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Abstract

Nearest neighbour methods are a classical approach in nonparametric statistics. The k-nearest

neighbour classifier can be traced back to the seminal work of Fix and Hodges (1951) and they

also enjoy popularity in many other problems including density estimation and regression. In this

thesis we study their use in three different situations, providing new theoretical results on the

performance of commonly-used nearest neighbour methods and proposing new procedures that are

shown to outperform these existing methods in certain settings.

The first problem we discuss is that of entropy estimation. Many statistical procedures, in-

cluding goodness-of-fit tests and methods for independent component analysis, rely critically on

the estimation of the entropy of a distribution. In this chapter, we seek entropy estimators that

are efficient and achieve the local asymptotic minimax lower bound with respect to squared error

loss. To this end, we study weighted averages of the estimators originally proposed by Kozachenko

and Leonenko (1987), based on the k-nearest neighbour distances of a sample. A careful choice of

weights enables us to obtain an efficient estimator in arbitrary dimensions, given sufficient smooth-

ness, while the original unweighted estimator is typically only efficient in up to three dimensions.

A related topic of study is the estimation of the mutual information between two random

vectors, and its application to testing for independence. We propose tests for the two different

situations of the marginal distributions being known or unknown and analyse their performance.

Finally, we study the classical k-nearest neighbour classifier of Fix and Hodges (1951) and

provide a new asymptotic expansion for its excess risk. We also show that, in certain situations,

a new modification of the classifier that allows k to vary with the location of the test point can

provide improvements. This has applications to the field of semi-supervised learning, where, in

addition to labelled training data, we also have access to a large sample of unlabelled data.
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Chapter 1

Introduction to nearest neighbour

methods

Nearest neighbour methods are a family of techniques whose wide-ranging influence can be felt in

many areas of data science. Their use in statistics dates back at least as far as Fix and Hodges

(1951) in which the search for a fully nonparametric classification rule led the authors to propose a

k-nearest neighbour classifier and density estimator. A large part of their popularity is undoubtedly

due to their simplicity and analytic tractability, which make efficient practical implementation

possible and open up the challenge of providing a thorough theoretical understanding.

Perhaps the context in which nearest neighbour methods are most popular is classification

and the closely related context of regression. Stone (1977) proved that the k-nearest neighbour

approach to classification and regression has the remarkable property of universal consistency in

finite dimensions. Indeed, whenever the feature vector X takes values in Rd for some d ∈ N the k-

nearest neighbour approach is consistent, in that k can be chosen so that the classifier’s asymptotic

risk is the same as that of the Bayes classifier, regardless of the distribution of X. Since then a

large literature on the subject has developed, though important questions remain unanswered. In

Chapter 4 we derive new theoretical results on the k-nearest neighbour classifier and propose a

new variant in which the value of k is allowed to depend on the location of the test point.

The success of nearest neighbour methods in density estimation (e.g. Mack and Rosenblatt,

1979) naturally suggests their use in density functional estimation, and in more recent years there

have been many works on this topic; see Dasgupta and Kpotufe (2014) for an example of mode

estimation and Duong et al. (2016) for an example of density derivative estimation. An important

class of density functionals is the class of integral functionals, that is those of the form

T (f) =

∫
φ(x, f(x)) dx

for some function φ; see for example Leonenko, Pronzato and Savani (2008), Evans, Jones and

Schmidt (2002), Sricharan, Raich and Hero (2012) and Baryshnikov, Penrose and Yukich (2009).

Many of the functionals considered in these works are related to notions of entropy such as Rényi

entropy or Shannon entropy. The estimation of Shannon entropy in particular has received a lot

of attention in the statistics and machine learning communities where it naturally arises in many

applications. In Chapter 2 we study a popular nearest neighbour estimator of Shannon entropy

1



2 CHAPTER 1. INTRODUCTION

and propose a new estimator and in Chapter 3 we use these estimators in the context of testing

for independence through the estimation of mutual information.

Quite apart from their use in classification and density estimation, the versatility of nearest

neighbour methods has resulted in their use in disparate settings. Other classical areas of statistics

and machine learning where they have been applied include two-sample testing problems (Schilling,

1986) and nonparametric clustering (Heckel and Bölcskei, 2015). In nonlinear dimensionality re-

duction and manifold learning (Roweis and Saul, 2000; Costa and Hero, 2004; Law and Jain, 2006)

they are used for data visualisation and for estimating the intrinsic dimension of large-scale data.

They are also a very popular solution to the important practical problems of missing data (Chen

and Shao, 2000) and outlier detection (Zhao and Saligrama, 2009; Chandola, Banerjee and Kumar,

2009).

We now give formal definitions. Let X1, . . . , Xn be (labelled or unlabelled) random variables

taking values in Rd and, given x ∈ Rd, define X(1)(x), . . . , X(n)(x) to be the permutation of

X1, . . . , Xn such that

‖X(1)(x)− x‖ ≤ ‖X(2)(x)− x‖ ≤ . . . ≤ ‖X(n)(x)− x‖.

Given k ∈ {1, . . . , n}, we say that X(1)(x), . . . , X(k)(x) are the k-nearest neighbours of x and define

the kth nearest neighbour distance of x to be ρ(k)(x) = ‖X(k)(x) − x‖. The standard k-nearest

neighbour classifier would then assign the test point x to the class which is most represented among

the k nearest neighbours of x. When X1, . . . , Xn are independent and identically distributed

with density function f , the basis of nearest neighbour methods in estimation problems is the

approximation
k

n
≈ Vdρd(k)(x)f(x),

valid when ρ(k) is small by the Lebesgue differentiation theorem, where Vd is the volume of the

unit ball in Rd. In this thesis we will use ‖ · ‖ to represent the Euclidean norm, though any other

norm may also be used and one may also consider a more general metric. A link to kernel density

estimation can be established by noting that the k-nearest neighbour density estimator may be

written as

f̂(x) =
1

nhd

n∑
i=1

K
(x−Xi

h

)
where h = h(x) = ρ(k)(x) and K(x) = V −1

d 1{‖x‖≤1}. Here the bandwidth h adapts to the location

of the test point, with smaller bandwidths used in areas of high density.

In the i.i.d. setting when X1 has density f , the density function of X(k)(x)− x at u ∈ Rd may

be written explicitly as

nf(x+ u)

(
n− 1

k − 1

)
px(‖u‖)k−1{1− px(‖u‖)}n−k,

where px(r) := P(‖X1 − x‖ ≤ r). Similarly, when px(r) is differentiable, the density function of

ρ(k)(x) may be written as

n

(
n− 1

k − 1

)
px(r)k−1{1− px(r)}n−k ∂

∂r
px(r).

The previous expression reveals a connection between nearest neighbour distances and order statis-
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tics. Indeed, writing U(1), . . . , U(n) for the order statistics of a sample of size n from the uniform

distribution on [0, 1], we have that

(
px(ρ(1)), . . . , px(ρ(n))

) d
= (U(1), . . . , U(n)),

and in particular px(ρ(k)) ∼ Beta(k, n − k + 1). In the analysis of nearest neighbour methods,

concentration and moment properties of the Beta distribution are often helpful. Also revealed

by the above expressions is the fact that the function px(·) plays a crucial role in the analysis of

many nearest neighbour methods; assumptions on the smoothness of the density function f are

often made to facilitate expansions of px(r) for small values of r. Controlling the relative error in

these expansions is made considerably easier by assuming that f is bounded below on its support

and this is an assumption that is commonly made in previous works; see, for example, Samworth

(2012) and Singh and Póczos (2016). In this thesis we do not make this assumption and instead

place additional restrictions on the smoothness of f in areas of low density.

As with many nonparametric techniques there is a tuning parameter, in this case k, whose

value may affect the performance of the procedures significantly. Heuristically speaking, in many

applications k can be seen as controlling a bias–variance trade-off where larger values of k result

in larger bias and smaller values of k result in larger variance. In the classification setting it is

the bias and variance in estimating the regression function that is balanced through k. Often,

as in Chapter 4 here, asymptotic results provide some knowledge of the relationship between

n and the optimal choice of k, and allow one to achieve the best rate of convergence, though

estimating the precise value of the optimal k is a difficult problem and the value will often depend

on the underlying distribution of the data; see, for example, Hall et al. (2008). In practice k is

usually chosen heuristically or empirically, often by cross-validation as for our numerical results in

Section 4.5; see also Chapter 26 of Devroye et al. (1996) for an overview of some empirical methods.

Interestingly, in some situations, such as classification and density estimation, one requires k →∞
as n→∞ for consistency whereas in other situations, such as entropy estimation, consistency can

be achieved with a fixed value of k.

There are many notable modifications of standard k-nearest neighbour methods. One modern

topic of research focuses on using a data-driven metric on the feature space to weight the features

differently and improve the performance of nearest neighbour methods; see for example Weinberger

and Saul (2009). Another modern modification of the standard nearest neighbour methods is to

allow the choice of k to vary with x, often in order to better balance bias and variance by choosing k

to be smaller in areas of low density (e.g. Wettschereck and Dietterich, 1994). This is the approach

we take in Chapter 4. There are also potential improvements to be made over the standard methods

by using weighted nearest neighbour methods. In classification problems this amounts to assigning

the test point x to the class C that maximises

n∑
k=1

wk1{X(k)(x) belongs to class C}

for some weight vector w; see for example Hall and Samworth (2005) and Samworth (2012). In

estimation problems one can consider a weighted average of k-nearest neighbour estimates over k.

This is the approach we take in Chapter 2; see also, for example, Moon et al. (2016) and Sricharan,

Wei and Hero (2013).
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In modern applications the practicality of a statistical procedure is very important; with large

datasets the computational complexity of algorithms must be considered. Due to their simplicity

nearest neighbour methods can often be efficiently implemented, and there is a large literature on

finding nearest neighbours in a streamlined way. For finding the k-nearest neighbours of a single

query point in a sample of size n, for example to classify a test point, methods based on k-d trees

achieve an average complexity of O(log n); see Friedman, Bentley and Finkel (1977). To find all the

k-nearest neighbours of a whole sample of size n, such as is required in estimation problems, the

complexity is bounded by O(kn log n); see Vaidya (1989). There has also been extensive research

into the approximate nearest neighbours problem, in which neighbours are found whose distance

to the test point is close to the nearest neighbour distance, up to some specified threshold. These

algorithms can achieve reductions in run time at the expense of accuracy. For an overview of exact

and approximate nearest neighbour search algorithms see Muja and Lowe (2014).

The remainder of this thesis is organised as follows. In Chapter 2 we study the problem of

entropy estimation and use the estimator of Kozachenko and Leonenko (1987) as a starting point.

Proposed in that chapter is a generalisation of this estimator that can be written as the weighted

sum of Kozachenko–Leonenko estimators with different values of the tuning parameter. We focus

on efficient estimation, in the sense of van der Vaart (1998), and on achieving the local asymptotic

minimax lower bound, and find conditions in any fixed number of dimensions under which our

estimator is efficient. Our results also show that the original Kozachenko–Leonenko estimator is

efficient in up to 3 dimensions, under regularity conditions, but in general cannot be efficient in

higher dimensions due to a non-trivial bias. Chapter 3 concerns independence testing, and we

propose tests based on our entropy estimator of Chapter 2 when either the marginal distributions

are known or unknown. We carry out a local power analysis of the test in the case of known

marginals and prove the consistency of the test in the case of unknown marginals. In Chapter 4

we shift our attention to classification. We provide a new asymptotic expansion of the excess risk

of the standard k-nearest neighbour estimator and use this to motivate a new k-nearest neighbour

classifier for the semi-supervised setting in which k is allowed to depend on the test point. We

provide theoretical and empirical arguments to show that this classifier can outperform the standard

classifier in many settings.



Chapter 2

Efficient multivariate entropy

estimation via k-nearest neighbour

distances

2.1 Introduction

The concept of entropy plays a central role in information theory, and has found a wide array

of uses in other disciplines, including statistics, probability and combinatorics. The (differential)

entropy of a random vector X with density function f is defined as

H = H(X) = H(f) := −E{log f(X)} = −
∫
X
f(x) log f(x) dx

where X := {x : f(x) > 0}. Introduced simultaneously in the highly influential Shannon (1948)

and Wiener (1948), it represents the average information content of an observation, and is usually

thought of as a measure of unpredictability. For an overview of its properties see, for example,

Cover and Thomas (2012) or Wang, Kulkarni and Verdú (2008). Importantly, given constraints

on certain moments and a support set one can find the distribution that maximises H. This leads

to the principle of maximum entropy, which has found applications in areas such as selection of a

prior distribution in Bayesian statistics (Jaynes, 1968) and density estimation (Buchen and Kelly,

1996).

In statistical contexts, it is often the estimation of entropy that is of primary interest, for

instance in goodness-of-fit tests of normality (Vasicek, 1976) or uniformity (Cressie, 1976), tests

of independence (Goria et al., 2005), independent component analysis (Miller and Fisher, 2003)

and feature selection in classification (Kwak and Choi, 2002; Peng, Long and Ding, 2005). See, for

example, Beirlant et al. (1997), Paninski (2003) and Wang, Kulkarni and Verdú (2008) for other

applications and an overview of nonparametric techniques, which include methods based on sample

spacings in the univariate case (e.g. El Haje Hussein and Golubev , 2009), histograms (Hall and

Morton, 1993) and kernel density estimates (Paninski and Yajima, 2008; Sricharan, Wei and Hero,

2013), among others. The estimator of Kozachenko and Leonenko (1987) is particularly attractive

as a starting point, both because it generalises easily to multivariate cases, and because, since it

5



6 CHAPTER 2. EFFICIENT ENTROPY ESTIMATION

only relies on the evaluation of kth-nearest neighbour distances, it is straightforward to compute.

To introduce this estimator, for n ≥ 2, let X1, . . . , Xn be independent random vectors with den-

sity f on Rd. Write ‖ · ‖ for the Euclidean norm on Rd, and for i = 1, . . . , n, let X(1),i, . . . , X(n−1),i

denote a permutation of {X1, . . . , Xn}\{Xi} such that ‖X(1),i−Xi‖ ≤ . . . ≤ ‖X(n−1),i−Xi‖. For

conciseness, we let

ρ(k),i := ‖X(k),i −Xi‖

denote the distance between Xi and the kth nearest neighbour of Xi. The Kozachenko–Leonenko

estimator of the entropy H is given by

Ĥn = Ĥn(X1, . . . , Xn) :=
1

n

n∑
i=1

log

(
ρd(k),iVd(n− 1)

eΨ(k)

)
, (2.1)

where Vd := πd/2/Γ(1 + d/2) denotes the volume of the unit d-dimensional Euclidean ball and

where Ψ denotes the digamma function. In fact, this is a generalisation of the estimator originally

proposed by Kozachenko and Leonenko (1987), which was defined for k = 1. For integers k we

have Ψ(k) = −γ +
∑k−1
j=1 1/j where γ := 0.577216 . . . is the Euler–Mascheroni constant, so that

eΨ(k)/k → 1 as k → ∞. This estimator can be regarded as an attempt to mimic the ‘oracle’

estimator H∗n := −n−1
∑n
i=1 log f(Xi), based on a k-nearest neighbour density estimate that relies

on the approximation
k

n− 1
≈ Vdρd(k),1f(X1).

It turns out that, when d ≤ 3 and other regularity conditions hold, the estimator Ĥn in (2.1) has

the same asymptotic behaviour as H∗n, in that

n1/2(Ĥn −H)
d→ N

(
0,Var log f(X1)

)
.

We will see that in such settings, this estimator is asymptotically efficient, in the sense of, e.g.,

van der Vaart (1998, p. 367). However, when d ≥ 4, a non-trivial bias typically precludes its

efficiency. Our main object of interest, therefore, will be a generalisation of the estimator (2.1),

formed as a weighted average of Kozachenko–Leonenko estimators for different values of k, where

the weights are chosen to try to cancel the dominant bias terms. More precisely, for a weight vector

w = (w1, . . . , wk)T ∈ Rk with
∑k
j=1 wj = 1, we consider the estimator

Ĥw
n :=

1

n

n∑
i=1

k∑
j=1

wj log ξ(j),i,

where ξ(j),i := e−Ψ(j)Vd(n−1)ρd(j),i. Weighted estimators of this general type have been considered

recently (e.g. Sricharan, Wei and Hero, 2013; Moon et al., 2016), though our construction of

the weights and our analysis is new. In particular, we show that under stronger smoothness

assumptions, and with a suitable choice of weights, the weighted Kozachenko–Leonenko estimator

is efficient in arbitrary dimensions.

There have been several previous studies of the (unweighted) Kozachenko–Leonenko estimator,

but results on the rate of convergence have until now confined either to the case k = 1 or (very

recently) the case where k is fixed as n diverges. The original Kozachenko and Leonenko (1987)

paper proved consistency of the estimator under mild conditions in the case k = 1. Tsybakov
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and Van der Meulen (1996) proved that the mean squared error of a truncated version of the

estimator is O(n−1) when k = 1 and d = 1 under a condition that is almost equivalent to an

exponential tail; Biau and Devroye (2015) showed that the bias vanishes asymptotically while the

variance is O(n−1) when k = 1 and f is compactly supported and bounded away from zero on its

support. Very recently, in independent work and under regularity conditions, Delattre and Fournier

(2017) derived the asymptotic normality of the estimator when k = 1, confirming the suboptimal

asymptotic variance in this case. Previous works on the general k case include Singh et al. (2003),

where heuristic arguments were presented to suggest the estimator is consistent for general d and

general fixed k and has variance O(n−1) for d = 1 and general fixed k. Gao, Oh and Viswanath

(2016) obtain a mean squared error bound of O(n−1) up to polylogarithmic factors for fixed k

and d ≤ 2, though the only densities which the authors can show satisfy their tail condition have

bounded support. Singh and Póczos (2016) obtain a similar bound (without the polylogarithmic

factors, but explicitly assuming bounded support) for fixed k and d ≤ 4. Mnatsakanov et al. (2008)

allow k to diverge with n, and show that the estimator is consistent for general d.

Plug-in kernel methods are also popular for entropy estimation. Paninski and Yajima (2008), for

example, show that a smaller bandwidth than would be required for a consistent density estimator

can still yield a consistent entropy estimator. A k-nearest neighbour density estimate can be

regarded as a kernel estimator with a bandwidth that depends both on the data and on the point

at which the estimate is required. Sricharan, Wei and Hero (2013) obtain the parametric rate of

convergence for a plug-in kernel method, assuming bounded support and at least d derivatives in

the interior of the support.

Importantly, the class of densities considered in our results allows the support of the density

to be unbounded; for instance, it may be the whole of Rd. Such settings present significant new

challenges and lead to different behaviour compared with more commonly-studied situations where

the underlying density is compactly supported and bounded away from zero on its support. To gain

intuition, consider the following second-order Taylor expansion of H(f) around a density estimator

f̂ :

H(f) ≈ −
∫
Rd
f(x) log f̂(x) dx− 1

2

(∫
Rd

f2(x)

f̂(x)
dx− 1

)
.

When f is bounded away from zero on its support, one can estimate the (smaller order) second

term on the right-hand side, thereby obtaining efficient estimators of entropy in higher dimensions

(Laurent, 1996); however, when f is not bounded away from zero on its support such procedures

are no longer effective. To the best of our knowledge, therefore, this is the first time that a

nonparametric entropy estimator has been shown to be efficient in multivariate settings for densities

having unbounded support. (We remark that when d = 1, the histogram estimator of Hall and

Morton (1993) is known to be efficient under fairly strong tail conditions.)

The outline of the rest of the chapter is as follows. In Section 2.2, we give our main results on

the mean squared error and asymptotic normality of weighted Kozachenko–Leonenko estimators,

and discuss confidence interval construction. These main results arise from asymptotic expansions

for the bias and variance, which are stated in Section 2.3. Here, we also give examples to illustrate

densities satisfying our conditions, discuss how they may be weakened, and address the fixed k case.

Corresponding lower bounds are presented in Section 2.4. Proofs of main results are presented

in Section 2.5 with auxiliary material and detailed bounds for various error terms deferred to

Section 2.6.
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We conclude the introduction with some notation used throughout this chapter. For x ∈ Rd and

r > 0, let Bx(r) be the closed Euclidean ball of radius r about x, and let B◦x(r) := Bx(r)\{x} denote

the corresponding punctured ball. We write ‖A‖op and |A| for the operator norm and determinant,

respectively, of A ∈ Rd×d, and let ‖A‖ denote the vectorised Euclidean norm of a vector, matrix

or array. For a smooth function f : Rd → [0,∞), we write ḟ(x), f̈(x) and f (m)(x) respectively for

the gradient vector of f at x, Hessian matrix of f at x and the array with (j1, . . . , jm)th entry
∂mf(x)

∂xj1 ...∂xjm
. We also write ∆f(x) :=

∑d
j=1

∂2f
∂x2
j
(x) for its Laplacian, and ‖f‖∞ := supx∈Rd f(x) for

its uniform norm.

2.2 Main results

We begin by introducing the class of densities over which our results will hold. Let Fd denote the

class of all density functions with respect to Lebesgue measure on Rd. For f ∈ Fd and α > 0, let

µα(f) :=

∫
Rd
‖x‖αf(x) dx.

Now let A denote the class of decreasing functions a : (0,∞)→ [1,∞) satisfying a(δ) = o(δ−ε) as

δ ↘ 0, for every ε > 0. If a ∈ A, β > 0 and f ∈ Fd is m := dβe− 1-times differentiable and x ∈ X ,

we define ra(x) := {8d1/2a(f(x))}−1/(β∧1) and

Mf,a,β(x) := max

{
max

t=1,...,m

‖f (t)(x)‖
f(x)

, sup
y∈B◦x(ra(x))

‖f (m)(y)− f (m)(x)‖
f(x)‖y − x‖β−m

}
.

The quantity Mf,a,β(x) measures the smoothness of derivatives of f in neighbourhoods of x, relative

to f(x) itself. Note that these neighbourhoods of x are allowed to become smaller when f(x) is

small. Finally, for Θ := (0,∞)4 ×A, and θ = (α, β, ν, γ, a) ∈ Θ, let

Fd,θ :=

{
f ∈ Fd : µα(f) ≤ ν, ‖f‖∞ ≤ γ, sup

x:f(x)≥δ
Mf,a,β(x) ≤ a(δ) ∀δ > 0

}
.

We note here that Lemma 2.12 in the Section 2.6.2 can be used to derive a nestedness property

of the classes with respect to the smoothness parameter, namely that if θ = (α, β, γ, ν, a) ∈ Θ,

β′ ∈ (0, β) and a′(δ) = 15ddβe/2a(δ), then Fd,θ ⊆ Fd,θ′ , where θ′ = (α, β′, γ, ν, a′) ∈ Θ. In

Section 2.3.2 below, we discuss the requirements of the class Fd,θ in greater detail, and give several

examples, including Gaussian and multivariate-t densities, which belong to Fd,θ for suitable θ.

We now introduce the class of weights w = (w1, . . . , wk)T that we consider. For k ∈ N, let

W(k) :=

{
w ∈ Rk :

k∑
j=1

wj
Γ(j + 2`/d)

Γ(j)
= 0 for ` = 1, . . . , bd/4c

k∑
j=1

wj = 1 and wj = 0 if j /∈ {bk/dc, b2k/dc, . . . , k}
}
. (2.2)

Our main result below shows that for appropriately chosen weight vectors in W(k), the normalised

risk of the weighted Kozachenko–Leonenko estimator Ĥw
n converges in a uniform sense to that

of the oracle estimator H∗n := −n−1
∑n
i=1 log f(Xi). Theorem 2.8 in Section 2.4 shows that this

limiting risk is optimal.
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Theorem 2.1. Fix d ∈ N and θ = (α, β, ν, γ, a) ∈ Θ with α > d and with β > d/2. Let k∗0 = k∗0,n

and k∗1 = k∗1,n denote any two deterministic sequences of positive integers with k∗0 ≤ k∗1 , with

k∗0/ log5 n→∞ and with k∗1 = O(nτ1) and k∗1 = o(nτ2), where

τ1 < min

(
2α

5α+ 3d
,
α− d

2α
,

4β∗

4β∗ + 3d

)
, τ2 := min

(
1− d/4

1 + bd/4c
, 1− d

2β

)
and β∗ := β ∧ 1. There exists kd ∈ N, depending only on d, such that for each k ≥ kd, we can find

w = w(k) ∈ W(k) with supk≥kd ‖w
(k)‖ <∞. For such w,

sup
k∈{k∗0 ,...,k∗1}

sup
f∈Fd,θ

nEf
{

(Ĥw
n −H∗n)2

}
→ 0 (2.3)

as n→∞. In particular,

sup
k∈{k∗0 ,...,k∗1}

sup
f∈Fd,θ

∣∣nEf{(Ĥw
n −H(f))2} − V (f)

∣∣→ 0,

where V (f) := Varf log f(X1) =
∫
X f log2 f −H(f)2.

We remark that the level of smoothness we require for efficiency in Theorem 2.1, namely

β > d/2 is more than is needed for the two-stage estimator of Laurent (1996) in the case where

f is compactly supported and bounded away from zero on its support, where β > d/4 suffices.

As alluded to in the introduction, the fact that the function x 7→ −x log x is non-differentiable

at x = 0 means that the entropy functional is no longer smooth when f has full support, so the

arguments of Laurent (1996) can no longer be applied and very different behaviour may occur

(Lepski, Nemirovski and Spokoiny, 1999; Cai and Low, 2011).

It is also useful, e.g. for the purposes of constructing confidence intervals for the entropy, to

understand the asymptotic normality of the estimator. To this end, let H denote the class of

functions h : R → R with ‖h‖∞ ≤ 1 and |h(x) − h(y)| ≤ |x − y| for all x, y ∈ R. For probability

measures P,Q on R, we write

dBL(P,Q) := sup
h∈H

∣∣∣∣∫ ∞
−∞

h d(P −Q)

∣∣∣∣
for the bounded Lipschitz distance between P and Q. Recall that dBL metrises weak convergence.

The asymptotic variance V (f) can be estimated analogously to H(f) by V̂ wn := max(Ṽ wn , 0), where

Ṽ wn :=
1

n

n∑
i=1

k∑
j=1

wj log2 ξ(j),i − (Ĥw
n )2.

Fixing q ∈ (0, 1), this suggests that a natural asymptotic (1− q)-level confidence interval for H(f)

is given by

In,q :=
[
Ĥw
n − n−1/2zq/2(V̂ wn )1/2, Ĥw

n + n−1/2zq/2(V̂ wn )1/2
]
,

where zq is the (1−q)th quantile of the standard normal distribution; see also Delattre and Fournier

(2017). Write L(Z) for the distribution of a random variable Z.
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Theorem 2.2. Under the conditions of Theorem 2.1, we have

sup
k∈{k∗0 ,...,k∗1}

sup
f∈Fd,θ

dBL

(
L
(
n1/2(Ĥw

n −H(f))
)
, N
(
0, V (f)

))
→ 0

as n→∞. Consequently,

sup
q∈(0,1)

sup
k∈{k∗0 ,...,k∗1}

sup
f∈Fd,θ

∣∣∣Pf(In,q 3 H(f)
)
− (1− q)

∣∣∣→ 0.

We remark that the choice k = kn = dlog6 ne with w = w(k) ∈ W(k) satisfying supk≥kd ‖w
(k)‖ <

∞ for the weighted Kozachenko–Leonenko estimator satisfies the conditions for efficiency in The-

orem 2.1 whenever f ∈ Fd,θ with θ = (α, β, γ, ν, a) ∈ Θ satisfying α > d and β > d/2; knowledge

of the precise values of α and β is not required. Moreover, the uniformity of the asymptotics in

k means that if k̂n = k̂n(X1, . . . , Xn) is a data-driven choice of k, the conclusions Theorem 2.2

remain valid provided that P(k̂n < k∗0) + P(k̂n > k∗1)→ 0.

2.3 Bias and variance expansions for Kozachenko–Leonenko

estimators

2.3.1 Bias

The proof of (2.3) is derived from separate expansions for the bias and variance of the weighted

Kozachenko–Leonenko estimator, and we treat the bias in this subsection. To gain intuition, we

initially focus for simplicity of exposition on the unweighted estimator

Ĥn =
1

n

n∑
i=1

log ξi,

where we have written ξi as shorthand for ξ(k),i. For x ∈ Rd and u ∈ [0,∞), we introduce the

sequence of distribution functions

Fn,x(u) := P(ξi ≤ u|Xi = x) =

n−1∑
j=k

(
n− 1

j

)
pjn,x,u(1− pn,x,u)n−1−j ,

where

pn,x,u :=

∫
Bx(rn,u)

f(y) dy and rn,u :=

{
eΨ(k)u

Vd(n− 1)

}1/d

.

Further, for u ∈ [0,∞), define the limiting (Gamma) distribution function

Fx(u) := exp{−uf(x)eΨ(k)}
∞∑
j=k

1

j!

{
uf(x)eΨ(k)

}j
= e−λx,u

∞∑
j=k

λjx,u
j!

,

where λx,u := uf(x)eΨ(k). That this is the limit distribution for each fixed k follows from a

Poisson approximation to the Binomial distribution and the Lebesgue differentiation theorem. We



2.3. BIAS AND VARIANCE 11

therefore expect that

E(Ĥn) =

∫
X
f(x)

∫ ∞
0

log u dFn,x(u) dx ≈
∫
X
f(x)

∫ ∞
0

log u dFx(u) dx

=

∫
X
f(x)

∫ ∞
0

log
( te−Ψ(k)

f(x)

)
e−t

tk−1

(k − 1)!
dt dx = H.

Although we do not explicitly use this approximation in our asymptotic analysis of the bias, it

motivates much of our development. It also explains the reason for using eΨ(k) in the definition of

ξ(k),i, rather than simply k. Lemma 2.3 below gives an expression for the asymptotic bias of the

unweighted Kozachenko–Leonenko estimator.

Lemma 2.3. Fix d ∈ N and θ = (α, β, ν, γ, a) ∈ Θ. Let k∗ = k∗n denote any deterministic

sequence of positive integers with k∗ = O(n1−ε) as n → ∞ for some ε > 0. Then there exist

λ1, . . . , λdβ/2e−1 ∈ R, depending only on f and d, such that supf∈Fd,θ maxl=1,...,dβ/2e−1 |λl| < ∞
and for each ε > 0,

sup
f∈Fd,θ

∣∣∣∣Ef (Ĥn)−H −
dβ/2e−1∑
l=1

Γ(k + 2l/d)Γ(n)

Γ(k)Γ(n+ 2l/d)
λl

∣∣∣∣ = O

(
max

{
k

α
α+d−ε

n
α
α+d−ε

,
k
β
d

n
β
d

})

as n→∞, uniformly for k ∈ {1, . . . , k∗}, where λl = 0 if 2l ≥ dα/(α+ d).

When d ≥ 3, α > 2d/(d− 2) and β > 2, we have

λ1 = − 1

2(d+ 2)V
2/d
d

∫
X

∆f(x)

f(x)2/d
dx,

which is finite under these assumptions; cf. the second part of Proposition 2.9 in Section 2.5.1.

Moreover, since, for each l > 0, we have Γ(n)
Γ(n+2l/d) = n−2l/d

{
1 + O(n−1)

}
, we deduce from

Lemma 2.3 that in this setting,

sup
f∈Fd,θ

∣∣∣∣Ef (Ĥn)−H +
Γ(k + 2/d)

2(d+ 2)V
2/d
d Γ(k)n2/d

∫
X

∆f(x)

f(x)2/d
dx

∣∣∣∣ = o
(k2/d

n2/d

)
.

In particular, when d ≥ 4 and
∫
X

∆f(x)
f(x)2/d dx 6= 0, the bias of the unweighted Kozachenko–Leonenko

estimator precludes its efficiency.

On the other hand, Lemma 2.3 motivates the definition of the class of weight vectors W(k)

in (2.2), and facilitates the expansion for the bias of the weighted Kozachenko–Leonenko estimator

in Corollary 2.4 below. In particular, since 2(bd/4c+ 1)/d > 1/2, we see that this result provides

conditions under which the bias is o(n−1/2) for suitably chosen k. This explains why we let ` take

values in the range {1, . . . , bd/4c} in (2.2).

Corollary 2.4. Assume the conditions of Lemma 2.3. If w = w(k) ∈ W(k) for k ≥ kd and

supk≥kd ‖w
(k)‖ <∞, then for every ε > 0,

sup
f∈Fd,θ

∣∣Ef (Ĥw
n )−H(f)

∣∣ = O

(
max

{
k

α
α+d−ε

n
α
α+d−ε

,
k

2(bd/4c+1)
d

n
2(bd/4c+1)

d

,
k
β
d

n
β
d

})
,

uniformly for k ∈ {1, . . . , k∗}.
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The proof of Lemma 2.3 is given in Section 2.5.1, but we present here some of the main ideas

that are particularly relevant for the case d ≥ 3, α > 2d/(d− 2) and β ∈ (2, 4]. First, note that

dFn,x(u)

du
= Bk,n−k(pn,x,u)

∂pn,x,u
∂u

, (2.4)

where Ba,b(s) := B−1
a,bs

a−1(1−s)b−1 denotes the density of a Beta(a, b) random variable at s ∈ (0, 1),

with Ba,b := Γ(a)Γ(b)/Γ(a+ b). For x ∈ X and r > 0, define hx(r) :=
∫
Bx(r)

f(y) dy. Since hx(r)

is a continuous, non-decreasing function of r, we can define a left-continuous inverse for s ∈ (0, 1)

by

h−1
x (s) := inf{r > 0 : hx(r) ≥ s} = inf{r > 0 : hx(r) = s}, (2.5)

so that hx(r) ≥ s if and only if r ≥ h−1
x (s). We use the approximation

Vdf(x)h−1
x (s)d ≈ s− s1+2/d∆f(x)

2(d+ 2)V
2/d
d f(x)1+2/d

for small s > 0, which is formalised in Lemma 2.10(ii) in Section 2.5.1. In the case d ≥ 3,

α > 2d/(d − 2) and β ∈ (2, 4], the proof of Lemma 2.3 can be seen as justifying the use of the

above approximation in the following:

E(Ĥn) =

∫
X
f(x)

∫ ∞
0

log u dFn,x(u) dx =

∫
X
f(x)

∫ 1

0

log

(
Vd(n− 1)h−1

x (s)d

eΨ(k)

)
Bk,n−k(s) ds dx

≈
∫
X
f(x)

∫ 1

0

{
log
( (n− 1)s

eΨ(k)f(x)

)
−

V
−2/d
d s2/d∆f(x)

2(d+ 2)f(x)1+2/d

}
Bk,n−k(s) ds dx

= log(n− 1)−Ψ(n) +H −
V
−2/d
d Γ(k + 2/d)Γ(n)

2(d+ 2)Γ(k)Γ(n+ 2/d)

∫
X

∆f(x)

f(x)2/d
dx.

Note that log(n − 1) − Ψ(n) = −1/(2n) + o(1/n), which leads to the given bias expression. The

proof in other cases proceeds along similar lines. These heuristics make clear that the function

h−1
x (·) plays a key role in understanding the bias. This function is in general complicated, though

some understanding can be gained from the following uniform density example, where it can be

evaluated explicitly. This leads to an exact expression for the bias, even though the discontinuities

mean that the density does not belong to F1,θ for any θ ∈ Θ.

Example 2.1. Consider the uniform distribution, U [0, 1]. For x ≤ 1/2, we have

h−1
x (s) =

s/2, if s ≤ 2x

s− x, if 2x < s ≤ 1.

It therefore follows that

E(Ĥn)−H = 2

∫ 1/2

0

∫ ∞
0

log u dFn,x(u) dx = 2

∫ 1/2

0

∫ 1

0

log

(
2(n− 1)h−1

x (s)

eΨ(k)

)
Bk,n−k(s) ds dx

= 2

∫ 1

0

Bk,n−k(s)

{∫ s/2

0

log(2(s− x)) dx+

∫ 1/2

s/2

log s dx

}
ds+ log

(n− 1

eΨ(k)

)
=
k

n
(log 4− 1) + log(n− 1)−Ψ(n).
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2.3.2 Discussion of conditions and weakening of conditions

Recall the definitions of the quantity Mf,a,β(x) and A from Section 2.2. In addition to standard

moment and boundedness assumptions, the condition f ∈ Fd,θ requires that

sup
x:f(x)≥δ

Mf,a,β(x) ≤ a(δ) for all δ > 0 and some a ∈ A. (2.6)

In this subsection, we explore the condition (2.6) further, with the aid of several examples.

The condition (2.6) is reminiscent of more standard Hölder smoothness assumptions, though

we also require that the partial derivatives of the density vary less where f is small. On the other

hand, we also allow the neighbourhoods of x in the definition of Mf,a,β(x) to shrink where f(x) is

small. Roughly speaking, the condition requires that the partial derivatives of the density decay

nearly as fast as the density itself in the tails of the distribution. As a simple stability property,

if (2.6) holds for a density f0, then it also holds for any density from the location-scale family:

{fΣ(·) = |Σ|−1/2f0

(
Σ−1/2(· − µ)

)
: µ ∈ Rd,Σ = ΣT ∈ Rd×d positive definite}.

This observation allows us to consider canonical representatives of location-scale families in the

examples below.

Proposition 2.5. For each of the following densities f , and for each d ∈ N, there exists θ ∈ Θ

such that f ∈ Fd,θ:

(i) f(x) = f(x1, . . . , xd) = (2π)−d/2e−‖x‖
2/2, the standard normal density;

(ii) f(x) = f(x1, . . . , xd) ∝ (1 + ‖x‖2/ρ)−
d+ρ

2 , the multivariate-t distribution with ρ > 0 degrees

of freedom.

Moreover, the following univariate density f also belongs to F1,θ for suitable θ ∈ Θ:

f(x) ∝ exp
(
− 1

1− x2

)
1{x∈(−1,1)}.

The final part of Proposition 2.5 is included because it provides an example of a density f that

belongs to F1,θ for suitable θ ∈ Θ, even though there exist points x0 ∈ R with f(x0) = 0.

On the other hand, there are also examples, such as Example 2.2 below, where the behaviour

of f near a point x0 with f(x0) = 0 precludes f belonging to Fd,θ for any θ ∈ Θ. To provide some

guarantees in such settings, we now give a very general condition under which our approach to

studying the bias can be applied.

Proposition 2.6. Assume that f is bounded, that µα(f) < ∞ for some α > 0, and let k∗ be as

in Lemma 2.3. Let an := 3(k + 1) log(n− 1), let rx :=
{

2an
Vd(n−1)f(x)

}1/d
, and assume further that

there exists β > 0 such that the function on X given by

Cn,β(x) :=

{
supy∈B◦x(rx) |f(y)− f(x)|/‖y − x‖β if β ≤ 1,

supy∈B◦x(rx) ‖ḟ(y)− ḟ(x)‖/‖y − x‖β−1 if β > 1,

is real-valued. Suppose that Xn ⊆ X is such that

sup
x∈Xn

( an
n− 1

)β̃/d Cn,β̃(x)

f(x)1+β̃/d
→ 0 (2.7)
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as n→∞, where β̃ := β ∧ 2. Then writing qn :=
∫
X cn
f , we have for every ε > 0 that

Ef (Ĥn)−H = O

(
max

{
kβ̃/d

nβ̃/d

∫
Xn

Cn,β̃(x)

f(x)β̃/d
dx , q1−ε

n , qn log n ,
1

n

})
, (2.8)

uniformly for k ∈ {1, . . . , k∗}.

To aid interpretation of Proposition 2.6, we first remark that if f ∈ Fd,θ for some θ =

(α, β, γ, ν, a) ∈ Θ, then (2.7) holds, with Xn := {x ∈ X : f(x) ≥ δn}, where δn is defined

in (2.12) below. On the other hand, if f /∈ Fd,θ, we may still be able to obtain explicit bounds on

the terms in (2.8) on a case-by-case basis, as in the following example.

Example 2.2. For a > 1, consider f(x) = Γ(a)−1xa−1e−x1{x>0}, the density of the Γ(a, 1)

distribution. Then for any τ ∈ (0, 1) small enough, we may take

Xn =

[(k
n

) 1
a−τ

, (1− τ) log
n

k

]
to deduce from Proposition 2.6 that for every ε > 0,

Ef (Ĥn)−H = o
(k1−ε

n1−ε

)
,

uniformly for k ∈ {1, . . . , k∗}.

Similar calculations show that the bias is of the same order for Beta(a, b) distributions with

a, b > 1.

2.3.3 Asymptotic variance and normality

We now study the asymptotic variance of Kozachenko–Leonenko estimators under the assumption

that the tuning parameter k is diverging with n; the fixed k case is deferred to the next subsection.

