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ABSTRACT 

Cellular materials are widespread. Some, like wood and bone, 

occur in nature, while others, like polymeric foams, are manmade. 

Because of their cellular s :tructure, they have unusual mechanical 

properties: they can be stiff, yet light, and they are capable of 

absorbing large deflections and thus large amounts of energy. Yet 

their mechanical behaviour has hardly been studied: no comprehensive 

attempt to relate mechanical properties to structure exists. In this 

thesis, we have attempted to do this. 

We first model a cellular material as a simple, two-dimensional 

array of hexagonal cells and identify and analyze the mechanisms by 

which it deforms. From this we calculate the elastic moduli and the 

elastic and plastic collapse stresses for ideal two-dimensional cel­

lular materials. The results (which we have experimentally verified) 

show that each of these properties depends on three parameters: a solid 

cell wall material property, a geometric constant, and the relative den­

sity of the cellular material raised to the power two or three. 

We then examine three-dimensional cellular materials. Because 

their geometry is irregular and very complicated, no exact analysis 

of their behaviour is possible. But, with our understanding of two­

dimensional cellular materials and how they deform, we can use dimen­

sional arguments to analyze three-dimensional cellular materials. The 

results of this analysis agree well with experimental data. 

Finally, we have applied our understanding of cellular materials to 

two case studies. In the first, we have examined the structure of cork, 

a quasi - two-dimensional cellular material, and explained some of its 

mechanical properties. The second case study analyzes the problem of 

material selection in packaging. 
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NOTATION 

Symbols which have more than one meaning are listed along with the 
chapter for which each definition holds. Within a particular chap­
ter, each symbol has only one meaning. 

a one half the crack length (mm) (Ch. 5) 

a amplitude of a corrugation in a cork cell (mm) (Ch. 7) 

A shape anisotropy of a cellular material (-) (Ch. 5) 

A cross-sectional area of a packaged object (mm2 ) (Ch. 8) 

b = width of a member 1n a cellular material (mm) 

C force (N) (Ch. 3) 

C cons tan t ( - ) (Ch. 2, 5, 6 ) 

C = damping coefficient of a packaging material (kg sec-I) (Ch. 8) 

D specific damping energy (J m- 3) 

E = Young's modulus of a cellular material (MN m- 2) 

E = Young's modulus of cell wall material (MN mr 2) s 

Young's modulus 1n the Xl direction for a cellular material 
(MN rrr 2 ) 

Young's modulus 1n the X2 direction for a cellular material 
(MN m- 2 ) 

f(y) restoring spring force for model of a packaging material (N) 

F force (N) 

g acceleration due to gravity (9.8 m sec- 2 ) 

G shear modulus of a cellular material (MN m- 2 ) 

G shear modulus of cell wall material (MN rrr2) 
s 

G toughness of cell wall material (kJ m- 2) cs 

h length of vertical member in a cellular material (mm) 
(Ch. 3, 4, 5) 

h height from which packaged object falls (m) (Ch. 8) 

h = midspan deflection of buckled column (mm) 
o 
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K 

K 

K 

K 
o 

v~~~ 

second moment of area (mm4) 

rotational spring stiffness (Nm radian-i) (Ch. 3) 

cons tan t (-) (Ch. 5 ) 

spring constant for model of a packaging material (Nm- i ) (Ch. 8) 

constant stress response constant for model of a packaging 
material (N) 

length of an inclined member of the two-dimensional model 
of acellular material (mm) Ch. 3) 

length of a member in a three-dimensional cellular material 
(mm) (Ch. 5) 

£ length of a member of a cork cell (~m) (Ch. 7) 

M moment (Nm) (Ch. 3, 5) 

M mass of a packaged object (kg) (Ch. 8) 

M fully plastic moment (Nm) 
p 

n Euler buckling load end constraint factor (-) (Ch. 3, 5, 6) 

n creep constant (-) (Appendix 5B) 

n power (-) (Ch. 5, 6) 

N number of cells per unit volume (mm- 3
) 

P force (N) 

P Euler buckling load for a column (N) cr 

Q foam property 

Qs cell wall property 

S thickness of packaging material (mm) 

s. ·1 n 
~J -'.N 

ijk£ element of compliance tensor (m2 N- i ) 

t cell wall thickness (mm) (Ch. 3, 4, 5, 6, 7) 

t t i me (sec.) (Ch. 8) 

t thickness of cell edge (mm) e 

t f thickness of cell face (mm) 



u 

v c 

v s 

v o 

w 

W 

~x 

strain energy per unit volume (J/m3 ) 

strain energy of bending (J) 

maximum strain energy per unit volume ~n a cycle of 
load (J m- 3) 

shear deflection (mm) 

volume of a cell (mm3) 

= volume of a unit cell (mm3) 

volume of solid per unit cell (mm3) 

velocity of packaged object on impact (m sec-i) 

force/length (N rn-i) 

force (N) 

WE elastic strain energy (J) 

Wv v~scous strain energy (J) 

X. coordinate axes (m) 
~ 

y coordinate of deflection normal to beam (m) (Ch. 3) 

y position coordinate ~m) (Ch. 8) 

Z depth of a cork cell (~m) 

a 2 factor relating (edge length)2 to area of pentagonal 
dodecahedron (-) 

factor relating length of a column with rotational springs 
at its ends to len'gth of a pinned column (-) (Ch. 3) 

B constant used in calculating volume of a pentagonal do­
decahedron (-) (Ch. 5) 

* B value of B that satisfies equation 3.10 (-) (Ch. 3) 

y shear strain (-) 

o deflection (mm) 

o = axial deformation (mm) a 

o shear deflection (mm) s 

6 log decrement of peak amplitude (-) 



x 

E S train rate (sec I) 

t strain rate ~reep parameter (sec-I) 
o 

E. . ij element of strain tensor (-) 
~J 

* E2 value of E2 when buckling begins (-) 

n loss coefficient (-) 

8 angle between the inclined member and the horizontal ~n 
two-dimensional model of cellular material (degrees) 

* 8 value of 8 when buckling begins (degrees) 

A length of pinned column for elastic line buckling analysis 
(mm) (Ch. 3) 

A corrugation wavelength ~n cork cells (~m) (Ch. 7) 

v Poisson's ratio of cellular material (-) 

v Poisson's ratio of cell wall material (-) s 

VI Poisson's ratio for loading in the Xl direction for 
a cellular material (-) 

V2 Poisson's ratio for loading ~n the X2 direction for 
a cellular material (-) 

P density of cellular material (kg/m3 ) 

Ps density of cell wall material (kg/m3 ) 

of tensile failure stress of cork (MN/m2 ) 

0fs fracture stress of the cell wall material (MN m- 2 ) 

0k£ k £ element of the ' stress tensor (MN m- 2) 

° max 

° o 

° -pl 

maximum stress exerted by packaging on packaged object (MN m- 2 ) 

creep parameter (MN m- 2) 

yield stress of cell wall material (MN m- 2) 

stress in cellular material at which brittle fracture occurs (MN rrl 2) 

elastic buckling stress of a cellular material (MN m- 2 ) 

plastic collapse stress for a cellular material (MN m- 2 ) 

(O~) 1= plastic collapse stress for a cellular material loaded ~n the 
P Xl direction (MN m- 2 ) 

plastic collapse stress for a cellular material loaded ~n the 
X2 direction (MN m- 2 ) 



xi 

1: shear stress (MN m 2 ) (Ch. 3) 

T period of oscillation of packaged object (sec.) (Ch. 8) 

~ angle of ro tation (degrees) (Ch. 3) 

~ volume of polymer in the cell face: volume of polymer ~n 
cell edges (- ) (Ch. 5) 

~ cushion factor (-) (Ch. 8) 

w frequency of vibration of packaged object (sec-I) 
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CHAPTER 1 

INTRODUCTION 

Cellular materials, consisting either of hollow parallel cells in 

a two-dimensional array or of an interconnected three-dimensional net-

work, are widespread. They occur in nature as, among other things, 

wood and cork. Man has made use of the exceptional properties of 

these cellular materials for centuries: wood is the world's oldest 

structural material and ~s still the most widely used; and cork was 

used by the Romans much as we still use it today: for sealing w~ne 

bottles, for the soles of shoes and for floats. In the last fifty 

years, man has produced his own cellular materials: first with poly-

meric foams and more recently with foamed metals, ceramics and glasses. 

These materials have been used and developed because of their re-

markable properties. They can be stiff yet light: wood is weight for 
, 

weight as stiff as mild steel. Some have exceptional energy absorbing 

characteristics: polymeric foams are used for packaging and metal foams 

may be incorporated into car bumpers for this reason. They are capable 

of accommodating large elastic deformations: elastomeric polymeric foams 

can be compressed comfortably in cushions. They act as good insulators 

of heat, sound and vibration: cork is an excellent insulator of all three. 

In several of these applications, the mechanical properties of the 

cellular material are of central importance. Yet the basic processes 

which determine these properties have hardly been studied. Some pro-

gress has been made in identifying mechanisms of deformation and failure 

in cellular structures, but no comprehensive attempt to relate mechanical 

properties to structure exists. It is the aim of this study to do this 

and explain why cellular materials behave mechanically as they do. 

$ 
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1.1 Analysis of the Mechanics .of Cellular Materials 

Cellular materials commonly assume one of two basic geometries. 

They can be a simple two-dimensional array of parallel hollow cells 

(e.g. wood) or a connected network of struts or plates in three di­

mensions (e.g. open and closed cell polymeric foams). These three­

dimensional structures are complicated; too much so to analyse exactly 

the forces acting on each member and the resulting deformations. But 

the two-dimensional cellular materials are simpler and they can be 

modelled as an array of honeycomb-like hexagonal cells. The mechan­

ical behaviour of this model can be determined exactly using the tech­

niques of structural analysis: this analysis works very well for ideal­

ized two-dimensional cellular materials; we find that it also gives a 

good description of the mechanical properties of quasi two-dimensional 

cellular materials, such as cork. 

Both two- and three-dimensional cellular materials respond to load 

by the same mechanisms. Both deform 1n a linear elastic way by bending 

of the cell members and collapse either by elastic buckling or the for­

mation of plastic hinges in the members. Because of this, we can ex­

tend our understanding of two-dimensional cellular materials to the 

more complex three-dimensional ones by using dimensional arguments. 

The experimental evidence of ourselves and of other workers shows 

this type of analysis to be adequate. 

1.2 Outline of this Study 

The mechanisms of deformation in cellular materials and the current 

analyses of these mechanisms available in the literature are discussed 

in Chapter 2. Chapters 3 and 4 deal with two-dimensional cellular 

materials: the theory for their behaviour is developed in Chapter 3 
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and the experimental work and discussion are contained in Chapter 4. 

Similarly, Chapters 5 and 6 discuss the theoretical and experimental 

work on three-dimensional cellular materials. Two case studies, apply­

ing the theory that has been developed are presented in Chapters 7 and 8: 

one is on the mechanics of cork while the other discusses the use of foams 

in packaging. Finally, the conclusions of the study are stated in Chapter 9. 
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CHAPTER 2 

MECHANISMS OF DEFORMATION IN CELLULAR MATERIALS: PREVIOUS WORK 

To analyse the mechanical behaviour of cellular materials properly , 

we must first understand the mechanisms by which they deform. In the study 

reported in this thesis, these mechanisms have been identified both by 

making model two- dimensional foams and examining the way in which they 

deform and by the microscopic study of real three-dimensional foams. 

As a resul t, ~ve can now state that the mechanism of l inear-e lastic 

deformation is predominantly that of bending of the cell walls and 

edges, with small contributions from shear and axial deformation; 

that the mechanism of collapse of fl exib l e foams is that of a co­

operative elastic buckling of the cell wall; and that the mechanism 

of co l lapse of rigid foams ~s that of the plastic bending of the cell 

walls. 

The difficulty in reviewing previous work in this field is that 

many workers, not examining their foams microscopically, have failed 

to identi fy the correct mechanism of deformation and have (correctly) 

analysed one which is inappropriate or wrong. Thus several papers 

calculate Hnear elas tic behaviour from axial extension of the cell 

walls, although this contribution to deformation is, in reality, a 

m~nor one. Others analyse the collapse of rigid foams by an elastic 

buckling calculation, whereas rigid foams actually collapse plastically. 

In this review, papers relating to the three modes of deformation 

already mentioned (linear elastic behaviour, elastic collapse and plas-

tic collapse) will be discussed first for two- and then for three-dimensional 

cellular materials. 
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2.1 Two-Dimensional Cellular Materials 

There is Very little previous work on the mechanics of two-dimen-

sional cellular materials. The work that has been done has concentrated on 

the across-plane shear behaviour of aluminium honeycomb 'sheet which 

is used as the core of sandwich panels in aircraft. (For example, 

see Kelsey et al., 1958). It appear s that the only work to date 

on the in-plane mechanics of two-dimensional cellular solids is 

that of Abd El-Sayed et al . (1979). They calculated the in-plane 

Young's moduli and Poisson's ratios for honeycomb sheet by estimat-

ing the bending and axial displacements of a cell when subjected to 

forces in two orthogonal directions. Although the method is correct, 

there are slight errors in their results. They analysed the elasto-

plastic behaviour using a standard equation relating displacement 

to the applied load, the extent of plasticity at a section, the ratio 

of maximum applied bending moment to the fully plastic bending moment 

and the geometrical and material properties of the beam. Once plastic 

hinges form, the overall behaviour is plastic; Abd El- Sayed et al. have 

also analysed this. Their experimental findings are in good agreement 

with the theory they developed. 

2.2Thtee~Dimensional CellulatMaterials 

Linear e Zastic behaviour 

The linear elastic moduli of cellular materials reflect principally 

the bending of the cell members. Several attempts have been made to 

deduce the moduli from this bending. 

Ko (1965) has calculated the bending, shearing and axial deforma-

tions of rhombic and trapezo-rhombic dodecahedra and arrived at expressions 

i 
S 
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for the relative Young's modulus, E/E , 
s 

and Poisson's ratio~ v, 

as a function of relative density, for both polyhedra. But 

to explain his experiments, he had to suppose that real foams are a 

mixture of 67 % trapezo-rhombic dodecahedra and 33 % rhombic dodeca-

hedra. Although the analysis of the bending of the polyhedra members 

~s sound, it seems unrealistic to model the structure as a combination 

of two different polyhedra. 

Chan and Nakamura (1969) derived expressions for E/E 
s 

and 

for open and closed cell foams based on the bending deflection of 

v 

an initially bent column or plate loaded axially. This method breaks 

down if the columns or plates are initially straight: then they are loaded 

axially and no bending occurs. This method ignores the standard beam bend-

ing of members loaded perpendicular to their length. This derivation does 

not, then, analyse the actual mechanism of deformation for the linear elas-

tic behaviour of foams. 

Menges and Knipschild (1975) noticed from microscopic examination 

that the faces of closed cell foams have very little stiffness and 

strength and concluded that the faces do not contribute significantly 

to the stiffness or strength of the foam. They then treated open and 

closed cell foams identically. Their analysis of the bending and axial 

deformation of the cell edges gave: 

E/E 
s 

Cl (p/ps)2 

pip + C2 s 

where Cl and C2 are constants, to be determined by experiment. Their 

experimental results for rigid, closed cell polyurethane are in good agree-

ment with this expression . 

.......................... .-, 
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Barma et al. (1978) have derived an expression fo r the Young's 

modulus of rigid polyurethane foams by modelling these foams as 

pentagonal dodecahedra with open faces and with some initial curva-

ture in the cell edges. Like Chan and Nakamura (1969) they calculated 

the bending deflection of the initially curved cell edges under an axial 

load and then related this to the axial displacement. They also neglected 

the bending of members loaded perpendicularly to their length. Again, 

this derivation does not analyse the actual mechanism of deformation 

for the linear elastic behaviour of cellular materials. 

In addition to the bending of the cell members during linear elastic 

behaviour, there are also contributions to deformation from axial exten­

sion or compression and shear. Gent and Thomas (1959, 1963) and Lederman 

(1971) have derived express~ons for E/E 
s 

and v based on the axial de-

formation of the cell members. But axial deformation only becomes impor­

tant at high relative densities: at low relative densities it is neglig­

ible compared to the bending deformations. These two models, then, are 

not applicable to low density foams. 

Non-linear elastic behaviour 

Non-linear elastic behaViour in cellular solids ~s the result of 

some members buckling elastically. Realising this, Gent and Thomas 

(1959) found an expression for the post-buckling stress-strain behaviour 

of open celled foams based on the product of the Euler buckling load of 

a column and an empirically determined function of the strain in the mem­

ber. They did not derive a specific express~on relating the elastic col­

lapse stress to relative density. 



I 
I 

8 

Several investigators studying the collapse of rigid foams 

have sought to explain and model their observations by an elastic 

collapse calculation. (Hatonis, 1964; Chan and Nakamura, 1969; Patel 

and Finnie, 1970; Menges and Knipschild, 1975 and Barma et al., 1978)*. 

We think this is wrong: the base polymers of rigid foams have well de-

fined plastic yield points and these foams behave plastically during 

collapse. But the idea behind their calculations has relevance for 

elastomeric foams. It is developed further in Chapters 3 and 5. 

Plastic Collapse Behaviour 

Cellular materials made from solids with a plasti yield point, 

such as rigid polymeric foams and metallic foams, may collapse either 

elastically or plastically, depending on which mode occurs at a lower 

stress. When plastic collapse occurs, it is by the formation of plastic 

hinges at the section of maximum bending moment 1n the member. There 

appears to have been little work done on analysing this mode of collapse 

for three-dimensional foams: the only papers available on the plastic 

behaviour of foams are those of Shaw and Sata (1966) and Wilsea et 

a1. (1975) 

Shaw and Sata (1966) have compared the plastic behaviour of poly-

styrene to that of fully dense solids. One of their observations was 

that the Meyer hardness of a foam is about equal to its yield stress, 

while in solids the hardness is about three times the yield stress. 

Wilsea et al . (1975) investigated this further by analysing the stress 

acting beneath the indenter. Neither of these papers suggests any way 

of relating the density of a foam to its yield stress. 

*These authors have all calculated a collapse stress based on some 
form of elastic buckling: Matonis (1964) used the critical load of an 
axially loaded plate; Chan and Nakamura (1969) analysed the buckling 
of initially bent plates and columns; Patel and Finnie (1970) estima­
ted the collapse stress from the buckling of a bar supported along its 
length by an elastic foundation; Menges and Knipschild (1975) calculated 
the buckling load of a restrained column; and Barma et al. (1978) based 
their calculation on the buckling of an initially bent column. 

s 
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2.3 Conclusions 

No comprehensive treatment of the elastic and plastic behaviour 

of cellular materials exists. Most of the work done to date has cen-

tred on calculating linear-elastic moduli and elastic collapse stresses. 

But often these analyses have been based on an incorrect mechanism of 

deformation . To understand the mechanical behaviour of cellular materials 

properly, the correct mechanism of deformation must be identified and anal-

ysed, relating it to the cell wall properties and the cell geometry. In 

this study we have first examined simple, two-dimensional cellular mater-

ials to gain an understanding of the mechanisms of deformation. We then 

apply this understanding to the more complex three-dimensional cellular 

materials. Finally, we present two case studies in which the theory 

developed for two- and three-dimensional cellular solids is applied. 
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CHAPTER 3 

TWO-DIMENSIONAL CELLULAR MATERIALS: THEORETICAL ANALYSIS 

{'-le model two-dimensional cellular materials as a honeycomb-like 

array of hexagons as shmvn in Fig. 3.1. We have studied the mechanisms 

of deformation of silicon rubber and aluminium models with a range of 

such geometries: we find that beam bending is the primary mechanism 

of deformation in linear-elastic regime; that elastic buckling governs 

the non-linear elastic behaviour; and that the formation of plastic 

hinges causes plastic collapse. The model structure can be analysed 

using these mechanisms of deformation to give the linear-elastic moduli 

and the elastic and plastic collapse stresses, and the way in which they 

depend on cell shape and density. In this chapter we have done this, 

making the assumption that the strains are small, and neglecting shear 

and axial deformation of the members. The appendices at the end of the 

chapter give more detailed analyses 1n which large strains and shear and 

axial deformation are included. We.. ha."e,. o,. l~o o..SSlAw..t..d 0..... cO~+OIN..t 

skm. .f1A~ . 

