is required

to calculate the spring potential and gradient between images in the DNEB algo-

rithm. For this project I implemented the distance metric in OPTIM, along with

various adaptations that enable the AA routines to accommodate periodic boundary

conditions.

I also implemented the iSLERP procedure307 (incremental Spherical Linear In-

terpolation) to allow construction of an initial DNEB band in AA coordinates. This

addition has resulted in improved stability of the DNEB procedure for rigid body

systems.
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2.3.2.1 Euclidean Distance in Angle-Axis Coordinates

The notation used for the AA system in this section is as follows. There are Nr

identical rigid bodies, labelled by index I. Each body consists of n sites labelled by

index i. The Cartesian position vector of a site is given by

yI,i = ZI + RIzi (2.19)

where ZI is the CoM position for the molecule, zi is the Cartesian position of site i in

the reference geometry of the molecule, and RI is the rotation matrix that maps the

reference geometry onto the current orientation of molecule I. RI is easily obtained

from the corresponding AA vector pI using Rodrigues’ formula.305

The AA expression for the same molecular position is

qI = {ZI ,pI} (2.20)

where pI = θp̂I is the AA rotation vector. p̂I is a normalised vector along the axis

of rotation between the reference geometry and the current geometry, and θ is the

rotation angle. Positive θ corresponds to anticlockwise rotation around the positive

direction of p̂.

The square Euclidean distance between two configurations k and l of the system

(e.g. two DNEB images) is given by:

D(k, l)2 =
Nr∑

I

n∑

i

|yk,i,I − yl,i,I |2

=
Nr∑

I

n∑

i

|Zk,I − Zl,I + Rk,Izi −Rl,Izi|2

=
Nr∑

I

n∑

i

|∆ZI + ∆RIzi|2

=
Nr∑

I

n∑

i

|∆ZI |2︸ ︷︷ ︸
Translation

+ |∆RIzi|2︸ ︷︷ ︸
Rotation

+ 2∆ZI · (∆RIzi)︸ ︷︷ ︸
Mixed

(2.21)

The expression separates into contributions from the different types of coordi-

nate. Performing the sum over i, it may be shown that:

D(k, l)2 =
Nr∑

I

n|∆ZI |2 + Tr
(
∆RISRT

I

)
+ 2n∆ZI · (∆RIZw), (2.22)
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where Zw =
∑n

i zi/n is the centre of coordinates for the reference geometry and the

unweighted gyration tensor S is defined by Sαβ =
∑n

i zi,αzi,β. These two quantities

depend only on the reference geometry and so are only calculated once. Moreover,

the coordinate origin in the reference geometry may be chosen such that Zw = 0, so

that the mixed term vanishes:

D(k, l)2 =
Nr∑

I

n|∆ZI |2 + Tr
(
∆RISIR

T
I

)
(2.23)

D(i, i − 1)2 = |Xi − Xi−1|2 can be used to evaluate eq. (2.8) without need-

ing to transform coordinates from AA to Cartesian. More importantly, evaluating

eq. (2.11) for gspr
i requires the gradient of D(i, i−1)2 with respect to each coordinate

Xi, including AA coordinates. This gradient can only be obtained by differentiation

of eq. (2.23):

∂D(i, i− 1)2

∂Zi,α

= 2n∆Zα (2.24)

∂D(i, i− 1)2

∂pi,β
= −Tr(RβS∆RT ). (2.25)

Here, α and β indicate particular degrees of freedom (translational and rotational,

respectively).
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Chapter 3

Energy Landscapes of Atomic and

Molecular Fragile Glass Formers

3.1 Introduction

As discussed in §1.7, de Souza and Wales have previously developed quantitative de-

scriptions of the supercooled dynamics of the binary Lennard-Jones fluid (BLJ), us-

ing the concepts of correlated diffusion and cage-breaking diffusive rearrangements.

They also studied the PEL of this system in detail, identifying hierarchical structure

that is connected to the diffusion dynamics through the concept of a metabasin.

The BLJ model is popular because it is computationally cheap and convenient

to implement, while still capturing most of the experimental phenomenology of

fragile glass formers. However, many real fragile liquids are composed of molecules

or molecular ions,25 which might suggest that fragile properties are affected by

internal molecular degrees of freedom that are not included in atomic models such

as BLJ. Therefore explanations of fragility based on BLJ alone may not apply to all

supercooled liquids.

In this chapter, I extend the analysis of §1.7 to a model for ortho-terphenyl

(1,2-diphenylbenzene, OTP), a molecular glass former. I show that the presence

of intramolecular degrees of freedom makes the PEL and dynamics of this system

significantly more complicated than BLJ, but that the broad principles of the cage-

breaking and metabasin methods still apply. The results in this chapter, and much of

the text, have been adapted from the corresponding paper published in the Journal

of Chemical Physics.308
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(a) Structure of ortho-terphenyl (OTP)

σ

σ
75°

(b) Lewis-Wahnström model

Figure 3.1

3.2 Model and Simulation Details

OTP (fig. 3.1a) is a well-known fragile glass former, which has been extensively

studied by experiments38,68,309 and simulations.15,310,311 The melting temperature

Tm = 328 K, and the glass transition temperature Tg ≈ 243 K.309

OTP is a simple molecule containing only carbon and hydrogen, with intermolec-

ular interactions dominated by dispersion forces that are approximately isotropic.

Some models treat most of the atoms explicitly,15 but it is common to rigidify much

of the molecule to reduce the complexity of the simulation.18,310–312

The most popular coarse-grained model is that of Lewis and Wahnström,13,17,43,313

which describes OTP as an isosceles triangle of interaction sites with fixed bond

lengths and fixed unique angle 75◦(see fig. 3.1b). Each site interacts pairwise ad-

ditively with all sites in other molecules according to the Lennard-Jones potential.

The bond lengths are set to σ, the Lennard-Jones distance unit.

The model used here retains the Lewis-Wahnström geometry, but adds a Stoddard-

Ford quadratic cutoff314 to the potential, so that both the energy and its distance

derivative go smoothly to zero at the cutoff. This property is required for landscape

analysis because gradient discontinuities cause unstable behaviour in geometry opti-

misation.4 The complete potential for each site-site interaction is given by Eq. (3.1).

Vij(r) = 4ε

[( r
σ

)−12
−
( r
σ

)−6]
+ λ1 + λ2r

2, where (3.1)

λ1 = 4ε

[
−7
(rc
σ

)−12
+ 4

(rc
σ

)−6]
and

λ2 =
4ε

r2c

[
6
(rc
σ

)−12
− 3

(rc
σ

)−6]
,
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T/K ρ/g cm−3 Production Time/ns
260 1.082 369.04
266 1.079 268.39
275 1.076 100.65
291 1.065 33.549
305 1.055 33.549
346 1.027 33.549

Table 3.1: Input parameters for the MD trajectories as a function of temperature. The
equilibration time of 106 steps (16.7 ns) is excluded.

where rc is the cutoff distance and σ is the unit of length.

The well depth, ε0, of the modified potential depends weakly on rc. Following

Mossa et al.43 we chose rc = 2.614σ, which gives ε0 = −0.9570 ε. In line with

Lewis and Wahnström’s original study, we chose ε0 = 600 kB K = 4.988 kJ mol−1

and σ = 0.483 nm to fit the molar volume and diffusion constant to experimental

values at 400 K.313 Therefore the energy unit ε = 5.209 kJ mol−1.

3.2.1 Molecular Dynamics Simulation

Canonical MD simulations of bulk OTP were performed by Dr Jacob Stevenson using

a program written by Dr Dwaipayan Chakrabarti (see §2.1.3 for details). Several

different temperatures in the range 260 K to 346 K were simulated with a timestep

of 16.7 fs.

The simulation consisted of 324 OTP molecules in a cubic box with periodic

boundary conditions. This system size was large enough to reproduce literature

values for the diffusion constants but small enough to mitigate some of the problems

associated with landscape analysis of large systems. Following the original study of

Lewis and Wahnström,313 the molar volume was varied with temperature (see table

3.1). This variation prevents comparison with the mode-coupling Tc, which changes

considerably with volume.43 However, the power law scaling of D(T ) predicted by

MCT breaks down rather badly for OTP in the vicinity of Tc,
43 so the relevance of

this temperature is questionable.

At each temperature, 106 MD steps (16.7 ns) were allowed for equilibration from

a simple cubic starting structure. The simulation length was varied with temper-

ature (table 3.1) to allow the colder trajectories to reach local ergodicity, which

was diagnosed using the Mountain-Thirumalai energy fluctuation metric and the

non-Gaussian parameter for translational displacement (§2.1.4).

Translational diffusion constants for OTP were calculated using the Einstein

expression, eq. (1.3), using the mean squared displacement of molecular centres of
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(a) Translational diffusion constants D(T )
for OTP, showing the deviation from hypo-
thetical Arrhenius behaviour (demonstrated
by the dashed line, which does not represent
any data but is merely intended to guide the
eye). D(T ) is given in cm2 s−1.
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(b) Diffusion constants D(T ) for the Kob-
Andersen BLJ fluid at density 1.3σ−3AA.
Reprinted from [26] with the permission
of AIP Publishing. The solid line repre-
sents a VTF fit to the data, showing the
super-Arrhenius curvature at lower tem-
peratures.

Figure 3.2

mass instead of the atomic m.s.d. employed previously. The diffusion constants

D(T ) are presented in fig. 3.2a. These results exhibit super-Arrhenius temperature

dependence, curving downwards below the dashed line that indicates the expected

straight-line Arrhenius behaviour. Fig. 3.2b illustrates diffusion constants for the

BLJ fluid, calculated in the same way. Comparing these two panels shows that the

two systems behave similarly, but the data for OTP cover a smaller temperature

range and so display less curvature.

3.2.2 Sampling the PEL

As discussed in §2.2.3, there are several approaches for sampling the landscape.195,283,284

To study dynamics, it is important to explore the landscape in the same way that the

liquid does, and so the inherent trajectory approach was used: locally ergodic MD

trajectories were quenched onto the PEL using energy minimisation, and discrete

pathways were found that connect each pair of adjacent minima in the resulting

inherent trajectory.

The OPTIM program was used with the methodology described in §2.2.2 to make

the connections. Each OTP molecule was treated as a separate rigid body, using

the angle-axis framework introduced in §2.3.

The PEL is temperature-independent, but this sampling method is not, so the

landscape appears different when reconstructed from trajectories at different temper-
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atures. We considered trajectories obtained at 291 K and 266 K, which correspond

to the lower end of the landscape-influenced dynamical regime.225 Consequently,

the regions of the landscape sampled by these trajectories will be relevant to the

supercooled dynamics of the system. The analysis of these two trajectories yielded

qualitatively similar results and so, for brevity, only the results at 266 K are pre-

sented here.

3.3 Cage-breaking Analysis

For BLJ, a simple method was proposed233 to identify the cage-breaking transitions

that dominate long-time diffusion (see §1.7.2). By focussing on elementary transi-

tions between PEL minima, non-diffusive particle rattling motion was removed and

the smallest relevant non-local motions of the system were identified.

In this section, a new method is presented to identify cage-breaking rearrange-

ments for OTP. Although this method follows the same principles as that for BLJ,

the presence of molecular rotations in OTP makes the identification of nearest-

neighbour changes significantly more complicated and computationally expensive.

3.3.1 Defining a Cage Break

Just as for BLJ, a cage-breaking process in OTP must involve changes to the nearest

neighbours of one or more molecules. Correctly identifying the nearest neighbour

shell of a molecule is therefore an important step.

For BLJ, nearest neighbours were defined using a fixed cutoff distance rNN(α, β),

defined as the position of the first minimum in the radial distribution function. The

equivalent approach for OTP, using a fixed cutoff in the centre of mass (CoM) dis-

placement between two molecules, was unsuccessful. The CoM-CoM RDF, fig. 3.3a,

is not sharply peaked and is significantly non-zero at its first minimum. Hence the

nearest-neighbour shell is difficult to define using this metric: any value of rNN will

misidentify some neighbours and fail to identify others.

However, the nearest-neighbour shell of an individual site in an OTP molecule is

much easier to define because the site-site RDF, fig. 3.3b, is more strongly peaked.

Consequently, we have adopted a new definition for molecular cage breaks. The

neighbours of each site in the OTP molecule are recorded separately, and cage

breaks are identified for every site following a rule similar to that used with BLJ.

These events are described as site cage breaks or SCBs. A molecular cage break

(MCB) is diagnosed only when all of the constituent sites in a particular molecule
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(a) The centre of mass radial distribu-
tion function for OTP. The dashed ver-
tical line indicates a possible cutoff dis-
tance to define nearest neighbours, but
the function is still significantly non-zero
at this point. σ is the distance unit of the
model.
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(b) The site-site radial distribution func-
tion of OTP. This function is sharply
peaked, so nearest neighbours for indi-
vidual sites within the OTP molecule are
easy to define.

undergo simultaneous SCBs. MCBs, not SCBs, are expected to control translational

diffusion.

An SCB is diagnosed when an OTP site gains or loses two of its nearest neigh-

bours. This condition is identical to that used in the cage break definition for BLJ,

because the average numbers of nearest neighbours in BLJ and OTP are similar.

Unlike for BLJ, nearest neighbours of OTP sites are not defined using a fixed cutoff

distance rNN. Instead, the solid angle nearest neighbour (SANN) method315 is used

(see below).

For OTP it was found that the number of SCBs and MCBs depended quite

strongly on the value of the displacement cutoff dc (see sec 1.7.2). To mitigate this

problem, and to eliminate a system-dependent parameter, the displacement cutoff

was omitted for OTP (dc = 0). This omission is partly compensated by the use of the

SANN method, and partly by the requirement for three separate SCBs to occur for

each MCB, which should limit the effect of local fluctuations in neighbour positions.

However, it seems likely that omitting dc will still lead to a modest overidentification

of cage breaks.

The definition of MCBs described here is a general method for identifying cage-

breaking rearrangements for any rigid molecular model. The only system-dependent

parameter is the number of neighbours which must change for an SCB to occur.
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Figure 3.4: Solid angle construction for a central atom i and possible nearest neighbour j.

3.3.1.1 SANN Method

The SANN method of van Meel et al.315 is a parameter-free, scale-free approach

that calculates a local nearest-neighbour cutoff for each “atom” i, denoted R
(m)
i . In

the case of OTP, the atoms are actually interaction sites.

Each possible nearest neighbour of i is assigned an angle θij = arccos(rij/R
(m)
i ).

rij is the distance between i and j, and the cutoff R
(m)
i is initially unknown. m

denotes the number of atoms for which rij < R
(m)
i , i.e. the number of nearest

neighbours. θij is associated with a quantity Ωij = 2π(1− cos θij), which is the solid

angle at the apex of a cone with height rij and slant height R
(m)
i . This cone is shown

in fig. 3.4.

The SANN algorithm begins with m = 0, and gradually increases R
(m)
i so that

more atoms fall within R
(m)
i and hence m increases. The algorithm terminates when

the total solid angle
m∑
j=1

Ωij = 4π, the solid angle subtended by a sphere. The final

values of m and R
(m)
i define the nearest neighbour shell of i.

Compared with the Voronoi tessellation and global cutoff methods, SANN neigh-

bour shells are quite robust against small-amplitude fluctuations in particle position

that should not be identified as nearest neighbour changes. However, SANN neigh-

bours are not symmetric: j can be a neighbour of i without the converse being true.

It is unclear whether this property is desirable in a definition of cage breaks, but

asymmetric neighbours do not seem to affect the results significantly.

3.3.2 Diffusion Constants

Using the definition of MCBs presented in the previous section, the importance of

cage breaks to translational diffusion was assessed by calculating the cage-breaking
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Figure 3.5: Effective diffusion constants for OTP computed by several different methods.
D(T ) denotes the correct diffusion constants from the full MD trajectory. DCB(T ) is
the effective diffusion constant calculated from all cage breaks. Dprod(T ) is the effective
diffusion constant for non-reversed (productive) cage breaks only. Two different methods
for identifying productive cage breaks are shown. Apart from D(T ), all the diffusion
constants are calculated from inherent structure trajectories. All diffusion constants are
given in cm2 s−1.

diffusion constants, DCB(T ) and Dprod(T ), introduced in §1.7.2. MCBs were iden-

tified in inherent structure trajectories for a range of temperatures, and used in

eq. (1.18) to compute DCB(T ).

In fig. 3.5, we see that DCB(T ) yields a substantial overestimate of the full-

trajectory diffusion constant D(T ). This error arises from the rather drastic as-

sumption in eq. (1.18) that all cage-breaking displacements are in the same direc-

tion. The error can be corrected by accounting for negative correlation of the step

direction between consecutive MCBs. The required correction is approximated by

identifying all MCBs that are completely reversed in subsequent steps, and discount

their contribution to the diffusion constant. When an MCB is directly reversed by

another MCB, both events are discounted. The resulting diffusion constant is:

Dprod(T ) =
1

6t

N∑

i

1

Nprod,i

Nprod,i∑

j∈prod
∆r2i,j, (3.2)

which is identical to eq. (1.18) except that now the sum in j runs over the productive

(i.e. unreversed) MCBs rather than over all MCBs.

Recall from §1.7.2 that CB reversals may be direct or indirect, and that in
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BLJ these reversals were detected by comparing the mean squared displacements

of consecutive cage-breaks against a cutoff distance drev. This distance method fails

to detect many reversals in the OTP trajectories, because the anisotropy of OTP

molecules creates cages that are larger and more sparse than in BLJ. Larger cages

mean that a reversed CB could leave a molecule in an equivalent nearest-neighbour

environment while still being a considerable distance from its original position. Using

an arbitrary small drev, as was done for BLJ, therefore fails to capture most reversal

events.

We followed two approaches to identify reversed CBs. Firstly, we continued to use

the distance method, but gradually increased drev until a histogram of the correlation

angles between consecutive productive CBs indicated that all direct reversals had

been identified (cf. fig. 4 in [ 233]). This analysis gave a value of drev = 0.3σ

(c.f. drev = 10−5 σAA for BLJ). The resulting effective diffusion constants are shown

in fig. 3.5.

We also used a second method to identify reversed CBs, which avoids the need

to choose a distance cutoff by considering the changes to nearest-neighbour lists.

Recall from §3.3.1 that we require each site in a molecule to lose or gain two

nearest neighbours if a transition is to be counted as a MCB. If a site-neighbour is

lost in one SCB and gained in the next, this neighbour change has been reversed

directly. If a site-neighbour is lost in two consecutive SCBs, that neighbour change

has been reversed indirectly.

If the number of neighbours gained/lost in the first SCB is less than two after

discounting all reversed neighbour changes, then the first SCB is considered to have

been reversed by the second. Note that the first SCB is still considered to have

taken place but is treated differently because it is subsequently reversed. An MCB is

treated as reversed if any of its constituent SCBs are reversed. This is the Neighbours

method of identifying reversals.

The effective diffusion constants Dprod(T ) are shown in fig. 3.5 for the two re-

versal methods. Both give a dramatic improvement over DCB(T ), fitting the correct

D(T ) values very well in range 275 K-305 K (roughly corresponding to the landscape-

influenced regime). This result indicates that productive CBs (defined using either

method) are sufficient to describe translational diffusion in this temperature range.