Lemma 2.7. Let θ = (α, β, γ, ν, a) ∈ Θ with α > d and β > 0. Let k∗0 = k∗0,n and k∗1 = k∗1,n denote

any two deterministic sequences of positive integers with k∗0 ≤ k∗1 , with k∗0/ log5 n → ∞ and with

k∗1 = O(nτ1), where τ1 satisfies the condition in Theorem 2.1. Then for any w = w(k) ∈ W(k) with

supk≥kd ‖w
(k)‖ <∞, we have

sup
k∈{k∗0 ,...,k∗1}

sup
f∈Fd,θ

∣∣nVarf Ĥ
w
n − V (f)

∣∣→ 0

as n→∞.

The proof of this lemma is lengthy, and involves many delicate error bounds, so we outline the

main ideas in the unweighted case here. First, we argue that

Var Ĥn = n−1 Var log ξ1 + (1− n−1) Cov(log ξ1, log ξ2)

= n−1V (f) + Cov
(
log(ξ1f(X1)), log(ξ2f(X2))

)
+ o(n−1),

where we hope to exploit the fact that ξ1f(X1)
p→ 1. The main difficulties in the argument are

caused by the fact that handling the covariance above requires us to study the joint distribution

of (ξ1, ξ2), and this is complicated by the fact that X2 may be one of the k nearest neighbours of
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X1 or vice versa, and more generally, X1 and X2 may have some of their k nearest neighbours in

common. Dealing carefully with the different possible events requires us to consider separately the

cases where f(X1) is small and large, as well as the proximity of X2 to X1. Finally, however, we

can apply a normal approximation to the relevant multinomial distribution (which requires that

k → ∞) to deduce the result. We remark that under stronger conditions on k, it should also be

possible to derive the same conclusion about the asymptotic variance of Ĥn while only assuming

similar conditions on the density to those required in Proposition 2.6, but we do not pursue this

here.

2.3.4 Fixed k

A crucial step in the proof of Lemma 2.7 is the normal approximation to a certain multinomial

distribution (cf. the bound on the term W4). This normal approximation is only valid when

k →∞ as n→∞. In this subsection, we present evidence to suggest that, when k is fixed (i.e. not

depending on n), then Kozachenko–Leonenko estimators are inefficient. For simplicity, we focus

on the unweighted version of estimator.

Define the functions

αr(s, t) :=
1

Vd
µd
(
B0(s1/d) ∩Br1/de1(t1/d)

)
,

where e1 = (1, 0, . . . , 0) is the first element of the standard basis for Rd and µd denotes Lebesgue

measure on Rd. Also define the functions Tk on [0,∞)3 by

Tk(r, s, t) := eαr(s,t)

L(r,s,t)∑
`=0

I(r,s)−`∑
i=0

J(r,t)−`∑
j=0

{s− αr(s, t)}i{t− αr(s, t)}jα`r(s, t)
i!j!`!

−
I(r,s)∑
i=0

J(r,t)∑
j=0

sitj

i!j!
,

where L(r, s, t) := k − 1− 1{r<max(s,t)}, I(r, s) := k − 1− 1{r<s}, J(r, t) := k − 1− 1{r<t}.
In the case k = 1, this function appears in Delattre and Fournier (2017), where the authors

show that, under certain regularity conditions,

lim
n→∞

nVar Ĥn − V (f) = Ψ′(1) +

∫
[0,∞)3

e−s−t
T1(r, s, t)

st
dr ds dt− 1 + 2 log 2.

More generally, Poisson approximation to the same multinomial distribution mentioned above,

together with analysis similar to the proof of Lemma 2.7, suggests that for (fixed) k ≥ 2,

lim
n→∞

nVar Ĥn − V (f) = Ψ′(k) +

∫
[0,∞)3

e−s−t
Tk(r, s, t)

st
dr ds dt− 1

+ 2−(2k−2)

(
2k − 2

k − 1

)
{Ψ(2k − 1)−Ψ(k)− log 2}

+
1

k − 1

k−2∑
j=0

2−k−j
(
k + j − 1

j

)
[1− (k − j){Ψ(k + j)− log 2−Ψ(k)}]. (2.9)

Here, the Ψ′(k) term arises as in (2.18), the integral term arises from the Poisson approximation,

the −1 arises as in (2.27), and the remaining terms come from the fact that X1 can be one of

the k nearest neighbours of X2, or vice-versa, which induces a singular component into the joint

distribution function Fn,x,y of (ξ1, ξ2) given (X1, X2) = (x, y). It is interesting to observe that this
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d\k 1 2 3 4 5
1 2.14 0.97 0.64 0.48 0.39
2 2.29 1.01 0.64 0.47 0.38
3 2.42 1.03 0.64 0.47 0.37
5 2.61 1.05 0.65 0.47 0.37
10 2.85 1.10 0.68 0.50 0.40

Table 2.1: Asymptotic variance inflation (2.9) of the Kozachenko–Leonenko estimator for fixed k.

asymptotic inflation of the variance is distribution-free; in Table 2.1, we tabulate numerical values

for (2.9) for a few values of d and k. These agree with those obtained by Delattre and Fournier

(2017) for the case k = 1.

2.4 Lower bounds

In this section, we address the optimality in a local asymptotic minimax sense of the limiting

normalised risk V (f) given in Theorem 2.1 using ideas of semiparametric efficiency (e.g. van der

Vaart, 1998, Chapter 25). For f ∈ Fd,θ, t ≥ 0 and a Borel measurable function g : Rd → R, define

ft,g : Rd → [0,∞) by

ft,g(x) :=
2c(t)

1 + e−2tg(x)
f(x), (2.10)

where c(t) :=
(∫

Rd
2

1+e−2tg(x) f(x) dx
)−1

. This definition ensures that {ft,g : t ≥ 0} is differentiable

in quadratic mean at t = 0 with score function g (e.g. van der Vaart, 1998, Example 25.16). We

say (H̃n) is an estimator sequence if H̃n : (Rd)×n → R is a measurable function for each n ∈ N.

Theorem 2.8. Fix d ∈ N, θ = (α, β, γ, µ, a) ∈ Θ and f ∈ Fd,θ. For λ ∈ R, let gλ := λ{log f +

H(f)}. Then, writing I for the set of finite subsets of R, we have for any estimator sequence (H̃n)

that

sup
I∈I

lim inf
n→∞

max
λ∈I

nEf
n−1/2,gλ

[{
H̃n −H(fn−1/2,gλ)

}2] ≥ V (f). (2.11)

Moreover, whenever t|λ| ≤ min(1, {144V (f)}−1/2), with θ̃ :=
(
α, β, 4γ, 4µ, ã

)
∈ Θ and ã ∈ A

defined in (2.89) in Section 2.6.6 we have that ft,gλ ∈ Fd,θ̃.

The proof of Theorem 2.8 reveals that, at every f ∈ Fd,θ, the entropy functional H is differen-

tiable relative to the tangent set {gλ : λ ∈ R} with efficient influence function

ψ̃f := − log f −H(f).

This observation, together with Theorem 2.1, confirms that under the assumptions on θ, w and

k in that result, the weighted Kozachenko–Leonenko estimator Ĥw
n is (asymptotically) efficient at

f ∈ Fd,θ in the sense that

n1/2{Ĥw
n −H(f)} =

1

n1/2

n∑
i=1

ψ̃f (Xi) + op(1)

(cf. van der Vaart, 1998, p. 367). Moreover, the second part of Theorem 2.8 and Theorem 2.1

imply in particular that, under these same conditions on θ, w and k, the estimator Ĥw
n attains the
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local asymptotic minimax lower bound, in the sense that

sup
I∈I

lim
n→∞

max
λ∈I

nEf
n−1/2,gλ

[{
Ĥw
n −H(fn−1/2,gλ)

}2]
= V (f).

2.5 Proofs of main results

2.5.1 Auxiliary results and proofs of Lemma 2.3 and Corollary 2.4

Throughout the proofs, we write a . b to mean that there exists C > 0, depending only on d ∈ N
and θ ∈ Θ, such that a ≤ Cb. The proof of Lemma 2.3 relies on the following two auxiliary results,

whose proofs are given in Section 2.6.1.

Proposition 2.9. Let θ = (α, β, γ, ν, a) ∈ Θ, d ∈ N and τ ∈
(

d
α+d , 1

]
. Then

sup
f∈Fd,θ

∫
{x:f(x)<δ}

a
(
f(x)

)
f(x)τ dx→ 0

as δ ↘ 0. Moreover, for every ρ > 0,

sup
f∈Fd,θ

∫
X
a
(
f(x)

)ρ
f(x)τ <∞.

Recall the definition of h−1
x (·) in (2.5). The first part of Lemma 2.10 below provides crude but

general bounds; the second gives much sharper bounds in a more restricted region.

Lemma 2.10. (i) Let f ∈ Fd and let α > 0. Then for every s ∈ (0, 1) and x ∈ Rd,

( s

Vd‖f‖∞

)1/d

≤ h−1
x (s) ≤ ‖x‖+

(µα(f)

1− s

)1/α

.

(ii) Fix θ = (α, β, γ, ν, a) ∈ Θ, and let Sn ⊆ (0, 1), Xn ⊆ Rd be such that

Cn := sup
f∈Fd,θ

sup
s∈Sn

sup
x∈Xn

a(f(x))d/(1∧β)s

f(x)
→ 0.

Then there exists n∗ = n∗(d, θ) ∈ N such that for all n ≥ n∗, s ∈ Sn, x ∈ Xn and f ∈ Fd,θ,

we have ∣∣∣∣Vdf(x)h−1
x (s)d −

dβ/2e−1∑
l=0

bl(x)s1+2l/d

∣∣∣∣ . s

{
a(f(x))d/(2∧β)s

f(x)

}β/d
,

where b0(x) = 1 and |bl(x)| . a(f(x))lf(x)−2l/d for l ≥ 1. Moreover, if β > 2, then

b1(x) = − ∆f(x)

2(d+ 2)V
2/d
d f(x)1+2/d

.

We are now in a position to prove Lemma 2.3.

Proof of Lemma 2.3. (i) We initially prove the result in the case d ≥ 3, α > 2d/(d − 2) and
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β ∈ (2, 4], where it suffices to show that

sup
f∈Fd,θ

∣∣∣∣Ef (Ĥn)−H +
Γ(k + 2/d)Γ(n)

2(d+ 2)V
2/d
d Γ(k)Γ(n+ 2/d)

∫
X

∆f(x)

f(x)2/d
dx

∣∣∣∣ = O

(
max

{
k

α
α+d−ε

n
α
α+d−ε

,
k
β
d

n
β
d

})

as n→∞, uniformly for k ∈ {1, . . . , k∗}. Fix f ∈ Fd,θ. Define cn := a(k/(n− 1))1/(1∧β), let

δn := kcdn log2(n− 1)/(n− 1) (2.12)

and let Xn := {x : f(x) ≥ δn}. Recall that an := 3(k + 1) log(n− 1) and let

ux,s :=
Vd(n− 1)h−1

x (s)d

eΨ(k)
.

The proof is based on (2.4) and Lemma 2.10(ii), which allow us to make the transformation

s = pn,x,u = hx(rn,u). Writing Ri, i = 1, . . . , 5 for remainder terms to be bounded at the end of

the proof, we can write

E(Ĥn) =

∫
X
f(x)

∫ ∞
0

log u dFn,x(u) dx

=

∫
Xn
f(x)

∫ 1

0

Bk,n−k(s) log ux,s ds dx+R1

=

∫
Xn
f(x)

∫ an
n−1

0

Bk,n−k(s) log ux,s ds dx+R1 +R2

=

∫
Xn
f(x)

∫ an
n−1

0

{
log
( (n− 1)s

eΨ(k)f(x)

)
−

V
−2/d
d s2/d∆f(x)

2(d+ 2)f(x)1+2/d

}
Bk,n−k(s) ds dx+

3∑
i=1

Ri

=

∫
Xn
f(x)

{
log

(
n− 1

f(x)

)
−Ψ(n)−

V
−2/d
d Bk+2/d,n−k ∆f(x)

2(d+ 2)Bk,n−k f(x)1+2/d

}
dx+

4∑
i=1

Ri

= H+log(n− 1)−Ψ(n)−
V
−2/d
d Γ(k + 2/d)Γ(n)

2(d+ 2)Γ(k)Γ(n+ 2/d)

∫
Xn

∆f(x)

f(x)2/d
dx+

5∑
i=1

Ri.

After multiplying the integrand by an appropriate positive power of δn/f(x), the first part of

Proposition 2.9 tells us that for every ε > 0,

sup
k∈{1,...,k∗}

k2/d

n2/d
sup

f∈Fd,θ

∫
X cn

∆f(x)

f(x)2/d
dx = O

(
k

α
α+d−ε

n
α
α+d−ε

)

as n → ∞. Since log(n − 1) − Ψ(n) = O(1/n), it now remains to bound R1, . . . , R5. Henceforth,

to save repetition, we adopt without further mention the convention that whenever an error term

inside O(·) or o(·) depends on k, this error is uniform for k ∈ {1, . . . , k∗}; thus g(n, k) = h(n, k) +

o(1) as n→∞ means supk∈{1,...,k∗} |g(n, k)− h(n, k)| → 0 as n→∞.
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To bound R1. By Lemma 2.10(i), we have V αd µα(f)d‖f‖α∞ ≥ ααdd/(α+ d)α+d. Hence

| log ux,s| ≤ log(n− 1) + |Ψ(k)| − log s+ | log ‖f‖∞|+ | log Vd|

+
d

α
| logµα(f)| − d

α
log(1− s) + d log

(
1 +

‖x‖
µ

1/α
α (f)

)
≤ log(n− 1) + |Ψ(k)| − log s+ max

{
log γ ,

1

α
log

(
V αd ν

d(α+ d)α+d

ααdd

)}
+ | log Vd|+

d

α
max

{
log ν ,

1

d
log

(
V αd γ

α(α+ d)α+d

ααdd

)}
− d

α
log(1− s)

+ d log

(
1 +
‖x‖(α+ d)

1
α+ 1

dV
1/d
d γ1/d

α1/dd1/α

)
. (2.13)

Moreover, for any C0, C1 ≥ 0, ε ∈ (0, α) and ε′ ∈ (0, ε), we have by Hölder’s inequality that

sup
f∈Fd,θ

∫
X cn
f(x)

{
C0 + log(1 + C1‖x‖)

}
dx ≤ δ

α−ε′
α+d
n sup

f∈Fd,θ

∫
X
f(x)

d+ε′
α+d
{
C0 + log(1 + C1‖x‖)

}
dx

≤ δ
α−ε′
α+d
n (1 + ν)

d+ε′
α+d

[∫
Rd

{
C0 + log(1 + C1‖x‖)

} α+d
α−ε′

(1 + ‖x‖α)
d+ε′
α−ε′

dx

]α−ε′
α+d

= o

(
k

α
α+d−ε

n
α
α+d−ε

)
.

Since |E(log B)| = Ψ(a+ b)−Ψ(a) when B ∼ Beta(a, b), we deduce that for each ε > 0,

R1 =

∫
X cn
f(x)

∫ 1

0

Bk,n−k(s) log ux,s ds dx = o

(
k

α
α+d−ε

n
α
α+d−ε

)
as n→∞, uniformly for f ∈ Fd,θ.

To bound R2. For random variables B1 ∼ Beta(k, n− k) and B2 ∼ Bin
(
n− 1, an/(n− 1)

)
we

have that for every ε > 0,

P
(
B1 ≥ an/(n− 1)

)
= P(B2 ≤ k − 1) ≤ exp

(
− (an − k + 1)2

2an

)
= o(n−(3−ε)), (2.14)

where the inequality follows from standard bounds on the left-hand tail of the binomial distribution

(see, e.g. Shorack and Wellner (2009), Equation (6), page 440). Now, for any C1 > 0, we have

α log(1 +C1‖x‖) ≤ (1 +C1‖x‖)α− 1, so that supf∈Fd,θ
∫
X f(x) log(1 +C1‖x‖) dx <∞. Moreover,

−
∫ 1

an
n−1

log(1− s)Bk,n−k(s) ds ≤ n− 1

n− k − 1

∫ 1

an
n−1

Bk,n−k−1(s) ds = o(n−(3−ε)),

for every ε > 0, by a virtually identical argument to (2.14). We therefore deduce from these facts

and (2.13) that for each ε > 0,

R2 =

∫
Xn
f(x)

∫ 1

an
n−1

Bk,n−k(s) log ux,s ds dx = o(n−(3−ε)), (2.15)

which again holds uniformly in f ∈ Fd,θ.
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To bound R3. We can write

R3 =

∫
Xn
f(x)

∫ an
n−1

0

[{
log

(
Vdf(x)h−1

x (s)d

s

)
− Vdf(x)h−1

x (s)d − s
s

}
+

{
Vdf(x)h−1

x (s)d − s
s

+
V
−2/d
d s2/d∆f(x)

2(d+ 2)f(x)1+2/d

}]
Bk,n−k(s) ds dx

=: R31 +R32,

say. Now, note that

sup
k∈{1,...,k∗}

sup
f∈Fd,θ

sup
s∈(0,an/(n−1)]

sup
x∈Xn

a(f(x))ds

f(x)
≤ 6

log(n− 1)
→ 0.

It follows by Lemma 2.10(ii) that there exist a constant C = C(d, θ) > 0 and n1 = n1(d, θ) ∈ N
such that for n ≥ n1, k ∈ {1, . . . , k∗}, s ≤ an/(n− 1) and x ∈ Xn,

∣∣∣∣Vdf(x)h−1
x (s)d − s
s

+
s2/d∆f(x)

2(d+ 2)V
2/d
d f(x)1+2/d

∣∣∣∣ ≤ C{sa(f(x))d/2

f(x)

}β/d
,

and ∣∣∣∣Vdf(x)h−1
x (s)d − s
s

∣∣∣∣ ≤ d1/2V
−2/d
d s2/da(f(x))

2(d+ 2)f(x)2/d
+ C

{
sa(f(x))d/2

f(x)

}β/d
≤ 1

2
.

Thus, for n ≥ n1 and k ∈ {1, . . . , k∗}, using the fact that | log(1 + z)− z| ≤ z2 for |z| ≤ 1/2,

|R31| ≤ 2

∫
Xn
f(x)

∫ 1

0

[{
dV
−4/d
d s4/da(f(x))2

4(d+ 2)2f(x)4/d
+ C2

{
sa(f(x))d/2

f(x)

}2β/d]
Bk,n−k(s) ds dx

≤
dV
−4/d
d Γ(k + 4/d)Γ(n)

2(d+ 2)2Γ(k)Γ(n+ 4/d)

∫
Xn
a(f(x))2f(x)1−4/d dx

+
2C2Γ(k + 2β/d)Γ(n)

Γ(k)Γ(n+ 2β/d)

∫
Xn
a(f(x))βf(x)1−2β/d dx.

On the other hand, we also have for n ≥ n1 and k ∈ {1, . . . , k∗} that

|R32| ≤ C
∫
Xn
f(x)

∫ 1

0

{
sa(f(x))d/2

f(x)

}β/d
Bk,n−k(s) ds dx

≤ CΓ(k + β/d)Γ(n)

Γ(k)Γ(n+ β/d)

∫
Xn
a(f(x))β/2f(x)1−β/d dx.

Multiplying each of the integrals by f(x)/δn to an appropriate positive power if necessary and by

the second part of Proposition 2.9, for every ε > 0,

max(|R31|, |R32|) = O

(
max

{
k

α
α+d−ε

n
α
α+d−ε

,
k
β
d

n
β
d

})
,

uniformly for f ∈ Fd,θ.

To bound R4. We have

R4 =

∫
Xn
f(x)

∫ 1

an
n−1

{
log

(
(n− 1)s

eΨ(k)f(x)

)
−

V
−2/d
d s2/d∆f(x)

2(d+ 2)f(x)1+2/d

}
Bk,n−k(s) ds dx.
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Consider the random variable B1 ∼ Beta(k, n − k). Then, using (2.14) and the fact that (n −
1)s/eΨ(k) ≥ 1 for s ≥ an/(n− 1) and n ≥ 3, we conclude that for every ε > 0 and n ≥ 3,

|R4| ≤
{

log
(n− 1

eΨ(k)

)
+

∫
Xn
f(x)

(
| log f(x)|+ a(f(x))

f(x)
2
dV

2
d

d

)
dx

}
P
(

B1 ≥
an
n− 1

)
= o(n−(3−ε)),

uniformly for f ∈ Fd,θ, since we have supf∈Fd,θ
∫
Xn f(x)| log f(x)| dx < ∞ by Lemma 2.11(i) in

Section 2.6.2.

To bound R5. We use the fact that for f ∈ Fd,θ, x ∈ X and ε′ > 0,

| log f(x)| ≤
∣∣log ‖f‖∞

∣∣+ log
(‖f‖∞
f(x)

)
≤ max

{
log γ , log Vd +

1

α
log

(
νd(α+ d)α+d

ααdd

)}
+

1

ε′

( γ

f(x)

)ε′
.

It follows from the first part of Proposition 2.9 (having replaced a(δ) with max{a(δ), | log δ|} if

necessary) that for each ε > 0,

R5 =

∫
X cn
f(x){log(n− 1)−Ψ(n)− log f(x)} dx = o

(
k

α
α+d−ε

n
α
α+d−ε

)
uniformly in f ∈ Fd,θ. The claim follows when d ≥ 3, α > 2d/(d− 2) and β ∈ (2, 4].

We now consider the case where either d ≤ 2 or α ≤ 2d/(d− 2) or β ∈ (0, 2], for which we need

only show that

sup
f∈Fd,θ

|Ef (Ĥn)−H| = O

(
max

{
k

α
α+d−ε

n
α
α+d−ε

,
k
β
d

n
β
d

})
.

The calculation here is very similar, but we approximate log ux,s simply by log
( (n−1)s
eΨ(k)f(x)

)
. Writing

R′1, . . . , R
′
5 for the modified error terms, we obtain

Ef (Ĥn) = H + log(n− 1)−Ψ(n) +

5∑
i=1

R′i.

Here, R′1 = R1 = o
{(

k
n

)α/(α+d)−ε}
, and R′2 = R2 = o(n−(3−ε)), for every ε > 0 in both cases. On

the other hand,

R′3 =

∫
Xn
f(x)

∫ an
n−1

0

log

(
Vdf(x)h−1

x (s)d

s

)
Bk,n−k(s) ds dx = O

(
max

{
k

α
α+d−ε

n
α
α+d−ε

,
kβ/d

nβ/d

})
for every ε > 0, by Lemma 2.10(ii). Similarly, for every ε > 0,

R′4 =

∫
Xn
f(x)

∫ 1

an
n−1

log

(
(n− 1)s

eΨ(k)f(x)

)
Bk,n−k(s) ds dx = o(n−(3−ε)),

and R′5 = R5 = o
{(

k
n

)α/(α+d)−ε}
. All of these bounds hold uniformly in f ∈ Fd,θ, so the claim is

established for this setting.

Finally, consider now the case d ≥ 3, α > 2d/(d− 2) and β > 4. Again the calculation is very

similar to the earlier cases, with the main difference being that in bounding the error corresponding
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to R3, we require a higher-order Taylor expansion of

log

(
1 +

Vdf(x)h−1
x (s)d − s
s

)
.

This can be done using Lemma 2.10(ii); we omit the details for brevity.

Proof of Corollary 2.4. It is convenient to write d′ := bd/4c+ 1 and β′ := dβ/2e − 1. We have

|Ef (Ĥw
n )−H| =

∣∣∣∣ k∑
j=1

wj

{
Ef (log ξ(j),1)−H −

bd/4c∑
l=1

Γ(j + 2l/d)Γ(n)

Γ(j)Γ(n+ 2l/d)
λl

}∣∣∣∣
≤
∣∣∣∣ k∑
j=1

wj

{
Ef (log ξ(j),1)−H −

β′∑
l=1

Γ(j + 2l/d)Γ(n)

Γ(j)Γ(n+ 2l/d)
λl

}∣∣∣∣
+

∣∣∣∣ k∑
j=1

wj

β′∑
l=d′

Γ(j + 2l/d)Γ(n)

Γ(j)Γ(n+ 2l/d)
λl

}∣∣∣∣.
The first term can be bounded, uniformly for f ∈ Fd,θ and k ∈ {1, . . . , k∗}, using Lemma 2.3. For

the second term, we can use monotonicity properties of ratios of gamma functions to write

∣∣∣∣ k∑
j=1

wj

β′∑
l=d′

Γ(j + 2l/d)Γ(n)

Γ(j)Γ(n+ 2l/d)
λl

}∣∣∣∣ ≤ max
d′≤`≤β′

|λ`|
k∑
j=1

|wj |
β′∑
l=d′

Γ(k + 2l/d)Γ(n)

Γ(k)Γ(n+ 2l/d)

≤ d1/2‖w‖
(
β′ − d′ + 1

)Γ(k + 2d′/d)Γ(n)

Γ(k)Γ(n+ 2d′/d)
max

d′≤l≤β′
|λl| = O

(k2d′/d

n2d′/d

)
,

uniformly for f ∈ Fd,θ. The result follows.

2.5.2 Proof of Lemma 2.7

Since this proof is long, we focus here on the main argument, and defer proofs of bounds on the

many error terms to Section 2.6.5.

Proof of Lemma 2.7. We employ the same notation as in the proof of Lemma 2.3, except that

we redefine δn so that δn := kcdn log3(n − 1)/(n − 1). We write Xn := {x : f(x) ≥ δn} for this

newly-defined δn. Similar to the proof of Lemma 2.3, all error terms inside O(·) and o(·) that

depend on k are uniform for k ∈ {k∗0 , . . . , k∗1}, and we now adopt the additional convention that,

where relevant, these error terms are also uniform for f ∈ Fd,θ. By the nested properties of the

classes Fd,θ with respect to the smoothness parameter β, we may assume without loss of generality

that β ∈ (0, 1]. We first deal with the variance of the unweighted estimator Ĥn, and note that

Var Ĥn = n−1 Var log ξ1 + (1− n−1) Cov(log ξ1, log ξ2)

= n−1 Var log ξ1 + (1− n−1)
{

Cov
(
log(ξ1f(X1)), log(ξ2f(X2))

)
− 2 Cov

(
log(ξ1f(X1)), log f(X2)

)}
. (2.16)

We claim that for every ε > 0,

Var log ξ1 = V (f) +
1

k
{1 + o(1)}+O

{
max

(
kβ/d

nβ/d
log n ,

k
α
α+d−ε

n
α
α+d−ε

)}
(2.17)
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as n → ∞. The proof of this claim uses similar methods to those in the proof of Lemma 2.3. In

particular, writing S1, . . . , S5 for remainder terms to be bounded later, we have

E(log2 ξ1) =

∫
X
f(x)

∫ ∞
0

log2 u dFn,x(u) dx

=

∫
Xn
f(x)

∫ 1

0

Bk,n−k(s) log2 ux,s ds dx+ S1

=

∫
Xn
f(x)

∫ an
n−1

0

Bk,n−k(s) log2 ux,s ds dx+ S1 + S2

=

∫
Xn
f(x)

∫ an
n−1

0

log2

(
(n− 1)s

eΨ(k)f(x)

)
Bk,n−k(s) ds dx+ S1 + S2 + S3

=

∫
Xn
f(x)

[
log2 f(x)− 2{log(n− 1)−Ψ(n)} log f(x)

+ Ψ′(k)−Ψ′(n) + {log(n− 1)−Ψ(n)}2
]
dx+

4∑
i=1

Si

=

∫
X
f(x) log2 f(x) dx+

5∑
i=1

Si +
1

k
{1 + o(1)}, (2.18)

as n→∞. In Section 2.6.5, we show that for every ε > 0,

5∑
i=1

|Si| = O

{
max

(
kβ/d

nβ/d
log n ,

k
α
α+d−ε

n
α
α+d−ε

)}
(2.19)

as n→∞. Combining (2.18) with (2.19) and Lemma 2.3, we deduce that (2.17) holds.

The next step of our proof consists of showing that for every ε > 0,

Cov
(
log(ξ1f(X1)), log f(X2)

)
= O

(
max

{
k−

1
2 + 2α−ε

α+d

n
2α−ε
α+d

,
k

1
2 + β

d

n1+ β
d

log2+β/d n

})
(2.20)

as n→∞. Define

F−n,x(u) :=

n−2∑
j=k

(
n− 2

j

)
pjn,x,u(1− pn,x,u)n−2−j ,

F̃n,x(u) :=

n−2∑
j=k−1

(
n− 2

j

)
pjn,x,u(1− pn,x,u)n−2−j ,

so that

P(ξ1 ≤ u|X1 = x,X2 = y) =

{
F−n,x(u) if ‖x− y‖ > rn,u

F̃n,x(u) if ‖x− y‖ ≤ rn,u.

Writing ũn,x,y := Vd(n− 1)‖x− y‖de−Ψ(k), we therefore have that

Cov
(

log(ξ1f(X1)), log f(X2)
)

=

∫
X×X

f(x)f(y) log f(y)

∫ ∞
ũn,x,y

log
(
uf(x)

)
d(F̃n,x − F−n,x)(u) dx dy

−H(f)

∫
X
f(x)

∫ ∞
0

log
(
uf(x)

)
d(F−n,x − Fn,x)(u) dx. (2.21)
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To deal with the first term in (2.21), we make the substitution

y = yx,z := x+
rn,1

f(x)1/d
z, (2.22)

and let dn := (24 log n)1/d. Writing T1, T2, T3 for remainder terms to be bounded later, for every

ε > 0 and for k ≥ 2,∫
X×X

f(x)f(y) log f(y)

∫ ∞
ũn,x,y

log(uf(x)) d(F̃n,x − F−n,x)(u) dy dx

=rdn,1

∫
Xn

∫
B0(dn)

f(yx,z) log f(yx,z)

∫ ∞
‖z‖d
f(x)

log(uf(x)) d(F̃n,x − F−n,x)(u)dzdx+T1

=rdn,1

∫
Xn
f(x) log f(x)

∫
B0(dn)

∫ ∞
‖z‖d
f(x)

log(uf(x)) d(F̃n,x − F−n,x)(u)dzdx+T1+T2

=
k − 1

n−k−1

∫
Xn
f(x) log f(x)dx

∫ an
n−1

0

log
( (n−1)s

eΨ(k)

)
Bk,n−k−1(s)

(
1− (n−2)s

k − 1

)
ds+

3∑
i=1

Ti

=
H(f)

n
+O(n−2) + o

(
k

α
α+d−ε

n1+ α
α+d−ε

)
+

3∑
i=1

Ti. (2.23)

In Section 2.6.5, we show that for every ε > 0,

3∑
i=1

|Ti| = O

(
max

{
k−

1
2 + 2α

α+d−ε

n
2α
α+d−ε

,
k

1
2 + β

d

n1+ β
d

log2+β/d n

})
(2.24)

as n→∞. We now deal with the second term in (2.21). Writing U1, U2 for remainder terms to be

bounded later, for every ε > 0,∫
X
f(x)

∫ ∞
0

log
(
uf(x)

)
d(F−n,x − Fn,x)(u) dx

=

∫
Xn
f(x)

∫ an
n−1

0

log(ux,sf(x))Bk,n−k−1(s)
{ (n− 1)s− k

n− k − 1

}
ds dx+ U1

=

∫
Xn
f(x)

∫ 1

0

log
( (n− 1)s

eΨ(k)

)
Bk,n−k−1(s)

{ (n− 1)s− k
n− k − 1

}
ds dx+ U1 + U2

=
1

n− 1
+ U1 + U2 + o

(
k

α
α+d−ε

n1+ α
α+d−ε

)
. (2.25)

In Section 2.6.5, we show that for every ε > 0,

|U1|+ |U2| = O

(
k1/2

n
max

{
kβ/d

nβ/d
,
k

α
α+d−ε

n
α
α+d−ε

})
. (2.26)

From (2.21), (2.23), (2.24), (2.25) and (2.26), we conclude that (2.20) holds.

By (2.16), it remains to consider Cov
(
log(ξ1f(X1)), log(ξ2f(X2))

)
. We require some further

notation. Let Fn,x,y denote the conditional distribution function of (ξ1, ξ2) given X1 = x,X2 = y.

Let a−n := (k − 3k1/2 log1/2 n) ∨ 0, a+
n := (k + 3k1/2 log1/2 n) ∧ (n− 1), and let

vx := inf{u ≥ 0 : (n− 1)pn,x,u = a+
n }, lx := inf{u ≥ 0 : (n− 1)pn,x,u = a−n },
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so that P{ξ1 ≤ lX1
} = o(n−(9/2−ε)) and P{ξ1 ≥ vX1

} = o(n−(9/2−ε)) for every ε > 0. For pairs

(u, v) with u ≤ vx and v ≤ vy, let (M1,M2,M3) ∼ Multi(n − 2; pn,x,u, pn,y,v, 1 − pn,x,u − pn,y,v),
and write

Gn,x,y(u, v) := P(M1 ≥ k,M2 ≥ k),

so that Fn,x,y(u, v) = Gn,x,y(u, v) for ‖x− y‖ > rn,u + rn,v. Write

Σ :=

(
1 αz

αz 1

)

with αz := V −1
d µd

(
B0(1) ∩ Bz(1)

)
for z ∈ Rd, let ΦΣ(s, t) denote the distribution function of

a N2(0,Σ) random vector at (s, t), and let Φ denote the standard univariate normal distribu-

tion function. Writing Wi for remainder terms to be bounded later, and writing h(u, v) :=

log(uf(x)) log(vf(y)) as shorthand, we have

Cov(log(ξ1f(X1)), log(ξ2f(X2)))

=

∫
X×X

f(x)f(y)

∫ ∞
0

∫ ∞
0

h(u, v) d(Fn,x,y − Fn,xFn,y)(u, v) dx dy

=

∫
X×X

f(x)f(y)

∫
[lx,vx]×[ly,vy ]

h(u, v) d(Fn,x,y − Fn,xFn,y)(u, v) dx dy +W1

=

∫
X×X

f(x)f(y)

∫
[lx,vx]×[ly,vy ]

h(u, v) d(Fn,x,y−Gn,x,y)(u, v)dxdy − 1

n
+

2∑
i=1

Wi

=

∫
Xn×X

f(x)f(y)

∫ vx

lx

∫ vy

ly

(Fn,x,y −Gn,x,y)(u, v)

uv
du dv dx dy − 1

n
+

3∑
i=1

Wi

=
rdn,1
k

∫
B0(2)

∫ ∞
−∞

∫ ∞
−∞
{ΦΣ(s, t)− Φ(s)Φ(t)} ds dt dz − 1

n
+

4∑
i=1

Wi

=
eΨ(k)

k(n− 1)
− 1

n
+

4∑
i=1

Wi = O

(
1

nk

)
+

4∑
i=1

Wi. (2.27)

The proof in the unweighted case is completed by showing in Section 2.6.5 that for every ε > 0,

4∑
i=1

|Wi| = O

(
max

{
log

5
2 n

nk
1
2

,
k

3
2 + α−ε

α+d

n1+ α−ε
α+d

,
k

3
2 + 2β

d

n1+ 2β
d

,
k(1+ d

2β ) α−εα+d

n1+ α−ε
α+d

,
k

1
2 + β

d log n

n1+ β
d

,
k

2α−ε
α+d

n
2α−ε
α+d

})
as n→∞.

The proof in the weighted case uses similar arguments; details are deferred to Section 2.6.5.

2.5.3 Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Writing jt := btk/dc for t = 1, . . . , d and d′ := bd/4c+ 1 for convenience, a

sufficient condition for W(k) 6= ∅ is that the matrix A(k) ∈ Rd′×d′ with (l, t)th entry

A
(k)
lt = Γ(jt)

−1Γ(jt + 2(l − 1)/d)k−2(l−1)/d,
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is invertible. This follows because, writing e1 := (1, 0, . . . , 0)T ∈ Rd′ we can then define w = w(k) ∈
W(k) by setting

(wjt)
bd/4c+1
t=1 := (A(k))−1e1

and setting all other entries of w to be zero. Now define A ∈ Rd′×d′ to have (l, t)th entry Alt :=

(t/d)2(l−1)/d. Since x−aΓ(x)−1Γ(x + a) → 1 as x → ∞ for a ∈ R, we have ‖A(k) − A‖ → 0 as

k →∞. Now, A is a Vandermonde matrix (depending only on d) and as such has determinant

|A| =
∏

1≤t1<t2≤d′
d−2/d(t

2/d
2 − t2/d1 ) > 0.

Hence, by the continuity of the determinant and eigenvalues of a matrix, we have that there exists

kd > 0 such that, for k ≥ kd, the matrix A(k) is invertible and

‖(A(k))−1e1‖ ≤ |λmin(A(k))|−1 ≤ 2|λmin(A)|−1,

where λmin(·) denotes the eigenvalue of a matrix with the smallest absolute value. It follows that,

for each k ≥ kd, there exists w(k) ∈ W(k) satisfying supk≥kd ‖w
(k)‖ <∞, as required.

Now, by Corollary 2.4 and the fact that w ∈ W(k), we have for ε > 0 sufficiently small,

Ef (Ĥw
n )−H(f) = O

(
max

{
k

α
α+d−ε

n
α
α+d−ε

,
k

2d′
d

n
2d′
d

,
k
β
d

n
β
d

})
= o(n−1/2),

uniformly for f ∈ Fd,θ, under our conditions on k∗1 , α and β. By Lemma 2.7 we have Var Ĥw
n =

n−1V (f) + o(n−1) uniformly for f ∈ Fd,θ. Note that by Cauchy–Schwarz, very similar arguments

to those used at (2.18) and Lemma 2.11 in Section 2.6.2 we have that, for j ∈ supp(w),∣∣∣Covf

(
log
(
ξ(j),1f(X1)

)
, log f(X1)

)∣∣∣ ≤ {V (f)Ef
[
log2

(
ξ(j),1f(X1)

)]}1/2 → 0

uniformly for f ∈ Fd,θ. Therefore, also using (2.20), we have that

Varf (Ĥw
n −H∗n) = Varf Ĥ

w
n + 2Covf (Ĥw

n , log f(X1)) + n−1V (f)

= Varf Ĥ
w
n − n−1V (f) +

2

n

k∑
j=1

wjCovf

(
log
(
ξ(j),1f(X1)

)
, log f(X1)

)

+ 2(1− n−1)

k∑
j=1

wjCov
(

log
(
ξ(j),2f(X2)

)
, log f(X1)

)
= o(n−1)

as n→∞, uniformly for f ∈ Fd,θ. The conclusion (2.3) follows on writing

Ef
{

(Ĥw
n −H∗n)2

}
= Varf (Ĥw

n −H∗n) + (Ef Ĥw
n −H(f))2,

and the final conclusion is then immediate.
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Proof of Theorem 2.2. We have

dBL

(
L
(
n1/2{Ĥw

n −H(f)}
)
,L
(
n1/2{H∗n −H(f)}

)))
≤ sup
h∈H

Ef
∣∣h(n1/2{Ĥw

n −H(f)}
)
− h
(
n1/2{H∗n −H(f)}

)∣∣
≤ n1/2Ef |Ĥw

n −H∗n| ≤ n1/2
[
Ef
{

(Ĥw
n −H∗n)2

}]1/2
. (2.28)

Now write H∗ for the class of functions h : R → R having Lipschitz constant at most 1, and

let Z ∼ N
(
0, V (f)

)
. Then by standard properties of the Wasserstein distance (e.g. Gibbs and

Su, 2002, p. 424) and the non-uniform version of the Berry–Esseen theorem (e.g. Paditz, 1989,

Theorem 1),

dBL

(
L
(
n1/2{H∗n −H(f)}

))
, N
(
0, V (f)

))
≤ sup
h∈H∗

∣∣Efh(n1/2{H∗n −H(f)}
)
− Eh(Z)

∣∣
=

∫ ∞
−∞

∣∣∣Pf(n1/2{H∗n −H(f)} ≤ x
)
− P(Z ≤ x)

∣∣∣ dx ≤ 78β3(f)

n1/2V (f)
, (2.29)

where

β3(f) := Ef
{∣∣log f(X1) +H(f)

∣∣3} =

∫
X
f(x)| log f(x) +H(f)|3 dx.

We conclude from (2.28) and (2.29), together with Theorem 2.1 and Lemma 2.11 in Section 2.6.2,

that

sup
k∈{k∗0 ,...,k∗1}

sup
f∈Fd,θ

dBL

(
L
(
n1/2(Ĥw

n −H(f))
)
, N
(
0, V (f)

))
→ 0

as n→∞, as required.

For the second part of the theorem, set

εn = εwn (d, θ) :=
supk∈{1,...,k∗} supf∈Fd,θ

(
2Ef

[
{Ṽ wn − V (f)}2

])1/3

inff∈Fd,θ V (f)2/3
,

so that εn → 0, by Lemmas 2.11(ii) and 2.13 in Section 2.6.2. Then, by two applications of

Markov’s inequality, for n large enough that εn ≤ 1,

Pf
(∣∣∣∣ (V̂ wn )1/2

V 1/2(f)
− 1

∣∣∣∣ ≥ εn) ≤ Pf
(∣∣∣∣ Ṽ wnV (f)

− 1

∣∣∣∣ ≥ εn)+ Pf (Ṽ wn ≤ 0)

≤
Ef
[
{Ṽ wn − V (f)}2

]
V (f)2

(
1

ε2n
+ 1

)
≤ εn.