3.1 Linear Elastic Behaviour 

The number of indepen4ent moduli 

The linear-elastic behaviour of a solid 1S completely described by 

a set of n elastic constants. The number n depends on the dimension-

ality and symmetry of the structure. 

In a general deformation of a linear elastic material, the strains 

are related to the stresses by: 

E •• 
1J 
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X2 

~----------------------------~X1 

Fig. 3.1 Unit cell of two - dimensional model of a cellular 
material. 

1 
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where E: •• 
~J 

and are the compliance, the strain qnd 

the stress tensors . respective1y. Symmetry and energy considera-

tions reduce the 81 components of the compliance tensor to 21. 

The cellular model of Fig. 3'.1 is orthotropic ~ it has three orth­

ogona1 axes of symmetry such that a rotation of 1800 about any 

one of these axes leaves the structure unchanged. Such materials 

have only nine independent elastic constants, listed below. A com-

p1ete description of a general (anisotropic) three-dimensional foam 

or cellular structure requires these nine constants. 

S 1122 

In the case of the two-dimensional model of cellular materials, 

the stiffness along the X3 direction is very great, as is the 

E 
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resistance to the shears E32 and E31 so that: 

o 

Further, the contraction ~n the X3 direction when a stress 

01 or 02 is applied is negligible, so that: 

o 

There rema~n four independent elastic constants. The compliance 

matrix now becomes: 

5 1212 

s 
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These four constants can be written in terms of two Young's 

moduli, one Poisson's ratio and one shear modulus, which completely 

describe a two-dimensional cellular structure. Axial loading under 

a stress 011 results in the strain: 

from which 

1 
(3.1) 

For loading in the X2 direction: 

1 
(3.2) 

Poisson's ratio for loading in the Xl direction is: 

(3.3) 

That for loading ~n the X2 direction is: 

(3.4) 

These four moduli are obviously related by the expression: 

(3.5) 

The final independent constant ~s the shear modulus G: 

G 
1 (3.6) 

We now calculate all four indepentent moduli. 
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Formulae used in calculating elastic properties 

For the unit cell shown in Fig. 3.1, the volume of solid per 

cell is: 

v (2 Q, +h)bt 
s 

The volume of a cell is : 

V 2 Q, cose (h + Q, sine) b 
c 

The relative density, piPs' 1S therefore: 

(2 + h/ Q, ) t/ Q, 
(3.7) 2 cose (h/ Q. + sine) 

which, for regular hexagons, becomes: 

p 2 t -- -
Ps /3 Q, 

(3.8) 

The following standard beam formulae, neglecting shear deforma-

tions, have been used in the derivations of the elastic constants. 

E 1S the Young's modulus of the material of which the beam is made 
s 

and I 1S the second moment of area of the beam. For a beam of rec-

tangular cross-section bt, 

I (3.9) 

The end deflection of a cantilever beam of length Q, loaded at the end 

by a force F (Fig. 3.2a) is: 

FQ, 3/3E
S

I (3.10) 

/, 

d 



r 
! 
I 
[ 
( 
I 
f· 

I 
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(a) . 

( b) 

Fig. 3.2 Beam formula. 

c 
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The end deflection of a beam of length £ fixed at both ends to which 

equal but opposite loads P are applied each end (Fig. 3.2b) is: 

(3.11) 

In deriving the linear-elastic moduli we have neglected shear 

and axial deformations of the cell members and have assumed that the 

strains are small. In Appendix 3A we derive the moduli including the 

contribution of shear and axial deformations; Appendix 3B gives the 

equations for stress-strain behaviour at large strains. 

The calculation of Young's Moduli and Poisson's Ratios 

(aJ Loading &n the Xl direction 

Consider the linear-elastic response of the structure shown 1n 

Fig. 3.3a when subjected to a stress 011. The forces acting on the 

cell walls of length £ and d eptL b are shown in Fig. 3. 3c. By 

symmetry, the force C acting on the walls of length h lie in the 

plane of the ~.,all; and there is no rotation of the joints. Since (for 

reasons of equilibrium) no net force acts across any plane through the 

structure which lies normal to the X2 aX1S, we have: 

where 

The wall deflects by: 

C 0 

M 

p 

n sin8 
2 

011 (h + £ sin8) b 

(3.12) 

(3.l3) 
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Fig. 3.3 Cell deformation unde r 0 11 · 
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Of this, a component 0 sine is parallel to the Xl axis, giving 

a strain: 

o sine 
9., cose 

011 (h + 9., sine) b 9., 2 sin2e 

l2EsI cose 

for which Young's modulus parallel to Xl is: 

[ 

l2ESI cose 
E 1 = --;(~h-+--.:"9.,-s-;"i-n-;;Ce') --:-b--.:"9.,""'2- s-;"i-n"2-=-e 

For regular hexagonal cells this becomes: 

The strain parallel to the X2 ax~s is: 

o cose 
(h + 9., sine) 

from which ?oisson's ratio for loading ~n the Xl direction is: 

E22 9., cos 2e 
-Ell (h + 9., sine) sine 

For regular hexagonal cells this reduces to vI 1. 

(h) Loading in the X2 direction 

The forces acting on the cell wall of length 9., and deptk b 

(3.14) 

(3.15) 

(3.16) 

are shmvn in Fig. 3.4. As before, synnnetry requires that the forces 

~n the walls of length h lie ~n the plane of the walls; and there 

is no rotation of the joints. By equilibrium: 

I 

d 
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(a) 

(b) 

t t 

F-'---b.'Jl 

--F 

W (e) 

Fig. 3.4 Cell deformation under 022· 

___________________ C 
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The wall deflects by: 

22 

o 

022 9,b cos8 

W9, cos8 
2 

~~ 9, 3 cos8 
l2ESI 

Of this, a component 0 cos8 is parallel to the X2 ax~s, giving 

a strain: 

o cos8 
(h + 9, sin8) 

022 b 9, 4 cos 38 

l2ESI (h + 9, sin8) 

from which Young's modulus parallel to the X2 ax~s is: 

l2ESI (h + 9, sin8) 

b 9, 4 cos 38 

For regular hexagonal cells this becomes: 

(This ~s identical with the result for loading 

The strain parallel to the Xl ax~s is: 

0 sin8 
Ell 9, cos 8 

from which Poisson's ratio for loading ~n the 

(h + 9, sin8) sin8 
9, cos 28 

(3.17) 

(3.18) 

~n the Xl direction.) 

X2 direction becomes: 

(3.19 ) 

d 
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(c) The r eciprocaZ theor em 

We showed previously that El' vI, E2 , and v2 must obey 

the reciprocal theorem: 

The results of the last two sections f or El, E2 , v I' and v2 

satisfy the constraint imposed by the reciprocal theorem, namely, 

Q,3b s inS cos S (3.20) 

The shear moduZus 

Consider the elastic deformation of the cellular structure when 

a shear stress is applied such that the forces acting on it are as 

shown in Fig. 3.S. By symmetry, there is no relative motion of the 

points A,B and C and the forces acting on the members are as 

shown in Fig. 3.Sc. Summing moments at B, we find the moment 

app lied to the memb ers AB and BC is: 

Fh 
M = -

4 

All the joints rotate ' through an angle ~ as shown in Fig. 3.Sd. 

Then, since there is no deflection of B with respect to A, we have 

(using eqn . (3.11»: 

giving 

Fh 
~ £ = 4 

Fh£ 
24ESI 

.-........ ................................... . 
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Fig. 3.5 Cell deformation under shear stress. 
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The shearing deflection (U ) 
s 

of the point D with respect 

to B is (using eqn. (3.10»: 

h F h 3 
U ~ - + 

3ESI 
(-) 

s 2 2 

Fh2 
( ~ + 2h) 

48E SI 

The shear strain, y, ~s given by: 

2U 
s 

y Ch + x, sine) 

Fh 2 ( ~ + 2h) 
24EsI (h + ~ sine) 

The distant shear stress, T, is: 

F 
T = 

2 ~b cose 

Hence the shear modulus is: 

G 
l2ESI (h + ~ sine) 

bh2~ cose ( ~ + 2h) 

For a regular structure, this becomes: 

G 

3.2 Non-Linear Elastic Behaviour 

(3.21) 

(3.22) 

Cellular materials collapse elastically by the elastic buckling 

of the cell wall members. The cell walls buckle in a cooperative way, 

allowing further large deformations at almost constant load. In this 

section we analyse this buckling for the two-dimensional model. 
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Buckling mode and basic equations 

The elastic buckl ing load of a column of length R, under an 

end load F is given by the Euler formula: 

F (3.23) 

where n 1S an end constraint factor. 

In experiments on elastic models, described later, we have ob-

served the buckling mode illustrated by Fig. 3.6. By symmetry, all 

joints rotate through the angle +~; and the midpoint D of the 

beam BE is a point of inflection and thus carries zero bending 

moment. 

For equilibrium of the beam AB He have: 

pR, cos8 
2 

The curvature of the beam 1S g1ven by: 

(3.24) 

(3.25) 

Relating the end slope of the beam AB to the moments acting 

on it, He obtain: 

4ESI~ 

R, (3.26) 

The beam BE can then be considered as a column with rotational 

M 4ESI 
springs of stiffness K ---- at each end. ~ - Q, 
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(a) 

(b) 

(c) 

c 
Ph 

Fig. 3.6 Cell deformation under elas tic buckling. 
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Elastic line method of analysis 

Consider a column of length A pinned at both ends and subjected 

to its critical Euler buckling load: 

'P 
cr 

(3.27) 

as ~n Fig. 3.7. The deflected shape of such a column is described by: 

y h 
o 

. 1fX 
s~n -

A 
(3.28) 

where h ~s the midspan deflection. Our column, BE, can be considered 
o 

to be part of this pinned column of length A. To determine the part, we 

match the rotational stiffness at the ends of the column BE to that of 

the column of length A at the point x = L. 

At x = L the moment is M 

1f2 E I 
S 

M P h sin (1fL) 
A A2 h s~n 

0 0 

the rotation ~s <P 

_ dyl 
h 1f 1fL 

<P = -E-
dx x=L A 

cos 
A 

and the rotational spr~ng stiffness is K 

K 
M 1fESI L 

(~) <p = -A- tan A 

.1fL) (-
A 

(3.29) 

(3.30) 

(3.31) 

Thus a column of length L, held at the base by a rotational spring 

of stiffness K, buckles at the load (eqn. (3.23)) of: 

~ .......................... "7 
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Fig. 3.7 Elastic line method of buckling analysis. 



I 
I 

I: 
i 
i 

30 

p 

By relating A to Land K, ,ye can find the critical load for 

the column. 

Let 

then 

or 

For hexagonal cells, L 

S = nL/A 

KL 1 
tanS = ESI S 

h/2 and K 

tanS 
2h 

=-
£S 

M/ <P 4ESI/ £ , giving: 

The solution S = S 
i'~ 

~s found graphically, by plotting tanS 

(3.32) 

and 

(~~) against S. This gives a relation between A and L, which 

can be used to determine the elastic buckling load for a two-dimensional 

cellular material. Noting that we obtain the critical buck1-

ing load: 

p 
cr 

The critical buckling 

* a e1 

stress ~s 

p 
cr . 

2£b cose 

given by: 

E t 3 S'~ 2 
s 

6£ h 2 cose 

Values for S* for several h/ £ are given ~n Table 3.1. 

Table 3.1: Solutions for S,,~ for buckling equation 

h/ £ S~( 

1.0 .343n 

1.5 .380n 

2.0 ,403TI 

(3.33) 

(3.34) 

______________ 111 
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For regular hexagons, this reduces to: 

Eqn. (3.34) neglects the small effect of the change 1n cell 

wall angle, 8, during linear-elastic deformation. The solution 

for the elastic buckling stress including this effect is given in 

Appendix 3C. 

The strain at which elastic buckling occurs is given by 

which is approximately 10 % for regular hexagons. 

Other buckling modes 

Other possible modes of buckling were examined. It was found that 

all of the other modes examined violated equilibrium requirements and 

thus the mode for which 
";~ 

Gel has been derived is the only one which 

is likely to occur. 

3.3 Plastic Behaviour 

If the cell wall material in a cellular structure has a plastic 

yield point, the structure can collapse plasticallyif the bending mom-

ent in a member reaches the fully plastic moment. This determines the 

~~ 

plastic collapse stress, Gpl ' of the foam. As with elastic collapse, 

the structure now suffers large strains at almost constant load, there-

by absorbing a large amount of energy. 

The subsequent calculations use the standard equation for the fully-

plastic moment of a beam of rectangular cross-section, bt, 

M 
P 4 

where G 1S the yield strength of the cell wall material. 
y 

(3.35) 

.............................. ~. 
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Plastic collapse on loading in the Xl direction 

An upper bound on the plastic collapse stress ~s given by 

equating the work done by the force: 

Pal (h + Z sin 8) b 

during a plastic rotation ~ of the four plastic hinges A BeD 

to the plastic work done at the hinges as shown in Fig. 3.8, giving: 

4 M ~ > 2 0'1 b p (h + JI, sin8) ~ JI, sin8 

.~ 
a t 2 

from which: (0"1) 1 < 
y (3.36) 

p - 2 J1, (h + JI, sin8) sinS 

A lower bound is given by equating the max~mum moment ~n the beam 

to M. This maximum moment (Fig. 3.8) is: 
p 

from which 

M max 
. 8)b JI, sin8 

01 (h + JI, s~n ----:0

2
--

a t 2 

(a~)pl > 2 J1, (h + Jl,
Y

sin8) sin8 (3.37) 

The two results are identi cal, and thus define the exact solution 

to the problem. This does not, however, imply that other mechanisms do 

not occur in practice. 

For the regular cellular structure, this becomes: 

(3.38) 

Plastic collapse on loading in the X2 direction 

We proceed as in the last section, using Fig. 3.9. The upper 

bound on the plastic collapse stress is given by the work equation: 

g 



I 
I 
I 
I 
I 
I 
I 
f 
( 
( 

I 
( 

I 
I 
I 
I 
I' 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 

Fig. 3.8 

33 

(a) 

-

- -

M ' - (d,*l pi (h+Esin 81 bl sin e 
mQX-~~-------------

2 

(c) 

Plastic collapse under 011' 
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. M t (ai) p,£.tb cos e 

*) ~ 2 2 M = (a2 p£N b cos e 
max -~----

2 

Fig. 3.9 Plastic collapse under 022' 
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from which 

(3.39 ) 

The maximum bending moment 1n the beam of length Q, (Fig. 3.9) is: 

M max 

Equating this to the fully plastic moment of the beam g1ves the 

lower bound: 

(3.40) 

As before, the two results are identical and therefore equal to the 

exact solution - even though the actual arrangement of the plastic 

hinges need not be identical with that suggested here. For the regu-

lar cellular structure, this becomes: 

i'< 
(3.41) 

The two collapse stresses * (0 2 )pl are identical for the 
,~ 

regular structure; we shall term it 0
pl

. 

We note that the strain at \vhich plastic collapse occurs is 

given (for regular hexagons) by: 

° y 
(3.42) 

This 1S the strain at which yielding occurs. Note that, for low den-

si ty foams (pip = 10- 2) this strain can be of order 10 %. 
s 



r 

~ 
I 
I 

~ 

36 

3.4 Conclusions 

In this chapter we have derived express~ons for the linear-

elastic moduli and the elastic and plastic collapse stresses for 

idealised two-dimensional cellular materials. We have found that 

these properties can be related to the cell wall properties (E 

and 0) , the cell shape (8 and h/ £) and density (t/ £) by y 

s 

simple expressions. In the next chapter, we present the results 

of tests on two-dimensional cellular materials and find that these 

expressions predict the measured behaviour well. The analysis of 

this chapter appears to be correct: it is then reasonable to extend 

this analysis to three-dimensional cellular materials. We do this in 

Chapter 5. 

I 

~ ............................ __ .. C 
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APPENDIX3A: SMALL STRAIN CALCULATION OF THE MODULI, INCLUDING AXIAL 

AND SHEAR DEFORMATIONS 

In this appendix, we recalculate the moduli El, E2 , 

including the axial and shear deformation of the beams making up the 

cell walls. At small strains, and for 

those given in the text of Chapter 3. 

p ip «1, 
s 

they reduce to 

Loading in the Xl direction~ small strains~ including shear and axial 

deformations 

From Fig. 3.3, we have: 

p .Q, 3 sine 
l2EsI 

From Timoshenko and Goodier (1970), we find that we can write the 

shear deflection of the member as: 

<5 
s 

Aft axial load of P cose acts on the member and hence the axial de-

flection is: 

The total deflection In the Xl direction lS then: 

<5 sine + <5 sine + <5 cose 
s a 
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Hence, 

Q, cas8 

011 b (h + Q, sin8) Q,2 sin28 
(1 + (2.4 + 1.5 Vs + cat28) t 2/Q,2) 

And 

12ESI cas8 1 

(h + Q, sin8) b Q,2 sin28 1 + (2.4 + 1.5 Vs + cot28) (t/Q,)2 

The strain in the X2 direction is: 

giving: 

(8 cos8 + 8 cos8 - 8 sin8) 
s a 

h + Q, sin8 h + Q, sin8 

- pQ,3 sin8 cas8 2 2 (1 + (2.4 + 1.5 Vs - 1) t /Q, ) 
12ESI (h + Q, sin8) 

Q, cos 28 1 + (1.4 + 1.5 vS) (t/Q,)2 
(h + Q, sin8) sfn8 1 + (2.4 + 1.5 Vs + cot 28) (t/ Q, ) 2 

c 
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Loadirigirithe X2diredtiori., small strains including shear a,nd axial 

deformations 

Reconsidering Fig. 3.4, we find the bending deflection of the 

inclined member is, as before, 

WQ,3 cose 
l2EsI 

The shear deflection of this member is then (from Timoshenko and Goodier 

(1970» : 

o 
s 

WQ,3 cose 2 2 (2.4 + 1.5 vs) t /Q, 
l2ESI 

The axial deflection of the inclined member is: 

o a inclined 

The axial deflection of the upright member ~s: 

(') 
a upright 

2Wh 
btE 

The total deflection ~n the X2 direction ~s then: 

02 o cose + 0 cose + 0 , l' d sine + 0 upright s a ~nc ~ne a 

WQ,3 cos 2e [1 + (2.4 + 1.5 vS) 
t 2 

+ tan2e t 2 2 (h/Q,) 
l2ESI Q:2 Q:2+ cos 2e 

and 

t2~ Q,2 
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This gives: 

E2 

022 (h + £ sinS) 12ESI 

W£3 cos 2S ~ + (2.4 + 1.5 \is + tan2S + 2 (hi £);) 
cos 2S t2~ £2 

12EsI (h + £ sinS) 

b £4 cos 3S [1 + (2.4 + 1.5 \is + tan2S + 2 (h I £» t 2j 
cos2S . £2 

The strain In the Xl direction is: 

(8 sinS + 8 sinS - 8 , I' d cosS) s a lnc lne 
£ cosS £ cosS 

'(t.]Q,2 sinS 
12ESI [1 + (2.4 + L 5 Vs - 1) ~ ~] 

Therefore: 

sinS (h + £ sinS) 
£ cos 2S 

1 + (2.4 + 1.5 \is + tan2S + 2 (h/£»(t/ £)2 
cos 2S > 
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This gives: 

022 (h + ~ sinS) 12ESI 

W~3 cos 2S ~ + (2.4 + 1.5 \is + tan2S + 2 (h/~)1 
cos 2S 

t2j 
~2 

12ESI (h + ~ sinS) 

b ~4 cos 3S [1 + (2.4 + 1.5 \is + tan2S + 2 (h/~» t 2J 
cos2S . ~2 

The strain ~n the Xl direction is: 

(8 sinS + 8 sinS - 8 . I' d cosS) s a ~nc ~ne 
~ cosS ~ cosS 

';'.]I!- 2 sinS 
12ESI [1 + (2 . 4 + 1. 5 Vs - 1) ~ ~] 

Therefore: 

sinS (h + ~ sinS) 
~ cos 2S 

1 + (2.4 + 1.5 \is + tan2S + 2 (h/~»(t/ ~ )2 
cos 2S ' 
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APPENDIX 3B: LARGE STRAIN CALCULATION OF THE MODULI 

Loading in the Xl direction~ large strain approximation 

As the load on a cell is increased the angle S changes 

(Fig.3B.l). From Fig. 3B.l it can be seen that: 

oS 

Previously, we had: 

o 
Q, 

o sinS 
Q, cosS 

Hence oS cosS 
- Ell sinS 

For a constant angle S, we derived the following 

relating °11 to Ell 

°11 (h + Q, sinS) b Q,2 sin2S 
E:ll l2ESI cosS 

Letting 

S S + 0 S and h Q, 

we obtain: 

011b Q,3 Cl + sin (S + oS» sin2 (S + oS) 
E:ll l2ESI cos (S + 0 S) 

expression 

Using the identities for s~n (a + S) and cos (a + S) and assuming 

cosoS = 1 and sinoS = oS for small oS we obtain: 

011 Q,3 (sinS - E:ll 

l2ESI 

cos 2S 2 cos2S 3 
. ) + (s inS - E: 11 . S ) 

s~nS s~n 

cosS(l + q 1) 



42 

-
----11 .... _ d 11 

..... -

5 

Fig. 3B.l Large strain approximation - loading ~n Xl direction. 
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or 

011 Q,3 

l2ESI cos 2S 2 COS2S 3 
(sinS - Ell . S) + (sinS - Ell . S ) Sln Sln 

A graph of this relationship for S 
o 

shown in Fig. 3B.2. 