The gradients of both Dprod(T ) lines are more negative than that of the DCB(T )

line, indicating that incorporating the effect of negative correlation raises the en-

ergy barrier to diffusion.

Both sets of productive-CB diffusion constants significantly overestimate the

correct values at high temperatures, and the neighbour method gives a small over-
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estimate at low temperatures. Moreover, none of the cage breaking lines shows

significant super-Arrhenius curvature, which suggests they are not capturing all the

details of translational diffusion.

The error at higher temperatures is probably due to the breakdown of the inher-

ent structure description: at higher temperatures the original MD trajectory samples

high-energy regions in each basin of attraction,226 so quenching has a greater effect

on the displacement between consecutive frames and inherent structures no longer

provide a good description of diffusion.

The small errors at low temperatures may arise because these MD trajectories

are less well equilibrated (see fig. 2.2), although this is only a serious concern for the

lowest temperature studied. If the errors are genuine, they suggest that the MCB

definition misses some negative correlation effects, perhaps indicating the existence

of another type of reversal motion that has not been accounted for. For example,

some reversals may take place via several CBs rather than by a single pair of con-

secutive CB events. Failure to detect all reversal events could also explain the lack

of super-Arrhenius curvature in DCB(T ): in BLJ the super-Arrhenius behaviour

arises from increased effective energy barriers to diffusion due to a greater fraction

of reversed CBs at low temperature (see §1.7.4).

The distance method appears to be more accurate than the neighbours method

at low T , possibly because the latter is sensitive to rotational motion of a molecule’s

nearest neighbours but the former is not. It is believed that translational-rotational

decoupling may increase the ratio of rotational to translational motion in cold

OTP,13,49 which could cause the neighbours method to miss some reversals that

the distance method identifies correctly. Alternatively, the apparent deviation of

Dprod(T ) from D(T ) at low temperatures may be a random, rather than systematic,

error.

The neighbours method is parameter free, and therefore extends easily to any

small rigid molecule. Therefore this reversal method is used in the remainder of this

chapter.

Fig. 3.5 demonstrates that molecular rearrangements corresponding to produc-

tive CBs dominate translational diffusion in the landscape-influenced temperature

regime for OTP. It also demonstrates the importance of negatively correlated mo-

tion, described by reversed cage breaks.

Fig. 3.6 reproduces the cage-breaking diffusion coefficients calculated for the BLJ

fluid, to compare with fig. 3.5. For BLJ, Dprod(T ) approximates the correct D(T )

very well at intermediate and low temperatures, particularly at number density

1.3σ−3AA. In fact, the agreement between Dprod(T ) and D(T ) in BLJ covers at least
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Figure 3.6: log10 D(T ) for a BLJ fluid with N = 60, reprinted from [233] with the permis-
sion of AIP Publishing. Squares and circles represent DCB(T ) and Dprod(T ), respectively.
Diamonds represent DCB(T ) with a correction factor added to account for reversed CBs in
a coarse-grained manner. Solid lines represent VTF fits to D(T ). Red symbols correspond
to number density 1.3σ−3AA, blue correspond to 1.1σ−3AA. Diffusion constants are given in
BLJ natural units.

four orders of magnitude in the diffusion constant whereas these two quantities only

agree over two orders of magnitude in OTP. This difference is probably because the

cage-breaking definition for OTP does not capture rotational motion well enough.

The other major difference between figs. 3.5 and 3.6 is that the latter does

not display a divergence between Dprod(T ) and D(T ) at low temperatures. This

difference is consistent with the suggestion made earlier, that the divergence in the

OTP results arises from underidentification of reversed MCBs. Reversals in BLJ are

much easier to detect because of the lack of orientational freedom and the higher

density, which leads to smaller, more rigid cages. Therefore it is unsurprising that

the BLJ reversal definition outperforms that for OTP.

3.4 Landscape Analysis

The PEL of OTP was sampled using an inherent structure trajectory produced at

266 K, as described in §3.2.2. This temperature lies well below Tm, and appears to

be near the bottom of the landscape-influenced temperature range. Fig. 3.7 shows

the disconnectivity graph produced from this sampling.

The graph displays all the typical features of a glassy landscape described in

§1.6.2.5. There is no clear global minimum, no overall funnel structure, and no
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crystal region on the time scale of these simulations. There is a large range of

barrier heights, many of which are much larger than kBT in the supercooled regime.

The minima are clustered into many local groups within which they are sep-

arated by lower barriers (less than ε), corresponding to local funnels (see §1.6.1).

Interconversion between funnels requires overcoming significantly larger barriers, so

relaxation between them is comparatively slow. This organisation is consistent with

the metabasin picture described in §1.6.2.3, which has previously been suggested as

the origin of super-Arrhenius behaviour.221

As explained in §1.7.3, productive cage breaks in BLJ are thought to represent

jumps between metabasins, which correspond loosely to local funnels.233 To test

this description in OTP, we investigate the effect of partitioning the landscape using

cage-breaking and non-cage-breaking transition states.

3.4.1 Cage-Breaking Analysis of the Landscape

The cage-breaking analysis described in §3.3 may be applied to any two configura-

tions of the system, including two minima connected by a transition state. If any

molecules undergo a CB from one structure to the other, the minimum-TS-minimum

triple is classified as cage-breaking. Otherwise, it is classified as non-cage-breaking.

Fig. 3.8 shows a disconnectivity graph for OTP from which all non-cage-breaking

transition states have been removed. This transformation splits the disconnectivity

graph into two fragments wherever a missing transition state provided the only con-

nection between two sets of minima. In fig. 3.8 each fragment is coloured according

to the energy at which it becomes disconnected from the rest of the graph, to empha-

sise the reduced connectivity of this transformed landscape. A few minima which

are only connected to the rest of the landscape by non-cage-breaking transitions are

omitted entirely from the disconnectivity graph.

In fig. 3.8 most of the landscape belongs to a small number of connected regions,

each appearing as a large block of a single colour. Therefore, the removal of non-

cage-breaking transition states does not significantly break the connectivity of the

landscape: MCBs are largely sufficient to describe the connectivity.

The partial fragmentation when non-CB transition states are removed could sug-

gest that some non-CB rearrangements are required to explore the entire landscape.

However, this requirement may be a sampling artefact, because there could be other

pathways connecting these fragments by CB transition states which have not been

located and included in our database. Since there are only a small number of sig-

nificant fragments in fig. 3.8, only a few additional cage-breaking transition states

would need to be located to connect the entire landscape.
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Fig. 3.9 was produced in the same way as fig. 3.8, but with all the cage-breaking

transition states removed instead of the non-cage-breaking transition states. In

contrast to the CB-only graph, fig. 3.9 is highly fragmented into many small uncon-

nected regions, some of which contain very few minima. A cage break is required to

cross between two such regions.

Some of the fragments in fig. 3.9 may be connected by non-cage-breaking transi-

tion states that were missed by the sampling protocol, so that locating these addi-

tional connections would increase the connectivity of the database. However, there

are so many missing connections that the landscape will probably never become

globally connected unless cage-breaking transition states are included. This result

reinforces the earlier conclusion that cage-breaking rearrangements are an essen-

tial component of diffusion. To diffuse requires traversing the landscape, which is

impossible without cage breaks.

Fig. 3.10 shows that the non-CB graph contains small locally-connected regions,

which can be explored without undergoing a CB transition. Each of these connected

regions may be loosely identified with a funnel, but crossing between funnels usu-

ally requires a cage-breaking transition. Cage-breaking transition states divide the

landscape into funnels, which can themselves be divided into individual minima: a

hierarchical arrangement similar to that found for the BLJ fluid.233

We hypothesise that the local funnels visible in fig. 3.9 can be identified with the

metabasins of Heuer et al.197,229,230 If this hypothesis is correct, transitions between

minima within a funnel should be easily reversible. To estimate the reversibility of

transitions between the minima of our database, we construct a connected path from

the inherent trajectory used in §3.4 by replacing each pair of minima in the trajectory

with the shortest pathway of minimum-TS-minimum triples between them. This

process provides a time-ordered series of elementary rearrangements executed by the

system. Because the inherent trajectory frequently revisits regions of configuration

space, some of the MCBs which take place in one elementary transition may be

reversed in a later transition.
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Figure 3.10: Detail from fig. 3.9 showing local connectivity in the non-cage-breaking land-
scape. The scale bar and colouring scheme are the same as for fig. 3.9.

Every pair of minima on the connected path was analysed for cage breaks and re-

versals. Productive cage breaks were identified as before (§3.3.2). Energy metabasins

(EMBs) are defined by reversibility of transitions within an EMB229,230, so any type

of motion that is known to be easily reversed - i.e. non-CB rearrangements and re-

versed CB transitions - must be confined within a metabasin. Therefore we define a

geometrical metabasin transition as taking place every time a productive cage break

occurs. If this definition is meaningful we expect that a disconnectivity graph with

all productive CBs removed from it will fragment into its component metabasins.

Otherwise, the disconnectivity graph will fragment randomly.

Fig. 3.11 shows the landscape with all productive cage breaks removed, and

demonstrates that the landscape is indeed partitioned into completely connected

regions, which become disconnected from each other at higher energies. Fig. 3.12

shows a detail from this graph corresponding to the same region of the landscape

as fig. 3.10, which shows increased connectivity within a funnel once reversed cage

breaks are taken into account.

The hierarchical structure observed in the PEL without dynamical information is

preserved when that information is included. Restricting the connectivity to include

only reversible motion exposes locally connected regions of the landscape, and so
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justifies our description of landscape funnels as metabasins.

We have referred to productive cage breaks as defining “geometric metabasins”,

but in fact this definition uses dynamical information as well as geometric infor-

mation, because an MD trajectory is required to identify reversals. Consequently,

different MD trajectories could assign the same minima to different metabasins,

which is somewhat unsatisfactory. Other definitions of metabasins suffer from the

same problem. A goal for future work is to establish geometric indicators for reversed

minimum-TS-minimum transitions, and thus remove the dynamical component from

this metabasin formulation.

Although the cage-breaking definition of metabasins shares qualitative features

with Heuer’s energy metabasin (EMB) transitions,229,230 it is still not clear how

closely the two definitions align. Ongoing studies suggest that they are strongly

correlated, but the transition events identified by the two methods do not always

coincide.316

Cage-breaking and metabasin disconnectivity graphs for the BLJ fluid may be

found in [233], but will not be reproduced here for reasons of space. Those graphs

exhibit the same general trends as figs. 3.8-3.11, indicating that the metabasin de-

scription applies to both systems, as expected if the presence of metabasins is linked

to fragile dynamical behaviour.

The main difference between the landscapes of BLJ and OTP is that the metabasins

in OTP contain more minima than those in BLJ. Although the PEL database for

OTP contains many more minima than that for BLJ, fig. 3.11 contains O(10)

metabasins whereas the equivalent figure for BLJ contains at least O(100). This

difference could arise because many of the cage breaks in OTP result from rota-

tional motion and are more likely to be reversed than translational CBs in BLJ. A

greater proportion of reversals leads to larger metabasins. It is also possible that

the difference is due to contrasting temperatures in the two simulations. Developing

a scheme for comparing temperatures between different landscapes in an unbiased

way is an important outstanding problem.
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Figure 3.12: Detail from fig. 3.11 showing increased local connectivity compared to fig. 3.10
now that transition states corresponding to reversed cage breaks are included. The scale
bar and colouring scheme are the same as for fig. 3.11.

3.5 Conclusions and Future Directions

There are two main results in this chapter. Firstly, the development of a generalised

definition of cage breaks that is applicable to all small rigid molecules. The definition

proposed here is almost entirely parameter free, unlike the original method used for

BLJ, which will facilitate comparison of results between different systems in the

future.

The cage-breaking rearrangements captured by this definition provide a sim-

plified, but still accurate, description of translational diffusion in OTP at moder-

ately supercooled temperatures. Diffusion constants calculated using only molecular

cage breaks provide a good approximation to the correct values in this temperature

regime, and cage-breaking rearrangements are both necessary and sufficient to tra-

verse the PEL.

One immediate application of the MCB definition would be to study propylene

carbonate (PC). Cicerone and Tyagi61 have recently performed quasi-elastic and

inelastic neutron scattering experiments on this liquid, and concluded that diffusion
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of PC occurs on three characteristic time scales corresponding to IS transitions,

metabasin transitions and long-term diffusive motion. They attribute the Johari-

Goldstein β process57 (see §1.2.1.3) to the metabasin transition events. An exciting

project would be to analyse simulated diffusion of PC using the cage-breaking model

described in this chapter, to compare the timescale and relaxation spectrum of

productive MCB transitions with the Johari-Goldstein relaxation peak.

Another possible direction would be to extend the MCB definition to sophis-

ticated flexible models of glass-forming molecules. One suitable candidate is the

atomistic model of OTP proposed by Eastwood et al.15

The second major result in this chapter is the hierarchical organisation of the

PEL of OTP, the first time that such organisation has been quantified in a molecular

liquid. The geometrical definition of productive cage breaks may be used to separate

the PEL into superstructures of minima that we identify with metabasins. Diffusion

can then be analysed using the CTRW model (see §1.6.2.4), and the results compared

with those obtained using energy metabasins. A similar approach has already been

used for BLJ.256

Although the existence of superstructures in glassy energy landscapes has been

hypothesised for some time - indeed, one can argue that this concept is central to

the RFOT theory - it is only with the connection to cage breaking that we have

been able to observe such organisation directly. Correlating this organisation with

the energy-based definition of Heuer et al.197,229,230 is an important task.

The conclusions presented here are consistent with previous results for BLJ,

implying that the concepts of cage breaks and metabasins are general to the whole

class of fragile liquids, not simply to atomic systems. Unsurprisingly, there are some

significant differences between the results for the two systems.

Cage-breaking diffusion constants for the BLJ fluid reproduce the correct D(T )

better at low temperatures than at high,233 but in OTP the DCB(T ) values also begin

to diverge fromD(T ) at the lowest temperatures studied. Moreover, the temperature

range over which the cage-breaking description is valid appears to be smaller for OTP

than for BLJ. Both of these observations suggest that although the broad picture of

cage breaks and reversals is a good description of the dynamics in OTP, the MCB

definition for OTP is less accurate at identifying important rearrangements than is

the CB definition for BLJ. In particular, reversed CBs are difficult to identify in

OTP.

The results of this chapter are consistent with a view of spatially heterogeneous

cooperative dynamics in OTP. The more mobile molecules at any given time are

the ones currently undergoing cage breaks, the less mobile are confined within their
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cages. It would be interesting to probe the extent of these regions and the exact

nature of cooperative movements by looking for time and spatial correlations in the

identified cage breaks.

Another future objective will be to compare our definition of cage-breaks with

other methods for identifying important structural changes,100,111,112 particularly

those based on metabasins,229,230,317 to understand whether they are capturing the

same features of supercooled dynamics as cage breaks, and how these different def-

initions coincide with established theories of the glass transition. In particular, it

would be interesting to see how much of the success of the cage-breaking method

comes from its non-local character, and whether the rearrangements picked out by

other approaches have similar or different effects on the connectivity of the land-

scape.

The influence of the rotational degrees of freedom for OTP on the nature of

cage-breaks, and on the PEL, merits further investigation. It might be possible to

define a geometrical motion analogous to the translational cage-break to explain

super-Arrhenius behaviour in the rotational diffusion constants, and the decoupling

between translational and rotational diffusion constants which is observed in OTP

at low temperatures.13,38 Moreover, it would be interesting to determine whether the

presence of rotations changes the hierarchical organisation of the PEL significantly.

It is possible that rotational barriers are smaller than translation, which could lead

to fine structure within a metabasin. The differences between translational and

orientational degrees of freedom on a PEL are still not completely understood.
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Chapter 4

Comparing Fragile and Strong

Glass Formers

4.1 Introduction

The previous chapter established that cage breaking provides a simplified and ac-

curate description of the dynamics of fragile supercooled liquids. Cage breaks are

related to metabasins in the PEL, which have previously been used to explain super-

Arrhenius temperature dependence of diffusion constants.221 A logical conclusion

from these statements is that the landscape of a strong supercooled liquid such as

silica should not have metabasins. However, Saksaengwijit and Heuer have observed

metabasin transitions in the sequences of IS energies sampled by a silica model, sug-

gesting that higher-order structure is present in the PEL for both classes of glass

former.215,234

In this chapter, the cage-breaking and PEL analysis that was developed for BLJ

and OTP is applied to the popular van Beest-Kramer-van Santen (BKS) model of

viscous silica, to investigate whether geometrical metabasins are present for this

liquid.

Because silica is a strong liquid, its transport coefficients retain Arrhenius tem-

perature dependence deep into the supercooled temperature regime. This behaviour

implies a fixed energy barrier to diffusion, which is crossed by thermal activation.

In the case of silica, this barrier represents the energy required to break an Si-O

chemical bond.

For silica, several phenomena associated with the glass transition are observed

at temperatures significantly higher than the melting point, Tm ≈ 1980 K. For ex-

ample, the mode coupling critical temperature of the BKS silica potential occurs at

Tc = 3300 K,220 the landscape-dominated regime extends to T ≈ 3500 K, and the
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landscape-influenced regime spans 3500 K to 10000 K,220 even though the liquid is

still the thermodynamically stable state in this temperature range.

It is likely that BKS silica has a higher melting temperature than the experi-

mental Tm,318 but not sufficiently high to explain these observations. Nevertheless,

the dynamical behaviour of silica near Tc is similar to the behaviour of other glass

formers in the supercooled regime and so, following previous work,124,125,220,234,319

we consider the diffusive behaviour of undercooled viscous silica in the same way

that we have previously studied supercooled liquids.

The dynamics of silica change considerably in the vicinity of Tc, i.e. near the

crossover from the landscape-dominated to landscape-influenced temperature regimes.

In particular, a “fragile-strong crossover”215,220,319–321 occurs in the diffusion con-

stant, above which the apparent activation barrier increases with increasing tem-

perature.

This deviation from straight-line Arrhenius behaviour occurs at 3221 K in experi-

mental measurements of viscosity320,321 and around 3300-3500 K in simulations.234,319,322

Some authors319 associate the crossover with a feature in the heat capacity. Oth-

ers124,220 argue that these diffusion constants are best fitted by a power law in

(T − Tc), and hence the crossover is associated with the transition from flowlike

transport to hopping particle motion that is predicted by generalised mode coupling

theory. If the high-temperature behaviour can indeed be explained by mode cou-

pling theory then it may arise from a different mechanism to the low-temperature

super-Arrhenius behaviour of a fragile glass former. It is also possible that the high-

temperature behaviour is not super-Arrhenius at all, but in fact the crossover simply

connects two different Arrhenius regimes.235

This chapter focusses on the difference between the strong regime of silica and

the fragile regime of BLJ, rather than the fragile-strong crossover and the diffusion

behaviour of silica above 3300 K. However, these topics are clearly worthy of further

study and explanation.

There have been many previous investigations of diffusion in silica, including

several seeking to identify diffusive rearrangements, which generally conclude that

diffusion is controlled by bond-shifting processes. These rearrangements can involve

one Si-O bond breaking and another forming within a short time period,323,324 or

alternatively propagation of a coordination-number defect through the bond net-

work.220 The former type of rearrangement has a much larger energy barrier, but

the rate of the latter type has a smaller pre-exponential factor because defects in the

network structure are quite rare.324 All studies agree that diffusive rearrangements

are correlated in time and space.220,323,324
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The central aim of this chapter is to consider how the PELs of silica and BLJ

differ, and how this difference affects diffusive rearrangements in these systems.

