
Eur. Phys. J. E (2021) 44:147
https://doi.org/10.1140/epje/s10189-021-00149-z

THE EUROPEAN
PHYSICAL JOURNAL E

Regular Article - Living Systems

Activity-induced instabilities of brain organoids
Kristian Thijssen1,a , Guido L. A. Kusters2 , and Amin Doostmohammadi3,b

1 Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, CB2 1EW Cambridge, UK
2 Department of Applied physics, Eindhoven University of Technology, Eindhoven, The Netherlands
3 The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Received 6 August 2021 / Accepted 15 November 2021 / Published online 7 December 2021
© The Author(s) 2021

Abstract We present an analytical and numerical investigation of the activity-induced hydrodynamic insta-
bilities in model brain organoids. While several mechanisms have been introduced to explain the experimen-
tal observation of surface instabilities in brain organoids, the role of activity has been largely overlooked.
Our results show that the active stress generated by the cells can be a, previously overlooked, contributor
to the emergence of surface deformations in brain organoids.

1 Introduction

The surface of the human brain is characterised by a
complex pattern of folds (gyri) and troughs (sulci),
allowing for a high area-to-volume ratio [1–3]. This
intricate structure has increasingly been linked to intel-
lectual ability, marking reduced cortical folding as
indicative of cerebral impairments such as “smooth
brain” (lissencephaly). Indeed, afflicted human brains
exhibit a markedly lower degree of gyrification, result-
ing in reduced life expectancy and intellectual disabil-
ity [4,5]. Recent advancements in the field of stem-cell
research provide a controlled, in vitro model system
allowing the study of gyrification in the form of brain
organoids: cultured, three-dimensional arrangements of
pluripotent stem cells replicating some of the key fea-
tures of human brain development [6,7]. Although the
brain organoid model has been widely used in further-
ing understanding of a wealth of diseases [8–10], the
underlying physical mechanism governing gyrification
has yet to be pinned down decisively.

In this context, recent work by Karzbrun et al. broke
new ground by experimentally probing brain organoids
for the onset of an interface instability that results in
the formation of folds on the organoid [11] (see Figure
1a). In particular, they show the development of brain
organoids over the course of several days, observing the
self-organisation of a concentric shell of cells around a
spherical cavity (lumen). Due to their active motility,
the cell nuclei continually move radially inward and out-
ward, dividing at the inner surface and eventually accu-
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mulating at the outer surface. They find prior to the
onset of mechanical instability an increase in the den-
sity of the nuclei, as well as the aspect ratio, which indi-
cates compression. Taking inspiration from polymer gel
models [12], they subsequently argue that these insta-
bilities emerge from the differential swelling of the inner
and outer cortex, inducing compressive stress [1,3].

Building on these observations, Balbi et al. [13]
showed that an interplay between the lumen compres-
sion and the remodelling of the cortex determines the
interface instability of the organoids. Riccobelli and
Bevilasqua further showed [14] that surface tension
generated by intercellular adhesion in cellular aggre-
gates also contributes to determining the onset of
the interface instability. Recently, Engstrom et al. [15]
argued that such elastic instabilities based on differen-
tial growth sketch an incomplete picture of the folding
of brain organoids. Instead, they introduce a system-
spanning fibrous model of organoids with an elastic core
ensnared by a growing, fluid-like film, suggesting that
the details of the microstructure play an important role
in the emergence and structure of the wrinkles.

Notwithstanding these important contributions, here
we consider a hitherto overlooked aspect of the
microstructural complexity of brain organoids in active
stress generation by the cells, showing that activity
can induce folding at the surface of model organoids
in the form of hydrodynamic instabilities. Active stress
between cells has been shown to induce surface insta-
bilities in epithelial cell layers [16,17] and surface defor-
mations in membranes [18]. The model presented here
expands on this list and is motivated by experiments in
which the brain organoids are treated with cytoskeletal-
inhibiting drugs [19], where a marked decrease in the
number of folds exhibited and the sharpness of the folds
are observed [11]. Since the cytoskeletal filaments inside
the cells continuously generate active stress, we con-
jecture that in addition to a purely elastic wrinkling
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phenomenon following differential swelling, the activity-
driven instability can also contribute to the observed
folding behaviour.

