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Abstract. In the past two and a half decades machine learning potentials have evolved from a special
purpose solution to a broadly applicable tool for large-scale atomistic simulations. By combining the
efficiency of empirical potentials and force fields with an accuracy close to first-principles calculations
they now enable computer simulations of a wide range of molecules and materials. In this perspective, we
summarize the present status of these new types of models for extended systems, which are increasingly
used for materials modelling. There are several approaches, but they all have in common that they exploit
the locality of atomic properties in some form. Long-range interactions, most prominently electrostatic
interactions, can also be included even for systems in which non-local charge transfer leads to an electronic
structure that depends globally on all atomic positions. Remaining challenges and limitations of current
approaches are discussed.

1 Modelling extended systems

It was recognised early on in the development of quan-
tum mechanics that the time scale separation between
the motion of electrons and nuclei allows for the Born–
Oppenheimer approximation, valid for a large part of
chemistry, solid-state physics and materials science [1].
This gave rise to the quest for accurate analytic mod-
els of the resulting potential energy associated with a
set of nuclear positions to avoid the prohibitive costs of
repeatedly performing explicit electronic structure cal-
culations for systems containing more than a few hun-
dred atoms, e.g. in molecular dynamics (MD) and high
throughput screening. It quickly became obvious that
apart from low-dimensional cases, e.g. diatomics, or an
infinitesimally small configuration space, like the vibra-
tional modes of a molecule and the phonon spectrum
of a crystal at zero temperature, systematically conver-
gent fits of the potential energy surface (PES) were not
feasible. Thus, for a long time “force fields” in chem-
istry and “interatomic potentials” in physics and mate-
rials science have been largely dominated by empirical
modelling, where physics and chemistry-based princi-
ples are coupled with some form of nonlinear model
fitting (e.g. Morse potential for chemical bonds [2],
Lennard–Jones for dispersion interactions [3]), having
just about enough explanatory and predictive power
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for a qualitative understanding of a specific problem at
hand.

In many areas, remarkable progress has been made
using this approach, e.g. organic force fields enabled
the simulation of large biopolymers, often in aqueous
solution. The price has been the necessity of drastic
simplifications, such as the use of low-dimensional addi-
tive terms with simple functional forms and, with a few
exceptions [4], the inability to describe the making and
breaking of chemical bonds. In materials science, on the
other hand, reactivity has been an essential feature of
even basic potentials, but the resulting functional forms
turned out to be difficult to use for systems containing
many different elements.

In parallel to these developments, the direct solution
of the electronic structure problem in some approxi-
mate form, typically density functional theory (DFT),
reached a level of usefulness that revolutionised atom-
istic modelling of extended systems putting it, for
the last couple of decades, right at the center of our
understanding of materials on the electronic scale – as
long as the questions could be addressed by calculat-
ing the total energy (or short dynamical paths) of a
few hundred atoms. While understanding the electronic
structure of materials and its implications for material
properties is clearly an important and often necessary
endeavour, the situation has arisen by the turn of this
century that much of the world’s academic comput-
ing power was used to carry out ab initio molecular
dynamics and similar tasks solving the electronic struc-
ture problem at each time step simply because there
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has been no alternative access to energies and forces of
comparable quality while the research questions rarely
require detailed knowledge about the electronic struc-
ture, like band gaps or orbital energies.

2 The challenge of dimensionality

Progress in high throughput electronic structure calcu-
lations regarding the robustness of software, advances
in algorithms, and wide availability of the necessary
computational capacity on the one hand, and rapid
conceptual advances of “machine learning approaches”
in data science, statistics and artificial intelligence
research on the other hand resulted in a new kind of
numerical solution, using machine learning potentials
(MLP), to the age-old problem of materials modelling,
the high-dimensional and accurate representation of the
Born–Oppenheimer PES for extended systems [5–9].

There is a multitude of intellectual roots for this
development in many different fields. The representa-
tion of potential energy surfaces for small molecules
has been a very active field in quantum chemistry
for a long time [10–15]. Many pertinent issues were
explored, such as the symmetry of the representations
and basis sets, and systematic convergence, but all
schemes scaled badly, essentially exponentially, with
the number of degrees of freedom, restricting these
approaches to small systems. Thus, the application area
of the resulting potentials was mostly molecular spec-
troscopy, which placed very stringent demands on accu-
racy. Elsewhere, empirical force fields—or interatomic
potentials, such as the Embedded Atom Method [16]—
were widely used for modelling extended materials.
These scale very favourably with system size, but the
general sentiment in the community developing these
models was that a phenomenologically correct predic-
tion of macroscopic properties was more important than
quantitative convergence towards the first-principles
potential energy surface, the latter generally held to
be impossible.