Heuer et al.215 have previously studied these models, and showed that both PELs

contain metabasins, contradicting Stillinger’s view that landscapes of strong glass

formers should not be hierarchical.221 They also showed that the distribution of

metabasin energies is broadly Gaussian for both strong and fragile glass formers,

but for silica there is a low-energy cutoff below which the density of metabasins is

much smaller than predicted by the Gaussian form.215 They associated this cutoff

with the case of zero coordination defects, and argued that it can explain the fragile-

strong crossover.

Kushima et al.285 have sampled local minima and saddle points on the PELs of

BLJ and silica. They used a basin-climbing algorithm designed to explore the transi-

tion states near a starting minimum, crossing them in order of increasing energy.325

Using the potential energy barriers sampled in this study, they determined a coarse-

grained effective activation barrier as a function of temperature, and hence predicted

the viscosity. They predict that for both silica and BLJ, the activation barrier has a

constant small value at high temperature and a large constant value at low temper-

ature, linked by a “fragility zone” in which the barrier changes. This would imply

that both liquids should show not one but two fragile-to-strong crossovers, a result

which to our knowledge has not been observed either in simulation or experiment.

Interestingly, an analytical model glassy landscape studied by Wales and Doye199

displayed two fragile-strong crossovers in the thermodynamic, rather than kinetic,

fragility. However, the low-temperature crossover in this case corresponded to the

kinetic glass transition.

Part of the work presented in this chapter was carried out in collaboration with

Myra Biedermann. She parameterised our modifications to the BKS potential, and

carried out the initial MD simulations and landscape sampling. Her contributions

are indicated clearly in the relevant text. The text of this chapter is based on a

paper published in the Journal of Chemical Physics.245

4.2 Model

Liquid silica was modelled using a modified version of the widely-used BKS poten-

tial.326 The original pairwise potential VBKS(rij) has the form

VBKS(rij) =
qµqνe

2

rij
+ Aµνe

−bµνrij − Cµν
r6ij

, (4.1)
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where rij is the distance between atoms i and j. µ is the atom type of i (either Si or

O) and ν is the atom type of j. qµ, qν are the ionic charges and e is the elementary

charge. Aµν , bµν , Cµν are parameters, listed in table 4.1.

The first term in eq. (4.1) accounts for the electrostatic interaction between two

ions, the second term describes short-range repulsion and the final term describes

the dispersion interaction. The latter two terms were originally proposed by Buck-

ingham.327

Accurate calculation of long-ranged interactions, such as electrostatic energies,

under periodic boundary conditions remains a computationally demanding task.328

These energy terms are usually computed using Ewald summation,329 but this

method may be unnecessary in condensed-phase systems if the electrostatic forces

between many particles cancel to give an effective shorter range.330,331 Therefore,

for the simulations used in this chapter, we calculated the electrostatic energy using

a pairwise sum over ions with a shifted truncation scheme similar to that proposed

by Wolf et al.,332 which achieves local charge neutrality.

Stable behaviour of geometry optimisation algorithms requires that the pair po-

tential and associated force go smoothly to zero at the cutoff radius.4 We use the

following expression, proposed by Gezelter et al.328 as a modification to the Wolf

method, to calculate the Coulomb energy. The first term in eq. (4.1) is replaced

with:

VC(rij) = qµqνe
2

(
1

rij
− 1

rc
+

1

r2c
(rij − rc)

)
, (4.2)

where rc is the cutoff radius.

Carré et al.333 compared this truncation scheme with the Ewald summation

for the BKS potential, and found excellent agreement for both static and dynamic

properties when rc ≥ 10 Å. We chose rc = 10 Å to minimise computational cost.

Quadratic shifts and cutoffs at the same radius rc are introduced for the short-

ranged parts of the BKS potential. These schemes are analogous to that used

by Stoddard and Ford for the Lennard-Jones potential, which guarantees smooth

continuous behaviour at the cutoff.314 The second and third terms in eq. (4.1) are

replaced by the following:

Vshort = Aµνe
−bµνrij − Cµν

r6ij
+ λ1 + λ2r

2
ij, where

λ1 = − Aµνe−bµνrc
(

1 +
bµνrc

2

)
+

4Cµν
r6c

and λ2 =
Aµνbµν

2rc
e−bµνrc − 3Cµν

r8c
. (4.3)
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Table 4.1: Parameters for the modified BKS pair potential used in this study. Si-Si
interactions are electrostatic only (hence the parameters for the Buckingham, dispersive
and repulsive parts are all zero).

Parameter Si-O O-O

Aµν (eV) 18003.7572 1388.7730

bµν (Å−1) 4.87318 2.76000

Cµν (eV Å6) 133.5381 175.0000

εµν (eV) 3.097948× 10−3 1.0510505× 10−3

σµν (Å) 1.313635 1.779239

rc/Å 10.0 10.0

qµ Si: 2.4 O: 1.2

To avoid unphysical divergence of the Si-O and O-O pair potentials at small rij, a

short-range repulsive pair potential was added:319

Vrep(rij) = 4εµν

[(
σµν
rij

)30

−
(
σµν
rij

)6
]

+ λ1 + λ2r
2
ij,

where λ1 = 4εµν

[
−16

(
σµν
rc

)30

+ 4

(
σµν
rc

)6
]

and λ2 = 4εµν

[
15
σ30
µν

r32c
− 3

σ6
µν

r8c

]
. (4.4)

εµν and σµν were chosen such that the total pair potential eq. (4.5) increases mono-

tonically for distances rij < r∗ij (see table 4.1). As before, the λ1 and λ2 terms

guarantee smooth behaviour of the shifting potential at the cutoff, although in fact

this term is negligable at rc.

The complete potential used in the present work is a combination of the shifted

and truncated BKS potential (eq. (4.3)), the Coulombic interactions calculated by

the Wolf method (eq. (4.2)) and the repulsive switching potential (eq. (4.4)):

Vij(rij) =




Vshort(rij) + VC(rij) + Vrep(rij) for rij < rc,

0 otherwise.
(4.5)

All parameters are given in table 4.1.
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Table 4.2: Length of the MD trajectories at different temperatures. The equilibration
time of 106 MD steps (1 ns) is excluded.

T (K) MD steps length (ns)

2685, 2902, 3085, 3207 4× 106 4

3544, 3854 2× 106 2

4396, 4821, 5257, 5752 1× 106 1

4.2.1 Simulation Details

The dynamical data used in this study were obtained from microcanonical molecular

dynamics (MD) simulations of bulk silica at a range of different energies, most of

which were performed by Myra Biedermann. Periodic boundary conditions were

employed, using a cubic simulation box containing 555 ions. The side length of

the box was 20 Å, giving a fixed density of 2.3 g/cm3. This density is close to the

experimental value and has been studied in previous work.220,334

The system size chosen is small enough that finite size effects might be a concern,

but we find that the qualitative behaviour of the diffusion constant (including the

fragile-strong crossover) is identical to behaviour reported for systems using as many

as 8016 atoms.220 It has previously been shown216,234,335 that for BKS a system size

of 100 particles is sufficient to avoid severe finite-size effects for thermodynamic

properties and relaxation times.

Velocity-Verlet MD (see §2.1) was performed with a timestep ∆t = 1 fs. After an

equilibration period of 1 ns, trajectories were propagated until local ergodicity was

obtained, diagnosed using the decay of the Mountain-Thirumalai energy fluctuation

metric.26,336 The length of time simulated for each trajectory is shown in table 4.2.

Fig. 4.1 shows the temperature dependence of Si and O diffusion constants cal-

culated using the Einstein formula, eq. (1.3). At lower temperatures, D(T ) follows

an Arrhenius relation D(T ) = D0 exp (−EA/kBT ). EA = 4.88 eV for oxygen and

EA = 5.01 eV for silicon, values which are in good agreement with other simula-

tions of BKS silica, e.g. Horbach et al. (4.45 eV for oxygen and 4.9 eV for silicon)322

and Saksaengwijit and Heuer (4.84 eV for oxygen).234 Experimental measurements

of diffusion coefficients in vitreous silica were reported by Mikkelsen337 for oxygen

atoms (EA = 4.7 eV) and Brebec et al.338 for silicon atoms (EA = 6 eV).

At higher temperatures both silicon and oxygen diffusion constants show non-

Arrhenius curvature, beginning at around 3600 K. This feature corresponds to the

“strong-fragile crossover” described in §4.1. The crossover occurs at a slightly higher

temperature in our model than in earlier work.234,319,322
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Figure 4.1: Translational diffusion constants D(T ) for silicon and oxygen atoms. The
dashed lines represent Arrhenius fits to the low temperature region of the data. This
figure was prepared by Myra Biedermann.

4.3 Cage Breaking

The first objective in studying supercooled silica was to identify the dominant diffu-

sive rearrangement mechanisms, analogous to cage breaks in OTP and BLJ. Silica is

a network material, with strongly directional bonding and a much more open struc-

ture than BLJ and OTP: the fragile systems have many more nearest neighbours per

atom compared to silica. Therefore there are no repulsive nearest-neighbour cages

in silica,324 but the restoring force exerted on each atom by the chemical bonds to its

neighbours produces large energy barriers to particle motion and a cage-like effect

in the mean square displacement.220

The geometric characteristics of bond-breaking transitions resemble cage breaks

in BLJ: the nearest neighbours of the atom breaking its bond must change, and

the bond-shifting event leaves behind a vacancy defect in the silica structure which

can promote rapid reversal of the transition.220 Therefore, chemical bonds act as

attractive cages for the Si and O atoms. All of these arguments suggest that the

BLJ cage break definition may provide a good description of the dynamics in silica

as well. This proposal will now be investigated.

4.3.1 Defining a “Cage Break” in Silica

The method of identifying cage breaks employed here is identical to that used for

BLJ, but with a different choice of parameters. The parameterisation was performed
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Figure 4.2: Radial distribution functions for Si-Si, Si-O and O-O pairs, calculated from
quenched configurations of a trajectory that has been simulated at 3207 K. Consistency
with higher temperature simulations has been verified. The inset represents the same plot
with different axis scaling.

by Myra Biedermann.

Nearest neighbours of an atom are defined using a fixed cutoff distance rNN =

1.95 Å. This is the position of the first minimum in the Si-O RDF (see fig. 4.2). Note

that the electrostatic interaction ensures that the nearest neighbours of a Si atom

will always be O atoms, and vice versa.

The displacement cutoff, dc, was chosen as 1.19 Å, the distance between the

points where the first and second peaks in the Si-O RDF fall to 1% of their maximum

height. Atoms moving by more than this distance are very likely to have made the

jump from one neighbour shell to the next.

For BLJ systems, an atom must either lose or gain at least two neighbours to

undergo a cage break. However, particles in BLJ have 11 nearest neighbours on

average,233 while in silica a silicon atom has four nearest neighbours and an oxygen

atom has two. Therefore the BLJ parameter values would be overly restrictive.

Instead, we require that a particle change at least half of its neighbours (adding

losses and gains together) to be classified as cage-breaking. Two neighbour changes

are required for a silicon atom to be categorized as cage-breaking, only one change

is required for an oxygen atom.

Reversed cage breaks are identified using exactly the same method as for BLJ. For

BLJ, the threshold displacement parameter drev = 10−5 σ2
AA. However, the “cages”

in silica are much less confined than those in BLJ, making it less likely that a reversed

cage break will leave the atom close to its original position, so drev must be chosen
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Figure 4.3: Number of cage breaks and reversals per ns of trajectory, as a function of
temperature. The number of cage breaks is broken down into contributions from Si and
O atoms; the number of reversed cage breaks combines Si and O.

larger relative to the natural distance unit. After some experimentation, we chose

drev = 10−2 Å2. Qualitatively similar results are obtained using any drev > 10−4 Å2,

but drev = 10−2 Å2 gives better quantitative agreement of the diffusion constants

with the correct values.

4.3.2 Cage-Breaking Results

As before, the applicability of the cage-breaking method to silica was assessed by

analysing inherent structure trajectories at a range of temperatures. Fig. 4.3 shows

the number of cage breaks and reversals as a function of temperature. The number

of cage breaks exhibits approximate Arrhenius temperature dependence, but the

number of reversal events reaches a plateau near the temperature of the fragile-

strong crossover. Above this temperature, the number of reversals becomes small

compared to the number of cage breaks. The absolute number of reversal events

decreases at lower temperatures, but the proportion of cage breaks that are reversed

increases dramatically. Accounting for reversed cage breaks - and hence for reversals

of particle velocity - will be important to describe the dynamics of silica in the same

way that it was for BLJ and OTP.

Cage-breaking diffusion constants and productive diffusion constants DCB(T )

and Dprod(T ) were computed using eqs. (1.18) and (3.2) respectively. We follow

convention by treating the diffusion of Si and O atoms separately. The results for

silicon are shown in fig. 4.4.
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Figure 4.4: Cage-breaking diffusion constants for silicon atoms in silica. Long-time diffu-
sion constants D(T ) are shown for comparison. The dashed line represents an Arrhenius
fit to D(T ). The corresponding graph for O is very similar, so it is omitted.

DCB(T ) has broadly Arrhenius temperature dependence, and overestimates the

true diffusion constants across the entire temperature range. Dprod(T ) (with reversed

CBs excluded) has better agreement with D(T ) in the strong regime below 3600 K.

At high temperatures, Dprod(T ) ≈ DCB(T ) because only a small fraction of cage

breaks are reversed at temperatures higher than 4000 K (see fig. 4.3). Moreover,

Dprod(T )� D(T ) above T = Tc.

Fig. 4.4 demonstrates that productive cage breaks correctly reproduce trans-

lational motion in the strong temperature regime for liquid silica. This result

shows that our definition of cage breaks successfully captures the bond- and defect-

migration processes that dominate diffusive behaviour in silica.

Negatively correlated motion, here represented by reversed cage breaks, is more

significant at low temperatures than high, because at higher temperatures the system

has more energy and can access more rearrangement paths, so reversals are much less

likely. It was previously shown233,254,255 (see §1.7) that the same correlation effect

occurs in BLJ, and that this effect is responsible for super-Arrhenius behaviour in

that system. Therefore it is surprising that negative correlation must also be taken

into account in silica, to predict diffusive behaviour in a temperature range where

there is no super-Arrhenius curvature. The role of negative correlation in diffusion

behaviour of strong and fragile systems will be discussed further in chapter 6.

The results in this section demonstrate the qualitative difference between the

super-Arrhenius behaviour in BLJ (caused by negative correlations) and the non-

Arrhenius curvature in silica at high temperatures, for which no significant negative
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correlation effect is present. Therefore the description of the high-temperature be-

haviour in silica as “fragile” is open to question.

For silica, as for BLJ and OTP,233,308 diffusion constants calculated from cage

breaks significantly overestimate the correct values at higher temperatures. This is

because the basins of attraction explored at high temperatures become increasingly

anharmonic and atoms wander further away from the local minima.226,339 Therefore,

the use of quenched trajectories to calculate diffusion constants becomes invalid at

high temperatures.

4.3.2.1 Reversed Cage Breaks

We have so far incorporated correlation effects into the cage-breaking model by

restricting the calculation of diffusion constants to productive cage breaks. Alter-

natively, correlations may be treated in a “mean-field” approach, by applying a

correction factor to the cage-breaking mean squared displacement. This correction

factor depends upon the proportion of directly reversed cage breaks.

The correction sum (originally developed to study BLJ)233 is calculated using

the reversal chains of a quenched trajectory:

cs =
∑

υ

lυ∑

z=1

(−1)z
∑
i

nυi (z)

∑
i

Mi

, (4.6)

where υ is an index running over all reversal chains in the trajectory and Mi is the

number of cage-breaking events for atom i. lυ is the number of reversals in chain υ

and nυi (z) = lυ − z + 1 is the number of reversals after and including the zth.

To use the correction sum, we make the approximation that all cage breaks have

squared displacement equal to the average value, L. The total squared displacement

due to cage breaks is then given by:233

〈r2〉 =
∑

i

MiL(1 + 2cs), so (4.7)

D∗CB(T ) = DCB(T )(1 + 2cs) (4.8)

We assume that Mi = 〈Mi〉 for all atoms.

Fig. 4.5 shows that application of the correction term in eq. (4.8) yields effective

diffusion constants D∗CB(T ) that match Dprod(T ) very well. The results for oxygen

are similar and so they are omitted for brevity.

The correction sum is expected to work well when the assumptions of constant

cage-breaking squared displacement L and uniform Mi = 〈Mi〉 are valid. Fig. 4.6
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Figure 4.5: Diffusion constants of silicon atoms in silica, calculated from the mean square
displacements of all cage breaks corrected with the correlation sum cs and from productive
cage breaks. The correct diffusion constants obtained from MD are shown for comparison.
The dashed line represents an Arrhenius fit to the MD data.

shows the average square displacement of a particle undergoing a cage break as a

function of temperature. The standard errors in this average are small relative to the

size of the jump, which justifies the assumption of constant L at fixed temperature.

The temperature dependence of the jump widths is the first quantity in which we

have observed a qualitative difference between the oxygen and silicon atoms. In the

high-T non-Arrhenius regime, jump width decreases with temperature for both atom

types, probably due to the breakdown of the assumption that the system is localised

near potential energy minima. In the strong temperature regime, the oxygen jump

widths continue to decrease with temperature while the values for silicon remain

fairly constant.

Horbach and Kob220 also found a difference between oxygen and silicon dynamics.

They found that the temperature dependence of oxygen diffusion followed the bond

lifetime, but silicon diffusion slowed down more quickly. Saksaengwijit and Heuer

observed a similar effect, by calculating the average mean-square displacement after

a large number of energy metabasin transitions.334 This quantity is temperature

independent for O but not Si.

All of these observations may be evidence that dynamics of oxygen ions are more

cooperative (or at least, more correlated) than those of silicon.120,125 Alternatively,

there is evidence that rotational processes contribute to the long-range dynamics

for oxygen but not for the silicon atoms, and that these processes become more

relevant at lower temperatures.334 A rotational process refers to a permutational
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Figure 4.6: Average square displacement in cage-breaking rearrangements for different
atom types, as a function of inverse temperature. Error bars indicate the standard error
in the mean square displacement.

rearrangement, where two O atoms in an SiO2 tetrahedron swap places. These

rearrangements do not change the total energy, but do involve crossing an energy

barrier comparable to a bond-breaking rearrangement.

An idealised rotational process involves a change of Si-O neighbours, and so is

treated as a cage break by the definition used in this chapter. The corresponding

jump width will be small compared with a translational cage break. If a greater

fraction of the oxygen cage breaks at lower temperature are rotational processes,

the observed decrease in average jump width is explained.

4.4 Potential Energy Landscape Analysis

The PEL of silica was sampled using the inherent trajectory method (§2.2.3). The

initial set of minima were extracted at intervals of 100 fs from a quenched MD

trajectory with temperature 3207 K. This temperature was chosen because it lies

well within the strong regime, but high enough that a moderate simulation length

is sufficient to reach local ergodicity.