Loading in the X2 direction~ large strain approximation 

From Fig. 3B.3 it can be seen that: 

and for h Q,: 

so 

oS 

o 
Q, 

o cosS 
Q, (1 + sinS) 

E22 
(1 + sinS) 

cosS 

From the previous derivation for E2, we have: 

or 

En (1 + sinS) 

cos 3S 

lS 

Substituting S = S + oS, and noting that for small oS cosoS ~ 1 

and sinoS ~ oS, we obtain: 
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d22 

I t 1 

Fi~. 3B.3 Large strain approximation - loading in 
X2 direction. 



0"22 9,3 

l2ESI 
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(cos8 - €22 (1 + sin8) tan8) 3 

This relationship ~s shown in Fig. 3B.4. 



Fig. 3B.4 
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0'221,3 

12ESI 

o 
I-50 80=60 0 

1-00 

.... 0·50 

Stress-strain curve for large strain approximation -
loading in X2 direction. 

J 
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APPENDIX 3C: ELASTIC BUCKLING INCLUDING CHANGE OF CELL SHAPE PRIOR 

TO BUCKLING 

,~ 

The angle e changes during elastic deformation. Let e denote 

i'< 
the value of e when buckling begins. e can be found by equating the 

cell strain at buckling to 

i~ 

* h + Q, sine - (h + Q, sine ) sine - sine 
€2 

,~ 

i< 
0- el 

€2 E2 

This leads to: 

h + Q, sine 

S*2 E 
S 

t 3 

6h 2 Q, cose* 

S*2 cos 3e 
6 (h/Q,)2 cose 

h/Q, + sine 

Q,3 cos3e 
Et" 3 (h/Q, + sine) 

s 

* * (sine - sine ) 

* 

which can be solved by trial and error. The equation for the elastic 

buckling stress is then: 

6h2 Q, cose* 
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CHAPTER 4 

TWO-DIMENSIONAL CELLULAR MATERIALS: 

EXPERIMENTAL METHOD, RESULTS AND DISCUSSION 

Silicon rubber models of two-dimensional cells were made, vary-

ing the cell wall thickness and size (and thus the density), and the 

cell shape. They allow a complete test of the theory for the linear 

and non- linear elastic behaviour, developed in Sections3.l and 3.2. 

Metal honeycombs ("Aerowebs") of different densities, cell Sl.zes 

and shape were also tested, allowing the theory of plastic collapse 

developed in Section 3.3 to be tested. The results are presented 

below. 

4.1 The Models 

The models were made with ICI Silcoset 105 silicon rubber in the 

geometries given in Table 4.1. Models 1-4 vary e for constant t/ £ 

and h/ £ . Models 5- 7 vary h/ £ for constant t/ £ and e, and models 

8-10 vary t/ £ for constant h/ £ and e values. The models were made 

by pouring a degassed mixture of silicon rubber and hardener into a mould 

which consisted of a perspex base with machined brass formers (irregular 

hexagons) screwed onto it at appropriate spacings to produce the correct 

wall thickness. 

Aluminium honeycombs ("Aerowebs") made of aluminium foil joined by 

strips of epoxy and expanded to give hexagons of varl.OUS angles e, were 

obtained from Ciba Geigy. It is not possible to vary h/ £ for commercial 

Aerowebs, so punch and die jigs were machined to stamp out strips of copper 

which, when joined, gave hexagonal cells with various values of h/ £ . Table 

4.2 shows the nominal geometries. Ten specimens of each geometry were tes-

ted: five loaded in the Xl direction, five in the X2 direction. 



TABLE 4.1: Geometry of Rubber Models 

HODEL 1 2 3 4 5 6 7 

t/ 'l .21 .21 .21 / .21 .21 .21 .21 

h / ,I(, 2.0 2.0 2.0 2.0 1.0 1.5 2.0 

6 -30° 0° 30° 45° 30° 30° 30° 

UNIT CELL tt ~ * If 1:) r) * --- -

TABLE 4.2: Nominal Geometry of Metal Models 

MODEL (t/ £) 1 (t/ £)2 (t/ £)3 61 62 63 (h/£)1 

t/ £ .0088 .0120 .0177 .0119 .0119 .0119 .0243 

6 42° 42° 42° 28° 44° 68° 30° 

h/ £ .74 .74 .74 .73 .73 . 73 1.0 -
- -

(i UNIT CELL x) x) (( :<x 1) ~ 
'\,. 

8 9 

.21 .176 

1.0 1.0 

30° 30° 

~ XI 

(h/ Q,) 2 (h/ £) 3 

.0243 .0243 

30° 30° 

1.5 2.0 

J) 17 

I 

10 I 
I 

.l34 1' 

i, 
1.0 I 

tr 
\ 

I 

30° I: 
11 

I 

x:x lJ1 
...... 
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4.2 Linear Elastic Behaviour 

The moduli El and E2 were measured from the slope of the 10ad­

deflection curve for loading in the Xl and X2 directions respec­

tively. The two Poisson's ratios VI and v2 were calculated from 

measurements of disp1acements in the Xl and X2 directions uSlng 

targets on the models and a travelling microscope. The shear modulus 

G, was measured by loading the models along their diagonal in a spe­

cial jig, and calculating the modulus from the slope of the resulting 

load- deflection curve. 

Fig. 4.1 shows typical compression stress-strain curves for a 

rubber model and an Aeroweb speclmen. Both curves show a well defined 

linear elastic region with slope E, followed by an almost horizontal 

plateau. This plateau is caused by the cells collapsing: ln the rubber 

model they buckle elastically; in the Aeroweb plastic hinges form. 

Finally, when the cells have collapsed completely, the stress rises 

steeply. 

Theoretical and experimental values of El and E2 for the 

rubber models are plotted in Figs. 4.2 and 4.3. Errors bars of width 

one standard deviation, show how scatter in measuring cell wall thick­

ness, t, h ei ght, h, angle 8 and so on, affect the calculations. 

The error in the experimental value of the Young's moduli was too small 

to show on these figures. Agreement between theory and experiment is 

good except for model 1 with 8 = -300 . 

The way in which El and E2 vary with density, t/ ~ , cell 

aspect ratio, h/ ~ , and cell angle, 8, are shown ln Figs. 4.4 to 

4.6. It is clear that the changes predicted by the theory are borne 

out in practice . 
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The moduli of the me.tal models are compared with theoretical 

values in Figs. 4.7 and 4.8. The dependence on t/ £ and on e 1S 

shown in Figs. 4.9 to 4.12. The errors are a little larger because 

the geometry of these models is less regular than that of the rubber 

models. Agreement is again good. 

Theore tical and e xperimental values of vI and v2 are plotted 

1n Figs. 4.13 to 4.17. Since Poisson's ratio 1S a function of the geo-

metry of the unit cell only and S1nce this is knovln very accurately, 

the error 1n the theoretically predicted value of v 1S small. How-

ever, the experimental error 1S large. Poisson's ratio was measured 

experimentally by attaching targets onto the walls of the rubber models 

and measuring the displacement of the targets under load. Plots of strain 

in the load direction against strain in the lateral direction were then made 

and v was calculated using a linear regression analysis. The scatter 1n 

this strain data was large, and so the error in the e xperimentally measured 

value of v 1S large. There 1S good agreement between the experimental 

and theoretical values of vI and V2 with the exception of vI for 

model 10 and v2 for model 6. 

Theoretical and experimental values of shear modulus are plotted in 

Figs. 4.18 to 4.21. As with Young's modulus one standard deviation error 

bars are plotted for the experimentally measured values. The experimental 

values of shear modulus are slightly higher than 1S expected from the 

theory, perhaps because of the stiffening effect of the shear jig. 

...................................... rl
l 
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4.3 Non-Linear Elastic Behaviour 

The elastic buckling stress, was measured for the rubber 

models in the way shown in Fig. 4.1 The results are plotted, as a 

function of cell geometry, in Figs. 4.22 to 4.25. Agreement is good. 

4.4 Plastic Collapse 

The metal models were compressed until they showed permanent 

plastic deformation (the stress-strain curve resembles that shown ~n 

Fig. L~ .l ) , and the collapse stresses and (a~)pl were calcu-

lated from the plateau load. The results are compared wi th the theory of 

* ~'t 
Section 3.3 · in Figs. 4.26 and 4.27. The stresses (a 1) and (a2) pl 

pl 
are shown as a function of t/ '}" , h/ '}" and 8 in Figs. 4.28 to 4.32. 

Agreement ~s less good than for the rubber models, but still satisfactory. 

Photographs of deformed ce llular structures 

Photographs of deformed rubber models and metal models are shown ~n 

Figs. 4.33 and 4.34. 

4.5 Discussion and Summary of the Study of Two-Dimensional Cellular Materials 

Theory 

. The results of the calculations of Chapter 3 are summarised in Tables 4.3 

and 4.4, ~n two forms. The first lists the results in terms of the cell geo-
'" 

metry (t, '}" , h, 8). The second lists them in terms of the relative den-

sity and cell shape (p/ps' h/ '}" , 8). The results can be written as: 

d 
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a 

b 

d 

Photographs of a rubber model showing deformation 
under various loading conditions: (a) unloaded 
(b) compression in the Xl direction (c) compression 
in the . X

2 
direction (d) shear (e) elastic buckling 

c 

e 
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a 

b 

c 

Photographs of aluminium honeycomb specimens 
(a) unloaded (b) showing plastic deformation on 
loading in the Xl direction (c) showing plastic 
deformation on loading in the X2 direction 

~ .......... --------------------~'. 
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TABLE 4.3: 

PROPERTIES OF TWO-DIMENSIONAL CELLULAR STRUCTURES 
NEGLECTING AXIAL AND SHEAR DEFORMATIONS 

- --------------~ 

PROPERTY GENERAL TWO-DIMENSIONAL REGULAR HEXAGONAL 
HEXAGONAL CELLULAR STRUCTURE STRUCTURE 

~ 
Cl) 
,:I.., 

j 
H o 
u 
U 
H 
E-i 
Cl) 

<l1 
H 
p.., 

Notes: 

G 

cr el 

1. 

t 3 case 
Es T3 

(h/£ + sine) sin2e 

E t 3 (h/ £ + sine) 
s TT cos 3e 

(h/ £ + sine) sine 

(h/ £ + sine) sine 
cos 2e 

t 3 (h/ £ + sine) 
Es IJ (h/ £)L (2h/ £ + 1) case 

See note 2 

t 2 1 
cry ~ 2 (h/ £ + sine) sine 

~ = ~ (h/ £ + 2) 
Ps £ 2 case (h/ £ + sine) 

2 t 
= --

13 £ 

* 

1 

for regular hexagons 

2. Values of S are given in Table 3.1. 
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TABLE 4.4: 

PROPERTIES OF TWO-DIMENSIONAL CELLULAR STRUCTURES 
IN TERMS OF RELATIVE DENSITY 

PROPERTY GENERAL TWO-DIHENSIONAL REGULAR HEXAGONAL 
HEXAGONAL CELLULAR STRUCTURE STRUCTURE 

;8 cos 48 (hi 2 + sin8)2 (E-_) 
3 

El E 
(2 + h/ 2 )3 sin28 · s Ps 3 

1- E (L) 
Cf.l s Ps 
~ 8 (h/ 2 + sin8)4 3 
H E2 E (L) H (2 + hi 2) 3 p::: s Ps 
~ p.., 

~ 
cos 28 p.., 

U \)1 
(hi 2 + sin8) sin8 H 

H 
Cf.l 1 <!1 
H 
~ 

~ 
(hi 2 + sine) sin8 \)2 cos 28 ~ z 

H 
H 

8 cos 28 (h/2 + sin8)4 (L) 
3 

(L) 
3 

G E i Es s (hi 2) 2 (2 h/ 2 + 1)(2 + h/2)3 Ps Ps 

c..'J * UZ :~ 4 (S ) 2 cos 28 (h/2 + sin8) 3 (L) 
3 

(L) 
3 E HH E" 0.14 E 

~t;2 O"el s 3 (hi 2) 2 (2 + h/ 2 )3 Ps s Ps 
;10 

<!1U 
H~ 
~pq 

* 2 cos 28 (hi 2 + sin8) (L) 
2 

(O"l)pl 0" sin8 (2 + h/ Q, ) 2 ~ Y Ps UCf.l 2 
Hp.., -!- 0" Y (L) 
H<!1 
Cf.lH Ps 
js :~ 2 (h 12 + sin 8 ) 2 (L) 

2 
p..,U 

(0"2)pl 0" (2 + h/ 2 )2 Y Ps 

'i( 
Note: Values of S are given ~n Table 3.1 



I 
I 
I 

I· 

El 

E 
s 

E2 

E s 

G 
E s 

~~ 

Gel 

71 

Cl 

C2 

v I 

v2 

- - = C6 E 
s 

* (°1) pI 

° Y 

'i'< 
(° 2) pI 

° Y 

(L) 
Ps 

3 

3 with Cl C3 = C2 C4 
(L) 

(the "reciprocal theorem") Ps 

C3 

C4 

(L) 
Ps 

3 

(L) 
2 

C7 
Ps 

(L) 
2 

Cs 
Ps 

where Cl to Cs are constants which depend only on the initial 

geometry of the cells. The mechanical response ~s thus determined 

by three quantities: a cell geometry parameter (C), a property of 

the solid of which the cells are made (E s or ay) and the relative 

density (p ips)' raised to the power 2 or 3 . 

............ ------------------~ .. 
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Experiments 

The experiments were designed to test, as far as possible, 

all aspects of the equations listed on the tables. All eight of 

the mechanical properties and 

)~ 

(02 )pl) have been measured and their dependence on cell character-

istics investigated. In parti cular, the density (t/ ! or pips) 

has been varied, the cell geometry (hi ! and e) has been systema-

tically varied, and both elastic and plastic cells have been tested, 

involving different values of material properties (E , 0 ). 
s y 

The results speak for themselves. There can be little question 

that the theory adequately describes the elastic and plastic properties 

of two-dimensional cells. The discrepancies are caused by experimental 

error in measuring cell geometry, (many properties are very sensitive 

to cell geometry: El, for instance varies as t 3), variations In 

material properties (such as o ) y or difficulty In defining the 

"dead", undeformable volume at the nodes. 

Applications 

This complete analysis of two - dimensional cells and its experi-

mental confirmation is new, and has obvious applications in guiding de-

sign with such materials (such as honeycomb sandwich panels, packaging 

and certain woods). ~ 

There is a more important application. By identifying the processes 

which determine stiffness and strength In foams and the dimensionless group-

ings of the variables involved, we can now approach the analysis of three-

dimensional foams. Their geometry is much more complicated, so much so 
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that a complete mechanical analysis (like that used here) seems 

out of the question. But a dimensional analysis appearB attrac­

tive, and will be pursued in Chapter 5. 
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CHAPTER 5 

THREE-DIMENSIONAL CELLULAR MATERIALS - THEORETICAL ANALYSIS 

The behaviour of idealized two-dimensional cellular materials 

has been presented in Chapters 3 and 4. The results showed that: 

the elastic moduli are related to the bending stiffness of the 

members; that elastic collapse 1S caused by elastic buckling; 

and that plastic collapse is initiated by the formation of plas-

tic hinges in the members. We now consider how each of these modes 

of deformation affects the behaviour of three-dimensional cellular 

materials. This behaviour is examined at two levels: the first 

analysis, based on dimensional arguments, leads to simple expres-

sions of the form: 

n Foam property = C (Relative density) 
Cell wall property 

for the elastic moduli and the elastic and plastic collapse stresses. 

This simple analysis, however, is deficient in t,1TO ways. The beam 

bending formulae neglect both shear and axial displacements, and the 

expression for relative density neglects the contribution of the cor-

ners of the cells: both of these effects become significant at high 

values of t/~. In Section 5.4 we correct for them using a model of 

pentagonal dodecahedral cells. This leads to a more complete des-

cription of behaviour which is remarkably close to the first simple 

approximation. 

5.1 Basic Dimensional Analysis of Mechanical Behaviour 

Models for Open and Closed Cell Foams 

At the simplest level, an open cell foam can be modelled as a 

cubic array of members of length, ~ , and square cross section of 
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side t (Fig. 5.1). The relative density of the cell, piPs' and 

the second moment of area of a member, I, are related to the beam 

dimensions by: 

(5.1 ) 

and (5.2) 

We note that the adjoining cells are staggered with respect to the 

first cell so that their members meet the first cell's members at 

their midpoints. It is this feature of the model which gives rise 

to bending deformations. 

Closed cell foams can be modelled in a similar way, replacing 

the square struts with square plates of side, t, and thickness, t 

(Fig. 5.2). Adjoining cells are again staggered. For this model, we 

find: 

and 

pip 0:: t/9v 
s 

Linear Elastic Behaviour 

(5.3) 

(5.4) 

Young's modulus is calculated from the linear elastic deflection, 

8, of a cantilevered beam of length, t , under an end load, F. This 

deflection is proportional to Ft 3 lE I where E . s s is the Young's 

modulus of the material the beam is made up of (Fig. 5.3). When a 

uniaxial stress is applied to a cellular material so that each cell 

wall transmits a force F, its members bend, and the linear elastic 

deflection ~s similarly proportional to The overall stress 

and strain in the material are proportional to FI 9v 2 and 819v 
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Fig. 5.1 Cubic model of open cell foams 
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Fig. 5.2 Cubic model of closed cell foams 
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Fig. 5.4 Critical buckling load for a column. 
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respectively. It follows immediately then, that Young's modulus for 

the foam is given by: 

and E/E = C (p/p ) 2 
s s 

for closed cell foams. 

for open cell foams while E/E 
s 

(5.5) 

C (p / p ) 3 
s 

Poisson's ratio, v, ~s defined as the negative ratio of lateral 

to applied strain. Since both these deflections are proportional to 

a bending deflection per cell length, their ratio is a constant. 

Poisson's ratio is solely a function of cell geometry and is inde-

pendent of relative density. 

The shear modulus is calculated ~n a similar way to Young's 

modulus. If a shear stress, T, ~s applied to a foam, the cell members 

again respond by bending. Since the bending deflection, 8, ~s propor-

tional to F£3 /E I and the overall stress and strain are proportional 
s 

to F/ £2 and 8/£ respectively, 

G Cl 
E £it 

s 
(5.6) 

It follows that G/Es ~s proportional to (p/ps) 2 for open cell foams 

and (p/ps)3 for closed cell foams. 

Non-Linear Elastic Behaviour 

Elastic collapse occurs in cellular materials when some members 

buckle elastically. The critical load at which a column of length, 

£ , Young's modulus, E , 
s 

and second moment of area, I, buckles 
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1S g1ven by Euler's formula, (Fig. 5.4): 

F cr 

where the factor n 2 describes the degree of constraint at the 

ends of the column (see Section 3.2). If this load is reached for 

an entire layer of cells, they will buckle and so the foam will 

* collapse elastically. The stress at which this occurs, ° eJ.,' is 

proportional to giving: 

* 
0 e Q, Cl 
E Q;4 (5.7) 

s 

* '1~ 

or ° lE = C(p/p )2 e Q, . s s and o nlE e", s 
C (p I p ) 3 

s 
for open and closed 

cells respectively. 