The first generation of MLPs was introduced in the
seminal work of Doren et al. [17]. They employed a feed-
forward neural network to represent the DFT PES for
a H2 molecule interacting with a silicon surface. Many
other neural network potentials have been proposed in
the following decade employing one or a set of neu-
ral networks [18–20], but they all had in common that
only a few degrees of freedom were taken into account
explicitly. The main reason for this limitation of first-
generation MLPs was the lack of descriptors that had
the physically mandatory invariances, which could only
be written down for special cases of low-dimensional
problems [21,22] and did not scale to many-atom sys-
tems.

A solution to the above problem was the introduction
of a many-body descriptor of the local atomic neigh-
bour environment by Behler and Parrinello [23] that
had all the required symmetries. They used it to model
the atomic energy, Ei, of each atom i, using element-

specific atomic feed-forward neural networks, fitted to
reproduce the total energy, as

Etotal =

Natom∑

i=1

Ei

Ei = E(rij1 . . . rijk . . .) with rij = |ri − rj | < Rcut,

(1)

where ri is the position vector of atom i and rij is the
distance between atom i and its neighbor j. The key in
this ansatz of second-generation MLPs is the restriction
of arguments of the atomic energy to the coordinates of
atoms within a distance cutoff Rcut, which makes the
atomic energy function moderate dimensional, approx-
imately three times the number of atoms within the
cutoff (which in practice ranges between 10 and 50
atoms, depending on the material and cutoff radius).
The descriptors of Behler and Parrinello (often called
Atom-Centered Symmetry Functions [24]) parametrise
this function, using a fixed length array, in a way that
it remains a smooth function of the atomic positions,
but allowing for atoms to cross in and out of the cutoff
sphere which is necessary for performing atomistic sim-
ulations. Note that most conventional empirical poten-
tials can also be written in or reformulated into the
above form, but the representation of the atomic neigh-
bour environment they use (effectively the unordered
set of distances for bond terms, angles for three-body
terms) are low-dimensional and thus cannot be used to
model an arbitrary function of the neighbour environ-
ment.

Using the distance-restricted atomic energy is a con-
trolled approximation. The larger the cutoff, the smaller
the contribution of the long-range interactions that are
ignored, but the space in which the atomic energy func-
tion has to be fitted is larger, necessitating more train-
ing data. There are plenty of examples, and not coinci-
dentally these constitute the earliest successes of MLPs,
where long-range terms beyond 5–6 Å or so can be
essentially ignored, and the resulting potentials are still
extremely useful [8,25,26]. For example in elemental
systems, and many bulk materials, the degree of charge
transfer is either minimal or screening lengths are very
short. There have been recent successes in materials
where a priori one perhaps would not expect that, e.g.
some bulk oxides [27,28] and even bulk liquid water
[29,30].

Fitting interatomic potentials to electronic structure
data in this manner was a new type of “task” for compu-
tational materials science, and given the developments
of the past decades, we can now confidently say that this
task has been solved eminently by many types of mod-
ern MLPs like high-dimensional neural network poten-
tials (HDNNP) [23], Gaussian approximation poten-
tials (GAP) [31], moment tensor potentials [32], spec-
tral neighor analysis potentials [33], atomic cluster
expansion [34], DeepMD [35], and ANI [36], capable
of reaching accuracies of 0.001 eV/atom for energies
and 0.05 eV/Å for forces for many systems. This accu-
racy is near the convergence threshold of typical DFT
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Table 1 The three main approaches to parametrising
atomic properties (just energies and forces directly, or
also including electrostatic properties such as charges and
dipoles)

Descriptors + nonlinear fitting
A compact symmetry preserving representation
of the (usually local) atomic geometry is defined,
and used as input to nonlinear regression schemes
such as neural networks or kernel regression
Basis + linear fitting
A basis of many symmetric functions of local atomic
geometries is constructed, and coefficients are
determined using regularised least squares fitting
Message passing networks
The representation and regression problems are
solved simultaneously, starting with just atomic
identities, which are iteratively passed along
the neighbour graph of the system and combined into
a symmetric nonlinear function

calculations when performing first principles molecular
dynamics.