The OPTIM calculations to determine discrete paths between pairs of minima were

run by Myra Biedermann. I performed the subsequent analysis of the landscape and

prepared all the figures.
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4.4.1 Disconnectivity Graph for Silica

Fig. 4.7 shows the disconnectivity graph for BKS silica. It is very similar to the

equivalent graph for OTP, fig. 3.7. As expected, the landscape is highly frustrated,

with a wide range of minimum energies and barrier heights, and no crystal region.

Higher order structure is evident inf the form of local funnels.

Kushima et al. have previously reported a disconnectivity graph for silica,285

which is qualitatively different to fig. 4.7: their graph appears to contain only a

single global funnel. This discrepancy is probably because the autonomous basin

climbing (ABC) algorithm used by Kushima et al.340 explores the landscape in the

vicinity of its starting point in detail. In contrast, fig. 4.7 represents a locally ergodic

sample of the entire amorphous configuration space. Moreover, the stationary point

database obtained by Kushima et al. contains far fewer minima and transition states

than the one presented here, which changes the appearence of the graph.

4.4.2 Cage-Breaking Analysis of the Landscape

We analyse the role of cage-breaking rearrangements on the silica landscape using

the same approach as for BLJ and OTP. Each transition state in the landscape

database is classified as cage-breaking or non-cage-breaking, according to whether

any atoms undergo a cage break between the two minima connected by this TS.

We visualise the importance of cage breaks in the same way as before, by re-

moving from the disconnectivity graph all transition states corresponding to cage-

breaking TSs and observing the resulting fragmented graph fig. 4.8. This graph

contains many very small fragments, often containing only two minima. Most local

funnels are divided into multiple fragments, which means that cage-breaking tran-

sitions are required even to explore minima within a funnel on the silica landscape.

In contrast, the disconnectivity graph produced by excluding all non-cage-breaking

TSs is almost indistinguishable from the complete disconnectivity graph in fig. 4.7,

so it is not shown here. Removing non-cage-breaking transition states does not

significantly affect the connectivity of the landscape, indicating that cage-breaking

rearrangements are sufficient to access all regions of the PEL.

These results are qualitatively similar to those for fragile glass formers, but the

silica landscape becomes almost completely disconnected on removal of the cage-

breaking transition states, whereas the BLJ and OTP landscapes do not. Therefore

cage-breaking motion is even more important for diffusion in silica than in BLJ.

This importance is not surprising because, as argued in §4.3.2, cage breaks capture

diffusive bond-breaking processes in silica very effectively.
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4.4.3 Geometric Metabasin Analysis

In this section, the cage-breaking definition of metabasins is applied to the silica

landscape. Productive cage breaks, which are unreversed and essentially uncorre-

lated,233 are equated with metabasin transitions.

A connected path of minima and transition states was constructed, as in §3.4.1.

Cage breaks and reversals in this path were identified, and TSs were classified as

productive if they contained any productive cage breaks, or unproductive if they did

not.

To identify reversed cage breaks using a constant drev, the atomic coordinates for

each pair of minima must be consistently aligned with respect to global symmetries

(translations and permutations) before checking for cage breaks. This alignment was

perfomed using the recently-developed FASTOVERLAP method.341 FASTOVER-

LAP represents each input structure as a sum of Gaussian functions centred on the

atomic positions, and identifies the global translation that maximises the overlap

between the two representations by analysing their Fourier coefficients. This ap-

proach provides an efficient route to translational alignment that is independent of

permutational symmetry. Once each pair of minima is correctly aligned, reversed

CBs are easily identified.

Productive cage breaks are analogous to metabasin transition events, so removing

productive transition states from a disconnectivity graph reveals fragments which

correspond to geometric metabasins. Fig. 4.9 shows these metabasins for silica, and

fig. 4.10 shows a disconnectivity graph for the BLJ fluid produced in exactly the

same way, for comparison. See §4.5 for details of the BLJ system used.

Fig. 4.9 is less fragmented than fig. 4.8, because reversed cage-breaking transition

states have been restored to the graph. However, fig. 4.9 is still highly fragmented

and contains few clearly-defined metabasins. The metabasins for silica contain very

few minima compared to BLJ and incorporate fewer high-energy transition states.

A significant number of reversed CBs were detected, which indicates that geo-

metric metabasins do exist in the landscape of silica (and presumably other strong

liquids). This finding contradicts Stillinger’s picture of glassy landscapes,27,221 but

agrees with the results of Heuer et al.215,234,334 The metabasins of silica are sig-

nificantly smaller than those of fragile liquids, and may be less important for the

overall dynamics. The decreased metabasin size also indicates reduced importance

of reversed CBs relative to BLJ and OTP, which is explored further in chapter 6.

It should be noted that there are two important variables that control reversal

probability and hence metabasin size, which may account for some of the difference

between figs. 4.9 and 4.10. These variables are effective temperature and system size.
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To compare landscapes between different supercooled liquids, one should probably

choose inherent trajectory temperatures at the onset of the landscape-dominated

regime. We have used Tc as a proxy for this temperature. System size (which

determines the frequency of metabasin transitions in both the EMB and geometric

MB definitions) is harder to control for. We have attempted to do this by scaling the

number of minima in the BLJ disconnectivity graph. However, the possible impact

of temperature and system size on our results should be investigated more closely

in future work.
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4.5 Energy Landscapes for Different Classes of

Glass Former

In this section, some simple global properties of the landscapes of strong (silica)

and fragile (BLJ) liquids are compared. The BLJ parameter set corresponds to the

popular Kob-Andersen model10 and the system was studied at a density of 1.3σ−3AA,

with a simulation box containing 256 atoms (204 of type A, 52 of type B).

The inherent structure sampling approach was used for both systems. The silica

database in §4.4 was obtained from a trajectory at 3207 K, near the mode cou-

pling critical temperature for this system (Tc ≈ 3330K).220 To give the most ac-

curate possible comparison we sampled the BLJ landscape using a trajectory at

T = 0.65 εAA/kB, close to the fitted value of the mode-coupling temperature for this

density, Tc = 0.66 εAA/kB.342 The MD time step was 0.005 (mσ2
AA/εAA)

1/2
and the

simulation was run for 5× 105 (mσ2
AA/εAA)

1/2
to reach local ergodicity.

Different trajectory lengths were required to reach local ergodicity for the two

systems, so the two databases contained very different numbers of stationary points.

The silica database contained 22995 minima and 24237 transition states, while the

BLJ database contained 152913 minima and 184648 transition states. However,

since both databases were constructed from a locally ergodic MD trajectory they

should each provide a faithful representation of the region of configuration space

explored by the liquid.

4.5.1 Simple Landscape Metrics

Fig. 4.11 shows normalised distributions of the minima energies in the silica and

BLJ databases. Energies are expressed relative to the lowest-energy minimum in

the corresponding database, in units of kBT . Both distributions are approximately

Gaussian, as expected.215

The BLJ database has a larger mean and standard deviation of minimum energies

than the silica database, which may indicate a higher effective temperature relative

to the landscape-dominated regime. Moreover, the BLJ distribution deviates more

from Gaussian behaviour than does the silica distribution, exhibiting slight positive

skew and a non-Gaussian tail at the low-energy end.

Saksaengwijit et al. have argued for the existence of a cutoff in the distribution

of minima energies for strong liquids, below which there exist many fewer states than

the Gaussian distribution would predict.215 We do not see such a cutoff in fig. 4.11

because the system is too large and probably contains multiple weakly-interacting

subsystems: the effect of the cutoff in each subsystem is smeared out when they are
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Figure 4.11: Normalised distributions of the energies of minima in the landscape databases
for BLJ and silica. Energies are expressed relative to the global minimum energy in each
case, and are given in units of kBT per particle to allow comparison between the different
systems. Dashed lines show Gaussian fits to the distributions of the corresponding colour.

combined.215 However, the silica distribution in fig. 4.11 has a smaller low-energy

tail than the BLJ distribution, which may be a signature of the low-energy cutoff in

these larger systems.

Fig. 4.12a shows normalised histograms of the energy barrier heights in the two

databases, with the same energy scaling as before. Recall that barrier heights are

defined as the energy difference between a minimum and an adjacent transition

state. Both histograms show an exponential decrease in probability density with

increasing barrier height, with a super-exponential excess of small energy barriers.

Although the two systems have comparable temperatures, the distribution of energy

barriers sampled by the BLJ fluid is slightly wider than than that encountered by

silica. High barriers correspond to inter-funnel transitions, so this result indicates

deeper funnels and hence larger metabasins on the BLJ landscape.

In fig. 4.12b, the barrier height distributions are decomposed into separate his-

tograms for cage-breaking and non-cage-breaking transition states using the defini-

tion described in §4.3.1. As expected, cage-breaking barriers are generally higher

than non-cage-breaking. The difference between characteristic barrier heights for

cage-breaking and non-cage-breaking processes is much greater for silica than for

BLJ. This result quantifies the earlier statement that cage-breaking rearrangements

dominate the high-barrier processes more in silica than in BLJ. It is plausible that

this represents a general difference between strong and fragile glass formers: frag-

ile liquids exhibit a significant amount of intra-cage motion alongside cage-breaks,
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Figure 4.12

whereas cage breaks account for nearly all particle motion in strong liquids.

4.5.2 Frustration Metric

The frustration metric introduced in §2.2.4.1 is used to compare the organisation

of the PELs in BLJ and silica. Recall that high frustration indicates the presence

of many competing low-lying minima separated by high barriers. The frustration

metric facilitates comparison of PELs for very different systems.

The true global minimum of a glass former is the crystal structure, which is

excluded from our databases. Hence the frustration index expresses the ability of

the system to locate the lowest-energy amorphous minimum in the database.

Fig. 4.13 presents the frustration index f(T ) for the two systems. As temperature

decreases, the ability to cross high barriers decreases and frustration increases. A

feature of f(T ) is that the occupation probability of the global minimum dominates

the frustration calculation at very low temperatures, causing f(T ) to decrease. This

behaviour is irrelevant to the present discussion, because the corresponding temper-

atures are too low to be accessed by equilibrium simulation.

Both liquids have values of f(T ) in the range typical of multi-funnel energy land-

scapes,246 as expected for glass formers. The silica database falls near the bottom of

the range in f(T ) expected for multi-funnel landscapes, and is less frustrated than

the BLJ database at all temperatures. This difference is consistent with the notion
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Figure 4.13: Frustration index246 for BLJ and silica as a function of T/Tm. Tm is the melt-
ing temperature determined from a peak in the constant volume heat capacity calculated
using the harmonic superposition approximation.4

that landscapes of fragile glass formers are dominated by large metabasins (which

would promote high frustration) while strong glass formers have a more uniform

organisation with small metabasins and less frustration.221

The disconnectivity graphs of §4.4 and all the landscape metrics studied in this

section show that there is no major qualitative difference between the landscapes of

silica and BLJ, but that the latter system has larger metabasins and a wider range

of barrier heights. The metabasin disconnectivity graph and the frustration index

provide the clearest evidence for a difference between two PELs, probably because

these are the only two measures we have considered that account for the structure

and connectivity of the landscape.

4.6 Conclusions

The diffusive behaviour of the BKS model for viscous silica has been studied, using a

number of analytical techniques developed previously for fragile glass formers. This

model was compared semi-quantitatively with the fragile BLJ fluid.

Silica and BLJ have many dynamical features in common. In both cases, low-

temperature diffusion is dominated by hopping events, which we have identified

in both systems using a simple definition of cage-breaking rearrangements. Cage

breaks become increasingly negatively correlated at low temperatures. Both systems

have highly frustrated energy landscapes and, contrary to some expectations, there

is no clear structural difference between these landscapes. However, hierarchical

organisation of minima appears to be more pronounced in BLJ than in silica.

The differences between strong and fragile glass formers are evidently quite sub-
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tle, arising from PEL structure that controls the correlation of cage-breaking jumps.

Their contrasting dynamics probably represent two extremes of a single mechanism

rather than two fundamentally different processes, so that strong glass formers rep-

resent one end of a continuous spectrum of fragilities.124,125,235,236

Bond-breaking and forming processes that dominate long-time diffusion in silica

below Tc are accurately described by the same definition of cage-breaking rear-

rangements that describes diffusion in the BLJ liquid, even though cages in silica

are attractive rather than repulsive in origin, and are much more sparse than the

cages in BLJ.

The cage-breaking method is very successful in the strong temperature regime

of silica. At higher temperatures, the system wanders further from the bottom of

the potential energy wells,226 and cage breaks fail to reproduce the correct diffu-

sion constants. This failure occurs close to the temperature at which non-Arrhenius

behaviour emerges in the diffusion constants. Establishing whether these two phe-

nomena are linked might help to explain the origin of the fragile-strong crossover.

The potential energy landscape of silica becomes almost completely disconnected

when cage-breaking transition states are removed, but is unaffected when non-cage

breaks are removed. Therefore cage-breaking rearrangements are both necessary

and sufficient to traverse the energy landscape, and are required for all dynamical

processes, including exploration of minima within a local funnel. Moreover, the

separation of energy scales between cage-breaking and non-cage-breaking energy

barriers is greater for silica than for BLJ. Both these results show that diffusive

motion is dominated by cage breaks to a much greater extent in silica than in BLJ.

Geometrical metabasins for silica contain fewer minima than those for BLJ. This

observation is in line with previous predictions regarding the difference between the

energy landscapes of strong and fragile liquids.27,221 Transitions between metabasins

correspond to an uncorrelated random-walk process, so correlation only exists within

a metabasin and hence smaller metabasins mean less correlation in minimum-to-

minimum transitions, which helps to explain the lack of super-Arrhenius behaviour

in the strong liquid.

Finally, we found that the PEL of silica is less frustrated than that of BLJ.

This was shown by a frustration metric that measures the relative height of energy

barriers between minima of similar energies. We note that the two measures which

distinguish most clearly between strong and fragile landscapes (i.e. metabasins and

the frustration metric) are those that take greatest account of the connectivity and

topology. Connectivity of the PEL is likely to be crucial in understanding the origins

of cage-breaking and negative correlation behaviour in glass formers.256
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Chapter 5

Random Particle Pinning on the

Potential Energy Landscape

In §1.5, the method of random pinning was introduced as a theoretical tool to test

certain predictions of the RFOT theory. The key idea underlying this approach is

that pinning a critical fraction c ≥ c∗(T ) of the particles in a supercooled liquid may

induce a thermodynamic phase transition at which the complexity vanishes, and that

this transition is analogous to the ideal glass transition predicted for unpinned glass

formers.

This scenario is analytically provable in mean-field models175 but efforts are

ongoing to determine whether the same picture holds for finite-dimensional glass

formers.182,183,343 If the random pinning glass transition (RPGT) is indeed related

to a vanishing complexity, one must still prove that this scenario can be extrapolated

reliably to the c = 0 case in order to establish the existence of an equilibrium ideal

glass transition.

The RPGT has received a lot of attention in recent years. However, the effect

of pinning on the PEL of a system has only been considered briefly,182 in the con-

text of the “saddle point method” which does not provide an accurate description

of landscape structure (see §1.6.2.6). In this chapter, I use geometry optimisation

techniques to describe the dramatic changes in landscape structure when some par-

ticles are pinned. I propose a new approach for identifying hierarchical structure

in the PEL of a glass former, which arises naturally from the RFOT description

of pinned liquids. This approach complements the dynamical metabasin methods

outlined in the previous two chapters and in §1.6.2.3.

The PEL exhibits several signatures of an entropy-diminishing event that coin-

cides quite closely with previously reported values of c∗.182 Although the methods

used here are not sufficient to determine whether this event is a thermodynamic
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Table 5.1: Parameters for the BLJ potential with Stoddard-Ford cutoff. Different columns
indicate different atom types µ and ν.

Parameter A-A A-B B-B
σµν 1.0 0.8 0.88
εµν 1.0 1.5 0.5
rc,µν 2.5 2.0 2.2

transition or a smooth crossover, I discuss possible approaches that might answer

this question using PEL theory.

The ordering of this chapter is as follows. §5.1 introduces the model system, as

well as the tools and concepts used to analyse that model. In §5.2, I show how the

distribution of PEL minima changes with pinning fraction, and provide evidence

that the number of local funnels accessible to the system decreases strongly as a

function of pinning. §5.3 analyses the influence of pinning on the organisation of

the landscape more systematically, revealing that high pinning fractions cause the

landscape to become less frustrated and less glassy. In §5.4 the mechanism for this

change is discussed at the level of local funnels and of individual minima.

5.1 Methods

5.1.1 Model

This chapter studies the effect of pinning on a binary Lennard-Jones (BLJ) fluid10

which is identical to the model used by de Souza and Wales to study diffusion

dynamics and cage breaking (§1.7). This choice of system allows comparison with

many earlier simulation studies, including studies of the RPGT,170,182,183 and with

the earlier work detailed in §1.7 and chapters 3 and 4.

The BLJ fluid is an 80:20 mixture of large A atoms and small B atoms, interacting

via the pairwise Lennard-Jones potential with a Stoddard-Ford quadratic cutoff,

eq. (3.1). Interaction parameters are given in table 5.1. Throughout this chapter

the system contains N = 256 atoms in a cubic unit cell under periodic boundary

conditions, with fixed number density 1.2σ−3AA.

5.1.2 Pinning Particles

Following earlier work,175,182 atoms are pinned at the positions they occupy in a

“reference structure”, X∗. This structure is sampled from a locally ergodic micro-

canonical MD trajectory of the unpinned system at temperature T0. This procedure
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ensures that the configurations sampled after pinning represent an equilibrium dis-

tribution for the pinned system.171,175,344 Local equilibration is confirmed using the

Mountain-Thirumalai fluctuation metric, as before. The variance of the instanta-

neous temperature in the microcanonical simulations is small.

Once X∗ has been obtained, a number M = bcNc atoms are chosen at random,

and their positions are fixed (pinned). The notation bxc indicates the largest integer

less than or equal to x. Each set of M pinned atoms, combined with a reference

structure X∗, defines a single realisation of the disorder in the pinned system (or

disorder realisation, for brevity).

Pinned atoms continue to affect V (X) and to exert forces on other atoms, but

forces acting on pinned atoms do not contribute to g(X) or H(X). Each disor-

der realisation uniquely corresponds to an external potential applied to the mobile

atoms, and so each disorder realisation has a unique PEL associated with it. To

obtain robust quantitative results, one should average over these realisations, but to

understand the changes to the PEL each realisation must be considered separately.

Consider a landscape with M pinned atoms, and then unpin a single atom.

The dimensionality of the landscape increases by three, and the original PEL is

now a subspace embedded within the new landscape. Configurations that were

minima of the old landscape are unlikely also to be minima of the new landscape,

but nevertheless the two PELs are much more similar than if we had selected two

disorder realisations at random. To study a range of c values, we have usually

generated a single disorder realisation at high c and then progressively unpinned

atoms.

It is important to distinguish between X∗, selected directly from the locally

equilibrated MD trajectory, and the reference minimum X0, which is obtained by

local geometry optimisation of X∗ with the pinning constraints in place.