Plastic Behaviour 

Cellular materials may collapse by a second mechanism if the 

cell wall material has a plastic yield point: they may collapse 

plastically. Plastic collapse occurs when every point on a cross-

section of a member has reached the plastic yield stress, o , 
y 

of the cell wall material. For square sections of thickness, t, 

the fully plastic moment is (Fig. 5.5): 

M 
P 4 

If a force F acts in bending on a member of length Q, 1n a 

cellular material, the max1mum moment in the member is proportional 

'1~ 

to . FQ, . The overall plastic collapse stress for the foam, ° pI' 

proportional to FI Q,2 . Combining these expressions gives: 

1S 
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For open and closed cells, this becomes, respectively, 

* o 1/0 p y 
C (pip )3/ 2 

s 
and * 2 o 10 = C (p I p ) • pI y s 

The results of Section 5.1 are summarized 1n Table 5.1. 

TABLE 5.1: Mechanical Properties of Three-Dimensional 
Cellular Materials 

PROPERTY OPEN CELLS CLOSED CELLS 

pip 
s 

C (t/ '1., ) 2 C (t/ '1., ) 

EIE C (pip) 2 C (pips) 3 
s s 

v C C 

G/E C (p/ps)2 C (pips) 3 s 
J. 

oA'1.,IE C (p/ps)2 C (p/ps)3 e s 

* C (pip )3/ 2 (p/ps)2 o /0 C 
P Y s 

5.2 Anisotropy in Cellular Materials 

(5.8) 

Two-dimensional cellular materials, as 1n Fig. 3.1, are iso-

tropic in their plane when h = '1., and e = 30
0

: two independent 

elastic constants are required to fully describe the linear elastic 

behaviour of such materials. If h does not equal '1." the material 

is elastically anisotropic and has four independent elastic constants 

(see Section 3.1). We define the shape anisotropy of the cell, A, 
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as the ratio of h/£, for a constant cell wall angle, 8. Using 

the equations of Table 4.3 we can calculate how anisotropy affects 

the material properties; for example, we find: 

9 
4 (A + 4)2 

for 8 = 30
0

• We note that El/E2 var~es rapidly with A: for 

instance, it decreases from 1 for isotropic structures (A = 1) 

to 0.56 for A = 1.5. 

Three-dimensional cellular materials are also sometimes an~so-

tropic. For example, when polymeric materials are foamed, there is 

a tendency for the cells to elongate in the direction of the foam 

rise. Fig. 5.6 shows such an elongated cell: the X3 axis is the 

rise direction. This cell ~s isotropic in the Xl X2 plane only and 

has 5 independent elastic constants (see Ch. 3). For loading in a par-

ticu1ar direction, the relationships of Section 5.1 are still valid; for 

example: 

and 

El 

E 
s 

for an open cell foam. But the goemetrica1 constants of proportionality, 

Cl and C3 , now depend on the shape anisotropy, A. We now examine 

this dependence in more detail. 
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Fig . 5 , 6 Cell model for an anisotropic material. 



84 

The ratio of the Young's moduli in the Xl and X3 directions 

at a given relative density are now given by: 

(5.9) _<X 

E 
3 

The ratio of Poisson's ratio for the two load directions ~s obtained 

~n a similar way: 

_<X 

The ratio of the deflections in the Xl and X3 directions depends 

only on the angles the members of the cell make with the axes, and 

thus can be incorporated into the constant of proportionality, giving: 

(5.10) 

The ratio of the shear mod~li, is: 

KA (5.11) 
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The elastic collapse stresses for loading ln the Xl and X3 

directions give: 

* 0 
ell h 2 £2 __ ex KA 
* £2 £h (5.12) 

0 
e1 3 

while the ratio of the plastic collapse stresses is: 

__ ex 

* 
(5.13) 

The dependence of each material property on the degree of anlSO-

tropy is given in Table 5.2. Young's modulus is affected the most by 

. . A-5. anlsotropy: lt varles as 

TABLE 5.2: Effect of Anisotropy on Material Properties 

<" 0 
El G12 

0 . 1 ell vI e 1 
- -- -- -*- -*-E3 v3 G13 0 

e13 
0 

p13 

A-5 A- 2 A A A- 2 
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5.3 Contribution of the Faces of Closed Cell Foams to Mechanical 

Properties 

During the foaming process the polymer tends to accumulate in the 

edges and corners of each cell. In open cell foams, the cell face has 

become so thin that it has burst and all the polymer 1S in the cell 

edges and corners. Even in closed cell foams the faces may be so thin 

that they contribute very little to the stiffness and strength of the 

foam. 

Previously, we modelled closed cell foams as square plates of 

side length Z and thickness t. In order to examine the contribu-

tion of the faces of the cell to stiffness and strength, we now model 

closed cell foams as square faces of thickness t f , surrounded by 

edges of thickness, t 
e 

(Fig. 5.7 a). We also define a new parameter, 

~, equal to the ratio of the volume of polymer in the face to that in 

the edge: 

V 
face 

V 
edge 

(5.14) 

For an open cell foam ~ 1S zero; for a closed cell foam with walls 

and edges of equal thickness, ~ = ~ /t. The relative density of this 

new cell model is then: 

pip ~ (t /~)2 (1 + ~) 
s e 

(5.15 ) 

We have already seen that the stiffness of a closed cell foam 1S 

governed by (Fig. 5.7 b) the beam bending equation: 

F 
-~ 

<5 

E I 
s 

Q,3 
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The moment of inertia of the cross-section is now: 

This leads to the Young's modulus for the foam: 

E (t4 + t 3 Q, ) 
F s e f 

E ex: 
_ ex: 

Q, 4 8 Q, 

<p t 2 

Substituting t f 
e gives: 

Q, 

t 4-

[1 + 
t 2 

E (~) (~) <p 3
] • _ ex: 

E Q, Q, 
s 

Relating t I Q, to pips (equation 5.15) gives: 
e 

E (L) 
2 1 

.)2 [1 + 
P .3 ~ _ ex: (5.16 ) 

E Ps (1 + Ps 1 + <p 
s 

The relative modulus ~s plotted against the relative density for 

var10us values of <p . 1n Fig. 5.S. For <p = 0, that is, open cell 

foams, E/Es ex: ( p/p s)2, as before. For large <p, equivalent to 

the square plate model, E/El ex: (pip )3, 
s s 

as before. 

Poisson's ratio is independent of relative denisity and therefore, 

the distribution of the polymer between the edges and faces does not 

affect it. The shear modulus of a foam ~s related to bending stiffness 

in exactly the same way as Young's modulus and thus: 

(5.17) 1 
(1 + <P)2 
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The elastic collapse stress ~s given by: 

* 0" 0: 

el 

E I 
s 

-rr+ 

Again, this ~s the same relationship as for Young I s modulus and 

* O"el __ 0: 

E 
s 

1 
(1 + <jl) 

(5.18) 

Plastic collapse across a section occurs when both the face and 

edge have yielded completely. 

1-1 + M 
P edge p face 

. £3 

From Section 5.1: 

Mo:O" t 3 
p y 

So: 

Combining with equations (5.14) and (5.15): 

* 0" 1 
---..P-.. 0: 

0" 
Y 

(5.19 ) 
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This is plotted In Fig. 5.9. In the limiting cases of open cell 

foams (~= 0) and closed cell foams of equal face and edge thick-

ness (~ = ~/t), this reduces to the previous relationships: 
e 

* 0- 1 
~a:: 
0-

y 
and respe cti ve1y. 

Note that open cell foams are stiffer and collapse and yield less 

easily than closed cell foams. Many closed cell foams have values 

of ~ which are less than 1 (see Section 6 . 2) (this occurs , roughly, 

when tf/ ~ = (p/ps)2). Such foams behave more like open cell foams, 

because the bulk of the polymer is concentrated in the cell edges. 

5.4 Refinements of the Analysis of Foam Properties 

The dimensional analysis of three- dimensional cellular solids 

presented in the previous sections is deficient in two ways: the ca1-

cu1ation of the relative density is an approximate one, good at low 

densities but poor at high; and shear and axial deformations are ig-

nored in the calculation of the beam deflection. Both become increas -

ing1y important as the thickness: length ratio of the meillbers, t/ ~ , 

becomes larger. In this section, the foam properties are recalculated 

to take these deficiencies of the simple dimensional analysis into 

account. 

We consider only open cell materials in the more detailed analysis; 

In Section 5.3 we showed that materials with a low proportion of the 

volume of solid polymer In the cell faces also behave as open cell foams. 
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Re Zative dens ity 

In Section 5.1 we neglected the corners of the cells and found: 

C (f) 
2 

For cubical cells, the constant of proportionality, C, ~s equal 

to three. If the contributions of the corners to the volume of solid 

material and of the edges to the total volume of the cell are taken 

into account, the relative density of a cubical cell becomes (Fig. 5.10): 

3 (t/ ~ )2 + (t/ ~ ) 3 
(1 + t/ ~ )3 

(5.20) 

This expression is exact for cubical cells. But real cells in foams 

are not cubical; they are (on average) tetrakaidecahedra (Thompson, 

1966). Cells in foams pack to fill space and, because of surface 

tension requirements , try to minimize their surface area for a given 

volume. As the number of faces on a polyhedron increase and it more 

closely resembles a sphere, the ratio of surface area to volume de-

creases (Table 5.3). The cube has a high surface area:volume r a tio 

and is a poor approximation for cell shape. 

The pentagonal dodecahedron and the tetrakaid~edron both pack 

to fill space. The tetrakaidecahedron has a slightly lower surface area 

to volume ratio , but is not a regular polyhedron. Because it is much 
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Fig. 5.10 Refined cubic model of an open cell foam. 

Fig. 5.11 pentagonal dodecahedral model of an open cell 
foam 
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TABLE 5 . 3: Surface Areas for Some ?olyhedra and the 
Sphere of Dni t Volume. ~', 

Body Nature of Surface Surface Area 

Tetrahedron 4 equilateral triangles 7.21 

Cube 6 square 6.00 

Octahedron 8 equilateral t rian gl e s 5.70 

Dodecahedron 12 regular pentagons 5.31 

Tetrakaidecahedron 6 squares and 8 regular hexagons 5.31 

Icosahedron 20 equilateral triangles 5.14 

Sphere 00 4.84 

~"See Appendix SA for formulae for surface area and vo lume. 
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simpler to do so, we shall take the pentagonal dodecahedron as a satis -

factory approximation of the shape of a unit cell. Assuming a square 

cross-section for the meillbers, the relative density of an open cell 

structure made up of pentagonal dodecahedra is approximately (Fig. 5.11): 

v + V edges corners 
V 

total 

lOt 9,2 + f3t 3 

7.66 ( 9, + t) 3 
(tl 9, ) 2 + 0.766 (tl 'J.} > 

0.766 (1 + tl 9, )3 (5.21) 

The volume of cell is approximately 7.66 ( 9, + t) 3. There are 10 edges per 

cell, each of volume t 2 9, . The volume of the corners is proportional to 

by setting S = 7.66, the relative density goes to 1 as 9, approaches 

zero. 

Although this new equation for pip ~s a maJ"or improvement on the 
s 

simple equation and leads to significant modifications 

to the equations for the moduli, non-linear elastic and plastic response 

(given below), it is not exact. The chief difficulty in setting up an 

exact expression ~s that of describing the cross-section of the edges 

and the corners. Here the problem is partly circumvented by the device 

of adjusting the parameter S to make pip go to 1 when 9, goes to 
s 

zero. 

Elas tia moduli~ with shear and axial de formation inaluded 

In Section 5.1 we related the e lastic moduli of cellula~ materials 

to the bending stiffness of the beam-like members making up the material. 

At low relativ e densities this is valid since bending is the main deforma-

tion mode in the material. But as the relative density of the material 

increases (increasing the thickness:length ratio of the meillbers) shear 
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and axial deformations become more important. The bending, shearing 

and axial displacements in the X2 direction of a beam of rectangular cross-

sect ion, bt, inclined by an angle e from the horizontal, fixed at 

both ends and with one end displaced in the X2 direction are (Fig. 5.12): 

8 . 1 
ax~a 2 

3F.Q, cos 2e 
E bt 

s 

The shear displacement is based on the analysis of Timoshenko and Goodier 

(1970 ) with Poisson's ratio for the beam material equal to 0.4. 

In a cellular material, the bending and shearing displacements 

occur over the unsupported length, .Q" of the members, while axial 

displacements occur over the entire length of the member, .Q, + t 

(Fig. 5.11). For a member of square cross-section, t 2 , the total 

deflection is then: 

8 
total 

if cos 2e % sin2e. Using the dimensional argument of Section 5.1 the 

overall stress is proportional to F / (.Q, + t)2 and the strain is pro-

portional to 8/(.Q, + t), which leads to: 

and 
E _ ex: 

E 
s 

F E ex: 
8 (Q, + t) 

(t/ .Q, )2 
1 + t/ .Q, 

(5.22) 



F~ 

98 

o shear 2 = 

Oaxial 2 = 

3 F.lcos2g 
Egbt 

F lsin2e 
Esbt 

Fig. 5.12 Bending, shear and axial displacements for 
a beam fixed at both ends and with one end 
displaced. 

11 
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Substituting for t/£ ~n equations (5.22) and (5.21) and plotting 

log E/E against log pip (Fig. 5.13) we find that the relative s s 

modulus is nearly proportional to relative density squared over 

its entire range. But this was the result of the first simple 

dimensional analysis. Despite its several shortcomings, it appears 

to give a useful, simple squared rule for relating relative Young's 

modulus to relative density which has wide generality. The same deri-

vation applies to the shear modulus, giving: 

G 
Ea: 

s (1 + t/£> (5.23) 

As before, this refined result differs very little from the original, 

simple, one. Poisson's ratio, as before, is independent of t/£ and 

pip . 
s 

Non-linear elastic behaviour 

The edges of the cell were not taken into account ~n the simple 

analysis ~n calculating the total volume of the cell for the relative 

density OI in calculating the area of the cell over which stresses act. 

We now account for this for the elastic collapse stress of the cell. 

Using the new definitions of member length, £, and thickness, t, 

we find the area of a cell is proportional to (£ + t) 2 . (Fig. 5.10). 

The critical buckling load ~s still: 

rr2 E I 
P s 

a: 
cr £2 

,~ 

Giving 0 
e1 t 4 __ a: 

E £2 
s 

(£ + t)2 
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for an open cell foam. 

(Je1 __ cc 

E 
s 

101 

(1 + t/9.,)2 

The old and new equations for (J~~l/E 
e s 

(5.24) 

(5.7 

and 5.24) are plotted in Fig. 6.9. The simple dimensional analysis 

gives a constant slope of 2 on a log-log plot. The result of the 

more refined analysis has a slope of 2 below piPs ~ 0.02 (as we 

would expect since the two analyses converge at low pips); this slope 

then increases with relative density. 

PZastic coUapse 

Using the new definition of cell area proportional to (9., + t)2, 

the plastic collapse stress becomes: 

(J 1 (t/9.,) 3 
-L cc 
(J (1 + t/9.,)2 

Y 

(5.25) 

for an open cell foam. Th~ two results of the simple and the more 

detailed analyses (equations 5.8 and 5.25) are plotted ~n Fig. 6.10. 

Both equations have a slope of i (on a log-log plot) at low relative 

densities. The slope of the result of the simple analysis remains con-

stant at this value while the slope of equation (5.25) increases with 

relative density. 

5.5 Limits of Validity of the Equations 

Elastic moduZi 

The more complete analysis of the elastic moduli of cellular materials 

just outlined itself breaks down when the material no longer ressemb1es a 
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network of beams, but begins to behave like a solid with small holes 

in it. At a thickness :length ratio of about 1 (or p/p % 0.3) 
s 

end effects in the members, which \Ye have up until now ignored, be-

come important. At relative densities greater than 0.3 the analysis 

of cellular materials becomes very difficult. MacKenzie (1950) has 

derived expressions for the shear and bulk moduli of solids containing 

many small holes. These two relationships can be combined with the 

equations relating the elastic moduli of an isotropic solid to give 

an expression for the Young's modulus of a solid with holes. This 

expression is a function of the Poisson's ratio of the solid; we have 

assumed v 
El 

0.3. Fig. 5.14 and 5.15 show plots of E/E 
s 

and 

G/Gs against p/ps according to MacKenzie's theory. For values of 

relative density between 0.8 and 1.0, the results lie very close 

In summary, our beam bending models show the Young's and shear 

moduli are proportional to (p/ps)2 for relative densities less than 

0.3. Remarkably, models of solids with holes in them also predict E 

and G equal to for 0.8 < p/p < 1.0. - s- Although we have 

no theory to predict E and G at relative densities in the diffi-

cult range between 0.3 and , 0.8, it is unlikely that E and G 

deviate greatly from a (p/ps)2 law. We expect then that a simple 

square la\Y should predict E . and G for all relative densities. 

Poisson's ratio ~s expected to be independent of relative density. 

Non-Zinear e Zastic behaviour 

The elastic buckling stress of a column ~ncreases with (t/ £)2. 

At large t/ £ , this stress becomes so large that, in the range of loads 

and deformations that interest us, some other mechanism is dominant -
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either because it permits large deformations at loads below the 

buckling load, or because it causes plastic or brittle collapse. 

When the columns form the members of a cellular solid (as here), 

elastic deformations may cause the cell faces to meet, or yielding 

and plastic collapse may occur, before the buckling stress is reached. 

This becomes increasingly probable as t/£ increases. We have as-

sumed that buckling will not appear when t/£ > 1. This means that 

the equations describing non-linear elastic behaviour are invalid 

when pip > 0.3. 
s -

Plastic collapse behaviour 

At low relative densities, the calculation for the plastic collapse 

stress is based on the formation of plastic hinges at the ends of the 

members of the foam. When the thickness:length ratio, t/ £ , becomes 

large enough the axial stress in a member can exceed the yield stress 

of the solid in axial compression before plastic hinges form. The 

overall stress required to cause yielding of axially loaded members is: 

From Section 5.3, the stress required to produce plastic hinges by 

bending is: 

In Section 6.4 we find that experimentally, C = 0.30. These two mechan-

~sms occur simultaneously \oJhen the thickness:length ratio, t/ £ , is equal 
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to 3.3, or the relative density is equal to 0.6. At higher relative 

densities, plastic collapse occurs by axial compression of' the members 

rather than by the formation of plastic hinges through bending. 

5.6 Conclusions 

The theory for the mechanics of three-dimensional cellular materials 

has been developed at two levels, using first a simple, and then a more 

refined, dimensional analysis. We found that both analyses give the 

relative Young's modulus, E/E , 
s 

and the relative shear modulus, 

G/Es' proportional to (p/ps)2 for open cell foams; these equa-

tions are valid at relative densities up to 0.3. At relative den-

sities greater than 0.8, MacKenzie's (1950) expressions for E/E 
s 

and G/G
s 

are also about equal to (p/ps)2. No theory has been 

developed yet for the moduli of materials with relative densities 

between 0.3 and 0.8; but it is unlikely that these materials 

behave much differently from the (p/ps)2 rule. Remarkably, then, 

we expect to find E/E 
s 

and G/E 
s 

proportional to for all 

relative densities of materials. The dimensional analysis shows that 

a third elastic constant, Poisson's ratio, is independent of relative 

density: this result is confirmed by the fact that E and G are both 

proportional to (p/ps)2 and that, at least for isotropic solids, 

v = -1 + E/2G. The relative elastic and plastic collapse stresses 

,.;rere found to vary about as (p/p )3/2 respectively. 
s 

Two other aspects of behaviour were also investigated in this 

chapter. First, in Section 5.2 we examined the effect of shape an~so-

tropy on the moduli and collapse stresses. This effect is most pro-

nounced for Young's modulus: El/E3 var~es as A-5. And in Section 5.3 
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we studied the contribution of the faces of closed cell foams to 

stiffness and strength. We found that if the faces are thin com­

pared to the edges, they do not contribute significantly to stiff­

ness or strength and the foam behaves as if it were open- celled. 



Appendix SA: Formulae for Surface Area andV6lume of Polyhedra 

Polyhedron Nature of Surface Surface Area Volume 

Te trahedron 1 4 equilateral triangles 1. 73a2 0.118a 3 

Cube l 6 squares 6.00a2 1.000a3 

Octahedron 1 8 equilateral triangles 3.46a2 0.471a3 

Dodecahedron 1 12 regular pentagons 20.6Sa2 7.663a 3 

Tetrakaidechedron2 6 squares and 8 regular hexagons 26.78a2 11.3l4a3 

Icosahedron 1 20 equilateral triangles 8.66a2 2.l82a 3 , 

-- _ ._--_. _-- -------

a edge length 

Formulae taken from: 

1. CRC Handbook of Tables for Mathematics (1970) Fourth Ed. Edited by 
R.C. Weast, Chemical Rubber Co., Cleveland, Ohio , p.1S. 