The concept of active stress generation by cells is
well established in the context of active matter, which
describes a material class that exists far from ther-
modynamic equilibrium by virtue of a local supply of
energy. This energy is then converted into work by the
constituents, resulting in active stress [20]. Examples
include biological systems such as actin filaments [21],
microtubule bundles [22] and eukaryotic epithelial cells
[23,24]. Furthermore, recent discrete numerical mod-
elling of epithelial shells [25] has demonstrated the role
of activity in inducing morphological changes of the
interface by considering the cell–cell tension in the api-
cal and basal surface planes of the cells.

Here, we present a generic, continuum, two-phase
framework, in which we describe the brain organoid as
an active gel, to study the spatiotemporal dynamics of
active, self-deforming surfaces. This generic approach
allows us to effectively describe organisation of cells on
long time and length scales in terms of the hydrodynam-
ics of the active gel, as well as include the orientational
order and contractile activity of the cell cytoskeleton,
without reference to the microscopic details [26]. The
hydrodynamic nature of the model that accounts for the
flow of cells, together with the explicit role of the con-
tractile active stress generation by the cell cytoskeleton,
is what sets it apart from those mentioned above.

We perform coarse-grained, continuum simulations in
two dimensions, showcasing that the number of folds is
dependent on active stress generation by the contractile
actomyosin machinery of the cells. An activity thresh-
old needs to be surpassed for folding to occur, simi-
lar to experiments where the organoid needs to surpass
a critical nuclear cell density for folding to occur. In
this vein, our model naturally incorporates the effect of
cytoskeletal-inhibiting drugs on the folding behaviour
of the organoid, whereas alternative approaches, e.g.
based on differential swelling, generally require the
assumption of an actively contracted organoid core [13].
Additionally, we present a linear stability analysis of the
governing equations in order to characterise the onset
of the activity-driven instabilities. Taken together, our
results suggest that active stress generation provides
a currently overlooked mechanism for cortical folding
that is complementary to existing models.

2 Model

We model the brain organoid (see Figure 1) as a ring
of an active gel (with inner radius a and outer radius
b) [27], representing the cortex, surrounding a passive
isotropic cavity (within the inner interface at radius
a), which represents the lumen. Here, we differentiate
between the cortex and lumen region by introducing a
binary order parameter φ, with φ ∼ 1 in the cortex
and φ ∼ 0 within the lumen region. Within this cor-
tex region, the cells and their associated cytoskeletal

Fig. 1 Depiction of brain organoids observed in experi-
ments and the active nematic model we use to illustrate
the role of contractile stress in folding. (a) Fluorescence
image during organoid growth. Actin filaments found in the
organoid cells are coloured green, and the cell nuclei are
coloured red. Figure adapted from [11] and the scale bar
is 200μm. (b) Schematic representation of the theoretical
model. Filled red ellipsoids represent cell alignment, and the
corresponding black arrows indicate contractile stress. The
model assumes uniform active stress, which is sufficient to
capture the folding of the interfaces. The remainder of the
organoid is coloured green to represent the organoid cells.
Solid black lines indicate undeformed organoid (low activ-
ity), and dashed black lines indicate a deformed organoid
(high activity) due to the active stress

filaments are extended radially with clear orientational
order (see Figure 1a). To account for the orientational
order associated with this microstructural feature of the
cortex, we introduce a nematic order parameter Q that
is a symmetric, traceless tensor Qαβ = S

(
qαqβ − 1

2δαβ

)

[28], where S represents the magnitude of the orienta-
tional order and q indicates direction [29]. The use of
this nematic order parameter is well established in the
study of cellular and subcellular systems with elongated
constituents such as the cell cytoskeleton [30,31] and
confluent tissues of epithelial or fibroblast cells [32,33].
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By employing this nematic order parameter, our formu-
lation allows for the dynamics of cell alignment within
the cortex to be explicitly accounted for. Furthermore,
this mapping allows us to describe the cortex as an
active nematic system, for which the continuum equa-
tions are well established in the literature [34].