5.1.3 Comparing Structures

In the following sections it will prove necessary to define a measure of similarity

between two configurations Xi and Xj (which are usually local minima). We borrow

the concept of overlap, which is used as an order parameter in mean field theories

of glassy behaviour. Following previous work,173,178,182,345 we define:

Q(Xi,Xj) =
1

Nm

Nm∑

k=1

θ(a− |rk,i − rk,j|). (5.1)
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Here, k runs over the set of Nm unpinned A-type atoms. θ is the Heaviside step

function, and rk,i is the position vector of atom k in configuration Xi. a is a length

scale parameter, which we set to 0.3σAA following earlier work.72,178,182,183,345

Before calculating the overlap, Xi and Xj are aligned with respect to their per-

mutational symmetries using the shortest augmenting path algorithm.346,347 This

alignment ensures that the shortest distance |rk,i − rk,j| is used, accounting for in-

distinguishability of mobile A atoms.

Q(Xi,Xj) counts the fraction of atoms that have approximately the same po-

sition in configurations i and j. If Q(Xi,Xj) > 0.7, we describe Xi and Xj as

being structurally similar, and if Q(Xi,Xj) < 0.7 they are structurally distinct.

The threshold parameter Q∗(Xi,Xj) = 0.7 corresponds to the typical value of Q at

the caging plateau,348 and also falls in the gap between the high- and low-Q states

of the BLJ system reported in earlier work.182,349

Eq. (5.1) will most often be used to compute the overlap of a local minimum

with the reference minimum X0. This quantity is denoted

Q0(X) = Q(X,X0), (5.2)

or simply Q0, for brevity.

5.1.4 Metastable States

Some thermodynamic theories of the glass transition predict an entropy-vanishing

ideal glass transition at the Kauzmann temperature, TK . In §1.4.1, it was explained

that the entropy contribution that vanishes in this hypothetical event is actually

the complexity, Σ(T ), related to the number of metastable states (in mean-field

models) or quasistates (in finite-dimensional models). By analogy with the ideal

glass transition, Σ(T, c) should also vanish at the RPGT. Recall that Σ is often

referred to in the glasses literature as the “configurational entropy”, Sc, but I am

not using this convention.

In this chapter, a landscape signature of the RPGT will be revealed, and therefore

a landscape definition of quasistates is required. Three ways of identifying groups

of minima that might be interpreted as quasistates will now be considered. One is

based on the structure of the PEL, one on simulated dynamics and one on real-space

structure. A major result of this chapter is that at least two and possibly all three

of the definitions identify similar regions of configuration space as quasistates.

Local minima and their associated basins of attraction are not appropriate qua-

sistates,350 because the number of accessible minima is still large even at TK ,92
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and because residence time in a minimum is very short near to Tc.
32 However, the

residence time within a local funnel (§1.6.1.4) is expected to be longer. Moreover,

analytical results for a model glassy landscape suggest that the number of funnels

explored in the limit of long observation time goes to one at low temperatures.199

Therefore funnels may be equivalent to quasistates in the RFOT description. This

proposition is considered in the following sections.

The longest-lived dynamical structures currently known are metabasins, which

can be identified by the energy method or by productive cage breaks. Transitions

between metabasins control relaxation, in the same way that transitions between

metastable states control relaxation in the RFOT theory.31 Therefore metabasins

could possibly be used to define quasistates.

The third definition of quasistates, that will be used most often in the subsequent

discussion, is that of packings. Packings are groups of PEL minima with a high

mutual overlap, and low average overlap with minima belonging to other packings.

Therefore all minima in a packing have roughly the same arrangement of unpinned

atoms. Different minima within a packing are separated by small displacements of

atoms without significant structural change.

This qualitative definition of packings is similar to the definition of metastable

states in mean-field-like theories,152,175,345 so packings are expected to correspond

closely with quasistates. In §5.3.2, a practical definition of packings in the PEL is

presented, and used to evaluate how well our three definitions of quasistates agree.

The mean-field prediction of the RPGT is that lim
N→∞

Σ(T, c)/N vanishes contin-

uously at c = c∗. Therefore, the number of thermally-accessible quasistates must

be super-exponential in N for c > c∗, but sub-exponential for c ≤ c∗. For sizes

N = O(100), exhaustive enumeration of quasistates is impractical on both sides of

the putative transition, and we must rely on more approximate methods to char-

acterise the numbers of funnels, packings and metabasins as the pinning fraction

increases.

Potential energy minima are fundamental to all three quasistate definitions.

Therefore, we begin by examining changes to the distribution of minima as a func-

tion of c.

5.2 Potential Energy Minima

Several previous studies175,182,343 have observed a dramatic decrease in the complex-

ity of a supercooled liquid when the pinning fraction c exceeds a critical value, in

agreement with the argument of the previous section. In this section this decrease
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is shown to arise directly from the structure of the PEL.

5.2.1 Return Times

The pinning procedure increases the energy of many configurations, due to strain

caused by the immovable atoms. However, the reference minimum X0 is less affected

by this strain, since it is derived from the reference structure X∗ in which the

interactions between the pinned and mobile atoms are not frustrated. Therefore,

X0 usually lies near the bottom of a pinned PEL, and is expected always to belong

to a thermally accessible funnel.

In the case of high pinning, so many configurations are disfavoured that there

will be few accessible funnels, and so the system should show a high propensity to

return to structures similar to X0 (high Q0). In contrast, at low pinning there may

be many low-energy funnels that the system can explore, and the probability of

returning to X0 should be small.

This hypothesis was tested using basin-hopping global optimisation (§2.2.1.1),

exploiting the efficiency of this method and its ability to locate low-energy minima.

Let X(s) be the local minimum obtained after step s of the basin-hopping algorithm,

and define Q0(s) = Q(X0,X(s)).

All calculations were carried out using a single reference structure X∗ generated

at T0 = 0.5 εAA/kB. 10 different values of c in the range [0.10, 0.20] were used. The

set of pinned atoms at each c was a subset of the atoms pinned at higher c.

30 basin-hopping calculations were performed for each c value, each with a dif-

ferent starting minimum X(0). These minima were selected from microcanonical

MD simulations performed with the pinning constraints in place. The simulation

energy was set high enough to ensure that Q(X0,X(0)) was small, and that mutual

overlap between the different starting minima was small (≤ 0.4). The average tem-

peratures in these MD simulations varied from 0.7 εAA/kB at c = 0.10 to 2.5 εAA/kB

at c = 0.20, so most of the starting minima had high energy. The basin-hopping cal-

culation corresponds to a downhill walk between local minima towards the nearest

low-energy region of the landscape.

Each basin-hopping calculation was run for 105 steps. Tbh was initially set to a

moderately high value (5 εAA) to avoid trapping in small funnels, and varied during

the calculation to maintain a step acceptance rate of 70%.

Q0(s) was averaged over all 30 simulations to give Q0(s), which is plotted for

several c values in fig. 5.1. For c ≥ 0.15, Q0(s) rapidly converges to a large value

(greater than 0.7), but Q0(s) ≤ 0.4 for all s when c ≤ 0.13. When c = 0.14, the

variance in Q0(s) between different calculations is very high, so Q0(s) converges
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Figure 5.1: Plot showing how basin-hopping calculations explore overlap space at several
different pinning fractions. s denotes the number of basin-hopping steps taken, and Q0(s)
is the average over 30 basin-hopping runs of the overlap with the reference minimum.
The dashed horizontal line shows Q0 = 0.7, which is the threshold used to define when
structures are similar to the reference.

slowly to an intermediate value (around 0.5).

These results are consistent with our expectation of complexity reduction. There

is a rather sharp crossover around c = 0.14 where the average overlap goes from small

to large. The low-c results match what would be observed for an unpinned landscape

with high complexity, where there are many low-Q0 funnels accessible but only a

small number with high Q0. The high-c results indicate very different behaviour.

5.2.2 Distribution of Local Minima

To explore the crossover in more detail, further landscape exploration was carried

out using parallel-tempering basin-hopping (PTBH, §2.2.1.2). This method is more

efficient than basin-hopping for crossing between different funnels on the landscape,

and so should more effective for estimating the number of funnels.

The aim was to estimate the density of minima, gIS, introduced in §1.6.1, as a

function both of Q0 and of energy V . As explained in §2.2.1.1 and §2.2.1.2, basin-

hopping methods generate an approximate density of states, ρIS, that is expected to

be close to gIS at low energies.

PTBH calculations were carried out for a range of c values, using the same X∗

as before. 12 replicas were used, with Tbh,i spaced geometrically between 0.5 εAA
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and 25.0 εAA. 10 runs of 105 basin-hopping steps each were performed for each

replica, with step size varied dynamically to ensure that 70% of steps located a

new minimum. One configuration swap between replicas was attempted every 10

basin-hopping steps.

Fig. 5.2 shows contour plots of log10 ρ(V,Q0) for several values of c. Note that

although minima in the Q0 < 0.7 region are dissimilar to the reference, they are not

all structurally similar to one another.

These graphs indicate a significant change in the Q0 distribution of low-energy

minima. For c ≥ 0.17, all minima at low energies have Q0 ≥ 0.7, but for c ≤ 0.16

there is a significant density of low-energy minima with Q0 < 0.7. These results

indicate that the set of accessible minima at low c is structurally diverse, but the

set at high c is not.

Using the terminology introduced in §5.1.4, landscapes with c > 0.17 have only

one low-energy packing, whereas landscapes with c ≤ 0.16 have at least two. The

crossover between these regimes occurs over a narrow range of c: the difference

between c = 0.16 and c = 0.17 corresponds to pinning 3 atoms out of 256.

In all panels of fig. 5.2 there is a large density of minima at low Q0 and high V .

This result is expected for a Gaussian distribution of local minima, but the relative

weight of this region in ρIS may be exaggerated because the PTBH algorithm used

many high-temperature replicas to encourage exploration of multiple funnels, which

may have resulted in over-sampling the high-energy minima. Regardless, we expect

that the density ρ(V,Q0) is quite accurate at low V , since this quantity shows little

change when the number of PTBH steps is increased. Therefore we are confident

that the regions where ρ(V,Q0) = 0 have gIS(V,Q0) ≈ 0 also.

127



Random Particle Pinning on the Potential Energy Landscape

0.0 0.2 0.4 0.6 0.8 1.0

Q0

−1780

−1770

−1760

−1750

−1740

−1730

−1720

−1710

−1700

V
(ǫ

A
A
)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

(a) c = 0.18

0.0 0.2 0.4 0.6 0.8 1.0

Q0

−1780

−1770

−1760

−1750

−1740

−1730

−1720

−1710

−1700

V
(ǫ

A
A
)

1.8

2.4

3.0

3.6

4.2

4.8

5.4

6.0

6.6

(b) c = 0.17

0.0 0.2 0.4 0.6 0.8 1.0

Q0

−1780

−1770

−1760

−1750

−1740

−1730

−1720

−1710

−1700

V
(ǫ

A
A
)

1.8

2.4

3.0

3.6

4.2

4.8

5.4

6.0

6.6

(c) c = 0.16

0.0 0.2 0.4 0.6 0.8 1.0

Q0

−1780

−1770

−1760

−1750

−1740

−1730

−1720

−1710

−1700
V

(ǫ
A
A
)

1.8

2.4

3.0

3.6

4.2

4.8

5.4

6.0

6.6

(d) c = 0.15

0.0 0.2 0.4 0.6 0.8 1.0

Q0

−1780

−1770

−1760

−1750

−1740

−1730

−1720

−1710

−1700

V
(ǫ

A
A
)

1.8

2.4

3.0

3.6

4.2

4.8

5.4

6.0

6.6

(e) c = 0.10

Figure 5.2: Contour plots of log10 ρ(V,Q0) for databases produced using PTBH with a
reference temperature T0 = 0.5 εAA/kB. ρ(V,Q0) is proportional to the number of minima
in the database that have potential energy V and overlap Q0 with the reference minimum.
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(b) c = 0.14
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(d) c = 0.12
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(e) c = 0.10
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(f) c = 0.06

Figure 5.3: Contour plots of log10 ρ(V,Q0) for databases produced using PTBH with a
reference temperature T0 = 0.43 εAA/kB.
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5.2.2.1 Effect of Reference Temperature

The RFOT description of the RPGT predicts that the critical pinning fraction c∗

decreases with reference temperature T0.
175,182 This effect is related to the system

exploring different regions of the PEL at different temperatures, so a low-T0 reference

structure will be lower in energy than a high-T0 reference.

To test this prediction, PTBH sampling has been performed using a reference

structure generated at T0 = 0.43 εAA/kB. This temperature is close to Tc for this

density of BLJ,10 and so obtaining the locally equilibrated MD trajectory from which

to select X∗ was significantly more expensive than at T0 = 0.5 εAA/kB. Because of

this expense, use of the energy fluctuation metric to diagnose local ergodicity proved

impractical. Instead, the trajectory was propagated for 2.25 × 106 (mσ2
AA/εAA)1/2.

This time is more than 100 τs, the structural relaxation time estimated from the

decay of 〈Q0(t)〉 over the trajectory.

Most PTBH parameters were the same as for the calculations at T0 = 0.5 εAA/kB.

The range of temperatures covered by the 12 basin-hoppping replicas was reduced

to [0.4 εAA/kB, 8 εAA/kB] to improve the acceptance rate for replica exchanges.

The resulting ρ(V,Q0) distributions are shown in fig. 5.3. The behaviour of these

distributions is qualitatively the same as fig. 5.2: low-V minima are structurally

diverse when c is small, but all have Q0 > 0.7 when c is large. The crossover

happens at a lower c than previously observed, with c∗ ≈ 0.12 for this particular

disorder realisation. The reduction in c∗ agrees qualitatively with earlier work, but

Ozawa et al. found a slightly lower c∗ ≈ 0.1 for this reference temperature.182 This

discrepancy is probably due to the different methods for identifying the transition:

one should not expect the PEL method to agree exactly with calculations based on

finite-temperature MD simulations and thermodynamic integration.

5.2.3 Disorder Averages

So far, only a single disorder realisation has been considered for each T0. To obtain

meaningful results, a disorder average is required. Therefore, PTBH calculations

were performed for multiple disorder realisations and multiple reference structures.

Different realisations were compared by calculating the probability that a low-energy

minimum is structurally similar to the reference:

P (Q0 > 0.7) =

∫ Vc

−∞

∫ 1

0.7

ρIS(V,Q0) dQ0 dV (5.3)
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Figure 5.4: Probability that a low-energy minimum selected at random will be similar to
the reference minimum, X0. The left panel shows landscapes with T0 = 0.5 εAA/kB, the
right panel shows T0 = 0.43 εAA/kB. In both cases, the grey lines represent individual
disorder realisations and the black line represents P (Q0 > 0.7).

where Vc is an energy cutoff that restricts the integral to exclude the surplus of

high-energy minima identified by PTBH. These high-energy minima have an approx-

imately Gaussian distribution in V , so Vc is chosen by fitting a Gaussian function

to the high-energy region of ρIS(V ). Then Vc = V − 2σV , where V is the mean of

the fitted Gaussian and σV is its standard deviation.

Fig. 5.4 shows P (Q0 > 0.7) as a function of c for several different realisa-

tions of the disorder. The average of this quantity, over the different realisations,

P (Q0 > 0.7), is also shown. The left panel represents T0 = 0.5 εAA/kB and shows 15

disorder realisations produced from 3 different reference structures. The right panel

represents T0 = 0.43 εAA/kB and shows 5 disorder realisations, each from a different

reference structure.

In both cases, the different reference structures were selected to have low mutual

overlap. Variation of P (Q0 > 0.7) between different disorder realisations with the

same reference structure is similar to the variation between different references.

For both panels, every realisation of the disorder exhibits a crossover in c where

the probability of a given low-energy minimum being in the reference packing in-

creases from around 0.3 to almost unity. Although its position and sharpness varies

between different disorder realisations, this crossover is present for all landscapes,

as well as in the disorder average, providing confidence that it is a general property

of pinned systems.

The crossover occurs at c ≈ 0.15−0.17 for T0 = 0.5 εAA/kB, and at c ≈ 0.12−0.14

for T0 = 0.43 εAA/kB, which agrees with the expectation that c∗ decreases with T0.

Therefore, the landscape transformation during pinning is qualitatively similar to
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the behaviour expected for an equilibrium RPGT.

The exact crossover value of c is not comparable with c∗ obtained by other

methods,182 because ρIS(V,Q0) is not a Boltzmann sample of minima and because

eq. ((5.3)) does not weight the contributions of the minima by their occupation

probabilities. However, the position of the crossover for the high-T0 case is compa-

rable with the critical c predicted by Ozawa et al. using thermodynamic integration

and using overlap averages from a thermal simulation.182 This similarity is further

evidence that the transformation in the landscape is related to the RPGT.

In an equilibrium transition, P (Q0 > 0.7) should jump discontinuously between

its two limiting values.182 Neither panel of fig. 5.4 shows such a jump, despite the

fact that T0 = 0.43 εAA/kB is well below the predicted RPGT critical temperature

T ∗(c) in this system.182 This result may challenge the accepted view that the RPGT

is an equilibrium phase transition, but it could also be due to insufficient disorder

averaging or to finite size effects, which would “round” the transition by smoothing

out the discontinuity.351,352 An initial test of this scenario will now be described.

5.2.4 Effect of System Size

If the RPGT is a thermodynamic phase transition, the complexity should vanish

completely at a critical c∗, corresponding to a sudden decrease in the number of

quasistates and hence a discontinuity in P (Q0 > 0.7). However, a true discontinuity

is expected only in the thermodynamic limit, being replaced by a smooth crossover

for finite system sizes.

In principle, the existence of the discontinuity could be tested by finite-size scal-

ing, calculating P (Q0 > 0.7) for increasing system sizes and extrapolating the change

in slope at the crossover to test for divergence as N → ∞. Computational limita-

tions prevent this approach at the present time. Moreover, increasing the number

of particles will increase the number of weakly-interacting subsystems, which might

also smooth out the discontinuity in P (Q0 > 0.7).197

As an initial attempt to examine the finite size effects in this system, fig. 5.5

shows ρIS(V,Q0) for a smaller BLJ simulation cell containing 180 atoms (144 A-type

and 36 B-type). These figures are compared with equivalent plots for the 256-atom

landscapes. No qualitative differences are observed between the two systems, which

may indicate that the landscape properties being probed by ρIS(V,Q0) are broadly

independent of system size. On the other hand, one would normally expect proba-

bility distributions, such as ρIS(V,Q0), to become narrower in a smaller system. The

fact that this distribution does not narrow might indicate the presence of interatomic

correlations that span the simulation cell and produce finite size effects.

132



Random Particle Pinning on the Potential Energy Landscape

Greater availability of computer power, particularly GPU acceleration,293 may

allow an accurate finite size scaling calculation to be carried out in the near future.

5.3 Organisation of the Landscape

The results in §5.2 show that the distribution of local minima in the PEL of a

glass former changes dramatically under the influence of random particle pinning.

However, this analysis relied upon use of the overlap function as an order parameter.

In projecting the 3N -dimensional landscape onto two coordinates, V and Q0, a large

amount of information is lost because structurally distinct regions of the landscape

that have similar values of Q0 are grouped together.4

Projection onto Q0 reveals that multiple low-energy packings are present at low

c, but it cannot resolve the number of distinct low-Q0 packings, which is required

to evaluate Σ.

Observing changes to the structure of the PEL without low-dimensional projec-

tion requires knowledge of the connectivity of the landscape, i.e. transition states.

