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Abstract

Good is the enemy of perfect.

Voltaire, probably.

The motto of this thesis.

This thesis attempts to bridge science with technology applications by developing two lines

of research, one theoretical and one practical.

On the practical side, we describe the microscopic behaviour of a fuel cell, specifically a

catalyst layer where the oxygen reduction reaction (ORR) takes place. The processes taking

place in the catalyst layer are inefficient at ambient conditions and so this fuel cell component

is, together with high price of platinum as the catalyst, the main bottleneck inhibiting large-

scale deployment of fuel cell electric vehicles and competition with internal combustion engines.

There has been an ongoing debate in the literature about the resistance in the catalyst layer

the origin of which is unknown and exact microscopic mechanism not properly understood.

The candidate causes include not only the catalysis of the ORR on the surface of platinum

nanoparticles, but also the thin ionomer film inhibiting mass transport of protons, oxygen or

water.

The aim of this thesis is to understand the structure of thin ionomer films in the catalyst

layer. To this end, we employ mesoscale dissipative particle dynamics (DPD), a well-established

coarse-grained molecular dynamics method, to model such thin film confined from both sides.

Our results summarised in Chapter 2 reveal a confinement-induced water clustering as well as a

diffusivity anisotropy increasing with decreasing film thickness, confirming that the behaviour

of a thin film is significantly different from the bulk membrane. The percolation network of

water clusters and channels in the ionomer film is strongly dependent on the hydrophobicity of

the confining material.

In Chapter 3, we return to the bulk membrane and explore using DPD its structure and

behaviour under different preparation paths. These results enable us to address the experiments

by Gebel [1] and update this author’s proposed microscopic models.

On the theory side, having realised that currently available computational methods such as

DPD were inadequate for simulating truly realistic settings in the catalyst layer on the scale

of tens of nanometres, in Chapter 6 we present our work on many-body dissipative particle

dynamics (MDPD), a method suitable for simulating porous environments but so far poorly

understood and impossible to apply to real systems. By varying a wide range of input parameters

we uncover a rich phase diagram and devise a top-down parametrisation method based on

compressibility and surface tension that enables to capture the correct behaviour of real liquids
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as well as mixtures. We thoroughly discuss the role of coarse-graining degree as a simulation

input and present a way to adjust simulation parameters in order to consistently predict material

properties across scales. Testing on a few simple mixtures yields reasonable agreement with

experiment.

Besides our work on MDPD, we revisit some of the older theory behind standard DPD. In

Chapter 4, we restate the role of reduced units in a clearer manner and rederive the temperature

dependence of the interaction parameter. We also explain in general terms how simulation inputs

need to be adjusted with respect to coarse-graining degree in order to make the outputs, which

are compared with experiment, invariant across scales. In Chapter 5 we present an attempt

to develop a bottom-up parametrisation for standard DPD based on clustering molecules and

matching radial distribution functions. In the present form, this work should be viewed as a

playground for ideas rather than a proven simulation tool.

Finally, to demonstrate the power of MDPD, in Chapter 7 we apply the newly developed

parametrisation method to an unconfined thin Nafion film with free space on one side, a setting

inaccessible by standard DPD. These simulations should provide a more reliable view on the

structure of the thin ionomer film in the catalyst layer. We find out that films of thickness of

5 nm or less cannot accommodate water inside and, as a result, have hydrophilic outer surfaces.

Surface hydrophobicity increases with film thickness and decreases with water content, with

important consequences for fuel cell operation.

Some chapters of this thesis are based on the following manuscripts published in or submitted

to journals.

I. Vanya, Sharman and Elliott: Mesoscale simulations of confined Nafion thin films.

The Journal of Chemical Physics 147, 214904, 2017, doi:10.1063/1.4996695. Chapter 2.

II. Vanya, Crout, Sharman and Elliott: Liquid phase parametrisation and solidification in

many-body dissipative particle dynamics.

Physical Review E 98, 033310, 2018, doi:10.1103/PhysRevE.98.033310. Chapter 5.

III. Vanya, Sharman and Elliott: Invariance of experimental observables with respect to coarse-

graining in standard and many-body dissipative particle dynamics.

The Journal of Chemical Physics 150, 064101, 2019, doi:10.1063/1.5046851. Chapters 3

and 5.
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Chapter 1

Introduction

Falling in love with a woman like you

happens so quickly, there’s nothing to do

it’s only natural

but why did it have to be me?

ABBA

1.1 Motivation

The fragile existence of human life on earth is permanently in danger. Historically, most serious

threats were natural risks, such as extreme droughts, colds, or epidemics. However, the greatest

problems of the past century as well as the future are due to human activity. As of 2017, there

are several rankings of the most pressing problems humanity has to solve in order to survive.

For example, the non-profit organisation 80000 hours has compiled the list in Table 1.1.1 A

(less ambitious) alternative is made by the World Economic Forum.2

Some of these problems are political, meaning that the path towards the solution would

involve access to and persuasion of someone elected, either directly or through a massive cam-

paign. In other cases, deep thought along scientific lines would help. This is where natural

sciences and mathematics can significantly contribute towards the solutions. For example, the

risk from artificial intelligence comes from our current inability to explain to computers the

meaning of human life and the need to protect it, which stems from unsatisfactory understand-

ing of how deep neural networks process inputs.3 Similarly, factory farming is an important

moral as well as environmental concern resulting from current incapability to produce cheap and

tasty enough artificial meat. Biochemical research should help achieve this ambitious target.

One of the pre-eminent problems for the 21st century is climate change, which has been, as

of 2018, unambiguously proved to be the result of human activity in the past 200-300 years, or

since the industrial revolution ushered in steam engines and coal burning.4

Each year, the world economy releases huge amounts of CO2 and other gases even more

potent than CO2 into the atmosphere. In 1990, it was 22 gigatons, in 2015 it was 36 and this

1https://80000hours.org/articles/cause-selection/
2Available on Business Insider
3https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html
4A nice visualisation: https://www.bloomberg.com/graphics/2015-whats-warming-the-world/
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Problem Score

Risks from artificial intelligence 27

Promoting effective altruism 26

Global priorities research 26

Improving institutional decision-making 24

Factory farming 23

Biosecurity 23

Nuclear security 23

Developing world health 21

Climate change (extreme risks) 20

Land use reform 20

Smoking in the developing world 20

Table 1.1: Most urgent global issues according to 80000 hours (source: see Footnote 1).

number is expected to rise, as emerging economies, such as India, keep emerging.5 As a result,

the International Panel on Climate Change estimates that the atmosphere is expected, according

to the worst-case scenario, to warm up by 2.6 to 4.8 ◦C.6 The consequences for humanity could

be disastrous, including severe food and freshwater shortages and massive spread of infections.

An important, if not the only source of CO2 in the atmosphere, is burning of fossil fuels,

which is key to provide transport, electricity and heat production for households and industry,

and consumer goods. Hence, the challenge to find sustainable sources of energy has been at the

forefront of scientific interest. Currently, fossil fuels form a massive part to the energy produc-

tion amounting to 87% in 2015 and their overall consumption keeps rising,7 so any significant

reduction in the near future looks like a utopia. However, it has already been demonstrated by

back of the envelope calculations how it might be possible to significantly reduce energy from

fossil fuels in the United Kingdom, not even accounting for expensive nuclear energy.8

In the field of transport, a promising technology is fuel cells (FC). This simple mechanism

to convert chemical energy to electricity and, finally, to kinetic energy, is, together with batter-

ies, expected to supersede internal combustion engines (ICEs) and revolutionise the transport

industry.

1.1.1 Hydrogen fuel cells

Broadly speaking, there are several types of fuel cells, which use different fuels and operate

at different temperatures. An everyday example is a breathalyser for estimating blood alcohol

content, where ethanol is the fuel and the resulting voltage can be related to the amount of

alcohol in blood. Most suitable for transport purposes are proton exchange membrane fuel cells

(PEMFC, also called polymer electrolyte membrane fuel cells), operating below 100 ◦C, which

5The progress can be viewed here: http://edgar.jrc.ec.europa.eu/overview.php?v=CO2ts1990-2015
6See pages 89-90 in the IPCC 2015 report.
7See pages 2-5 in the BP statistical review.
8David MacKay: Without hot air. Freely available at https://www.withouthotair.com/

2
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Figure 1.1: A scheme of a proton ex-
change membrane fuel cell showing
the membrane with electrodes and
the gas diffusion layer on both sides.
Source: Carbon Trust.

use hydrogen as the fuel. On the anode, hydrogen molecules are split into protons and electrons:

2H2 → 4H+ + 4e−, (1.1)

The protons then migrate through the polymer membrane. After arriving at the cathode, they

meet with oxygen from air on the surface of a catalytic nanoparticle from a precious metal,

most often platinum, and form water which leaves the system. This process is known as the

oxygen reduction reaction (ORR):

O2 + 4H+ + 4e− → 2H2O. (1.2)

The operation of fuel cell electric vehicles (FCEVs) produces zero emissions (only water)

and so this technology is a perfect candidate for superseding internal combustion engines in

order to meet the target to cut the CO2 emissions by 80% by 2050. The production of hydrogen

is thus the only source of CO2. This is discussed in the following sections.

The key advantages of FCEVs are fast refuelling in the order of minutes, comparable with

ICEs and in contrast to battery electric vehicles (BEVs), and the driving range rivalling ICEs

and by far superseding that of the BEVs. Hence, this technology is ideal for long-haul transport

of goods (trucking), which accounts for a significant portion of emissions and which cannot

afford for economic reasons long refuelling stops. Under an optimistic scenario, FCEVs could

cover as much as 50% of the transport market, the rest being split into BEVs, plug-in hybrids

and ICEs.9

1.1.2 Practical challenges

To make FCEVs competitive, several obstacles need to be overcome. The most important one is

price, which is, as of 2018, still relatively high compared to alternatives. The primary cause is the

high price of platinum-group-metals (PGM) used as a catalyst for the ORR. Cost is considered

the main driver of mass adoption and the cause of the current (2018) rather limited traction

of FCEVs.10 Secondly, the hydrogen infrastructure is still incomparably sparse compared with

the network of conventional petrol stations or battery charging points.