Within the active nematic framework, we evolve the
binary order parameter φ and the orientational order
parameter Q through the Cahn-Hilliard [35] and the
Beris–Edwards equations [36,37], respectively:

∂tφ + ∂k (vkφ) = μ, (1)

(∂t + vk∂k) Qij − S̃ij = Hij , (2)

where v is the velocity that advects order parameter
fields, and S̃ represents the co-rotation terms describing
the response of elongated particles to velocity gradients.
The latter is given by

S̃ij = ξEij + QikΩkj − ΩikQkj , (3)

with the strain rate tensor Eij = (∂ivj + ∂jvi) /2 and
the vorticity tensor Ωij = (∂ivj − ∂jvi) /2 describing
the symmetric and asymmetric parts of the velocity
gradient tensor, respectively. In addition, ξ denotes a
flow-alignment parameter, which determines the collec-
tive response of the orientation field to gradients in the
velocity field. These relaxation dynamics are governed
by minimising the free energy of the system with respect
to φ and Q through the normalised chemical potential

μ = Γφ

(
δF
δφ

− ∂k

(
δF

∂kδφ

))
(4)

and the normalised molecular field

Hij = −Γ
δF

δQij
, (5)

respectively. Here, Γφ is a mobility coefficient and Γ
indicates the rotational diffusion coefficient, both of
which set the rate of relaxation towards the minimum
of the free energy

F [Q, φ] =
∫

d2r (fQ + f∇Q + fφ + f∇φ) . (6)

It can be seen that this free energy includes both bulk
and gradient contributions in terms of the tensor order
parameter Q and the binary order parameter φ, which
read

fQ =
1
2
C (φSn − 2QijQij)

2
, (7)

f∇Q =
1
2
L∂kQij∂kQij , (8)

fφ =
1
2
Aφ2 (1 − φ)2 , (9)

f∇φ =
1
2
K∂kφ∂kφ, (10)

where Sn denotes the equilibrium value of the orien-
tational order parameter S and C, L,A,K are model
parameters. For a more detailed discussion of the
model, as well as the used parameter values, see the
SI.

The evolution of the binary and orientational order
parameters is subsequently completed by means of a
coupling to the evolution of the velocity field v that
is described by the generalised, incompressible Navier–
Stokes equations

∂ivi = 0,

ρ (∂t + vk∂k) vi = ∂jΠij ,
(11)

where Πij describes the full stress tensor that includes
pressure and is given in the SI. The dominant terms in
the stress tensor are the viscous and capillary stress,
which depend on the viscosity of the fluid η and the
surface tension σ of the binary-order parameter φ [38].
We point out that, in our simulations, the surface ten-
sion is no independent model parameter, but rather it is
accessed in terms of existing model parameters through
the expression

σ =
1
6

√(
K +

1
2
L

)
(Abinary + CLQ), (12)

which can be derived by considering the free-energy
cost of the interface (see the SI for details). Simi-
lar surface tensions have been calculated for solely φ-
dependent free energies [35], but here we have expanded
the description to account for the Q dependence of the
free energy explicitly. For simplicity, we assume surface
properties are equal between the outer and inner sur-
faces.

Importantly, we also take into account the effect of
active stress generated within the cortex. While the
activity of the cells is clearly manifested in the brain
organoid experiments in the form of active contraction
of cells within the cortex [11,39], rather surprisingly,
to our current knowledge, no prior work has explored
the impact of this apparent activity in the dynamics
and morphology of the organoids. To account for this
contractile activity, we introduce an active stress in the
form of coarse-grained stresslets that represent the con-
tractile force dipoles that are generated by the acto-
myosin machinery of the cell cytoskeleton [20,40,41]
(see Figure 1b). For simplicity, and to show the generic
effect of including active stress we assume a uniform
spread of dipoles throughout the organoid, resulting in
uniform active stress throughout the active ring. Coarse
graining over the dipolar force fields leads to an addi-
tional, active contribution to the stress tensor [40,41]