For n ∈ N and L ≥ 1, define hn,L : R→ [0, 1] by

hn,L(x) :=


0 if |x| > zq/2(1 + εn) + 1/L

L{zq/2(1 + εn) + 1/L− |x|} if 0 < |x| − zq/2(1 + εn) ≤ 1/L

1 if |x| ≤ zq/2(1 + εn).
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Thus hn,L has Lipschitz constant L and hn,L(x) ≥ 1{|x|≤zq/2(1+εn)}. Then, with Z ∼ N(0, 1),

Pf
(
In,q 3 H(f)

)
≤ Pf

(
n1/2|Ĥw

n −H(f)|
V 1/2(f)

≤ zq/2(1 + εn)

)
+ Pf

(
V 1/2(f)

(V̂ wn )1/2
≤ 1

1 + εn

)
≤ Efhn,L

(
n1/2{Ĥw

n −H(f)}
V 1/2(f)

)
+ εn

≤ Efhn,L(Z) + εn + LdBL

(
L
(
n1/2{Ĥw

n −H(f)}
V 1/2(f)

)
,L(Z)

)
≤ P

(
|Z| ≤ zq/2(1 + εn) + L−1

)
+ εn

+ Lmax
(
(1, V −1/2(f)

)
dBL

(
L
(
n1/2(Ĥw

n −H(f))
)
, N
(
0, V (f)

))
.

Since L ≥ 1 was arbitrary, we deduce from the first part of the theorem and Lemma 2.11 in

Section 2.6.2 that

lim sup
n→∞

sup
q∈(0,1)

sup
k∈{k∗0 ,...,k∗1}

sup
f∈Fd,θ

Pf
(
In,q 3 H(f)

)
− (1− q) ≤ inf

L≥1

2

L(2π)1/2
= 0.

The lower bound is obtained by a similar argument, omitted for brevity.

2.6 Appendix

2.6.1 Proofs of auxiliary results

Proof of Proposition 2.9. Fix τ ∈
(

d
α+d , 1

]
. We first claim that given any ε > 0, there exists Aε > 0

such that a(δ) ≤ Aεδ−ε for all δ ∈ (0, γ]. To see this, observe that there exists δ0 ∈ (0, γ] such that

a(δ) ≤ δ−ε for δ ≤ δ0. But then

sup
δ∈(0,γ]

δεa(δ) ≤ max
{

1, γεa(δ0)
}
≤ γεδ−ε0 ,

which establishes the claim, with Aε := γεδ−ε0 . Now choose ε = 1
3

(
τ − d

α+d

)
and let τ ′ :=

τ
3 + 2d

3(α+d) ∈
(

d
α+d , 1

)
. Then, by Hölder’s inequality, and since ατ ′/(1− τ ′) > d,

sup
f∈Fd,θ

∫
{x:f(x)<δ}

a
(
f(x)

)
f(x)τ dx ≤ Aεδε sup

f∈Fd,θ

∫
{x:f(x)<δ}

f(x)τ
′
dx

≤ Aεδε(1 + ν)τ
′
{∫

Rd
(1 + ‖x‖α)−

τ′
1−τ′ dx

}1−τ ′

→ 0

as δ ↘ 0, as required.

For the second part, fix ρ > 0, set ε := 1
2

(
τ − d

α+d

)
and τ ′ := τ

2 + d
2(α+d) ∈

(
d

α+d , 1
)
. Then, by

Hölder’s inequality again,

sup
f∈Fd,θ

∫
X
a
(
f(x)

)ρ
f(x)τ dx ≤ Aε/ρ sup

f∈Fd,θ

∫
X
f(x)τ

′
dx

≤ Aε/ρ(1 + ν)τ
′
{∫

Rd
(1 + ‖x‖α)−

τ′
1−τ′ dx

}1−τ ′

<∞,
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as required.

Proof of Lemma 2.10. (i) The lower bound is immediate from the fact that hx(r) ≤ Vd‖f‖∞rd for

any r > 0. For the upper bound, observe that by Markov’s inequality, for any r > 0,

hx(‖x‖+ r) =

∫
Bx(‖x‖+r)

f(y) dy ≥
∫
B0(r)

f(y) dy ≥ 1− µα(f)

rα
.

The result follows on substituting r =
(µα(f)

1−s
)1/α

for s ∈ (0, 1).

(ii) We first prove this result in the case β ∈ (2, 4], giving the stated form of b1(·). Let

C := 4dV
−β/d
d /(d+ β), and let y := Ca(f(x))β/2s{s/f(x)}β/d. Now, by the mean value theorem,

we have for r ≤ ra(x) that∣∣∣∣hx(r)− Vdrdf(x)− Vd
2(d+ 2)

rd+2∆f(x)

∣∣∣∣ ≤ a(f(x))f(x)
dVd

2(d+ β)
rd+β .

It is convenient to write

sx,y := s− s1+2/d∆f(x)

2(d+ 2)V
2/d
d f(x)1+2/d

+ y.

Then, provided sx,y ∈ (0, Vdr
d
a(x)f(x)], we have

hx

(
s

1/d
x,y

{Vdf(x)}1/d

)
≥ sx,y +

V
−2/d
d ∆f(x)

2(d+ 2)f(x)1+2/d
s1+2/d
x,y −

a(f(x))dV
−β/d
d

2(d+ β)f(x)β/d
s1+β/d
x,y .

Now, by our hypothesis, we know that

sup
f∈Fd,θ

sup
s∈Sn

sup
x∈Xn

max

{
V
−2/d
d s2/d|∆f(x)|

2(d+ 2)f(x)1+2/d
,
y

s

}
≤ max

{
d1/2V

−2/d
d C

2/d
n

2(d+ 2)
, CCβ/dn

}
→ 0

as n→∞. Hence there exists n1 = n1(d, θ) ∈ N such that for all n ≥ n1, all f ∈ Fd,θ, s ∈ Sn and

x ∈ Xn, we have

1

2(d+ 2)
(s1+2/d
x,y − s1+2/d) ≥ −s

1+2/d

2d

{
d1/2V

−2/d
d a(f(x))s2/d

2(d+ 2)f(x)2/d
+
y

s

}
.

Moreover, there exists n2 = n2(d, θ) ∈ N such that for all n ≥ n2, all s ∈ Sn, x ∈ Xn and f ∈ Fd,θ
we have

|sx,y|1+β/d ≤ 2s1+β/d.

Finally, we can choose n3 = n3(d, θ) ∈ N such that

max

{
C

(4−β)/d
n

4(d+ 2)V
(4−β)/d
d

,
2d1/2C

2/d
n

(d+ β)V
2/d
d

,
d3/2C

2/d
n

2(d+ 2)(d+ β)V
2/d
d

}
≤ d

d+ β

and such that Cn ≤ (8d1/2)−dVd/2 for n ≥ n3. It follows that for n ≥ max(n1, n2, n3) =: n∗, for
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f ∈ Fd,θ, s ∈ Sn and for x ∈ Xn, we have that sx,y ∈ (0, Vdr
d
a(x)f(x)] and

hx

(
s

1/d
x,y

{Vdf(x)}1/d

)
− s

≥ y − a(f(x))s1+2/d

2d1/2V
2/d
d f(x)2/d

{
d1/2V

−2/d
d a(f(x))s2/d

2(d+ 2)f(x)2/d
+
y

s

}
− da(f(x))s1+β/d

(d+ β)V
β
d

d f(x)
β
d

≥ a(f(x))β/2s1+β/d

f(x)β/d

[
C − a(f(x))2−β/2

4(d+ 2)V
4/d
d

{
s

f(x)

}(4−β)/d

− Ca(f(x))

2d1/2V
2/d
d

{
s

f(x)

}2/d

−
dV
−β/d
d

d+ β

]
≥ 0.

The lower bound is proved by very similar calculations, and the result for the case β ∈ (2, 4] follows.

The general case can be proved using very similar arguments, and is omitted for brevity.

2.6.2 Auxiliary results for the proof of Theorem 2.2

Recall the definition of V (f) given in the statement of Theorem 2.1.

Lemma 2.11. For each d ∈ N and θ ∈ Θ and m ∈ N, we have

(i) supf∈Fd,θ
∫
X f(x)| logm f(x)| dx <∞;

(ii) inff∈Fd,θ V (f) > 0;

Proof of Lemma 2.11. Fix d ∈ N and θ = (α, β, γ, ν, a) ∈ Θ.

(i) For ε ∈ (0, 1) and t ∈ (0, 1], we have

log
1

t
≤ 1

ε
t−ε.

Let ε = α
m(α+2d) , so that α(1−mε)

mε = 2d. Then, by Hölder’s inequality, for any f ∈ Fd,θ,∫
X
f(x)| logm f(x)| dx ≤ 2m−1

∫
X
f(x) logm

(‖f‖∞
f(x)

)
dx+ 2m−1| logm ‖f‖∞|

≤ 2m−1‖f‖mε∞
εm

∫
X
f(x)1−mε dx+ 2m−1| logm ‖f‖∞|

≤ 2m−1γmε

εm
(1 + ν)1−mε

{∫
X

(1 + ‖x‖α)−
1−mε
mε dx

}mε
+ 2m−1 max

{
logm γ ,

1

αm
logm

(
V αd ν

d(α+ d)α+d

ααdd

)}
,

where the bound on
∣∣logm ‖f‖∞

∣∣ comes from (2.13).

(ii) Now define

Ad,θ := max

{
sup

f∈Fd,θ
|H(f)| , −1

2
log inf

f∈Fd,θ
‖f‖∞ , 1

}

and the set Sd,θ := {x ∈ X : e−4Ad,θ ≤ f(x) ≤ e−2Ad,θ}. For f ∈ Fd,θ, x ∈ Sd,θ and y ∈
Bx({8d1/2a(e−4Ad,θ )}−1/(β∧1)) we have by Lemma 2.12 below that

|f(y)− f(x)| ≤ 15d1/2

7
a(e−4Ad,θ )e−2Ad,θ‖y − x‖β∧1. (2.30)
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By the continuity of f , there exists x0 ∈ Sd,θ such that f(x0) = 1
2e
−2Ad,θ (1 + e−2Ad,θ ). Thus,

by (2.30), we have that Bx0
(rd,θ) ⊆ Sd,θ, where

rd,θ :=
{ 7(1− e−2Ad,θ )

30d1/2a(e−4Ad,θ )

}1/(β∧1)

∧ 1

8d1/2a(e−4Ad,θ )}1/(β∧1)
.

Hence

V (f) = Ef [{log f(X1) +H(f)}2] ≥ A2
d,θPf (X1 ∈ Sd,θ) ≥ A2

d,θe
−4Ad,θVdr

d
d,θ,

as required.

The following auxiliary result provides control on deviations of the density arising from the

smoothness condition of our Fd,θ classes.

Lemma 2.12. For θ = (α, β, γ, ν, a) ∈ Θ, m := dβe − 1, f ∈ Fd,θ and y ∈ Bx
(
ra(x)

)
, we have,

for multi-indices t with |t| ≤ m, that

∣∣∣∂f t(y)

∂xt
− ∂f t(x)

∂xt

∣∣∣ ≤ 15d1/2

7
a
(
f(x)

)
f(x)‖y − x‖min(β−|t|,1).

Proof of Lemma 2.12. If |t| = m then the result follows immediately from the definition of Fd,θ.
Henceforth, therefore, assume that m ≥ 1 and |t| ≤ m−1. Writing |||·||| here for the largest absolute

entry of an array, we have for y ∈ Bx
(
ra(x)

)
that

∣∣∣∂f t(y)

∂xt
− ∂f t(x)

∂xt

∣∣∣ ≤ ‖y − x‖ sup
z∈Bx(‖y−x‖)

∥∥∥∇∂f t(z)
∂xt

∥∥∥
≤ ‖y − x‖‖f (|t|+1)(x)‖+ d1/2‖y − x‖ sup

z∈Bx(‖y−x‖)

∣∣∣∣∣∣∣∣∣f (|t|+1)(z)− f (|t|+1)(x)
∣∣∣∣∣∣∣∣∣

≤
m−|t|∑
`=1

d(`−1)/2‖y − x‖`‖f (|t|+`)(x)‖+ dm/2‖y − x‖m sup
z∈Bx(‖y−x‖)

∣∣∣∣∣∣∣∣∣f (m)(z)− f (m)(x)
∣∣∣∣∣∣∣∣∣

≤ a(f(x))f(x)‖y − x‖
{

1

1− d1/2‖y − x‖
+ dm/2‖y − x‖β−1

}
≤ 15d1/2

7
a(f(x))f(x)‖y − x‖,

as required.

Lemma 2.13. Under the conditions of Theorem 2.1 we have that

sup
k∈{k∗0 ,...,k∗1}

sup
f∈Fd,θ

Ef [{Ṽ wn − V (f)}2]→ 0.

Proof of Lemma 2.13. For w = (w1, . . . , wk)T ∈ W(k), write supp(w) := {j : wj 6= 0}. Then

|Ef Ṽ wn − V (f)| ≤
∣∣∣∣ k∑
j=1

wjEf log2 ξ(j),1 −
∫
X
f log2 f

∣∣∣∣+
∣∣Ef{(Ĥw

n )2} −H(f)2
∣∣

≤ ‖w‖1 max
j∈supp(w)

∣∣∣∣Ef log2 ξ(j),1−
∫
X
f log2 f

∣∣∣∣+ Varf Ĥ
w
n + |(Ef Ĥw

n )2−H(f)2|.

Thus, by Theorem 2.1, (2.18) in the proof of that result and Lemma 2.11(i), we have that
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supk∈{k∗0 ,...,k∗1} supf∈Fd,θ |Ef Ṽ
w
n − V (f)| → 0. Now,

Varf Ṽ
w
n ≤

‖w‖21
n

max
j∈supp(w)

Varf log2 ξ(j),1 + ‖w‖21 max
j,`∈supp(w)

∣∣Covf (log2 ξ(j),1, log2 ξ(`),2)
∣∣. (2.31)

Let a−n,j := (j − 3j1/2 log1/2 n)∨ 0 and a+
n,j := (j + 3j1/2 log1/2 n)∧ (n− 1). Mimicking arguments

in the proof of Theorem 2.1, for any m ∈ N, j ∈ supp(w) and ε > 0,

Ef
{

logm(ξ(j),1f(X1))
}

=

∫
X
f(x)

∫ ∞
0

logm
(
Vd(n− 1)f(x)h−1

x (s)d

eΨ(j)

)
Bj,n−j(s) ds dx

=

∫ a
+
n,j
n−1

a
−
n,j
n−1

logm
(

(n− 1)s

eΨ(j)

)
Bj,n−j(s) ds+O

(
max

{
kβ/d

nβ/d
logm−1 n ,

k
α
α+d−ε

n
α
α+d−ε

})
→ 0,

uniformly for j ∈ supp(w), k ∈ {k∗0 , . . . , k∗1} and f ∈ Fd,θ. Moreover, by Cauchy–Schwarz, we can

now show, for example, that

Ef log4 ξ(j),1 = Ef [{log(ξ(j),1f(X1))− log f(X1)}4]→ Ef log4 f(X1)

uniformly for j ∈ supp(w), k ∈ {k∗0 , . . . , k∗1} and f ∈ Fd,θ. Using a similar approach for the

covariance term in (2.31) we see that supk∈{k∗0 ,...,k∗1} supf∈Fd,θ Var Ṽ wn → 0 and the result follows.

2.6.3 Proof of Proposition 2.5

Proof of Proposition 2.5. In each of the three examples, we provide θ = (α, β, γ, ν, a) ∈ Θ such

that f ∈ Fd,θ. In fact, β > 0 may be chosen arbitrarily in each case.

(i) We may choose any α > 0, and then set ν = d2α/2−1Γ
(
α
2 + d

2

)
/Γ
(
1 + d

2

)
. We may also set

γ = (2π)−d/2. It remains to find a ∈ A such that (2.6) holds. Write Hr(y) := (−1)rey
2/2 dr

dyr e
−y2/2

for the rth Hermite polynomial, and note that |Hr(y)| ≤ pr(|y|), where pr is a polynomial of

degree r with non-negative coefficients. Using multi-index notation for partial derivatives, if t =

(t1, . . . , td) ∈ {0, 1, . . . , }d with |t| := t1 + . . .+ td, we have

∣∣∣∣∂f t(x)

∂xt

∣∣∣∣ = f(x)

d∏
j=1

|Htj (xj)| ≤ f(x)

d∏
j=1

ptj (‖x‖) ≤ f(x)q|t|(‖x‖),

for some polynomial qr of degree r, with non-negative coefficients. It follows that if y ∈ B◦x(1),

then for any β > 0 with m = dβe − 1,

‖f (m)(x)− f (m)(y)‖
f(x)‖y − x‖β−m

≤ dm/2

f(x)‖y − x‖β−m
max
t:|t|=m

∣∣∣∣∂f t(x)

∂xt
− ∂f t(y)

∂xt

∣∣∣∣
≤ d(m+1)/2

f(x)
max

t:|t|=m+1
sup

w∈B0(1)

∣∣∣∣∂f t(x+ w)

∂xt

∣∣∣∣
≤ d(m+1)/2 sup

w∈B0(1)

f(x+ w)qm+1(‖x+ w‖)
f(x)

≤ d(m+1)/2e‖x‖qm+1(‖x‖+ 1).
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Similarly,

max
r=1,...,m

‖f (r)(x)‖
f(x)

≤ dm/2 max
r=1,...,m

qr(‖x‖).

Write g(δ) :=
{
−2 log

(
δ(2π)d/2

)}1/2
and define a ∈ A by setting a(δ) := max{1, ã(δ)}, where

ã(δ) := dm/2 sup
x:‖x‖≤g(δ)

max

{
max

r=1,...,m
qr(‖x‖) , d1/2e‖x‖qm+1(‖x‖+ 1)

}
= dm/2 max

{
max

r=1,...,m
qr
(
g(δ)

)
, d1/2eg(δ)qm+1

(
g(δ) + 1

)}
.

Then supx:f(x)≥δMf,a,β(x) ≤ a(δ) and a(δ) = o(δ−ε) for every ε > 0, so (2.6) holds.

(ii) We may choose any α < ρ, and set

ν = d2α/2−1 Γ
(
α
2 + d

2

)
Γ
(
1 + d

2

) (ρ/2)α/2Γ
(
ρ−α

2

)
Γ
(
ρ
2

) .

We may also set γ =
Γ
(
ρ
2 + d

2

)
Γ(ρ/2)ρα/2πd/2 . To verify (2.6) for suitable a ∈ A, we note by induction, that

if t = (t1, . . . , td) ∈ {0, 1, . . . , }d with |t| := t1 + . . .+ td, then∣∣∣∣∂f t(x)

∂xt

∣∣∣∣ ≤ f(x)q|t|(‖x‖)
(1 + ‖x‖2/ρ)|t|

,

where qr is a polynomial of degree r with non-negative coefficients. Thus, similarly to the Gaussian

example, for any β > 0 with m = dβe − 1,

sup
x∈Rd

sup
y∈B◦x(1)

‖f (m)(x)− f (m)(y)‖
f(x)‖y − x‖β−m

≤ d(m+1)/2 sup
x∈Rd

sup
w∈B0(1)

f(x+ w)qm+1(‖x+ w‖)
f(x)(1 + ‖x‖2/ρ)m+1

=: A
(1)
d,m,ρ,

say, where A
(1)
d,m,ρ ∈ [0,∞). Similarly,

sup
x∈Rd

max
r=1,...,m

‖f (r)(x)‖
f(x)

≤ dm/2 sup
x∈Rd

max
r=1,...,m

qr(‖x‖)
(1 + ‖x‖2/ρ)r

=: A
(2)
d,m,ρ,

say, where A
(2)
d,m,ρ ∈ [0,∞). Now defining a ∈ A to be the constant function

a(δ) := max{1, A(1)
d,m,ρ, A

(2)
d,m,ρ},

we again have that supx:f(x)≥δMf,a,β(x) ≤ a(δ), so (2.6) holds.

(iii) We may take any α > 0 and ν = 1, γ = 3. To verify (2.6), fix β > 0, set m := dβe− 1, and

define a ∈ A by

a(δ) := Am max
{

1 , log2(m+1)(1/δ)
}
,

for some Am ≥ 1 depending only on m. Then, by induction, we find that for some constants
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A′m, B
′
m > 0 depending only on m, and x ∈ (−1, 1)

Mf,a,β(x) ≤ max

{
max

r=1,...,m

A′r
(1− x2)2r

, sup
y:0<|y−x|≤ra(x)

A′m+1f(y)

(1− y2)2(m+1)f(x)

}
≤

B′m+1

(1− x2)2(m+1)
≤ a

(
f(x)

)
,

provided Am in the definition of a is chosen sufficiently large. Hence (2.6) again holds.

2.6.4 Proof of Proposition 2.6

Proof of Proposition 2.6. To deal with the integrals over X cn, we first observe that by (2.13) there

exists a constant Cd,f > 0, depending only on d and f , such that∫
X cn
f(x)

∫ 1

0

Bk,n−k(s) log ux,s ds dx

≤ Cd,f
∫
X cn
f(x)

{
log n+ log

(
1 +

‖x‖
µ

1/α
α (f)

)}
dx = O

(
max{qn log n, q1−ε

n }
)
, (2.32)

for every ε > 0. Moreover, ∣∣∣∣∫
X cn
f(x) log f(x) dx

∣∣∣∣ = O(q1−ε
n ), (2.33)

for every ε > 0. Now, a slightly simpler argument than that used in the proof of Lemma 2.10(ii)

gives that for r ∈ (0, rx], we have

|hx(r)− Vdf(x)rd| ≤ dVd

d+ β̃
Cn,β̃(x)rd+β̃ .

We deduce, again using a slightly simplified version of the argument in Lemma 2.10(ii), that there

exists n0 ∈ N such that for n ≥ n0, s ∈ [0, an
n−1 ] and x ∈ Xn, we have

∣∣Vdf(x)h−1
x (s)d − s

∣∣ ≤ 2dV
−β̃/d
d

d+ β̃
s1+β̃/d

Cn,β̃(x)

f(x)1+β̃/d
≤ s

2
. (2.34)

It follows from (2.32), (2.33), (2.34) and an almost identical argument to that leading to (2.15)

that for every n ≥ n0 and ε > 0,

|EĤn −H| ≤
∣∣∣∣∫
Xn
f(x)

∫ an
n−1

0

Bk,n−k(s) log

(
Vdf(x)h−1

x (s)d

s

)
ds dx

∣∣∣∣+O
(
max{q1−ε

n , qn log n, n−1}
)

≤ 2

∫
Xn
f(x)

∫ an
n−1

0

Bk,n−k(s)

∣∣∣∣Vdf(x)h−1
x (s)d − s
s

∣∣∣∣ ds dx+O
(
max{q1−ε

n , qn log n, n−1}
)

≤
4dV

−β̃/d
d

d+ β̃

Bk+β̃/d,n−k

Bk,n−k

∫
Xn

Cn,β̃(x)

f(x)β̃/d
dx+O

(
max{q1−ε

n , qn log n, n−1}
)
,

as required.
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2.6.5 Completion of the proof of Lemma 2.7

To prove Lemma 2.7, it remains to bound several error terms arising from arguments that approx-

imate the variance of the unweighted Kozachenko–Leonenko estimator Ĥn, and then to show how

these arguments may be adapted to yield the desired asyptotic expansion for Var(Ĥw
n ).

Bounds on S1, . . . , S5

To bound S1: By similar methods to those used to bound R1 in the proof of Lemma 2.3 it is

straightforward to show that for every ε > 0, we have

S1 =

∫
X cn
f(x)

∫ 1

0

Bk,n−k(s) log2 ux,s ds dx = O

(
k

α
α+d−ε

n
α
α+d−ε

)
.

To bound S2: For every ε > 0, we have that

S2 =

∫
Xn
f(x)

∫ 1

an
n−1

Bk,n−k(s) log2 ux,s ds dx = o(n−(3−ε)),

by very similar arguments to those used to bound R2 in the proof of Lemma 2.3.

To bound S3: We have

log2 ux,s− log2

(
(n− 1)s

eΨ(k)f(x)

)
=

{
2 log

(
(n− 1)s

eΨ(k)f(x)

)
+ log

(
Vdf(x)h−1

x (s)d

s

)}
log

(
Vdf(x)h−1

x (s)d

s

)
.

It therefore follows from Lemma 2.10(ii) that for every ε > 0,

S3 =

∫
Xn
f(x)

∫ an
n−1

0

Bk,n−k(s)

{
log2 ux,s − log2

(
(n− 1)s

eΨ(k)f(x)

)}
ds dx

= O

{
max

(
kβ/d

nβ/d
log n ,

k
α
α+d−ε

n
α
α+d−ε

)}
.

To bound S4: A simplified version of the argument used to bound R4 in Lemma 2.3 of the main

text shows that for every ε > 0,

S4 =

∫
Xn
f(x)

∫ 1

an
n−1

Bk,n−k(s) log2

(
(n− 1)s

eΨ(k)f(x)

)
ds dx = o(n−(3−ε)).

To bound S5: Very similar arguments to those used to bound R1 in Lemma 2.3 show that for every

ε > 0,

S5 =

∫
X cn
f(x) log2 f(x) dx = O

(
k

α
α+d−ε

n
α
α+d−ε

)
.
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Bounds on T1, T2 and T3

To bound T1: Let B ∼ Beta(k − 1, n− k − 1). By (2.13), for every ε > 0,

T11 :=

∣∣∣∣∫
X cn×X cn

f(x)f(y) log f(y)

∫ ∞
ũn,x,y

log(uf(x)) d(F̃n,x − F−n,x)(u) dy dx

∣∣∣∣
≤ n− 2

n− k − 1

∫
X cn×X cn

f(x)f(y)| log f(y)|
∫ 1

0

∣∣log(ux,sf(x))
∣∣Bk−1,n−k−1(s)

∣∣∣∣1− (n− 2)s

k − 1

∣∣∣∣ ds dy dx
.
∫
X cn×X cn

f(x)f(y)| log f(y)|
[
E
{(

log
1

B
+ log

1

1−B

)∣∣∣∣1− (n− 2)B

k − 1

∣∣∣∣}
+

{
log n+ | log f(x)|+ log

(
1 +

‖x‖
µ

1/α
α (f)

)}
E
∣∣∣∣1− (n− 2)B

k − 1

∣∣∣∣] dy dx
= o

(
k−

1
2 + 2α

α+d−ε

n
2α
α+d−ε

)
,

where we used the Cauchy–Schwarz inequality and elementary properties of beta random variables

to obtain the final bound.

Now let

u∗n(x) := ux,an/(n−1) =
Vd(n− 1)h−1

x ( an
n−1 )d

eΨ(k)
,

and consider

T12 :=

∣∣∣∣∫
X cn

∫
Xn
f(x)f(y) log f(y)

∫ ∞
ũn,x,y

log(uf(x)) d(F̃n,x − F−n,x)(u) dy dx

∣∣∣∣.
If ũn,x,y ≥ u∗n(x), then by very similar arguments to those used to bound R1 and R2 (cf. (2.13)

and (2.14)), together with Cauchy–Schwarz,∫ ∞
ũn,x,y

∣∣log(uf(x))
∣∣ d(F̃n,x − F−n,x)(u)

≤
∫ 1

an
n−1

| log(ux,sf(x))|{Bk−1,n−k(s) + Bk,n−k−1(s)} ds

.
log n+ | log f(x)|+ log

(
1 + ‖x‖

µ
1/α
α (f)

)
n3−ε , (2.35)

for every ε > 0. On the other hand, if ũn,x,y < u∗n(x), then ‖x− y‖ < rn,u∗n(x) + rn,u∗n(y), where we

have added the rn,u∗n(y) term to aid a calculation later in the proof. Define the sequence

ρn :=
[
cn log1/d(n− 1)

]−1
.

From Lemma 2.10(ii),

sup
y∈Xn

rn,u∗n(y) = sup
y∈Xn

h−1
y

( an
n− 1

)
. sup
y∈Xn

{
k log n

nf(y)

}1/d

≤
(
k log n

nδn

)1/d

= o(ρn).

Now suppose that x ∈ X cn and y ∈ Xn satisfy ‖y − x‖ ≤ ρn. Choose n0 ∈ N large enough that

rn,u∗n(y) ≤ ρn/2 for all y ∈ Xn, and that log(n−1) ≥ max{(3/2)d(8d1/2)d/β , 12V −1
d 2d} for all n ≥ n0

and k ∈ {k∗0 , . . . , k∗1}. Then when β ∈ (0, 1] and n ≥ n0, using the fact that Bx(ρn/2) ⊆ By(3ρn/2),
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we have ∫
Bx(ρn/2)

f(w) dw ≥ Vdf(y)(ρn/2)d − Vda(f(y))f(y)(ρn/2)d(3ρn/2)β

≥ Vdf(y)(ρn/2)d{1− (3cnρn/2)β} ≥ 1

2
Vd(ρn/2)dδn ≥

an
n− 1

. (2.36)

Hence, for all n ≥ n0, x ∈ X cn, y ∈ Xn with ‖y − x‖ ≤ ρn and k ∈ {k∗0 , . . . , k∗1},

rn,u∗n(x) + rn,u∗n(y) ≤ ρn. (2.37)

On other hand, suppose instead that x ∈ X cn and ρ∗x := infy∈Xn ‖y− x‖ ≥ ρn. Since Xn is a closed

subset of Rd, we can find y∗ ∈ Xn such that ‖y∗ − x‖ = ρ∗x, and set x̃ := ρn
ρ∗x
x+

(
1− ρn

ρ∗x

)
y∗. Then

‖x̃ − y∗‖ = ρn, so from (2.36), we have rn,u∗n(x̃) ≤ ρn/2 for n ≥ n0 and k ∈ {k∗0 , . . . , k∗1}. Since

Bx̃(ρn/2) ⊆ Bx(ρ∗x − ρn/2), we deduce that rn,u∗n(x) ≤ ρ∗x − ρn/2 and

{y ∈ Xn : ‖x− y‖ < rn,u∗n(x) + rn,u∗n(y)} = ∅ (2.38)

for n ≥ n0 and k ∈ {k∗0 , . . . , k∗1}. But for n ≥ n0,

sup
x∈X cn

sup
y∈Xn:‖y−x‖≤ρn

1

f(y)
|f(x)− f(y)| ≤ 15d1/2

7
(cnρn)β <

1

2
, (2.39)

so that if x ∈ X cn, y ∈ Xn and ‖x− y‖ ≤ ρn, then f(y) < 2δn for n ≥ n0 and k ∈ {k∗0 , . . . , k∗1}.

It therefore follows from (2.35), (2.37), (2.38), (2.39) and the argument used to bound T11 that

for each ε > 0 and n ≥ n0,

T12 ≤
∫
X cn

∫
Xn
f(x)f(y)| log f(y)|1{‖x−y‖<rn,u∗n(x)+rn,u∗n(y)}∫ ∞

0

| log(uf(x))| d(F̃n,x − F−n,x)(u) dy dx+ o(n−2)

≤
∫
X cn

∫
y:f(y)<2δn

f(x)f(y)| log f(y)|
∫ ∞

0

| log(uf(x))| d(F̃n,x − F−n,x)(u) dy dx+ o(n−2)

= o

(
k−

1
2 + 2α

α+d−ε

n
2α
α+d−ε

)
.

Finally for T1, we define

T13 :=

∣∣∣∣∫
Xn

∫
Bcx

(
rn,1dn

f(x)1/d

) f(x)f(y) log f(y)

∫ ∞
ũn,x,y

log
(
uf(x)

)
d(F̃n,x − F−n,x)(u) dy dx

∣∣∣∣.
By Lemma 2.10(ii) we can find n1 ∈ N such that for n ≥ n1, k ∈ {k∗0 , . . . , k∗1}, x ∈ Xn and

s ≤ an/(n − 1), we have Vdf(x)h−1
x (s)d ≤ 2s. Thus, for n ≥ n1, k ∈ {k∗0 , . . . , k∗1}, x ∈ Xn and

y ∈ Bcx(
rn,1dn
f(x)1/d ),

ũn,x,y ≥
24 log n

f(x)
≥ 2an
f(x)eΨ(k)

≥ u∗n(x).
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Thus, from (2.35), T13 = O(n−2 log n). We conclude that for every ε > 0,

|T1| ≤ T11 + T12 + T13 = o

(
k−

1
2 + 2α

α+d−ε

n
2α
α+d−ε

)
.

To bound T2: Fix x ∈ Xn and z ∈ B0(dn). Choosing n2 ∈ N large enough that
rn,1dn

δ
1/d
n

≤
(8d1/2)−1/βc−1

n for n ≥ n2, we have by Lemma 2.12 that

sup
y∈Bx

(
rn,1dn

δ
1/d
n

)∣∣∣∣f(y)

f(x)
− 1

∣∣∣∣ ≤ 1

2

for n ≥ n2, k ∈ {k∗0 , . . . , k∗1}. Also, for all n ≥ n2, k ∈ {k∗0 , . . . , k∗1}, we have

∣∣f(yx,z) log f(yx,z)− f(x) log f(x)
∣∣ ≤ f(yx,z)| log(f(yx,z)/f(x))|+ | log f(x)||f(yx,z)− f(x)|

≤ a(f(x))f(x)‖yx,z − x‖β{| log f(x)|+ 4}.

Moreover, by arguments used to bound T11,∣∣∣∣∫ ∞
‖z‖d/f(x)

log(uf(x)) d(F̃n,x − F−n,x)(u)

∣∣∣∣ . E
∣∣∣∣log(B)

(
1− (n− 2)B

k − 1

)∣∣∣∣
+

{
log n+ | log f(x)|+ log

(
1 +

‖x‖
µ

1/α
α (f)

)}
E
∣∣∣∣1− (n− 2)B

k − 1

∣∣∣∣,
where B ∼ Beta(k − 1, n− k − 1). It follows that for every ε > 0,

T2 =
eΨ(k)

Vd(n− 1)

∫
Xn

∫
B0(dn)

{f(yx,z) log f(yx,z)− f(x) log f(x)}∫ ∞
‖z‖d/f(x)

log(uf(x)) d(F̃n,x − F−n,x)(u) dz dx

= O

(
k1/2

n
max

{
k

α
α+d−ε

n
α
α+d−ε

,
kβ/d

nβ/d
log2+β/d n

})
.

To bound T3: Note that by Fubini’s theorem,∫
Xn
f(x) log f(x)

∫
B0(dn)

∫ ∞
‖z‖d
f(x)

log(uf(x)) d(F̃n,x − F−n,x)(u) dz dx

= Vd

∫
Xn
f(x) log f(x)

∫ ∞
0

uf(x) log(uf(x)) d(F̃n,x − F−n,x)(u) dx

= Vd

∫
Xn
f(x) log f(x)

∫ u∗n(x)

0

uf(x) log(uf(x)) d(F̃n,x − F−n,x)(u) dx+O(n−(3−ε)),

for every ε > 0, where the order of the error term follows from the same argument used to
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obtain (2.35) and Lemma 2.10(i). Thus, for every ε > 0,

T3 =
k − 1

n− k − 1

∫
Xn
f(x) log f(x)

∫ an
n−1

0

{
Vdf(x)h−1

x (s)d

s
log(ux,sf(x))

− log

(
(n− 1)s

eΨ(k)

)}
Bk,n−k−1(s)

{
1− (n− 2)s

k − 1

}
ds dx+O(n−(3−ε))

= O

(
k1/2

n
max

{
k

α
α+d−ε

n
α
α+d−ε

,
kβ/d

nβ/d
log n

})
.

Bounds on U1 and U2

To bound U1: Using Lemma 2.10(i) and (2.13) as in our bounds on T11 we have that for every

ε > 0,

U11 :=

∣∣∣∣∫
X cn
f(x)

∫ u∗n(x)

0

log
(
uf(x)

)
d(F−n,x − Fn,x)(u) dx

∣∣∣∣
≤
∫
X cn
f(x)

∫ an
n−1

0

| log(ux,sf(x))|Bk,n−k−1(s)

∣∣∣∣ (n− 1)s− k
n− k − 1

∣∣∣∣ ds dx = o

(
k

1
2 + α

α+d−ε

n1+ α
α+d−ε

)
. (2.40)

Moreover, using arguments similar to those used to bound R2 in the proof of Lemma 2.3, for every

ε > 0,

U12 :=

∣∣∣∣∫
X
f(x)

∫ ∞
u∗n(x)

log
(
uf(x)

)
d(F−n,x − Fn,x)(u) dx

∣∣∣∣ = o(n−(3−ε)). (2.41)

From (2.40), and (2.41), we have for every ε > 0 that

|U1| ≤ U11 + U12 = o

(
k

1
2 + α

α+d−ε

n1+ α
α+d−ε

)
.

To bound U2: By Lemma 2.10(ii) and letting B ∼ Beta(k+ β/d, n− k− 1), we have that for every

ε > 0,

U21 :=

∣∣∣∣∫
Xn
f(x)

∫ an
n−1

0

log
(Vdf(x)h−1

x (s)d

s

)
Bk,n−k−1(s)

{ (n− 1)s− k
n− k − 1

}
ds dx

∣∣∣∣
.
kβ/d

nβ/d
E
(∣∣∣∣ (n− 1)B− k

n− k − 1

∣∣∣∣) ∫
Xn
a(f(x))f(x)1−β/d dx = O

(
k1/2

n
max

{
kβ/d

nβ/d
,
k

α
α+d−ε

n
α
α+d−ε

})
.

Moreover, we can use similar arguments to those used to bound R4 in the proof of Lemma 2.3 to

show that for every ε > 0,

U22 :=

∣∣∣∣∫
Xn
f(x)

∫ 1

an
n−1

log

(
(n− 1)s

eΨ(k)

)
Bk,n−k−1(s)

{
(n− 1)s− k
n− k − 1

}
ds dx

∣∣∣∣ = o(n−(3−ε)).

We deduce that for every ε > 0,

|U2| ≤ U21 + U22 = O

(
k1/2

n
max

{
kβ/d

nβ/d
,
k

α
α+d−ε

n
α
α+d−ε

})
.
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Bounds on W1, . . . ,W4

To bound W1: We partition the region ([lx, vx]× [ly, vy])c into eight rectangles as follows:

(
[lx, vx]× [ly, vy]

)c
=
(
[0, lx)× [0, ly)

)
∪
(
[0, lx)× [ly, vy]

)
∪
(
[0, lx)× (vy,∞)

)
∪
(
[lx, vx]× [0, ly)

)
∪
(
[lx, vx]× (vy,∞)

)
∪
(
(vx,∞)× [0, ly)

)
∪
(
(vx,∞)× [ly, vy]

)
∪
(
(vx,∞)× (vy,∞)

)
.

Recall our shorthand h(u, v) = log(uf(x)) log(vf(y)). By Lemma 2.10(i) and the Cauchy–Schwarz

inequality, as well as very similar arguments to those used to bound R2 in the proof of Lemma 2.3,

we can bound the contributions from each rectangle individually, to obtain that for every ε > 0,

W1 =

∫
X×X

f(x)f(y)

∫
([lx,vx]×[ly,vy ])c

h(u, v) d(Fn,x,y − Fn,xFn,y)(u, v) dx dy = o(n−(9/2−ε)).

To bound W2: We have

W2 =

∫
X×X

f(x)f(y)

∫ vx

lx

∫ vy

ly

h(u, v) d(Gn,x,y − Fn,xFn,y)(u, v) dx dy +
1

n
.

We write Ba,b,c := Γ(a)Γ(b)Γ(c)/Γ(a + b + c), and, for s, t > 0 with s + t < 1, let Ba,b,c(s, t) :=

sa−1tb−1(1− s− t)c−1/Ba,b,c denote the density of a Dirichlet(a, b, c) random vector at (s, t). For

a, b > −1, writing In := [a−n /(n− 1), a+
n /(n− 1)], let

B
(n)
k+a,n−k :=

∫
In

sk+a−1(1− s)n−k−1 ds,

B
(n)
k+a,n−k(s) := sk+a−1(1− s)n−k−1/B

(n)
k+a,n−k

B
(n)
k+a,k+b,n−2k−1 :=

∫
In×In

sk+a−1tk+b−1(1− s− t)n−2k−2 ds dt

B
(n)
k+a,k+b,n−2k−1(s, t) := sk+a−1tk+b−1(1− s− t)n−2k−2/B

(n)
k+a,k+b,n−2k−1.