9See Fig. 6 in the McKinsey report available at http://www.eesi.org/files/europe_vehicles.pdf
10See this FT opinion (under paywall).

3
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Hydrogen production and distribution

An important obstacle in mass deployment of FCEVs in transport is the production and dis-

tribution of hydrogen as the fuel. In 2012, about 60bn kg of hydrogen were produced annually,

and this number is expected to rise roughly twofold if a significant portion of the vehicle market

will be covered by FCEVs. This brings about new challenges in production scaling.11

Currently, about 95% of hydrogen is produced via steam-methane reforming.12 This process

requires temperature of 700-1100 ◦C, pressure of 3-25 bar, and nickel as a catalyst, and involves

two steps. Firstly, steam-methane reforming reaction (endothermic, ∆H = 205 kJ/mol):

CH4 + H2O→ CO + 3H2, (1.3)

and, secondly, water-gas shift reaction (exothermic, ∆H = −41 kJ/mol):

H2O + CO→ CO2 + H2. (1.4)

Clearly, this production route requires natural gas and so is not a clean technology per se. Hence,

a gradual transition to alternative routes, such as water electrolysis, is anticipated, assuming

electricity would come from renewable sources.13 Alternatively, in the future the CO2 from

reforming might be captured and stored, or converted to some industrially useful product.

Price of the catalyst

The ORR in a fuel cell, in which the protons, electrons and oxygen from air meet to produce

water, requires catalysts for full performance. This process is inherently inefficient due to the

relatively low temperature and pressure (compare with the steam-methane reforming conditions

above). Hence, expensive PGMs need to be used. (Fig. 1.2 shows the prices of precious metals.)

To make FCEVs competitive in terms of price, it is key to figure out how to (i) reduce the amount

of catalyst required for smooth operation, or (ii) find alternative metals or alloys delivering

similar performance at reduced cost.

The most common catalyst used in FCEVs today is platinum (Pt). The price of a gram of

Pt is 29.6 USD, only about 30% less than the price of gold.14 Currently, one FCEV requires

about 17 g of Pt; in order to compete with ICEs, this number should fall to 4 g.15

Only 150 tonnes of platinum are mined annually, and estimated world reserves are at 30000

tonnes.16 Assuming about only 10 g of Pt per vehicle and annual production of 37 million of

FCEVs around 2050, this would require mining 370 tonnes of Pt per year for this purpose only.

Besides increasing the mining rate, Pt from the used FCEVs would have to be recycled.

Having described the challenges in FCEV mass deployment, we now discuss how computer

modelling can help addressing them.

11For more information, see the report by the Carbon Trust.
12https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming
13https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis
14Source: Money Metals Exchange, accessed 4 April 2018.
15Source Carbon Trust.
16PGM market report, May 2017.
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Figure 1.2: The price of platinum
and other precious metals in the
past year from 10 May 2018. The
price units are USD/ounce, where
an ounce is equal to 28.34 g. Source:
http://www.platinum.matthey.

com/prices/price-charts

Figure 1.3: A bird’s-eye view of
materials methods, from electronic
structure up to the continuum.
Source: http://www.icams.de/

content/research/

1.2 The role of computer modelling

Computer simulations can provide insight into microscopic mechanisms at a fraction of cost

and time required for experiments. Over the past decades, an immense number of methods has

been developed to cover a wide range of length and time scales and levels of precision. There

is a well-established hierarchy of computational methods in physics, chemistry, material science

and engineering, ranging from those able to capture at a few atoms, through aerodynamics

describing flows around airplanes, up to schemes to model galactic evolution. Here, we briefly

describe the methods applied in the microscale.

1.2.1 Quantum

The aim is to obtain as precise picture about the behaviour of a system as possible. Start-

ing from the theoretical bottom, many-body electronic states governed by a certain effective

Hamiltonian17 occupy the Fock space. The Hamiltonian can be expressed as a matrix in this

space and diagonalised to obtain exact ground and excited states,18 a process known as exact

17The best example of such Hamiltonian is the Hubbard model.
18Exact within the given basis. In practice, the basis of, e.g., a hydrogen atom, is infinite.
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diagonalisation.

Due to exponential scaling, current state-of-the-art exact diagonalisation simulations on

largest computer clusters can accommodate up to 50 atoms. More benevolent and approximate is

density-matrix renormalisation group (DMRG), which now also starts to appear in chemistry.19

To generate more practical results, one has to resort to all sorts of approximations. Quantum

chemistry offers a wide range of methods, starting from the mean-field Hartree-Fock theory,

which does not account for electron correlation due to Coulomb repulsion, up to coupled cluster

(CC) and configuration interaction (CI), which an adjusted form of exact diagonalisation. The

scaling of these methods, N6 to N8 for CC and N6 to N10 for CI with the number of orbitals

(electronic states) N , is still unfavourable for systems of about 100-1000 atoms, and so both of

these have very limited use in practical simulations.

To capture real material properties and potentially sample the phase space to compute

entropy and free energy, one needs to reject these wavefunction methods and resort to density

functional theory (DFT), which scales as N3. However, even DFT is expensive and systems of

100-1000 atoms are accessible only on supercomputers, especially if dynamics is involved.

1.2.2 Molecular dynamics via force fields

To overcome the computational expense of these ab initio (quantum) methods and get enough

sampling, either in the form of the number of particles (atoms or electrons) or simulation time

(amount of phase space visited), atomistic force fields are the next step. For each particle i,

which interacts with its neighbours j via a pre-defined potential V (r), the dynamics is generated

by simply solving Newton’s equations:

mai = −
∑
j 6=i
∇iV (rij). (1.5)

The function V (r) is expected to capture the van der Waals attraction at longer scales and

Pauli repulsion at shorter scales, as well as bond, angle, and dihedral/torsional interactions to

represent chemical bonds. Most common force fields are shown in Table 1.2.

A typical number of atoms in a MD simulation using force fields is 10k-100k, timestep is 1

fs, and simulation time several ns. This can be achieved on computers of several cores, and it

is possible to scale up to millions of atoms on supercomputing clusters.

1.3 Coarse-graining and dissipative particle dynamics

To target even larger length and time scales than those allowed by the classical MD, we need to

resort to coarse-graining, which means grouping a few atoms or molecules and evolving these as

an effective particle via Newton’s equations. A popular representative, on which the research

in this thesis is built, is dissipative particle dynamics (DPD), which uses soft potentials and the

bead-spring model of polymers to accelerate the dynamics.

In DPD, a few molecules are packed at the start of the simulation into a particle (bead),

19For example: arxiv:1407.2040.
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Type Name Potential energy V (r)

Pair Lennard-Jones 4ε
[(

σ
r

)12 −
(
σ
r

)6]
Buckingham Ae−r/ρ − C

r6

Pair many-body EAM Vi = fα(
∑

j 6=i ρβ(rij)) + 1
2

∑
j 6=i φαβ(rij)

Tersoff [Complex]

Bond Harmonic k(r − r0)2

Morse D(1− ea(r−re))2

FENE −1
2K∆r2

max ln

[
1−

(
r−r0

∆rmax

)2
]

Table 1.2: Most common force fields for pair and bond interactions. Standard sources: [2, 3].

and these beads are made to interact via a quadratic potential with cutoff rc:

V (r) =

arc
2

(
1− r

rc

)2
, r ≤ rc,

0, r > rc.
(1.6)

This simple force field is controlled by only one parameter, a, in the case where the reduced

units rc = 1 are used.

First introduced by Hoogerbrugge and Koelman to simulate suspension flows for the petroleum

industry [4, 5], DPD was subsequently theoretically substantiated by Español and Warren, who

linked it to the Fokker-Planck equation and the fluctuation-dissipation theorem [6]. The most

influential contribution is by Groot and Warren (GW) [7], who slightly reformulated DPD and

demonstrated how to apply it to soft matter systems by developing a protocol for calculating

interaction parameters between like particles from compressibility and those between unlike

particles from the Flory-Huggins theory. Later, it was demonstrated that DPD is capable of

preserving hydrodynamics [8].

In the past 20 years since the appearance of the GW paper, DPD has been extensively

applied to multiple families of soft matter systems, most static [9] and dynamic properties

of polymers [10], phases of block copolymers [11], surfactant solutions [12, 13], and ionomer

membranes [11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. For a more thorough summary of

the method we recommend the reviews [26, 27].

1.3.1 The DPD force field

As mentioned above, the key idea behind the fast dynamics of DPD is to combine a few molecules

into a bead. For simplicity, beads have approximately the same mass m and diameter rc. Then

we can define reduced units rc = 1,mc = 1, kBTc = 1, where Tc is some chosen reference

temperature, e.g. 300 K. The conservative force between beads derived from eq. (1.6) is:

FC(rij) =

a(1− r)r̂ij , r ≤ 1,

0, r > 1,
(1.7)
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where rij = ri − rj , r = |rij | is the distance, r̂ij = rij/r is the unit vector in the direction of

the interaction, and a is the only interaction parameter. This force is complemented with a

Langevin-type thermostat providing a dissipative and a random force:

FD(rij) = −γw(r)2(r̂ij · vij)r̂ij , (1.8)

FR(rij) = σw(r)
θ√
∆t

r̂ij , (1.9)

where γ is the friction parameter, σ the noise parameter, vij = vi − vj a mutual velocity, θ

a Gaussian random number with zero mean and unit variance, i.e. θ ∈ N (0, 1), and ∆t a

simulation time step. The term θ
√

∆t represents the Wiener process [28].