Πactive
ij = αQij , (13)
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Fig. 2 Temporal evolution of the surface folding. The modelled cortex region starts as a circle (green denotes the organoid
region φ = 1), but due to the onset of an active nematic instability, the surfaces fold over time for high activity (depicted
here is α = 0.0008). Displayed timesteps are (0,100000 150000,175000) LB times from left to right. Red lines illustrate
coarse-grained orientation field of the cytoskeleton of the cells q

with α a proportionality constant scaling with activity.
The sign of α determines the nature of the active stress,
with α > 0 for contractile and α < 0 for extensile active
stress. Due to the contractility of the stem cells, we use
α > 0 in the case of the model brain organoid consid-
ered here. However, the activity-induced instability is
a generic mechanism that is also expected for extensile
activities corresponding, for example, to stress genera-
tion due to cell division events [42,43].

The simulations start with zero velocity and the
director field oriented along the radial direction (Fig-
ure 2a), corresponding to the radially elongated cells
between the lumen and the outer interface of the
organoid observed in the experiments [11]. Unless oth-
erwise specified, the active region is initialised with the
inner interface at radius a = 45 and outer interface at
radius b = 170.

3 Simulation results

We investigate the onset of the interface instability,
which resembles gyrification (Fig. 2), by determining
the number of folds that form on the initially circular
interface of the active ring. We measure the number of
folds (also referred to as the folding or wrinkling num-
ber N [11]) by first measuring the radial distance of the
points on the outer interface from the centre of the ring.
The number of folds is then determined from the num-
ber of maxima in the radial distance signal as a func-
tion of azimuthal coordinates at the onset of the insta-
bility. While small perturbations dominate this initial
amplitude signal, we notice that a well-defined number
of peaks are established relatively quickly. This num-
ber remains constant until secondary, nonlinear effects
begin to dominate the bulk active system, leading to the
nucleation of topological defects and the emergence of
active turbulence [34,44]. To establish the role of activ-
ity in the interface instability and determine the num-
ber of folds, we focus only on the time span before the
bulk instability and the creation of topological defects.

We begin by characterising the number of folds
for varying activity and surface tension. The results
are represented in the stability diagram (Figure 3a),
which clearly demonstrates the competition between
the destabilising effect of active stress and the stabil-
ising impact of the surface tension. Increasing activ-
ity results in a larger number of folds on the inter-
face, while larger surface tension suppresses the insta-
bility and leads to a smaller number of folds. The latter
phenomenology is in line with predictions of a purely
elastic model of a brain organoid [14]. Interestingly,
no folding is observed for sufficiently small activities,
indicating that there exists a threshold for the active
stress exerted by the cells in order to create folds on
the interface. This distinguishes the interface instabil-
ity in the ring geometry from the well-known thresh-
oldless hydrodynamic instability of unconfined active
nematics [40]. More importantly, since we expect the
activity to increase with cell nuclear density in the cor-
tex, we conjecture that this observation explains the
experimental results of Ref. [11], in which no folding
was observed for cell nuclear densities below a criti-
cal threshold. Together, these results show that active
stress alone can result in hydrodynamic instability of a
model organoid, suggesting that activity-induced insta-
bilities can provide a previously overlooked, generic and
complementary mechanism to the differential growth
mechanism to govern the emergence of folds on brain
organoids.

To draw more parallels between the experimental
results on brain organoids and the active nematic ring
model presented here, we reproduce two measurements
of the experimental paper [11]. First, we measure the
wrinkling index L of the active nematic ring for differ-
ent activities at a fixed time (see Fig. 4a). The wrinkling
index is a measurement of the curvature of the interface,
defined as the ratio of the contour length normalised to
the length of the maximally-protruding outer convex
contour. With this definition, L = 1 denotes a perfect
circle without any folding. We find that for low activi-
ties, the wrinkling index remains 1, indicating the active
ring remains a circle and no wrinkles are detected. If we
increase the activity further, the wrinkling index starts
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Fig. 3 Folding transition through an increase in contractility. The folding number N for different activities and surface
tensions found from simulations (a) and the linear stability analysis in a linear (b) and log (c) scale. Simulation snapshots
of the organoid for surface tension σ = 0.0014 and activities α = 0.000025 (d), α = 0.0003 (e) and α = 0.0008 (f). (e-f) are
taken just before formation of first topological defects