2. Underwood, E.E. (1970) "Quantitative Stereology" Addison-Wesley, p . 91. 

'\. 

t-' 
o 
-....J 
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Adcl~lI W\ SA Creep Behaviour 

If the strain in a foam increases with time under constant stress, 

it ~s said to creep. In a cantilever beam undergoing power-law creep, 

with E/f; 
o 

n 
= (0/0 ) , 

o 
the end load F ~s related to the rate of 

. 
change of end deflection, 0, by (Fig. 5B.l). 

F 

2n+l 
2b 0 n 
--:-_o~ (!.) n 

2n + 1 2 

l+~ 
(l) n {(n : 2) 
~ E: 

o 
(5B.l) 

Here n, o and E are creep constants characterizing the material 
o 0 

of which the beam is made. If the members of a cellular material creep 

according to this law and the overall stress and strain-rate are pro-

portional to F/(~ + t) 2 and 8/( ~ + t) respectively, then the 

material creeps according to: 

E 
E 

o 
0\ (~) 

o 
o 

for open cell foams. 

n 

t 

1 ( ~ + t)2n-l ~n+2 
3n+1 

(5B.2) 

The linear elastic result for E/E (equation (5.22) ignoring 
s 

shear and axial deflections) can be obtained from this by letting 

n = 1, o lE = E o 0 s and substituting strain for strain rate. Equa-

tion (5B.2) reduces to the plastic collapse result (equation (5.25» 

when n 00 and 0 
o 

E 
€ 

o 

o. We then find: 
y 

( ~ + t) t 
(5B.3) 
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F 

:---~ 
1- -I 

. 
E 

Material obeys . 
€o 

= 

Fig. SB.l Creep deflection of a cantilevered beam. 



llO 

A number less than one raised to the power infinity equals zero, 

while a number greater than one goes to infinity. The plastic 

solution occurs when: 

or 

(J 

(J 
y 

0-

0-
Y 

( ~ + t) 2~ 
t 3 

(1 + t7 ~ ) Z 

1 

(5B.4) 

This lS the same as the plastic collapse result obtained In equation (5.25). 
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A material with cracks of length 2a ~n it will fracture ~n a brittle 

manner if the stress level reaches the fracture stress, a fs ' given by: 

IEs Gcs 
'ITa 

where E 
s 

~s the Young's modulus and G cs ~s the toughness of the 

material. In a cellular material, the extreme fibre stress in a member 

in bending ~s given by: 

Mt F H 
a = TI ex: - r -

The member will fracture if a = a
fs 

or the force acting on the fibre, 

F, is: 

~ 
F ex: I~~ 

'ITa £t 

Since the overall stress on the cellular material is proportional to 

F / ( £ + t) 2 the s tress at which bri ttle fracture occurs, is: . 

;fE_S __ G __ C_S ~ __ ~I~ __ ~~ 
£t (£ + t) 2 'ITa 

t 4 
or ____ ex: ~--~----~ 

t £ (£ + t) 2 ex: (1 + t/ £) 2 

for open cell foams with r ex: t4. 
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CHAPTER 6 

THREE-DIMENSIONAL CELLULAR MATERIALS - EXPERIMENTAL METHOD, RESULTS 
AND DISCUSSION 

The model of foam behaviour presented ~n the last chapter was 

based on the physical idea that the cell members bend, buckle elas-

tically, or collapse plastically. Evidence for these three modes of 

deformation are presented in this chapter along with data for the 

elastic moduli and collapse properties of many types of foams. The 

mechanical test data are from tests carried out by the a uthor and 

from results reported in the literature. The data for each property 

are plotted together over a range of relative densities from 0.01 

to 1.00. These results are analyzed in terms of the theoretical 

calculations given in the previous chapter. The models for the 

mechanical behaviour of cellular materials are found to give a good 

description of the large body of experimental data. 

6.1 Experimental Method 

Three types of foam were tested: an open cell, flexible poly-

urethane, a closed cell,flexible polyethylene, and a closed cell, 

rigid polyurethan~ (Open cell rigid foams were unobtainable). Some 

of their properties are listed in Table 6.1. The data for the solid 

polymer properties have been obtained from reference texts; the varia-

tion in these properties between different batches of the same material 

is large, and they can be changed by the foaming process. This varia-

tion is the principal source of error in comparing experiment with 

theory. 
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CHAPTER 6 

THREE-DIMENSIONAL CELLULAR MATERIALS - EXPERIMENTAL METHOD, RESULTS 
AND DISCUSSION 



TABLE 6;1: Properties of Foams Tested 

TYPE OF FOAM MANUFACTURER 
DENSITIES 

(kg/m3 ) 

Open cell flexible polyurethane Dunlop Ltd. 14.4, 18.5, 24.1, 27.8, 32.4, 51.7 
Dunlopillo Division 

Harrison and Jones 14.2, 17.0, 19.9, 25.3, 29.0 
(Holdings) .Ltd. 

Closed cell flexible cross- Frelen Ltd. 29.4,46.9,69,107,120,138,360 
linked polyethylene 

Closed cell rigid polyurethane Bulstrode Plastics & 68, 76, 109, 160 
Chemical Co. Ltd. 

----_ . ---- --- -

REFERENCES 

1. Roff and Scott (1971) p.453-455. 

2. Lazan (1968) p.245. 

3. Billmeyer (1971) p.505. 

4. Patel and Finnie (1970). 

'\ 

SOLID POLYMER PROPERTIES 

E Ps (J 
s y 

(kg/m3 ) (MN/m2 ) (MN/m2 ) 

1200 1 45 2 -

1200 1 45 2 -

910 3 200 3 -

1200 1 16004 1274 

! 
Symbol used in I 
Fig. 6 . 7 - 6.11 I 

0 

0 

• 
• 

t-' 
t-' 
~ 
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Cubes, approximately five millimeters on a side, of each density 

of each foam were cut, coated with gold, examined and photographed in 

the scanning electron m~croscope. Specimens of each foam were also 

loaded in tension and compress~on by means of a small vice within the 

microscope and photographed as the load was increased. 

Young's moduli were measured at room temperature ~n both tension 

and compression. Tension tests were performed on specimens approxi­

mately 100 mm x 25 mm x 10 mm; compress~on tests were done on cubes 

and thin sheets. At least 3 specimens of each density were tested. 

The elastic and plastic collapse stresses were also measured from 

compress~on tests, for the flexible and rigid foams respectively. 

Young's modulus was not a function of strain rate over the range of 

rates used ~n the tests. 

Poisson's ratio was calculated from measurements of the incre-

mental displacements of four grids glued onto tensile specimens and checked 

by measuring the change in dimensions with a vernier gauge. Six pairs 

of strain measurements were made on each specimen. Linear regression 

analysis of these measurements was used to calculate mean Poisson's 

ratios. 

Shear moduli were measured using the rig shown in Fig. 6.1. Foam 

spec~mens were glued to the plates with cyanoacrylate adhesive and the 

modulus measured from the load-displacement curve of each specimen. 

Two specimens of each density were tested. Although this is the load­

~ng geometry specified in British Standard 4370 (Part 2, 1973) it is 
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Fig. 6.1 Shear test rig. 
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not an ideal one because bending moments and tensile forces are, super­

imposed on shearing forces. We estimate that errors in measuring 

shear moduli ~n this way do not exceed 20 %. 

No measurements were made of the creep behaviour or brittle frac­

ture behaviour of foams. 

6.2 Cell Geometry and Deformation 

Micrographs of each of the foams tested are shown in Fig. 6.2. 

The relative volume of the faces to the edges in the closed cell foams, 

~, was measured from many micrographs and found to be 0.1 for the 

polyurethane and 4.0 for the polyethylene. 

Figs. 6.3 and 6.4 show the progressive compressive loading of two 

foams, one flexible, the other rigid. The flexible foam deforms by 

bending and buckling and recovers these deformations when unloaded. 

Members of the rigid foam bend, and at higher loads, deform plastically 

and break. These observations show that the deformation of three-dimen­

sional foams is controlled by the same physical processes as that of the 

simpler two-dimensional cells, and led us to the analysis given in 

Chapter 5. 

6.3 Experimental Results 

Typical compression curves for the three foams are shown in 

Fig. 6.5. The initial near-linear portion is followed by a plateau, 

terminated,at a strain of about 0.6, by a rapid rise in stress. Young's 

modulus is taken as the initial slope of the stress-strain curve, the 

collapse stress as the intercept of the extrapolations of the initial 

slope and the plateau stress. 



U 8 

O.5mm 
a 

1 mm 
b 

O.25mm 
c 

Fig. 6.2 Micrographs of (a) flexible open cell polyure­

thane foam (p=14 kg/m3); (b) flexible closed cell 

polyethylene foam (p=30 kg/m3
); (c) rigid closed 

cell polyurethane foam (p=128 kg/m
3

) . 
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a 

d 

O.5mm 

Fig. 6.3 A flexible polyethylene foam (a) unloaded, (b) showing 
bending deformation under compression, (c) showing 
elastic buckling under fu3ther compressive loading, and 
(d) unloaded. (p=30 kg/m) 

............................ ________ ~: d 
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Fig. 6.4 Micrographs showing compressive loading of -~a rigid 

closed cell p6lyurethane foam. (p=160 kg/m
3

) 
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0. 0.!L----:O'...'::.2O..,--0'-=-' . ..,-40:----,-0..L6O-:------::0..LSO-

STRAIN. E 

Fig. 6.5 (a) Stress-strain cu3ve for flexible polyurethane 
foam. (p=29 kg/m; pip =0.023; manufactured by 
Harrison and Jones Ltd:) 
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0. .1 

0..20. 0..40. 0..60. 0..80. 
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Fig 6.5 (b) Stress-strain cu3ve for flexible polyethylene 
foam. (p=69 'kg/m ; pip =0.076; manufactured by 

s 
Frelen Ltd.) 
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vl 
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l-
V) 

0. 0. 0.20 0..40 0.60 o..SO 
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Fig. 6.5 (c) Stress-strain cur3e for rigid polyurethane 
foam. (p=109 kg/m ;p/p =0.091; manufactured by 
Bulstrode Plastics andsChemical Co. Ltd.) 
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The experimental results are assembled in Figs. 6.6 to 6.10. 

They show data (from this study and from the literature) for Young's 

moduli, Poisson's ratios, the shear moduli and the elastic and plastic 

collapse stresses, together with the predictions of the models. Solid 

polymer properties for foam data other than our own are quoted in Table 6.2. 

Open and closed cell foams are plotted together, for the following 

reason. When the cell-edges of a closed cell foam are thickened (because 

polymer has accumulated there), the faces carry very little load and the 

foam behaves as if it were open-celled. The condition for open cell be­

haviour was discussed in Section 5.3: it was that the quantity, ~, which 

measures the ratio of the volume of polymer in the cell faces to that ~n 

the edges, be small compared to lip. Our closed-celled foams have 

~ = 0.1 (rigid polyurethane) and 4.0 (flexible polyethylene): the 

first should behave as an open cell foam, and the second should be 

intermediate between open-and closed-cell. The data support this view. 

6.4 Discussion 

Young's moduZus 

Data for Young's modulus from our study and from the literature, 

covering a wide range of relative densities from 0.01 to 1.00, are 

plotted ~n Fig. 6.6. As was discussed in Chapter 5, there are three 

regimes of behaviour: at low relative densities (less than 0.3) the 

material can be modelled as a network of bending beams while at high 

relative densities (greater than 0.8) it behaves like a solid containing 

spherical holes. At intermediate densities, modelling the material be­

haviour is difficult: as yet, no theoretical treatment of this regime 

exists. 

r I 



TABLE 6.2: Solid Polymer Properties of FoaffiS Tested by Other Authors 

Author 

Baxter & Jones (1972) 

Brighton & Meazey (1973) 

Chan & Nakamura (1969) 

Gent & Thomas (1959) 

Lederman (1971) 

Ma tonis (1964) 

Moore et al. (1974) 

?atel & Finnie (1970) 

Phillips & Waterman (1974) 

Traeger (1967) 

Walsh et al. (1965) 

Notes: 

l. Data from work cited. 

Foam 

Expanded Polystyrene 

Expanded Polyvinyl Chloride 

Extruded Polystyrene 

Rubber Latex Foam 

Rubber Latex Foam 

Rigid Polystyrene 

Polystyrene Acrylonitrile 
Polypropylene Copolymer 

Rigid Polyester Based Polyurethane 

Rigid Polyurethane 

Rigid PAPI Polyurethane Foam 

Glass 

2. Roff and Scott (1971) p.112-ll3 and Harper (1975) p.3-32. 

3. Roff and Scott (1971) p.47. 

4. Bonnin et al. (1969) p.517. 

5. Roft and Scott (1971) p.453. 

6. Patel and Finnie (1970) p.909. 

'I,. 

Ps E I 0 s y 
kg/m3 MN"j m2 MN / m2 

1020 1 2650 1 , 

14002 
3000

2 ! 49 2 

1050 1 1400 1 

2.64 1 

1050 3 13801 79 1 

1065 1 36701 

902 4 11304 

12301 1600 1 1271 

12005 l6006 

1200 5 16006 ! 1276 

2511 1 750001 -

t-' 
N 
w 
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THEORY FOR BEAM BENDING 
MODEL(I) 

E/Es = (p/Ps)2 

E _ (tll)2 . 1 
/ Es - 1 + ~ (.£ It )2 + 4 + t/i 

P!J = ~t!e)2 (1 + 0.766 t~£) 
Ps 0.766 (1 + V,e):l A 

o 
odJ 

I . 

• 

• 

II III 

EXPERIMENTAL DATA 
o GIBSON (1981) 
o GIBSON(1981) 
6 GENT & THOMAS (1959) 
~ LEDERMAN (1971) 

• GIBSON (1981) 
• GIBSON (1981) 
• BAXTER&JONES (1972) 
~ PHILLlP &. WATERMAN (1974-) 
• MOORE et 01 (1974) 
.. WALSH et 01 (1965) 
~ CHAN & NAI<AMURA (1969) 
* BRIGHTON & MEAZEY(1973) 

,o~ 10° 

RELATIVE DENSITY, pips 
~.ig 6 , 6 Relative Young's modulus, E/E I against relative . s 

density, pIp . . Open symbols represent open cell 
to~msi shqdea symbols represent closed cell foams. 
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Poisson's ratio, v, against relative density, p/p . Open symbols 
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THEORY FOR BEAM ~--'-:""---.--'--~-+ 
BENDING MODEL (1). 

MODELS OF 
BEHAVIOUR 

- G/Es = 0.385 (piPs? 
G/Es = O.385(y~)2 

o 

(1+ ta)(Y'P-+4+0 
Pip = (V,ti(1+.766 t/~) 

sO. 766 (1+ t/~)3 

I 

I BEAM BENDING 
~ ~ II INTERMEDIATE 

I ZONE 

I 1II HOLES IN SOLID 

I 
I 

II III 

EXPERIMENTAL DATA 
o GI BSON (1981) 

GI8S0N (1981) 
• MOORE ET AL(1974) 

105~--~----~----------~ 
10-2 10-1 10° 

Fig. 6.8 

RELATIVE DENSITY, pips 

Relative shear modulus, GIG I against relative s 
density, pip. Open symbols represent open cell 
foams; shade~ symbols represent closed cell foams. 
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REL ATIV E DENSITY, PiPs 

Relative elastic collapse stress, o*/E I against 
r e lative density, pip. Open symbols ~epresent 

s 
open cell foams; s h aded symbols represent closed 
cell foams. 
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The two analyses of Young's modulus for low relative densities 

presented in Chapter 5 both predict E/E = C (pip )2. 
s s 

If groups 

of data (with pip < 0.3) 
s -

are taken separately, each agrees well 

with this rule, but there is some variation in the intercept, C, 

at pip = 1. There are two possible sources for this variation: 
s 

the geometry of the foams (which determines the constant C) could 

vary between foams; or, the value we have used for the solid Young's 

modulus, E , 
s could be incorrect. It is likely that the gross foam 

geometry (and thus C) is about constant for different foams . But, 

as mentioned earlier, the value of E 
s 

is rarely known with precision -

it depends on the degree of polymer chain alignment, on chemical changes 

brought about by the foaming agent, on the gradual aging and oxidation 

of the polymer and on other such uncontrolled factors. I t seems more 

likely that it is errors in E 
s 

which cause the apparent variation ln 

C. With the exception of the data of Chan and Nakamura (1969), the best 

fit line to all the low density data gives C = 1; and this is the value 

we shall adopt. 

This is in remarkable coincidence with the models for high density 

foams. At relative densities greater than 0.8, the material can be 

modelled as a solid with widely separated spherical holes in it: 

MacKenzie (1950) has derived expressions for the shear and bulk 

moduli of such materials. Assuming Poisson's ratio of the solid 

to be 0.3, and combining his two expressions, we have found that 

his model predicts E/E = (pip ) 2 
s s for pips greater than 0.8 

(see Figs. 5.14 and 5.15). The experimental data again follow this 

square rule. 
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This leaves the intermed.iate regime of relative densities between 

0.3 and 0.8. In this regime, the material behaves neither as a net-

work of bending beams, nor as a solid with isolated holes in it. No 

model of behaviour is available for this region, but the experimental 

data again follow the rule 

of relative densities (from 

E/E = 
s 

0.01 

Thus, over the entire range 

the simple E/E = (pip )2 
s s 

rule applies to both open and closed cell foams, although the model of 

foam behaviour changes. 

Poisson's ratio 

Experimental data for Poisson's ratio for relative densities 

between 0.01 and 0.60 are plotted in Fig. 6.7. Poisson's ratio 

is independent of relative density: the theory derived in Chapter 5 

predicts this result. There is a large amount of variation in the 

data (from v = 0.12 to v = 0.55) and the average value of Poisson's 

ratio is about -t. 

Shear modulus 

Experimental data have been obtained for the shear modulus of 

foams with relative densities between 0.01 and 1.00. The experi-

mental data follows a simple ' G/E cr (p/p)2 law throughout this range 
s s 

of relative density. If the constant of proportionality of the relative 

Young's modulus law is taken to be 1, and Poisson's ratio for the solid 

polymer is assumed to be 0.3, then the constant of proportionality for 

shear modulus relationship lS 1/12 (1 + v)1 or 0.385, and 

G/E = 0.385 (pip )2. The experimental data fit this law very well. s s 
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Like Young's modulus, there are three zones of behaviour at 

different relative densities. For pip < 0.3, the material c~n 
s 

be modelled as a network of bending struts and the 2 theories of Chap-

ter 5 (which give similar results) apply. At relative densities greater 

than 0.8 the material can be modelled as a solid with isolated spherical 

holes 1n it and MacKenzie's (1950) derivation of she a r modulus applies. 

Finally, at relative densities between 0.3 and 0.8 the material can-

not be modelled in either of these ways - this 1S an intermediate zone 

for which no theory has been developed. It is like ly though , tha t the r e 

is not much deviation from the square relationships of the first and last 

zones. Again, then, although there are different models of behaviour at 

different relative densities, the shear modulus can be predicted to be 

proportional to (p/ps) 2 at all relative densities. In particular, 

and v = 0.3, 
s 

G/E = 0.385 (pip ) 2 . 
s s 

1ationship satisfactorily predicts the experimental results. 

Elas tic collapse s tress 

This re-

Data for the elastic collapse stress: solid Young's modulus are 

shown in Fig. 6.9. They closely follow the curve of the second level 

of theory for o*l/E 
e s 

(equation (5.24» with the constant of propor-

tiona1ity equal to 0.03. 

We can roughly estimate a theoretical value for this constant 

as follows. The critical buckling load of a column is (Fig. 5.4): 

F cr 

The n2 factor here relates to the degree of end restraint on the 

column. For a pinned column, n = 1, while n =! for a column 
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Like Young's modulus, there are three zones of behaviour at 

different relative densities. For pip < 0.3, the material can 
s 

be modelled as a network of bending struts and the 2 theories of Chap-

ter 5 (which give similar results) apply. At relative densities greater 

than 0.8 the material can be modelled as a solid with isolated spherical 

holes ~n it and MacKenzie's (1950) derivation of shear modulus applies. 