There is a freedom to choose the weight function w(r) in the dissipative and random term [6].

For simplicity, a linear function has always been chosen:

w(r) =

(1− r), r < 1,

0, r ≥ 1.
(1.10)

Hence, the conservative potential between the beads in reduced units is quadratic:

V (r) =

a(1− r)2 / 2, r < 1,

0, r ≥ 1,
(1.11)

σ and γ are essentially a single quantity, as they are related via the fluctuation-dissipation

theorem, a general feature of all thermodynamic systems: σ =
√

2γkBT . In practice, σ is chosen

to be 3, and setting kBT = 1 yields γ = 4.5.20

To simulate polymers, one can add bonds between beads and thus obtain a bead-spring

model. A common example of a chemical bond is a harmonic spring:

FB
ij = −k(r − r0)r̂ij . (1.12)

where k is stiffness and r0 equilibrium distance. Sometimes, angular terms are used as well [29].

The dynamics is then generated from the Newton’s equation of motion:21

dvi
dt

=
∑
i 6=j

FC
ij + FD

ij + FR
ij + FB

ij . (1.13)

Equilibrium properties

As mentioned above, DPD preserves hydrodynamics, i.e. the motion of beads follows the Navier-

Stokes equations. This is an important advantage over e.g. the Brownian dynamics as another

representative of coarse-grained methods [8]. On the other hand, a well-understood disadvantage

of DPD, and soft potentials in general, is inaccurate prediction of dynamic quantities, such as

the self-diffusivity [26]. We will provide a more thorough investigation of the dynamic behaviour

20Since in practice kBT = 1 is always used, we will henceforth refer to γ only and save the letter σ for surface
tensions.

21There is no mass in the equation, since all particle masses are approximately equal to the mass scale, mc = 1.
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in Chapter 4.

GW showed that the DPD potential leads to the quadratic equation of state (EOS), which

holds for number densities ρ > 3 (setting kBT to kBTc = 1):

p = ρ+ αaρ2, (1.14)

where α = 0.101 is a fitting constant.

To ensure that the simulated liquid corresponds to the experiment, the interaction parameter

a is derived from compressibility defined as κ = −1/V (∂V/∂p)T [7], which can be derived from

the EOS:

κ−1 = ρ

(
∂p

∂ρ

)
N,T

= ρ+ 2αaρ2. (1.15)

Hence:

a =
κ−1 − ρ

2αρ2
, (1.16)

where κ−1 is experimental compressibility22 of the simulated liquid. Considering, e.g., water,

for which κ = 4.54× 10−10 Pa−1, yields a = 25 in reduced units.

On top of the usual parameters to fine-tune the simulations, such as repulsion a and friction

γ, CG simulations offer another freedom, which is the number of atoms/molecules. This CG

degree offers a trade off between speed and spatial or temporal resolution. However, since

this is only a theoretical construct, measurable quantities, such as temperature, pressure or

compressibility, must remain invariant with respect to it.

In DPD, this has been a topic of discussion for years. Finally, Füchslin et al. [30] have shown

that all simulation parameters remain scale-invariant in reduced units, i.e. if water serves as

the solvent, a = 25 should always be used regardless of the number of molecules in a bead.

CG degree only affects the way the quantities of interest are converted to the SI units after the

simulation.

Mixtures in DPD

The derivation of cross interaction terms ∆aij between unlike beads representing specific mate-

rials is based on the framework of the Flory-Huggins theory [31, 32]. GW showed that the EOS

can be matched to this theory [7], and derived that the relationship between excess repulsion

∆a depends approximately linearly on the χ-parameter, a universal property of mixtures, at

density ρ = 3 and in the regime when 2 < χ < 10 covering common mixtures:

∆a = 3.27χ. (1.17)

This approximation was further improved on by Wijmans et al. [33], who used a slightly more

precise quadratic fit. Furthermore, this coefficient of proportion increases with the density.

The scaling of ∆a with the CG degree Nm has so far been unresolved. We derived (see

Chapter 4) that, in order to keep the surface tension scale-invariant, the χ-parameter must

22Note that inverse compressibility is in fact the bulk modulus.
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Figure 1.4: Comparison of standard and many-
body DPD force fields for two isolated particles
with parameters a = 25 and A = −40, B = 25
respectively. The many-body DPD force field
has a local density term, so in case of a liquid the
repulsion would be even higher due to increased
value of the local densities.
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scale as:

χ(Nm) = χ(1)N−0.2
m (1.18)

Several ways to calculate the χ-parameter for a specific mixture have been proposed and

tested. Common choices are a simple relation based on molar volume Vm and Hildebrand

solubility parameters δi, where i denotes species:

χij =
Vm

RT
(δi − δj)2. (1.19)

An alternative is a more complex Monte Carlo sampling developed by Fan et al. [34] and applied

in [17, 14].

In conclusion, DPD is a very simple but powerful method to efficiently simulate soft matter

systems. Unfortunately, due to its purely repulsive force field, it cannot simulate multiphase

environments and porous structures, such as the catalyst layer of a fuel cell. To overcome this

deficiency, we now introduce a modified version of DPD.

1.4 Many-body dissipative particle dynamics

Since the inception of DPD there has been a motivation to modify it to describe a wider range

of phenomena, such as the liquid-vapour coexistence. The result is the many-body version of

DPD.

First presented by Pagonabarraga et al. and Trofimov et al. [35, 36] and thoroughly explored

by Warren [37], the many-body DPD (MDPD) builds on top of the classical DPD by adding

a density-dependent interaction with a different length cutoff rd < 1. This modification leads

to an EOS with a van der Waals loop, which enables the formation of a liquid-vapour interface

and increases the applicability to free surfaces. Compared with standard DPD, which allows

only repulsive interactions resulting in gas-like behaviour of spreading to the whole simulation

cell, MDPD, which has an additional attractive force term, can support simulations in which

the bead density varies widely across the cell.

Adopting again reduced units rc = mc = kBTc = 1, as in standard DPD, the MDPD force

field is:

Fij(rij) = Aw(rij)r̂ij +B(ρ̄i + ρ̄j)wd(rij)r̂ij , (1.20)

10



CHAPTER 1. INTRODUCTION

where A and B are interaction parameters, r = |rij |, r̂ij = rij/r. w(r) and wd(r) are the weight

functions differing from one another only by the cutoff:

w(r) =

1− r, r ≤ 1,

0, r > 1,
(1.21)

wd(r) =

1− r/rd, r ≤ rd

0, r > rd.
(1.22)

While the force is pairwise, the energy is inherently many-body and cannot be decomposed into

pair contributions. A visual comparison of the two force fields is shown on Fig. 1.4.

The local density ρ̄i of particle i is defined such that it smoothly decreases from maximum

value at zero separation down to zero at r = rd:

ρ̄i =
∑
j 6=i

15

2πr3
d

wd(rij)
2 for rij ≤ rd, (1.23)

where we stress that index j runs over all the particles, not just those of the same species as ith

particle. Also, the local density is normalised, such that
∫∞

0 ρ(r)4πr2 dr = 1. In the simulation,

the system is thermostatted as in standard DPD via the dissipative and random force.

Warren showed that for A < 0 and B > 0 this force field leads to the liquid-vapour coexis-

tence, and derived the EOS [37]:

p = ρkBT + αAρ2 + 2αBr4
d(ρ3 − cρ2 + d), (1.24)

with fitting constants α = 0.1, c = 4.16, and d = 18. This EOS was revisited by Jamali [38],

who came with a slightly different and arguably more precise form:

p = ρkBT + αAρ2 + 2αBr4
d(ρ3 − c′ρ2 + d′ρ)− αBr4

d

|A|1/2 ρ
2, (1.25)

where c′ = 4.69 and d′ = 7.55. In practice, the difference between these two EOS’s is small for

typical liquid densities, e.g. at A = −40, B = 25, ρ = 6 it is about 5%.

In standard DPD, the simulation density is decided a priori, most often as the lowest possible

number at which the EOS is still quadratic, ρ = 3. This value then remains fixed throughout

the simulation by the constraint of constant volume. However, the density in an MDPD liquid

can arise naturally by choosing the parameters A, B and rd at which the liquid forms a droplet

with a surface. In this sense, it is more resemblant of a classical molecular dynamics force field.

In fact, the equilibrium density of an MDPD liquid can be fully determined A and B and the

many-body cutoff rd.

In varying A,B, rd there are several obvious constraints. Firstly, we choose 0 < rd < 1,

A < 0, B > 0 to make the interaction attractive near r = 1 and repulsive at the core near r = 0.

In fact, to ensure that F (0) > 0, it follows from eq. (1.20) that B > −A2πr3
d/15. Even values

close to this boundary might lead to poor temperature conservation. Henceforth we will call

this a no-go region.
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Many-body DPD has so far been applied only to very simple systems in order to probe

vapour-liquid coexistence, such as pure water [39, 40, 41] or a mixture of salt and water [42].

Polymer behaviour briefly was explored, including the computations of end-to-end distance and

radius of gyration and surface tension and investigation of the coil-globule transition [43], and

surface angles and interactions [10]. In all the cases, the interaction parameters (A, B, rd)

were guessed rather than rigorously matched to real liquids. Furthermore, the scaling with CG

degree derived by Füchslin et al. [30] was not enforced in the following publications [42, 40, 41].

Resolving these problems is the topic of Chapter 6.

Having described the simulation methods, we now turn to the discussion some practical

aspects of atomistic computer simulations, which might be valuable for students beginning in

the field.

1.5 Technical aspects of a simulation

To gain a feel for atomistic or CG simulations, it is vital to understand the practicalities before

the start. Here, we will restrict the discussion to atomistic simulations using force fields.