(a)

(b)

Fig. 4 Quantification of the role of activity and organoid
thickness. (a) The wrinkling index as a function of activ-
ity. For low activity, the wrinkling index is 1 (circular)
while it increases linearly after a contractile stress thresh-
old. Measurements are performed at a fixed simulation time
t = 300000. (b) Wavelength (defined as the inverse of the
folding number times the outer radius) for different organoid
thicknesses, where the inner radius a is varied while retain-
ing the same outer radius b

to increase linearly, similar to the linear increase with
nuclear cell density found in experiments.

We also measure the effect of changing the active
nematic ring thickness t. The experiments of Karzbrun
et al. [11] demonstrated that treating the organoid with
blebbistatin resulted in a change in organoid thickness
and that the wavelength between different convective
wrinkles depends on the thickness. We mimic this set-
up by varying the inner radius of the isotropic cavity
(lumen), while keeping the outer surface radius con-
stant, and define the wavelength λ as the contour length
over the folding number N . In line with the experimen-
tal results, the wavelength λ increases with the thick-
ness t up until a certain thickness threshold. After this,
the wavelength becomes independent of the thickness
(see Fig. 4b). Together, these numerical results show
that modelling brain organoids as a rings of active
nematics can replicate several experimental observa-
tions. Next, in order to gain more insight into the nature
of the activity-induced instability of the interface, we
present a linear stability analysis of the governing equa-
tions of the model system.

4 Linear stability analysis

The simulation results point to a possible role of activ-
ity in driving the interface instability. To provide a
better understanding of the possible activity-induced
instability, we perform a linear stability analysis on the
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surfaces of the model organoid at inner radius a and
outer radius b. For simplicity, we consider sharp inter-
faces, and retain identical surface tensions σa = σb = σ.
Furthermore, in order to allow for further analytical
treatment we perform the stability analysis in the limit
of overdamped friction. The active forces that put the
organoid surfaces under contractile stress originate at
the perturbed surfaces, as—in line with experimental
observations [11]—we assume the orientation field of
the cells retains perpendicular alignment to the inter-
faces. This corresponds to the limit of strong active
anchoring [45]. The perturbations of the interfaces thus
directly induce nematic distortions, which in turn give
rise to active forces. Through this mechanism, we probe
the model organoid surfaces for instabilities that resem-
ble gyrification by applying infinitesimal sinusoidal per-
turbations of the inner and outer interface of the ring
of the form:

a(t) = a0 + δa(t)einθ, (14)
b(t) = b0 + δb(t)einθ, (15)

where δ(t) denotes the infinitesimal perturbation ampli-
tude, n is an integer wavenumber and θ denotes
the azimuthal coordinate. The wavenumber with the
fastest-growing instability is the folding number N that
corresponds to the number of folds observed numeri-
cally from random perturbations (Figure 3b-c).

We take the expansion around the quiescent state
vr = 0, vθ = 0 and p(r) =

∫
dr αS/r. The perturbations

to the surface then result in perturbative corrections to
the velocity of the form vr(r, t) = vr + R(r, t)einθ and
vθ(r, t) = vθ +Θ(r, t)einθ, as well as a perturbative cor-
rection to the pressure p(r, t) = p(r) + P (r, t)einθ. The
perturbations evolve according to the Navier–Stokes
equations, Eq. (11), where we include only the isotropic
and active contributions to the stress tensor. Discard-
ing terms of higher-order than linear in perturbation,
we find
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tR = −1
ρ
P ′ +

αS

ρ

n2 − 1
b − a

{
b − r

a2
δa +

r − a

b2
δb

}

− χR

∂tΘ = − in

ρ

P

r
− χΘ

R′ +
R

r
+ in

Θ

r
= 0,

(16)

where ρ denotes the density of the active nematic,
we introduced the overdamped friction coefficient χ
to model viscous effects using an argument similar to
Stokes’ law [46] (see SI), and primes denote derivatives
with respect to the radial coordinate r. The last term
on the first line represents the active forces induced by
the perturbed surfaces, which we assume decay linearly
away from the surface.