Then by the triangle and Pinsker’s inequalities, and Beta tail bounds similar to those used previ-

ously, we have that∫
In×In

∣∣Bk+a,k+b,n−2k−1(s, t)− Bk+a,n−k(s)Bk+b,n−k(t)
∣∣ ds dt

≤
∣∣∣∣B(n)

k+a,k+b,n−2k−1

Bk+a,k+b,n−2k−1
− 1

∣∣∣∣+

∣∣∣∣B(n)
k+a,n−kB

(n)
k+b,n−k

Bk+a,n−kBk+b,n−k
− 1

∣∣∣∣
+

{
2

∫
In×In

B
(n)
k+a,k+b,n−2k−1(s, t) log

( B
(n)
k+a,k+b,n−2k−1(s, t)

B
(n)
k+a,n−k(s)B

(n)
k+b,n−k(t)

)
ds dt

}1/2

=

{
2

∫ 1

0

∫ 1−t

0

Bk+a,k+b,n−2k−1(s, t) log

(
Bk+a,k+b,n−2k−1(s, t)

Bk+a,n−k(s)Bk+b,n−k(t)

)
ds dt

}1/2

+ o(n−2)

= 21/2

[
log
( Γ(n+ a+ b− 1)Γ(n− k)2

Γ(n− 2k − 1)Γ(n+ a)Γ(n+ b)

)
+ (n− 2k − 2)ψ(n− 2k − 1)

− (n− k − 1){ψ(n+ b− k − 1) + ψ(n+ a− k − 1)}+ nψ(n+ a+ b− 1)

]1/2

+ o(n−2)

=
k

n
{1 + o(1)}. (2.42)
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As a first step towards bounding W2 note that

W21 :=

∫
Xn×Xn

f(x)f(y)

∫ vx

lx

∫ vy

ly

h(u, v) d(Gn,x,y − Fn,xFn,y)(u, v) dx dy

=

∫
Xn×Xn

f(x)f(y)

∫
In×In

log(ux,sf(x)) log(uy,tf(y)){
Bk,k,n−2k−1(s, t)− Bk,n−k(s)Bk,n−k(t)

}
ds dt dx dy

=

∫
Xn×Xn

f(x)f(y)

∫
In×In

log

(
(n− 1)s

eΨ(k)

)
log

(
(n− 1)t

eΨ(k)

)
{

Bk,k,n−2k−1(s, t)− Bk,n−k(s)Bk,n−k(t)
}
ds dt dx dy +W211

= − 1

n
+O

(
k

α
α+d−ε

n1+ α
α+d−ε

)
+O(n−2) +W211, (2.43)

for every ε > 0. But, by Lemma 2.10(ii) and (2.42), for every ε > 0,

|W211| =
∣∣∣∣∫
Xn×Xn

f(x)f(y)

∫
In×In

{
2 log

(
Vdh

−1
x (s)df(x)

s

)
log

(
(n− 1)t

eΨ(k)

)
+ log

(
Vdh

−1
x (s)df(x)

s

)
log

(
Vdh

−1
y (t)df(y)

t

)}
{

Bk,k,n−2k−1(s, t)− Bk,n−k(s)Bk,n−k(t)
}
ds dt dx dy

∣∣∣∣
≤ 2

∣∣∣∣∫
Xn×Xn

f(x)f(y)

∫
In

log

(
Vdh

−1
x (s)df(x)

s

)
[{

log(n− 1)−Ψ(n− k − 1) + log(1− s)
}

Bk,n−k−1(s)

−
{

log(n− 1)−Ψ(n)
}

Bk,n−k(s)
]
ds dx dy

∣∣∣∣+O

(
max

{
k1+ 2β

d

n1+ 2β
d

,
k1+ 2α

α+d−ε

n1+ 2α
α+d−ε

})
= O

(
k1/2

n
max

{
kβ/d

nβ/d
,
k

α
α+d−ε

n
α
α+d−ε

})
. (2.44)

Moreover, by Lemma 2.10(i) and (ii) and very similar arguments, for every ε > 0,

W22 :=

∫
Xn×X cn

f(x)f(y)

∫ vx

lx

∫ vy

ly

h(u, v) d(Gn,x,y − Fn,xFn,y)(u, v) dx dy

= O

(
k1+ α

α+d−ε

n1+ α
α+d−ε

max

{
k

α
α+d−ε

n
α
α+d−ε

,
kβ/d

nβ/d
,

1

k1/2

})
W23 :=

∫
X cn×X cn

f(x)f(y)

∫ vx

lx

∫ vy

ly

h(u, v) d(Gn,x,y − Fn,xFn,y)(u, v) dx dy

= O

(
k1+ 2α

α+d−ε

n1+ 2α
α+d−ε

)
. (2.45)

Incorporating our restrictions on k, we conclude from (2.43), (2.44) and (2.45) that for every ε > 0,

|W2| ≤
∣∣∣∣W21 +

1

n

∣∣∣∣+ 2|W22|+ |W23| = O

(
k1/2

n
max

{
kβ/d

nβ/d
,
k

α
α+d−ε

n
α
α+d−ε

})
.

To bound W3: We write hu, hv and huv for the partial derivatives of h(u, v) and write, for example,
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(huF )(u, v) = hu(u, v)F (u, v). We find on integrating by parts that, writing F = Fn,x,y −Gn,x,y,∫
[lx,vx]×[ly,vy ]

(h dF )(u, v)−
∫ vx

lx

∫ vy

ly

(huvF (u, v)) du dv

=

∫ vx

lx

[
(huF )(u, ly)− (huF )(u, vy)

]
du+

∫ vy

ly

[
(hvF )(lx, v)− (hvF )(vx, v)

]
dv

+ (hF )(vx, vy) + (hF )(lx, ly)− (hF )(vx, ly)− (hF )(lx, vy). (2.46)

Using standard binomial tail bounds as used to bound W1 together with (2.13) we therefore see

that for every ε > 0,

W31 :=

∫
X×X

f(x)f(y)
{∫ vx

lx

∫ vy

ly

(h dF )(u, v)−
∫ vx

lx

∫ vy

ly

(huvF )(u, v) du dv
}
dx dy

=−
∫
X×X

f(x)f(y)

{∫ vx

lx

(huF )(u, vy) du+

∫ vy

ly

(hvF )(vx, v) dv

}
dx dy + o(n−(9/2−ε)). (2.47)

Now, uniformly for u ∈ [lx, vx] and (x, y) ∈ X × X and for every ε > 0,

F (u, vy) = 1{‖x−y‖≤rn,u}

(
n− 2

k − 1

)
pk−1
n,x,u(1− pn,x,u)n−k−1 + o(n−(9/2−ε))

= 1{‖x−y‖≤rn,u}
Bk,n−k(pn,x,u)

n− 1
+ o(n−(9/2−ε))

≤ 1{‖x−y‖≤rn,vx}
1

(2πk)1/2
{1 + o(1)}+ o(n−(9/2−ε)). (2.48)

By (2.39) and the arguments leading up to it, we have

sup
x∈X cn

sup
y∈Xn∩Bx(rn,vx+rn,vy )

∣∣∣f(x)

f(y)
− 1
∣∣∣→ 0. (2.49)

We therefore have by (2.13) that, for every ε > 0,

∫
X cn×X

f(x)f(y)

∫ vx

lx

(huF )(u, vy) du dy dx = O

(
k−

1
2 + 2α

α+d−ε

n
2α
α+d−ε

)
. (2.50)

Now, using Lemma 2.10(ii), for x ∈ Xn,

max{|lxf(x)− 1|, |vxf(x)− 1|} . a(f(x))

(
k

nf(x)

)β/d
+

log1/2 n

k1/2
. (2.51)

We also need some control over vf(y). By (2.39) and the work leading up to it, for n ≥
max(n0, 5), x ∈ Xn and ‖y − x‖ ≤ rn,vx + rn,vy ,

f(y) ≥
{

1− 15d1/2

7
(cnρn)β

}
δn ≥ δn/2 ≥ k/(n− 1).

Thus a(f(y)) ≤ cβn and using (2.49) we may apply Lemma 2.10(ii) to the set

X ′n = Xn ∪ {y : ‖y − x‖ ≤ rn,vx + rn,vy for some x ∈ Xn}.



2.6. APPENDIX 43

From this and (2.49), for any x ∈ Xn and y ∈ Bx(rn,vx + rn,vy ),

max(|lyf(y)− 1|, |vyf(y)− 1|) . a(f(y))

(
k

nf(x)

)β/d
+

log1/2 n

k1/2
. (2.52)

Using (2.49) again, we have that a(f(yx,z)) . f(x)−ε for each ε > 0, uniformly for x ∈ Xn and

‖z‖ ≤ {vxf(x)}1/d + {vyf(x)}1/d. From (2.48), (2.51) and (2.52) we therefore have that∣∣∣∣∫
Xn×X

f(x)f(y)

∫ vx

lx

(huF )(u, vy) du dy dx

∣∣∣∣
. k−1/2

∫
Xn×X

f(x)f(y)1{‖x−y‖<rn,vx}| log(vyf(y))| log(vx/lx) dy dx

= O

(
max

{
k1/2+2β/d

n1+2β/d
,

log n

nk1/2
,
k

1
2 + α

α+d−ε

n1+ α
α+d−ε

})
(2.53)

for every ε > 0. By (2.47), (2.50) and (2.53) we therefore have that

W31 = O

(
max

{
k1/2+2β/d

n1+2β/d
,

log n

nk1/2
,
k−1/2+ 2α

α+d−ε

n
2α
α+d−ε

})
. (2.54)

Finally, by (2.13) and (2.49), we have since F = 0 when ‖x− y‖ > rn,u + rn,v that

W32 :=

∫
X cn×X

f(x)f(y)

∫ vx

lx

∫ vy

ly

(huvF )(u, v) du dv dx dy = O

(
k

2α
α+d−ε

n
2α
α+d−ε

)
. (2.55)

Combining (2.54) and (2.55) we have that

W3 = W31 +W32 = O

(
max

{
k1/2+2β/d

n1+2β/d
,

log n

nk1/2
,
k

2α
α+d−ε

n
2α
α+d−ε

})
.

To bound W4: Let p∩ :=
∫
Bx(rn,u)∩By(rn,v)

f(y) dy and let (N1, N2, N3, N4) ∼ Multi(n− 2, pn,x,u −
p∩, pn,y,v − p∩, p∩, 1− pn,x,u − pn,y,v + p∩). Further, let

F (1)
n,x,y(u, v) := P(N1 +N3 ≥ k,N2 +N3 ≥ k),

so that

(Fn,x,y−F (1)
n,x,y)(u, v) = P(N1 +N3 = k − 1, N2 +N3 ≥ k)1{‖x−y‖≤rn,u}

+ P(N2 +N3 = k − 1, N1 +N3 ≥ k)1{‖x−y‖≤rn,v}

+ P(N1 +N3 = k − 1, N2 +N3 = k − 1)1{‖x−y‖≤rn,u∧rn,v}.

Now P(N1 +N3 = k− 1) =
(
n−2
k−1

)
pk−1
n,x,u(1− pn,x,u)n−k−1 ≤ (2πk)−1/2{1 + o(1)} and Fn,x,y(u, v) =
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Gn,x,y(u, v) if ‖x− y‖ > rn,u + rn,v, and so, by (2.51) and (2.52), we have that∫
Xn×X

f(x)f(y)

∫ vx

lx

∫ vy

ly

(Fn,x,y −Gn,x,y)(u, v)

uv
du dv dx dy

=

∫
Xn×X

f(x)f(y)

∫ vx

lx

∫ vy

ly

(F
(1)
n,x,y −Gn,x,y)(u, v)

uv
du dv dx dy

+O

(
max

{
log n

nk1/2
,
k

1
2 + 2β

d

n1+ 2β
d

,
k

1
2 + α

α+d−ε

n1+ α
α+d−ε

})
. (2.56)

We can now approximate F
(1)
n,x,y(u, v) by ΦΣ(k1/2{uf(x)− 1}, k1/2{vf(x)− 1}) and Gn,x,y(u, v) by

Φ(k1/2{uf(x)−1})Φ(k1/2{vf(x)−1}). To avoid repetition, we focus on the former of these terms.

To this end, for i = 3, . . . , n, let

Yi :=

(
1{Xi∈Bx(rn,u)}

1{Xi∈By(rn,v)}

)
,

so that
∑n
i=3 Yi =

(
N1 +N3

N2 +N3

)
. We also define

µ := E(Yi) =

(
pn,x,u

pn,y,v

)

V := Cov(Yi) =

(
pn,x,u(1− pn,x,u) p∩ − pn,x,upn,y,v
p∩ − pn,x,upn,y,v pn,y,v(1− pn,y,v)

)
,

When x ∈ Xn and y ∈ B◦x(rn,vx + rn,vy ) we have that, writing ∆ for the symmetric difference

and using (2.49), P(X1 ∈ Bx(rn,u)∆By(rn,v)) > 0 and so V is invertible. We may therefore set

Zi := V −1/2(Yi − µ). Then by the Berry–Esseen bound of Götze (1991), writing C for the set of

closed, convex subsets of R2 and letting Z ∼ N2(0, I), there exists a universal constant C2 > 0

such that

sup
C∈C

∣∣∣∣P( 1

(n− 2)1/2

n∑
i=3

Zi ∈ C
)
− P(Z ∈ C)

∣∣∣∣ ≤ C2E(‖Z3‖3)

(n− 2)1/2
. (2.57)

The distribution of Z3 depends on x, y, u and v, but, recalling the substitution y = yx,z as defined

in (2.22), we claim that for x ∈ Xn, y = yx,z ∈ Bx(rn,u + rn,v), u ∈ [lx, vx] and v ∈ [ly, vy],

E(‖Z3‖3) .
( n

k‖z‖

)1/2

. (2.58)

To establish this, note that for x ∈ Xn and ‖y − x‖ ≤ rn,vx + rn,vy , we have by (2.49), (2.51)

and (2.52) that ‖y − x‖ . ( k
nf(x) )1/d. Thus, for v ∈ [ly, vy], and using Lemma 2.12, we also have

that

|vf(x)− 1| ≤ max(|vyf(y)− 1|, |lyf(y)− 1|) + vy|f(y)− f(x)|

. a(f(x) ∧ f(y))

(
k

nf(x)

)β/d
+

log1/2 n

k1/2
. (2.59)

Now, by the definition of lx and vx,

max
{
|pn,x,u − k/(n− 1)| , |pn,y,v − k/(n− 1)|

}
≤ 3k1/2 log1/2 n

n− 1
(2.60)
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for all x, y ∈ X and u ∈ [lx, vx], v ∈ [ly, vy]. Next, we bound |n−2
k p∩ − αz| for x ∈ Xn and y = yx,z

with ‖z‖ ≤ {vxf(x)}1/d + {vyf(x)}1/d. First suppose that u ≥ v. We may write

Bx(rn,u) ∩By(rn,v) = {Bx(rn,v) ∩By(rn,v)} ∪ [{Bx(rn,u) \Bx(rn,v)} ∩By(rn,v)],

where this is a disjoint union. Writing Ia,b(x) :=
∫ x

0
Ba,b(s) ds for the regularised incomplete beta

function and recalling that µd denotes Lebesgue measure on Rd, we have

µd
(
Bx(rn,v) ∩By(rn,v)

)
= Vdr

d
n,vI d+1

2 , 12

(
1− ‖x− y‖

2

4r2
n,v

)
=
veΨ(k)

n− 1
I d+1

2 , 12

(
1− ‖z‖2

4{vf(x)}2/d

)
and

αz = I d+1
2 , 12

(
1− ‖z‖

2

4

)
.

Now, ∣∣∣∣ ddr I d+1
2 , 12

(
1− r2

4

)∣∣∣∣ =
(1− r2/4)

d−1
2

B(d+1)/2,1/2
≤ 1

B(d+1)/2,1/2
.

Hence by the mean value inequality,∣∣∣∣µd(Bx(rn,v) ∩By(rn,v)
)
− eΨ(k)αz

(n− 1)f(x)

∣∣∣∣ ≤ eΨ(k)

n− 1

[
v‖z‖|1− {vf(x)}−1/d|

B(d+1)/2,1/2
+

αz
f(x)

|1− vf(x)|
]
.

It follows that for all x ∈ Xn, y ∈ Bx(rn,vx + rn,vy ) and v ∈ [ly, vy],

∣∣∣∣∫
Bx(rn,v)∩By(rn,v)

f(w) dw − eΨ(k)αz
n− 1

∣∣∣∣ . k

n
a(f(x) ∧ f(y))

(
k

nf(x)

)β/d
+
k1/2 log1/2 n

n

using (2.59) and Lemma 2.12. We also have by (2.60) that∫
{Bx(rn,u)\Bx(rn,v)}∩By(rn,v)

f(w) dw ≤ pn,x,u − pn,x,v

.
k

n
a(f(x) ∧ f(y))

(
k

nf(x)

)β/d
+
k1/2 log1/2 n

n
.

Thus, when x ∈ Xn, y = yx,z ∈ Bx(rn,vx + rn,vy ), u ∈ [lx, vx], v ∈ [ly, vy] and u ≥ v,

∣∣∣∣n− 2

k
p∩ − αz

∣∣∣∣ . a(f(x) ∧ f(y))

(
k

nf(x)

)β/d
+

log1/2 n

k1/2
. (2.61)

We can prove the same bound when v > u similarly, using (2.51), (2.59) and Lemma 2.12. We will

also require a lower bound on pn,x,u + pn,y,v − 2p∩ in the region where Bx(rn,u) ∩ By(rn,v) 6= ∅,
i.e., ‖z‖ ≤ {uf(x)}1/d + {vf(x)}1/d. By the mean value theorem,

1− I d+1
2 , 12

(1− δ2) ≥ 21/2δmax

{
2−d/2

B(d+1)/2,1/2
, 1− I d+1

2 , 12
(1/2)

}

for all δ ∈ [0, 1]. Thus, for u ≥ v, with v ∈ [ly, vy], x ∈ Xn, and y = yx,z with ‖z‖ ≤ 2{vf(x)}1/d,
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by (2.59) we have,

µd
(
Bx(rn,u) ∩By(rn,v)

c
)
≥ µd

(
Bx(rn,v) ∩By(rn,v)

c
)

= Vdr
d
n,v

{
1− I d+1

2 , 12

(
1− ‖x− y‖

2

4r2
n,v

)}
&

k‖z‖
nf(x)

.

When ‖z‖ > 2{vf(x)}1/d we simply have µd
(
Bx(rn,v) ∩By(rn,v)

c
)

= Vdr
d
n,v and the same overall

bound applies. Moreover, the same lower bound for µd
(
By(rn,v) ∩ Bx(rn,u)c

)
holds when u < v,

u ∈ [lx, vx], x ∈ Xn, and y = yx,z ∈ Bx(rn,vx + rn,vy ). We deduce that for all x ∈ Xn, y = yx,z ∈
Bx(rn,vx + rn,vy ), u ∈ [lx, vx] and v ∈ [ly, vy],

pn,x,u + pn,y,v − 2p∩ ≥ max{pn,x,u − p∩ , pn,y,v − p∩} &
k

n
‖z‖. (2.62)

We are now in a position to bound E(‖Z3‖3) above for x ∈ Xn, y = yx,z ∈ Bx(rn,vx + rn,vy ),

u ∈ [lx, vx], v ∈ [ly, vy]. We write

E(‖Z3‖3) = p∩

∥∥∥∥V −1/2

(
1− pn,x,u
1− pn,y,v

)∥∥∥∥3

+ (pn,x,u − p∩)

∥∥∥∥V −1/2

(
1− pn,x,u
−pn,y,v

)∥∥∥∥3

+ (pn,y,v − p∩)

∥∥∥∥V −1/2

(
−pn,x,u

1− pn,y,v

)∥∥∥∥3

+ (1− pn,x,u − pn,y,v + p∩)

∥∥∥∥V −1/2

(
pn,x,u

pn,y,v

)∥∥∥∥3

,

(2.63)

and bound each of these terms in turn. First,

p∩

∥∥∥∥V −1/2

(
1− pn,x,u
1− pn,y,v

)∥∥∥∥3

= p∩|V |−3/2{(1− pn,x,u)(1− pn,y,v)(pn,x,u + pn,y,v − 2p∩)}3/2

= p∩

{
(1− pn,x,u)(1− pn,y,v)

p∩ − pn,x,upn,y,v +
(pn,x,u−p∩)(pn,y,v−p∩)
pn,x,u+pn,y,v−2p∩

}3/2

≤ p∩min

{
pn,x,u + pn,y,v

|V |
,

1

p∩ − pn,x,upn,y,v

}3/2

. n1/2/k1/2, (2.64)

using (2.60) and (2.61), and where we derive the final bound from the left hand side of the minimum

if ‖z‖ ≥ 1 and the right hand side if ‖z‖ < 1. Similarly,

(pn,x,u − p∩)

∥∥∥∥V −1/2

(
1− pn,x,u
−pn,y,v

)∥∥∥∥3

≤ (pn,x,u − p∩)p3/2
n,y,v|V |−3/2 .

( n

k‖z‖

)1/2

, (2.65)

where we have used (2.62) for the final bound. By symmetry, the same bound holds for the third

term on the right-hand side of (2.63). Finally, very similar arguments yield

(1− pn,x,u − pn,y,v + p∩)

∥∥∥∥V −1/2

(
pn,x,u

pn,y,v

)∥∥∥∥3

. (k/n)3/2. (2.66)

Combining (2.64), (2.65) and (2.66) gives (2.58).

Writing ΦA(·) for the measure associated with the N2(0, A) distribution for invertible A, and

φA for the corresponding density, we have by Pinsker’s inequality and a Taylor expansion of the
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log-determinant function that

2 sup
C∈C
|ΦA(C)−ΦB(C)|2 ≤

∫
R2

φA log
φA
φB

=
1

2
{log |B| − log |A|+ tr(B−1(A−B))} ≤ ‖B−1/2(A−B)B−1/2‖2,

provided ‖B−1/2(A−B)B−1/2‖ ≤ 1/2. Hence

sup
C∈C
|ΦA(C)−ΦB(C)| ≤ min{1, 2‖B−1/2(A−B)B−1/2‖}.

We now take A = (n− 2)V/k, B = Σ and use the submultiplicativity of the Frobenius norm along

with (2.60) and (2.61) and the fact that ‖Σ−1/2‖ = {(1 + αz)
−1 + (1− αz)−1}1/2 to deduce that

sup
C∈C
|ΦA(C)−ΦB(C)| . 1

‖z‖

{
a(f(x) ∧ f(y))

(
k

nf(x)

)β/d
+

log1/2 n

k1/2

}
(2.67)

for x ∈ Xn, y ∈ B◦x(rn,vx + rn,vy ), u ∈ [lx, vx], v ∈ [ly, vy]. Now let u = f(x)−1(1 + k−1/2s) and

v = f(x)−1(1 + k−1/2t). By the mean value theorem, (2.51) and (2.59),

∣∣∣∣ΦΣ

(
k−1/2

{
(n− 2)µ−

(
k

k

)})
− ΦΣ(s, t)

∣∣∣∣
≤ 1

(2π)1/2

{∣∣∣∣ (n− 2)pn,x,u − k
k1/2

− s
∣∣∣∣+

∣∣∣∣ (n− 2)pn,y,v − k
k1/2

− t
∣∣∣∣}

. k1/2a(f(x) ∧ f(y))

(
k

nf(x)

)β/d
+ k−1/2. (2.68)

It follows by (2.57), (2.58), (2.67) and (2.68) that for x ∈ Xn and y ∈ B◦x(rn,vx + rn,vy ),

sup
u∈[lx,vx],v∈[ly,vy ]

|F (1)
n,x,y(u, v)− ΦΣ(s, t)|

. min

{
1,

log1/2 n

k1/2‖z‖
+ a(f(x) ∧ (f(y))

(
k

nf(x)

)β/d(
k1/2 +

1

‖z‖

)}
.

Therefore, by (2.51) and (2.52), and since f(y) ≥ f(x)/2 for x ∈ Xn, y ∈ Bx(rn,vx + rn,vy ) and

n ≥ n0, we conclude that for each ε > 0 and n ≥ n0∣∣∣∣∫
Xn×X

f(x)f(y)

∫ vx

lx

∫ vy

ly

F
(1)
n,x(u, v)− ΦΣ(s, t)

uv
1{‖x−y‖≤rn,u+rn,v} du dv dy dx

∣∣∣∣
.
k

n

∫
Xn
f(x)

{
log1/2 n

k1/2
+ a(f(x)/2)

(
k

nf(x)

)β/d}2

∫
B0(3)

sup
u∈[lx,vx],v∈[lyx,z ,vyx,z ]

|F (1)
n,x,yx,z (u, v)− ΦΣ(s, t)| dz dx

= O

(
k

n
max

{
log5/2 n

k3/2
,
k

1
2 + α

α+d−ε

n
α
α+d−ε

,
k−1/2+β/d log n

nβ/d
,
k1/2+2β/d

n2β/d

})
. (2.69)

By similar (in fact, rather simpler) means we can establish the same bound for the approximation

of Gn,x,y by Φ(k1/2{uf(x)− 1})Φ(k1/2{vf(x)− 1}).
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To conclude the proof for the unweighted case, we write Xn = X (1)
n ∪ X (2)

n , where

X (1)
n := {x : f(x) ≥ k

d
2β δn} , X (2)

n := {x : δn ≤ f(x) < k
d
2β δn},

and deal with these two regions separately. We have by Slepian’s inequality that ΦΣ(s, t) ≥
Φ(s)Φ(t) for all s and t. Hence, recalling that s = sx,u = k1/2{uf(x) − 1} and t = tx,v =

k1/2{vf(x)− 1}, by (2.49), (2.51) and (2.59), for every ε > 0,∫
X (2)
n ×X

f(x)f(y)

∫ vx

lx

∫ vy

ly

ΦΣ(s, t)− Φ(s)Φ(t)

uv
1{‖x−y‖≤rn,u+rn,v}du dv dy dx

≤ eΨ(k)

Vd(n− 1)k

∫
X (2)
n

∫
Rd
f(yx,z)

1{‖x−yx,z‖≤rn,vx+rn,vyx,z }

f(x)2lxlyx,z∫ ∞
−∞

∫ ∞
−∞
{ΦΣ(s, t)− Φ(s)Φ(t)} ds dt dz dx

.
1

n

∫
X (2)
n

f(x)

∫
B0(2)

αz dz dx = o
(k(1+ d

2β ) α
α+d−ε

n1+ α
α+d−ε

)
, (2.70)

where to obtain the final error term, we have used the fact that
∫
B0(2)

αz dz = Vd. By (2.51)

and (2.52) we have, for each ε > 0,∫
X (1)
n ×X

f(x)f(y)

∫ vx

lx

∫ vy

ly

ΦΣ(s, t)− Φ(s)Φ(t)

uv
1{‖x−y‖≤rn,u+rn,v} du dv dy dx

≤ eΨ(k)

Vd(n− 1)k

∫
X (1)
n

∫
Rd
f(yx,z)

1{‖x−yx,z‖≤rn,vx+rn,vyx,z }

f(x)2lxlyx,z
αz dz dx

=
eΨ(k)

(n− 1)k

∫
X (1)
n

f(x) dx+O

(
max

{
log1/2 n

nk1/2
,
kβ/d

n1+β/d
,
k

α
α+d−ε

n1+ α
α+d−ε

})
=

eΨ(k)

(n− 1)k
+O

(
max

{
log1/2 n

nk1/2
,
kβ/d

n1+β/d
,
k(1+ d

2β ) α
α+d−ε

n1+ α
α+d−ε

})
. (2.71)

By Lemma 2.10(ii) as for (2.59) we have, for x ∈ X (1)
n , y ∈ Bx(rn,vx + rn,vy ),

max
v∈{vx,vy}

|vf(x)− 1− 3k−1/2 log1/2 n| . a(f(x) ∧ f(y))
( k

nf(x)

)β/d
= o(k−1/2), (2.72)

with similar bounds holding for lx and ly. A corresponding lower bound of the same order for the

left-hand side of (2.71) follows from (2.72) and the fact that

∫ 2
√

logn

−2
√

logn

∫ 2
√

logn

−2
√

logn

{ΦΣ(s, t)− Φ(s)Φ(t)} ds dt = αz +O(n−2)

uniformly for z ∈ Rd. It now follows from (2.56), (2.69), (2.70) and (2.71) that for each ε > 0,

W4 = O

(
max

{
log5/2 n

nk1/2
,
k

3
2 + α−ε

α+d

n1+ α−ε
α+d

,
k3/2+2β/d

n1+2β/d
,
k(1+ d

2β ) α−εα+d

n1+ α−ε
α+d

,
k

1
2 + β

d log n

n1+ β
d

})
,

as required.

We now turn our attention to the variance of the weighted Kozachenko–Leonenko estimator
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Ĥw
n . We first claim that

Var

( k∑
j=1

wj log ξ(j),1

)
=

k∑
j,l=1

wjwl Cov(log ξ(j),1, log ξ(l),1) = V (f) + o(1). (2.73)

By (2.18), (2.19) and Lemma 2.3, for j such that wj 6= 0,

Var log ξ(j),1 = V (f) + o(1)

as n→∞. For l > j, using similar arguments to those used in the proof of Lemma 2.3, and writing

u
(k)
x,s := ux,s = Vd(n− 1)h−1

x (s)de−Ψ(k) for clarity, we have

E(log ξ(j),1 logξ(l),1) =

∫
X
f(x)

∫ 1

0

∫ 1−s

0

log(u(j)
x,s)log(u

(l)
x,s+t)Bj,l−j,n−l(s, t) dt ds dx

=

∫
X
f(x)

∫ 1

0

∫ 1−s

0

log
( (n− 1)s

f(x)eΨ(j)

)
log
((n− 1)(s+ t)

f(x)eΨ(l)

)
Bj,l−j,n−l(s, t)dt ds dx+o(1)

=

∫
X
f(x) log2 f(x) dx+ o(1)

as n→∞, uniformly for 1 ≤ j < l ≤ k∗1 . Now (2.73) follows on noting that supk≥kd ‖w‖ <∞.

Next we claim that

Cov

( k∑
j=1

wj log ξ(j),1,

k∑
l=1

wl log ξ(l),2

)
= o(n−1) (2.74)

as n→∞. In view of (2.20) and the fact that supk≥kd ‖w‖ <∞, it is sufficient to show that

Cov
(
log(f(X1)ξ(j),1), log(f(X2)ξ(l),2)

)
= o(n−1)

as n → ∞, whenever wj , wl 6= 0. We suppose without loss of generality here that j < l, since the

j = l case is dealt with in (2.27). We broadly follow the same approach used to bound W1, . . . ,W4,

though we require some new (similar) notation. Let F ′n,x,y denote the conditional distribution

function of (ξ(j),1, ξ(l),2) given X1 = x,X2 = y and let F
(j)
n,x denote the conditional distribution

function of ξ(j),1 given X1 = x. Let

r(j)
n,u :=

{
ueΨ(j)

Vd(n− 1)

}1/d

, p(j)
n,x,u := hx(r(j)

n,u).

Recall the definitions of a±n,j given in the proof of Lemma 2.13, and let vx,j := inf{u ≥ 0 :

(n − 1)p
(j)
n,x,u = a+

n,j} and lx,j := inf{u ≥ 0 : (n − 1)p
(j)
n,x,u = a−n,j}. For pairs (u, v) with u ≤ vx,j

and v ≤ vy,l, let (M1,M2,M3) ∼ Multi(n− 2; p
(j)
n,x,u, p

(l)
n,y,v, 1− p(j)

n,x,u − p(l)
n,y,v) and write

G′n,x,y(u, v) := P(M1 ≥ j,M2 ≥ l).

Also write

Σ′ :=

(
1 (j/l)1/2α′z

(j/l)1/2α′z 1

)
,

where α′z := V −1
d µd

(
B0(1) ∩ Bz(exp(Ψ(l) − Ψ(j))1/d)

)
. Writing W ′i for remainder terms to be
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bounded later, we have

Cov
(
log(f(X1)ξ(j),1), log(f(X2)ξ(l),2)

)
=

∫
X×X

f(x)f(y)

∫
[ly,l,vy,l]×[lx,j ,vx,j ]

h(u, v) d(F ′n,x,y−F (j)
n,xF

(l)
n,y)(u, v) dx dy +W ′1

=

∫
X×X

f(x)f(y)

∫
[ly,l,vy,l]×[lx,j ,vx,j ]

h(u, v) d(F ′n,x,y−G′n,x,y)(u, v) dx dy − 1

n
+

2∑
i=1

W ′i

=

∫
Xn×X

f(x)f(y)

∫ vy,l

ly,l

∫ vx,j

lx,j

(F ′n,x,y −G′n,x,y)(u, v)

uv
du dv dx dy − 1

n
+

3∑
i=1

W ′i

=
V −1
d eΨ(j)

(n− 1)(jl)1/2

∫
Rd

∫ ∞
−∞

∫ ∞
−∞
{ΦΣ′(s, t)− Φ(s)Φ(t)} ds dt dz − 1

n
+

4∑
i=1

W ′i

=
V −1
d eΨ(j)

(n− 1)l

∫
Rd
α′z dz −

1

n
+

4∑
i=1

Wi = O

(
1

nk

)
+

4∑
i=1

W ′i (2.75)

as n→∞. The final equality here follows from the fact that, for Borel measurable sets K,L ⊆ Rd,∫
Rd
µd
(
(K + z) ∩ L

)
dz = µd(K)µd(L), (2.76)

so that
∫
Rd α

′
z dz = Vde

Ψ(l)−Ψ(j).

To bound W ′1: Very similar arguments to those used to bound W1 show that W ′1 = o(n−(9/2−ε))

as n→∞, for every ε > 0.

To bound W ′2: Similar to our work used to bound W2, we may show that

∫ a
+
n,j
n−1

a
−
n,j
n−1

∫ a
+
n,l
n−1

a
−
n,l
n−1

|Bj+a,l+b,n−j−l−1(s, t)−Bj+a,n−j(s)Bl+b,n−l(t)| dt ds ≤
(jl)1/2

n
{1 + o(1)}

as n→∞, for fixed a, b > −1. Also,∫ 1

0

∫ 1−s

0

log
((n− 1)s

eΨ(j)

)
log
((n− 1)t

eΨ(l)

)
{Bj,l,n−j−l−1(s, t)− Bj,n−j(s)Bl,n−l(t)}dtds−

1

n
+O(n−2)

as n → ∞. Using these facts and very similar arguments to those used to bound W2 we have for

every ε > 0 that

W ′2 = O

(
k1/2

n
max

{
kβ/d

nβ/d
,
k

α
α+d−ε

n
α
α+d−ε

})
.

To bound W ′3: Similarly to (2.46) and the surrounding work, we can show that for every ε > 0,

W ′3 = O

(
max

{
log n

nk1/2
,
k

1
2 + 2β

d

n1+ 2β
d

,
k

2α
α+d−ε

n
2α
α+d−ε

})
.

To bound W ′4: Let (N1, N2, N3, N4) ∼ Multi(n−2; p
(j)
n,x,u−p∩, p(l)

n,y,v−p∩, p∩, 1−p(j)
n,x,u−p(l)

n,y,v+

p∩), where p∩ :=
∫
Bx(r

(j)
n,u)∩By(r

(l)
n,v)

f(w) dw. Further, let

F
′,(1)
n,x,y := P(N1 +N3 ≥ j,N2 +N3 ≥ l).
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Then, as in (2.56), we have∫
Xn×X

f(x)f(y)

∫ vx,j

lx,j

∫ vy,l

ly,l

(F ′n,x,y −G′n,x,y)(u, v)

uv
du dv dx dy

=

∫
Xn×X

f(x)f(y)

∫ vx,j

lx,j

∫ vy,l

ly,l

(F
′,(1)
n,x,y −G′n,x,y)(u, v)

uv
du dv dx dy

+O

(
max

{
log n

nk1/2
,
k

1
2 + 2β

d

n1+ 2β
d

,
k

1
2 + α

α+d−ε

n1+ α
α+d−ε

})
.

We can now approximate F
′,(1)
n,x,y(u, v) by ΦΣ′(j

1/2{uf(x)− 1}, l1/2{vf(x)− 1}) and G′n,x,y(u, v) by

Φ(j1/2{uf(x)− 1})Φ(l1/2{vf(x)− 1}). This is rather similar to the corresponding approximation

in the bounds on W4, so we only present the main differences. First, let

Y ′i :=

(
1{Xi∈Bx(r

(j)
n,u)}

1{Xi∈By(r
(l)
n,v)}

)
.

We also define

µ′ := E(Y ′i ) =

(
p

(j)
n,x,u

p
(l)
n,y,v

)

and

V ′ := Cov(Y ′i ) =

(
p

(j)
n,x,u(1− p(j)

n,x,u) p∩ − p(j)
n,x,up

(l)
n,y,v

p∩ − p(j)
n,x,up

(l)
n,y,v p

(l)
n,y,v(1− p(l)

n,y,v)

)
,

and set Z ′i := V ′−1/2(Y ′i − µ). Our aim is to provide a bound on p∩. Since the function

(r, s) 7→ µd
(
B0(r1/d) ∩Bz(s1/d)

)
,

is Lipschitz we have for x ∈ Xn, y = x + f(x)−1/dr
(j)
n,1z ∈ Bx(r

(j)
n,vx,j + r

(l)
n,vy,l), u ∈ [lx,j , vx,j ] and

v ∈ [ly,l, vy,l] that

∣∣∣∣n− 2

eΨ(j)
p∩ − α′z

∣∣∣∣ . a(f(x) ∧ (f(y))

(
k

nf(x)

)β/d
+

log1/2 n

k1/2
, (2.77)

using similar equations to (2.51), (2.52) and (2.59). From this and similar bounds to (2.60), we

find that |V ′| & k2/n2 and ‖(V ′)−1/2‖ . (n/k)1/2. We therefore have

E‖Z ′3‖3 ≤ ‖(V ′)−1/2‖3E‖Y ′3 − µ′‖3 . n1/2/k1/2,

which is as in the l = j case except with the factor of ‖z‖−1/2 missing. Note now that

lim sup
n→∞

sup
(j,l):j<l

wj ,wl 6=0

sup
z∈B0(1+e(Ψ(l)−Ψ(j))/d)

‖(Σ′)−1/2‖ <∞.
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Hence, using (2.77), similar bounds to (2.60) and the same arguments as leading up to (2.67),

sup
C∈C
|ΦA(C)−ΦB(C)| . a(f(x) ∧ f(y))

(
k

nf(x)

)β/d
+

log1/2 n

k1/2
, (2.78)

where B := Σ′ and

A := (n− 2)

(
j−1p

(j)
n,x,u(1− p(j)

n,x,u) j−1/2l−1/2(p∩ − p(j)
n,x,up

(l)
n,y,v)

j−1/2l−1/2(p∩ − p(j)
n,x,up

(l)
n,y,v) l−1p

(l)
n,y,v(1− p(l)

n,y,v)

)
.

Now let u := f(x)−1(1 + j−1/2s) and v := f(x)−1(1 + l−1/2t). Similarly to (2.68), we have

∣∣∣∣ΦΣ′

( (n− 2)p
(j)
n,x,u − j

j1/2
,
(n− 2)p

(l)
n,y,v − l

l1/2

)
− ΦΣ′(s, t)

∣∣∣∣
. k1/2a(f(x) ∧ f(y))

(
k

nf(x)

)β/d
+ k−1/2.

Similarly to the arguments leading up to (2.69), it follows that

∣∣∣∣∫
Xn×X

f(x)f(y)

∫ vx,j

lx,j

∫ vy,l

ly,l

F
′,(1)
n,x (u, v)−ΦΣ′(s, t)

uv
1{‖x−y‖≤r(j)

n,u+r
(l)
n,v}

du dv dy dx

∣∣∣∣
= O

(
k

n
max

{
log3/2 n

k3/2
,
k

1
2 + α

α+d−ε

n
α
α+d−ε

,
k−1/2+β/d log n

nβ/d
,
k1/2+2β/d

n2β/d

})
,

where the power on the first logarithmic factor is smaller because of the absence of the factor of

the ‖z‖−1 term in (2.78). The remainder of the work required to bound W ′4 is very similar to the

work done from (2.70) to (2.71), using also (2.76), so is omitted. We conclude that

W ′4 = O

(
max

{
log

3
2 n

nk
1
2

,
k

3
2 + α−ε

α+d

n1+ α−ε
α+d

,
k

3
2 + 2β

d

n1+ 2β
d

,
k(1+ d

2β ) α−εα+d

n1+ α−ε
α+d

,
k

1
2 + β

d log n

n1+ β
d

})
.

The equation (2.75), together the bounds on W ′1, . . . ,W
′
4 just proved, establish the claim (2.74).

We finally conclude from (2.73) and (2.74) that

Var(Ĥw
n ) =

1

n
Var

( k∑
j=1

wj log ξ(j),1

)
+

(
1− 1

n

)
Cov

( k∑
j=1

wj log ξ(j),1 ,

k∑
l=1

wl log ξ(l),2

)
= V (f) + o(n−1),

as required.