Nowadays, one does not need to write one’s own MD simulation package, as several large-

scale and heavily optimised codes are available for free, including LAMMPS,23 Gromacs,24

NAMD25 or DL POLY26. Indeed, it would be extremely inefficient, even futile, to reproduce

the thousands of man-hours that were invested into the development of these packages. Instead,

a viable route for testing new ideas is to add or modify the code of already existing packages.

Inputs and outputs

An atomistic simulation cannot start without well-defined inputs. These are:

• particle positions, types, masses and charges (here, “type” means not only atomic type,

but a type of atom in a specific chemical environment),

• bonds as connections between two or more particles,

• force field and its parameters between distinct particle and bond types,

• initial box size,

• thermodynamic ensemble, most often NV T or NpT ,

• global simulation details, such as time step, number of steps, and integration method.

A simulation typically outputs one or more of the following:

• snapshots of particle positions (trajectories), velocities and forces,

• total pressure or the pressure tensor,

23http://lammps.sandia.gov
24http://www.gromacs.org
25http://www.ks.uiuc.edu/Research/namd/
26https://www.ccp5.ac.uk/DL_POLY_C
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• energies (kinetic, van der Waals, bond, electrostatic).

From these outputs a range of experimental observables can be computed, either automatically

within the software package or at the end by manual post-processing.

i. density and density profiles for a given atom type,

ii. mean-square displacement, which yields self-diffusivity, assuming steady-state Einstein be-

haviour:

D = lim
t→∞

〈(r(t)− r(0))2〉
3 d t

, (1.26)

where d is the number of dimensions,

iii. surface tension, which can be computed from pressure tensor components (assuming the

interface is across x-coordinate):

σ =
L

2

(
〈pxx〉 −

〈pyy〉+ 〈pzz〉
2

)
, (1.27)

iv. radial distribution function (RDF), which is a normalised histogram of distances of pairs

of atoms, and structure factor, an observable of X-ray diffraction experiments that can be

computed from RDF as follows for a 3D system:

S(k) = 1 + ρ

∫ ∞
0

[(g(r)− 1]
sin kr

kr
4πr2dr. (1.28)

v. autocorrelation functions yielding self-diffusivity, vibrational spectrum or electric conduc-

tivity, if charges are present. For example, self-diffusivity can be computed from the velocity

autocorrelation function (VACF):

cvv(t) = 〈v(0) · v(t)〉, D =
1

3

∫ ∞
0

cvv(t)dt, (1.29)

vi. chemical potential in excess to the ideal µid = −kBT ln(ρλ3), where ρ is number density

and λ de Broglie wavelength, which can be computed via Widom particle insertion [3]:

µex = −kBT ln〈e−∆UN,N+1/kBT 〉. (1.30)

Tools for pre- and post-processing

Before the simulation, one must (nearly) always create the input files containing the coordinates

of the atoms. Here, I provide a short overview of generating an input file for LAMMPS (other

packages have workflows that are conceptually similar but different in details). Unfortunately,

each package has a different format for the input file, and I have not found so far any tool for a

simple conversion between these. The only common link is the use of ancient formats pdb and

psf.

For simpler systems, one can generate the input file manually using Python by randomly

generating particle positions in a box and appropriately formatting it for a given package. For
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more complex systems, Packmol27 automatically packs a number of molecules into a pre-defined

volume such that they do not overlap too much. Consequently, charmm2lammps assigns the force

field parameters with the types in the coordinate files (in pdb and psf format) and creates a

LAMMPS-compatible data file containing initial coordinates and bonds. Should one want to

create a lattice, this can be achieved very simply within the LAMMPS input file.

The emergence of high-throughput simulations for materials screening have brought about

the need for simulation workflows to systematically keep track of what has been done and what

is to be done. Two such tools are now available: AIIDA28 and Caf29.

To post-process the output for the sake of computing experimental observables such as RDF

or self-diffusion constant, one can exploit excellent scientific computing infrastructure created

around Python in the form of Numpy, Scipy, Matplotlib, Pandas and many other packages.

Finally, let me mention the obvious. A most suitable environment for atomistic simulations or

any scientific computing in general is Linux together with the command line (Bash) and tools

like Sed and Awk. The command line in Linux is an indispensable tool for any sophisticated

scientific work, and many scientific packages are built for easy installation in Linux.

Miscellaneous points

Having clarified the technical aspects, here I summarise a few technical points to mention should

anyone want to write an MD package on their own to test ideas.30 Even if one would not, these

things do not come naturally and should be mentioned, as they are not obvious at the beginning

of a project. These points are purely subjective, and there is no order of importance. A Python

code snippet is provided where appropriate.

1. Potential (e.g. LJ) should be finite-ranged for the sake of efficiency, i.e. should have some

cutoff. The energy and force should be made continuous at the cutoff. Choosing the cutoff

rc, beyond which the potential is set to zero, the continuity in energy can be enforced by

the following shift:

Ve−shift(r) =

VLJ(r)− VLJ(rc), r ≤ rc,

0, r > rc.
(1.31)

To enforce continuity in force at r = rc, we need to shift derivatives as well:

Vf−shift(r) = VLJ(r)− VLJ(rc)− V ′LJ(rc)(r − rc). (1.32)

2. Periodic boundary conditions (PBC) should be enforced to account for the continuum

and eliminate potentially unphysical effects of the walls. This involves the search for the

nearest neighbours at each timestep [44].

”””

b o x : ( 3 , 3 ) m a t r i x , s i m u l a t i o n b o x

27http://m3g.iqm.unicamp.br/packmol/home.shtml
28aiida.net
29github.com/azag0/caf
30... and which I had to learn the hard way.
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i n v b o x : ( 3 , 3 ) m a t r i x , i n v e r s e s i m u l a t i o n b o x

r i j : ( 3 , 1 ) v e c t o r o f d i s t a n c e o f two atoms

”””

def pbc(rij, box, inv_box):

inv_box = np.linalg.pinv(box)

g = inv_box @ rij

g = g − np.round(g)
r_new = box @ g

return r_new

3. Initial velocities should be sampled from normal distribution with zero mean and variance

equal to kBT/m, where kBT is thermal energy and m particle mass. Also, total momentum

should be set to zero:

”””

N : number o f p a r t i c l e s

”””

V = np.random.randn(N, 3) ∗ np.sqrt(kB ∗ T / m)
V −= np.sum(V, 0) / N

4. To account for electrostatic forces from the charges, Ewald summation is used [3].

5. For integration, use Verlet scheme, as RK4 is not simplectic and too inefficient:

for i in range(1, Nsteps−1):
a = force(r[i]) / m # compute a c c e l e r a t i o n

r[i+1] = 2 ∗ r[i] − r[i−1] + a ∗ dt ∗∗2

6. Pressure in a simulation box with PBC is calculated via the virial theorem [3]:

p = ρkBT +

〈
1

3V

∑
i<j

Fij · rij
〉
. (1.33)

7. Prior to an MD simulation, the energy of the box should be minimised to eliminate any

divergences due to particle overlap. Minimisation is essentially the same as a run at a

very low temperature.

8. Bonds and angles in molecules are often fixed by SHAKE or RATTLE algorithms [3] in

order to eliminate fast degrees of freedom and so enables a greater time step. A common

example are the hydrogens in a water molecule.

Having addressed the theory and practice of computer simulations, let us now discuss how these

can be used in gaining insight into the behaviour of hydrogen fuel cells.
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Figure 1.5: TEM image of the catalyst layer
of a hydrogen fuel cell. The large round grey
structures are the carbon support, and the small
black dots are Pt nanoparticles. Around these
is the layer of thin Nafion film (not visible on
this figure). Source: [55].

1.6 Modelling membrane electrode assemblies

1.6.1 Membrane

At the heart of each FC is a perfluorosulfonic acid (PFSA) membrane, which serves as an

electrode separator. Nafion, the most prominent representative, was invented by DuPont in late

1960s, followed by derivations synthesised by other companies.

There have been ongoing debates about the structure and morphology of Nafion and other

perfuorosulfonic acid (PFSA) membranes summarised in a number of review articles focusing

on structure [45], transport properties [46, 47, 48], and overall behaviour [49].

In trying to understand the nanoscopic structure of the water-rich ionic domains in PFSA

membranes, many different models have been proposed. The first was the cluster-network model

of Hsu and Gierke [50]. Whilst unable to describe quantitatively the X-ray scattering from

Nafion, this model captures the essential qualitative feature of nanophase separation between

ionic and fluorocarbon phases with a characteristic length scale of 3 to 5 nm. Gebel et al. [51]

claimed that a fibrillar model, in which extended fluorocarbon chains decorated by ionic side

groups and water, gave a better match to small-angle X-ray (SAXS) data. In 2008, Schmidt-

Rohr proposed a parallel cylinder model [52], claiming that the SAXS scattering curve best

supports a system where the backbone forms cylinders a few Angstroms wide and a few hundred

nanometres long. Subsequently, Kreuer refuted Schmidt-Rohr’s model and argued for flat and

narrow water domains [53]. The discussion about the morphology is still far from resolved, but

recent mesoscale modelling results tend to favour structures which more resemble ion-clustered

models for bulk ionomer [54].

Most of the studies carried out so far have focused on bulk Nafion. However, studies of its

role within catalyst layers in real membrane-electrode assemblies are limited. The hydrogen

oxidation and oxygen reduction reactions take place within the anode and cathode catalyst

layers respectively, which are complex structures comprising catalyst nanoparticles, thin films
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Figure 1.6: A more detailed schematic view of
Fig. 1.5 showing the structures in the catalyst
layer on the scale of 1 to 10 nm.

of ionomer, and free space, through which reactant gases flow in and product water, unreacted

gases, and water vapour flow out.