Finally, at relative densities between 0.3 and 0.8 the material can-

not be modelled in either of these ways - this ~s an intermediate zone 

for which no theory has been developed. It is likely though, that there 

is not much deviation from the square relationships of the first and last 

zones. Again, then, although there are different models of behaviour at 

different relative densities, the shear modulus can be predicted to be 

proportional to (p/ps)2 at all relative densities. In particular, 

and v = 0.3, 
s 

G/E = 0.385 (pip )2. s s 

lationship satisfactorily predicts the experimental results. 

Elastic collapse stress 

This re-

Data for the elastic collapse stress: solid Young's modulus are 

shown in Fig. 6.9. They closely follow the curve of the second level 

of theory for 
)~ 

C5 liE e s 
(equation (5.24)) with the constant of propor-

tionality equal to 0.03. 

We can roughly estimate a theoretical value for this constant 

as follows. The critical buckling load of a column ~s (Fig. 5.4): 

F cr 

The n 2 factor here relates to the degree of end restraint on the 

column. For a pinned column, n = 1, 'l7hile n =! for a column 
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fixed at one end only. In the analysis of buckling in two-dimensional 

cellular materials (Chapter 3) we found that members behaved as if they 

had springs at their ends and one end was free to translate horizontally. 

The constraint gives n = 0.69 for a regular hexagonal array of members 

in two-dimensions. Members in three-dimensional cellular materials are 

constrained in a similar manner. The rotational stiffness of the ends 

is determined by the bending stiffness of the edges meeting at the ends, 

and the ends are free to translate with respect to each other. For 

this end condition n must lie between zero and one. The degree of 

constraint for a three-dimensional cellular material is higher than for 

the two-dimensional regular hexagonal cellular material since there are 

more than two restraining members at each corner so n must be greater 

than 0.69. It is reasonable, then, to assume that n % 0.75 for 

three-dimensional cellular materials. 

The elastic collapse stress ~s given by: 

p 
cr 

where a 2 ~s a factor · relating the square of the edge length of a 

cell, (£ + t) 2 , to the area 'over which the stress acts. For a 

pentagonal dodecahedron, the cross-sectional area of the cell is 

approximately 7.8 ( £ + t) 2 . Combining a 2 = 7.8 and n = 0.75 

we find: 

* Gel n 2 TI 2 I 
~ a 2 £2 (£ + t) 2 

s 

% 0.06 (t/ n 4 

(1 + t/ £) 2 



133 

for a square cross-sectioned coluIml of thickness, t. The cons tant 

of proportionality in equation (5.24) is roughly 0.06 from this 

calculation. Experimentally we find a slightly lower value, 0.03. 

The strain at which elastic collapse occurs is simply 

~, * 
€ O'el/E: this is the strain at which the stress-strain curve 

,~ 

becomes non-linear. We have found that € increases with relative 

density from 0.03 to 0.12 for our foams and for those of Gent and 

Thomas (1959). Taking the ratio of * a liE e s 
and E/E 

s 
(equations 

5.24 and 5.22), and using the 'best fit' constants of proportionality 

for these equations, we find: 

0.03 (1 + 4 (t/£)2 + (t/£)3) 
1 + t/ £ 

This predicted elastic collapse strain rises from 0.03 at low 

relative densities to 0.10 for a relative density of 0.30. 

(This is the limiting value of relative density for which the elas-

tic collapse stress equation (5.24) is valid.) This agrees well with 

our experimental observations. 

PZastic coZZapse 

The experimental data shown 1n Fig. 6.10 follow the curve of the 

more refined model very well. Each set of data follows the slope of 

the theoretical curve, but with differing constants of proportionality, 

c. This is probably due to the difficulty in estimating the yield stresses 

of the solid polymers the foams are made up of, a. We have taken C = 0.30. 
y 

The value of the proportionality constant can be estimated by noting that 

for a square cross-section, the fully plastic moment 1S equal to 

a t 3/4, that the cross-sectional area of a pentagonal dodecahedron 1S 
y 

about (2.8 (£ + t»2, and that there are 5 vertices per cell. 
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sM 
P 

a 2 £ ( £ + t)2 

0.15 

This approximate analysis shows that the constant of proportionality 

should be about 0.15. The measured value of 0.30 ~s not unreason-

ab le, then. 

6.5 Conclusions 

The theoretical predictions all g~ve good agreement with experi-

ments over a large range of relative density. Open and closed cells 

can be treated identically if the volume ratio of polymer in the faces 

to edges is small for closed cell foams. A square law relationship 

holds for both the Young's and the shear moduli of foams with respect 

to relative density over the entire range of relative densities from 

0.01 to 1.00, although two distinct mechanisms of deformation occur 

at low and high relative densities. 

Experimentally determined values of the constant of proportionality 

for each mechanical property are listed in Table 6.3 along with the rule 

for mechanical behaviour using these constants. Not all of the data shown 

in Figs. 6.6 to 6.10 yield these constants. This is probably due to the 

difficulty in estimating the solid polymer properties. For design pur-

poses with a particular type of foam, it may be more suitable to write 

the theoretical equations for a property, Q ~n the form: 



TABLE 6.3 : 

MECHANICAL 
PROPERTY 

RELATIVE 
DENSITY , pi ps 

RELATIVE YOUNG'S 
MODULUS, EIE s 

POISSON'S RATIO, v 

RELATIVE SHEAR 
MODULUS, GIE s 

RELATIVE ELASTIC "i~ 

er lE COLLAPSE STRESS, e l s 

RELATIVE PLASTIC* 
YIELD STRESS, er 11 er 

P y 
---

'I,. 

Summary of Mechanical Behaviour of Three-Dimensional Cellular Materials 

C 
FINAL SIMPLE pip LAW 

THEORETICAL LAW LAW VALfD FOR 

(t/t)2(1 + 0.766 tit) (t/t)2 All -
0.766 (1 + t/t)3 

1 
(t/t)2 1 (p/Ps)2 All 1 + ti t (t /t)2 + 4 + tit 

0.33 independent of tit independent of pip All 
s 

0.385 
0.385 (t/ t )2 1 0.385 (p i p )2 All 

1 + tit (t/t)2 + 4 + tit s 

0.03. (t/t)4 0.05 (pip )2 0.03 pip < 0.30 Cl + t/t)2 s s 

0.30 
0.30 (tl t) 3 

0.30 (p I p ) 3/2 pi p < 0.63 Cl + t/ t )2 s s 

--_ .. - . 

I 

I 
I 

I 

I 
I 

I 

I 
, 

I 
I 

t-' 
W 
\.J1 
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and do an experiment to determine the products of C Q. The theory 
s 

developed should enable designers to predict foam behaviour uS1ng a 

simple power-law relationship between the foam property and relative 

density. 
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CHAPTER 7 

CASE STUDY: THE STRUCTURE AND MECHANICS OF CORK 

7.1 Introduction 

Cork has a remarkable combination of properties. It is 

light yet resilient; it is an outstanding insulator for heat and 

sound; it has a high coefficient of friction; and it ~s impervious 

to liquids, chemically stable and fire-resistant. Such is the de­

mand that production now exceeds half a million tonnes a year (and 

one tonne of cork has the volume of 56 tonnes of steel). 

In pre-Christian times cork was used (as we still use it today) 

for fishing floats and soles of shoes. When Rome was beseiged by 

the Gauls in 400 B. C., messengers crossing the Tiber clung to cork 

for buoyancy (Plutarch, 100). Pepys' Diary (1666) records its use 

as a possible new material in the construction of barricados. And 

ever s~nce man has cared about wine, he has cared about cork to keep 

it sealed in flasks and bottles. "Corticwn abs t ric t wn pi c e demovebit 

amphorae " ... " sang Horace (27 B.C.), to celebrate the anniversary 

of his miraculous escape from death from a falling tree. But it was 

the Benedictine Abbey at Hautvillers where, in the 17th century, the 

technology of stopping wine bottles with clean, unsealed cork was 

perfected. Its elasticity and chemical stability mean that it seals 

the bottle without contaminating the wine, even when it must mature 

for many years . No better material is known, even today. 

*"pull the cork, set ~n pitch, from the bottle " 



139 

Commercial cork is the bark of an oak (Quercus suber) which 

grows in Portugal, Spain, Algeria and California. P1iny (who met 

an untimely end in the great eruption of Vesuvius in 79 A.D.) de­

scribes it thus: 

'~he Cork-Oak is a small tree~ and its acorns are bad bn 

quality and f ew in number; its only useful product bS its 

bark which is extremely thick and which~ when cut~ grows 

again". (Pliny~ 77). 

Modern botanists add that the cork cells (phellem) grow from the 

equiaxed cortex cells v~a an intermediate structure knows as cork 

cambium (phellogen). Their walls are covered with thin layers of 

unsaturated fatty acid (suberin) and waxes which make them imper­

v~ous to air and water, and resistant to attack my many acids (Esau, 

1965; Zimmerman and Brown, 1971; Eames and MacDanie1s, 1951). All 

trees have a thin layer of cork in their bark. guercus suber ~s un­

ique in that, at maturity, the cork forms a layer several centimeters 

thick around the trunk of the tree. 

Its function ~n nature ~s to insulate the tree from heat and 

loss of moisture, and perhaps to protect it from mechanical damage 

by animals (suberin tastes unpleasant). We use it today for thermal 

insulation ~n refrigerators and rocket boosters, acoustic insulation 

~n submarines and recording studios, as a seal between mating surfaces 

~n woodwind instruments and internal combustion engines, as an energy­

absorbing medium in flooring, shoes and packaging, and as a damped el­

astic solid in cricket balls and shuttlecocks. Its use has widened 

further since 1892, when a Mr. John Smith of New York patented a 
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process for making cork aggregate by the simple hot-pressing of 

cork particles: the suberin provides the necessary bonding. 

Cork occupies a special place in the history of microscopy and of 

plant anatomy. When Robert Hooke perfected his microscope, around 

1660, one of the first materials he examined was cork. What he 

saw led him to identify the basic unit of plant and biological 

structure, which he termed "the cell". His book "Micrographia" 

(Hooke, 1664) records it thus: 

'7 no fooner defcern'd thefe (which were indeed the 

firftmicPofcopical pores I ever faw~ and perhaps~ 

that were ever feen~ for I had not met with any 

Writer or Perfon that had made any mention of them 

before this) but me thought I had with the difcovery 

of them~ prefently hinted to me the true and intelli­

gible reafon of aU the Phenomena of Cork". 

Hooke's careful drawings of cork cells show their roughly hexagonal 

shape in one section, and their box-like shape in the other (Fig. 7.1). 

Hooke noted that the cells were stacked in long rows, with very thin 

walls "as thofe thin films of Wax in a Honey-comb". 

Subsequent descriptions of cork-cell geometry add very little to 

this. Esau (1965), for example, describes cork as "approximately pris­

matic in shape - often some\vhat elongated parallel to the long axis 

of the stem". Lewis (1928) concluded that their shape lay "somewhere 

between orthic and prismatic tetrakaidecahedrons". Eames and MacDaniels 

(1951) simply described them as "polygonal", but their drawing, like 
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r-ll'L-

Fig. 7.1 Radial (A) and tangential (B) sections of cork, as seen 
by Robert Hooke through his microscope in 1664. 
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Hooke's, shows the approximate hexagonal shape ~n one section and 

their box- like shape in the other two. 

These descriptions conflict, and none are quite correct. Our 

a~m has been to characterise the cellular structure of commercial 

cork and to relate it to its mechanical properties. 

7.2 Experimental Method 

We cut cubes of cork for microscopy (making each cut with a new 

razor blade) such that the cut faces lay normal to the axis 

radius (Xl), and a tangent (X3) of the trunk of the tree. Each 

cube was cut oversize and then trimmed to the final size (roughly 

5 mm on a side) by taking thin silvers from each face: this gives 

a cleaner cut, with less cell distortion. The cubes were lightly 

coated with gold and examined by scanning electron microscopy. 

Some of the cubes were mounted in a deformation stage (like 

a small machine vice) and deformed and photographed progressively 

in compression and tension along the notmals to the faces. For ten­

sile tests, two faces of the cube were glued to the platens of the 

v~ce. 

Larger cubes (15 mm on a side), cut ~n the same way, were tested 

~n tension and compression so that the stress - strain curves and 

Poisson's ratios could be recorded. Similar cubes, cut after a 

rotation of 45 0 about one of the 3 axes, were used to measure she ar 

moduli. Other larger cubes were cyclically loaded to progressively 

higher stresses, recording the stress - strain curve on each cycle. 

Friction on wet and dry cork was examined by sliding a steel 

slider down an inclined cork plane, measuring the angle of inclina­

tion at which motion started. 
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7.3 The Geometry of Cork Cells 

Fig. 7.2 shows the three faces of a cube of cork. In one 

section, the cells are roughly hexagonal; in the other two, they 

are shaped like little bricks, stacked as one would stack them in 

building a wall. The similarity with Hooke's drawing (Fig. 7.1) 

is obvious . 

From micrographs such as these, the cell shape can be deduced. 

At their simplest, the cells are closed hexagonal prisms (Fig. 7.3) 

stacked in rows so that the hexagonal faces register and are shared 

by two cells; but the rows are staggered so that the membranes form-

ing the hexagonal faces are not continuous across rows. Fig. 7.4 

shows how the cells lie with respect to the trunk of the tree. The 

axes of the hexagons lie parallel to the radial (Xl) direction. 

Then a cut normal to the radial direction shows the hexagonal cross-

sections of the prismatic cells; any cut containing the radial direc-

tion shows the rectangular section of the prisms, stacked like bricks 

~n a wall because of the staggering of the rows. 

At higher magnifications, the scann~ng microscope reveals details 

which Hooke could not see, because their scale is comparable with the 

wavelength of light. Six out of the eight walls of each cell are 

corrugated (Fig. 7.5). Each cell has 2 or 3 complete corruga-

tions, so that it is shaped like a little concertina, or bellows. 

Fig. 7.6 and Table 7.1 summarise the observations and catalog 

the dimensions of the cork cells. The cell walls have a uniform 

thickness of about 1 ).lm. The aspect ratio of the cells, z./ 9" ~s 

about 2· , this is rather larger than the value (1. 7) which mini-

mises the surface area of a close-packed array of hexagons. The 
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100 ~m 

Fig. 7.2 Scanning electron micrographs of (a)radial, (b) axial, and 
(c) tanqential sections of cork. 

axial t 
I tangential 
I 

~~ ----: 
radial 

Fig. 7.3 The shape of cork cells, deduced from fuhe micrographs 
shown in Figure 7.2. There are, _: :of course, imperfections 
in the structure, and the cell wa~ls are not straight 
(as here) but corrugated. 
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Fig. 7.4 Diagram of cork tree and cork, showing axis system 
and cells. 
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Fig. 7.5 Scanning electron micrographs of cork cells, showing 
corruqations.(~) TO\II'\~evd\cA \ OI.\I\d (~) fO.dAoJL sec.:hC:M5. . 
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Fig. 7.6 A corrugated cell, showing dimensions. 
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radial section of the structure does not always show hexagonal 

sections: 5, 6, 7 and 8-sided figures are all observed. But 

the average number of sides per cell in the radial section is 

very close to 6 . , Lewis (1928) finds 5.978. This, of course, 

is an example of the operation of Euler's law (Euler, 1752), which 

asserts (when applied to a 3-connected net) that the average num-

ber of sides per cell ~s 6. The cells themselves are very small: 

there '.are about 20,000 of them in a cubic mi 11 ime ter. They are 

much smaller than those in any commercial foamed plastic. 

If the cell walls have a uniform thickness t, and the 

prisms have length z and hexagonal face edge t , then the den-

sity p of the cork is related to that of the cell wall material 

P by: s 

The density of the cell wall material is close to 1150 kg/m3 

(Appendix 7A). The mean density of the corks we studied was 

(7.1) 

170 kg/m 3 , so the relative density ~s pip % 0.15. 
s 

That cal-

culated from equation (7.1) using the average values in Table 7.1, 

~s .078. This discrepancy ~s ~n part due to the corrugations in 

the cell walls, which (when included) increase the calculated den-

sitiy to 0.1; and in part due to narrow bands of high density 

associated with growth r~ngs. 

I 

I 
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TABLE 7.1: CELL DIMENSIONS IN COMMERCIAL CORK 

Dimension 

Cell wall thickness t (flm) 1 + 0.5 
-

Prism heigh t z (flm) 43 + 4 -

Prism edge-length £ (flm) 21 + 4 -

Cell volume 313Fh 
V (flm) 3 5 x 10 4 

2 

*Number of ce11s/mm3 N (mm- 3 ) 2 x 104 

Corrugation wave length A (].lm) 15 + 2.3 -

Corrugation amplitude a (flm) 2.8 + 1 -

Measured density p (kg/m 3) 170 

*Hooke (1664) measured 7.7 x 10 4 /mm3 ; Cooke (1948) 

7.4 Elastic Deformation of Cork 

Mechanical Tests 

We recorded the stress-strain curves of cork cubes, in compres-

s~on and tension, loaded along the radial, axial and tangential direc-

tions. Fig. 7.7 is a complete compressive stress-strain curve. The 

material ~s linear-elastic up to about 7 % strain*, when elastic 

collapse gives an almost horizontal plateau. This extends to about 

70 % strain when complete collapse of the cells causes the curve to 

r~se steeply . Fig. 7.8 shows the linear elastic part of the loading 

curve for compression along the three orthogona1 directions. 

*This strain, E , is defined by: 

E = £ / £ - 1 
o 

where £0 is the height of the undeformed cork cube and Q, its 
length after deformation. 
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Stress-strain curve for cork. 
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Young's moduli, the shear moduli and Poisson's ratios are re-

corded in Table 7.2. (Each number is a mean of several measurements. 

When the moduli in two directions differed by no more than the experi-

mental error, the two have been bracketted and a single value given). 

The modulus along the prism axis is roughly twice that along the other 

two directions. The moduli (and the other properties) have circular 

symmetry about the prism ax~s. In the plane normal to this axis, cork 

~s roughly isotropic, as might be expected from its structure. 

The table lists the stress * (cr) and the strain at the start 

of the plateau in compression, and the fracture stress (cr f ) and 

strain in tension. In compression, elastic collapse occurs at about 

7 % strain. Tensile fracture along the prism ax~s occurs at 5 % strain, 

but in the other two directions the strain is larger: about 8 %. 

Finally, the table lists the loss coefficient: 

n 
D 

2nU 

where D ~s the energy dissipated in a complete tension-compression 

cycle and U ~s the max~mum energy stored during the cycle. Half-

cycle loops are shown in Fig. 7.9, at a frequency of about 10- 2 hertz; 

a loss coefficient of similar magnitude is found up to 4 khertz, with 

a peak of 2 khertz (Fernandez, 1978). The loss coefficient rises from 

0.1 at low strain amplitudes to 0.3 at high. This is a high loss 

and gives cork good damping and sound-absorbing properties, and a high 

coefficient of friction (Section 7.6). 

\ " 
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TABLE 7.2: MECHANICAL PROPERTIES OF CORK 

YOUNG'S MODULUS 

Radial, El = 20 + 7 MN/m2 
-

Axial, E2] = l3 -+ 5 MN/m2 
Tangential, 

-
E2 

SHEAR MODUL US* 

In 1-2 plane Gl ~J = 2.5 + 1.0 MN/m2 
In 1-3 plane G13 -

In 2-3 plane G23 = 4.3 + 1.5 MN/m2 
-

POISSON'S RATIOt 

\11 2 = \1 21 = \11 3 = \1 31 = 0 + 0.05 -

\1 23 = \132 = 0.5 + 0.05 -

COLLAPSE STRESS AND STRAIN IN COMPRESSION 

Radial, 
,~ 

0.8 ~ 0.2 MN/m2, 4 % strain ° 1 = 

Axial, 

°TI = 0.7 ~ 0.2 MN/m2, 6 % strain 
,", 

Tangential, ° 

FRACTURE STRESS AND STRAIN IN TENSION 

Radial, ° - = 1.0 + 0.2 MN/m2 , 5 % strain 
±l -

Axial, Of2] = 1. 1 ~ 0.2 MN /m2 , 9 7- strain 
Tangential, 0 f 3 

LOSS COEFFICIENT 

Radial, nl = 0.1 at 1 % strain 

Axial, 
n

2J = 0.3 at 20 % strain 
Tangential, n 3 

,', The method of obtaining G1 2 G13 and G23 
is given in Appendi x 7C . 

t The . quantlty \11 2 is defined by \11 2 
and so forth. 
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Microscopy 

When cork deforms, the cell walls bend and buckle·. We found 

that the behaviour when the axis of deformation lay along the prism 

aXLS differed from that when the axis of deformation lay across the 

prLsms. 