3 Representation and regression

The total potential energy of a system must be invari-
ant to many symmetries: global rotation and transla-
tion of the system, and the permutation of atoms of
the same element. Having made the approximation that
the total energy is the sum of local (atomic or site)
energy terms, it is natural to want to transfer these
symmetries or invariances to the site energy in Eq. 1,
but that is hard to do without sacrificing the ability of
the model to fit an arbitrary (symmetric) function. For
example, empirical force fields, which have a venerable
history, split the potential energy into terms that each
depend on the positions of only one, two, three, etc.
atoms, and parametrise them using invariant internal
coordinates (interatomic distance, angle, etc), see top
panels of Fig. 1. Force field energies fulfill these invari-
ances because they consist of additive terms, each of
which are invariant to rotations and translations, and
which are evaluated independently. While a large frac-
tion of the intramolecular potential energy of organic
molecules can be captured in this way, when one contin-
ues this sequence systmatically to high body order (e.g.
in the permutationally invariant polynomial scheme of
Bowman and Braams [14]), the computational expense
explodes exponentially. For extended materials, such as
metals, oxides, semiconductors, this strategy runs into
difficulties very quickly already for more than a few
atoms. On the other hand when the body order is trun-
cated at 3 or 4-body level, the potentials are not accu-
rate enough in general.

Table 1 summarises the three main approaches for
solving this problem that have emerged over the past
decade, and Fig. 1 gives a graphical representation of

each in comparison to classical force fields. In the first
approach, presented in the second panel on the right of
Fig. 1, no body ordered splitting of the potential energy
is imposed, but descriptors consisting of low body order
terms are used in a fully symmetric representation of
the local geometry, which is then subsequently used
in a nonlinear regression scheme to fit the potential
energy (e.g. using artificial neural networks [23] or ker-
nel regression [31]). The set of Atom Centered Sym-
metry Functions (ACSF) [23,24] is an example, where a
compact representation of all neighboring atoms inside
the atomic environment is built using two- and three-
body functions. The power spectrum, as well as its com-
monly used incarnation, the Smooth Overlap of Atomic
Positions (SOAP) [37], is a similar three-body represen-
tation, while the bispectrum is four-body [37]. These
are built up as products of the single-particle density
using the “density trick” and therefore the cost of their
evaluation scales linearly with the number of neigh-
bours at arbitrarily high body order [38].

The success of MLPs, built using compact low body
order representations and nonlinear regressors (such as
HDNNPs [23] or GAPs [31]), in correctly fitting finely
nuanced ab initio potential energy surfaces [25,26] has
moved the field forward significantly, and brought with
it renewed interest in designing symmetric represen-
tations for materials. In particular, Moment Tensor
Potentials [32] and later the Atomic Cluster Expan-
sion [34] (see third panel on the right of Fig. 1) bring
together some features of the descriptor approach and
empirical force fields. The potential energy is again split
up into body ordered contributions, but each of these
are represented by symmetric basis functions that are
complete, i.e. arbitrary smooth functions can be con-
structed using simple linear combinations. The same
“density trick” that allowed the efficient evaluation of
the power- and bispectrum is used to keep the evalua-
tion cost independent of the body order and number of
neighbours.

Very recently, a third approach to representation and
regression has been introduced based on learning the
atomic descriptors directly from the geometric struc-
ture, see bottom panel of Fig. 1. This class of neu-
ral network potentials employs message passing net-
works [39]. The central idea of these methods is to
map the chemical elements into a high dimensional
atomic feature vector, which is then iteratively refined
for each atom by exchanging information about the fea-
tures of neighboring atoms and local geometry. First
implementations used only interatomic distances, but
more recently the full many-body description is utilized
e.g. in “equivariant message passing networks” [40]. For
high-dimensional systems, a cutoff radius for the infor-
mation exchange is introduced making the methods
feasible for larger systems, and for each message pass-
ing step (typically between two and six are employed)
the effective range of the description of the atomic
environments is increased. Thus, no representation is
constructed independently of the regression, but both
tasks are accomplished simultaneously. Several differ-
ent methods have been proposed to date and applied to
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conventional force fields

descriptor + nonlinear regression

basis + linear regression

combined representation + non-linear regression

1B 3B 4B ...

...

many-body QM2B

SOAP

ACSF

SNAP

Cormorant, SchNet,
NequIP, PhysNet,
AimNet, PaiNN ...

MTP, ACE

bispectrum

pair angle torsion

kernel

NN

GAP

HDNNP, DeepMD

message-passing networks

Fig. 1 Illustration of the different strategies for representing local atomic environments and regressing the potential energy

benchmark data sets, in particular for molecules, yield-
ing highly accurate energies and forces [40–46].