It has been found that Nafion confined into a thin film has a structure vastly different from

the bulk. The effect of confinement on structure has been experimentally studied by the NIST

group using X-ray and neutron reflectometry. Dura et al. observed lamellae in a hydrated Nafion

thin film deposited on SiO2 surface, but not on Pt or Au surfaces [56]. Similarly, DeCaluwe

et al. discovered oscillations in composition between layers rich in water and those rich in

fluorocarbon groups, effectively producing a lamellar structure close to the Nafion-substrate

interface [57]. Eastman showed that a significant change in properties occurs at film thicknesses

below 60 nm [58]. In a different study [59], a Nafion thin film deposited on a silica substrate and

explored using neutron reflectivity revealed an anisotropy in that water was ordered in layers

parallel to the substrate. Modestino et al. observed thickness-dependent proton conductivity in

a Nafion thin film [60]. All these studies suggest that the ionomer films within catalyst layers

have very different structure and properties to bulk membranes. Interpretations based on the

assumption that catalyst layer ionomer behaves like very thin membrane material are likely to

be misleading.

Many simulations have been done on bulk membranes using various theoretical frame-

works [61]. Among these, dissipative particle dynamics played a prominent role due to its

fast equilibration and ability to cover a system size of several tens of nanometres, a length scale

necessary to observe the effects of water clustering. The most prominent studies have been car-

ried out by Yamamoto & Hyodo [17], Wu et al. [14, 15, 16], and Dorenbos et al. [21, 22, 24, 19,

25, 18, 23, 62]. All the workers were been able to reproduce structures qualitatively resembling

the cluster-network model, with water cluster size of several nanometres, demonstrating that

mesoscale methods offer a reliable insight into complicated polymer-solvent systems.

In comparison to bulk ionomers, there have been far fewer attempts to model a thin film

version. Kendrick et al. compared IR spectroscopy of a Nafion thin film deposited on a Pt

{111} surface with DFT calculations [63]. Nouri-Khorasani used classical molecular dynamics
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Figure 1.7: The polarisation curve
showing the largest voltage losses.
The kinetic loss is due to the
slow oxygen reduction reaction.
Source: [68].

to calculate hydronium ion distribution and self-diffusion of water in a nanochannel [64] as well

as in a film on a PtO substrate [65]. Borges used the same method to gain insight into the

hydrophobicity of Nafion surface [66, 67]. On the mesoscale level, Dorenbos et al. simulated

Nafion confined by carbon surfaces at various hydrophobicities, which were controlled by the

solubility parameter [20], revealing anisotropy in water diffusion, with a greater tendency for

water to move parallel to the film. The authors claimed that the increased hydrophobicity of

the carbon increased this anisotropy.

1.6.2 Nanoparticles and catalysis

Heterogeneous catalysis, where the phase of the catalyst is different from the phase of the

catalysed compound, is one of the central topics of trillion-dollar industries producing oil and

gas, fertilisers or food. Generally, it is performed under extreme temperatures (700-1000 ◦C)

and pressures (around 20 bar).

Central to fuel cell research is the ORR, in which hydrogen protons from the membrane

join the electrons from the outer circuit and together react with oxygen from air to form water.

For practical purposes, the ORR in FCEVs happens at nearly ambient conditions (atmospheric

pressure and temperature of 80 ◦C), which are far less suitable than those in, e.g., oil refineries,

and hence is the main rate-limiting step in the overall FC performance.

Even though it is difficult to break this process down into constituents and figure out their

individual contributions towards the overall performance, the consensus is that ORR taking

place at the cathode side of the catalyst layer is responsible for the most significant operational

voltage drop of a single MEA from the theoretical value of 1.23 V (Fig. 1.7) [69]. Breaking

down this process, there are several candidate suspects: the chemical constitution or the size of

the catalytic nanoparticles (NP) as well as the NP support, the coverage of the NP by a pool

of water preventing the access of oxygen to the NP surface, or some complex interplay of the

ionomer covering the NP with a pool of water right at the interface.

Catalysis takes place on the surface of the NPs. Hence, the basic aim of catalyst design

is to make the NPs as small as possible, in order to maximise the surface to volume ratio as

well as minimise the amount of inactive but expensive atoms at the core of the NP. However,
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Figure 1.8: Experimental evolution of NP nanoframe synthesis. Source: [76].

if the NP size is too small, the NPs tend to wander around the support and merge together (a

phenomenon known as sintering), thus reverting the effort.

Several routes have been explored to address this challenge [68, 70]. One possibility to save

expensive Pt is to create alloyed NPs, where the core is composed of a cheaper metal and only

the shell would predominantly contain active PGM [71, 72, 73, 74, 75]. A heavily explored

example is an alloy Pt3M, where M is Ni, Co, Fe, Ti or V [72]. Another way is to create NP

frames, thus maximising the surface area [76] (see Fig. 1.8). Finally, one can also a search for

a fundamentally new metal as a catalyst to supersede Pt. Lefèvre et al. synthesised an porous

iron-based catalyst on carbon support approaching the performace of Pt NPs [77].

Despite the dramatic progress in catalyst design in the past few decades, there is plenty

of scope for improvement. Materials simulations are either imperfect, if classical force fields,

such as the embedded-atom model, are used, or expensive, if quantum-resolved simulations,

such as the DFT, are employed. This obstacle could be overcome by new force fields with

parameters machine-learned from DFT but with simulation complexity in the same order as

classical molecular dynamics [78, 79, 80, 81, 82]. A systematic computational screening of a

range of possible combinations might uncover unexpected catalytic alloys.

1.7 The scope of this thesis

This thesis attempts to tackle a small subproblem in the grand scheme of enabling the fuel cell

technology to enter the transport industry. We devise and employ mesoscale simulation methods

to gain insight into the behaviour of the thin ionomer films covering the carbon support and

platinum nanoparticles in the catalyst layer. We first apply standard DPD to a thin Nafion film

confined from both sides by carbon and quartz support (Chapter 2). Consequently, we devise

a parametrisation method for many-body DPD to be able to simulate the free-space setting of

a thin Nafion film on a carbon support, which can be directly compared with experiment and

expected to capture the real behaviour of the catalyst layer. Finally, we outline possible avenues

in future research based on the ideas presented in this thesis and the accompanying papers.
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Chapter 2

Mesoscale simulations of confined

Nafion

A weighty argument for the intellectual

is the most ordinary slap in the face.

Varlam Shalamov

Here we present simulations of thin Nafion films, investigating the effects

of confinement on the water diffusivity and clustering. Exploring a large

parameter space of water uptakes, film thicknesses and two confining mate-

rials, we discover that the clustering of water is strongly driven by the film

thickness as well as the hydrophobicity of the confining material, and that

the anisotropy in diffusivity increases with the decreasing film thickness.

These findings have important consequences for the movement of water in

the catalyst layer of the fuel cells, where thin Nafion films cover the carbon

support with the catalytic nanoparticles.

We explore a Nafion thin film via simulation with the aim to mimic the structure formed

within the catalyst layer at correct length scales. We investigate the changes in water mor-

phology and transport properties for a wide range of operational water contents, from a very

dry state to the membrane effectively immersed in water, and for a range of film thicknesses.

For the confining substrates, we chose carbon and quartz as two opposite extremes in terms of

hydrophobicity. Carbon is well-established as a fuel cell electrode material; quartz is often used

as a substrate in neutron reflectometry studies [57, 56, 59].

In this chapter, we first briefly review the parameterisation procedure for ionomer thin film

simulations, before presenting results on water distribution, diffusivity and connectivity. We

then relate these results to the effects of confinement as a thin film on ionomer structure.
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2.1 Simulation Method

2.1.1 Parametrisation

The general presentation of the DPD force field is provided Section 1.3; here, we summarise

only vital points.

The default interaction parameter a for all particle (bead) types is set to 25. This number

is derived from water compressibility, since water is treated as the default material in the

simulation. For simplicity, this value is kept the same for beads representing bits of PTFE

backbone and side chains. The chosen number density is the smallest possible for the sake

of simulation efficiency, ρ = 3, and the friction parameter is chosen in line with most of the

literature, γ = 4.5. The choice of these three parameters, a, ρ and γ, concludes the unique

definition of a pure DPD liquid.

The behaviour between chemically different constituents, such as water, PTFE backbone

and side chains, is accounted for by the cross interaction terms ∆aij between unlike beads.

These are derived from the χ-parameter, as the DPD equation of state can be matched to the

Flory-Huggins theory [7]. The relationship between ∆a and χ-parameter is linear: ∆a = 3.27χ

at density ρ = 3.

Several methods are available to calculate the χ-parameters. Common choices are a simple

relation based on molar volume Vm and Hildebrand solubility parameters δi of component i:

χij =
Vm

RT
(δi − δj)2, (2.1)

or more sophisticated Monte Carlo sampling developed by Fan et al. [34]. We chose the mixture

of these approaches: taking the more precise χ parameters derived by Wu et al. via the Monte

Carlo sampling, where available, and the more approximate eq (2.1) in case of the interactions

containing the substrate beads.

2.1.2 System under investigation

We set the DPD length scale rc as follows: starting from the approximate volume of one water

molecule V0 = 30 Å3, number of water molecules per bead Nm = 6 and DPD density ρ = 3, the

bead diameter for our simulation is rc = (V0Nmρ)1/3 = 8.14 Å. The box size is 40× 40× 40 (in

DPD units), corresponding to 32.5 nm in SI units and accommodating in total 192,000 beads.

The time scale τ =
√
mcr2

c/kBTc is 5.35 ps. The simulation step was set to ∆t = 0.04 τ .

One simulation ran for 40,000 steps (8.6 ns), from which the first 30,000 served as equilibration.

A few nanoseconds of equilibration are sufficient for a DPD simulation due to the softness of

the interparticle potential.