Deformation across the prism axis bends the cell walls, and later, 

Ln compression, causes them to buckle (Fig. 7.10) giving very large re­

coverable strains (of order 1). 

Tensile deformation along the prism aXLS unfolds the corrugations 

(Fig. 7.11), straightening the prism walls. About 5 % extension LS 

possible in this way; by then the walls have become straight, and 

further tension at first stretches and then breaks them, causing the 

cork to fail. Compressive deformation, on the other hand, folds the 

corrugations. The folding is unstable; once it reaches about 10 %, 

a layer of cells collapses completely, suffering a large compressive 

strain (Fig. 7.12). Further compression makes the boundary of this 

layer propagate; cells collapse at the boundary, which moves through 

the cork like a Luders band through steel, or a drawing band through 

polyethylene. We did not observe this instability when compressing 

across the axis. 

7.5 Comparison of Measurements with Theory 

Theory of Deformation in the Plane Normal to the Prism Axis 

The in-plane deformation of a two-dimensional array of hexagonal 

cells (like cork when viewed down the prism axis) has been analysed 
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20 \Jm 

Fig. 7.10 Micrographs showing the bending and buckling of cell 
walls as ~cork is compressed acress the prism axis . 

'-



l55 

50 ~m 
Fig. 7.11 Micrographs showing the progressive straightenmng of cell 

walls as c ork is pulled in the radial direction. 

100 IJm 

, -
Fig. 7.1~ The catastrophic collapse of cork cells compressed in 

the radial direction (alonq the prism axis) . 
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completely in Chapter 3. Using the expressions given 1n Table 4.3 

for the elastic properties of regular two-dimensional hexagonal 

cells, along wi th equation (7.1) and Table 7.1, we find: 

E2 E3 

G23 G32 

0.5 E s 

0.13 E 

1.0 

0.05 E 
s 

(L) 
Ps 

3 

(L) 
3 

s Ps _ 

(7.2) 

(1 -: 3) 

(7.4) 

(7.5) 

Here E 
s 

and are the modulus and density of the solid of which 

the cell walls are made, and p is the overall density of the cellular 

material (the cork). 

The form of the equations can be understood by noting that botq 

the bending stiffness and the buckling load of a beam vary as the cube 

of the thickness t of the beam. For a given cell size, the density 

p 1ncreases linearly with t, so the moduli and collapse stresses of 

3 * */ the structure vary as p. The collapse strain is given by E = 02 E2 = 0.1. 

Below this strain the structure is linear-elastic. Above, it is non-linear 

but still elastic. Buckling allows deformation to continue until the cell 

walls touch (at a nominal strain of (1 - piPs))' allowing a large strain 

at almost constant stress. 
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Theory of Deformation Paralle l to the Prism Axis 

If a honeycomb of regular prismatic cells like that of Fig. 7.3 

is compressed parallel to the prism axis, the modulus is determined 

by the axial compression of the material in the cell walls. This 

leads to the obvious result 

0.70 E 
s 

(7.6) 

This equation predicts a modulus which is far larger (by a factor of 

50 or more) than that given by our experiments. 

We think the discrepancy arises because, in deriving eqn. (7.6) 

we have neglected the corrugations in the cell walls. Our micrographs 

(Fig. 7.11) show that the corrugations fold or unfold like the bellows 

of a concertina, when the cork is compressed or pulled. The axial stiff-

ness of a corrugated cell with wall thickness t and corrugation-amplitude 

a is derived in Appendix 7B. It is: 

0.7 E 
s 

(7.7) 

with a % 3t (as ~n cork), the corrugations reduce the modulus by a fac-

tor of 50. 

This deformation has another interesting feature. Axial compression 

produces no lateral expansion, because the cells simply fold up. We there-

fore expect: 

o (7.8) 



158 

Elastic collapse in the Xl direction seems to occur when the load is 

sufficient to cause buckling with a wavelength equal to twice the cell 

height, z. We think this is because the cooperative buckling of 

neighbouring cells, or of larger groups of cells, can then take 

place. It can easily be shown that an unsupported cell wall buckles 

with this wavelength when: 

____ 1T_2_Z ____ E CL) 3 

s Ps 

% 0.05 E 
s 

Comparison of Experiment with Theory 

The properties of Ps and E of the cell walls of cork are 
s 

discussed in Appendix 7A. Our best estimates are: 

E 9 GN/m2 
s 

Using this information, and the dimensional data given ~n Table 7.1, 

we calculate the moduli for cork g~ven ~n Table 7.3. 
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TABLE 7.3: MODULI AND COLLAPSE STRESSES 

MODULI CALCULATED MEASURED 

El (MN/m2 ) (Eqn. 7.7) 20 20 + 7 -

E2 , E3 (MN/m2) (Eqn. 7.2) 15 13 + 5 
-

G12, G21, G13, G31 (MN/m2) ( - ) (-) 2.5 + 1 
-

G23 , G32 (MN/m2) (Eqn. 7.3) 4 4.3 + 1.5 
-

\)12, \) 1 3, \)21, \)31 (Eqn. 7.8) 0 0 + 0.05 -

\)23 = \)32 (Eqn. 7.4) 1.0 0.5 + 0.05 
-

-

COMPRESSIVE COLLAPSE STRESS 

";'\ 
(MN/m2) °1 (Eqn. 7.9) 0.75 0.8 + 0.2 

-
,;'< -j, 

(MN/m2) °2, °3 (Eqn. 7.5) 1.5 0.7+0.2 -

Agreement is remarkably good. In particular, our understand-

~ng of the cork structure allows us to explain the isotropy in the 

plane normal to the radial direction; the factor of two difference 

between Young's modulus in the radial direction and in the other 

two; the striking difference in the values of Poisson's ratio; and 

the elastic collapse loan. The biggest discrepancy is in the value 

of Yoisson's ratios \)23 and \)32, and is probably due to a var~a-

tion in cell shape and orientation. 

We may now formulate a complete constitutive law for the linear 

elastic behaviour of cork (see also Appendix 7C). It is described by: 



160 

1 
Ell 

El 
0"11 

1 \!23 
E22 

E2 0"22 
E2 

0" 33 

\!23 1 
E33 

E2 
0"22 + -- 0"33 

E2 

1 
Y 23 

G23 
0"23 

Y 31 
1 

G12 
0" 31 

1 
Y12 

G12 
0"12 

Here 0"11, Ell etc. are the normal stresses and strains and 

0"23, Y23 etc. are the shear stresses and engineering shear 

strains. The moduli themselves are given in the last column of 

Table 7.3. 

7.6 Applications 

For at least 2000 years, cork has been used (among other things) 

for "floats for fishing nets, arid bungs for bottles, and also to make 

the soles for womens I winter shoes" (Pliny, 77). Few materials have 

such a long history or have survived so well the competition from 

man-made substitutes. We now exam1ne briefly how the special struc-

ture of cork has suited it so well to its uses. 

Bungs for Bottles and Gaskets for Woodwind Instruments 

Connoisseurs of wine agree that there is no substitute for corks 

made of cork. ?lastic corks are hard to insert and remove; they do 
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not always g1ve a very good seal; and they may contaminate the W1ne. 

Cork corks are inert, easy to insert and remove and seal well over 

a large surface area for as long as the wine need be kept. The ex­

cellence of the seal is a result of the elastic properties of the 

cork. It has a low Young's modulus (E); but, much more important, it 

has a low bulk modulus (K) also. Solid rubber and solid polymers ab­

ove their glass transition temperature have a low E but a large K, 

and it is this that makes them hard to force into a bottle, and which 

g1ves a poor seal when they are inserted. 

One might expect that the best seal would be obtained by cutting 

the aX1S of the cork parallel to the pr1sm aX1S of the cork cells: 

then the circular symmetry of the cork and of its properties are 

matched. And this idea is correct: the best seal is obtained by cork 

cut in this way. But natural cork contains l enti ce ls: tubular channels 

that connect the outer surface of the bark to the inner surface, allow­

ing oxygen into, and CO2 out from the new cells that grow there. A glance 

at Fig. 7.4 shows that the lenticels lie parallel to the prism axis, and 

that a cork cut parallel to this axis will therefore leak. This is why 

almost all commercial corks are cut with the prism axis (and the lenti­

cels) at right angles to the axis of the bung. 

A way out of this problem is shown in Fig. 7.13. The base of the 

cork, where sealing 1S most critical, is made of two discs cut with 

the prism aX1S (and lenticels) parallel to the aX1S of the bung it­

self. The leakage-problem 1S overcome by gluing the two discs to­

gether so that the lenticels do not connect. Then the cork, when 

forced into the bottle, is compressed (radially) in the plane in 

which it is isotropic, and it therefore exerts a uniform pressure 

on the inside of the neck of the bottle. 
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Fig. 7.13 Acsection through a champagne .cork, and through a 
normal cork. 
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Cork makes good gaskets for the same reason that it makes good 

bungs: it accommodates large elastic distortion and volume change, and 

its closed cells are impervious to water and oil. Thin sheets of cork 

are used, for instance, for the joints of woodwind and brass instruments. 

The sheet is always cut with the prism axis (and lenticels) normal to its 

plane. The sheet is then isotropic in its plane, and this may be the rea­

son for so cutting it. But it seems more likely that it is cut like this 

because ~oisson's ratio for compression down the prism axis ~s zero. 

Then, when the joints of the instrument are mated, there is no tendency 

for the sheet to spread in its plane and wrinkle. 

Fridti 6nior Shoes and Floor Cover i ng 

Manufacturers who sell cork flooring sometimes make the remarkable 

claim that it retains its friction, even when polished or covered with 

soap. Fig. 7 . 14 shows our measurements of the coefficient of friction 

of a rough slider on a cork surface, before and after applying a gene­

rous coating of soapy water. The figure shows two novel features: the 

coefficient of friction increases with the load, violating Amontons' 

Law (Amontons, 1699); and it is changed only very little by the soap. 

Friction between a shoe and a cork floor has two or~g~ns (Fig. 7.15). 

One ~s adhesion : atomic bonds form between the two contacting surfaces, 

and work must be done to break and reform them if the shoe slides. Be­

tween a hard slider and a tiled or stone floor, this is the only source 

of friction; and since it is a surface effect, it ~s completely destroyed 

by a film of polish or soap. The other source of friction is due to an­

e l as tic loss . When a rough slider moves on a cork floor, the bumps on 

the slider deform the cork. If cork were perfectly elastic, no net work 

would be done: the work done ~n deforming the cork would be recovered as 

the slider moves on. But if the cork has a high loss coefficient (as it 



164 

:i. 
z· 0·4 

i) 
0 
l- Q Q u 
0: 0·3 • Q LL 0 
LL 

Q 

0 
I- 0·2 ® 
z 
W 
u DRY 0·1 • LL 
LL o WITH SOAP w 
0 
U 

00 

Fig. 7.14 The coefficient of friction of a rough slider on cork, 
dry and with soap solution. 
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Fig. 7.15 Adhesive and anelastic mechanisms of friction. 
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does) then it ~s like riding a bicycle through sand: the work done ~n 

deforming the material ahead of the slider is not re covered as the 

slider passes on, and a large coefficient of friction appears. This 

anelastic loss ~s the main source of friction when rough surfaces 

slide on cork; and since it depends on processes taking place below 

the surface, not on it, it is not affected by films of polish or soap. 

Exactly the same thing happens when a cylinder or sphere rolls on cork 

(Fig. 7.15) , which therefore shows a high coefficient of rolling friction. 

Ener gy Absor ption and Packagi ng 

Many of the uses of cork depend on its capacity to absorb energy. 

Cork ~s attractive for the soles of shoes and flooring because, as 

well as having good frictional properties, it ~s resilient under 

foot, absorbing the shocks of walking. It makes good packaging 

because it compresses on impact, limiting the stresses to which the 

contents of the package a r e exposed. It is used as handles of tools 

to insulate the hand from the impact loads applied to the tool. In 

each of these applications it is essenti a l that the stresses generated 

by the impact are kept low , but that considerable energy is absorbed. 

Cellular materials are particularly good at this. The stress-

strain curve for cork (Fig. 7.7) shows that the collapse stress of 

the cells (eqn. 7.5 and Table 7.2) is low, so that the peak stress 

during impact is limited. And large compressive strains are possible, 

absorbing a great deal of energy as the cells progressively collapse. 

In this regard, its structure and properties resemble polystyrene foam, 

which has replaced cork (because it is cheap) in many packaging applications. 
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Irisulcition 

The cork tree is thought to surround itself with cork to prevent 

loss of water in hotter climes. The two properties involved - low 

thermal conductivity and low permeability to water - make it an ex­

cellentmaterial for the insulation of cold, damp, habitations. 

Caves fall into this category: the hermit caves of Southern 

Portugal, for example, are liberally lined with cork. For the 

same reasons, crates and boxes are sometimes lined with cork. And 

the cork tip of a cigarette must appeal to the smoker because it 

insulates (a little) and prevents the tobacco getting moist. 

Not a great deal is known about heat flow through cellular 

materials. Flow by conduction depends only on the amount of solid 

in the foam (pips) and so it does not depend on the cell size 

(Traeger, 1967) . Flow by convection does depend on the cell size 

(Fig. 7.16), because convection currents start easily in large 

cells, carry1ng heat from one side of the cell to the other. 

But when cells are less than about 1 mm 1n S1ze, convection does 

not contribute significantly (Bax ter and Thomas, 1972). Flow by 

radiation, too, depends on cell size: the smaller the cells, the 

more times the heat has to be absorbed and reradiated, and the 

lower is the rate of flow (Baer, 1964). 

So the small cells are an important feature of cork. They 

are very much smaller than those in any foamed plastic (Table 7.1), 

and g1ve exceptiona l insulating properties to the material. 

I ndentatiOriandBulletin Boar ds 

Cellul ar materials densify when they a re indented; the r equire ­

ment that volume is conserved, so important in solving indentation 
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problems for fully dense solids, no longer applies. So when a 

sharp object, like a drawing pin, is stuck into cork, the defor­

mation is v~ry localised (Fig. 7.17). A layer of cork cells, 

occupy~ng a thickness of only about one quarter of the diameter 

of the indenter, collapses, suffering a large strain. The vol­

ume of the indenter is taken up by the collapse of the cells so 

that no long range deformation is necessary. For this reason 

the force needed to push the indenter in is small. And, s~nce 

the defor mation is (non-linear) elastic, the hole closes up when 

the pin is removed. 

7.7 Conclusions 

We have found that the cells in cork can be described as roughly 

hexagonal prisms. The elastic behaviour of cork ~n the plane normal 

to the prism axis can be described quite well using the theory deve­

loped in Chapter 3 for the mechanics of regular, two-dimensional 

cellular materials. The behaviour of cork in the plane parallel 

to the prism axis has been calculated using techniques similar to 

those of Chapter 3; there is also good agreement between these cal­

culations and the observed behaviour. Because of this understanding 

of the structure and mechanics of cork , based on the mechanics of 

idealized two-dimensional cellular materials, we can now explain 

why cork is such a suitable material for many of its applications. 

\' 
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APPENDIX 7A: THE ?RO?ERTIESOF THE CELL WALL OF CORK 

Values for the density and Young's modulus of the cork cell 

wall, and E s 
respectively, have been estimated by taking 

the weighted mean of the densities and Young's moduli of i t s 

components. The results are: 

and E 
s 

8.9 GN/m2 

Our estimate of Ps 1S consistent with the observation of Kelvin 

(1890) who observed that a cork cube immersed in water sank when 

a pressure of 20 atmospheres was applied to the water. 

TABLE 7A.l: PROPERTIES OF CORK CELL WALL 

CONSTITUENT % of cork E rn . p . 
cell wall 

s.g. (GN/m2) (oC) 

Suberin 40 .902 9.0 3 102 4 

Cerin, friedelin and wax 5 .85-1.00 5 9.0 3 60-95 5 

Lignin 27 1.4 6 2.0 6 -

Cellulose 12 1.5 6 25.0 6 -

Tannin 6 1.00 7 5.0 7 -

Glycerine 6 1.26 8 4.7 3 18 8 

Ash (Na, K, Mg) 4 . 12 8 189 -

Notes 

1. Guillemonat, A. (1960) Ann. Fac. Sci. Marseille 30, 43; Martin, J.T. 
and Juniper, B.E. (1970), "The Cuticles of PlantS", Arnold, London, 
p .151. 

2. Fatty acids generally have a specific gravity of approximatel y 0.92. 

11 
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3. E for suberin, cerin wax and glycerine were calculated from a 
melting point correlation. 

4. Dibrucine salt of suberic acid has a melting point of 102 °C. 
From: Dictionary of Organic Compounds v.4 (1965) Eyre and 
Spottiswade, London. 

5. Eshbach, O. (1952) Handbook of Engineering Fundamentals, Wiley, 
N.Y., 2nd ed., p.13-85. 

6. Mark, R.E. (1967) "Cell Wall Mechanics of Tracheids", Yale 
University Press. New Haven, Conn. 

7. Values for specific gravity and Young's modulus for tannin were 
unobtainable. We estimate these values to be similar to those 
for suberin and cerin. 

8. Clark, J.B. (1957) Physical and Mathematical Tables, Oliver and 
Boyd, Edinburgh. 

9. Kaye, G.W.C. and Laby, T.H. (1973) Tables of Physical and Chemical 
Constants, 14th ed., Longman, London. 
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APPENDIX 7B: THE AXIAL STIFFNESS OF A CORRUGATED TUBE 

Fig. 7B.l shows a section of a tube with hexagonal section and 

height >,.. If the tube is straight, an axial load produces an axial 

shortening 6 due to straightforward compression. 
a 

Considering one 

wall of the tube, of section t ~ , carrying an end-load P, we have: 

from which 

P 
tT 

o 
a 

AP 
UE 

s 

(lB .1) 

Consider now the corrugated wall. For a load P so small that 

the laterial deflection does not increase significantly (so that the 

constraints exerted by one wall on its neighbours can be neglected), 

the moment M at the point X is: 

M 
21fX 

Pa S1.n ->,.-

The strain energy of bending l.n the wall is: 

>,. 

J

( Ml. 

2EI dx 
o 

(lB.2) 
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SECTION t! 
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Fig. 7B . l Young's modulus for a c orrugated hex agonal prism, 
loaded down the prism axis. 
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This is equal to the work ! FOb done by P ~n producing an 

axial displacement ob' caused by bending. The total deflec­

tion of the wall is then: 

PA 
UE 

s 

2 
(1 + 6 ~) 

t 2 (7B.3) 

Now a uniform stress 0 applied to the end face of the hexagon 

gives a load P per wall of: 

p 
13 Q,2 0 

2 

and a deflection oTOT over a length A corresponds to a strain 

from which the modulus of the corrugated hexagons is: 

Finally, us~ng piPs 

2t E 
s 

t/ Q, ( Q, /~ + 2/13) we obtain: 

E 
O. 7 ___ s_--=-_ 

a 2 
(1 + 6 1:2) 

(7B.4) 

(7B .5) 
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APPENDIX7C: THE MODULI OF CORK 

The observations reported in Sections 7.3 and 7.4 show that 

both the structure and properties of cork are approximately aX1-

symmetric. The linear-elastic behaviour is described by: 

where and 0 . . 
1J 

are the strain and stress tensors. 

reduces the number of independent compliances S to five. 