Independent transition state sampling was performed for landscapes with T0 = 0.5 at

several values of c in the range [0.10, 0.18]. To initialise the transition state searches,

101 local minima were selected from databases generated by PTBH. X0 was always

selected, along with 100 low-energy minima chosen from a uniform distribution in

Q0. The exhaustive connection strategy (fig. 2.8) was used to connect these minima,

obtaining a dense sample of stationary points in configuration space.

The resulting databases appeared to suffer from artificial frustration, so further

connection attempts were made using the UNTRAP method (see §2.2.3.1) for some

databases.

5.3.1 Disconnectivity Graphs

Disconnectivity graphs for the pinned landscapes are shown in fig. 5.6. Each mini-

mum (and corresponding branch) is coloured according to its overlap, Q0, with the

reference minimum.

The graph for c = 0.10 resembles an unpinned glassy PEL, similar to those in

earlier chapters. It has many local funnels with comparable energy, which were

previously identified as metabasins. There is no dominant lowest-energy region of

the PEL. The funnel containing the reference structure is much larger than other

funnels, but this is partly due to oversampling in that funnel.

At high c, the PEL has a very different structure: fig. 5.6e contains a single

main funnel, which is a morphology associated with structure seeking systems.353
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Therefore at high pinning fractions, the landscape no longer resembles that of a

structural glass former. Note, however, that the main funnel in this figure contains

many competing low-energy minima, so although the system will seek out this region

of the PEL very rapidly, it will not always locate the global minimum.

As might be expected, the low-energy minima in the main funnel of fig. 5.6e

all have high Q0, indicating that pinning 18% of particles is sufficient to suppress

configurations that are structurally different from X0. Low-Q0 minima do not dis-

appear entirely, and indeed are still organised into small funnels, but these minima

are very high in energy and will not be populated in equilibrium.

Recall that fig. 5.2 shows a relatively sharp crossover between c = 0.16 and

c = 0.17, where the minima with low energy and Q0 < 0.7 disappear quite suddenly.

The improved dimensional resolution in fig. 5.6 reveals a smoother crossover. At

c = 0.16, there are several funnels with Q0 < 0.7 which compete with the reference.

These funnels do not disappear at c = 0.17, but instead seem to be shifted to higher

energies that are no longer comparable with the reference. This shifting process is

investigated in §5.4.

As an aside, consider the likely effect of pinning on the dynamics and relaxation

behaviour of BLJ. Results in the previous chapters have linked super-Arrhenius

behaviour of diffusion constants to the presence of large metabasins, related to local

funnels in the landscape. If these results still apply to pinned systems, one would

expect highly-pinned BLJ to be a strong liquid, since its PEL contains only a single

low-energy funnel and therefore presumably only one metabasin. This expectation

agrees with the results of Chakrabarty et al., who found that the kinetic fragility

of BLJ decreases significantly with increasing pinning.183 The consequences of this

observation are discussed further in chapter 6.

In the high-c panels of fig. 5.6, there are some minima with high Q0 and low

V that appear to be separated from the reference funnel by large energy barriers.

These barriers may be due to artificial frustration that was not removed by the

UNTRAP procedure. In this interpretation, low-barrier pathways between these

minima and the reference minimum probably do exist, but have not yet been found

in our transition state sampling. However, some of the large energy barriers may be

genuine, and caused by the immovable pinned atoms.

134



Random Particle Pinning on the Potential Energy Landscape

0.0 0.2 0.4 0.6 0.8 1.0

Q0

−6.95

−6.90

−6.85

−6.80

−6.75

−6.70

−6.65

V
/N

(ǫ
A
A
)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

(a) N = 180, c = 0.20
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(b) N = 256, c = 0.18
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(c) N = 180, c = 0.15
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(d) N = 256, c = 0.15

0.0 0.2 0.4 0.6 0.8 1.0

Q0

−6.95

−6.90

−6.85

−6.80

−6.75

−6.70

−6.65

V
/N

(ǫ
A
A
)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

(e) N = 180, c = 0.10
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(f) N = 256, c = 0.10

Figure 5.5: Contour plots of log10 ρIS(V,Q0) for different system sizes. Panels on the left
correspond to a system of 180 atoms, and panels on the right are size 256. Energy is given
per particle. T0 = 0.5 εAA in both cases.
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(a) c = 0.10

(b) c = 0.15

(c) c = 0.16

(d) c = 0.17

(e) c = 0.18

Figure 5.6: Disconnectivity graphs for BLJ landscapes at several different pinning frac-
tions. Minima are coloured by their value of Q0.
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5.3.2 Packings on the PEL

The analysis in §5.2 probes the number of packings on the PEL as a function of

c. §5.3.1 follows a similar approach for landscape funnels. Here, we consider the

relationship between packings and funnels, two possible definitions of RFOT qua-

sistates.

In fig. 5.6 most minima in each local funnel have the same colour, suggesting that

they may be structurally similar. To confirm that this is the case, an algorithmic

definition of packings will now be presented. The approach is to cluster the known

minima into groups with high mutual overlap. The boundaries between groups are

defined by the usual similarity cutoff Q∗ = 0.7, so that these groups correspond to

quasistates in the mean-field-like description.

Many efficient methods exist354–356 for detecting highly connected sets in a graph

with edge weights given by a similarity measure, such as Q(Xa,Xb). However, these

methods typically require evaluating all edge weights. The databases used here

contain O(105) minima, making such a calculation impractical. A cheaper greedy

algorithm is used instead:

1. The “parent minimum”, Xp, for the first packing is always X0.

2. Calculate Q(Xp,Xm), where Xm is the lowest-energy minimum not currently

assigned to a packing.

3. If Q(Xp,Xm) > Q∗, m is added to the same packing as p.

4. Steps 2-3 are repeated for all minima not currently assigned to a packing.

5. The lowest-energy unassigned minimum becomes Xp for a new packing.

6. Steps 2-5 are iterated until all minima are assigned, or until all unassigned

minima lie above a predefined energy threshold.

The greedy algorithm does not guarantee that every minimum in a packing is

more similar to the parent of that packing than to any other parent. However, it

does guarantee that all minima within a packing are structurally similar, and that

all parents are dissimilar to each other.

Fig. 5.7 shows the results of the greedy algorithm applied to a database at

c = 0.10. Each packing is assigned a unique colour, and branches are coloured

according to the packing to which the corresponding minimum belongs. Most local

funnels visible on the landscape correspond to a single packing. This is an important

result with several implications.
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10 ǫAA

Figure 5.7: Disconnectivity graph for the database with c = 0.10. Minima are assigned to
packings using a greedy algorithm, and each packing is coloured differently in the graph.
Only packings containing more than 1000 minima are shown, all other minima are coloured
black.

Firstly, it confirms the value of the disconnectivity graph approach by showing

that some pairs of funnels with the same Q0 in fig.5.6 belong to different packings in

fig. 5.7, i.e. they are structurally dissimilar. This visualisation method preserves the

distinction between distant regions of configuration space, which is lost by projection

onto a small number of order parameters.

Secondly, fig. 5.7 validates the common assumption that landscape funnels can

usually be associated with a single amorphous structure, where higher-energy min-

ima are minor perturbations of the lowest minimum in the funnel. The greedy

algorithm may be useful in future work as a quick and objective method for identi-

fying funnels in the landscapes of atomic systems. The relationship between funnels,

packings and metabasins is explored further in sec 5.3.2.1.

Finally, this result shows that local funnels correspond approximately to qua-

sistates defined using the mean-field order parameter Q, therefore validating the

analysis in §5.3.1. The greedy algorithm provides a systematic method for identi-

fying and enumerating quasistates. Although the present results have not sampled

the landscape sufficiently to obtain an accurate calculation of Σ(T, c), the principles

are now established for a future systematic study of this quantity.

Note that in fig. 5.7 there are numerous minima that are assigned to a packing

but which do not belong to a funnel. As in fig. 5.6, this may result from artificial

frustration, because the transition state connecting the minima to their funnel has

not yet been found. It is also possible that these minima have been misassigned: the

precise set of packings identified by the greedy algorithm depends on its parameters,

so there is inevitably some uncertainty over the assignment of high-energy minima.
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5.3.2.1 Packings in Unpinned Landscapes

To test its general utility, the packing detection algorithm was applied to an un-

pinned BLJ landscape database. Fig. 5.8 shows that the agreement between pack-

ings and funnels persists in the absence of pinning. This figure demonstrates the

strong link between real-space structure and connectivity on the PEL.

It has previously been shown233 that metabasins defined by productive cage

breaks also correspond quite closely with landscape funnels. Therefore the three

possible definitions of quasistates proposed in §5.1.4 are broadly equivalent, indicat-

ing a link between metabasin dynamics and quasistate thermodynamics.

However, this equivalence appears to break down for lower temperatures. Figs. 5.8

and 4.10 were produced from the same landscape database, which was obtained by

inherent trajectory sampling at T ≈ Tc for this system. Recall that the different

colours in fig. 4.10 correspond to geometric metabasins, and that this figure only

represents part of the database, to facilitate comparison with the silica landscape.

At the low temperature used to produce these databases, dynamical metabasins

often span several local funnels, due to an increased frequency of reversed cage

breaks. Consequently, the connection between dynamical metabasins and landscape

funnels breaks down at lower temperatures, whereas the connection between pack-

ings and funnels does not.

Although metabasins and packings may agree rather well at higher temperatures

and for smaller systems, the packings detection algorithm will be used to define

quasistates for the remainder of this chapter.

5.3.3 Comparing Pinned Landscapes

The discussion in §5.3.1 demonstrates that the PEL becomes less glassy and more

funnelled as the fraction of pinned particles increases. In this section, the change is

expressed numerically through simple quantitative characteristics of the landscape.

Fig. 5.9 shows histograms of the energy barriers between local minima and the

reference minimum for each landscape database. The barriers are divided into “up-

hill”, (smallest barrier to go from X0 to a local minimum) and “downhill” (from a

local minimum to X0).

The variance of the uphill barriers (fig. 5.9a) increases with c, due to an increase

in the number of high barriers. These barriers appear due to increased funnelling of

the landscape: minima with high uphill barriers are found on the sides of the steep

global funnel. At c = 0.10 the landscape is much “flatter” and hence there are fewer

high energy barriers.
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Figure 5.8: Disconnectivity graph for an unpinned BLJ database (c = 0) with den-
sity 1.3σ−3AA. The landscape was explored using an inherent trajectory produced at
T = 0.65 εAA/kB. Minima are divided into packings using the greedy packings detection
algorithm, each of which is coloured differently in the graph. Only packings containing
more than 100 minima are shown, all other minima are coloured black. The scale bar
represents 10 εAA.

The downhill barrier height distribution is largely independent of c, and has a

much smaller variance than the uphill barriers. Landscapes at low c have more high

downhill barriers than those at high c. The long tail in the histogram for c = 0.10

is due to minima in packings distinct from the reference, which must cross high

inter-funnel barriers to reach X0.

Figs. 5.6 and 5.9 indicate that the PEL of BLJ becomes less frustrated as c

increases, because the number of competing low-energy funnels decreases. Unfortu-

nately, the usual frustration metric f̃ is unable to capture this qualitative trend for

two reasons. Firstly, f̃ is calculated from energy barriers relative to the global mini-

mum, but here it is barriers to X0 that are most relevant. Secondly, f̃ is dominated

by minima that are nearly degenerate with the reference. These minima are mostly

in the same packing as X0, and their density appears to be constant in c, so that

f̃ is very large for all landscapes, and unable to discriminate between the different

pinning fractions.

To avoid these problems, we consider frustration on the level of entire pack-

ings, rather than individual minima. This approach is equivalent to calculating the

frustration of different quasistates. A modified frustration metric is introduced:

f̃p =
∑

α/∈p0

p̃eqα (T )

(
V ‡α

Vα − V0

)
. (5.4)

Here, p0 is the packing that contains reference minimum, and the sum over α includes

all minima that do not belong to p0. p̃
eq
α = peqα /(1−

∑
β∈p0 p

eq
β ) is the renormalised
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Figure 5.9: Histograms of the heights of energy barriers between local minima and the
reference minimum. The first panel shows the “uphill” barriers, the second panel shows
“downhill” barriers. The scale is the same for both panels.

equilibrium occupation probability of minimum α once all minima belonging to p0

are excluded. V0 and Vα are the energies of the reference minimum and minimum

α, respectively.

V ‡α is the uphill barrier from the reference minimum to minimum α, given by

V ‡α = max{(V †α − V0),∆V } where V †α is the energy of the highest transition state

on the minimum-energy pathway connecting α to the reference. ∆V is a parameter

chosen to avoid divergence of f̃p in cases where the reference minimum is not the

global minimum. It turns out that the choice of ∆V does not affect the ordering of

the different pinning fractions by their f̃p values, nor does it significantly affect f̃p for

highly-pinned landscapes. We have selected ∆V = 0.1 εAA to reduce the influence

of minima with Vα < V0.

Fig. 5.10 shows that f̃p(T ) decreases as function of c at all temperatures, pro-

viding clear evidence of the transition from a multi-funnelled supercooled liquid

landscape to a single-funnel pinned glass. Although the numerical values of f̃p are

not directly comparable with those of f̃ , we note that the range of f̃p values in

fig. 5.10 is large compared with the total range in f̃ previously reported.246 This

large range emphasises the difference in organisation betwen these landscapes.

At low T , the frustration metric becomes more temperature-dependent, as the

number of populated minima decreases and the sum in eq. (5.4) becomes increasingly

dominated by a few large terms. In particular, the frustration of the c = 0.16 land-

scape increases dramatically and eventually exceeds the frustration of the c = 0.15

landscape. This result is probably a peculiarity of the specific disorder realisation

that was used here, due to the presence of several packings on the c = 0.16 that are

almost degenerate with the reference structure.
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Figure 5.10: Modified frustration index f̃p(T ) for landscapes with different pinning frac-
tions.

5.4 Evolution of the PEL with Pinning Fraction

In this section, the effect of random pinning on the PEL is examined by following the

behaviour of individual minima and packings as c changes. The natural choice would

be to study the behaviour of minima as c increases from 0, where sampling many

different packings is trivial. However, mapping a minimum Xi from a landscape

with M pinned atoms onto a new landscape with M +1 pinned atoms and reference

X† is not a well defined procedure, because the (M + 1)th pinned atom must be

somehow moved from its position in Xi to the correct position in X†. The correct

way to perform this movement is unclear, so progressively pinning a database from

c = 0 is not possible.

In contrast, mapping a minimum from the high-c landscape to a low-c land-

scape is straightforward: the unwanted pinning constraints are released, obtaining

a non-minimised configuration. Following the steepest-descent pathway to the new

minimum is a mathematically well-defined operation, so a landscape database may

be relaxed from high c to low c in an unambiguous fashion.

The drawback of this approach is that sampling multiple packings at high c is

difficult because most of them are very high in energy, and the set of minima sampled

at high c may not be important at low c. One must be careful to account for this

possibility in drawing any firm conclusions from the results.
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Figure 5.11: Figures showing how V and Q0 evolve for a set of minima as a c = 0.18
landscape is progressively unpinned. Each grey line represents the parent minimum of
a large packing on the c = 0.18 landscape. The thick black line represents the average
value over the grey lines. The red line represents the reference minimum, and the arrow
indicates the direction of relaxation.

5.4.1 Evolution of Minima

Unpinning analysis was performed on a subset of minima obtained at c = 0.18. The

subset consisted of the reference minimum, and the lowest energy minimum from

each packing that contains more than 1000 minima.

Fig. 5.11a shows that the energy of each minimum decreases during unpinning,

as expected because we re-minimise after unpinning each atom. For most minima

the decrease is substantial: around 20 εAA on average. The reference minimum

decreases by only 10 εAA over the same interval, so the energy gap between the

reference minimum and the other funnels decreases during unpinning. Fig. 5.11b

shows little change in Q0 during unpinning, indicating that most packings do not

undergo significant structural change as pinned atoms are released.

These results suggest that most or all packings on a high-c landscape are still

present on landscapes at lower c, and that low-Q0 packings become gradually more

competitive the reference during unpinning. However, they do not prove that every

packing on a low-c landscape has a corresponding funnel on a given high-c landscape.

In fact, this scenario is quite unlikely.

Fig. 5.6 shows that for c ≤ 0.15 there are typically several low-Q funnels with

energies equal to or lower than the reference minimum, but none of the minima

shown in fig. 5.11a have energies equal to that of the reference. This may indicate

that the lowest-energy packings at c = 0.15 do not evolve from high-c packings, but

rather appear due to other funnels bifurcating during unpinning.

An alternative explanation is that the lowest local minimum in a given packing
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can change as c is decreased, so that the minima being followed in fig. 5.11 are no

longer relevant. This possibility may be avoided by sampling entire packings as a

function of unpinning.

5.4.2 Evolution of the Packings

To follow the evolution of packings with decreasing c, a sample of 100 minima was

selected from the landscape at c = c0. This sample contained the reference and at

least one low-energy minimum from each packing with more than 1000 minima.

Each minimum in the sample was unpinned to c = c1 < c0 and relaxed. The

new low-c minima were connected using the exhaustive connection strategy. The

resulting databases differ significantly from those represented in fig. 5.6, because the

methods of generating initial minima to connect are very different. The two sets of

databases correspond to different ways of sampling configuration space.

The greedy packings algorithm was used to detect all packings containing at least

1000 minima in the new database. Packings were then compared between databases

at different pinning fractions using the mutual overlap, defined as:

Qp(A,B) =
1

NANB
∑

X∈A

∑

Y ∈B
Q(X, Y ), (5.5)

where X and Y are minima belonging to packings A and B, respectively, and NA
is the number of minima in packing A. In practice, Qp was estimated by restricting

the sums to run over 10 minima selected at random from each packing.

In the elementary overlap calculation, Q(X, Y ), the sum over atoms runs over

all atoms that are mobile in the low-c system.

If Qp(A,B) > 0.7, packings A and B are considered to correspond. Fig. 5.12

shows a pair of landscapes (c0 = 0.17, c1 = 0.16) with some pairs of corresponding

packings indicated by black lines. This figure shows that most packings persist

largely unchanged when a small number of atoms are unpinned. The energy of each

packing decreases relative to the reference, and the barrier to the reference may also

decrease slightly, but the average Q0 hardly changes. The energies of low-overlap

packings tend to decrease faster than high-overlap packings, with the result that

more low-overlap packings become thermally accessible as c is reduced.

Fig. 5.13 shows Qp(A,B) for all pairs of packings. In each case, the vertical axis

corresponds to packings in the high-c landscape and the horizontal axis corresponds

to the low-c landscape. The labelling of the packings is arbitrary, so they have

been ordered using the Hungarian algorithm357,358 to maximise the overlap along

the main diagonal of each panel.
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Figure 5.12: Graph to show correspondences between packings in different disconnectivity
graphs. The upper graph represents a landscape with c = 0.17, the lower graph is at
c = 0.16. Minima are coloured according to their Q0 values, using the same colour scale
as before. Black lines connect some pairs of packings for which Qp > 0.7. The scale bar
represents 10 εAA.

Most packings at the lower value of c have exactly one correspondence on the

high-c landscape, called a parent packing. This observation means that most funnels

retain their identities during the unpinning operation, as previously seen.

Beyond the simple parent-daughter relationship, there are several other scenarios

that can and do occur in fig. 5.13. First, some low-c packings have no known parent

on the high-c landscape. These cases are identified by columns of the matrix that

contain no large values (see particularly fig. 5.13b). This scenario indicates that

new packings become stable when pinning constraints are released, consistent with

an increase in complexity at lower c.