4 Beyond locality—long-ranged MLPs

In spite of many successful applications of second-
generation MLPs based on Eq. 1, applying a cut-
off truncating the interactions necessarily represents
an approximation. This is well justified and intro-
duces only very small errors e.g. for systems with-
out significant charge transfer like in elemental com-
pounds [47,48] or in the presence of efficient screen-
ing, like in bulk liquid water [29,30]. Still, any inter-
action present beyond the cutoff limits the accuracy
that can be achieved, because for the ML algorithm
such interactions result in inconsistent data that can-
not be represented with the available information about
the local atomic environments. Consequently, interac-
tions beyond the cutoff will appear like noise, and to
minimize the overall error an averaged interaction is
obtained for interatomic distances larger than the cut-
off radius. Apart from electrostatics, e.g. also dispersion
interactions and delocalized electrons in aromatic com-
pounds or conjugated π-systems [48,49] can give rise to
rather long-ranged interactions.

While in principle it is possible to systematically
extend the cutoff radius to include an increasing part of
the atomic interactions, which is very similar in spirit
to increasing the number of passing steps in message-
passing methods, there are practical limitations in both

approaches. These concern the complexity in describing
the rapidly growing configuration space in the atomic
environments by a set of descriptors, but also the unfa-
vorable scaling of the performance regarding the num-
ber of neighbors in the cutoff spheres, or the number of
passing steps in message passing networks, respectively.

Assessing the relevance of long-range interactions is
thus an important task and has been done e.g. for the
cases of amorphous carbon [48], carbon clusters [50],
water clusters [29], organic molecules [49,51] and the
adsorption of metal clusters at oxides [51]. For instance,
it has been shown in a locality test for carbon [48] how
long-range interactions can be quantified by sampling
different atomic positions outside the cutoff sphere as
illustrated in Fig. 2. In essence, for fixed atomic posi-
tions inside the cutoff sphere the force acting on the cen-
tral atom is monitored while moving the atoms beyond
the cutoff. For mainly local interactions, only small
changes of the force will be observed. Similarly, the
dependence of atomic charges on structural features
outside the local atomic environments can be stud-
ied, e.g. by varying distant functional groups [51]. Next
to an overall reduced accuracy of the potential, too
small cutoffs can also induce artificial oscillations in the
energy and forces close to the cutoff radius if energies
and forces are used for training [24]. Note that such
locality tests are very general, and not only applicable
for assessing the level of nonlocality, but can be used to
measure the effectiveness of a long-range model: instead
of measuring the standard deviation of the total force
at the center of the fixed sphere (see Fig. 2), it is pos-
sible to consider the force difference between the ref-
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erence electronic structure method and the proposed
long-range model.

In particular the inclusion of electrostatic interac-
tions in MLPs has received a lot of attention in recent
years. Earliest attempts have used neural networks to
express electrostatic multipoles with the aim to improve
classical force fields [52]. Further, it has been suggested
to augment MLPs by long-range electrostatic energies
based on fixed element-specific charges e.g. for GAP [31]
and SNAP [53], which is an efficient solution for specific
systems but is limited to compounds with very similar
charges for all atoms of a given species.

Another path is followed in third-generation MLPs,
in which both the short-range and the long-range
energy are expressed by a ML fit. For this pur-
pose, the long-range electrostatic energy is computed
using flexible charges, which are represented as local
environment-dependent atomic properties by machine
learning algorithms. An example are third-generation
HDNNPs [54,55], in which the charges are expressed by
element-specific atomic feed-forward neural networks
and in which the resulting electrostatic energy is com-
bined with a short-range energy according to Eq. 1
to account for local bonding. Double counting of elec-
trostatic energy contributions, which within the cutoff
could equally be included in the short-range part, is
avoided by separating the reference total energies and
forces into an electrostatic and a remaining short-range
part before training. To prevent an increased energy
range to be covered by the short-range energies due to
the singularity of the Coulomb potential for short inter-
atomic distances, it has been found useful to screen the
electrostatic part inside the cutoff radius [55] similarly
to what is done in dispersion correction schemes [56].