2.6.6 Proof of Theorem 2.8

Proof of Theorem 2.8. For the first part of the theorem we aim to apply Theorem 25.21 of van der

Vaart (1998), and follow the notation used there. With Ṗ := {λ(log f + H(f)) : λ ∈ R} we will

first show that the entropy functional H is differentiable at f relative to the tangent set Ṗ, with

efficient influence function ψ̃f = − log f −H(f). Following Example 25.16 in van der Vaart (1998),

for g ∈ Ṗ, the paths ft,g defined in (2.10) of the main text are differentiable in quadratic mean at

t = 0 with score function g. Note that
∫
X gf = 0 and

∫
X g

2f < ∞ for all g ∈ Ṗ. It is convenient
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to define, for t ≥ 0, the set At := {x ∈ X : 8t|g(x)| ≤ 1}, on which we may expand e−2tg easily as

a Taylor series. By Hölder’s inequality, for ε ∈ (0, 1/2),∫
Act

f | log f | ≤ (8t)2(1−ε)
∫
X
f |g|2(1−ε)| log f | ≤ (8t)2(1−ε)

{∫
X
g2f
}1−ε{∫

X
f | log f |1/ε

}ε
= o(t)

as t↘ 0. Moreover,∫
Act

f log(1 + e−2tg) ≤
∫
Act

(log 2 + 2t|g|)f ≤ 16t2(4 log 2 + 1)

∫
X
g2f.

We also have that

|c(t)−1 − 1| =
∣∣∣∣∫
X

(
2

1 + e−2tg
− 1− tg

)
f

∣∣∣∣
≤
∫
At

∣∣∣∣e−2tg − 1 + 2tg + tg(e−2tg − 1)

1 + e−2tg

∣∣∣∣f +

∫
Act

(1 + t|g|)f

≤ 16

3
t2
∫
At

g2f + 72t2
∫
Act

g2f ≤ 72t2
∫
X
g2f. (2.79)

It follows that∣∣∣∣t−1{H(ft,g)−H(f)}+

∫
X
{log f +H(f)}fg

∣∣∣∣
=

∣∣∣∣1t
∫
X

{(
1− 2c(t)

1+e−2tg

)
log f − 2c(t)

1+e−2tg
log
( 2c(t)

1+e−2tg

)
+ tg(1 + log f)

}
f

∣∣∣∣
≤ 1

t

∫
At

f
∣∣∣{e−2tg − 1 + 2tg + tg(e−2tg − 1)} log f − 2 log

( 2

1 + e−2tg

)
+ tg(1 + e−2tg)

∣∣∣+ o(1)

≤ 16

3
t

∫
X
g2f | log f |+ 22t

∫
X
g2f + o(1)→ 0.

The conclusion (2.11) therefore follows from van der Vaart (1998, Theorem 25.21).

We now establish the second part of the theorem. First, by our previous bound on c(t) in (2.79),

for 12t < {
∫
X g

2f}−1/2 we have that

‖ft,g‖∞ ≤ 2c(t)‖f‖∞ ≤
2‖f‖∞

1− 72t2
∫
X g

2f
≤ 4‖f‖∞,

and µα(ft,g) ≤ 4µα(f).

We now study the smoothness properties of ft,g. This requires some involved calculations,

because we first need to understand corresponding properties of g. To this end, for an m times

differentiable function g : Rd → R, define

M∗g (x) := max

{
max

t=1,...,m
‖g(t)(x)‖ , sup

y∈B◦x(ra(x))

‖g(m)(y)− g(m)(x)‖
‖y − x‖β−m

}
and

Dg := max

{
1, sup
δ∈(0,‖f‖∞)

supx:f(x)≥δM
∗
g (x)

a(δ)m+1

}
.

Let Jm denote the set of multisets of elements {1, . . . , d} of cardinality at most m, and for J =

{j1, . . . , js} ∈ Jm, define gJ(x) := ∂sg∏s
`=1 ∂x`

(x). Moreover, for i ∈ {1, . . . , s}, let Pi(J) denote the
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set of partitions of J into i non-empty multisets. As an illustration, if d = 2, then

J3 =
{
∅, {1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2},

{1, 1, 1},{1, 1, 2},{1, 2, 1},{1, 2, 2},{2, 1, 1},{2, 1, 2},{2, 2, 1},{2, 2, 2}
}
.

Moreover, if J = {1, 1, 2} ∈ J3, then

P2(J) =
{{
{1, 1}, {2}

}
,
{
{1, 2}, {1}

}
,
{
{1, 2}, {1}

}}
.

Then, by induction, and writing g∗ := g1 = log f +H(f), it may be shown that

g∗J(x) =

card(J)∑
i=1

(−1)i−1(i− 1)!

f i

∑
{P1,...,Pi}∈Pi(J)

fP1 . . . fPi .

Now, the cardinality of Pi(J) is given by a Stirling’s number of the second kind:

card
(
Pi(J)

)
=

1

i!

i∑
`=0

(−1)i−`
(
i

`

)
`card(J) =: S

(
card(J), i

)
,

say. Thus, if card(J) ≤ m, then

|g∗J(x)| ≤
card(J)∑
i=1

(i− 1)!S
(
card(J), i

)
a(f(x))i ≤ 1

2
mm+1m!a(f(x))m. (2.80)

Moreover, if ‖y − x‖ ≤ ra(x) and m ≥ 1, then

|g∗J(y)− g∗J(x)| ≤
card(J)∑
i=1

(i− 1)!
∑

{P1,...,Pi}∈Pi(J)

{
|fP1

. . . fPi(y)− fP1
. . . fPi(x)|

f i(y)

+
|fP1

. . . fPi(x)|
f i(y)

∣∣∣∣f i(y)

f i(x)
− 1

∣∣∣∣}.
Now, by Lemma 2.12,∣∣∣∣f i(y)

f i(x)
− 1

∣∣∣∣ ≤ i∣∣∣∣f(y)

f(x)
− 1

∣∣∣∣(1 +

∣∣∣∣f(y)

f(x)
− 1

∣∣∣∣)i−1

≤
(71

56

)i−1

i

∣∣∣∣f(y)

f(x)
− 1

∣∣∣∣.
Moreover, by induction and Lemma 2.12 again,

|fP1
. . . fPi(y)− fP1

. . . fPi(x)| ≤ 8d1/2
{(71

56

)i
− 1
}
a(f(x))if i(x)‖y − x‖β−m.

We deduce that (even when m = 0),

|g∗J(y)− g∗J(x)| ≤ 8d1/2
(71

41

)m
m!(m+ 1)m+2a(f(x))m+1‖y − x‖β−m. (2.81)

Comparing (2.80) and (2.81), we see that

Dg∗ ≤ 8d1/2
(71

41

)m
m!(m+ 1)m+2 =: D. (2.82)
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Now let q(y) := (1 + e−2ty)−1, so that ft,g(x) = 2c(t)q
(
g(x)

)
f(x). Similar inductive arguments to

those used above yield that when J ∈ Jm with m ≥ 1 and g is m times differentiable,

(q ◦ g)J(x) =

card(J)∑
i=1

q(i)
(
g(x)

) ∑
{P1,...,Pi}∈Pi(J)

gP1 . . . gPi(x),

and we now bound the derivatives of q. By induction,

q(i)(y) = (2t)i
i∑

`=1

(−1)i−`
a

(i)
` e−2t`y

(1 + e−2ty)`+1
,

where for each i ∈ N, we have a
(i)
1 = 1, a

(i)
i = i! and a

(i)
` = `(a

(i−1)
` + a

(i−1)
`−1 ) for ` ∈ {2, . . . , i− 1}.

Since max1≤`≤i a
(i)
` ≤ (2i)i−1 (again by induction), we deduce that

(1 + e−2ty)|q(i)(y)| ≤ 22i−1iiti. (2.83)

Writing s := card(J), it follows that

|(q ◦ g)J(x)| ≤ q
(
g(x)

) s∑
i=1

22i−1iitiS(s, i)a(f(x))i(m+1)Di
g

≤ q
(
g(x)

)
ss+122s−1 max(1, t)sBsa(f(x))s(m+1)Ds

g, (2.84)

where Bs :=
∑s
i=1 S(s, i) denotes the sth Bell number. We can now apply the multivariate Leibniz

rule, so that for a multi-index ω = (ω1, . . . , ωd) with |ω| ≤ m, and for t ≤ 1 and m ≥ 1,∣∣∣∣∂ωft,g∗(x)

∂xω

∣∣∣∣ =

∣∣∣∣2c(t) ∑
ν:ν≤ω

(
ω

ν

)
∂νq
(
g∗(x)

)
∂xν

∂ω−νf(x)

∂xω−ν

∣∣∣∣
≤ 23m−1mm+1BmD

m
g∗a(f(x))m

2+mft,g∗(x). (2.85)

Now, in order to control
∣∣∂ωft,g∗ (y)

∂xω − ∂ωft,g∗ (x)

∂xω

∣∣, we first note that by (2.81) and (2.82), we have

for ‖y − x‖ ≤ ra(x), i ∈ N, J ∈ Jm with card(J) = s and {P1, . . . , Pi} ∈ Pi(J),

|g∗P1
. . . g∗Pi(y)− g∗P1

. . . g∗Pi(x)| ≤ (2D)ia(f(x))i(m+1)‖y − x‖β−m. (2.86)

Thus, by (2.83), (2.86), the mean value theorem and Lemma 2.12, for t ≤ 1, ‖y − x‖ ≤ ra(x) and

m ≥ 1,

|(q ◦ g∗)J(y)− (q ◦ g∗)J(x)|

≤
∣∣∣∣ s∑
i=1

q(i)(g∗(x))
∑

{P1,...,Pi}∈Pi(J)

{g∗P1
. . . g∗Pi(y)− g∗P1

. . . g∗Pi(x)}
∣∣∣∣

+

∣∣∣∣ s∑
i=1

{q(i)(g∗(y))− q(i)(g∗(x))}
∑

{P1,...,Pi}∈Pi(J)

g∗P1
. . . g∗Pi(y)

∣∣∣∣
≤ Dmq(g∗(x))a(f(x))m

2+m+1‖y − x‖β−mBm23m+5d1/2(m+ 1)m+1(1 + e2tg∗(x))

e2tg∗(x) + e−2t|g∗(y)−g∗(x)|

≤ Dmq(g∗(x))a(f(x))m
2+m+1‖y − x‖β−mBm23m+5d1/2(m+ 1)m+1

(56

41

)2t

. (2.87)
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Using the multivariate Leibnitz rule again, together with (2.84), (2.87) and Lemma 2.12, for t ≤ 1,

‖y − x‖ ≤ ra(x) and |ω| = m ≥ 1,∣∣∣∣∂ωft,g∗(y)

∂xω
− ∂ωft,g∗(x)

∂xω

∣∣∣∣
≤ 2c(t)

∑
ν:ν≤ω

(
ω

ν

){∣∣∣∣∂ω−νf(y)

∂yω−ν

∣∣∣∣∣∣∣∣∂νq(g∗(y))

∂xν
− ∂νq(g∗(x))

∂xν

∣∣∣∣+

∣∣∣∣∂νq(g∗(x))

∂xν

∣∣∣∣∣∣∣∣∂νf(y)

∂xν
− ∂νf(x)

∂xν

∣∣∣∣}
≤ 24m+9d1/2Bm(m+ 1)m+1Dma(f(x))m

2+m+1ft,g∗(x)‖y − x‖β−m

=: C ′mD
ma(f(x))m

2+m+1ft,g∗(x)‖y − x‖β−m. (2.88)

This also holds in the case m = 0. Now note that if 12t < {
∫
X (g∗)2f}−1/2 we have

f(x) =
1 + e−2tg∗(x)

2c(t)
ft,g∗(x) ≥ ft,g∗(x)

4
.

Finally, define the function

ã(δ) := dm/2C ′mD
ma(δ/4)m

2+m+1. (2.89)

Then ã ∈ A and from (2.85) and (2.88), we have Mft,g∗ ,ã,β(x) ≤ ã(ft,g∗(x)). We conclude that

for t < min
(
1, {144

∫
g2f}−1/2

)
, we have that ft,g∗ ∈ Fd,θ′ , where θ′ = (α, β, 4γ, 4ν, ã) ∈ Θ. The

result follows on noting that ft,gλ = ftλ,g∗ .



Chapter 3

Tests of independence based on

mutual information

3.1 Introduction

Independence is a fundamental concept in statistics and many related fields. The assumption

of independence is made in countless statistical models; as a simple example, the linear model

Y = Xβ + ε under random design often assumes that X and ε are independent. Often we would

like to confirm that the assumption of independence is reasonable, as if this assumption is violated

then standard theory may not apply. Testing independence and measuring dependence are very

well established areas of statistics with the idea of the correlation between two random variables

dating back to the end of the 19th century when it was introduced by Francis Galton (Stigler, 1989),

and subsequently expanded upon by Pearson. Since then many new measures of dependence have

been developed and studied, each with its own advantages and disadvantages, and there is no

universally accepted measure. For surveys of well-established measures see, for example, Schweizer

(1981), Joe (1989), Mari and Kotz (2001) and the references therein. We give an overview of more

recently introduced quantities below; see also Josse and Holmes (2014).

One area in which measuring dependence plays a central role is independent component analysis

(ICA), a special case of blind source separation, in which a linear transformation of the data is

sought so that the transformed data is maximally independent; see e.g. Comon (1994), Bach and

Jordan (2002) and Samworth and Yuan (2012). Independence tests may then be carried out to

check the convergence of the ICA algorithm. In many applications the aim is simply to establish

whether or not there is dependence between two variables, and tests of independence are required;

see Nguyen and Eisenstein (2017) for a recent example in computational linguistics or Steuer et al.

(2002) and Albert et al. (2015) and the references therein for biological examples. In addition, the

problem of measuring dependence has applications in feature selection (Torkkola, 2003; Song et

al., 2012), in which one seeks a set of features which contains the maximum possible information

about a response, and in evaluating the quality of a clustering in cluster analysis (Vinh, Epps and

Bailey, 2010).

In the contingency table setting where observations are categorical, the testing problem reduces

to testing the equality of two discrete distributions and the chi-squared test is commonly used.

Here we will focus on the case of continuous random variables. Classical nonparametric approaches

57
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to measuring dependence and independence testing in such cases include Pearson’s correlation

coefficient, Kendall’s tau and Spearman’s rank correlation coefficient. Though these approaches are

widely used they suffer from a lack of power against many alternatives; indeed Pearson correlation

measures linear relationships between variables and Kendall’s tau and Spearman’s rank measure

monotonic relationships. Hoeffding’s test of independence (Hoeffding, 1948) is able to detect a

wider class of departures from independence but, together with these other classical methods, is

only applicable in the case of univariate variables. Tests such as Kendall’s tau, Spearman’s rank

and Hoeffding’s test in which the test statistic depends on the data only through their rankings

have the advantage of being distribution-free, that is the null distribution of the test statistic

does not depend on the marginal distributions of the data and critical values can be tabulated in

advance. The concept of ranks in the multidimensional setting is less clear, and distribution-free

tests are more difficult to construct.

Recent research has focused on constructing tests that can be used for more complex data

and that are consistent against wider classes of alternatives. The concept of distance covariance

was introduced in Székely, Rizzo and Bakirov (2007) and can be expressed as a weighted L2

norm between the characteristic function of the joint distribution and the product of the marginal

characteristic functions. This concept has also been studied in high-dimensions in Székely and

Rizzo (2013). In Sejdinovic et al. (2013) tests based on distance covariance were shown to be

equivalent to a reproducing kernel Hilbert space (RKHS) test for a specific choice of kernel. RKHS

tests have been widely studied in the machine learning community with early understanding of the

subject given by Bach and Jordan (2002) and Gretton et al. (2005), in which the Hilbert–Schmidt

independence criterion was proposed. These tests are based on embedding the joint distribution

and product of the marginal distributions into a Hilbert space and considering the norm of their

difference in this space. One drawback of the kernel paradigm here is the computational complexity,

though the recent works Jitkrittum, Szabó and Gretton (2016) and Zhang et al. (2017) attempt to

address this issue. The choice of kernel also affects the results in RKHS methods. Other methods

include those based on partitioning the sample space; see, for example, Gretton and Györfi (2010)

and Heller et al. (2016). These have the advantage of being distribution-free, though partitions of

the sample space must be chosen.

We now formalise the independence testing problem considered in this chapter. Let Z = (X,Y )

and suppose we observe independent and identically distributed copies Z1, . . . , Zn of Z. The

property X ⊥⊥ Y of independence is often characterised as either the joint distribution function,

density function or characteristic function factorising as the product of the corresponding marginal

functions.We wish to test the hypotheses

H0 : X ⊥⊥ Y vs. H1 : X 6⊥⊥ Y.

Many related problems have also been studied, such as testing mutual independence between a

group of random variables (see e.g. Bai et al. (2009) for the Gaussian case) and testing conditional

independence. The concept of conditional independence is particularly useful in graphical mod-

elling (Lauritzen, 1996) and causal inference and there is a large literature on the corresponding

conditional independence problem (e.g. Su and White, 2008; Zhang et al., 2011). In Fan, Feng

and Xia (2017) the problem of conditional independence testing in graphical models is reduced to

independence testing through a linearity assumption and then a distance covariance-based test is

used. We will not explicitly consider conditional independence in this chapter except to say that
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our approach is rather flexible and it is likely some of our work will extend to this setting.

A very natural measure of dependence is given by mutual information, defined between random

variables X and Y with joint density f and marginal densities fX and fY by

I(X;Y ) = I(f) :=

∫
f(x, y) log

f(x, y)

fX(x)fY (y)
dx dy = H(X) +H(Y )−H(X,Y ), (3.1)

where H denotes differential entropy defined in Chapter 2. This is the Kullback–Leibler divergence

between the joint distribution of (X,Y ) and the product of the marginal distributions. It is non-

negative and equal to zero if and only if X and Y are independent. As noted in Comon (1994)

mutual information is very useful in ICA and indeed many methods for fitting ICA models are

based on mutual information or approximations thereof. Another attractive feature of mutual

information as a measure of dependence is that it is invariant to invertible transformations of X

and Y . Indeed, if X takes values in X ⊆ Rp, and g is a differentiable invertible function on X then

H(g(X)) = H(X) + E log |J(X)|,

where J is the Jacobian of the transformation x 7→ g(x). Therefore,

I(g(X);Y ) = H(X) + E log |J(X)|+H(Y )−H(X,Y )− E log |J(X)|

= H(X) +H(Y )−H(X,Y ) = I(X;Y ),

where we used in the above the fact that J is also the Jacobian of the transformation (x, y) 7→
(g(x), y). Moreover, the concept of mutual information is easily generalised to more complex

situations though objects such as the conditional mutual information

I(X;Y |Z) := H(X|Z) +H(Y |Z)−H(X,Y |Z)

= H(X,Z) +H(Y,Z)−H(Z)−H(X,Y, Z)

and the mutual information between p random variables

I(X1; . . . ;Xp) :=

p∑
j=1

H(Xj)−H(X1, . . . , Xp). (3.2)

These quantities are non-negative and equal to zero if and only if we have conditional independence

or mutual independence respectively. They are also expressible purely in terms of differential

entropy.

The estimation of mutual information of course plays a crucial role in tests based on this

quantity. Many estimators are based on the expansion (3.1) in terms of differential entropy, which

allows one to estimate mutual information through entropy estimation. In Miller and Fisher (2003)

the authors perform ICA based on (3.2) using entropy estimators based on sample spacings. Recall

that the Kozachenko–Leonenko entropy estimator based on a d-dimensional sample Z1, . . . , Zn is

given by

Ĥn = Ĥn(Z1, . . . , Zn) =
1

n

n∑
i=1

log

(
Vd(n− 1)ρd(k),i

eΨ(k)

)
,

where ρ(k),i is the kth nearest neighbour distance for the ith observation. The KSG estimator is a
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popular estimator of mutual information which is described in Kraskov, Stögbauer and Grassberger

(2004). This is based on the Kozachenko–Leonenko estimator but uses a data-driven, local choice

of k for the marginal entropy estimation. For simplicity we will instead consider the estimator

În = În(Z1, . . . , Zn) = ĤX
n (X1, . . . , Xn) + ĤY

n (Y1, . . . , Yn)− ĤXY
n (Z1, . . . , Zn), (3.3)

where on the right hand side we have (weighted) Kozachenko–Leonenko estimators of H(X), H(Y )

and H(X,Y ) defined in Chapter 2 with appropriate choices of k (and w). This is similar to the

idea for an independence test considered in Goria et al. (2005), though the null distribution for

their test statistic is not studied and no test is formally defined.

A common approach to testing when the null distribution of the test statistics is unknown

is to use a permutation test. These are a general type of resampling method in which the null

distribution is simulated by randomly permuting the data a large number of times and calculating

the test statistic for each of these new data sets. As a simple example, when testing for equality

of means between two sets of data one would randomly define new sets of data of the same size by

sampling without replacement from the pooled data. In this way the resampled data sets will have

the same means on average, and the null distribution of the test statistic can be approximated

(Romano, 1990). In the context of independence testing with paired data (X1, Y1), . . . , (Xn, Yn),

for a random permutation π one would consider the new data set (X1, Yπ(1)), . . . , (Xn, Yπ(n)) in

which Xi ⊥⊥ Yπ(i) whenever π(i) 6= i. In Albert et al. (2015) a permutation test of independence

is proposed which is shown to be consistent.

The aim of this chapter is to propose tests of independence based on entropy estimation and to

provide a theoretical understanding of these tests. In Section 3.2 we make the assumption that the

marginal distributions of X and Y are known and propose a simple test of independence. We show

that, under our regularity conditions, the power of our test converges to 1 provided the mutual

information is above some threshold that may be o(n−1/2) as n→∞; to the best of our knowledge

this is the first time that such a local power analysis has been carried out for an independence test.

In Section 3.3 we no longer assume that the marginal distributions are known and formally consider

a permutation test. We show that this test is consistent whenever our regularity conditions are

satisfied and X and Y are not independent. Again to the best of our knowledge, this is the first

study of nearest neighbour methods when some of the components have been permuted. Proofs of

our results are presented in Section 3.4.

We now introduce some notation used throughout this chapter. We will denote by f, fX and fY

the joint density of (X,Y ), the marginal density of X and the marginal density of Y with respect

to the appropriate Lebesgue measure, and for given dX , dY ∈ N and density f on RdX+dY we use

the convention that

fX(x) =

∫
RdY

f(x, y) dy, and fY (y) =

∫
RdX

f(x, y) dx.

For given marginal densities fX on RdX and fY and RdY we also define the product density fXfY

on RdX+dY by fXfY (x, y) = fX(x)fY (y). For a density function g we denote by Pg(·) and Eg(·)
probabilities and expectations respectively when the true underlying joint density of (X,Y ) is g.
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3.2 A test in the case of known marginal distributions

To define our test formally recall the mutual information estimator În introduced in (3.3), and

write (kX , wX), (kY , wY ) and (kXY , wXY ) for the tuning parameters selected for ĤX
n , Ĥ

Y
n and

ĤXY
n respectively. Since I(X;Y ) ≥ 0 with equality if and only if X and Y are independent we

will reject the null hypothesis of independence when În is significantly large. Defining the critical

values

C(n)
q := inf{r ∈ R : PfXfY (În > r) ≤ q},

the test that rejects the null hypothesis if and only if În > C
(n)
q has size at most q. We suppose

in this section that the marginal distributions of X and Y are known, and have densities fX and

fY respectively. Making this assumption allows us to simulate În under H0 and find the critical

values of the test to arbitrary precision, so we assume for simplicity that the critical values are

known. Observe that, under regularity conditions, the estimators ĤX
n , Ĥ

Y
n and ĤXY

n are efficient

and under H0 we then have that

În = − 1

n

n∑
i=1

[log fX(Xi) + log fY (Yi)− log{fX(Xi)fY (Yi)}] + op(n
−1/2) = op(n

−1/2)

as n→∞. The critical values therefore satisfy

C(n)
q = n−1/2 inf{r ∈ R : PfXfY (n1/2În > r) ≤ q} = o(n−1/2)

as n → ∞. Now, under regularity conditions and a fixed alternative, writing V (X;Y ) = V (f) :=

Var log
( f(X,Y )
fX(X)fY (Y )

)
, we have, again by the efficiency of the entropy estimators, that

n1/2(În − I) = n1/2

{
− 1

n

n∑
i=1

log

(
fX(Xi)fY (Yi)

f(Xi, Yi)

)
−H(X)−H(Y ) +H(X,Y )

}
+ op(1)

d→ N
(
0, V (X;Y )

)
.

Hence, for a fixed alternative f we have that

Pf (În ≥ C(n)
q )− Φ̄

(
n1/2C

(n)
q − n1/2I(X;Y )

V 1/2(X;Y )

)
→ 0 (3.4)

as n → ∞. We will not use this approximation explicitly in our following analysis though it

provides some heuristic justification that our test is consistent against alternatives with I(X;Y )

greater than n−1/2.

The remainder of this section is devoted to a rigorous study of the power of our test that is

compatible with a local alternative fn having mutual information In → 0. Recalling the definitions

of Fd,θ and Θ in Section 2.2, for dX , dY ∈ N and ϑ = (θ, θX , θY ) ∈ Θ3, define

FdX ,dY ,ϑ :=
{
f ∈ FdX+dY ,θ : fX ∈ FdX ,θX , fY ∈ FdY ,θY , fXfY ∈ FdX+dY ,θ

}
and, for b ≥ 0, let

FdX ,dY ,ϑ(b) :=
{
f ∈ FdX ,dY ,ϑ : I(f) > b

}
.
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Given d ∈ N and θ = (α, β, γ, ν, a) ∈ Θ additionally define

τ1(d, θ) = min

{
2α

5α+ 3d
,
α− d

2α
,

4(β ∧ 1)

4(β ∧ 1) + 3d

}
and

τ2(d, θ) = min

{
1− d

2β
, 1− d/4

bd/4c+ 1

}
(cf. Theorem 2.1 in Section 2.2). Note that mini=1,2 τi(d, θ) > 0 exactly when α > d and β > d/2.

The following theorem constitutes our main result on this test and shows that, under regularity

conditions, it is consistent against any alternative with sufficiently large mutual information. Recall

the definition of W(k) in Section 2.2.

Theorem 3.1. Fix dX , dY ∈ N, set dXY = dX + dY and fix ϑ = (θXY , θX , θY ) ∈ Θ3 with

min
L∈{XY,X,Y }

min
i=1,2

τi(dL, θL) > 0.

Let k∗0 = k∗0,n, k
∗
X = k∗X,n, k

∗
Y = k∗Y,n and k∗XY = k∗XY,n denote any deterministic sequences of

positive integers with k∗0 ≤ min{k∗X , k∗Y , k∗XY }, with k∗0/ log5 n→∞ and with

max
L∈{XY,X,Y }

max

{
k∗L

nτ1(dL,θL)−ε ,
k∗L

nτ2(dL,θL)

}
→ 0

for some ε > 0. Also suppose that wX = w
(kX)
X ∈ W(kX), wY = w

(kY )
Y ∈ W(kY ) and wXY =

w
(kXY )
XY ∈ W(kXY ), and that lim supn maxL∈{XY,X,Y } ‖wL‖ <∞. Then there exists a sequence (bn)

such that bn = o(n−1/2) and for each q ∈ (0, 1)

inf
f∈FdX,dY ,ϑ(bn)

Pf (În > C(n)
q )→ 1

uniformly for kX ∈ {k∗0 , . . . , k∗X}, kY ∈ {k∗0 , . . . , k∗Y } and kXY ∈ {k∗0 , . . . , k∗XY }.

An outline of the proof of Theorem 3.1 is as follows. For I > C
(n)
q we have

Pf (În > C(n)
q ) = Pf (În − I > C(n)

q − I)

≥ 1− Pf (|În − I| ≥ I − C(n)
q ) ≥ 1− Ef{(În − I)2}

(I − C(n)
q )2

. (3.5)

by Markov’s inequality. Applying Theorem 2.1 in Section 2.2 we see that

sup
f∈FdX,dY ,ϑ

|nEf [{În − I(f)}2]− V (f)| → 0

uniformly for kX ∈ {k∗0 , . . . , k∗X}, kY ∈ {k∗0 , . . . , k∗Y } and kXY ∈ {k∗0 , . . . , k∗XY }. The next step of

the proof is to bound the critical values C
(n)
q above, which can be done again using Theorem 2.1

in Section 2.2. We must finally understand the behaviour of V (X;Y ), particularly when I(X;Y )

is small. It is clear that

I(X;Y ) = 0 =⇒ X ⊥⊥ Y =⇒ V (X;Y ) = 0,

but we will require an upper bound on V (X;Y ) that vanishes as I(X;Y ) → 0. To gain intuition
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consider the following example. When X and Y are standard univariate normal random variables

with Cov(X,Y ) = ρ we have I(X;Y ) = −(1/2) log(1 − ρ2) and V (X;Y ) = ρ2, which are asymp-

totically equivalent, up to a factor of 2, for small ρ. Next consider the following rough calculation

based on a Taylor expansion of the exponential function around the origin:

0 = 2

∫
fX(x)fY (y) dx dy − 2 = 2

∫
f(x, y)elog fX(x)fY (y)−log f(x,y) dx dy − 2

≈ 2

∫
f(x, y)

{
log

fX(x)fY (y)

f(x, y)
+

1

2
log2 fX(x)fY (y)

f(x, y)

}
dz = V (X;Y ) + I(X;Y )2 − 2I(X;Y ).

This seems to suggest that the above relationship between I(X;Y ) and V (X;Y ) for bivariate

Gaussians is fairly general. The following is a bound, possibly rather conservative, that is strong

enough for our purposes.

Lemma 3.2. Fix dX , dY ∈ N and ϑ ∈ Θ3. Then

sup
f∈FdX,dY ,ϑ(0)

I(f)−1/4V (f) <∞.

This has the consequence that the asymptotic distribution of our mutual information estimator

is more concentrated about its mean when I(f) is smaller; thus we may detect smaller departures

from independence than we might expect from a first glance at (3.4). Formal proofs of Lemma 3.2

and Theorem 3.1 are given in Section 3.4.

3.3 A test in the case of unknown marginal distributions

In this section we consider the, perhaps more realistic, setting in which the marginal distributions of

X and Y and the critical values of the previous test C
(n)
q are not known. We propose a test similar

to the test used in the previous section in which we estimate the critical values by permuting our

sample to attempt to mimic the behaviour of the test statistic under H0. For some large positive

integer B simulate π1, . . . , πB uniformly from Sn, the permutation group of {1, . . . , n}, and for

b = 1, . . . , B set Z
(b)
i := (Xi, Yπb(i)) and also set Î

(b)
n := În(Z

(b)
1 , . . . , Z

(b)
n ). We can now estimate

C
(n)
q by

Ĉ(n),B
q := inf

{
r ∈ R : (B + 1)−1

B∑
b=0

1{Î(b)
n ≥r}

≤ q
}
,

the (1− q)th quantile of {Î(0)
n , . . . , Î

(B)
n }, adopting the convention Î

(0)
n := În. We reject H0 if and

only if În > Ĉ
(n),B
q . The following result controls the size of the test, and follows from the fact

that, under H0, the sequence (Î
(0)
n , . . . , Î

(B)
n ) is exchangeable.

Theorem 3.3. We have PfXfY (În > Ĉ
(n),B
q ) ≤ q for any marginal densities fX and fY and

q ∈ (0, 1).

Note that we have În > Ĉ
(n),B
q if and only if

(B + 1)−1
B∑
b=0

1{Î(b)
n ≥În}

≤ q. (3.6)
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Thus, by Markov’s inequality,

P(În ≤ Ĉ(n),B
q ) ≤ 1

q(B + 1)

B∑
b=0

P(Î(b)
n ≥ În) =

1

q(B + 1)
{1 +BP(Î(1)

n ≥ În)}

=
1

q(B + 1)
{1 +BP(ĤXY

n ≥ Ĥ(1)
n )},

where Ĥ
(1)
n is the (weighted) Kozachenko–Leonkenko estimator applied to Z

(1)
1 , . . . , Z

(1)
n . Taking

B = Bn →∞, we see that it is enough to show that P(ĤXY
n ≥ Ĥ

(1)
n )→ 0 under H1 to prove the

consistency of the test. In fact (3.6) shows that estimating the marginal entropies is unnecessary

to carry out the test, since Î
(b)
n − În = ĤXY

n − Ĥ(1)
n .

In the remainder of this section we work under H1 with a fixed alternative, where X and Y are

not independent and we therefore have I(X;Y ) > 0, and discuss the power of our test. For simplic-

ity we will restrict our attention from this point to test statistics În based on unweighted entropy

estimators, as weighting will be seen to be unnecessary in achieving consistency. Corresponding

results for the test based on weighted estimators will hold straightforwardly. Writing

P(ĤXY
n ≥ Ĥ(1)

n ) = P
(
ĤXY
n −H(X,Y ) ≥ Ĥ(1)

n −H(X)−H(Y ) + I(X;Y )
)

≤ P
(
|ĤXY

n −H(X,Y )| ≥ 1

2
I(X;Y )

)
+ P

(
|Ĥ(1)

n −H(X)−H(Y )| ≥ 1

2
I(X;Y )

)
, (3.7)

we see that it is sufficient to show that ĤXY
n is a consistent estimator of H(X,Y ) and Ĥ

(1)
n is a

consistent estimator of H(X) + H(Y ) under suitable regularity conditions. To ease notation we

write k = kXY where this will not cause confusion. Write ρ(k),i,(1) for the distance from Z
(1)
i to its

kth nearest neighbour in the sample Z
(1)
1 , . . . , Z

(1)
n and ξ

(1)
i = e−Ψ(k)Vd(n− 1)ρd(k),i,(1) so that

Ĥ(1)
n =

1

n

n∑
i=1

log ξ
(1)
i .

We will work with the following conditions.

(A1)(α) We have ‖fX‖∞, ‖fY ‖∞ <∞ and
∫
X ‖z‖

αf(z) dz <∞.

(A2) There exists Xn ⊂ {z : fXfY (z) > 0} such that

sup
δ∈(0,2]

sup
z∈Xn

∣∣∣∣ 1

Vdrdz,δfXfY (z)

∫
Bz(rz,δ)

fXfY (w) dw − 1

∣∣∣∣→ 0

as n→∞, where rdz,δ := δeΨ(k)

Vd(n−1)fXfY (z) .

Our condition (A2) ensures that the density fXfY is smooth enough for us to use the approxima-

tion ξ
(1)
i fXfY (Z

(1)
i ) ≈ ke−Ψ(k) ≈ 1. This approximation is the basis of such k-nearest neighbour

estimators, and in this case, together with (A1)(α), will allow us to show that

Ĥ(1)
n =

1

n

n∑
i=1

log ξ
(1)
i ≈ − 1

n

n∑
i=1

log fXfY (Z
(1)
i ) ≈ H(fXfY ) = H(fX) +H(fY ).

The following lemmas formalise this approximation to establish the consistency of Ĥ
(1)
n as an

estimator of H(X) +H(Y ), and are proved in Section 3.4.
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Lemma 3.4. Suppose that (A1)(α) holds for some α > 0 and also that (A2) holds with pn :=∫
X cn
fXfY = o(log−1 n). Suppose also that k/ log2 n→∞ and k log2 n/n→ 0 as n→∞. Then

E(Ĥ(1)
n )→ H(X) +H(Y )

as n→∞.

Lemma 3.5. Suppose that (A1)(α) holds for some α > 0 and also that (A2) holds with pn =∫
X cn
fXfY = o(log−2 n). Suppose also that k/ log4 n→∞ and k log3 n/n→ 0 as n→∞. Then

Var Ĥ(1)
n → 0

as n→∞.

The following analogous conditions on the joint density f are sufficient for the estimator ĤXY
n

of H(X,Y ) to be consistent. This is much simpler to prove than the consistency of Ĥ
(1)
n for

H(X) +H(Y ) and we omit a formal lemma in the interests of brevity.

(A3)(α) We have ‖f‖∞ <∞ and
∫
X ‖z‖

αf(z) dz <∞.

(A4) There exists Yn ⊂ X such that

sup
δ∈(0,2]

sup
z∈Yn

∣∣∣∣ 1

Vdsdz,δf(z)

∫
Bz(sz,δ)

f(w) dw − 1

∣∣∣∣→ 0

as n→∞, where sdz,δ := δeΨ(k)

Vd(n−1)f(z) .

The following result summarises our work on the power of the permutation test against a fixed

alternative.

Theorem 3.6. Let dX , dY ∈ N be given and let f be a density function on RdX+dY satisfying

(A1)(α) and (A3)(α) for some α > 0, (A2) with
∫
X cn
fXfY = o(log−2 n), (A4) with

∫
Ycn
f =

o(log−2 n) and I(f) > 0. Let k = kXY satisfy k/ log4 n→∞ and k log3 n/n→ 0 and let B = Bn

define a sequence of positive integers such that B →∞ as n→∞. Then

Pf (În > Ĉ(n),B
q )→ 1,

as n→∞.

This follows from a straightforward combination of (3.7), Lemmas 3.4 and 3.5 and the consis-

tency of ĤXY
n as an estimator of H(X,Y ).

3.4 Proofs of main results

Proof of Lemma 3.2. For x ∈ R we write x− := max(0,−x). First, by Pinkser’s inequality,

E
{

log
f(Z)

fXfY (Z)

}
−

=

∫
{z:f(z)≤fXfY (z)}

f(z) log
fXfY (z)

f(z)
dz ≤

∫
f≤fXfY

f(z)

{
fXfY (z)

f(z)
− 1

}
dz

= sup
A

{∫
A

fXfY −
∫
A

f

}
≤ {I(X;Y )/2}1/2.
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Thus,

E
∣∣∣log

f(Z)

fXfY (Z)

∣∣∣ = I(X;Y ) + 2E
{

log
f(Z)

fXfY (Z)

}
−
≤ I(X;Y ) + {2I(X;Y )}1/2. (3.8)

We therefore have that

V (X;Y ) ≤ E log2 f(Z)

fXfY (Z)
= E

[∣∣∣log
f(Z)

fXfY (Z)

∣∣∣1/2∣∣∣log
f(Z)

fXfY (Z)

∣∣∣3/2]
≤ 4

{
E
∣∣∣log

f(Z)

fXfY (Z)

∣∣∣}1/2

{E| log fX(X)|3 + E| log fY (Y )|3 + E| log f(Z)|3}1/2]. (3.9)

By Lemma 2.11 in Chapter 2 we may combine (3.8) and (3.9) to conclude that V (X;Y ) = O(I1/4)

as I → 0, uniformly for f ∈ FdX ,dY ,ϑ. The result follows on using Lemma 2.11 in Chapter 2 again

to see that

sup
f∈FdX,dY ,ϑ

V (f) <∞, (3.10)

so that I(X;Y )−1/4V (X;Y ) is also bounded above when I(X;Y ) is bounded below.

Proof of Theorem 3.1. It will be convenient to define the set Kn := {k∗0 , . . . , k∗X}× {k∗0 , . . . , k∗Y }×
{k∗0 , . . . , k∗XY } and to write κ = (kX , kY , kXY ). Then, writing I∗n := 1

n

∑n
i=1 log f(Zi)

fXfY (Zi)
, we have

by Theorem 2.1 in Chapter 2 that

sup
κ∈Kn

sup
f∈FdX,dY ,ϑ

nEf{(În − I∗n)2} → 0.

Thus,

ε3n := sup
κ∈Kn

sup
f∈FdX,dY ,ϑ

|nEf [{În − I(f)}2]− V (f)| (3.11)

≤ sup
κ∈Kn

sup
f∈FdX,dY ,ϑ

{
nEf{(În − I∗n)2}+ 2

[
nEf{(În − I∗n)2}V (f)

]1/2}→ 0,

where we use (3.10) to bound V (f) above. We now have, since fXfY ∈ FdX ,dY ,ϑ, that

PfXfY (n1/2În ≥ εn) ≤ nEfXfY Î2
n

ε2n
≤

supf∈FdX,dY ,ϑ
|nEf [{În − I(f)}2]− V (f)|

ε2n
≤ εn.

Choosing n0 ∈ N such that we have εn ≤ q for n ≥ n0 we have that

sup
κ∈Kn

sup
f∈FdX,dY ,ϑ

C(n)
q ≤ n−1/2εn.

for all n ≥ n0. Now consider bn := max(2εnn
−1/2, n−4/7 log n). By (3.5) and Lemma 3.2 we have
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for n ≥ n0 that

inf
κ∈Kn

inf
f∈FdX,dY ,ϑ(bn)

Pf (În > C(n)
q ) ≥ 1− sup

κ∈Kn
sup

f∈FdX,dY ,ϑ(bn)

Ef [{În − I(f)}2]

{I(f)− C(n)
q }2

≥ 1− sup
f∈FdX,dY ,ϑ(bn)

4{V (f) + ε3n}
nI(f)2

≥ 1− 4

log7/4 n
sup

f∈FdX,dY ,ϑ(0)

V (f)

I(f)1/4
− εn → 1,

as required.