The coarse-graining degree is six water molecules per bead. Common DPD parametrizations

involve three [83] or four [17] water molecules per bead. Following Wu et al. [14] we coarse-

grained further in order to simulate larger boxes at the same computational overhead. In

contrast with the workers [18, 17], we also put three water molecules in the C bead containing

mainly the backbone and the sulfonic acid group to represent the strong binding between the

acidic group and water. Some water is thus bound to polymer chains and its movement is more
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(H2O)6 CF2SO3H . (H2O)3

OCF2C(CF3)FOCF2(CF2)6A B

CW

SubstrateE Figure 2.1: DPD beads used in
the simulation. Each polymer
chain has 15 segments, each seg-
ment has five beads. Water beads
(blue) are freely floating around.

δ (MPa1/2) χ (no units)

A B C W

A 12.7 0

B 13.6 1.23 0

C 23.0 7.44 2.70 0

W 47.8 3.36 1.53 1.48 0

E (Carbon) 25.0 1.10 0.94 0.03 3.77

E (Quartz) 35.0 3.60 3.32 1.04 1.19

Table 2.1: Flory-Huggins χ-parameters de-
fined between pairs of beads used in the sim-
ulation. Excess repulsions ∆aij = 3.27χij
were added to the default value a = 25.

restricted. The water content λ is defined as the number of water molecules per sulfonic acid

group NH2O/NSO3H+ with respect to the whole simulation box.

The polymerisation of the PTFE chain is 15 (Fig. 2.1) and each segment has five beads.

Overall our polymer-solvent system contains five bead types: A, B, C, W, and E. To get the

χ-parameters For A, B, C, and W beads, we used the data from Wu et al. [14], who employed

the method by Fan et al. [34]. Otherwise, we used eq. (2.1). The solubilities of A, B, and C

beads were taken from Dorenbos [20] and those for water, graphite and quartz were derived

from the cohesive energy density (Table 3.2). The molar volume of water in molecular form was

considered for all beads Vm = 18 cm3 mol−1, since all DPD beads are expected to have similar

size and mass. The full cross-interaction parameter is:

aij = 25 + 3.27χij . (2.2)

To understand and quantify the behaviour of confined Nafion we measured multiple char-

acteristics: distribution of water in the direction parallel to the film, clustering of water in the

film using percolation theory, and self-diffusion coefficient of the W beads.

The simulations were run in the DL MESO package [84]. Box initialisation as well as post-

processing of water distribution, diffusivity, and clustering were done using home-made Python

scripts. Two confining materials with four film thicknesses and the bulk, plus eleven water

contents, amounts to 99 different configurations in total. Each configuration was averaged over

3 to 6 independent trials differing by the random seed used for the box initialisation. The

confining substrate beads were frozen for convenience during the simulation, since the substrate

is solid and thus not expected to move on the same time scale as the thin film.
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Figure 2.2: Equilibrated boxes of Nafion thin film confined by carbon for thicknesses d =
5, 10, 15, 20 nm, respectively and the bulk, at water content λ = 16. Red: backbone (A and B
beads). Green: sulfonic acid groups (C). Blue: water (W). Grey: electrode (E).

2.1.3 Dynamics

We calculated the diffusivity via the mean square displacement (MSD) defined as

Dd =
〈|r(tf)− r(ti)|2〉

2 d (tf − ti)
, (2.3)

where d ∈ {1, 2, 3} is the dimensionality of the system. It is known that polymer systems possess

different regimes of diffusion at various time scales. We chose the initial and final times ti and

tf respectively to so as to capture the linear regime, which we identified by plotting the MSD

on a logarithmic scale. For carbon confinement, this regime takes place between 0.2 and 2τ and

for quartz between 2 and 19τ .

As a check we also recalculated the diffusivity via the velocity autocorrelation function, a

different method using bead velocities instead positions: D3d = 1/3
∫∞

0 〈v(0)·v(t)〉dt. These two

approaches yield the same results up to fluctuations, so one can remain confident in exploiting

the MSD route.

DPD is known to overstate the dynamical properties due to its very soft force field. Tto

put the water diffusion in a polymeric system into a meaningful perspective we compared all

our calculations to the diffusivity D0 = 0.3 of a pure liquid at standard simulation parameters

mimicking pure water: a = 25, ρ = 3, and γ = 4.5.

2.2 Results

2.2.1 Water distribution

Our first step is to understand how water distribution in Nafion changes under the influence of

confinement. Visual observation of the equilibrated boxes shows that clustering is established

for carbon as well as quartz substrate (Fig. 2.2) for all water contents. For quartz, water is

more dispersed in the backbone phase. A certain fraction of water has leaked into the confining

material, which is expected due to the soft interparticle potential.

Despite the clustering created under the confinement of carbon, the size and structure of

water clusters varies with the amount of water or film thickness. This is revealed by plotting

the water distribution in the direction perpendicular to the Nafion film for carbon (Figs. 2.3)

and quartz (Figs. 2.4). Here we observe different numbers of peaks in the water profile for each

pair of (d, λ). For low film thickness 5 nm, increasing water content creates a massive peak in

24



CHAPTER 2. MESOSCALE SIMULATIONS OF CONFINED NAFION

10 20 30
x (nm)

0

1

2

3

D
en

si
ty

d = 5 nm, λ = 4

10 20 30
x (nm)

0

1

2

3

D
en

si
ty

d = 10 nm, λ = 4

10 20 30
x (nm)

0

1

2

3

D
en

si
ty

d = 15 nm, λ = 4

10 20 30
x (nm)

0

1

2

3

D
en

si
ty

d = 20 nm, λ = 4

10 20 30
x (nm)

0

1

2

3

D
en

si
ty

d = 10 nm, λ = 4

10 20 30
x (nm)

0

1

2

3

D
en

si
ty

d = 10 nm, λ = 10

10 20 30
x (nm)

0

1

2

3

D
en

si
ty

d = 10 nm, λ = 16

10 20 30
x (nm)

0

1

2

3

D
en

si
ty

d = 10 nm, λ = 22

Figure 2.3: Top row: Profiles of water (blue) and PTFE backbone (red) confined by carbon for
a range of film thicknesses d = 5, 10, 15, 20 nm at water content λ = 4. Bottom row: Profiles
of water (blue) and PTFE backbone (red) confined by carbon for a range of water contents
λ = 4, 10, 16, 22 at film thickness d = 10 nm.
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Figure 2.4: Top row: Profiles of water (blue) and PTFE backbone (red) confined by quartz for
a range of film thicknesses d = 5, 10, 15, 20 nm at water content λ = 16. Bottom row: Profiles
of water (blue) and PTFE backbone (red) confined by quartz for a range of water contents
λ = 4, 10, 16, 22 at film thickness d = 15 nm.
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Figure 2.5: Parallel D‖ and normal D⊥ diffusivities of water for Nafion film confined by carbon
(top row) and quartz (bottom row) as a fraction of the self-diffusion coefficient D0 of a pure DPD
liquid at a = 25. Right column: Percentage difference between parallel and normal diffusivity.

the middle of the film. For larger thicknesses, notably 20 nm, the profile passes from as many

as five peaks at λ = 4 to one large peak at λ = 24. We can deduce that at low λ’s water is

clustered into peaks of typical size 4-5 nm, whereas for high λ’s most water concentrates in the

middle of the film. All the profiles are shown in the supplementary material of Ref. [85].

In contrast to carbon, hydrophilic quartz produces large peaks of water at the ionomer-

substrate interface. Water peaks inside the ionomer are relatively smaller and keep their size

with increasing amount of water, but their number changes with both film thickness and water

content. For 20 nm, this number goes from five at λ = 4 to three at λ = 24.

Above λ = 16, a distinct water depletion zone is formed at the ionomer-carbon interface,

and a water saturation zone appears at the ionomer-quartz interface for all film thicknesses

and water contents. Both these effects are an unambiguous sign of the hydrophobicity and

hydrophilicity of carbon and quartz, respectively.

2.2.2 Diffusivity

Having analysed the static properties of water in confined Nafion films we proceed with the

dynamics. It would be too much to expect exact quantitative agreement from DPD, but the

overall trends in behaviour, such as increasing diffusivity with water content, are well captured,

as can be confirmed by NMR measurements [46] shown on Fig. 2.6.

To understand the dynamics of our system we calculated the self-diffusion coefficient of

W beads as a function of film thickness and water content. Figs 2.5 (top) show curves of

water self-diffusion w.r.t. λ for multiple film thicknesses between carbon substrates. The gaps

between these curves become narrower as the film thickness increases: the widest gap is between

curves at 5 and 10 nm and the narrowest between 15 and 20 nm. More importantly, the

asymmetry between normal and parallel diffusivities is most pronounced at 5 nm film, and
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Figure 2.6: NMR measurements of the self-
diffusivity of water in Nafion at a range of wa-
ter contents λ (denoted in the figure as n =
[H2O]/[−SO3H]). Taken from [46].

gradually decreases as the thickness increases. The diffusivity of water between quartz substrates

(Figs. 2.5, bottom) shows different features: the curves of same film thickness are separated by

the same distance at larger water contents, and the gap between parallel and perpendicular

diffusivity narrows.

We define the measure η = (D‖ −D⊥)/D‖ to quantify the anisotropy between parallel and

normal diffusivities. Figs. 2.5 show strong dependence of η on film thickness in case of carbon

confinement. This effect is much smaller in case of quartz and is only present at high water

contents λ > 20. For carbon, there is weak depependence of η on the water content, whereas

in case of quartz η rises linearly with λ. The error bars at λ = 4 and 6 suggest insufficient

sampling due to low number of water beads in the simulation box, but they do not prevent from

deducing the overall trend.