Next, we search for exponential solutions of the form
∝ eωt, where we tacitly assume both surfaces exhibit
the same growth rate ω [47]. This presupposes a hydro-
dynamic coupling between the organoid surfaces, in

accordance with our numerical simulations, and ratio-
nalises the dependence of the wrinkling wavelength λ
on the organoid thickness (see Figure 4b). In the SI, we
make this coupling explicit.

Upon inserting this ansatz, Eq. (16) reduces to a set
of ODEs for the perturbative velocities and pressure,
which we solve sequentially. Subsequently, demanding
continuity and stress balance at the surfaces of the
model organoid (see SI) yields a dispersion relation for
the growth rate ω:

ω4 +
2χ

ρ
ω3 + Aω2 + χBω + C = 0, (17)

where the coefficients A, B, C embed dependency on
the wave number and model parameters (see the SI for
explicit form of these terms).

To determine the stability of a perturbation with
wavenumber n, we inspect the real part of the corre-
sponding growth rate ω and associate the wrinkling
number N with the fastest-growing mode. Interest-
ingly, numerical checks of our analytical results show
that all unstable surface perturbations are of the same
sign, indicating an undulation mode in accordance with
experiments [11]. Furthermore, we recover a clear fold-
ing transition, as—for a given surface tension σ—
nonzero wrinkling numbers are only recovered past a
critical activity-to-surface tension ratio (see Figure 3b-
c and the SI). This is in agreement with the numeri-
cal simulations found in Figure 3a, as well as with the
experiments of Ref. [11], where no wrinkling instability
is observed for low cell nuclear densities.

5 Conclusion

We present an active matter model system for describ-
ing the experimentally observed folds on brain organoids.
By treating the organoid as a contractile, active, bipha-
sic annulus, we demonstrate a generic instability mech-
anism for the interface deformation due solely to active
stress generation by the cytoskeleton of the cells within
the active cortex that surrounds a passive lumen with-
out introducing growth, swelling, or any other planar
surface forces. Combining numerical simulations with
linear stability analyses, we show that the activity-
induced instability mechanism occurs over a well-
defined activity threshold that depends on the mechani-
cal properties of the system, such as surface tension and
the thickness of the model organoid. Since the active
stress generation is expected to increase with increas-
ing cell nuclear density within the cortex, these results
are in line with the experimental measurements that
establish the emergence of folds on the organoid sur-
face above a critical nuclear density [11].

Furthermore, the increase in folding number N upon
increasing activity α (see Figure 3) lends credence
to the proposed model in light of molecular per-
turbation experiments on blebbistatin-treated brain
organoids that show a marked decrease in the number
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of folds the organoids exhibit upon treatment with the
contractility-inhibiting drug [11].

The activity-induced mechanism proposed here com-
plements previously suggested mechanisms of differen-
tial swelling between the inner and outer cortex [48],
adhesion-induced surface tension [14], and the fluid-
elastic fibrous model [15] for the generation of organoid
surface deformations.

It is important to note that the model presented here
provides a generic framework based on accounting for
(i) microstructural complexity of the organoid cortex
based on the orientational order of the cells, (ii) the
biphasic nature of the organoid based on an active, vis-
coelastic cortex surrounding a fluid-like lumen region,
and (iii) active stress generation by the cells. As such,
the model allows for isolating the effects of active stress
generation from potential impacts of growth-induced
mechanisms on the formation of surface instabilities. A
more complete picture of the relative importance of dif-
ferent mechanisms leading to brain organoid deforma-
tion should allow for activity-induced, growth-induced,
and differential adhesion-induced mechanisms to be
accounted for in one unifying framework, which should
be the focus of future studies.
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tains supplementary material available at https://doi.org/
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