Secondly, some packings at high c have no clear daughter packings - see the rows

in fig. 5.13a that have no large values. Unpinning some atoms in these minima causes

a significant structural rearrangement, presumably because the structure in question

was stabilised by one of the pinned atoms. The packing is therefore destroyed by

unpinning.

The third scenario is that some daughter packings have multiple parents and

some parents have multiple daughters, indicated by a triangle of large Qp values in
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Figure 5.13: Heat maps representingQp(A,B) for pairs of packings on two landscapes with
different c. The vertical axis represents packings of the high-c landscape, the horizontal
axis represents the low-c landscape. Packings have been ordered to maximise overlap along
the main diagonal.

146



Random Particle Pinning on the Potential Energy Landscape

the matrix. These situations correspond to splitting and merging of packings during

unpinning.

Note that the first two scenarios could be explained by incomplete landscape

sampling: possibly the missing parents and daughters do exist but were not captured

by the exhaustive connection protocol. However, the region of configuration space

defined by the initial set of minima has been sampled very thoroughly, so missing

an entire packing is quite unlikely.

The third scenario could be an artefact of the packings detection algorithm: if

two high-c packings are structurally similar, but not quite similar enough to be

grouped together by the algorithm, then both of them will have high overlap with

the corresponding daughter packing.

The behaviour of the PEL during unpinning is clearly very complicated, and

merits further study. Nevertheless, we can state that packings identified for a high-c

landscape are usually still present on corresponding low-c landscapes, although they

may bifurcate or merge. The average Q0 of minima within a packing changes very

little during unpinning, and the energy relative to the reference decreases.

5.5 Conclusions

The transformation of the PEL that accompanies the random pinning glass tran-

sition (RPGT) has been described in detail for the BLJ fluid. Changes to the

distribution of local minima, and to the connectivity of the landscape, were con-

sidered. Landscape exploration was performed independently at a range of pinning

fractions, and quasi-continuously as a function of unpinning from a highly-pinned

initial landscape.

Mean-field theories predict that the number of metastable states accessible to

the system decreases to one as the pinning fraction c is increased. In non-mean-

field systems, the packings analogous to these states are identified using the overlap

order parameter. We have shown that these packings correspond very closely with

local funnels on the PEL, and in some conditions they are also similar to dynamical

metabasins.

The PELs of pinned glass formers change dramatically in the vicinity of a

crossover point, c = c∗, identified with the RPGT. At low c there are many struc-

turally distinct funnels on the landscape, but when c > c∗ most of these packings

retreat to high energy and only one accessible funnel remains, corresponding to the

pinning reference structure. This picture is consistent with the theoretical prediction

that the complexity Σ(T ) vanishes at the RPGT.175
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The crossover pinning fraction c∗ decreases at reduced reference temperature

T0, as expected for the second order phase transition within the RFOT theory.

However, the data presented here cannot resolve whether this event corresponds

to a thermodynamic phase transition, and the value of c∗(T0) predicted from the

landscape differs slightly from that obtained by thermodynamic integration.182

The simplest mean-field picture of the RPGT predicts that some metastable

states simply disappear as atoms are pinned, because they are inconsistent with

the new pinning pattern. We have shown that real systems differ somewhat from

this prediction, because very few local funnels disappear completely under pinning

- instead they are shifted to higher energy. The crossover at c∗ appears smoother

when the full dimensionality of the PEL is considered than it appears when the

configuration space is projected onto a small number of order parameters.

From the perspective of PEL theory, this chapter contributes several useful tools

and observations. Firstly, the connection between real-space structure and the PEL

is made explicit through the use of the structural overlap as an order parameter.

This quantity provides a quick and intuitive way to identify local funnels numerically.

Secondly, it is now clear that the pinning operation induces a qualitative change

in the landscape frustration. Pinning represents an intriguing means of controlling

landscape structure and system behaviour, both for supercooled liquids and for other

models.

Finally, some interesting questions have been raised regarding the behaviour of

landscape funnels as a function of (un)pinning. The behaviour of local structures

under perturbations of the landscape is clearly rather complicated, and merits closer

study.

The results in this chapter establish a methodology for systematic investigation

of the RPGT using landscape methods. To establish whether a thermodynamic tran-

sition really occurs for pinned BLJ, one should perform extensive basin-sampling359

calculations to generate equilibrium distributions of minima in the noncrystalline

region of the PEL, for a range of pinning fractions and system sizes. Enumerating

the distinct packings present on the landscape would allow Σ(c, T ) to be evaluated,

and hence determine whether this quantity vanishes at (c∗, T ∗). Current computa-

tional limitations prohibit this scheme of work, but improvements in hardware and

methodology may make it feasible in the future.
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Chapter 6

Correlated Motion in Model Glass

Formers

6.1 Introduction

In this final results chapter, we return to the subject of supercooled dynamics and

consider a method of analysis that does not probe the PEL directly, although PEL

concepts will prove useful to interpret the results. All three of the glass forming

systems described in this thesis (OTP, silica and pinned BLJ) will be considered,

and common themes in their behaviour will emerge.

The analysis follows an approach used by de Souza and Wales to study BLJ,254,255

which was discussed briefly in §1.7.1. Their method in turn closely resembles the

three-point correlation function introduced by Doliwa and Heuer to detect signa-

tures of caged motion,47,106 which has also been used to study the cage effect in

experimental hard-sphere colloids.45,46 Both methods found that the motion of a

particle in a supercooled liquid is negatively correlated over short time periods, due

to the confining effect of a nearest-neighbour cage. Here, the same approach is used

to probe correlations on a wider range of time scales.

First, the details of the method are presented, and then the results are discussed

for OTP (§6.3), silica (§6.4) and pinned BLJ (§6.5).

6.2 Short-time Diffusion Constants

The key idea of this chapter is to divide a long, locally ergodic MD trajectory into a

sequence of short non-ergodic time intervals. Diffusion is then studied as a function

of the interval length, equivalent to a short observation time. The simplest way to

149



Correlated Motion in Model Glass Formers

perform this analysis is to calculate a short-time effective diffusion constant:

D(τ, T ) = lim
t→∞

1

6t

〈
ri(t, τ)2

〉
, where (6.1)

ri(t, τ)2 =
m∑

j=1

∆ri(j)
2. (6.2)

The sum is over m time intervals of length τ = t/m. ∆ri(j) = ri(jτ)− ri((j − 1)τ)

is the displacement of particle i in time interval j.

Eq. (6.1) closely resembles eq. (1.3), the usual expression for the diffusivity D(T ).

To calculate D(τ, T ), the mean square displacement is evaluated over the intervals

rather than over the entire trajectory, and long-time behaviour is approximated by

adding together many short-time displacements.

6.2.1 Correlation-corrected Diffusion Constants

D(τ, T ) will turn out to give a rather poor approximation to D(T ), when τ is

small. To understand why, consider the effects that are neglected by D(τ, T ), namely

correlations in ∆ri between different time intervals.

These correlations may be quantified by expressing the true displacement ri(t)

of particle i at time t = mτ in terms of the short-time displacements ∆ri(j):

ri(t) =
m∑

j=1

∆ri(j), so

ri(t)
2 =

(
m∑

j=1

∆ri(j)

)
·
(

m∑

k=1

∆ri(k)

)

=
m∑

j=1

∆ri(j)
2 + 2

m∑

j=1

m∑

k=j+1

∆ri(j) ·∆ri(k)

=
m∑

j=1

∆ri(j)
2 + 2

m∑

j=1

m∑

k=j+1

∆ri(j)∆ri(k) cos θjk. (6.3)

θjk is the angle between the displacement vectors in intervals j and k, and ∆ri(j)

represents the magnitude of ∆ri(j).

Recognising that the first term of eq. (6.3) is equal to ri(t, τ)2 in eq. (6.2), it is

clear that the short-time diffusion constants D(τ, T ) neglect the correlation terms in

cos θjk. To confirm this result, an approximate correlation term may be reintroduced

in 〈ri(t, τ)2〉 to recover the full super-Arrhenius behaviour.254 This correlation term
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is analogous to the correction sum (cs) defined for cage breaks in §4.3.2.1.

The average of cos θjk over all particles and time intervals is denoted by 〈cos θjk〉.
As will be shown below, this quantity is usually negative when k = j + 1 and ap-

proximately 0 otherwise. At very small τ , 〈cos θjk〉 displays damped oscillatory

behaviour in k − j due to cage-rattling motion.256 However, the correlation of con-

secutive time intervals still dominates. 〈cos θj,j+1〉 becomes more negative as the

temperature decreases.

These properties of 〈cos θjk〉 mean that the second term of eq. (6.3) may be

simplified by setting all cos θjk terms to 0 unless k = j + 1. We then obtain a

corrected form of eq. (6.1):

D∗(τ, T ) = lim
t→∞

1

6t

〈
r∗i (t, τ)2

〉

= lim
t→∞

1

6t

〈
m∑

j=1

(
∆ri(j)

2 + 2∆ri(j)∆ri(j + 1) cos θj,j+1

)
〉

≈ lim
t→∞

1

6t

〈
m∑

j=1

∆ri(j)
2 (1 + 2 cos θj,j+1)

〉

≈ lim
t→∞

1

6t

〈
m∑

j=1

∆ri(j)
2

〉
× (1 + 2〈cos θj,j+1〉) (6.4)

= D(τ, T )(1 + 2〈cos θj,j+1〉). (6.5)

The third line assumes that the magnitudes of the displacement vectors for adjacent

time intervals are similar when averaged over large m, so that ∆ri(j + 1) ≈ ∆ri(j).

The fourth line uses a “mean-field” approximation, assuming that cos θj,j+1 takes

its average value for all j, and is therefore a constant term which can be factored

out of the average.

There are two major objectives in this chapter. Firstly, to establish whether

D∗(τ, T ) can provide a reasonable estimate of D(T ) without needing to compute

a long ergodic trajectory. Secondly, to examine the situations in which D(τ, T )

and D∗(τ, T ) fail to describe D(T ), and hence determine the importance of the

observation time scale in calculations of diffusion for model glass formers.

6.3 Fragile Glass Formers

In this section, the short-time diffusion analysis is applied to the MD trajectories

of OTP that were used in chapter 3. The results agree qualitatively with those
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Figure 6.1: Short-time translational diffusion constants D(τ, T ), for OTP (a) and BLJ
with number density 1.1σ−3AA (b). Results for several values of the interval length τ are
shown, along with the long-time diffusion constants D(T ) (filled diamonds in the BLJ
plot). BLJ figure reproduced from [254] with the permission of APS Publishing. In the
BLJ figure, all quantities are given in reduced units and the horizontal axis is T−1.

obtained for BLJ in the earlier study,254,255 and so they may be representative of

fragile glasses in general. Results for the two systems will be compared side-by-side

in this section, and most of the discussion applies equally to both.

Short-time diffusion constants D(τ, T ) are presented in fig. 6.1. Their temper-

ature dependence is roughly Arrhenius for small τ , but super-Arrhenius curvature

reappears as τ increases. As the interval length approaches local ergodicity, the

curvature increases and D(τ, T ) tends towards D(T ).

The failure of D(τ, T ) to reproduce super-Arrhenius behaviour at small τ shows

that the neglected displacement correlations are fundamentally important in dif-

fusion for these fragile systems. D(τ, T ) overestimates D(T ) for all temperatures,

indicating that the average effect of the neglected correlation is negative, i.e. anticor-

relation dominates. D(τ, T ) and D(T ) agree reasonably well at high temperature for

all but the smallest τ , so the strength of the correlations decreases with increasing

temperature.

A more detailed picture of the correlation behaviour is obtained by examining

〈cos θjk〉, the average angle between single-particle displacement vectors in time

intervals j and k (see eq. (6.3)). Fig. 6.2 plots this quantity as a function of k − j
for an OTP trajectory.

〈cos θjk〉 ≈ 0 for (k − j) > 1, indicating that the direction of motion in non-

adjacent intervals is uncorrelated on all but the shortest time scales. 〈cos θj,j+1〉 < 0,

showing that motion at short times is negatively correlated. The magnitude of

〈cos θj,j+1〉 increases with decreasing τ and decreasing T , in agreement with the
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Figure 6.2: Average correlation factor between translational displacements in time inter-
vals of length τ . θjk is the angle between the displacement vectors in interval j and interval
k. These data represent an OTP trajectory at T = 291 K.

previous figure.

Fig. 6.2 indicates that only correlations between adjacent τ windows are signifi-

cant, and so the corrected diffusion constant D∗(τ, T ) should recapture the long-time

behaviour. This expectation is confirmed in fig. 6.3: for all τ , D∗(τ, T ) is signifi-

cantly closer than D(τ, T ) to the correct D(T ), and the super-Arrhenius curvature

is recovered at much lower τ values once the correlation correction is included. For

BLJ, agreement of D∗(τ, T ) with D(T ) is excellent for almost the entire range of T

and τ considered.

The correlation correction is less effective for OTP than for BLJ, presumably

because the mechanisms of translational and rotational diffusion are coupled, which

reduces the effectiveness of this simple description of the dynamics. Nevertheless,

these results show that incorporating anticorrelation of particle displacements is

necessary to reproduce super-Arrhenius behaviour in both atomic and molecular

fragile liquids.

The magnitude of anticorrelation increases as temperature decreases, leading

to smaller diffusion constants and an apparent increase in the effective barrier to

diffusion. This increase is entropic in nature: the proportion of available rearrange-

ments that involve reversal motion increases at lower T , and hence the number of

available diffusive pathways decreases.256 The temperature-dependent entropic bar-

rier is superposed over a constant short-τ activation energy, which is dominated by

temperature-independent potential energy barriers.
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Figure 6.3: Correlation-corrected diffusion constants D∗(τ, T ), for OTP (left) and BLJ
with number density 1.1σ−3AA (right). Several values of the interval length τ are shown,
along with the long-time values D(T ) (filled diamonds in the BLJ plot). The OTP plot
also includes some uncorrected D(τ, T ) curves for comparison. The BLJ figure uses the
same symbols as fig. 6.2 for different values of τ . The BLJ figure is reproduced from [254]
with the permission of APS Publishing.

D(τ, T ) and D∗(τ, T ) represent a coarse-graining approach, using progressively

less information from the trajectory as τ decreases. The cage-breaking diffusion

constants seen in previous chapters (DCB(T )) are also a result of coarse-graining

the full trajectory into a relatively small number of CB events. However, even for

the coldest OTP trajectory the frequency of CBs is ≈ 0.5 ps−1, while τ > 1500 ps

is required to give D(τ, T ) that fit the correct values as closely as Dprod(T ). Short-

time diffusion constants provide a coarse-grained representation of the cage effect,

averaging over many CB events to obtain the correct diffusive behaviour at long τ .

The CB method coarse-grains the trajectory by picking out the key events and

discarding all other information. The D(τ, T ) approach applies arbitrary coarse-

graining independent of the microscopic details of the system, and therefore longer

trajectories are required to reproduce the diffusion constant correctly using D(τ, T )

than using Dprod(T ).

6.3.1 A More Sophisticated Intermolecular Potential for OTP

The short-time diffusion method is a very general approach that does not depend

on details of the model. Therefore, it can be applied easily to potentials that go

beyond rigid body models and isotropic pair potentials.

Eastwood et al. have used a partially-flexible atomistic model for OTP,15 which

allows the phenyl rings to rotate. The Shaw group provided a trajectory for this

model at 290 K, from which 〈cos θjk〉 was calculated as a function of τ . These
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Figure 6.4: Average correlation factor between displacements in time intervals of length τ
using the Shaw group atomistic trajectory computed at 290 K.

results are shown in fig. 6.4, and appear qualitatively identical to fig. 6.2. D(τ, T )

for this model is therefore expected to show similar behaviour to that of the Lewis-

Wahnström model.

These preliminary results show that the anticorrelation effect still holds for the

Shaw model of OTP, which implies that the Lewis-Wahnström potential captures

the essential physics on this level of coarse-graining and therefore that cage-breaking

motion is a useful description of supercooled dynamics. However, the exact atomic

mechanisms by which these cage breaks take place will be different in a more flexible

model and so identifying these events would probably require a more sophisticated

definition than that used in chapter 3.

6.4 Strong Glass Formers

Having established that super-Arrhenius behaviour arises from negative correlations

in particle displacements, the role of these correlations in strong liquids will now be

discussed.

Since silica does not display super-Arrhenius behaviour in the low-temperature

regime, one might expect that negative correlation effects would be absent, but

fig. 6.5 shows this is not the case. Once again, D(τ, T ) does not reproduce the

correct long-time behaviour, indicating that correlation between displacement vec-

tors is significant here as well as in OTP and BLJ. The effect of this correlation is

surprisingly different.
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Figure 6.5: Short-time diffusion constants D(τ, T ) for silicon in liquid silica as a function
of inverse temperature. Several values of the interval length τ are shown. The correct dif-
fusion constants D(T ) are shown for comparison. The equivalent plot for oxygen diffusion
is qualitatively the same.

For fragile liquids, diffusion constants have Arrhenius behaviour at small τ and

recover super-Arrhenius curvature on longer time scales. For silica, positive de-

viation from the Arrhenius law is observed at small values of τ and straight-line

behaviour is recovered as τ increases.

Therefore the upwards deviation of D(τ, T ) at small τ may result from the tran-

sition between caged and diffusive motion. Both of these regimes contain negative

correlations: intra-cage motion consists of fast oscillations or “rattling”, and we

have already seen that cage-breaking rearrangements can be easily reversed. The

time scale of anticorrelation in cage-breaking motion is much longer than that of

rattling. Cage breaks are correlated on times comparable with tp, which the up-

per limit of the caging plateau in the mean squared displacement or intermediate

scattering function.

D(τ, T ) implicitly includes the effect of correlations between events with periods

faster than τ . At high temperatures, when tp is small, an interval of length τ includes

some reversed cage breaks, but when tp > τ at lower temperatures these correlations

are not captured by D(τ, T ). Therefore, D(τ, T ) reports a smaller effective activation

barrier as the temperature decreases.

An alternative description of the same effect is that on short time scales the
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Figure 6.6: D(τ, T ) for A-type atoms in a 256-atom BLJ system with density 1.2σ−3AA.
The τ values used here are significantly shorter than in fig. 6.1b. Times are given in
(mσ2AA/εAA)1/2.

low-temperature trajectories mostly sample small potential energy barriers for intra-

cage motion, while the high-temperature trajectories are able to access a significant

number of high energy barriers corresponding to cage-breaking motion.228,232 Hence

there is a reduction in the effective activation barrier at the temperature for which

τ ≈ tp, and D(τ, T ) crosses over to a new Arrhenius line with shallower gradient.

If this interpretation of fig. 6.5 is correct then the same behaviour ought to

be observed for any glass former (strong or fragile) at low enough temperatures

and short enough time scales. Fig. 6.6 shows D(τ, T ) for a BLJ system at much

smaller τ than previously considered. As predicted, the slope of D(τ, T ) at small

τ shows positive deviation from D(1000, T ) ≈ D(T ). For the smallest observation

time scales, D(τ, T ) converges, indicating an intra-cage activation barrier that is

independent of τ and T . The small-τ behaviour of D(τ, T ) seems to be general to

both classes of supercooled liquid.