Proof of Theorem 3.3. We first claim that (Î
(0)
n , Î

(1)
n , . . . , Î

(B)
n ) is an exchangeable sequence under

H0. Indeed, let σ ∈ SB+1 be arbitrary. Then, since (Xi, Yi)
n
i=1

d
= (Xi, Yτ(i))

n
i=1 for any τ ∈ Sn

under H0, for any Borel set A ⊆ RB+1 we have

P
(
(Î(σ(0))
n , . . . , Î(σ(B))

n ) ∈ A
)

=
1

(n!)B

∑
τ1,...,τB∈Sn

P
(
(Î(σ(0))
n , . . . , Î(σ(B))

n ) ∈ A|π1 = τ1, . . . , πB = τB
)

=
1

(n!)B

∑
τ1,...,τB∈Sn

P
(
(Î(0)
n , . . . , Î(B)

n ) ∈ A|π1 = τσ(1)τ
−1
σ(0), . . . , πB = τσ(B)τ

−1
σ(0)

)
= P

(
(Î(0)
n , . . . , Î(B)

n ) ∈ A
)
.

We now have

P(În > Ĉ(n),B
q ) ≤ bq(B + 1)c

B + 1
≤ q,

where the first inequality would be an equality if we knew that ties among Î
(0)
n , . . . , Î

(B)
n had

probability zero.

Proof of Lemma 3.4. Throughout the proof, we write a . b to mean that there exists C > 0,

depending only on d ∈ N and f , such that a ≤ Cb. The first step of the proof is to show that we

may restrict attention to the event on which the random permutation π1 does not have too many

fixed points. To do this we will need bounds on Ĥ
(1)
n that do not depend on π1. Writing ρ(k),i,X

for the distance from Xi to its kth nearest neighbour in the sample X1, . . . , Xn and defining ρ(k),i,Y

similarly, we have

max{ρ2
(k),i,X , ρ

2
(k),π1(i),Y } ≤ ρ

2
(k),i,(1) ≤ ρ

2
(n−1),i,X + ρ2

(n−1),π1(i),Y .

Using the fact that 0 ≤ log(a + b) ≤ log 2 + | log a| + | log b| for a, b > 0 such that a + b ≥ 1, we

have that

| log ξ
(1)
i | ≤

∣∣∣∣log

(
Vd(n− 1)

eΨ(k)

)∣∣∣∣+ d| log ρ(k),i,X |+
d

2
log

(
ρ2

(k),i,(1)

ρ2
(k),i,X

)
≤
∣∣∣∣log

(
Vd(n− 1)

eΨ(k)

)∣∣∣∣+ 3d| log ρ(k),i,X |+
d

2
log 2 + d| log ρ(n−1),i,X |+ d| log ρ(n−1),π1(i),Y |

≤
∣∣∣∣log

(
Vd(n− 1)

eΨ(k)

)∣∣∣∣+
d

2
log 2 + 5d max

j=1,...,n
max{− log ρ(1),j,X , log ρ(n−1),j,X , log ρ(n−1),j,Y }.

(3.12)
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By the triangle inequality and Markov’s inequality we have that

E log
{

max
i=1,...,n

ρ(n−1),i,X

}
− log 2 ≤ E log

(
max

i=1,...,n
‖Xi‖

)
≤ E

{
log
(

max
i=1,...,n

‖Xi‖
)}

+

=

∫ ∞
0

P
(

max
i=1,...,n

‖Xi‖ ≥ eM
)
dM

≤ α−1{log n+ logE(‖X1‖α)}+ α−1nE(‖X1‖α) exp(− log n− logE(‖X1‖α))

≤ α−1{log n+ logE(‖Z1‖α) + 1}, (3.13)

and the same bound holds for E log ρ(n−1),i,Y . Similarly, for n ≥ (Vd‖fX‖∞)1/3,

E
{

log min
i=1,...,n

ρ(1),i,X

}
−
≤
∫ ∞

0

P
(

min
i=1,...,n

ρ(1),i,X ≤ e−M
)
dM

≤ 3d−1 log n+ n

∫ ∞
3d−1 logn

{1− (1− Vd‖fX‖∞e−Md)n−1} dM

≤ 3d−1 log n+ n(n− 1)Vd‖fX‖∞
∫ ∞

3d−1 logn

e−Md dM

= 3d−1 log n+ d−1n−2(n− 1)Vd‖fX‖∞. (3.14)

Define Sln ⊂ Sn to be the set of permutations with exactly l fixed points. Then

P(π1 ∈ ∪nl=ln+1S
l
n) ≤ 1

n!

(
n

ln + 1

)
|{π ∈ Sn : π(1) = 1, . . . , π(ln + 1) = ln + 1}|

=
1

n!

(
n

ln + 1

)
(n− ln − 1)! =

1

(ln + 1)!
∼ 1√

2π(ln + 1)

(
e

ln + 1

)ln+1

by Stirling’s approximation. Thus, using (3.12), (3.13), (3.14) and choosing ln = blog log nc so

that ln log ln/ log log n→∞, we have

|E(Ĥ(1)
n 1{π1∈∪nl=ln+1S

l
n})| .

log n

(ln + 1)!
→ 0

as n→∞.

The next step is to show that, when π1 has fewer than ln fixed points, the dominant contribution

to Ĥ
(1)
n comes from those i such that π1(i) 6= i and the k nearest neighbours of Z

(1)
i are among

the Z
(1)
j such that π1(j) 6= j. Suppose that π1 = π ∈ Sln and, without loss of generality, suppose

that 1, . . . , l are the fixed points. We use an argument that involves covering Rd by cones; cf.

Section 20.7 in Biau and Devroye (2015). Define the cone

C(z, θ) =
{
w ∈ Rd \ {0} : cos−1(zTw/(‖z‖‖w‖)) ≤ θ

}
∪ {0}.

There exists a constant Cπ/6 <∞ depending only on d such that we may cover Rd by Cπ/6 cones

of angle π/6 centred at Z
(1)
1 . In each cone, mark the k nearest points to Z

(1)
1 among Z

(1)
2 , . . . , Z

(1)
n .

Now consider a point Z
(1)
i that is not marked, and let Z

(1)
i1
, . . . , Z

(1)
ik

be the k marked points in a

cone containing Z
(1)
i . By Lemma 20.5 of Biau and Devroye (2015) we have, for each j = 1, . . . , k,

that

‖Z(1)
i − Z

(1)
ij
‖ < ‖Z(1)

i − Z
(1)
1 ‖.

Thus, the unmarked Z
(1)
i is not one of the k nearest neighbours of Z

(1)
1 , and only the marked
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points, of which there are at most kCπ/6, may have Z
(1)
1 as one of their k nearest neighbours. This

immediately generalises to show that at most klCπ/6 of the points Z
(1)
l+1, . . . , Z

(1)
n may have one of

Z
(1)
1 , . . . , Z

(1)
l among their k nearest neighbours. Thus using (3.12), (3.13) and (3.14) and defining

the event A′i := {The k nearest neighbours of Z
(1)
i are among Z

(1)
l+1, . . . , Z

(1)
n }, we have that

∣∣∣∣E(Ĥ(1)
n |π1 = π)− E

(
1

n

n∑
i=l+1

log ξ
(1)
i 1A′i

∣∣∣∣π1 = π

)∣∣∣∣ . kln
n

log n.

By (3.12), Lemma 2.10 as in (2.13) and Hölder’s inequality we have for i ≥ l + 1 that

E
(
| log ξ

(1)
i |1{Z(1)

i ∈X cn}
|π1 = π

)
. pn log n+ p1−ε

n

for each ε > 0. It therefore suffices to consider

E
(

1

n

n∑
i=l+1

log ξ
(1)
i 1Ai

∣∣∣∣π1 = π

)
,

where Ai := A′i ∩ {Z
(1)
i ∈ Xn}.

Now, as above,∣∣∣∣E( 1

n

n∑
i=l+1

log ξ
(1)
i 1Ai

∣∣∣∣π1 = π

)
−H(X)−H(Y )

∣∣∣∣
=

∣∣∣∣E( 1

n

n∑
i=l+1

log ξ
(1)
i 1Ai

∣∣∣∣π1 = π

)
+ E

(
log fX(X1)fY (Y2)

)∣∣∣∣
.

∣∣∣∣E( 1

n

n∑
i=l+1

log
(
ξ

(1)
i fXfY (Z

(1)
i )
)
1Ai

∣∣∣∣π1 = π

)∣∣∣∣+
kln
n

+ pn log n+ p1−ε
n ,

for each ε > 0, and the remainder of the proof is devoted to studying, on the event Ai, the

convergence of ξ
(1)
i fXfY (Z

(1)
i ) to 1. We again work on the event π1 = π ∈ Sln and assume that

the fixed points are 1, . . . , l. Write Pπ(·) := P(·|π1 = π). Recalling the definition of rz,δ in (A2)

we define the random variables

Bδi :=
∑
l<j≤n
j 6=i

1{‖Z(1)
j −Z

(1)
i ‖≤rZ(1)

i
,δ
}.

For 0 < ε < 1 we have

Pπ({ξ(1)
i fXfY (Z

(1)
i )− 1}1Ai ≥ ε) = Pπ(Ai, {ρ(k),i,(1) ≥ rZ(1)

i ,1+ε
}) ≤ Pπ(B1+ε

i ≤ k, Z(1)
i ∈ Xn)

=

∫
Xn
fXfY (z)Pπ(B1+ε

i ≤ k|Z(1)
i = z) dz.

To bound the above we study the bias and the variance of Bδi . We have by (A2) that

Eπ(B1+ε
i |Z(1)

i = z) ≥ (n− ln − 3)

∫
Bz(rz,1+ε)

fXfY (w) dw

= (n− ln − 3)Vdr
d
z,1+εfXfY (z){1 + o(1)} = k(1 + ε){1 + o(1)}
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uniformly for ε ∈ (−1, 1) and z ∈ Xn. Similarly,

Eπ(B1+ε
i |Z(1)

i = z) ≤ 2 + (n− ln − 3)

∫
Bz(rz,1+ε)

fXfY (w) dw = k(1 + ε){1 + o(1)}

uniformly for ε ∈ (−1, 1) and z ∈ Xn. Note that if j2 /∈ {j1, π(j1), π−1(j1)} then

Covπ(1{‖Z(1)
j1
−z‖≤rz,1+ε}

,1{‖Z(1)
j2
−z‖≤rz,1+ε}

|Z(1)
i = z) = 0.

Also, for j /∈ {i, π(i), π−1(i)} we have

Varπ(1{‖Z(1)
j −z‖≤rz,1+ε}

|Z(1)
i = z) ≤

∫
Bz(rz,1+ε)

fXfY (w) dw =
(1 + ε)k

n
{1 + o(1)}

uniformly for ε ∈ (−1, 1) and z ∈ Xn. When j =∈ {i, π(i), π−1(i)} we simply bound the variance

above by 1 so that, using the Cauchy–Schwarz inequality,

Varπ(B1+ε
i |Z(1)

i ) ≤ (n− ln − 3)
3(1 + ε)k

n
{1 + o(1)}+ 4 = 3(1 + ε)k{1 + o(1)}.

We have now shown that, given ε ∈ (0, 1), there exists n0 such that for n ≥ n0 we have

Eπ(B1+ε
i |Z(1)

i = z) > k for all z ∈ Xn and

Pπ({ξ(1)
i fXfY (Z

(1)
i )− 1}1Ai ≥ ε) ≤

∫
Xn
fXfY (z)

Varπ(B1+ε
i |Z(1)

i = z)

{Eπ(B1+ε
i |Z(1)

i = z)− k}2
dz

≤ 3(1 + ε)

ε2
1

k
{1 + o(1)} → 0 (3.15)

as n→∞. Using very similar arguments and increasing n0 if necessary we also have for ε ∈ (0, 1)

that

Pπ({ξ(1)
i fXfY (Z

(1)
i )− 1}1Ai ≤ −ε) ≤ Pπ(B1−ε

i ≥ k, Z(1)
i ∈ Xn)

≤
∫
Xn
fXfY (z)

Varπ(B1−ε
i |Z(1)

i = z)

{k − Eπ(B1−ε
i |Z(1)

i = z)}2
dz ≤ 3(1− ε)

ε2
1

k
{1 + o(1)} → 0

as n→∞.

We have now established that log(ξ
(1)
i fXfY (Z

(1)
i ))1Ai |π1 = π

p→ 0, and our aim now is to show

that these random variables are bounded in L2 and so uniformly integrable, so we have convergence

in L1. First, by Markov’s inequality, for k ≥ 3 and ε ∈ (0, 2],

Pπ(ξ
(1)
i fXfY (Z

(1)
i ) ≤ ε, Ai) ≤

n− l − 3

k − 2

∫
Xn
fXfY (z)

∫
Bz(rz,ε)

fXfY (w) dw dz = ε{1 + o(1)}.

Now, by (3.15),

Pπ(ξ
(1)
i fXfY (Z

(1)
i ) ≥ 1 + k−1/2 log n,Ai) = O(log−2 n)
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as n→∞. Also, by Markov’s inequality applied twice,

Pπ(ξ
(1)
i fXfY (Z

(1)
i ) ≥M,Ai) ≤ Pπ(BMi ≤ k, Z

(1)
i ∈ Xn)

≤ n− ln − 1

n− ln − 1− k

∫
Xn
fXfY (z)Pπ(‖Z − z‖ > rz,M ) dz +

2

n− ln − 1− k

≤ n− ln − 1

n− ln − 1− k
max{1, 2α−1}

∫
Xn
fXfY (z)

E‖Z‖α + ‖z‖α

rαz,M
dz +

2

n− ln − 1− k
.

(
n

kM

)α/d
.

We now integrate by parts to see that, writing g and G for the density and distribution function

respectively of ξ
(1)
i fXfY (Z

(1)
i )|π1 = π on the event Ai,

Eπ(log2(ξ
(1)
i fXfY (Z

(1)
i ))1Ai) =

{∫ 1

0

+

∫ 1+k−1/2 logn

1

+

∫ n log2d/α n
k

1+k−1/2 logn

+

∫ ∞
n log2d/α n

k

}
log2 x g(x) dx

≤
∫ 1

0

−2 log x

x
G(x) dx+ log2(1 + k−1/2 log n) + log2

(
n log2d/α n

k

)
Ḡ(1 + k−1/2 log n)

+ 2 log2

(
n log2d/α n

k

)
Ḡ

(
n log2d/α n

k

)
+

∫ ∞
n log2d/α n

k

2 log x Ḡ(x)

x
dx = O(1)

as n → ∞. We have now established the required uniform integrability. Since all of our bounds

are uniform in π ∈ ∪lnl=1S
l
n we have now shown that∣∣∣∣E( 1

n

n∑
i=l+1

log
(
ξ

(1)
i fXfY (Z

(1)
i )
)
1Ai |π1 = π

)∣∣∣∣
≤ n− ln

n
max

1≤l≤ln
sup
π∈Sln

E(| log(ξl+1,(1)fXfY (Z
(1)
l+1))|1Al+1

|π1 = π)→ 0

as n→∞. This concludes the proof.

Proof of Lemma 3.5. We start by writing

Var Ĥ(1)
n =

1

n
Var log ξ1,(1) + (1− n−1) Cov(log ξ1,(1) , log ξ2,(1)). (3.16)

We have, similarly to in the proof of Lemma 3.4, that

E log2 ξ1,(1) → E log2(fX(X1)fY (Y2)),

and so
1

n
Var log ξ1,(1) =

1

n
Var log(fX(X1)fY (Y2)){1 + o(1)} = O(n−1)

as n → ∞. It is now sufficient to consider the covariance term in (3.16). Using Cauchy–Schwarz

we write

|Cov(log ξ1,(1) , log ξ2,(1))|

= |Cov
(
log(ξ1,(1)fXfY (Z

(1)
1 ))− log fXfY (Z

(1)
1 ) , log(ξ2,(1)fXfY (Z

(1)
2 ))− log fXfY (Z

(1)
2 )
)
|

≤ Var log(ξ1,(1)fXfY (Z
(1)
1 )) + 2

{
Var log(ξ1,(1)fXfY (Z

(1)
1 )) Var log fXfY (Z

(1)
1 )
}1/2

+ Cov(log fXfY (Z
(1)
1 ) , log fXfY (Z

(1)
2 ))
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and deal with each of these three terms separately. Firstly, again by similar methods to those used

in the proof of Lemma 3.4, we have that

Var log(ξ1,(1)fXfY (Z
(1)
1 )) ≤ E log2(ξ1,(1)fXfY (Z

(1)
1 ))→ 0

as n→∞, and so the first term vanishes. Now note that, by (A1)(α),

E log2 fXfY (Z
(1)
1 ) ≤ 2{E log2 fX(X) + E log2 fY (Y )} <∞, (3.17)

and so we also have that the second term vanishes as n→∞. Now,

P({π1(1) = 2} ∪ {π1(2) = 1}) = P(π1(1) = 2) + P(π1(2) = 1)− P(π1(1) = 2, π1(2) = 1)

= 2n−1 − n−1(n− 1)−1 = O(n−1),

and on the complementary event Z
(1)
1 and Z

(1)
2 are independent. Hence, using (3.17),

Cov(log fXfY (Z
(1)
1 ) , log fXfY (Z

(1)
2 )) = O(1/n)

as n→∞, and the result follows.



Chapter 4

Local nearest neighbour

classification with applications to

semi-supervised learning

4.1 Introduction

Supervised classification problems represent some of the most frequently-occurring statistical chal-

lenges in a wide variety of fields, including fraud detection, medical diagnoses and targeted adver-

tising, to name just a few. The area has received an enormous amount of attention within both

the statistics and machine learning communities; for an excellent survey with pointers to much of

the relevant literature, see Boucheron, Bousquet and Lugosi (2005).

The k-nearest neighbour classifier, which assigns the test point according to a majority vote

over the classes of its k nearest points in the training set, is arguably the simplest and most intuitive

nonparametric classifier. It was introduced in the seminal work of Fix and Hodges (1951), later

republished as Fix and Hodges (1989), and early understanding of some of its theoretical properties

was provided in Cover and Hart (1967), Duda and Hart (1973) and Stone (1977). Further recent

contributions, some of which treat the k-nearest neighbour classifier as a special case of a plug-in

classifier, include Kulkarni and Posner (1995), Audibert and Tsybakov (2007), Hall et al. (2008),

Biau, Cérou and Guyader (2010), Samworth (2012), Chaudhuri and Dasgupta (2014) and Celisse

and Mary-Huard (2015).

Despite these aforementioned works, the behaviour of the k-nearest neighbour classifier in the

tails of a distribution remains poorly understood. Indeed, writing (X,Y ) for a generic data pair,

where the d-dimensional feature vector X has marginal density f̄ and Y denotes a binary class

label, most of the results in the papers mentioned in the previous paragraph pertain either to

situations where f̄ is compactly supported and bounded away from zero on its support, or where

the excess risk is computed only over a compact subset of Rd. Unfortunately, such restrictions are

typically imposed purely for mathematical convenience, and leave open the question of the effect

of tail behaviour on the excess risk.

The first goal of this chapter, therefore, is to provide a new asymptotic expansion for the

global excess risk of a k-nearest neighbour classifier (Theorem 4.1), where we allow the feature

73



74 CHAPTER 4. LOCAL NEAREST NEIGHBOUR CLASSIFICATION

vectors to have unbounded support. Our expansion elucidates conditions under which the dominant

contribution to the excess risk comes from the locus of points at which each class label is equally

likely to occur, but we also show that if these conditions are not satisfied, the dominant contribution

may arise from the tails of the marginal distribution of the features.

The proof of Theorem 4.1 also reveals a local bias-variance trade-off that motivates a mod-

ification of the standard k-nearest neighbour classifier in semi-supervised classification settings,

where, in addition to the labelled training data, we have access to a further, independent, sample

of unlabelled observations. Such semi-supervised problems occur in a wide range of applications,

especially where it is expensive or time-consuming to obtain the labels associated with observa-

tions; in fact, it is frequently the case that unlabelled observations may vastly outnumber labelled

ones. For an overview of semi-supervised learning applications and techniques, see Chapelle, Zien

and Schölkopf (2006).

Our second contribution is to propose to allow the choice of k to depend on an estimate of f̄ at

the test point in semi-supervised settings. By using fewer neighbours in low density regions, we are

able to achieve a better balance in the local bias-variance trade-off. In particular, we initially study

an oracle, local choice of k that depends on f̄ , and under regularity conditions, we show that the

excess risk over Rd is O(n−4/(d+4)) provided that the feature vectors have ρ > 4 finite moments.

By contrast, our theory for the standard k-nearest neighbour classifier with a global choice of k

requires that d ≥ 5 and the feature vectors have ρ > 4d/(d− 4) finite moments. Assuming further

that f̄ has Hölder smoothness γ ∈ (0, 2], we show that if m additional, unlabelled observations

are used to estimate f̄ by f̂m, and if m = mn satisfies lim infn→∞mn/n
2+d/γ > 0, then our

semi-supervised k-nearest-neighbour classifier mimics the asymptotic performance of the oracle.

As mentioned previously, studies of global excess risk rates of convergence in nonparametric

classification for unbounded feature vector distributions are comparatively rare. Hall and Kang

(2005) studied the tail error properties of a classifier based on kernel density estimates of the

class conditional densities for univariate data. As an illustrative example, they showed that if,

for large x, one class has density ax−α, while the other has density bx−β , for some a, b > 0 and

1 < α < β < α+ 1 <∞, then the excess risk from the right tail is of larger order than that in the

body of the distribution.

Perhaps most closely related to this work, Gadat et al. (2016) recently obtained upper bounds

on the supremum excess risk of the k-nearest neighbour classifier, when η is Lipschitz, the well-

known margin assumption of Mammen and Tsybakov (1999) is satisfied, and a tail condition on

the rate of decay of P{f̄(X) < δ} as δ ↘ 0 is imposed. They also derived minimax lower bounds

(in general, of different order) in the same problem. Our assumptions and conclusions are not

directly comparable, but allow us to obtain the same rates of convergence as in situations where

the marginal distribution of X is compactly supported and bounded away from zero on its support,

as well as to provide the leading constants in the asymptotic expansion for the excess risk in such

cases.

The remainder of this chapter is organised as follows. After introducing our setting in Sec-

tion 4.2, we present in Section 4.3 our main results for the standard k-nearest neighbour classifier.

This leads on, in Section 4.4, to our study of the semi-supervised setting, where we derive asymp-

totic results of the excess risk of our local k-nearest neighbour classifier. We illustrate the finite-

sample benefits of the semi-supervised classifier over the standard k-nearest neighbour classifier in

a simulation study in Section 4.5. Proofs are given in Section 4.6, while in section 4.7 we present
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an introduction to the ideas of differential geometry that underpin much of our analysis.

Finally, we fix here some notation used throughout this chapter. Let ‖ · ‖ denote the Euclidean

norm and, for r > 0 and x ∈ Rd, let Br(x) := {z ∈ Rd : ‖x − z‖ < r} and B̄r(x) := {z ∈
Rd : ‖x − z‖ ≤ r} denote respectively the open and closed Euclidean balls of radius r centred

at x. Let ad := 2πd/2

dΓ(d/2) denote the d-dimensional Lebesgue measure of B1(0). For a real-valued

function g defined on A ⊆ Rd that is twice differentiable at x, write ġ(x) = (g1(x), . . . , gd(x))T and

g̈(x) =
(
gjk(x)

)
for its gradient vector and Hessian matrix at x, and let ‖g‖∞ = supx∈A |g(x)|. Let

‖ · ‖op denote the operator norm of a matrix.

4.2 Statistical setting

Let (X,Y ), (X1, Y1), . . . , (Xn+m, Yn+m) be independent and identically distributed random pairs

taking values in Rd×{1, 2}. Let πr := P(Y = r), for r = 1, 2, and X|Y = r ∼ Pr, for r = 1, 2, where

Pr is a probability measure on Rd. Let η(x) := P(Y = 1|X = x) and let PX := π1P1 +π2P2 denote

the marginal distribution of X. We observe labelled training data, Tn := {(X1, Y1), . . . , (Xn, Yn)},
and unlabelled training data, T ′m := {Xn+1, . . . , Xn+m}, and are presented with the task of assigning

the test point X to either class 1 or 2.

A classifier is a Borel measurable function C : Rd → {1, 2}, with the interpretation that C

assigns x ∈ Rd to the class C(x). Given a Borel measurable set R ⊆ Rd, the misclassification rate,

or risk, over R is

RR(C) := P[{C(X) 6= Y } ∩ {X ∈ R}].

When R = Rd, we drop the subscript for convenience. The Bayes classifier

CBayes(x) :=

{
1 if η(x) ≥ 1/2;

2 otherwise,

minimises the risk over any region R (Devroye et al., 1996, p. 20). Thus, the performance of a

classifier C is measured via its (non-negative) excess risk, RR(C)−RR(CBayes).

We can now formally define the local-k-nearest neighbour classifier, which allows the num-

ber of neighbours considered to vary depending on the location of the test point. Suppose

kL : Rd → {1, . . . , n} is measurable. Given the test point x ∈ Rd, let (X(1), Y(1)), . . . , (X(n), Y(n))

be a reordering of the training data such that ‖X(1)−x‖ ≤ · · · ≤ ‖X(n)−x‖. We will later assume

that PX is absolutely continuous with respect to d-dimensional Lebesgue measure, which ensures

that ties occur with probability zero; where helpful for clarity, we also write X(i)(x) for the ith

nearest neighbour of x. Let Ŝn(x) := kL(x)−1
∑kL(x)
i=1 1{Y(i)=1}. Then the local-k-nearest neighbour

(kLnn) classifier is defined to be

ĈkLnn
n (x) :=

{
1 if Ŝn(x) ≥ 1/2;

2 otherwise.

Given k ∈ {1, . . . , n}, let k0 denote the constant function k0(x) := k for all x ∈ Rd. Using

kL = k0 the definition above reduces to the standard k-nearest neighbour classifier (knn), and we

will write Ĉknn
n in place of Ĉk0nn

n . For β ∈ (0, 1/2), let

Kβ := {d(n− 1)βe, d(n− 1)βe+ 1, . . . , b(n− 1)1−βc}
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denote a range of values of k that will be of interest to us. Note that Kβ1
⊇ Kβ2

, for β1 < β2.

Moreover, when β is small, the upper and lower bounds are only slightly stronger requirement than

the consistency conditions of Stone (1977), namely that k = kn →∞, kn/n→ 0 as n→∞.

4.3 Global risk of the k-nearest neighbour classifier

Our aim in this section is to provide an asymptotic expansion for the global risk of the standard

(non-local) k-nearest neighbour classifier. Our analysis will make use of the following assumptions:

(A.1) The probability measures P1 and P2 are absolutely continuous with respect to Lebesgue

measure, with Radon–Nikodym derivatives f1 and f2, respectively. Moreover, the marginal

density of X, given by f̄ := π1f1 + π2f2, is continuous PX -almost everywhere and Xf̄ :=

{x ∈ Rd : f̄ is continuous at x} is open.

Let S := {x ∈ Rd : η(x) = 1/2} and, for ε > 0, let Sε := S +Bε(0).

(A.2) The set S ∩ {x ∈ Rd : f̄(x) > 0} is non-empty and f̄ is bounded on S. There exist ε0 > 0

and a measurable function g : S → [1,∞) with the property that f̄ is twice continuously

differentiable on Sε0 , and

max

{
‖ ˙̄f(x0)‖, sup

u∈Bε0 (0)

‖ ¨̄f(x0 + u)‖op

}
≤ f̄(x0)g(x0), (4.1)

for all x0 ∈ S, where supx0∈S:f̄(x0)≥δ g(x0) = o(δ−τ ), as δ ↘ 0, for each τ > 0. Furthermore,

writing pε(x) := PX
(
Bε(x)

)
, there exists µ0 ∈ (0, ad) such that, for all x ∈ Rd \ Sε0 and

ε ∈ (0, ε0], we have

pε(x) ≥ µ0ε
df̄(x).

(A.3) We have infx0∈S ‖η̇(x0)‖ > 0, so that S is a (d− 1)-dimensional, orientable manifold (cf.

Section 4.7.3). Moreover, supx∈S2ε0 ‖η̇(x)‖ <∞ and η̈ is uniformly continuous on S2ε0 with

supx∈S2ε0 ‖η̈(x)‖op < ∞. Finally, the function η is continuous on {x : f̄(x) > 0}, and for

every τ > 0,

sup
x∈Rd\Sε0 :f̄(x)≥δ

|η(x)− 1/2|−1 = o(δ−τ )

as δ ↘ 0.

(A.4)(ρ) We have that
∫
Rd ‖x‖

ρdPX(x),
∫
S f̄(x0)d/(ρ+d)dVold−1(x0) <∞, where dVold−1 denotes

the (d− 1)-dimensional volume form on S (cf. Section 4.7.3).

The density assumption in (A.1) allows us to define the tail of the distribution as the region

where f̄ is smaller than some threshold. The second and third parts of (A.1) ensure that for all

δ > 0 sufficiently small, the setR := {x : f̄(x) > δ}∩Xf̄ is a d-dimensional manifold, and PX(Rc) ≤
P
{
f̄(X) ≤ δ

}
, where the latter quantity can be bounded straightforwardly using (A.4)(ρ). The

first part of (A.2) asks for a certain level of smoothness for f̄ in a neighbourhood of S, and controls

the behaviour of its first and second derivatives there relative to the original density. In particular,

the greater degree of regularity asked of these derivatives in the tails of the marginal density

allows us still to control the error of a Taylor approximation even in this region. Moreover, (4.1)

is satisfied by all Gaussian and multivariate-t densities, for example. The second part of (A.2)
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concerns the behaviour of the marginal feature distribution away from Sε0 and is often referred to

as the strong minimal mass assumption (e.g. Gadat et al., 2016). It requires that the mass of the

marginal feature distribution is not concentrated in the neighbourhood of a point and is a rather

weaker condition than we ask for on Sε0 ; in particular, we do not ask for derivatives of f̄ in this

region.

The first part of (A.3) asks for the class conditional densities, when weighted by their respective

prior probabilities, to cross at an angle, while the bounds on the first and second derivatives of η

ensure that we can estimate η sufficiently well. The last part of this condition asks that η does not

approach the critical value of 1/2 too fast on the complement of Sε0 . Finally, the first condition

of (A.4)(ρ) is a simple moment condition, while the second ensures the constants B1 and B2

in (4.2) below are finite.

Let

B1 :=

∫
S

f̄(x0)

4‖η̇(x0)‖
dVold−1(x0) and B2 :=

∫
S

f̄(x0)1−4/d

‖η̇(x0)‖
a(x0)2 dVold−1(x0), (4.2)

where

a(x) :=

∑d
j=1

{
ηj(x)f̄j(x) + 1

2ηjj(x)f̄(x)
}

(d+ 2)a
2/d
d f̄(x)

. (4.3)

We are now in a position to present our asymptotic expansion for the global excess risk of the

standard k-nearest neighbour classifier.

Theorem 4.1. Assume (A.1), (A.2), (A.3) and (A.4)(ρ).

(i) Suppose that d ≥ 5 and ρ > 4d
d−4 . Then for each β ∈ (0, 1/2),

R(Ĉknn
n )−R(CBayes) =

B1

k
+B2

(k
n

)4/d

+ o

(
1

k
+
(k
n

)4/d
)

as n→∞, uniformly for k ∈ Kβ.

(ii) Suppose that either d ≤ 4, or, d ≥ 5 and ρ ≤ 4d
d−4 . Then for each β ∈ (0, 1/2) and each

ε > 0 we have

R(Ĉknn
n )−R(CBayes) =

B1

k
+ o
(1

k
+
(k
n

) ρ
ρ+d−ε)

as n→∞, uniformly for k ∈ Kβ.

Theorem 4.1 reveals an interesting dichotomy: we see from part (i) that, when d ≥ 5 and

(A.4)(ρ) holds for sufficiently large ρ (and the other regularity conditions hold), the dominant

contribution to the excess risk arises from the difficulty of classifying points close to the Bayes

decision boundary S. In such settings, the excess risk of the standard k-nearest neighbour classifier

converges to zero at rate O(n−4/(d+4)) when k is chosen proportional to n4/(d+4). On the other

hand, part (ii) suggests that when either d ≤ 4 or d ≥ 5 and we only know that (A.4)(ρ) holds for

small ρ, the dominant contribution to the excess risk when k is large may come from the challenge

of classifying points in the tails of the distribution. Indeed, Example 4.1 below provides one simple

setting where this dominant contribution does come from the tails of the distribution.

The proof of Theorem 4.1, and indeed those of Theorems 4.2 and 4.3 which follow in Section 4.4

below, depend crucially on Theorem 4.4 in Section 4.6. This result provides an asymptotic expan-

sion for the excess risk of a general (local or global) k-nearest neighbour classifier over a region

Rn ⊆ {x ∈ Rd : f̄(x) ≥ δn(x)}, where δn(x), defined in (4.8) below, shrinks to zero at a rate
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slow enough to ensure that X(k)(x) concentrates around x uniformly over Rn. This enables us

to derive asymptotic expansions for the bias and variance of Ŝn(x), uniformly over Rn, and using

a normal approximation, we can deduce an asymptotic expansion for the excess risk, uniformly

over the relevant set of nearest neighbour classifiers. Having proved Theorem 4.4, the proof of

Theorem 4.1 is completed by controlling the remainder terms in Theorem 4.4 appropriately, and

bounding PX(Rcn) using (A.4)(ρ).

Example 4.1. Suppose that the joint density of X at x = (x1, x2) ∈ (0, 1)× R is given by

f̄(x) = 2x1f2(x2),

where f2 is a positive, twice continuously differentiable density with f2(x2) = e−|x2|/2 for |x2| > 1.

Suppose also that η(x) = x1. Then (A.1), (A.2), (A.3) hold, and (A.4)(ρ) holds for every ρ > 0.

We prove in Section 4.6.3 that for every β ∈ (0, 1/2) and ε > 0,

lim inf
n→∞

inf
k∈Kβ

(n
k

)1+ε{
R(Ĉknn

n )−R(CBayes)
}
> 0 (4.4)

as n→∞.

4.4 Local k-nearest neighbour classifiers

In this section we explore the consequences of a local choice of k, compared with the global choice in

Theorem 4.1. Initially, we consider an oracle choice, where k is allowed to depend on the marginal

feature density f̄ (Section 4.4.1), but we then relax this to semi-supervised settings, where f̄ can

be estimated from unlabelled training data (Section 4.4.2).

4.4.1 Oracle classifier

Suppose for now that the marginal density f̄ is known. For β ∈ (0, 1/2) and B > 0, let

kO(x) := max
[
d(n− 1)βe , min

{⌊
B
{
f̄(x)(n− 1)

}4/(d+4)⌋
, b(n− 1)1−βc

}]
, (4.5)

where the subscript O refers to the fact that this is an oracle choice of the function kL, since it

depends on f̄ . This choice aims to balance the local bias and variance of Ŝn(x).

Theorem 4.2. Assume (A.1), (A.2), (A.3) and (A.4)(ρ). Then for each 0 < B∗ ≤ B∗ <∞,

(i) if ρ > 4 then for β < 4d(ρ− 4)/{ρ(d+ 4)2},

R(ĈkOnn
n )−R(CBayes) = B3n

−4/(d+4){1 + o(1)},

uniformly for B ∈ [B∗, B
∗] as n→∞, where

B3 :=

∫
S

f̄(x0)d/(d+4)

‖η̇(x0)‖

{ 1

4B
+B4/da(x0)2

}
dVold−1(x0).

(ii) if ρ ≤ 4 and β < min{1/2, 4/(d+ 4)}, then for every ε > 0

R(ĈkOnn
n )−R(CBayes) = o(n−ρ/(ρ+d)+β+ε),
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uniformly for B ∈ [B∗, B
∗], as n→∞.

Comparing Theorem 4.2(i) and Theorem 4.1(i), we see that, unlike for the global k-nearest

neighbour classifier, we can guarantee a O(n−4/(d+4)) rate of convergence for the excess risk of

the oracle classifier, both in low dimensions (d ≤ 4), and under a weaker condition on ρ when

d ≥ 5. In particular, the condition on ρ no longer depends on the dimension of the covariates. The

guarantees in Theorem 4.2(ii) are also stronger than those provided by Theorem 4.1(ii) for any

global choice of k. Examining the proof of Theorem 4.2, we find that the key difference with the

proof of Theorem 4.1 is that we can now choose the region Rn (cf. the discussion following the

statement of Theorem 4.1) to be larger.

4.4.2 The semi-supervised nearest neighbour classifier

Now consider the more realistic setting where the marginal density f̄ of X is unknown, but where

we have access to an estimate f̂m based on the unlabelled training set T ′m. Of course, many

different techniques are available, but for simplicity, we focus here on a kernel method. Let K

be a bounded kernel with
∫
Rd K(x) dx = 1,

∫
Rd xK(x) dx = 0,

∫
Rd ‖x‖

2|K(x)| dx < ∞, and let

R(K) :=
∫
Rd K(x)2 dx. We further assume that K(x) = Q(p(x)), where p is a polynomial and Q

is a function of bounded variation. Now define a kernel density estimator of f̄ , given by

f̂m(x) = f̂m,h(x) :=
1

mhd

m∑
j=1

K
(x−Xn+j

h

)
.

Motivated by the oracle local choice of k in (4.5), for β ∈ (0, 1/2) and B > 0, let

kSS(x) := max
[
d(n− 1)βe , min

{
bB{f̂m(x)(n− 1)}4/(d+4)c , b(n− 1)1−βc

}]
.

For γ ∈ (0, 2], we will consider the following condition:

(A.5)(γ) We have that f̄ is bounded and, if γ > 1, then f̄ is differentiable on Rd; moreover, there

exists λ > 0 such that

‖f̄(y)− f̄(x)‖ ≤ λ‖y − x‖γ for all x, y ∈ Rd, if γ ∈ (0, 1]

‖ ˙̄f(y)− ˙̄f(x)‖ ≤ λ‖y − x‖γ−1 for all x, y ∈ Rd, if γ ∈ (1, 2].

Theorem 4.3. Assume (A.1), (A.2), (A.3), (A.4)(ρ) and (A.5)(γ) for some γ ∈ (0, 2]. Let

m0 > 0, let 0 < A∗ ≤ A∗ < ∞ and 0 < B∗ ≤ B∗ < ∞, and let h = hm := Am−1/(d+2γ) for some

A > 0.

(i) If ρ > 4 and β < 4d(ρ− 4)/{ρ(d+ 4)2},

R(ĈkSSnn
n )−R(CBayes) = B3n

−4/(d+4){1 + o(1)}

uniformly for A ∈ [A∗, A
∗], B ∈ [B∗, B

∗] and m = mn ≥ m0(n− 1)2+d/γ , where B3 was defined in

Theorem 4.2(i).

(ii) if ρ ≤ 4 and β < min{1/2, 4/(d+ 4)}, then for every ε > 0,

R(ĈkSSnn
n )−R(CBayes) = o(n−ρ/(ρ+d)+β+ε),
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uniformly for A ∈ [A∗, A
∗], B ∈ [B∗, B

∗] and m = mn ≥ m0(n− 1)2+d/γ .

Examination of the proof of Theorem 4.3 reveals that the same conclusion holds for any estimator

f̃m of f̄ constructed from T ′m, provided there exists α > (1 + d/4)β such that

P
(
‖f̃m − f̄‖∞ ≥

1

(n− 1)1−α/2

)
= o(n−4/(d+4)). (4.6)

Condition (A.5)(γ) ensures that (4.6) holds for our kernel density estimator.

4.5 Empirical analysis

In this section, we compare the kOnn and kSSnn classifiers, introduced in Section 4.4 above, with

the standard knn classifier studied in Section 4.3. We investigate three settings that reflect the

differences between the main results in Sections 4.3 and 4.4.

• Setting 1: P1 is the distribution of d independent N(0, 1) components; whereas P2 is the

distribution of d independent N(1, 1/4) components.

• Setting 2: P1 is the distribution of d independent t5 components; P2 is the distribution of d

independent components, the first bd/2c having a t5 distribution and the remaining d−bd/2c
having a N(1, 1) distribution.

• Setting 3: P1 is the distribution of d independent standard Cauchy components; P2 is the

distribution of d independent components, the first bd/2c being standard Cauchy and the

remaining d− bd/2c standard normal.

The corresponding marginal distribution PX in Setting 1 has all moments finite. Hence, for

the standard k-nearest neighbour classifier when d ≥ 5, we are in the setting of Theorem 4.1(i),

while for d ≤ 4, we can only appeal to Theorem 4.1(ii). On the other hand, for the local k-nearest

neighbour classifiers, the results of Theorems 4.2(i) and 4.3(i) apply for all dimensions, and we can

expect the excess risk to converge to zero at rate O(n−4/(d+4)). In Setting 2, (A.4)(ρ) holds for

ρ < 5, but not for ρ ≥ 5. Thus, for the standard k-nearest neighbour classifier, we are in the setting

of Theorem 4.1(ii) for d < 20, whereas Theorems 4.2(i) and 4.3(i) again apply for all dimensions

for the local classifiers. Finally, in Setting 3, (A.4)(ρ) does not hold for any ρ ≥ 1, and only the

conditions of Theorems 4.1(ii), 4.2(ii) and 4.3(ii) apply.