We note that the diffusivity anisotropy of a film confined by quartz does not disappear

with increasing film thickness, in sharp contrast with carbon. We attribute this phenomenon to

the excess water at the film-quartz interfrace creating a layer in which the W beads can move

relatively freely in parallel to the film. As the water profiles on Fig. 2.4 demonstrate, this layer

becomes more pronounced with rising water content and irrespective of the film width, which

also explains the steady increase of η.

These findings suggest explanations for behaviour in the catalyst layer of fuel cells. Water

freshly formed from protons and oxygen on the surface of platinum nanoparticles has a number

of transport routes: it can either remain within the ionomer phase and move directly into the

membrane (water back-diffusion); it can pass through the ionomer film covering the Pt and

emerge as liquid water within the pore space of the catalyst layer, or it can evaporate from the

surface of the ionomer film into the pore space. The balance of these pathways will depend

on the operating conditions of the cell (relative humidity, current density, pressure) and the

position of the Pt within the catalyst layer in x, y and z directions. Clearly, the water content

within, under and on top of the ionomer film will have a significant impact on the transport of

oxygen to the Pt surface and it may not be necessary to suppose that the thin film of ionomer

has inherently lower oxygen permeability as others have done [86, 87]; or it may be that both

water build up and low ionomer permeability, caused by unusual structuring of the thin films,

account for the local oxygen transport issue. In this context however, simulations of thin Nafion

films on platinum surfaces would be highly desirable to clarify which of these explanations is
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more likely.

2.2.3 Water connectivity

The diffusivity of water is one of the ways to describe general transport properties, but is insuf-

ficient if the particles move around by quantum tunnelling. This is exactly what the hydrogen

protons in ionomer membranes do. Mesoscale methods cannot directly capture protonic con-

ductivity, as they do not contain the concept of a proton or even a single atom. However,

the percolation of water network in the membrane is a suitable proxy. Hsu et al. argued that

percolation can explain the insulator-to-conductor transition in Nafion [88], and showed that

the conductivity σ satisfies a simple power law: σ = σ0(λ− λc)
s, where λ is the water content1

and s the critical exponent.

According to the percolation theory, the same scaling applies to the percolation cluster

strength [89, 90, 91]. Assuming the lattice in two or more dimensions and filling the sites with

probability λ, a macroscopic percolation cluster spanning the whole lattice starts appearing for

λ > λc and its size, the percolation cluster strength P∞, defined as the ratio of sites belonging

to this cluster to the overall size of the lattice, grows as a power law:

P∞ ∼ (λ− λc)
s, (2.4)

where s is between 0.3 and 0.4 regardless of the lattice type (cubic, hexagonal or other) [91].

We have used the ideas from percolation theory in order understand the trends in the

protonic conductivity in confined Nafion. Our aim was the water clusters onto a cubic (in 3D)

or square (in 2D) lattice and compute the percolation cluster strength P∞. We then used the

flood fill algorithm based on a stack2 to count the cluster sizes.

We generated a water density map on a grid and set the cutoff for which a grid site still

contains some water at 0.3, which is one tenth of the natural DPD density used in simulations.

We then employed the flood fill algorithm to count the size of thus formed water clusters and

observe how the largest one, the percolating cluster, varies with film thickness and water content.

The code snipped is listed in the appendix.

We evaluated two site percolations: on a two-dimensional grid formed from density profile

of a slice through the middle of the thin film, and on a three-dimensional grid spanning the

whole simulation box. 2D percolation channels and clusters can be easily visualised and so offer

more intuition about the effect of the confining material on the thin film; 3D percolation should

be a suitable approximation for the channels through which the protons move, based on the

assumption that the protons will follow the best-hydrated pathways. The nominal value of the

percolation cluster strength scales with the box size and is therefore not a good measure to

compare across various film thicknesses. Therefore, we rescaled this value by the ratio of film

thickness and the box size.

Figs. 2.7 and 2.8 show 2D water clusters of a slice through a thin ionomer film confined by

carbon and quartz, respectively. The 2D and 3D water percolation cluster strengths are shown

in Fig. 3.8. In case of carbon confinement, the 2D percolation does not depend strongly on the

1Qualitatively, it does not matter if it is a water content or volume fraction of water.
2In my opinion, the best source I can provide is Wikipedia, but this of course cannot be officially referenced.
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d = 10 nm, λ = 4 d = 10 nm, λ = 10 d = 10 nm, λ = 16 d = 10 nm, λ = 22

Figure 2.7: Water clusters in thin film confined by carbon for film thickness 10 nm and water
contents λ = 4, 10, 16, 22 respectively.

d = 10 nm, λ = 4 d = 10 nm, λ = 10 d = 10 nm, λ = 16 d = 10 nm, λ = 22

Figure 2.8: Water clusters in thin film confined by quartz for film thickness 10 nm and water
contents λ = 4, 10, 16, 22 respectively.

film thickness, but 3D percolation is qualitatively similar to the diffusivity curves in Fig. 2.5,

showing the same spacing of the equal film thickness curves. This suggests that the diffusivity

of DPD beads computed in the previous section might be, after all, a good approximation for

protonic conductivity. On the other hand, the 2D percolation of quartz demonstrates strong

dependence on film thickness and, contrary to the intuition, the 5 nm film shows very high

2D percolation at low water uptakes. This can be confirmed by inspecting the clusters for e.g.

λ = 4 in Fig. 7 in the supplementary material [85], which shows visibly better connectivity at

5 nm than 10 or 15 nm.

Following the insights by Hsu [88] and Kirkpatrick [91], our percolation analysis shows that

in order to optimise for protonic conductivity or transport properties in general, hydrophobicity

of the confining substrate is a key parameter. This conclusion was also reached by recent

experiments [92].

2.3 Conclusion

We have simulated Nafion thin films confined by two materials, carbon and quartz, using dis-

sipative particle dynamics. This well-established mesoscale method enabled the use of a large

box size and rapid equilibration, compared with classical molecular dynamics. We used film

thicknesses likely to be found in the catalyst layer of fuel cells, ranging between 5 and 20 nm.

Our simulations show that the clustering of water and the PTFE backbone in the direction

normal to the thin film is driven by the confinement scale, water content and the hydropho-

bicity of the confining material. The number of clusters increases with film thickness, and the
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Figure 2.9: (Color online.) Percolation cluster strength P∞ of water network in Nafion bulk
and thin film confined by carbon and quartz, serving as a quantitative measure for water cluster
connectivity.

cluster size depends on the water content but not the ionomer film thickness. For hydrophobic

carbon, a depletion zone with little water is formed at the ionomer-carbon interface, whereas

for hydrophilic quartz, water accumulates at the quartz-ionomer interface. These findings are

in accord with the experiments performed by the NIST group [57, 56, 59].

Percolation analysis of water in the thin ionomer films reveals patterns in cluster size and

connectivity that change with the confining material. Both carbon and quartz establish a well-

connected network of channels. Water diffusivity shows significant anisotropy, regardless the of

confining material. The liquid moves up to 20% more readily in the direction parallel to the

thin film, compared to in the normal direction. This anisotropy increases with decreasing film

thickness.

Our findings offer a perspective on the role of surface hydrophobicity of electrode materials

deployed in the catalyst layer of fuel cells, and the direction of the flow of water formed on

catalyst nanoparticles from protons and oxygen.
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2.4 Appendix: The flood fill algorithm

Implementation of the flood fill algorithm in 3D for counting water clusters. Full working script

is available here.3

def flood_fill(A, coord, old, new):

”””

Counted f i e l d s i n ” o l d ” a r e r e p l a c e d by ”new ”.

V a r i a b l e s

=========

∗ A : i n p u t m a t r i x

∗ c o o r d : ( i , j , k )

”””

N = len(A)

i, j, k = coord

if A[coord] == new: return # s e c u r i t y c h e c k

if A[coord] != old: return

A[coord] = new

flood_fill(A, ((i+1) % N, j, k), old, new)

flood_fill(A, ((i−1) % N, j, k), old, new)
flood_fill(A, (i, (j+1) % N, k), old, new)

flood_fill(A, (i, (j−1) % N, k), old, new)
flood_fill(A, (i, j, (k+1) % N), old, new)

flood_fill(A, (i, j, (k−1) % N), old, new)
return

3https://github.com/petervanya/PhDcode/blob/master/PTFE_code/clustering_3d.py
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Chapter 3

Nafion swelling and drying

Talk is cheap. Show me the code.

Linus Torvalds

Having described the properties of thin Nafion film confined from two sides

by a carbon support exploiting standard DPD in the previous chapter, we

now turn our attention back to the bulk Nafion. We simulate a typical

experimental process of swelling Nafion by continually adding water until

it reaches maximal size. We investigate the change in the morphology of

both water clusters and PTFE backbone chains. We demonstrate that the

hypothesis presented by Gebel [1] about rod-like shape of polymer chains

at high water contents is not supported by our simulations.

There has been an ongoing debate about the structure and morphology of Nafion, and its

dependence on water content. Several models have been proposed [50, 52] but none of them is

conclusive. In 2000, Gebel has conducted experiment on Nafion at several water contents [1],

ranging from 7.8% to 67%, which is a variation from a very dry stateup to the point at which

the membrane is fully immersed in water.

Inspired by these experiments, we perform simulation to gain additional insight into the

structure and morphology of these membranes. Firstly, we start with a very dry Nafion and, by

adding water, gradually swell it. Secondly, we explore the reverse route, starting from dissolved

Nafion and gradually removing water until there is almost none.

3.1 Simulation details

We consider Nafion as represented on Fig. 2.1, where the polymerisation is 15 monomers per

chain, and each monomer contains five beads. Each A bead contains six CF2 groups. We

represent the water content λ as a ratio of the number of water molecules and the sulfonic acid

groups: λ = N(H2O)/N(SO3H+). Table 3.1 shows a conversion from of λ to volume percentage

used by Gebel. We explored water contents ranging from λ = 3 to 120.