Fig. 6.7 shows both the corrected and uncorrected silicon diffusion constants

(D∗(τ, T ) and D(τ, T ) respectively) for selected values of τ . As before, D∗(τ, T )

agrees much more closely than D(τ, T ) with the correct long-time values, and Ar-

rhenius temperature dependence is recovered at much smaller τ . Both intra-cage

and inter-cage correlation is accurately described by the average correction factor,

so D∗(τ, T ) gives a good estimate of the long-time behaviour for quite small τ .
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Figure 6.7: Correlation corrected short-time Si diffusion constants for silica. The long-time
values and uncorrected short-time diffusion constants are shown for comparison.

The difference between strong and fragile behaviour should be explicable in terms

of correlation effects. Strong temperature dependence requires a constant effective

energy barrier, which implies that the magnitude of negative correlations is inde-

pendent of temperature. The previous discussion shows that this condition is not

met for silica for small τ , but presumably it is true for τ →∞. In constrast, nega-

tive correlations in BLJ grow with decreasing temperature for the entire range of τ

studied here.

The difference between strong and fragile liquids could be explained by the time

scale on which the negative correlations decay. It is possible that correlations in

fragile liquids are longer-lived than in strong liquids, and so their effect on the

diffusion constant is greater.

For this hypothesis to be true, the negative correlations in silica would need

either to vanish or to become temperature-independent on times comparable to tp.

This scenario implies that cage breaks in silica are weakly correlated compared with

BLJ, so that the difference between strong and fragile liquids may be described as

a competition between the time scales of caging and negative correlation. Both of

these time scales increase at low temperatures. Only if the correlation time scale

grows faster than tp will the proportion of negative cage breaks increase, producing

super-Arrhenius behaviour.

This interpretation argues that there is no fundamental difference between strong
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and fragile diffusive behaviour: negative correlations are important for both, but in

fragile liquids they exist on longer time scales than strong liquids. A simple test of

this hypothesis is given in the next section.

For a more comprehensive investigation of correlation time scales, the temperature-

dependence of 〈cos θj,j+1〉 should be investigated. When τ ≈ tp, we expect that this

quantity will either be small or temperature-independent for silica, but will still

grow with decreasing T for BLJ. This test cannot be undertaken at the present

time, because we have not previously produced MD trajectories long enough to ob-

tain a good average of cos θj,j+1 for such long τ values. These calculations will be

performed in the near future as a test of the competing-timescales hypothesis.

6.4.0.1 Correlation Times Scales in Cage Breaks

Comparing time scales between different model liquids requires the adoption of

consistent reduced units. One approach to this problem uses the cage-breaking

method described in earlier chapters.

The caging time may be estimated from the distribution of waiting times be-

tween consecutive cage breaks for an atom. This distribution shows approximately

exponential decay, so the corresponding time constant, tcage, is a reasonable estimate

of the caging time tp.

To estimate the correlation time scale, we use the distribution of reversal chain

times, defined as the length of simulation time elapsed between the start and end

of a chain of reversed cage breaks. Fig. 6.8 shows histograms of this distribution

for silica and for the BLJ fluid described in §4.5. The inherent trajectories used to

identify cage breaks were both obtained at T ≈ Tc for the corresponding system.

Both probability distributions decay with increased chain time, with a small

number of chains persisting for hundreds or thousands of caging times. The BLJ

histogram decays more slowly than the silica system, and has more long chains. The

longest chains for BLJ are at least an order of magnitude longer than the longest

chains for silica.

These results show that the timescale of negative correlation in BLJ is appre-

ciably longer than that for silica, which is consistent with our description of the

differences between strong and fragile liquids. However, negative correlations in

silica persist to times significantly greater than the typical cage waiting time, in

conflict with the prediction of the previous section. This contradiction may indicate

that better characteristic times are called for, or that the exact ratio between these

two time scales is less important than was suggested by the short-time diffusion

analysis.
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Figure 6.8: Normalised histograms for the time spent in cage-breaking reversal chains. A
silica trajectory at 3207 K is compared with a 256-atom BLJ liquid with density 1.3σ−3AA

and temperature 0.65 εAA/kB. The data bins have unequal widths, for greater clarity on
the double logarithmic scale. Times are quoted in units of the characteristic caging time
(see text) for each system.

6.5 Pinned Glass Formers

In §5.3.3, it was argued that increasing the pinning fraction c in a model glass

former decreases the frustration of the landscape, which is expected to correspond

with a decrease in kinetic fragility. Chakrabarty et al. have previously observed this

decrease using MD simulations of pinned BLJ systems.183

Fig. 6.9 shows the transport behaviour in a series of microcanonical MD simula-

tions of pinned BLJ with various pinning fractions. Each simulation used the same

reference structure, which was obtained at T0 = 0.5 εAA/kB.

All characteristic temperatures are functions of c in a pinned system, so the

inverse temperature in fig. 6.9 must be rescaled to compare between different sim-

ulations. The diffusion constants are plotted against Tg/T , where Tg is defined by

D(Tg) = 10−14 σAA(εAA/m)1/2 and determined from a VTF fit to the data. Other

small values of D(Tg) provide similar results.

Fig. 6.9 shows that increasing c reduces the curvature of the Angell plot, con-

firming the hypothesis of chapter 5 that highly-pinned landscapes are less fragile.

Based on the discussion of §6.4, we expect the behaviour of the short-time diffusion

constants to change as c increases.

Fig. 6.10 shows the uncorrected and corrected diffusion constants D(τ, T ) and
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Figure 6.9: Diffusion constants for BLJ systems at a range of pinning fractions c, with a
constant reference structure X0 obtained at T0 = 0.5 εAA/kB. Solid lines show VTF fits
to the data points.

D∗(τ, T ) for two pinned systems: c = 0.10, which is more fragile, and c = 0.18, which

is relatively strong. As with all the other systems, D(τ, T ) increasingly overestimates

D(T ) at low T due to the emergence of anticorrelation between time intervals.

Positive deviation from Arrhenius behaviour is observed at short τ for both systems,

but particularly for c = 0.18. Moreover, the temperature at which D(τ, T ) first

deviates from D(T ) is higher for the c = 0.18 system. Both of these observations

imply that the condition τ < tp for positive deviation of D(τ, T ) is satisfied at a

higher temperature in c = 0.18, indicating that the caging time is greater at high c

than low. Longer tp means that a larger τ is required to describe diffusion correctly

for the c = 0.18 system.

The correlation correction is rather successful here: remarkably good agreement

is obtained between D∗(τ, T ) and D(T ) at high and intermediate temperatures, even

for very short τ . The correction is better for c = 0.10 than c = 0.18, probably due

to the increased caging time.

These observations agree with intuitive expectations for pinned systems. Struc-

tural relaxation slows dramatically on the introduction of pinned atoms, indicating

a reduced frequency of cage breaks, so it is unsurprising that the caging time scale

increases with increasing c.

The decrease in kinetic fragility with increasing pinning may also be under-

stood in terms of the correlation effect. It has been argued throughout this thesis
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Figure 6.10: Short-time diffusion constants D(τ, T ) for two pinned BLJ systems. The two
left panels show c = 0.10, the two right panels show c = 0.18. The upper two panels show
D(τ, T ), the lower two panels show the correlation-corrected behaviour D∗(τ, T ). In each
panel, a range of τ values are presented and also the long-τ limit D(T ). Times are given
in (mσ2AA/εAA)1/2.

that negative correlations of cage-breaking motion arise from the presence of large

metabasins, which can be loosely identified with landscape funnels. Cage-breaking

transitions within a metabasin are easily reversed, because the energy barriers to re-

turn to the lowest minimum are smaller than the barriers to escape the metabasin.197

Metabasins in silica contain fewer minima than those in BLJ, hence there is less

driving force for anticorrelation of cage-breaking jump directions, and long-time

correlation is reduced.

We saw in chapter 5 that the landscape of a highly-pinned glass former has only

a single global funnel structure and consequently very few metabasins. Therefore

negative correlations on the cage-breaking time scale are shorter-lived at c = 0.18

than at c = 0.10, and so the super-Arrhenius curvature decreases.
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6.6 Conclusions

In this chapter, a coarse-grained description of diffusion in supercooled liquids has

been presented. The scale of the coarse-graining is set by a time parameter τ , that

serves to probe the time scales of correlated single-particle motion.

It is well established that there are two distinct mechanisms of atomic motion in

a supercooled liquid: rattling within a cage of nearest neighbours, and rare jumps

between cages. Both types of motion are anticorrelated on their respective time

scales.

When τ is very small, short-time diffusion analysis excludes both types of anti-

correlations, yielding a significant overestimate of the true diffusion constant. Anti-

correlations of rattling motion are included when τ exceeds the typical vibrational

time, but correlations between cage breaks may require much longer τ for an ac-

curate description. If τ is long enough to capture individual cage breaks, but not

the correlations between them, then D(τ, T ) will display Arrhenius temperature

dependence regardless of the correct long-time behaviour.

We hypothesise that in strong liquids, correlations between cage breaks are

comparatively weak and/or temperature-independent, as indicated by their small

metabasins. Therefore D(T ) and the relaxation time τs, which are controlled by

cage-breaking rearrangements, do not experience a temperature-dependent activa-

tion energy and the Arrhenius law is obeyed. The activation energy calculated from

D(T ) represents the typical free energy barrier for a cage break.

Super-Arrhenius behaviour arises when negatively correlated motions are long-

lived, so that their effect extends into the diffusive regime.Then a much longer τ is

required to describe diffusion accurately.

Although much of this discussion remains to be proved definitively, its validity

could be checked by comparing three important time scales, tp, tv and tc between

the various systems. tp is the time scale on which particles are confined within a

cage, tv is the average vibration time, and tc is the correlation time for cage breaks.

All three quantities depend on temperature. Comparing them requires appropriate

reduced units to be devised, which is a task for future work.

tp, the caging time scale, is the simplest of the three time scales to estimate

manually (e.g. from a plot of mean square displacement against time) but a precise

definition is more challenging. In §6.4.0.1 the decay constant of the cage waiting

time distribution was used as an estimate.

tv, the time scale of anticorrelation for rattling motion, could be estimated using

the average vibrational frequency of an amorphous inherent structure. This quan-

tity is temperature-dependent, but for a crude order-of-magnitude estimate this
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dependence may be neglected.

tc is the least well-defined of the three characteristic times. One possible defini-

tion is the decay constant of the reversal chain length distribution for cage-breaking

events (see §6.4.0.1). Another is the decay constant for a correlation function that

uses the displacement vectors of successive cage breaks, for example:

C(t) = 〈∆rCB
i (t′) ·∆rCB

i (t′ + t)〉. (6.6)

Here ∆rCB
i (t′) is the displacement vector of particle i during a cage break at time

t′. 〈· · · 〉 indicates an average over particles i and over initial times t′. The problem

with this method is that one can only accumulate the average by comparing pairs

of cage breaks, which are comparatively rare, so an extremely long MD trajectory

is required to calculate C(t) accurately at low temperatures.

Pinned glass formers may be particularly useful to test the hypothesis that

super-Arrhenius behaviour arises from significant correlations between cage breaks.

Highly-pinned systems are stronger than weakly-pinned, so pinning allows the fragility

of a model liquid to be varied without needing to change the pairwise potential. This

tunability may arise from the reduction in the number of metabasins with increasing

pinning, which reduces the negative correlation of cage-breaking rearrangements.
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Chapter 7

Conclusions

In this thesis, I have demonstrated that the potential energy landscapes of glass-

forming liquids contain a significant degree of higher-order structure, characterised

by the organisation of minima into local funnels. The variation in structure between

different glass forming systems is considerable, particularly when quenched disorder

is introduced by the method of random particle pinning. The presence or absence

of higher order structure has a significant effect on the dynamic and structural

behaviour of liquids in the supercooled temperature regime.

I have shown that cage-breaking rearrangements, defined by changes to the

nearest-neighbour environments of rearranging particles, provide a good descrip-

tion of dynamics in viscous silica (a strong liquid) as well as in the fragile BLJ and

OTP fluids. The origin of caging is different in the different systems, but analogous

definitions of a cage break are able to describe the important structural rearrange-

ments in all three models. A generalisation of the cage break definition for simple

rigid molecules was proposed, which is almost entirely free of system-dependent

parameters.

The success of the cage-breaking method derives from its connection to the po-

tential energy landscape (PEL). Transitions in which particles undergo cage breaks

are both necessary and sufficient for a system to traverse a complicated PEL. More-

over, selecting only unreversed cage-breaking transitions captures the higher-order

structure of local funnels very effectively in fragile systems. The regions of the land-

scape that are bounded by these productive cage breaks are identified with geometric

metabasins, which provide an effective coarse-grained description of glassy dynamics.

The geometric metabasin description is valid for the landscape of the Lewis-

Wahnström OTP model, as well as for BLJ. Metabasins are present in the land-

scape of the strong glass former silica, but they are contain many fewer minima

than the equivalent structures in the PELs of fragile liquids. This result adds to a
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growing body of evidence that the diffusion mechanisms of strong and fragile liq-

uids are fundamentally the same, but differ quantitatively in some key dynamical

properties.124,125,235,236

One such quantity is the time scale of correlation. Previously,254,255 negative

correlations of particle displacement vectors were shown to produce super-Arrhenius

behaviour in fragile BLJ, and so it was assumed that these correlations would be

absent in silica. In fact, correlation effects are still important in the strong liquid at

short times corresponding to cage-rattling motion.I have presented some evidence

to suggest that cage breaks are less strongly correlated in silica than in OTP or

BLJ. This suggestion is compatible with earlier work, which found that “strings” of

highly-mobile particles which characterise low-T dynamics are much longer in fragile

liquids than in silica.124,125

Negative correlation of jump direction between consecutive cage breaks is be-

lieved to result from the presence of local funnels on the PEL (i.e. metabasins).

Transitions away from the bottom of the funnel are likely to be reversed, since the

downhill energy barriers are smaller than the uphill barriers.197 The reversal proba-

bility increases at lower temperature, because the system is more likely to be found

in the lower-energy regions of the funnel. Explaining why reversals are less likely

for silica than for BLJ in terms of local funnel properties is an important challenge.

The differences in structure of the PEL between strong and fragile liquids are

subtle and quantitative. A much greater change in the PEL is observed when some

particles are pinned in place. The PEL of a pinned system depends on the disorder

realisation - i.e. the number, positions and atom types of the pinned particles. As

the concentration c of pinned particles increases, the number of low-energy land-

scape funnels accessible to the mobile particles decreases dramatically, undergoing

a crossover in c to a pinned glass state where only structures similar to the original

reference configuration are accessible. This crossover almost certainly corresponds

to the random pinning glass transition (RPGT) predicted by the random first order

transition theory (RFOT).175

To analyse the crossover, a new method for identifying local structure on a PEL

has been introduced. This method uses the overlap function, which is the natural

order parameter for phase transitions in mean-field model glasses.152,175 The packings

identified by the new method agree remarkably well with local funnels visible in

disconnectivity graphs of glass formers, and with dynamical metabasins under some

conditions. At low temperatures, residence of the system within a packing will be

quite long, so that these structures may also be identified with the quasistates needed

to formulate a mean-field-like theory of structural glass formers.32,153
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High-c landscapes are qualitatively different to those of unpinned glasses, and

resemble a single global funnel with the reference structure near its base. This global

funnel has significant internal structure, with a wide range of intra-funnel barrier

heights and minima energies. However, the global funnel is well defined because

the energy barriers that must be crossed to reach a different funnel are much larger

than the barriers within the funnel. Large-scale structural reorganisation requires

crossing between funnels, and therefore becomes very slow in a highly-pinned system.

Increasing c at fixed T causes further slowing of dynamics, and eventually induces

structural arrest over finite observation times. RFOT theory predicts that this arrest

persists in the thermodynamic limit as an equilibrium phase transition. Testing this

prediction is an important task for future work, and I have suggested a landscape

method of performing this test.

Pinning particles also causes the kinetic fragility (the degree of super-Arrhenius

curvature in the diffusion constant) to decrease. I have explained this effect using

the changes in landscape structure: fewer low-energy funnels at high c means that

there are fewer accessible metabasins and fewer reversed cage breaks, hence super-

Arrhenius behaviour is reduced. However, note that the presence of global structure

makes the PEL of a pinned fragile glass former very different from the PEL of an

unpinned strong glass former. Therefore, one should not expect the dynamics of

these two types of system to be identical.

The results in this thesis provide a coherent, simplified description of dynamics

in the moderately supercooled temperature range, roughly corresponding to the

landscape-influenced regime described by Sastry et al.225 Key challenges for future

work include relating this description to other theories of the glass transition, and

adapting it to make quantitative predictions of experimental properties.

Cage breaks and metabasins relate to dynamical descriptions of glassy behaviour,

while the division of configuration space into long-lived quasistates (i.e. packings)

arises from thermodynamic theories, particularly the RFOT approach. I have shown

that these methods are linked by dependence on higher-order structure in the PEL.

Cage breaks are an effective tool for identifying important structural rearrange-

ments, especially near and below the MCT critical temperature. These events

involve larger structural rearrangements than single-particle jumps detected us-

ing short-time square displacements,107 and are probably more collective in na-

ture. Identifying productive cage breaks with the metabasin description of Heuer et

al.197,229,230 provides a link between dynamical descriptions of the glass transition

and the PEL approach.

To elaborate these links further, a closer investigation of the spatiotemporal
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correlations of cage breaks is required. Such an investigation would test the negative

correlation description of fragility, and would help to connect glassy theories such

as dynamical facilitation and the string method to the PEL picture. Correlations

between consecutive cage breaks of a single particle are already known to increase

at lower temperatures,233,245,308 so an important question is whether simultaneous

cage-breaks are also correlated in space. We expect that some regions of space-time

in a simulation should contain much higher densities of cage breaks than others,

resulting in spatially heterogeneous dynamics as observed by experiment. It would

be interesting to see whether clusters of cage breaks resemble the strings observed by

Glotzer et al.,120 and whether the occurence of a cage break facilitates subsequent

rearrangements nearby as expected in the space-time thermodynamic description of

Chandler and coworkers.74

The close relationship between the RPGT and the changes in structure of the

PEL emphasise that the RFOT theory is connected with the landscape description

of supercooled liquids. The RFOT approach claims that a liquid system separates

into weakly-interacting domains on cooling below the MCT temperature Tc, and

that each of these domains selects an amorphous structure at random from a “li-

brary” of possible states.31 In the landscape description, each domain has its own

PEL that can be explored independently of the other domains (since they are non-

interacting). Selection of an amorphous structure from the library is equivalent to

the system becoming trapped in a particular landscape funnel on the observation

time scale. Quantitative examination of the relationship between the RFOT and

PEL descriptions will require a careful size-scaling analysis of PEL properties and

structure.

The literature of the glass transition is extensive and convoluted, containing so

many competing theories that resolving the contradictions between them is a daunt-

ing task. My results represent a step towards connecting some of these approaches,

by proposing links between several popular analysis methods and by describing su-

percooled dynamics using concepts from several different theories. The potential

energy landscape remains one of the most powerful and fundamental concepts in

the study of model glass formers, therefore methods based on the properties and

structure of this landscape have significant potential to bridge the divides between

different schools of thought in this complex field.
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