Many other approaches have been proposed to express
atomic charges by machine learning [42,57–62]. Often,
reference charges obtained in electronic structure cal-
culations are used for training. Such charges are not
physical observables and thus there is no unique choice,
but still there is a range of methods which are math-
ematically well defined. Consequently, quite different
reference atomic charges can be obtained depending on
the chosen method [62]. Alternatively, charges can also
be determined using dipole moments as Refs. [57,63],
which offers the advantage of an observable target prop-
erty, but this method is restricted to small molecular
systems. In principle, tests could be performed for a
given system which charge partitioning scheme provides
the best representation of long-range electrostatic inter-
actions by performing locality tests after removing the
corresponding long-range electrostatic forces. In addi-
tion to the local atomic descriptors and message pass-
ing networks, it has also been demonstrated that the
electrostatic energy can be included using long-ranged
representations like the long-distance equivariant rep-
resentation [64].

An obvious problem when learning individual atomic
charges is to ensure the correct overall charge of the
system because of small fitting errors, and in par-
ticular for periodic systems any net charge must be
avoided. A straightforward solution is the rescaling of

the charges [54], but also using a compensating back-
ground charge has been proposed [57].

While the incorporation of long-range electrostatic
interactions relying on flexible environment-dependent
charges in third-generation MLPs has been a step for-
ward, the underlying assumption of only locally depen-
dent charges still limits the applicability of these meth-
ods. The reason is that in numerous systems the local
electronic structure is influenced by very distant struc-
tural features giving rise to non-local charge transfer.
While this is naturally incorporated in electronic struc-
ture calculations, i.e. in the reference data, in such a sit-
uation charges cannot be accurately learned as a func-
tion of the local environment only, resulting in ambigu-
ous or even contradictory information in the training
data.

Consequently, when discussing interatomic poten-
tials, it is important to clearly distinguish on the
one hand between potentials that include long-range
interactions in general, e.g. in form of an explicit
Coulomb term like in third-generation MLPs, and on
the other hand potentials considering non-local inter-
actions resulting from dependencies extending over dis-
tances beyond the cutoff radius, or beyond the environ-
ment covered by the message-passing steps. This non-
locality cannot be captured by third-generation poten-
tials relying on local charges only.

Atomic partial charges can be considered as a coarse-
grained qualitative fingerprint of the electronic struc-
ture, and thus they can be used to detect non-local
dependencies of the electronic structure in a simple
way [51]. These are omnipresent in many systems,
from organic molecules to bulk materials and inter-
faces [49,51]. Apart from these dependencies, another
possible origin of global changes in the electronic struc-
ture is a change of the total charge, which may not only
be the attachment or removal of an electron, but also
chemical reactions like (de)protonation. MLPs up to
the third generation do not depend on the total charge
of the system and are thus restricted to a single charge
state.

MLPs, which are able to include long-range electro-
static interactions based on atomic charges depend-
ing on the structure of the full system, define fourth-
generation MLPs. The first potential of this gener-
ation has been the charge equilibration neural net-
work technique (CENT) [65]. In this method, the
atomic partial charges are determined in a global charge
equilibration step [66] employing atomic electroneg-
ativities expressed by individual atomic neural net-
works as a function of the local chemical environ-
ments. The method employs a charge density-based
total energy expression making it particularly suitable
for systems with primarily ionic bonding. A gener-
alization of this method has recently been proposed
in form of fourth-generation high-dimensional neu-
ral network potentials (4G-HDNNP) [51], which com-
bine the properties of CENT and second-generation
HDNNPs of the Behler-Parrinello type. The resulting
method includes long-range electrostatic interactions
based on globally-dependent charges and atomic short-
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range energies accounting for local bonding. Due to the
charge equilibration step, the naive implementation is
cubically scaling with system size, but using iterative
schemes close to linear scaling can be achieved. Another
related method is the Becke population neural network
(BpopNN) [67]. This method relies on atomic neural
networks using modified SOAP descriptors including
also the atomic populations, i.e. information about the
atomic charges, which are determined in an iterative
process. All fourth-generation MLPs can be constructed
to simultaneously describe several charge states of a sys-
tem.

It is interesting to note that message passing net-
works can form a bridge between second, third and
fourth-generation potentials. For instance, apart from
the total energy they have been suggested to predict
charges [42,58,59], although to date only rarely explicit
Coulomb terms are used to include long-range interac-
tions without truncation [42] as needed for a classifi-
cation as a third or fourth generation potential. Still,
by increasing the number of passing steps in princi-
ple they allow to describe more and more interactions
irrespective of the physical nature including electrostat-
ics between close atoms, like second-generation MLPs
based on Eq. 1. They would become equivalent to
fourth-generation potentials for an infinite number of
passing steps, or for small molecules in vacuum that can
be treated globally. Recently, several message passing
network have been proposed which are also capable to
describe systems in different total charge states [58,59].