For the standard knn classifier, we use 5-fold cross validation to choose k, based on a sequence

of equally-spaced values between 1 and bn/4c of length at most 40. For the oracle classifier, we set

k̂O(x) := max
[
1,min

[
bB̂O{f̄(x)n/‖f̄‖∞}4/(d+4)c, n/2

]]
,

where B̂O was again chosen via 5-fold cross validation, but based on a sequence of 40 equally-

spaced points between n−4/(d+4) (corresponding to the 1-nearest neighbour classifier) and nd/(d+4).

Similarly, for the semi-supervised classifier, we set

k̂SS(x) := max
[
1,min

[
bB̂SS{f̂m(x)n/‖f̂m‖∞}4/(d+4)c, n/2

]]
,

where B̂SS was chosen analogously to B̂O, and where f̂m is the d-dimensional kernel density estima-

tor constructed using a truncated normal kernel and bandwidths chosen via the default method in
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Table 4.1: Misclassification rates for Settings 1, 2 and 3. In the final two columns we present the
regret ratios given in (4.7) (with standard errors calculated via the delta method).

d Bayes risk n k̂nn risk k̂Onn risk k̂SSnn risk O RR SS RR

Setting 1
1 22.67 50 26.850.13 25.910.12 25.980.13 0.780.022 0.790.023

200 24.070.06 23.520.06 23.480.05 0.610.030 0.580.029

1000 23.200.04 22.930.04 22.940.04 0.480.048 0.500.048

2 13.30 50 17.700.09 16.960.08 16.950.08 0.830.015 0.830.015

200 15.090.05 14.690.04 14.740.05 0.770.018 0.800.019

1000 14.040.04 13.780.03 13.800.03 0.650.025 0.670.025

5 3.53 50 9.460.07 8.950.06 8.940.06 0.910.006 0.910.006

200 6.940.03 6.670.03 6.700.03 0.920.006 0.930.007

1000 5.490.02 5.180.02 5.230.02 0.840.008 0.870.008

Setting 2
1 31.16 50 36.550.14 36.070.14 35.930.14 0.910.020 0.880.020

200 32.930.08 32.380.07 32.420.07 0.690.031 0.710.032

1000 31.620.05 31.370.05 31.370.05 0.460.065 0.470.066

2 31.15 50 37.790.13 38.020.12 37.900.12 1.020.014 1.010.015

200 33.640.08 33.630.07 33.540.07 1.000.028 0.960.026

1000 31.830.05 31.810.05 31.800.05 0.970.039 0.950.038

5 20.10 50 28.740.12 29.160.12 29.130.11 1.050.011 1.050.011

200 23.600.06 23.750.06 23.930.06 1.040.014 1.090.015

1000 21.860.04 21.710.04 21.770.04 0.910.014 0.950.014

Setting 3
1 37.44 50 44.760.10 43.090.12 43.080.12 0.770.013 0.770.013

200 41.860.08 40.180.09 40.230.09 0.620.017 0.630.017

1000 38.680.06 37.850.05 37.890.05 0.330.033 0.360.032

2 37.45 50 46.200.09 44.810.10 45.240.10 0.840.009 0.890.009

200 43.500.07 42.290.08 42.860.08 0.800.011 0.890.011

1000 40.530.06 39.640.06 39.960.06 0.710.013 0.820.014

5 23.23 50 41.560.11 38.130.11 39.260.12 0.810.005 0.870.005

200 36.020.07 33.340.06 34.680.07 0.790.004 0.900.004

1000 31.460.05 29.910.05 30.580.05 0.810.004 0.890.004

the R package ks (Duong, 2015). In practice, we estimated ‖f̂m‖∞ by the maximum value attained

on the unlabelled training set.

In each of the three settings above, we generated a training set of size n ∈ {50, 200, 1000} in

dimensions d ∈ {1, 2, 5}, an unlabelled training set of size 1000, and a test set of size 1000. In

Table 4.1, we present the sample mean and standard error (in subscript) of the risks computed

from 1000 repetitions of each experiment. Further, we present estimates of the regret ratios, given

by

R(Ĉ k̂Onn
n )−R(CBayes)

R(Ĉ k̂nn
n )−R(CBayes)

and
R(Ĉ k̂SSnn

n )−R(CBayes)

R(Ĉ k̂nn
n )−R(CBayes)

, (4.7)

for which the standard errors given are estimated via the delta method. From Table 4.1, we saw

improvement in performance from the oracle and semi-supervised classifiers in 22 of the 27 experi-

ments, comparable performance in three experiments, and there were two where the standard knn

classifier was the best of the three classifiers considered. In those latter two cases, the theoretical

improvement expected for the local classifiers is small; for instance, when d = 5 in Setting 2,

the excess risk for the local classifiers converges at rate O(n−4/9), while the standard k-nearest

neighbour classifier can attain a rate at least as fast as o(n−1/3+ε) for every ε > 0. It is therefore
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perhaps unsurprising that we require the larger sample size of n = 1000 for the local classifiers to

yield an improvement in this case. The semi-supervised classifier exhibits similar performance to

the oracle classifier in all settings, though some deterioration is noticeable in higher dimensions,

where it is harder to construct a good estimate of f̄ from the unlabelled training data.

4.6 Proofs

In this section, we provide proofs of all of our claimed results, which rely on the general asymptotic

expansion presented in Theorem 4.4 below. We begin with some further notation. Define the d×n
matrices Xn := (X1 . . . Xn) and xn := (x1 . . . xn). Write

µ̂n(x) = µ̂n(x, xn) := E{Ŝn(x)|Xn = xn} =
1

kL(x)

kL(x)∑
i=1

η(x(i)),

and

σ̂2
n(x)= σ̂2

n(x, xn) :=Var{Ŝn(x)|Xn = xn} =
1

kL(x)2

kL(x)∑
i=1

η(x(i)){1− η(x(i))}.

Here we have used the fact that the ordered labels Y(1), . . . , Y(n) are independent given Xn, satis-

fying P(Y(i) = 1|Xn) = η(X(i)). Since η takes values in [0, 1] it is clear that 0 ≤ σ̂2
n(x) ≤ 1

4kL(x)

for all x ∈ Rd. Further, write µn(x) := E{Ŝn(x)} = 1
kL(x)

∑kL(x)
i=1 Eη(X(i)) for the unconditional

expectation of Ŝn(x). Recall also that pr(x) = PX
(
Br(x)

)
.

4.6.1 A general asymptotic expansion

Let

cn := sup
x0∈S:f̄(x0)≥kL(x0)/(n−1)

g(x0),

where g is defined in assumption (A.2), and for x ∈ Rd, let

δn(x) = δn,L(x) :=
kL(x)

n− 1
cdn logd

(n− 1

kL(x)

)
. (4.8)

Recall that S = {x ∈ Rd : η(x) = 1/2}, and note that by Proposition 4.5 in Section 4.7.2, for

ε > 0, we can write

Sε =

{
x0 + t

η̇(x0)

‖η̇(x0)‖
: x0 ∈ S, |t| < ε

}
.

Let

εn :=
1

cnβ1/2 log1/2(n− 1)
, (4.9)

and recall the definition of the function a(·) in (4.3).

Theorem 4.4. Assume (A.1), (A.2), (A.3) and (A.4)(ρ), for some ρ > 0. For n sufficiently

large, let Rn ⊆
{
x ∈ Rd : f̄(x) ≥ δn(x)

}
be a d-dimensional manifold. Write ∂Rn for the

topological boundary of Rn, let (∂Rn)ε := ∂Rn + εB̄1(0), and let Sn := S ∩ Rn. For β ∈ (0, 1/2)
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and τ > 0 define the class of functions

Kβ,τ :=

{
kL : Rd → Kβ : sup

x0∈Sn
sup
|t|<εn

∣∣∣∣kL

(
x0 + t η̇(x0)

‖η̇(x0)‖
)

kL(x0)
− 1

∣∣∣∣ ≤ τ}.
Then for each β ∈ (0, 1/2) and each τ = τn with τn ↘ 0, we have

RRn(ĈkLnn
n )−RRn(CBayes) =

∫
Sn

f̄(x0)

‖η̇(x0)‖

{
1

4kL(x0)
+
( kL(x0)

nf̄(x0)

)4/d

a(x0)2

}
dVold−1(x0)

+ o
(
γn(kL)

)
+O

{
PX
(
(∂Rn)εn ∩ Sεn

)}
as n→∞, uniformly for kL ∈ Kβ,τ , where

γn(kL) :=

∫
Sn

f̄(x0)

‖η̇(x0)‖

{
1

4kL(x0)
+
( kL(x0)

nf̄(x0)

)4/d

g(x0)2

}
dVold−1(x0).

Proof of Theorem 4.4. First observe that

RRn(ĈkLnn
n )−RRn(CBayes) =

∫
Rn

[
P{Ŝn(x) < 1/2} − 1{η(x)<1/2}

]
{2η(x)− 1}f̄(x) dx. (4.10)

The proof is presented in seven steps. We will see that the dominant contribution to the integral

in (4.10) arises from a small neighbourhood about the Bayes decision boundary, i.e. the region

Sεn ∩ Rn. On Rn \ Sεn , the kLnn classifier agrees with the Bayes classifier with high probability

(asymptotically). More precisely, we show in Step 4 that

sup
kL∈Kβ,τ

sup
x∈Rn\Sεn

|P{Ŝn(x) < 1/2} − 1{η(x)<1/2}| = O(n−M ),

for each M > 0, as n → ∞. In Steps 1, 2 and 3, we derive the key asymptotic properties of the

bias, conditional (on Xn) bias and variance of Ŝn(x) respectively. In Step 5 we show that the

integral over Sεn ∩ Rn can be decomposed into an integral over Sn and one perpendicular to S.

Step 6 is dedicated to combining the results of Steps 1 - 5; we derive the leading order terms in

the asymptotic expansion of the integral in (4.10). Finally, we bound the remaining error terms to

conclude the proof in Step 7. To ease notation, where it is clear from the context, we write kL in

place of kL(x).

Step 1: Let µn(x) := E{Ŝn(x)}, and for x0 ∈ S and t ∈ R, write x = x(x0, t) := x0 + t η̇(x0)
‖η̇(x0)‖ .

We show that

µn(x)− η(x)−
( kL(x)

nf̄(x)

)2/d

a(x) = o

(( kL(x0)

nf̄(x0)

)2/d

g(x0)

)
,

uniformly for kL ∈ Kβ,τ , x0 ∈ Sn and |t| < εn. Write

µn(x)− η(x) =
1

kL(x)

kL(x)∑
i=1

E{η(X(i))− η(x)}

=
1

kL(x)

kL(x)∑
i=1

E{(X(i) − x)T η̇(x)}+
1

2
E{(X(i) − x)T η̈(x)(X(i) − x)}+R1,
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where we show in Step 7 that

|R1| = o

{(
kL(x0)

nf̄(x0)

)2/d}
(4.11)

uniformly for kL ∈ Kβ,τ , x0 ∈ Sn and |t| < εn.

The density of X(i) − x at u ∈ Rd is given by

f(i)(u) := nf̄(x+ u)

(
n− 1

i− 1

)
pi−1
‖u‖(1− p‖u‖)

n−i = nf̄(x+ u)pn−1
‖u‖ (i− 1), (4.12)

where p‖u‖ = p‖u‖(x) and pn−1
‖u‖ (i − 1) denotes the probability that a Bin(n − 1, p‖u‖) random

variable equals i− 1. Now let

rn = rn(x) :=

{
2kL(x)

(n− 1)f̄(x)ad

}1/d

. (4.13)

We show in Step 7 that

R2 := sup
kL∈Kβ,τ

sup
x0∈Sn

sup
|t|<εn

E{‖X(kL) − x‖21{‖X(kL)−x‖≥rn}} = O(n−M ), (4.14)

for each M > 0, as n → ∞. It follows from (4.12) and (4.14), together with the assumption on

‖η̇(·)‖ in (A.3) that

E{(X(i) − x)T η̇(x)} =

∫
Brn (0)

η̇(x)Tun{f̄(x+ u)− f̄(x)}pn−1
‖u‖ (i− 1) du+O(n−M ),

uniformly for 1 ≤ i ≤ kL, x0 ∈ Sn and |t| < εn. Similarly, using the assumption on ‖η̈(·)‖op in

(A.3),

E{(X(i) − x)T η̈(x)(X(i) − x)} =

∫
Brn (0)

uT η̈(x)unf̄(x+ u)pn−1
‖u‖ (i− 1) du+O(n−M ),

uniformly for 1 ≤ i ≤ kL, x0 ∈ Sn and |t| < εn. Hence, summing over i, we see that

1

kL

kL∑
i=1

E{(X(i) − x)T η̇(x)}+
1

2kL

kL∑
i=1

E{(X(i) − x)T η̈(x)(X(i) − x)}

=

∫
Brn (0)

[
η̇(x)Tun{f̄(x+ u)− f̄(x)}+

1

2
uT η̈(x)unf̄(x+ u)

]
qn−1
‖u‖ (kL) du+O(n−M ),

where qn−1
‖u‖ (kL) denotes the probability that a Bin(n − 1, p‖u‖) random variable is less than kL.

Let n0 ∈ N be large enough that

εn + sup
x0∈Sn

sup
|t|<εn

rn(x) < ε0

for n ≥ n0. That this is possible follows from the fact that, for εn < ε0,

sup
kL∈Kβ,τ

sup
x0∈Sn

sup
|t|<εn

max
{∣∣∣ kL(x)

kL(x0)
− 1
∣∣∣, ∣∣∣ f̄(x)

f̄(x0)
− 1
∣∣∣} ≤ max

{
τ, cnεn +

cnε
2
n

2

}
→ 0. (4.15)
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By a Taylor expansion of f̄ and assumption (A.2), for all x0 ∈ Sn, |t| < εn, ‖u‖ < rn and n ≥ n0,

∣∣∣f̄(x+ u)− f̄(x)− uT ˙̄f(x)
∣∣∣ ≤ ‖u‖2

2
sup

s∈B‖u‖(0)

‖ ¨̄f(x+ s)‖op ≤
‖u‖2

2
f̄(x0)g(x0).

Hence, for x0 ∈ Sn, |t| < εn, r < rn and n ≥ n0,

|pr(x)− f̄(x)adr
d| ≤

∫
Br(0)

|f̄(x+ u)− f̄(x)− uT ˙̄f(x)| du

≤ 1

2
f̄(x0)g(x0)

∫
Br(0)

‖u‖2 du =
dad

2(d+ 2)
f̄(x0)g(x0)rd+2. (4.16)

Now, for v ∈ B1(0), x0 ∈ Sn, |t| < εn and n ≥ n0,

kL(x)− (n− 1)p‖v‖rn = kL(x)− (n− 1)f̄(x)ad‖v‖drdn +R3

= kL(x)(1− 2‖v‖d) +R3,

where

|R3| ≤
dad(n− 1)f̄(x0)g(x0)‖v‖d+2rd+2

n

2(d+ 2)

=
dkL(x)f̄(x0)g(x0)‖v‖d+2r2

n

(d+ 2)f̄(x)

≤ 22/ddkL(x)

a
2/d
d (d+ 2) log2

(
n−1
kL(x0)

)( f̄(x0)

f̄(x)

)1+2/d( kL(x)

kL(x0)

)2/d

.

It follows from (4.15) that there exists n1 ∈ N such that, for all x0 ∈ Sn, |t| < εn, ‖v‖d ∈
(0, 1/2− 1/ log ((n− 1)/kL(x0))] and n ≥ n1,

kL(x)− (n− 1)p‖v‖rn ≥
kL(x)

log((n− 1)/kL(x0))
,

Similarly, for all ‖v‖d ∈ [1/2 + 1/ log((n− 1)/kL(x0)), 1) and n ≥ n1,

(n− 1)p‖v‖rn − kL(x) ≥ kL(x)

log((n− 1)/kL(x0))
.

Hence, by Bernstein’s inequality, we have that for each M > 0,

sup
kL∈Kβ,τ

sup
x0∈Sn

sup
|t|<εn

sup
‖v‖d∈(0,1/2−1/ log((n−1)/kL(x0))]

1− qn−1
‖v‖rn(kL(x)) = O(n−M ),

and

sup
kL∈Kβ,τ

sup
x0∈Sn

sup
|t|<εn

sup
‖v‖d∈[1/2+1/ log((n−1)/kL(x0)),1)

qn−1
‖v‖rn(kL(x)) = O(n−M ). (4.17)
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We conclude that

1

kL(x)

∫
Brn (0)

[
η̇(x)Tun{f̄(x+ u)− f̄(x)}+

1

2
uT η̈(x)unf̄(x+ u)

]
qn−1
‖u‖ (kL(x)) du

=
1

kL(x)

∫
B

2−1/drn
(0)

[
η̇(x)Tun{f̄(x+ u)− f̄(x)}+

1

2
uT η̈(x)unf̄(x+ u)

]
du+R41

=
(kL(x)

n

)2/d
∑d
j=1{ηj(x)f̄j(x) + 1

2ηjj(x)f̄(x)}

(d+ 2)a
2/d
d f̄(x)1+2/d

+R41 +R42

=
( kL(x)

nf̄(x)

)2/d

a(x) +R41 +R42, (4.18)

where

|R41|+ |R42| = o

(( kL(x0)

nf̄(x0)

)2/d

g(x0)

)
,

uniformly for kL ∈ Kβ,τ , x0 ∈ Sn and |t| < εn.

Step 2: Recall that σ̂2
n(x, xn) = Var{Ŝn(x)|Xn = xn}. We show that∣∣∣σ̂2

n(x,Xn)− 1

4kL

∣∣∣ = op(1/kL), (4.19)

uniformly for kL ∈ Kβ,τ , x0 ∈ Sn and |t| < εn. Recall that

σ̂2
n(x,Xn) =

1

k2
L

kL∑
i=1

η(X(i)){1− η(X(i))}.

Let n2 ∈ N be large enough that 1−cnεn− d+1
d+2cnε

2
n ≥ µ0/ad for n ≥ n2. Then for n ≥ max{n0, n2},

ε < εn, x0 ∈ Sn and |t| < εn, we have by (A.2) and a very similar argument to that in (4.16) that

pε(x) ≥ µ0ε
df̄(x0) ≥ µ0ε

dδn(x0). (4.20)

Now suppose that z1, . . . , zN ∈ Rn ∪ Sεnn are such that ‖zj − z`‖ ≥ εn/6 for all j 6= `, but

supx∈Rn∪Sεnn minj=1,...,N ‖x− zj‖ < εn/6. We have by (A.2) that

1 = PX(Rd) ≥
N∑
j=1

pεn/12(zj) ≥
Nµ0β

d/2 logd/2(n− 1)

12d(n− 1)1−β .

For each j = 1, . . . , N , choose

z′j ∈ argmax
z∈Bzj (εn/6)∩(Rn∪Sεnn )

kL(z).

Now, given x ∈ Rn ∪Sεnn , let j0 := argminj ‖x− zj‖, so that Bεn/6(z′j0) ⊆ Bεn/2(x). Thus, if there

are at least kL(z′j) points among {x1, . . . , xn} inside each of the balls Bεn/6(z′j), then for every

x ∈ Rn ∪ Sεnn there are at least kL(x) of them in Bεn/2(x). Moreover, by (4.15), (4.20) and (A.2)

min
j=1,...,N

{
npεn/6(z′j)− 2kL(z′j)

}
≥ (n− 1)β

for all kL ∈ Kβ,τ and n ≥ n3, say. Define AkL
:=
{
‖X(kL)(x) − x‖ < εn/2 for all x ∈ Rn ∪ Sεnn

}
.

Then by a standard binomial tail bound (Shorack and Wellner, 2009, Equation (6), p. 440), for
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n ≥ n3 and any M > 0,

P(AckL
) = P

{
sup

x∈Rn∪Sεnn
‖X(kL(x))(x)− x‖ ≥ εn/2

}
≤ P

{
max

j=1,...,N
‖X(kL(zj))(z

′
j)− z′j‖ ≥ εn/6

}
≤

N∑
j=1

P
{
‖X(kL(zj))(z

′
j)− z′j‖ ≥ εn/6

}
≤ N max

j=1,...,N
exp
(
−1

2
npεn/6(z′j) + kL(z′j)

)
= O(n−M ), (4.21)

uniformly for kL ∈ Kβ,τ . Now,

sup
kL∈Kβ,τ

sup
x0∈Sn

sup
|t|<εn

sup
xn∈AkL

max
1≤i≤kL(x)

|η(x(i)(x))− 1/2| → 0.

It follows that

sup
xn∈AkL

∣∣∣∣ 1

kL(x)2

kL(x)∑
i=1

η(x(i)(x)){1− η(x(i)(x))} − 1

4kL(x)

∣∣∣∣ = o
( 1

kL(x)

)
(4.22)

as n → ∞, uniformly for x0 ∈ Sn, |t| < εn and kL ∈ Kβ,τ . The claim (4.19) follows from (4.21)

and (4.22).

Step 3: In this step, we emphasise the dependence of µ̂n(x, xn) = E{Ŝn(x)|Xn = xn} on kL

by writing it as µ̂
(kL)
n (x, xn). We show that

Var{µ̂(kL)
n (x,Xn)} = O

{
1

kL

(
kL(x0)

nf̄(x0)

)2/d}
(4.23)

uniformly for x0 ∈ Sn, |t| < εn and kL ∈ Kβ,τ . We will write Xn,j := (X1 . . . Xj−1 Xj+1 . . . Xn),

considered as a random d× (n− 1) matrix, so that

µ̂(kL)
n (x,Xn)− µ̂(kL)

n−1(x,Xn,(i)) =
1

kL
{η(X(i))− η(X(kL+1))}1{i≤kL}.

It follows from the Efron–Stein inequality (e.g. Boucheron, Lugosi and Massart, 2013, Theorem 3.1)

that

Var{µ̂(kL)
n (x,Xn)} ≤

n∑
i=1

E
[
{µ̂(kL)

n (x,Xn)− µ̂(kL)
n−1(x,Xn,(i))}2

]
=

1

k2
L

kL∑
i=1

E
[
{η(X(i))− η(X(kL+1))}2

]
≤ 2

k2
L

kL∑
i=1

E
[
{η(X(i))− η(x)}2 + {η(X(kL+1))− η(x)}2

]
.

(4.24)

Recall the definition of rn given in (4.13). Now observe that, for max(εn, rn) ≤ ε0 and all M > 0
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we have that

max
i∈{1,...,kL+1}

E
[
{η(X(i))− η(x)}2

]
≤ max
i∈{1,...,kL+1}

E
[
{η(X(i))− η(x)}21{‖X(i)−x‖≤rn}

]
+ P(‖X(kL+1) − x‖ > rn)

≤ r2
n sup
z∈S2ε0

‖η̇(z)‖2 +O(n−M ), (4.25)

uniformly for x0 ∈ Sn, |t| < εn and kL ∈ Kβ,τ . The final inequality here follows from similar

arguments to those used to bound R1. Now (4.23) follows from (4.24) and (4.25).

Step 4: We show that

sup
kL∈Kβ,τ

sup
x∈Rn\Sεn

|P{Ŝn(x) < 1/2} − 1{η(x)<1/2}| = O(n−M ),

for each M > 0, as n → ∞. First, by (A.3) and Proposition 4.5 in Section 4.7.2, there exists

c0 > 0 such that for every ε ∈ (0, ε0],

inf
x∈Rn\Sε

|η(x)− 1/2| ≥ c0 min
{
ε , inf

x∈Rn\Sε0
δn(x)β/2

}
.

Hence, on the event AkL
, for εn < ε0 and x ∈ Rn \ Sεn , all of the kL nearest neighbours of x are

on the same side of S, so

|µ̂n(x,Xn)− 1/2| =
∣∣∣∣ 1

kL

kL∑
i=1

η(X(i))− 1/2

∣∣∣∣
≥ inf
z∈Bεn/2(x)

|η(z)− 1/2| ≥c0 min

{
εn
2
, inf
x∈Rn\Sε0

δn(x)β/2
}
.

Now, conditional on Xn, Ŝn(x) is the sum of kL(x) independent terms. Therefore, by Hoeffding’s

inequality,

sup
x∈Rn\Sεn

∣∣P{Ŝn(x) < 1/2} − 1{η(x)≤1/2}
∣∣

= sup
x∈Rn\Sεn

∣∣E{P{Ŝn(x) < 1/2|Xn} − 1{η(x)≤1/2}
∣∣

≤ sup
x∈Rn\Sεn

E
[
exp(−2kL{µ̂n(x,Xn)− 1/2}2)1AkL

]
+ P(AckL

) = O(n−M )

for every M > 0. This completes Step 4.

Step 5: It is now convenient to be more explicit in our notation, by writing xt0 := x0 +

tη̇(x0)/‖η̇(x0)‖. We also let

ψ(x) := {2η(x)− 1}f̄(x) = π1f1(x)− π2f2(x).
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Recalling that Sn := S ∩Rn, we show that∫
Sεn∩Rn

ψ(x)[P{Ŝn(x) < 1/2} − 1{η(x)<1/2}] dx

=

∫
Sn

∫ εn

−εn
ψ(xt0)[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0){1 + o(1)}+O

{
PX
(
(∂Rn)εn ∩ Sεn

)}
,

uniformly for kL ∈ Kβ,τ . Now by Proposition 4.6 in Section 4.7.2, for

εn ≤ min

{
ε0 ,

infx0∈S ‖η̇(x0)‖
supz∈Sε0 ‖η̈(z)‖op

}
,

the map x(x0, t) := xt0 is a diffeomorphism from Sn × (−εn, εn) to Sεnn , where

Sεn :=

{
x0 + t

η̇(x0)

‖η̇(x0)‖
: x0 ∈ Sn, |t| < ε

}
.

Furthermore, for such n, and |t| < εn, sgn{η(xt0)− 1/2} = sgn(t). Now observe that (Sεn ∩Rn) \
Sεnn ⊆ (∂Rn)εn ∩ Sεn and Sεnn \ (Sεn ∩ Rn) ⊆ (∂Rn)εn ∩ Sεn . It follows from this and (4.56) in

Section 4.7.3 that∫
Sεn∩Rn

ψ(x)[P{Ŝn(x) < 1/2} − 1{η(x)<1/2}] dx

=

∫
Sεnn

ψ(x)[P{Ŝn(x) < 1/2} − 1{η(x)<1/2}] dx+O
{
PX
(
(∂Rn)εn ∩ Sεn

)}
=

∫
Sn

∫ εn

−εn
det(I + tB)ψ(xt0)[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0) +O

{
PX
(
(∂Rn)εn ∩ Sεn

)}
where B is defined in (4.49) in Section 4.7.2, and det(I + tB) = 1 + o(1) as n→∞, uniformly for

x0 ∈ S and t ∈ (−εn, εn).

Step 6: The last step in the main argument is to show that∫
Sn

∫ εn

−εn
ψ(xt0)[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0)

=

∫
Sn

f̄(x0)

‖η̇(x0)‖

{
1

4kL(x0)
+
( kL(x0)

nf̄(x0)

)4/d

a(x0)2

}
dVold−1(x0) + o(γn(kL))

as n→∞, uniformly for kL ∈ Kβ,τ . First observe that∫
Sn

∫ εn

−εn
ψ(xt0)[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0)

=

∫
Sn

∫ εn

−εn
t‖ψ̇(x0)‖[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0){1 + o(1)}.

Now, write P{Ŝn(xt0) < 1/2} − 1{t<0} = E[P{Ŝn(xt0) < 1/2|Xn} − 1{t<0}]. Note that, given Xn,

Ŝn(x) = 1
kL(x)

∑kL(x)
i=1 1{Y(i)=1} is the sum of kL(x) independent Bernoulli variables, satisfying
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P(Y(i) = 1|Xn) = η(X(i)). Let Φ be the standard normal distribution function, and let

θ̂(x) := −{µ̂n(x,Xn)− 1/2}/σ̂n(x,Xn)

θ̄(x0, t) := −2kL(x0)1/2

{
t‖η̇(x0)‖+

(
kL(x0)

nf̄(x0)

)2/d

a(x0)

}
.

We can write∫ εn

−εn
t‖ψ̇(x0)‖[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt

=

∫ εn

−εn
t‖ψ̇(x0)‖E

{
Φ
(
θ̂(xt0)

)
− 1{t<0}

}
dt+R5(x0)

=

∫ εn

−εn
t‖ψ̇(x0)‖

{
Φ
(
θ̄(x0, t)

)
− 1{t<0}

}
dt+R5(x0) +R6(x0),

where we show in Step 7 that∣∣∣∣∫
Sn
R5(x0) +R6(x0) dVold−1(x0)

∣∣∣∣ = o(γn(kL)). (4.26)

Then, substituting u = 2kL(x0)1/2t, we see that∫ εn

−εn
t‖ψ̇(x0)‖

[
Φ
(
θ̄(x0, t)

)
− 1{t<0}

]
dt

=
1

4kL(x0)

∫ 2kL(x0)1/2εn

−2kL(x0)1/2εn

u‖ψ̇(x0)‖
{

Φ

(
θ̄
(
x0,

u

2kL(x0)1/2

))
− 1{u<0}

}
du

=

{
f̄(x0)

4kL(x0)‖η̇(x0)‖
+
( kL(x0)

nf̄(x0)

)4/d f̄(x0)a(x0)2

‖η̇(x0)‖

}
{1 + o(1)}.

The conclusion follows by integrating with respect to dVold−1 over Sn.

Step 7: To complete the proof it remains to bound the error terms R1, R2, R5 and R6.

To bound R1: We have

R1 =
1

kL

kL∑
i=1

(
Eη(X(i))− η(x)− E{(X(i) − x)T η̇(x)} − 1

2
E{(X(i) − x)T η̈(x)(X(i) − x)}

)
.

By a Taylor expansion and the uniform continuity of η̈ from (A.3), for all ε > 0, there exists

r = rε ∈ (0, ε0], such that for all x ∈ Sε0 and ‖z − x‖ < r,∣∣∣∣η(z)− η(x)− (z − x)T η̇(x)− 1

2
(z − x)T η̈(x)(z − x)

∣∣∣∣ ≤ ε‖z − x‖2.
Hence

|R1| ≤ ε
1

kL

kL∑
i=1

E{‖X(i) − x‖21{‖X(kL)−x‖≤r}}+ 2P{‖X(kL) − x‖ > r}

+ sup
z∈Sε0

‖η̇(z)‖E{‖X(kL) − x‖1{‖X(kL)−x‖>r}}

+ sup
z∈Sε0

‖η̈(z)‖opE{‖X(kL) − x‖21{‖X(kL)−x‖>r}}. (4.27)
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Now, by similar arguments to those leading to (4.18), we have that

ε

kL

kL∑
i=1

E(‖X(i) − x‖21{‖X(kL)−x‖≤r}) = ε
( kL

nadf̄(x)

)2/d d

d+ 2
{1 + o(1)}, (4.28)

uniformly for x0 ∈ Sn, |t| < εn and kL ∈ Kβ,τ . Moreover, for every M > 0,

P{‖X(kL) − x‖ > r} = qnr (kL) = O(n−M ), (4.29)

uniformly for x0 ∈ Sn, |t| < εn and kL ∈ Kβ,τ , by (4.17) in Step 1. For the remaining terms, note

that

E{‖X(kL) − x‖21{‖X(kL)−x‖>r}} = P{‖X(kL) − x‖ > r}+

∫ ∞
r2

P{‖X(kL) − x‖ >
√
t} dt

= qnr (kL) +

∫ ∞
r2

qn√
t
(kL) dt. (4.30)

Let t0 = t0(x) := 52/ρ(1 + 2ρ−1)2/ρ
{
E(‖X‖ρ) + ‖x‖ρ

}2/ρ
. Then, for t ≥ t0, we have

1− p√t ≤ (1 + 2ρ−1)
E(‖X‖ρ) + ‖x‖ρ

tρ/2
≤ 1

5
.

It follows by Bennett’s inequality that for ρ{n− (n− 1)1−β} > 4,∫ ∞
t0

qn√
t
(kL) dt ≤ ekL(1 + 2ρ−1)(n−kL)/2

{
E(‖X‖ρ) + ‖x‖ρ

}(n−kL)/2
∫ ∞
t0

t−ρ(n−kL)/4 dt

=
4ekL52/ρ

ρ(n− kL)− 4
(1 + 2ρ−1)2/ρ

{
E(‖X‖ρ) + ‖x‖ρ

}2/ρ
5−(n−kL)/2.

But, when β log(n− 1) ≥ (d+ 2)/d and n ≥ max{n0, n2},

sup
x∈Rn∪Sεnn

‖x‖ ≤ ε0 +

{
(n− 1)1−βcdnE(‖X‖ρ)
µ0βd/2 logd/2(n− 1)

}1/ρ

.

We deduce that for every M > 0,

sup
k∈Kβ,τ

sup
x∈Rn∪Sεnn

∫ ∞
t0

qn√
t
(kL) dt = O(n−M ). (4.31)

Moreover, by Bernstein’s inequality, for every M > 0,

sup
kL∈Kβ,τ

sup
x∈Rn∪Sεnn

{
qnr (kL) +

∫ t0

r2

qn√
t
(kL) dt

}
= O(n−M ). (4.32)

We conclude from (4.15), (4.27), (4.28), (4.29), (4.30), (4.31) and (4.32), together with Jensen’s

inequality to deal with the third term on the right-hand side of (4.27), that (4.11) holds. With

only simple modifications, we have also shown (4.14), which bounds R2.

To bound R5: Write

R5 :=

∫
Sn
R5(x0) dVold−1(x0)

∫
Sn

∫ εn

−εn
t‖ψ̇(x0)‖

[
P{Ŝn(xt0) < 1/2} − EΦ

(
θ̂(xt0)

)]
dt dVold−1(x0).
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Now by a non-uniform version of the Berry–Esseen theorem (Paditz, 1989, Theorem 1), for every

t ∈ (−εn, εn) and x0 ∈ Sn,

∣∣P{Ŝn(xt0) < 1/2|Xn} − Φ
(
θ̂(xt0)

)∣∣ ≤ 32

kL(xt0)σ̂n(xt0, X
n)

1

1 + |θ̂(xt0)|3
. (4.33)

Let

tn = tn(x0) := C max

{
kL(x0)−1/2,

( kL(x0)

nf̄(x0)

)2/d

g(x0)

}
,

where

C :=
4 max{2 supz∈Sε0 ‖η̇(z)‖, d supz∈Sε0 ‖η̈(z)‖op}

(d+ 2)a
2/d
d infz∈S ‖η̇(z)‖

.

In the following we integrate the bound in (4.33) over the regions |t| ≤ tn and |t| ∈ (tn, εn)

separately. Define the event

BkL
:=

{
σ̂n(xt0, X

n) ≥ 1

3kL(xt0)1/2
for all x0 ∈ Sn, t ∈ (−εn, εn)

}
,

so that, by very similar arguments to those used to bound P(AckL
) in Step 2, we have P(BckL

) =

O(n−M ) for every M > 0, uniformly for kL ∈ Kβ,τ . It follows by (4.33) and Step 2 that there

exists n4 ∈ N such that for all n ≥ n4, kL ∈ Kβ,τ and x0 ∈ Sn,∣∣∣∣∫ tn

−tn
t
[
P{Ŝn(xt0) < 1/2} − EΦ

(
θ̂(xt0)

)]
dt

∣∣∣∣
≤
∫ tn

−tn
E
(

32|t|1BkL

kL(xt0)σ̂n(xt0, X
n)

)
dt+ t2nP(BckL

) ≤ 128t2n
kL(x0)1/2

. (4.34)

By Step 1, there exists n5 ∈ N such that for n ≥ n5, |t| ∈ (tn, εn), x0 ∈ Sn and kL ∈ Kβ,τ ,

|µn(xt0)− 1/2| ≥ |η(xt0)− 1/2| − |µn(xt0)− η(xt0)|

≥ 1

2
inf
z∈S
‖η̇(z)‖|t| − 1

4
C inf
z∈S
‖η̇(z)‖

( kL(x0)

nf̄(x0)

)2/d

g(x0) >
1

4
inf
z∈S
‖η̇(z)‖|t|. (4.35)

Thus for n ≥ n5, |t| ∈ (tn, εn), x0 ∈ Sn and kL ∈ Kβ,τ we have that

P
{
|θ̂(xt0)| < 1

4
inf
z∈S
‖η̇(z)‖k1/2

L (x0)|t|
}

≤ P
{
|µ̂n(xt0, X

n)− µn(xt0)| > |µn(xt0)− 1/2| − 1

8
inf
z∈S
‖η̇(z)‖|t|

}
≤ P

{
|µ̂n(xt0, X

n)− µn(xt0)| > 1

8
inf
z∈S
‖η̇(z)‖|t|

}
≤ 64Var{µ̂n(xt0, X

n)}
infz∈S ‖η̇(z)‖2t2

. (4.36)
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It follows by (4.33), (4.36) and Step 3 that, for n ≥ n5,∣∣∣∣∫
|t|∈(tn,εn)

t
[
P{Ŝn(xt0) < 1/2} − EΦ

(
θ̂(xt0)

)]
dt

∣∣∣∣
≤
∫
|t|∈(tn,εn)

|t|E
(

321BkL

kL(xt0)σ̂n(xt0, X
n)

1

1+ 1
64 infz∈S ‖η̇(z)‖3kL(x0)3/2|t|3

)
dt

+

∫
|t|∈(tn,εn)

64Var{µ̂n(xt0, X
n)}

infz∈S ‖η̇(z)‖2|t|
dt+ ε2nP(BckL

)

≤ 192

kL(x0)3/2

∫ ∞
0

u

1 + 1
64 infz∈S ‖η̇(z)‖3u3

du

+
128

infz∈S ‖η̇(z)‖2
sup

|t|∈(tn,εn)

Var{µ̂n(xt0, X
n)} log

(εn
tn

)
+ ε2nP(BckL

)

= o
( 1

kL(x0)

)
(4.37)

uniformly for x0 ∈ Sn and kL ∈ Kβ,τ . We conclude from (4.34) and (4.37) that |R5| = o(γn(kL)).

To bound R6: Let θ(xt0) := −2kL(xt0)1/2{µn(xt0)− 1/2}. Write

R6 :=

∫
Sn
R6(x0) dVold−1(x0) = R61 +R62,

where

R61 :=

∫
Sn

∫ εn

−εn
t‖ψ̇(x0)‖

[
EΦ
(
θ̂(xt0)

)
− Φ

(
θ(xt0)

)]
dt dVold−1(x0)

and

R62 :=

∫
Sn

∫ εn

−εn
t‖ψ̇(x0)‖

[
Φ
(
θ(xt0)

)
− Φ

(
θ̄(x0, t)

)]
dt dVold−1(x0).

To bound R61: We again deal with the regions |t| ≤ tn and |t| ∈ (tn, εn) separately. First let

θ̃(xt0) := −2kL(xt0)1/2{µ̂n(xt0, X
n) − 1/2}. Writing φ for the standard normal density, and using

the facts that |θ̂(xt0)| ≥ |θ̃(xt0)|, that θ̂(xt0) and θ̃(xt0) have the same sign, and that |xφ(x)| ≤ 1, we

have ∣∣∣∣∫ tn

−tn
t
[
EΦ
(
θ̂(xt0)

)
− Φ

(
θ(xt0)

)]
dt

∣∣∣∣
≤
∫ tn

−tn
|t|E
{
|θ̂(xt0)− θ̃(xt0)|φ

(
θ̃(xt0)

)
1AkL

+ |θ̃(xt0)− θ(xt0)|
}
dt+ t2nP(AckL

)

≤
∫ tn

−tn
|t|
[
E
{
1AkL

∣∣∣ 1

2kL(xt0)1/2σ̂n(xt0, X
n)
− 1
∣∣∣}

+ 2kL(xt0)1/2Var1/2{µ̂n(xt0, X
n)}
]
dt+ t2nP(AckL

) = o(t2n)

uniformly for x0 ∈ Sn and kL ∈ Kβ,τ . Note that for |t| ∈ (tn, εn) and x0 ∈ Sn, we have when
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εn < ε0 and n ≥ n5 that

E
{
1AkL

∩BkL

∣∣θ̂(xt0)− θ(xt0)
∣∣} ≤ E

{
1AkL

∩BkL

σ̂n(xt0, X
n)
|µ̂n(xt0, X

n)− µn(xt0)|

+ 1AkL
∩BkL

|θ(xt0)|
∣∣∣ 1

2kL(xt0)1/2σ̂n(xt0, X
n)
− 1
∣∣∣}

≤ 3kL(x0)1/2Var1/2{µ̂n(xt0, X
n)}

+
5

2
kL(x0)1/2 sup

z∈Sε0
‖η̇(z)‖|t|E

{
1AkL

∩BkL

∣∣∣ 1

2kL(xt0)1/2σ̂n(xt0, X
n)
− 1
∣∣∣}. (4.38)

Thus by (4.35), (4.36), (4.38) and Step 3, for εn < ε0 and n ≥ n5,∫
|t|∈(tn,εn)

|t|
∣∣EΦ

(
θ̂(xt0)

)
− Φ

(
θ(xt0)

)∣∣ dt
≤
∫
|t|∈(tn,εn)

|t|E
{
1AkL

∩BkL

∣∣θ̂(xt0)− θ(xt0)
∣∣}φ(1

4
inf
z∈S
‖η̇(z)‖k1/2

L (x0)|t|
)
dt

+ P(AckL
∪BckL

) +
128

infz∈S ‖η̇(z)‖2
sup

|t|∈(tn,εn)

Var{µ̂n(xt0, X
n)} log

(εn
tn

)
= o
( 1

kL(x0)

)
(4.39)

uniformly for x0 ∈ Sn and kL ∈ Kβ,τ .