Ell Sllll 011 + Sl1 22 022 + Sl1 22 03 3 

E22 S11 22 011 + S22 22 02 2 + S2233 03 3 

E33 Sl1 22 0 11 + S2233 022 + S2222 033 

E23 2 (S 2222 - S22 33 ) 023 

1::3 1 2 S1 212 03 1 

E12 = 2 S1 2 12 01 2 

(le.l) 

Axisynunetry 

(le.2) 

(The equation for E23 is obtained by rotating Sijk~ through 

45
0 

about the Xl aX1S and equating S22 22 , 1n the new axis 

set, to S2222 ') 

The measurement of four of these compliances is straightfonvard: 

cubes are cut with faces normal to the axial, radial and tangential 

directions (Fig. 7.4), and Young's modulus and Poisson's ratio measured 
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by conducting simple tensile or compression tests parallel to each 

ax~s ~n turn. Form these tests we obta in: 

1 1 
S2222 

E2 E 3 

(7e.3) 

\) 12 \) 13 \)2 1 \)3 1 

El El E2 E2 
- Sl1 22 

\) 23 \)32 

E 2 E2 
- S 2233 

The modulus G23 ~n the X2 X3 plane ~s obtained from these 

measurements: 

1 
2 (1 + \)23 ) 

G23 E2 
2 (S 2222 - S2233 ) (7e.4) 

To determine the other shear modulus, G12 , we rotate the cork through 

45
0 

about the X3 ax~s, t b ' th f 1 X ~ 0 cut a cu e w~ one ace norma to 3' 

and the other two at 45
0 

to Xl and X2 ' A simple compression test 

in the new Xl direction then gives a new Young's modulus, E' . By 

rotating Sijk£ 
o 

through 45 about X3 , we find: 

(7e.5) 
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But this is simply l/E'. Substituting for this and the other 

compliances and noting that: 

we ob tain 4 
ET 

1 
(7C.6) 

(lC.7) 

which correctly reduces to G = E/2 (1 + v) for the isotropic case. 

For cork the equation is further simplified because vl 2 = O. This 

is the equation we have used to obtain Gl 2 from e xperimental mea-

surements of E', El and E2 . 

I ' 

r-

I1 
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CHAPTER 8 

ON MATERIAL SELECTION IN PACKAGING 

8.1 Introduction 

Packaging surrounds most things we buy or do. Food is packaged, 

parcels through the post are packaged, and within a car or aeroplane, 

we ourselves are carefully packaged. It is hard to say exactly how 

much is spent on it (estimates suggest that up to 20 % of retail 

costs are those of the packaging). The sums involved are certainly 

considerable (Morton, 1978) and the potential return on any improve­

ment is large. 

Despite this, scientists have paid little attention to packaging, 

except perhaps where human safety is concerned (Pinkel, 1960). Although 

most large firms have a packaging department, it is more concerned with 

wrapping things up than in optimising the package. The type and amount 

of packaging material is often traditional, chosen with little regard 

for the mechanics of the problem. Eggs, for instance, are sometimes 

marketed in clear plastic egg boxes of roughly the same shape as the 

more familiar cardboard ones. Handlers suggest that eggs, so packaged, 

break more often. This may just be prejudice against a new technology, 

but if it is not, then. one material has been substituted for another 

with no regard for material properties, in an application which calls 

for properly chosen protection. Such a lack of analysis is typical 

of much packaging. 

Why, then, does the packaging industry neglect the mechanics of 

the problem it faces? The answer may lie in the complexity of the 

packaging process. The package must protect against drop, impact, 

puncture, crushing when stacked and contamination by a1r, water or 

other chemicals. And it must attract potential buyers by its aesthetic 

appeal. Consider, for instance, the job of protecting a given component 
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against being dropped. To design against damage, three things must 

be known: Ca) the height and frequency of drops, Cb) the maximum 

deceleration the component can survive, and Cc) the properties of 

the material to be used for the package. 

Limited data for the first of these are available CB.S. 1133, 

Allen, 1972) from instrumented packages dispatched by post and by 

other transport systems. When the drop height is well specified 

Cas in Army supply drops) the package can be chosen for minimum 

weight and cost with success, but for the most part, such informa­

tion is not available. 

The max~mum tolerable deceleration ~s rarely known. For most 

objects it is high: even a very fragile thing can sustain 10 g, pro­

vided the package spreads the force evenly over its surface. 

The third area, that of material response to load, is studied 

experimentally, but usually in a way which ignores the mechanics of 

the package. 

There ~s, of course, a further consideration: cost. A package 

so perfect that no component ever breaks is, almost always, too ex­

pensive. Some loss must be liv~d with, and its cost in financial 

terms and in terms of customer frustration must be b.alanced against 

the cost of the package itself. 

8.2 Simple Theory 

The material property currently used ~n package design is the 

cushion factor ~ CGordon, 1974). It is a dimensionless quantity, 

defined, at a g~ven stress, as the stress divided by the energy 

1\ '" 
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absorbed per unit volume in reaching that stress (i.e. the area 

under the stress-strain curve up to the stress in question). Fig. 8.1 

shows the cushion factor for 3 materials, plotted against stress. 

If C were constant (which, as Fig. 8.1 shows, it is not) and in-

dependent of strain and strain-rate, then it is easily shown that 

the maximum deceleration, Y" when a component, packaged ~n 
max ' 

a thickness S of packaging, falls from height h, is: 

Ymax 
~h sg (8.1) 

where g ~s the acceleration due to gravity and dots mean differen-

tiation with respect to time. 

Eqn. (8,1), the basis of much package design, suggests that a 

single material parameter, ~, contains all the material properties 

of importance ~n selecting materials for a package. But in deriving 

it, the damping capacity and rate-dependence of the material have been 

ignored. Worse, the cushion factor varies with stress and there is no 

way of knowing from eqn. (8 .1 )what stress (and thus what cushion factor) 

~s appropriate. 

To ~mprove on it, the package ' must be modelled as a mass - spring-

dashpot sys tem (Fig. 8; 2). Its . equation of motion is: 

My + Gy + f (y) o (8.2) 

where y ~s measured as shown in Fig. 8.2, M, ~s the mass of the 

component (neglecting the self-mass of the packaging material), 

C is the damping coefficient and fey) is the restoring force 

due to the spring. 

J 

I, 
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Fig. 8.1 Cushion factor for various cellular materials. 
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Fig . 8.2 Mass-spring-dashpot model of a packaged object. 
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To solve this equation, fey) must be specified. The stress-

strain curves of cellular solids (foamed polymers, cork, balsa wood 

and so forth) all look more or less like that shown in Fig. S.3. It 

can be idealised in one of two ways. At small strains ( E < 0.1) 

it is linear elastic (Fi g . S.4a) when fey) = Ky where K ~s a 

spring constant (units: N/m). But at larger strains (0.1 < E < 0.6) 

there is a non-linear e lastic or plastic plateau extending to a limit-

ing strain E
max

, above which the stress r~ses steeply (Fig. S.4b); then 

fey) = K whe r e K ~s constant (units: N). 
o 0 

(aJ Linear-Elastic Response 

When fey) = Ky, the appropriate solution for eqn. (S.2), with 

y o at t 

where 

o ~s: 

v 
o 

y 
v 

o 
w 

(- ~) exp 2M sinwt 

velocity on impa ct 

w = frequency of vibration 

and t ~s the time after impa c t. 

I 

K C2 2 
(- ) M - 4M2 

(S .3) 

(S .4) 

(S .5) 

The log decrement of the peak amplitude of successive cycles, ~, 

can be related to the loss coe ffici ent n of the material (the most 

widely used measure of damping and hysteresis in engineering materials). 

Provide d n is small (n < 0.5), the relation is: 

CT 
2M 

TIn 
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Fig. 8.3 Stress-strain curve for a flexible polyurethane foam. 
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Fig. 8.4 Idealized stress-strain curves for cellular 
materials: (a) linear-elastic r esponse and 
(b) constant stress response. 
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where T ~s the period of oscillation. Putting T = 2n/w we find: 

C Mnw 

The deceleration, y, of the component ~s a max~mum when the 

curvature of y ~s a max~mum, at t = T/4 = n/2w. The maximum 

value is then: 

Substituting C 

Ymax 

v 
o 

w 
C

2 
2 (_ ~) (4M2 - w ) exp 2Mw 

I 

Mnw and w = (K/M - C2/4M2)~ we find: 

v 
o 

.!C) exp (_.!!1l.) 
4 2 

For most polymers n lies between 0.01 and 1.0 (Table '8.1), making the 

third and fourth terms of this expression approximately equal to one. 

Since the spring constant K is equal to EA/S for a linear-elastic 

material, we obtain: 

Ymax 
v 

o 

The max~mum stress exerted by the packaging on the mass, 

o 
max 

Ymax M 

A 

o , 
max 

(8.7) 

is: 

(8.8) 

This is also equal to the stress in the foam. Noting that the strain 

energy ~n the foam, per unit volume, ~s: 

I' 
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Table 8.1: Loss Coefficient Data for Polymers 

Frequency of Loss Tempera- Peak loss 
Polymer vibration, f coefficient ture coefficient 

(Hz) n (oC) npeak 

Perspex 0.0033 to 3.76 x 10-2 to 25 °c 6.36 x 10-2 at 
(50 Leth, 66L) 800 5.0 x 10- 2 f = 10 Hz 

Polyethy1ene 12 30-80 0.23 
(51 U) 

Polyester 10 2.86 x 10- 2 43 -
(55 Be) 100 2.00 x 10- 2 

1000 2.25 x 10- 2 

10000 2.60 x 10- 2 

PMMA 0.001 to 2.14 x 10- 2 to 25 2.4 x 10- 2 at 
(54 Fine, 66L) 400 1.96 x 10- 2 f = 50 Hz 

Polypropy1ene 10 9.47 x 10- 2 20 -
(59 Boh) 100 1.31 x 10- 1 

1000 1.65 x 10- 1 

Polystyrene 0.001 to 1.0 x 10-2 to - 1.96 x 10- 2 

(56 Maxw, 66L) 100 1.96 x 10- 2 

Data has been taken from Lazan (1968), p.234-238. See also Figs. 8.2" an d 8.4 
(Lazan, 1968) . The brackets refer to Lazan's references. 



and using eqn. (8.4) we find: 
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U _ ,Mgh 
- AS 

(j = ~exp (_ lfn) 
max 2 

(8.9) 

(8.10) 

Note that as the loss coefficient, n, increases, the stress decreases: 

this happens for the following reason. The displacement time curve is 

sinusoidal (equation (8.3» and its amplitude is related to n. As n 

increases, the amplitude decreases, and the maximum curvature, y, also 

decreases. Since y ~s also the acceleration of the package, this also 

decreases, and thus the stress ~s reduced. 

In Chapter 6 we found that: 

E/E % (pip )2 
s s 

where E ~s the modulus of the solid polymer of \.,hich the foam 
s 

is made, and (pips) ~s its relative density. The result describes 

well the measured moduli of a wide range of foamed plastics. Substi-

tuting into eqn. (8.10) gives: 

(j 
max I ) r;:;;-; (lfn , 

(p Ps v2U exp -2) 

It is of interest to know the max~mum deceleration possible 

while the foam remains linear-elastic. As a general rule, linear 

elasticity extends to a strain of roughly 0.1, when the stress 

* reaches the collapse stress (j (Fig. 8.3). Thus: 

Inserting the value for U gives: 

(j 
max 

* ~ (j E: 

(8.11) 

(8.12) 
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We have also analysed and measured the elastic and plastic collapse 

stresses of foamed solids. The results from Chapter 6 (which again give 

a good description of a large body of experimental data) 

are: 

and 

)~ 

a 1 
-L. 
a y 

0 . 05 (pip ) 2 
s 

0.30 (pip )-1-
s 

(8. 14) 

( 8. 15) . 

where (ay) 1S the yield strength of the solid polymer. Substituting 

into eqn. (8.l 3)gives the maximum stress exerted on the component by the 

package as: 

(a ) 
max el 

0.07 E 
s 

0.17 a (p/p)~ exp (- TI2n) 
y s 

(b) Non-Linear EZastic Response 

A mass, M, dropped from a height, h, onto a foam with a 

constant stress response fey) K obeys the equation: 
o 

My + Cy + K 0 
o 

(8.16) 

(8 .17) 

So lutions for this equation are g1 ven 1n the Appendix,'. If the plateau 

responsible for K (Fig. 8. 3) is plastic in origin, or is non-linear 
o 

elastic but heavily damped (n > 0.5), the component is overdamped 

and is brought smoothly to rest. If n 1S small, an oscillating 
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solution results; but ~n all cases the max~mum deceleration is: 

where v 
o 

v c + K 

Ymax 
o 0 

M 

velocity on impact 

K 
o 

0* + 0" 
(-2-) A 

TI K n 
C __ --=-0_ 

Vo 

(8.18 

(8.19) 

(8.20) 

(8.21) 

* where 0, 0" and E are shown ~n Fig. 8.3. 
~c 

If 0 % 0" then sub-

stituting eqns. (8.20) and (8.21) into (8.18) gives: 

Ymax 
* o A 
M (1 + TIn) (8.22) 

The maximum stress exerted on the component by the package ~s aga~n 

o - Y M/A or: max - max 

o 
max 

7~ 
o . (1 + TIn) (8.23) 

Substituting eqns. (8.14) and (8.15) for the elastic and plastic 

collapse stresses, and gives: 



(0 ) 
max el 

(0 ) 
max pl 

8.3. CONCLUSIONS 
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0.05 E. (pip )2(1 + TIn) 
s s (8.24) 

.0.300 (pip )1-(1 +TIn) 
y s 

(8.25) 

We have shown that the max~mum deceleration (y) or surface 

stress (0 ) suffered by a packaged component when dropped, can 
max 

be expressed ~n terms of certain properties of the packaging material. 

By using the results of our new analysis of the mechanics of cellular 

materials, the surface stress can be expressed in terms of the 

modulus E 
s 

and yield strength o 
y 

of the bulk (tin-

foamed)polymer, its loss coefficient n, and the relative density 

of the foam pip • 
s 

For light handling of the package, when the packaging material 

remains linear-elastic, the maximum stress (for a given drop height) 

scales as piPs (eqn. 8.11). But for a heavy drop, such that the packag-

~ng ~s compressed into the non-linear region, the maximum stress scales 

as (p/ps)2 or (p/Ps)1-, depending on whether the material is non-

linear elastic or plastic. These results, and the associated depen-

dencies on the properties Es ' o and n of the solid polymer (eqns. 
y 

(8.16), (8.17), (8.24) and (8.25» should help in the rational choice 

of packaging materials. 
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APPENDIX 8A: Solution of the Differential Equation for Constant 

Stress Response 

For the constant stress response case, the first half cycle 

(for which K 
o 

is positive): 

My + Gy + K 
o 

o 

It ~s easily shown that by letting z = dy/dt: 

dz 
dt 

The solution to this ~s: 

ln 

or z = 

K 
C (z + ~) 
M C 

(z + K IC) 
Ct + A' 

0 M 

(_ Ct) 
K 

A exp 0 y C M 

(8A-.l) 

(8A.2) 

(8A.3) 

If C ~s small, the solution oscillates, with K 
o changing sign at 

y = O. But if Ko is caused by plastic collapse (not non-linear 

elasticity), or n, and thus C, are large, y decays exponentially 

to zero. Substituting the boundary condition that at t = 0, y 

gives: 

A V + K Ic 
0 0 

V C + K K 
and 0 0 (_ Ct) 0 

Y C exp 
M C 

V C + K 
Differentiating y ( 0 0 , (_ et) 

M 
) exp 

M 

v 
o 

(8A.4) 
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At t 0, this is a mlnlmum of: 

v 
( 0 (8A.S) 

It is difficult to relate C to the loss coefficient n In 

an exact way except by solving eqn. (SA.l) wi th an oscillating forcing 

function, giving very involved results . . But since n varies by a 

factor of 2 between two samples of the same solid polymers, and since 

the magnitude of the loading, mgh, is usually not well known either, 

an approximate solution for C is adequate. 

If a block of foam with a constant stress response K 
o 

0* A lS 

compressed by a displacement x at constant velocity, v , 
o 

the maXl-

mum elastic strain energy stored is: 

K x 
o 

The viscous force is Gy and the energy dissipated In movlng this 

force through a distance x is: 

w C V x 
v 0 

The loss coefficient lS defined as: 

D 
n 

21TU max 

where D lS the specific damping energy, or the energy lost in one 

cycle of load and U lS ' the maxlrnum s train energy during the cycle rnax 

This gives: 
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2C V x cv 
0 0 

II = --
2n K x nK 

0 0 

n K II 
or C 0 (SA.6) 

V 
0 
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2C V x CV 
0 0 

n = - -2n K x nK 
0 0 

n K n 
or C 

V 
0 

(SA.6) 
0 
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CHAPTER 9 

CONCLUSIONS AND FURTHER WORK 

The mechanical properties of foams can be successfully analyzed 

using beam theory. Both two- and three-dimensional cellular materials 

deform by the same sets of mechanisms : the elastic moduli E, and G, 

are governed by the bending stiffness; the elastic collapse stress 

* * (5 

el 
by elastic b uckling; and the plastic collapse stress, 

(5 pI' by 

the development of plas tic hinges in the beam-like or plate-like 

members which make up the cell walls. 

The way in which the properties of two-dimensional cellular 

materials depend on cell shape and density can be described exactly. 

Each of the exact equations derived can be rewritten so as to relate 

each property (normalized in terms of an appropriate cell wall property) 

to a geometric constant and to the relative density raised to the power 

two or three. We find that: E/Es = Cl (p/ps)3; 

* ~ 
(5 liE = C3 (p/ps) 3; and (5~l/a = C4 (pip ) 2 , e spy s 

G/E 
s 

where 

= C2 (pip )3. 
s ' 

geometric constants which can be evaluated for a glven cell shape. Poisson's 

ratio lS independent of relative density and depends only on the cell shape. 

Here E lS Young's modulus for the cell wall material, a 
s y its yield 

strength and Ps i tsdens i ty. 

Three-dimensional foams have much more complicated geometries which 

cannot be analyzed exactly. But we have fOlmd that a dimensional analysis 

(based on the results for two-dimensional cellular materials) gives results 

which describe 'veIl the dependence of material properties on relative den-

si ty. 

,~ 

(5 liE e s 

This analysis gives: E/E = Cs (pip )2; 
s s 

G/E = C6 (pip )2. 
ss' 

= C'7 (p/ps)2, and (5* la = Cs (pip )3/2. pI y s Here Cs to Cs are 
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constants related to cell shape \vhich must be evaluated experimentallY'. 

Poisson's ratio is again found to be independent of density, and depends 

only on cell shape. We have distinguished open and closed-celled foams 

in our analysis. But our experiments and analysis of published data 

show that the two types of foam often behave identically. This 1S 

because the cell faces of closed-cell foams are often very thin com-

pared to the edges, and so do not contribute significantly to stiff-

ness or strength; almost all the load is carried by the cell edges. 

We have applied these results to the analysis of polymeric and 

natural cellular materials. The elastic and plastic properties of 

polymeric foams are well described by our analysis of three-dimensional 

cellular materials. The results are presented as a set of figures, show-

* 1ng how each normalised property (E/E , 0 l/E and so forth) varies with 
s e s 

the relative density (p/ps) of the foam, and incorporating all the data 

available to us. These plots, and the equations which describe them, have 

application in engineering design: they provide a rational way of select-

ing foamed polymers for a given application. To illustrate this, we pre-

sent a simple analysis of a packaging problem, and derive criteria for 

the selection of a foam to meet certain packaging requirements. 

In a second case study, we relate the mechanical properties of a 

natural cellular material - cork - to its structure. Cork has a quasi-

two-dimensional structure: its cells are shaped like hexagonal prisms. 

We found that the two-dimensional analysis described its elastic moduli 

and collapse stresses well. 
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There is a further application of this work to natural materials: 

it can be used to explain some of the mechanical properties of wood. 

We have recently studied the structure and mechanics of balsa wood 

(Easterling et al., 1981), and find that both the magnitude and the 

large anisotropy in the Young's modulus of balsa can be explained 

in terms of the theory developed here. When loaded across the grain,the 

cell 'wails bend-, and behave according to the rule E/Es '= Cl (pips) 3 . But 

when balsa ~s loaded along tlle grain, the cells are ~n simple axial compres­

s~on, so that E/Es = pips' Since the relative density, pips' of balsa 

is about 0.10, this explains the enormous difference in modulus in the 

two directions. An initial examination of data for other, denser, woods 

suggests that, as in balsa, the moduli measured across the grain are 

governed by the bending of cell walls, while the modulus along the 

grain reflects the axial compression of the cell wall material. These 

findings, when coupled ,vi th an unders tanding of the anisotropic proper-

ties of the cell ,vall itself (due to the lay- up of the cellulose fibres 

within it) give a promising approach to the analysis of the mechanics 

of woods . 
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