Apart from electrostatics, also dispersion interac-
tions can be rather long-ranged and thus relevant in
the cutoff region. They are much weaker than elec-
trostatic interactions, but depending on the system,
still important parts of the dispersion energy might be
missed by second-generation MLPs. Like for electro-
statics, a hierarchy of method can be used to included
dispersion interactions, but in comparison to electro-
statics many details remain to be explored. A straight-
forward possibility to include dispersion is to simply
add a correction like those also frequently used in elec-
tronic structure calculations, e.g. the family of meth-
ods suggested by Grimme [56], which is used in Phys-
Net [42] and tensormol [57]. In chemically simple sys-
tems, such as fluid methane, the long-range part of
the interaction can be represented by a 1/r6 poten-
tial with a fixed coefficient, such that on top that a
second-generation MLP is sufficent [68]. More advanced
methods could be based on environment-dependent C6

coefficients, qualifying as third-generation methods, to
globally-dependent parameters of the fourth genera-
tion. Such methods are not yet available and the impor-
tance of a high-level treatment of dispersion remains to
be investigated in future work in view of the importance
of many-body dispersion in some systems [69].

The inclusion of long-range energy contributions
in the different types of MLPs is summarized in
Fig. 3. Second-generation MLPs based on environment-
dependent atomic energies typically include all short-
ranged interactions arising e.g. from covalent bonding,
and all electrostatic and dispersion interactions up to

the cutoff radius, since the atomic energies in Eq. 1 can
include all types of interactions. On the other hand, all
interactions beyond the cutoff are neglected. In third-
generation MLPs the atomic energies are used to repre-
sent the short-range energies only, which are extracted
for training by first removing the electrostatic and pos-
sibly the dispersion energy. These energy terms are then
explicitly added without truncation using Coulomb’s
law in case of electrostatics. Any inaccuracies in the
electrostatic and dispersion energies can be corrected
inside the cutoff spheres by adapting the atomic short-
range energies accordingly. Still, depending on the spe-
cific system a part of the long-range interactions might
be missed beyond the cutoff, e.g. in case of charge
transfer over long distances that cannot be captured
by environment-dependent charges. Fourth-generation
MLPs are based on charges depending on the global
structure of the system. Therefore, they in principle
include the full long-range energies, and the accuracy
of the long-range interactions beyond the cutoff is only
limited by the accuracy obtained in the fitting pro-
cess and the chosen charge partitioning method. Mes-
sage passing networks, like second-generation MLPs,
can describe all types of interactions with the number of
passing steps taking the role of the cutoff radius, which
can be systematically increased.

5 Discussion and outlook

When considering any task, especially a newly defined
task such as the regression of the Born–Oppenheimer
potential energy surface, which we discussed in the
introduction, it is important to also define the mea-
sures of success. What is a good potential? It is surpris-
ingly hard to give a general and quantitative answer. In
the world of empirical potentials, this question seemed
easy. The potentials used very few parameters, and once
those were fixed (either by fitting them to a few key
electronic structure calculations or by matching the
results of molecular dynamics simulations to experi-
ments), the performance of the empirical potential can
be tested in a wide variety of situations, all well away
from those that went into “training” the potential. This
has been possible due to the physics-based functional
forms ensuring at least a qualitatively reasonable trans-
ferability. In contrast, the MLPs work differently. Here,
the chosen functional forms have no physical basis but
need to be flexible to reach a high numerical accuracy,
and extrapolation in high dimensional spaces is neces-
sarily limited, so the training database has to include
local environments that are similar to those where the
potential will be used. But then how does one test the
potential? On configurations that are far away from the
training set, errors will be large, but that is part and
parcel of using an MLP. The question then is turned
around and we need to ask: is our training database
diverse enough that it covers all the local environments
where our potential is ever likely to be evaluated in the
course of the simulations? Simulations with MLPs can
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Fig. 2 Illustration of the “locality test”. An atom (yellow)
is selected from a larger configuration, and the positions
of all grey atoms within a sphere of a certain radius of it
are fixed. Many new configurations are generated which all
share this fixed sphere, but differ elsewhere. The forces are
computed for all structures, and the standard deviation of
the force on the central atom is recorded. Any local inter-
atomic potential whose cutoff is equal to half of the sphere
radius cannot predict the force on the central atom with
a smaller standard error than that from the locality test,
simply because the structural information required is not
available to it. This is independent of the representation and
regression method, and is a consequence of the underlying
locality approximation

go catastrophically wrong if the simulation leaves the
range of validity. We illustrate the asymmetry of con-
sequences of positive and negative errors in the PES in
Fig. 4, where the effect is exaggerated for clarity. An
error in the positive direction will lead to a lowering
of the probability in visiting that state in a finite tem-
perature simulation, but this effect is usually very local
leaving most of the probability distribution unchanged.
A similar-sized error in the negative direction acting
as an attractive well however could lead to a dramatic
change in the overall probability distribution and thus
the values of many observables that are computed from
the simulation. The key point is that the MLP is not
merely used to predict properties of structures drawn
from some known distribution, but the MLP is used to
generating the distribution itself.