To bound R62: Let

u(x) := kL(x)1/2
( kL(x)

nf̄(x)

)2/d

.

Given ε > 0 small enough that ε2 + ε
2 infx∈S ‖η̇(x0)‖ < 1/2, by Step 1 there exists n6 ∈ N such that

for n ≥ n6, kL ∈ Kβ,τ , x0 ∈ Sn and |t| < εn,

∣∣θ(xt0)− θ̄(x0, t)
∣∣ ≤ ε2{|t|kL(x0)1/2 + u(x0)g(x0)

}
.

By decreasing ε and increasing n6 if necessary, it follows that

∣∣Φ(θ(xt0)
)
− Φ

(
θ̄(x0, t)

)∣∣ ≤ ε2{|t|kL(x0)1/2 + u(x0)g(x0)
}
φ
(1

2
θ̄(x0, t)

)
,

for all n ≥ n6, kL ∈ Kβ,τ , and x0 ∈ Sn, t ∈ (−εn, εn) satisfying 2εu(x0)g(x0)‖η̇(x0)‖ ≤ |θ̄(x0, t)|.
Substituting u = θ̄(x0, t)/2, it follows that there exists C∗ > 0 such that for all n ≥ n6 and all

kL ∈ Kβ,τ ,

|R62| ≤
∫
Sn

∫
|u|≤εu(x0)g(x0)‖η̇(x0)‖

2f̄(x0)

‖η̇(x0)‖kL(x0)
|u+ u(x0)a(x0)| du dVold−1(x0)

+

∫
Sn

∫ ∞
−∞

2f̄(x0)|u+ u(x0)a(x0)|
‖η̇(x0)‖2kL(x0)

{
ε2|u+ u(x0)a(x0)|

+ ε|u|
}
φ(u) du dVold−1(x0) ≤ C∗εγn(kL). (4.40)

The combination of (4.39) and (4.40) yields the desired error bound on |R6| in (4.26) and therefore

completes the proof.
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4.6.2 Proof of Theorem 4.1

Proof of Theorem 4.1. Let k ∈ Kβ , and note that since kL(x) = k is constant, we have that

cn = supx0 ∈S : f̄(x0)≥ k/(n−1) g(x0), and δn = k
n−1c

d
n logd(n−1

k ). Now let

Rn = {x ∈ Rd : f̄(x) > δn} ∩ Xf̄ ,

and let n0 ∈ N be large enough that Rn is non-empty for n ≥ n0, so that, by Assumption (A.1),

for n ≥ n0 it is an open subset of Rd, and therefore a d-dimensional manifold. For n ≥ n0, we may

apply Theorem 4.4 with kL(x) = k for all x ∈ Rd to deduce that

RRn(Ĉknn
n )−RRn(CBayes) = B1,n

1

k
+B2,n

(k
n

)4/d

+ o(γn(k)) +O
{
PX
(
(∂Rn)εn ∩ Sεn

)}
uniformly for k ∈ Kβ , where

B1,n :=

∫
Sn

f̄(x0)

4‖η̇(x0)‖
dVold−1(x0)

and

B2,n :=

∫
Sn

f̄(x0)1−4/d

‖η̇(x0)‖
a(x0)2 dVold−1(x0),

and Sn := S ∩ Rn. We now show that, under the conditions of part (i), B1,n and B2,n are well

approximated by integrals over the whole of the manifold S, and that these integrals are finite.

First, by Assumptions (A.3) and (A.4)(ρ),

B1 =

∫
S

f̄(x0)

4‖η̇(x0)‖
dVold−1(x0)≤ 1

4 infx0∈S ‖η̇(x0)‖

∫
S
f̄(x0) dVold−1(x0)<∞.

Moreover,

B1 −B1,n =

∫
S\Rn

f̄(x0)

4‖η̇(x0)‖
dVold−1(x0) ≤ 1

4

1

infx0∈S ‖η̇(x0)‖

∫
S\Rn

f̄(x0) dVold−1(x0)→ 0,

uniformly for k ∈ Kβ . By Assumptions (A.2), (A.3) and (A.4)(ρ) and the fact that ρ/(ρ+ d) >

4/d, we have that

B2 =

∫
S

f̄(x0)1−4/d

‖η̇(x0)‖
a(x0)2 dVold−1(x0)

≤ sup
x0∈S

{a(x0)2f̄(x0)ρ/(ρ+d)−4/d

‖η̇(x0)‖

}∫
S
f̄(x0)d/(ρ+d) dVold−1(x0) <∞.

Similarly,

B2−B2,n=

∫
S\Rn

f̄(x0)1−4/d

‖η̇(x0)‖
a(x0)2 dVold−1(x0)

≤ sup
x0∈S

{a(x0)2f̄(x0)ρ/(ρ+d)−4/d

‖η̇(x0)‖

}∫
S\Rn

f̄(x0)d/(ρ+d) dVold−1(x)→0,

uniformly for k ∈ Kβ , as n → ∞. A similar argument shows that γn(k) = O(1/k + (k/n)4/d),

uniformly for k ∈ Kβ .
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Finally, we bound PX
(
(∂Rn)εn ∩ Sεn

)
and RRcn(Ĉknn

n ) − RRcn(CBayes). Suppose that x ∈
(∂Rn)εn ∩Sεn . Then there exists z ∈ ∂Rn ∩Bεn(x)∩S2εn with f̄(z) = δn. By Assumption (A.2)

we have that ∣∣∣ f̄(x)

f̄(z)
− 1
∣∣∣ ≤ g(z)‖x− z‖+

1

2
g(z)‖x− z‖2 ≤ 1 + εn/2

β1/2 log1/2(n− 1)
. (4.41)

Thus there exists n1 ∈ N such that (∂Rn)εn ∩ Sεn ⊆ {x ∈ Rd : f̄(x) ≤ 2δn} for n ≥ n1. By the

moment assumption in (A.4)(ρ) and Hölder’s inequality, observe that for any α ∈ (0, 1), n ≥ n1

and ε > 0,

PX
(
(∂Rn)εn ∩ Sεn

)
≤ P{f̄(X) ≤ 2δn} ≤ (2δn)

ρ(1−α)
ρ+d

∫
x:f̄(x)≤2δn

f̄(x)1− ρ(1−α)
ρ+d dx

≤ (2δn)
ρ(1−α)
ρ+d

{∫
Rd

(1 + ‖x‖ρ)f̄(x) dx
}1− ρ(1−α)

ρ+d
{∫

Rd

1

(1 + ‖x‖ρ)
d+ρα
ρ(1−α)

dx
} ρ(1−α)

ρ+d

(4.42)

= o

((k
n

) ρ(1−α)
ρ+d −ε

)
,

uniformly for k ∈ Kβ . Moreover,

RRcn(Ĉknn
n )−RRcn(CBayes) ≤ PX(Rcn) ≤ P{f̄(X) ≤ 2δn},

so the same bound (4.42) applies for this region. Since ρ/(ρ + d) > 4/d, this completes the proof

of part (i).

For part (ii), in contrast to part (i), the dominant contribution to the excess risk could now

arise from the tail of the distribution. First, as in part (i), we have B1,n → B1 <∞, uniformly for

k ∈ Kβ . Furthermore, using Assumptions (A.3) and (A.4)(ρ) and the fact that 4/d > ρ/(ρ+ d),

we see that

B2,n

(k
n

)4/d

≤δρ/(ρ+d)
n

∫
Sn

δ
4/d−ρ/(ρ+d)
n

c4n log4((n− 1)/k)

f̄(x0)1−4/d

‖η̇(x0)‖
a(x0)2 dVold−1(x0)

≤ sup
x0∈Sn

{ a(x0)2

‖η̇(x0)‖

} δ
ρ/(ρ+d)
n

c4n log4((n− 1)/k)

∫
S
f̄(x0)d/(ρ+d) dVold−1(x0) = o((k/n)ρ/(ρ+d)−ε),

for every ε > 0, uniformly for k ∈ Kβ , where the final equality follows from the fact that

supx0∈Sn a
2(x0)/c2n is bounded. We can also bound γn(k) by the same argument, so the result

follows in the same way as in part (i).

4.6.3 Proof of claim in Example 4.1

Proof of claim in Example 4.1. Fix ε > 0 and k ∈ Kβ , let

Tn := (0, 1/2)×
(
(1 + ε) log(n/k),∞

)
,

and for γ > 0, let

Bk,γ =
⋂

x=(x1,x2)∈Tn

{γ < ‖X(k+1)(x)− x‖ < x2 − 1}.
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Now, for εβ log n > 4 and γ ∈ [2, ε log(n/k)/2),

P(Bck,γ) ≤ P(T ≥ k + 1) + P(T ′ ≤ k),

where T ∼ Bin(n, p∗γ), T ′ ∼ Bin(n, p∗),

p∗γ :=

∫ 1

0

∫ ∞
(1+ε) log(n/k)−γ

t1 exp(−t2) dt1dt2 ≤
1

2

(k
n

)1+ε

eγ ≤ 1

2

(k
n

)1+ε/2

,

p∗ :=

∫ 1

0

∫ 3+31/2

3−31/2

t1 exp(−t2) dt1dt2 ≥
1

8
.

Therefore, there exists n0 ∈ N such that np∗ − (k + 1) ≥ k/2 and k + 1 − np∗γ ≥ k/2 for all

k ∈ Kβ , γ ∈ [2, ε log(n/k)/2) and n ≥ n0. It follows by an application of Bernstein’s inequality

that supk∈Kβ supγ∈[2,ε log(n/k)/2) P(Bck,γ) = O(n−M ) for every M > 0.

Now, for x = (x1, x2) ∈ Tn, εβ log n > 4 and γ ∈ [2, x2 − 1), we have that

∫
Bγ(x)

η(t)f̄(t) dt∫
Bγ(x)

f̄(t) dt
=

∫ 1

0

∫ x2+{γ2−(t1−x1)2}1/2

x2−{γ2−(t1−x1)2}1/2 t
2
1e
−t2 dt2 dt1∫ 1

0

∫ x2+{γ2−(t1−x1)2}1/2

x2−{γ2−(t1−x1)2}1/2 t1e−t2 dt2 dt1
=

∫ 1

0
t21 sinh({γ2 − (t1 − x1)2}1/2) dt1∫ 1

0
t1 sinh({γ2 − (t1 − x1)2}1/2) dt1

≥ 2

3

sinh
(
(γ2 − 1)1/2

)
sinh(γ)

≥ 2

3

sinh(31/2)

sinh(2)
>

1

2
.

Our next observation is that for γ ∈ [0,∞) and x(k+1) ∈ Rd such that ‖x(k+1) − x‖ = γ,

we have that (X(1), Y(1), . . . , X(k), Y(k))|(X(k+1) = x(k+1))
d
= (X̃(1), Ỹ(1), . . . , X̃(k), Ỹ(k)), where

(X̃(1), Ỹ(1)), . . . , (X̃(k), Ỹ(k)) is a reordering of the independent and identically distributed pairs

(X̃1, Ỹ1), . . . , (X̃k, Ỹk) such that ‖X̃(1) − x‖ ≤ . . . ≤ ‖X̃(k) − x‖. Here X̃1
d
= X|(‖X− x‖ ≤ γ) and

P(Ỹ1 = 1|X̃1 = x) = η(x). Writing S̃n(x) := 1
k

∑k
i=1 1{Ỹi=1} we therefore have by Hoeffding’s

inequality that, for x ∈ Tn, εβ log n > 4 and ‖x(k+1) − x‖ ∈ [2, x2 − 1),

P{Ŝn(x) < 1/2
∣∣X(k+1) =x(k+1)}=P{S̃n(x) < 1/2} =P{S̃n(x)− ES̃n(x) < −(Eη(X̃1)− 1/2)}

≤exp

(
−2k

(2

3

sinh(31/2)

sinh(2)
− 1

2

)2
)

=O(n−M )

for all M > 0, uniformly for k ∈ Kβ . Writing P(k+1) for the marginal distribution of X(k+1), we

deduce that

P{Ŝn(x) < 1/2} ≤ P{Ŝn(x) < 1/2, ‖X(k+1) − x‖ ∈ [2, x2 − 1)}+ P(Bck,2)

=

∫
Bx2−1(x)\B2(x)

P{Ŝn(x) < 1/2
∣∣X(k+1) = x(k+1)} dP(k+1)(x(k+1)) +O(n−M ) = O(n−M )

for all M > 0, uniformly for k ∈ Kβ . We conclude that for every M > 0,

RTn(Ĉknn
n )−RTn(CBayes) =

∫
Tn

[
P{Ŝn(x) < 1/2} − 1{η(x)<1/2}

]
{2η(x)− 1}f̄(x) dx

=

∫ ∞
(1+ε) log(n/k)

∫ 1/2

0

P{Ŝn(x) ≥ 1/2}(1− 2x1)x1 exp(−x2) dx1 dx2 =
1

24

(k
n

)1+ε

+O(n−M ),

uniformly for k ∈ Kβ , which establishes the claim (4.4).
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4.6.4 Proofs of results from Section 4.4

Proof of Theorem 4.2. Recall that

kO(x) = max
[
d(n− 1)βe,min

{⌊
B
{
f̄(x)(n− 1)

}4/(d+4)⌋
, b(n− 1)1−βc

}]
,

and define

δn,O(x) :=
kO(x)

n− 1
cdn logd

( n− 1

kO(x)

)
,

where cn := supx0∈S:f̄(x0)≥kO(x0)/(n−1) g(x0). For α ∈ ((1 + d/4)β, 1) let

Rn = {x ∈ Rd : f̄(x) > (n− 1)−(1−α)} ∩ Xf̄ .

Then there exists n0 ∈ N such that for n ≥ n0 we have Rn ⊆
{
x ∈ Rd : f̄(x) ≥ δn,O(x)

}
and by

Assumption (A.1) we then have that Rn is a d-dimensional manifold. There exists n1 ∈ N such

that for all n ≥ n1 and x ∈ Rn ∩ Sε0 we have that kO(x) =
⌊
B
{
f̄(x)(n− 1)

}4/(d+4)⌋
. By (A.2),

we therefore have that kO ∈ Kβ,τ for some τ = τn with τn ↘ 0. We deduce from Theorem 4.4 that

R(ĈkOnn
n )−R(CBayes) = B3,nn

−4/(d+4) + o(γn(kO)) +O
{
PX
(
(∂Rn)εn ∩ Sεn

)
+ PX(Rcn)

}
as n→∞, where

B3,n :=

∫
Sn

f̄(x0)d/(d+4)

‖η̇(x0)‖

{ 1

4B
+B4/da(x0)2

}
dVold−1(x0).

By a similar argument to that in (4.41) we have that if x ∈ (∂Rn)εn ∩ Sεn then f̄(x) ≤ 2(n −
1)−(1−α). But, by Markov’s inequality and Hölder’s inequality, for α̃ ∈ (0, 1),

P{f̄(X) ≤ 2(n− 1)−(1−α)} ≤ {2(n− 1)−(1−α)}
ρ(1−α̃)
ρ+d

∫
Rd
f̄(x)1− ρ(1−α̃)

ρ+d dx

≤ {2(n− 1)−(1−α)}
ρ(1−α̃)
ρ+d

{∫
Rd

(1 + ‖x‖ρ)f̄(x) dx
}1− ρ(1−α̃)

ρ+d

{∫
Rd

1

(1 + ‖x‖ρ)(ρ+d)/{ρ(1−α̃)}−1
dx
} ρ(1−α̃)

ρ+d

. (4.43)

Thus, if ρ > 4, then we can choose α ∈ ((1+d/4)β, d(ρ−4)/{ρ(d+4)}) and α̃ < 1−4(ρ+d)/{ρ(1−
α)(d+ 4)} in (4.43) to conclude that

PX(Rcn) ≤ P{f̄(X) ≤ 2(n− 1)−(1−α)} = o(n−4/(d+4)).

Moreover, by very similar arguments to those given in the proof of Theorem 4.1, γn(kO) =

O(n−4/(d+4)) and B3,n → B3 as n→∞. This concludes the proof of part (i).

On the other hand, if ρ ≤ 4, then choosing both α̃ > 0 and α > (1 + d/4)β to be sufficiently

small, we find from (4.43) that

B3,nn
−4/(d+4) + γn(kO) + PX

(
(∂Rn)εn ∩ Sεn

)
+ PX(Rcn)=o

(( 1

n

) ρ
ρ+d−β−ε)

,

for every ε > 0. This proves part (ii).
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Proof of Theorem 4.3. We prove parts (i) and (ii) of the theorem simultaneously, by appealing to

the corresponding arguments in the proof of Theorem 4.2. First, as in the proof of Theorem 4.2,

for α ∈
(
(1 + d/4)β, 1

)
, we define Rn = {x ∈ Rd : f̄(x) > (n − 1)−(1−α)} ∩ Xf̄ and introduce the

following class of functions: for τ > 0, let

Hn,τ :=

{
h : Rd → R : h continuous, sup

x∈Rn

∣∣∣∣ f̄(x)

h(x)
− 1

∣∣∣∣ ≤ τ}.
Let τ = τn := 2(n− 1)−α/2. We first show that f̂m ∈ Hn,τ with high probability. For x ∈ Rn,

∣∣∣ f̂m(x)

f̄(x)
− 1
∣∣∣ ≤ (n− 1)1−α|f̂m(x)− f̄(x)| ≤ (n− 1)1−α‖f̂m − f̄‖∞.

Now

‖f̂m − f̄‖∞ ≤ ‖f̂m − Ef̂m‖∞ + ‖Ef̂m − f̄‖∞. (4.44)

To bound the first term in (4.44), by Giné and Guillou (2002, Theorem 2.1), there exist C,L > 0,

such that

P(‖f̂m − Ef̂m‖∞ ≥ sm−γ/(d+2γ)) ≤ L exp
(− log(1 + C/(4L))Ads2

LC‖f̄‖∞R(K)

)
, (4.45)

for all s ∈
[
C‖f̄‖1/2

∞ R(K)1/2

Ad/2 log1/2
( ‖K‖∞md/(2(d+2γ))

‖f̄‖1/2
∞ Ad/2R(K)1/2

)
, C‖f̄‖∞R(K)mγ/(d+2γ)

‖K‖∞

]
.

Then, by applying the bound in (4.45) with s = s0 := (n− 1)α/2m
γ/(d+2γ)
0 , since m ≥ m0(n−

1)d/γ+2, we have that, for large n,

P
{
‖f̂m − Ef̂m‖∞ ≥

1

(n− 1)1−α/2

}
= P

{
‖f̂m − Ef̂m‖∞ ≥ s0m

−γ/(d+2γ)
}

≤ L exp
(− log(1 + C/(4L))Ad(n− 1)αm

γ/(d+2γ)
0

LC‖f̄‖∞R(K)

)
= O(n−M ),

for all M > 0. For the second term in (4.44), by a Taylor expansion and (A.5)(γ), we have that,

for all n sufficiently large,

‖Ef̂m − f̄‖∞ ≤ λAγm−γ/(d+2γ)

∫
Rd
‖z‖γ |K(z)| dz =

λAγm
−γ/(d+2γ)
0

n− 1

∫
Rd
‖z‖γ |K(z)| dz.

It follows that P(f̂m /∈ Hn,τ ) = O(n−M ) for all M > 0, with τ = 2(n− 1)−α/2.

Now, for h ∈ Hn,τ , let

kh(x) := max
[
d(n− 1)βe,min

{
bB{h(x)(n− 1)}4/(d+4)c, b(n− 1)1−βc

}]
.

Let cn := supx0∈S:f̄(x0)≥kh(x0)/(n−1) g(x0), and let

δn,h(x) :=
kh(x)

n− 1
cdn logd

(n− 1

kh(x)

)
.

Then there exists n0 ∈ N such that for n ≥ n0 and h ∈ Hn,τ , we have Rn ⊆
{
x ∈ Rd : f̄(x) ≥

δn,h(x)
}

and kh ∈ Kβ,τ . We can therefore apply Theorem 4.4 (similarly to the application in the
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proof of Theorem 4.2) to conclude that for every M > 0,

R(Ĉkhnn
n )−R(CBayes) =B3,nn

−4/(d+4){1 + o(1)}+ o(γn(kh))

+O
{
PX
(
(∂Rn)εn ∩ Sεn

)
+ PX(Rcn)

}
+O(n−M ),

uniformly for h ∈ Hn,τ , where B3,n was defined in the proof of Theorem 4.2. The proof of both

parts (i) and (ii) is now completed by following the relevant steps in the proof of Theorem 4.2.

4.7 Appendix: An introduction to differential geometry,

tubular neighbourhoods and integration on manifolds

The purpose of this section is to give a brief introduction to the ideas from differential geometry,

specifically tubular neighbourhoods and integration on manifolds, which play an important role in

our analysis of misclassification error rates, but which we expect are unfamiliar to many statisti-

cians. For further details and several of the proofs, we refer the reader to the many excellent texts

on these topics, e.g. Guillemin and Pollack (1974), Gray (2004).

4.7.1 Manifolds and regular values

Recall that if X is an arbitrary subset of RM , we say φ : X → RN is differentiable if for each x ∈ X ,

there exists an open subset U ⊆ RM containing x and a differentiable function F : U → RN such

that F (z) = φ(z) for z ∈ U∩X . If Y is also a subset of RM , we say φ : X → Y is a diffeomorphism if

φ is bijective and differentiable and if its inverse φ−1 is also differentiable. We then say S ⊆ Rd is an

m-dimensional manifold if for each x ∈ S, there exist an open subset Ux ⊆ Rm, a neighbourhood

Vx of x in S and a diffeomorphism φx : Ux → Vx. Such a diffeomorphism φx is called a local

parametrisation of S around x, and we sometimes suppress the dependence of φx, Ux and Vx on

x. It turns out that the specific choice of local parametrisation is usually not important, and

properties of the manifold are well-defined regardless of the choice made.

Let S ⊆ Rd be an m-dimensional manifold and let φ : U → S be a local parametrisation of

S around x ∈ S, where U is an open subset of Rm. Assume that φ(0) = x for convenience. The

tangent space Tx(S) to S at x is defined to be the image of the derivative Dφ0 : Rm → Rd of

φ at 0. Thus Tx(S) is the m-dimensional subspace of Rd whose parallel translate x + Tx(S) is

the best affine approximation to S through x, and (Dφ0)−1 is well-defined as a map from Tx(S)

to Rm. If f : S → R is differentiable, we define the derivative Dfx : Tx(S) → R of f at x by

Dfx := Dh0 ◦ (Dφ0)−1, where h := f ◦ φ.

In practice, it is usually rather inefficient to define manifolds through explicit diffeomorphisms.

Instead, we can often obtain them as level sets of differentiable functions. Suppose that R ⊆ Rd is

a manifold and η : R → R is differentiable. We say y ∈ R is a regular value for η if image(Dηx) = R
for every x ∈ R for which η(x) = y. If y ∈ R is a regular value of η, then η−1(y) is a (d − 1)-

dimensional submanifold of R (Guillemin and Pollack, 1974, p. 21).

4.7.2 Tubular neighbourhoods of level sets

For any set S ⊆ Rd and ε > 0, we call S+εB1(0) the ε-neighbourhood of S. In circumstances where

S is a (d−1)-dimensional manifold defined by the level set of a continuously differentiable function
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η : Rd → R with non-vanishing derivative on S, the set Sε is often called a tubular neighbourhood,

and η̇(x)T v = 0 for all x ∈ S and v ∈ Tx(S). We therefore have the following useful representation

of the ε-neighbourhood of S in terms of points on S and a perturbation in a normal direction.

Proposition 4.5. Let η : Rd → [0, 1], suppose that S := {x ∈ Rd : η(x) = 1/2} is non-empty, and

suppose further that η is continuously differentiable on S + εB1(0) for some ε > 0, with η̇(x) 6= 0

for all x ∈ S, so that S is a (d− 1)-dimensional manifold. Then

S + εB1(0) =
{
x0 +

tη̇(x0)

‖η̇(x0)‖
: x0 ∈ S, |t| < ε

}
=: Sε.

Proof. For any x0 ∈ S and |t| < ε, we have x0 + tη̇(x0)/‖η̇(x0)‖ ∈ S + εB1(0). On the other hand,

suppose that x ∈ S + εB1(0). Since S is closed, there exists x0 ∈ S such that ‖x− x0‖ ≤ ‖x− y‖
for all y ∈ S. Rearranging this inequality yields that, for y 6= x0,

2(x− x0)T
(y − x0)

‖y − x0‖
≤ ‖y − x0‖. (4.46)

Let U be an open subset of Rd−1 and φ : U → S be a local parametrisation of S around x0,

where without loss of generality we assume φ(0) = x0. Let v ∈ Tx0(S) \ {0} be given and let

h ∈ Rd−1 \ {0} be such that Dφ0(h) = v. Then for t > 0 sufficiently small we have th ∈ U , so

by (4.46),

2(x− x0)T
{φ(th)− φ(0)}
‖φ(th)− φ(0)‖

≤ ‖φ(th)− φ(0)‖.

Letting t ↘ 0 we see that (x − x0)T v ≤ 0. Since v ∈ Tx0(S) \ {0} was arbitrary and −v ∈
Tx0(S) \ {0}, we therefore have that (x− x0)T v = 0 for all v ∈ Tx0(S). Moreover, η̇(x0)T v = 0 for

all v ∈ Tx0(S), so x− x0 ∝ η̇(x0), which yields the result.

In fact, under a slightly stronger condition on η, we have the following useful result:

Proposition 4.6. Let R be a d-dimensional manifold in Rd, suppose that η : R → [0, 1] satisfies

the condition that S := {x ∈ R : η(x) = 1/2} is non-empty. Suppose further that there exists

ε > 0 such that η is twice continuously differentiable on Sε. Assume that η̇(x0) 6= 0 for all x0 ∈ S.

Define g : S × (−ε, ε)→ Sε by

g(x0, t) := x0 +
tη̇(x0)

‖η̇(x0)‖
.

If

ε ≤ inf
x0∈S

‖η̇(x0)‖
supz∈B2ε(x0)∩Sε ‖η̈(z)‖op

, (4.47)

then g is injective. In fact g is a diffeomorphism, with

Dg(x0,t)(v1, v2) = (I + tB)

(
v1 +

η̇(x0)

‖η̇(x0)‖
v2

)
, (4.48)

for v1 ∈ Tx0
(S) and v2 ∈ R, where

B :=
1

‖η̇(x0)‖

(
I − η̇(x0)η̇(x0)T

‖η̇(x0)‖2

)
η̈(x0). (4.49)

Proof. Assume for a contradiction that there exist distinct points x1, x2 ∈ S and t1, t2 ∈ (−ε, ε)
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with |t1| ≥ |t2| such that

x1 +
t1η̇(x1)

‖η̇(x1)‖
= x2 +

t2η̇(x2)

‖η̇(x2)‖
.

Then

0 < ‖x2 − x1‖2 =
2t1η̇(x1)T (x2 − x1)

‖η̇(x1)‖
+ t22 − t21 ≤

2t1η̇(x1)T (x2 − x1)

‖η̇(x1)‖
. (4.50)

By Taylor’s theorem and (4.50),

|η̇(x1)T (x2 − x1)| = |η(x2)− η(x1)− η̇(x1)T (x2 − x1)|

≤ 1

2
sup

z∈B2ε(x1)∩Sε
‖η̈(z)‖op‖x2 − x1‖2 < sup

z∈B2ε(x1)∩Sε
‖η̈(z)‖op

ε|η̇(x1)T (x2 − x1)|
‖η̇(x1)‖

,

contradicting the hypothesis (4.47).

To show that g is a diffeomorphism, let x0 ∈ S be given and let φ : U → S be a local

parametrisation around x0 with φ(0) = x0. Define Φ : U × (−ε, ε) → S × (−ε, ε) by Φ(u, t) :=

(φ(u), t), and H : U × (−ε, ε) → Sε by H := g ◦ Φ. Finally, define the Gauss map n : S → Rd by

n(x0) := η̇(x0)/‖η̇(x0)‖. Then, for h = (hT1 , h2)T ∈ Rd−1 × R and s ∈ R \ {0},

lim
s→0

H(sh1, t+ sh2)−H(0, t)

s
= lim
s→0

{
φ(sh1)− φ(0)

s
+
t{n(φ(sh1))− n(φ(0))}

s
+ h2n

(
φ(sh1)

)}
= Dφ0(h1) + tDnx0

◦Dφ0(h1) + h2n(x0) = Dg(x0,t) ◦DΦ(0,t)(h1, h2),

where Dg(x0,t) : Tx0(S)× R→ Rd is given in (4.48).

To show that Dg(x0,t) is invertible, note that for v1 ∈ Tx0(S) and |t| < ε,

|t|
‖η̇(x0)‖

∥∥∥∥(I − η̇(x0)η̇(x0)T

‖η̇(x0)‖2

)
η̈(x0)v1

∥∥∥∥ ≤ |t|‖η̈(x0)‖op

‖η̇(x0)‖
‖v1‖ < ‖v1‖,

where the final inequality follows from (4.47). Then, since v1 + t
‖η̇(x0)‖

(
I− η̇(x0)η̇(x0)T

‖η̇(x0)‖2

)
η̈(x0)v1 and

n(x0)v2 are orthogonal, it follows that Dg(x0,t) is indeed invertible. The inverse function theorem

(e.g. Guillemin and Pollack, 1974, p. 13) then gives that g is a local diffeomorphism, and moreover,

by Guillemin and Pollack (1974, Exercise 5, p. 18) and the fact that g is bijective, we can conclude

that g is in fact a diffeomorphism.

4.7.3 Forms, pullbacks and integration on manifolds

Let V be a (real) vector space of dimension m. We say T : V p → R is a p-tensor on V if it is

p-linear, and write Fp(V ∗) for the set of p-tensors on V . If T ∈ Fp(V ∗) and S ∈ Fq(V ∗), we

define their tensor product T ⊗ S ∈ Fp+q(V ∗) by

T ⊗ S(v1, . . . , vp, vp+1, . . . , vp+q) := T (v1, . . . , vp)S(vp+1, . . . , vp+q).

Let Sp denote the set of permutations of {1, . . . , p}. If π ∈ Sp and T ∈ Fp(V ∗), we can define

Tπ ∈ Fp(V ∗) by Tπ(v) := T (vπ(1), . . . , vπ(p)) for v = (v1, . . . , vp) ∈ V p. We say T is alternating

if Tσ = −T for all transpositions σ : {1, . . . , p} → {1, . . . , p}. The set of alternating p-tensors on

V , denoted Λp(V ∗), is a vector space of dimension
(
m
p

)
. The function Alt : Fp(V ∗) → Λp(V ∗) is
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defined by

Alt(T ) :=
1

p!

∑
π∈Sp

(−1)sgn(π)Tπ,

where sgn(π) denotes the sign of the permutation π. If T ∈ Λp(V ∗) and S ∈ Λq(V ∗), we define

their wedge product T ∧ S ∈ Λp+q(V ∗) by

T ∧ S := Alt(T ⊗ S).

If W is another (real) vector space and A : V → W is a linear map, we define the transpose

A∗ : Λp(W ∗)→ Λp(V ∗) of A by

A∗T (v1, . . . , vp) := T (Av1, . . . , Avp).

Let S be a manifold. A p-form ω on S is a function which assigns to each x ∈ S an element

ω(x) ∈ Λp(Tx(S)∗). If ω is a p-form on S and θ is a q-form on S, we can define their wedge product

ω∧θ by (ω∧θ)(x) := ω(x)∧θ(x). For j = 1, . . . ,m, let xj : Rm → R denote the coordinate function

xj(y1, . . . , ym) := yj . These functions induce 1-forms dxj , given by dxj(x)(y1, . . . , ym) = yj (so

dxj(x) = D(xj)x in our previous notation). Letting I := {(i1, . . . , ip) : 1 ≤ i1 < . . . < ip ≤ m}, for

I = (i1, . . . , ip) ∈ I, we write

dxI := dxi1 ∧ . . . ∧ dxip .

It turns out (Guillemin and Pollack, 1974, p. 163) that any p-form on an open subset U of Rm can

be uniquely expressed as ∑
I∈I

fI dxI , (4.51)

where each fI is a real-valued function on U .

Recall that the set of all ordered bases of a vector space V is partitioned into two equivalence

classes, and an orientation of V is simply an assignment of a positive sign to one equivalence class

and a negative sign to the other. If V and W are oriented vector spaces in the sense that an

orientation has been specified for each of them, then an isomorphism A : V → W always either

preserves orientation in the sense that for any ordered basis β of V , the ordered basis Aβ has the

same sign as β, or it reverses it. We say an m-dimensional manifold X is orientable if for every

x ∈ X , there exist an open subset U of Rm, a neighbourhood V of x in X and a diffeomorphism

φ : U → V such that Dφu : Rm → Tx(X ) preserves orientation for every u ∈ U . A map like

φ above whose derivative at every point preserves orientation is called an orientation-preserving

map.

If X and Y are manifolds, ω is a p-form on Y and ψ : X → Y is differentiable, we define the

pullback ψ∗ω of ω by ψ to be the p-form on X given by

ψ∗ω(x) := (Dψx)∗ω
(
ψ(x)

)
.

If V is an p-dimensional vector space and A : V → V is linear, then A∗T = (detA)T for all

T ∈ Λp(V ) (Guillemin and Pollack, 1974, p. 160).

If ω is an m-form on an open subset U of Rm, then by (4.51), we can write ω = f dx1∧. . .∧dxm.

If ω is an integrable form on U (i.e. f is an integrable function on U), we can define the integral
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of ω over U by ∫
U

ω :=

∫
U

f(x1, . . . , xm) dx1 . . . dxm,

where the integral on the right-hand side is a usual Lebesgue integral. Now let S be an m-

dimensional orientable manifold that can be parametrised with a single chart, in the sense that

there exists an open subset U of Rm and an orientation-preserving diffeomorphism φ : U → S.

Define the support of an m-form ω on S to be the closure of {x ∈ S : ω(x) 6= 0}. If ω is

compactly supported, then its pullback φ∗ω is a compactly supported m-form on U ; moreover φ∗ω

is integrable, and we can define the integral over S of ω by∫
S
ω :=

∫
U

φ∗ω. (4.52)

Alternatively, we can suppose that ω is non-negative and measurable in the sense that φ∗ω =

f dx1 ∧ . . . ∧ dxm, say, with f non-negative and measurable on U . In this case, we can also define

the integral of ω over S via (4.52).

More generally, integrals of forms over more complicated manifolds can be defined via partitions

of unity. Recall (Guillemin and Pollack, 1974, p. 52) that if X is an arbitrary subset of RM , and

{Vα : α ∈ A} is a (relatively) open cover of X , then there exists a sequence of real-valued,

differentiable functions (ρn) on X , called a partition of unity with respect to {Vα : α ∈ A}, with

the following properties:

1. ρn(x) ∈ [0, 1] for all n ∈ N;

2. Each x ∈ X has a neighbourhood on which all but finitely many functions ρn are identically

zero;

3. Each ρn is identically zero except on some closed set contained in some Vα;

4.
∑∞
n=1 ρn(x) = 1 for all x ∈ X .

Now let S ⊆ Rd be an m-dimensional, orientable manifold, so for each x ∈ S, there exist an open

subset Ux of Rm, a neighbourhood Vx of x in S and an orientation-preserving diffeomorphism

φx : Ux → Vx. If ω is a compactly supported m-form on S and (ρn) denotes a partition of unity

on S with respect to {Vx : x ∈ S}, we can define the integral of ω over S by

∫
S
ω :=

∞∑
n=1

∫
S
ρnω. (4.53)

In fact, writing Ω for the compact support of ω, we can find a neighbourhood Wx of x ∈ Ω,

x1, . . . , xN ∈ Ω and a finite subset Nj of N such that {ρn : n /∈ Nj} are identically zero on Wxj ,

and such that ∫
S
ω =

N∑
j=1

∑
n∈Nj

∫
S
ρnω.

Thus the integral can be written as a finite sum. Similarly, if ω is a non-negative m-form on S,

we can again define the integral of ω over S via (4.53). Finally, if ω is an integrable m-form on S,

the integral can be defined by taking positive and negative parts in the usual way.

In our work, we are especially interested in integrals of a particular type of form. Given

an m-dimensional, orientable manifold S in Rd, the volume form dVolm is the unique m-form
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on S such that at each x ∈ S, the alternating m-tensor dVolm(x) on Tx(S) gives value 1/m!

to each positively oriented orthonormal basis for Tx(S). For example, when S = Rm, we have

dVolm = dx1 ∧ . . . ∧ dxm, provided we consider the standard basis to be positively oriented.

As another example, if R ⊆ Rd is a d-dimensional manifold and η : R → R is continuously

differentiable with S = {x ∈ R : η(x) = 1/2} non-empty and η̇(x) 6= 0 for x ∈ S, then S is a

(d − 1)-dimensional, orientable manifold (Guillemin and Pollack, 1974, Exercise 18, p. 106). If

we say that an ordered, orthonormal basis e1, . . . , ed−1 for Tx0(S) is positively oriented whenever

det(e1, . . . , ed−1, η̇(x0)) > 0, we have that

dVold−1(x0) =

d∑
j=1

(−1)j+d
ηj(x0)

‖η̇(x0)‖
dx1 ∧ . . . ∧ dxj−1 ∧ dxj+1 ∧ . . . ∧ dxd(x0),

where xj denotes the jth coordinate function. We now define an ordered, orthonormal basis

(e1, 0), . . . , (ed−1, 0), (0, 1) for Tx0
(S) × R to be positively oriented. Further, we define a (d − 1)-

form ω1 and a 1-form ω2 on S × (−ε, ε) by

ω1(x0, t)
(
(v1, w1), . . . , (vd−1, wd−1)

)
:= dVold−1(x0)(v1, . . . , vd−1)

ω2(x0, t)(vd, wd) := dt(t)(wd) = wd.

Then, with g defined as in Proposition 4.6, and under the conditions of that proposition,

g∗(dx1 ∧ . . . ∧ dxd)(x0, t)
(
(e1, 0), . . . , (ed−1, 0), (0, 1)

)
= dx1 ∧ . . . ∧ dxd(xt0)

(
Dg(x0,t)(e1, 0), . . . , Dg(x0,t)(ed−1, 0), Dg(x0,t)(0, 1)

)
=

1

d!
det(I + tB)

=
1

d
det(I + tB)dVold−1(x0)(e1, . . . , ed−1)dt(t)(1)

= det(I + tB) (ω1 ∧ ω2)(x0, t)
(
(e1, 0), . . . , (ed−1, 0), (0, 1)

)
,

so g∗(dx1 ∧ . . .∧ dxd)(x0, t) = det(I + tB) (ω1 ∧ ω2)(x0, t). It follows that if h : S × (−ε, ε)→ R is

either compactly supported and integrable, or non-negative and measurable, then∫
S×(−ε,ε)

hω1 ∧ ω2 =

∫
S

∫ ε

−ε
h(x0, t) dt dVold−1(x0). (4.54)

Finally, we require the change of variables formula: if X and Y are orientable manifolds and are

of dimension m, and if ψ : X → Y is an orientation-preserving diffeomorphism, then∫
X
ψ∗ω =

∫
Y
ω (4.55)

for every compactly supported, integrable m-form on Y (Guillemin and Pollack, 1974, p. 168).

In particular, if f : Sε → R is either compactly supported and integrable, or non-negative and
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measurable, then writing xt0 := x0 + tη̇(x0)
‖η̇(x0)‖ , we have from (4.54) and (4.55) that

∫
Sε
f(x) dx =

∫
S×(−ε,ε)

det(I + tB)f(xt0) (ω1 ∧ ω2)(x0, t)

=

∫
S

∫ ε

−ε
det(I + tB)f(xt0) dt dVold−1(x0). (4.56)
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