So while testing MLPs necessarily involves comput-
ing root mean square errors (RMSEs), careful judge-
ment has to be made over what distribution of con-
figurations these RMSEs are evaluated. A well-fitted
potential will always show good RMSEs over the ref-

Generation 2: Atomic Energies

Generation 3: "Local Charges"

Generation 4: "Global Charges"
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Fig. 3 Relative range and coverage of energy contributions
in different types of MLPs. In second-generation MLPs, all
interactions are completely included in the atomic energies
inside the cutoff radii. In third-generation MLPs electro-
static and dispersion interactions are separated and com-
puted analytically outside the cutoff radius based on local
properties like environment-dependent charges. Any error
can be corrected inside the cutoff radii by the atomic ener-
gies. Fourth-generation MLPs are based on atomic proper-
ties depending on the global structure and total charge of
the systems resulting, e.g., in improved charges for systems
with non-local charge transfer. In message passing MLPs
the situation is similar to second-generation MLPs, with
the range determined by the number of passing steps Ni

erence configurations, including test sets split out for
validation purposes. The far more important question
is how well properties are predicted. This opens up a
whole set of new, as yet unanswered questions: what is
the relationship between the pointwise (RMSE) errors
of the potential energy surface, and the accuracy of pre-
dicting material properties?

There appears to be two strategies emerging with
respect to how wide ranging the MLP training databases
are. On the one hand, one can make “special purpose”
potentials for a particular project, which can be vali-
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E P(a)

E P(b)

E P(c)

target PES

Fig. 4 Impact of positive and negative energy errors on
sampling the Boltzmann distribution. In a the energy E is
close to the target PES and the probability of the system
to be in the global or the local minimum is high. In b the
energy in a small part of the PES is overestimated resulting
in a local decrease of the population P while the population
of the other configurations is hardly changed. In case of a
severe underestimation of the energy in c), the population
of the artificial minimum is strongly increased resulting in
a depletion of the population elsewhere

dated for the configurations relevant to the simulations
that are planned in the context of that project. There
is no expectation of transferability beyond the intended
application. Alternatively, and much in common with
the spirit of the empirical potentials, one can attempt
to create an MLP without knowing in advance what sci-
entific questions it will be used to address, what sim-
ulations will be carried out with it and (ultimately)
what local chemical environments will be present in
those simulations. This is a harder task, and limits still
have to be placed (and explicitly communicated!) on
the range of chemical environments that are “covered”.
There have been some successes, notably for elemen-
tal systems, such as carbon [48,70] and silicon [47,71],
as well as also organic molecules [36] and liquids like
bulk [30,72] and interfacial [73] water.

The key for successful applications is the inclusion of
the relevant atomic environments in the reference data
set. Since a systematic mapping of high-dimensional
configurations on a regular grid is a hopeless endeavor,
strategies yielding the chemically most important (i.e.,
accessible) and diverse structures are needed. Often,
ab initio molecular dynamics simulations are used as
starting point, but this is usually insufficient as includ-
ing rarely visited structures can be crucial for obtain-
ing stable potentials. Hence, nowadays, active learning
strategies, as used in the ML community for quite some
time [74], have become a standard approach for the con-
struction of MLPs [75–79]. This search can be comple-
mented by selecting non-redundant structural features
from a large number of structures [80–82]. In both
approaches the identification of relevant structures is
even possible before carrying out expensive electronic
structure calculations, allowing to focus the available
computing time on the most important information.

Another aspect to be considered when training MLPs
is the calculation of the reference data by electronic
structure methods. At the moment, in particular in the
field of materials science, DFT is the dominant refer-
ence method since it offers a good compromise between
accuracy and efficiency for many systems. Generalized
Gradient Approximation (GGA) functionals still repre-
sent today’s workhorse methods, but more and more
studies consider hybrid functionals, which are often
much more expensive; on the other hand very accu-
rate wave function methods have been used, but to
date only for small molecular systems. This has two
reasons: the high costs, but also the need for periodic
boundary conditions in the fields of materials science
and chemistry in solution, which are not generally avail-
able for many wave function methods. Hence, there is
currently an accuracy gap for the reference methods
between DFT and wave function methods, which in the
future might be filled by methods like quantum Monte
Carlo (QMC) [83], RPA [84] or coupled-cluster meth-
ods [85]. A challenge still to be solved for a routine use
of QMC is the treatment of noisy data, as noise reduc-
tion for QMC is possible but comes with significantly
increased computational costs.

An important remaining challenge is the construc-
tion of MLPs for systems containing many different ele-
ments. The configuration space inside the atomic envi-
ronments grows rapidly with the number of elements,
which is challenging for both, the sampling of these con-
figurations by electronic structure calculations, but also
for dealing with the increasing number of descriptors
growing combinatorially with the number of elements.
To address this problem, some solutions have been pro-
posed. For instance, the configuration space can be
reduced by decreasing the cutoff radius defining the
atomic environments, like in the ANI-1 potential [36].
Here, the aim is to construct a MLP being transferable
over a wide range of organic molecules necessitating
a compromise in the accuracy that can be achieved.
Alternatively, for specific problems in chemistry and
materials science it may not be necessary to obtain very
transferable potentials as for physical reasons many in
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principle possible atomic configurations do not occur,
thus reducing the configuration space that needs to be
accurately represented by the potential. Consequently,
it is close to impossible to give a generally valid number
of elements that can be included in current MLPs, but
as a rule of thumb constructing potentials containing
three to four elements can be routinely done.

Concerning the descriptor, several suggestions have
been made to break the combinatorial growth, e.g.
by including the nuclear charge into the descrip-
tor in weighted atom-centered symmetry functions
(wACSF) [86] or by using combined structural and com-
positional descriptors [87]. In spite of some proof-of-
principle benchmarks, to date the resulting sparse rep-
resentations have not been frequently used and more
work is required to investigate to what extent the num-
ber of descriptors can be reduced, because an accu-
rate distinction of different structures is essential for
the successful construction of MLPs. Interestingly, even
for established descriptors like ACSFs the number of
descriptors is typically smaller than the formal dimen-
sionality of the atomic environments. Hence, a certain
level of coarse graining the structural information seems
to be tolerable, but the essential information must be
retained. To identify the important descriptors, also
automatic procedures for selecting descriptors from a
large pool based on CUR [88] or the correlation of the
descriptor values have been proposed [81]. Further, it
has been suggested to determine the descriptor param-
eters using genetic algorithms [86].

There are essentially two different selection strategies
for descriptors, as they could either be chosen based
on their spatial shape characterizing the atomic envi-
ronments or to achieve the best-possible description of
a given specific reference data set. In early stages of
the generation of data sets, unbiased descriptors should
generally be preferred, while for large converged data
sets a focus might shift on using the smallest possible
number of descriptors needed for this data.

In summary, the construction of atomistic potentials
has a long history, both in chemistry as well as in mate-
rials science, with traditionally different approaches to
meet the requirements of the respective questions to
be answered. With MLPs becoming more and more
established, many groups have entered the field result-
ing in further rapid advances bringing these fields
closer together. Although being less efficient than sim-
ple empirical force fields, MLPs allow to extend first-
principles methods to problems where extensive sam-
pling is required in particular for those systems in which
similar structural patterns are repeatedly encountered.
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Csányi, J. Chem. Theory Comput. 15, 2574 (2019)

69. A.M. Reilly, A. Tkatchenko, J. Phys. Chem. Lett. 4,
1028 (2013)

70. P. Rowe, V.L. Deringer, P. Gasparotto, G. Csányi, A.
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mode, G. Csányi, M. Ceriotti, Sci. Adv. 3, e1701816
(2017)

123

http://arxiv.org/abs/2101.04673
http://arxiv.org/abs/2101.03164
http://arxiv.org/abs/1906.04015v3
http://arxiv.org/abs/2102.03150v2
http://arxiv.org/abs/2102.09844
http://arxiv.org/abs/2008.11277
https://doi.org/10.26434/chemrxiv.12725276.v2
https://doi.org/10.26434/chemrxiv.12725276.v2


Eur. Phys. J. B          (2021) 94:142 Page 11 of 11   142 

81. G. Imbalzano, A. Anelli, D. Giofre, S. Klees, J. Behler,
M. Ceriotti, J. Chem. Phys. 148, 241730 (2018)
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