As a simulation method, we used dissipative particle dynamics (DPD) at the coarse-graining

degree of six water molecules per bead, which follows the parametrisation used by Wu et al. [14].
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Table 3.1: Conversion of water con-
tent measured in number of water
molecules per sulfonic acid group
to volume percentage for a polymer
with structure.

NH2O/NSO3H+ Vol. frac. NH2O/NSO3H+ Vol. frac.

3 0.100 45 0.625

6 0.182 50 0.649

9 0.250 55 0.671

12 0.308 60 0.690

15 0.357 70 0.722

18 0.400 80 0.748

25 0.481 90 0.769

30 0.526 100 0.787

35 0.565 110 0.803

40 0.597 120 0.816

Table 3.2: Flory-Huggins χ-parameters de-
fined between pairs of beads used in the sim-
ulation. Excess repulsions ∆aij = 3.27χij
were added to the default value a = 25.

δ (MPa1/2) χ (no units)

A B C W

A 12.7 0

B 13.6 1.23 0

C 23.0 7.44 2.70 0

W 47.8 3.36 1.53 1.48 0

The number density is ρ = 3, and the default interaction parameter a = 25. The unlike species

interaction parameters, which were obtained via the Flory-Huggins χ-parameters by Wu et al.,

are summarised in Table 3.2.

In a simulation, we started with a simulation cell L = 20× 20× 20 in reduced DPD units (1

DPD unit corresponds to 0.814 nm), gradually increasing the number of water beads from the

state of practically maximal draught, marked by λ = 3, towards maximum solvation at λ = 120.

The total number of particles in the cell ranged from 24000 at λ = 3 up to 117600 at λ = 120.

For all the simulations we employed the DL MESO package version 2.6. The time scale

serving as a reduced unit was τ = 5.35 ps, and the time step was set to ∆t = 0.05τ . Overall,

each water content λ was simulated for 2.5 ns, which corresponded to 10k time steps. 40 different

water contents were simulated. (see Fig. 3.1) The difference between consecutive water contents

∆λ was set such that the percentage difference was kept reasonably small. The total time of

a swelling/drying simulation was 110 ns. We also tried a smaller simulation time per water

content 1 ns, but this was not sufficiently long for equilibration.

34



CHAPTER 3. NAFION SWELLING AND DRYING

0 25 50 75 100 125
λ

20

25

30

35
B

ox
si

ze
L

Figure 3.1: Evolution of the water content λ.
Each value λ was simulated for 2.2 ns. Over-
all, 40 values of λ were simulated.

(a) Swelling, λ = 120 (b) Drying, λ = 120

Figure 3.2: Simulation
cells depicting isosurfaces
of PTFE backbone (A and
B beads) for (a) swelling
and (b) drying.

3.2 Chain behaviour

Visual observation of the simulation cells on Fig. 3.2 reveals a clear difference in the structure

of the chains at maximal λ = 120. At the end of the swelling process, the chains shrink into a

minimal volume, whereas starting the drying process with a randomly initialised configuration

of bead positions leads to a maximal spread within the simulation cell.

To quantify these observations, we monitored the radius of gyration (RG) as well as the

end-to-end distance (EE) of the Nafion polymer chains. RG is defined as:

Rg =
1

Nc

N∑
i=1

(ri − rcom)2, (3.1)

and EE as follows:

〈R1,N 〉 = 〈|rN − r1|〉, (3.2)

where the average goes over the chains in the box as well as frames taken at various simulation

times after the equilibration period.

The resulting evolutions of the EE and RG are shown on Fig. 3.3b and Fig. 3.3a respectively.

According to these descriptors, the process of swelling and drying is reversible, as there is no

difference between either route for a well-equilibrated system. The extremely dry state λ = 3
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Figure 3.3: (a) Radius of gyration and (b) end-to-end distance as a function of water content
λ with errorbars. These descriptors yield similar trends, and same behaviour for swelling and
drying apart from very high water contents λ > 100.

Figure 3.4: Visualisations
of single backbone chains
for (a) swelling and (b) dry-
ing reveal sphere-like clus-
ters, as opposed to polymer
rods posited by Gebel [1]. (a) Swelling, λ = 120 (b) Drying, λ = 120
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Swelling, λ = 3 Swelling, λ = 10 Swelling, λ = 30 Swelling, λ = 60 Swelling, λ = 120

Figure 3.5: Visual evolution of water clustering as a function of water content in the process of
swelling.

Drying, λ = 3 Drying, λ = 10 Drying, λ = 30 Drying, λ = 60 Drying, λ = 120

Figure 3.6: Visual evolution of water clustering as a function of water content in the process of
drying.

manifests itself with a large size of the chains. Otherwise, there is no discontinuity or a local

maximum that should point at a sudden change of structure.

As a final check on the chain behaviour we chose the principal component analysis (PCA).1

This descriptor yields the principal axes in which a set of points in space (in our case monomers)

is oriented, and eigenvalues µi representing their lengths. Hence, PCA should be more suitable

than either radius of gyration or end-to-end distance to capture the asymmetric orientation of

the chains. However, as Fig. 3.7 shows, there is no feature in the dependence of the largest

eigenvalue on water content λ that would expose a structure inversion from a spherical shape

towards oriented polymer rods, which as proposed by Gebel [1]. In fact, these curves are

qualitatively the same as those representing RG and EE. Visualisations of single backbone

chains in simulation cells shown on Fig 3.4 expose chains forming sphere-like globules and not

elongated polymer rods anticipated by Gebel, and thus confirm the findings reached by the

PCA analysis. Hence, we conclude that Nafion remains structurally the same throughout both

swelling and drying process.

3.3 Water clustering and percolation

To gain insight into the structure of water, we monitored the percolation of water clusters and

channels. After computing the density profile by smearing each bead on a grid using a Gaussian

function, we selected the regions where water density ρwater > 0.1ρ = 0.3.

The change in clustering with increasing and decreasing water content λ can be qualitatively

observed in Fig. 3.5 and Fig. 3.6, respectively, which depict cuts through the simulation cell.

There is a clear difference at hight water contents, where, in case of drying, the polymer chains

1Also known as singular value decomposition.
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Figure 3.7: Eigenvalues µi from the princi-
pal component analysis (PCA) of the Nafion
chains as a function of water uptake.
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Figure 3.8: (a) Percolation cluster strength in two dimensions with errorbars computed from
the clustering images shown in Fig. 3.5 and 3.6. Despite a considerable level of noise, this
descriptor also reveals a clear separation of the drying and swelling process at λ > 20. (b) The
same quantity in three dimensions reveals no significant difference between swelling and drying.

are visibly more spread, whereas the swelling reduces them to a narrow strip.

To put these observations on solid quantitative footing, we computed the percolation cluster

strength P∞, which is defined as the ratio of the largest cluster to the size of the simulation

cell, using the flood fill algorithm. This descriptor can be calculated in either two dimensions

for a cut through a plane, or three for the whole simulation cell. The meaning of the quantity

P∞ is in that captures the spread of water through the system.

The resulting evolution of two-dimensional P∞ with drying and swelling, shown on Fig. 3.8a,

demonstrates a clear difference between the two simulation routes. During the swelling, water

is on average more spread in the cell than during the drying process. On the other hand, 3D

P∞ on Fig. 3.8b reveals almost no difference between swelling and drying.

3.3.1 Simulation pressure

The DPD simulations run at NV T ensemble and the pressure cannot be relaxed to let sudden

changes in the volume manifest themselves. On the other hand, monitoring the pressure of a
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Figure 3.9: Pressure as a function of water
uptake shows a maximum around λ = 20 for
both swelling and drying.

system at constant volume (and hence density) provides a new insight into the behaviour.

The evolution of pressure on Fig. 3.9 with water content reveals a pronounced maximum at

λ = 18 (percentage volume 0.4) for swelling and a flatter one at λ = 22 (0.45) for drying. The

sharp increase in pressure at low values of λ before these maxima suggests that, in a constant

pressure environment, the membrane would tend to expand and at the same time reduce its

density.

3.4 Conclusion

We have demonstrated via simulation that the structure of bulk Nafion at high water contents

is slightly different depending on the way it is prepared. At the same time, there is no sharp

transition in the microscopic behaviour of PTFE chains, as determined by computing the end-

to-end distance, the radius of gyration or performing the principal component analysis.

The structural inversion first suggested by Gebel [1] at water volume fraction 0.5 (equivalent

to water content λ = 27), which results in a connected network of polymer rods, is not supported

by simulation. Our results imply that gradual swelling produces a compact structure of chains

packed next to one another with large water pool outside, as opposed to a porous polymeric

structure with water spread everywhere in case of starting from the dissolved state.
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Chapter 4

Revisiting the scaling in DPD

In mathematics, you don’t learn things.

You just get used to them.

John von Neumann

This chapter attempts to resolve long-standing ambiguities about the de-

pendence of the DPD interaction parameter on temperature as well the

resulting experimental observables on the coarse graining degree. We re-

visit the role of this parameter in DPD simulations and derive the scaling

of the input variables such that experimentally observable outputs do not

scale. We illustrate the versatility of this modification by computing surface

tensions of three mixtures.

Coarse-grained molecular dynamics (MD) contains, in addition to the usual force field-

or thermostat-related parameters associated with atomistic MD, another parameter: coarse-

graining (CG) degree, which provides the freedom to trade off between simulation speed and

spatial or temporal resolution. As CG degree is a theoretical construct without experimental

substance, the physical properties of a simulated system must be the same, or at least as similar

as possible, at different scales, i.e. over a range of CG degrees.

Materials simulations are usually performed using reduced units in order to avoid extremely

small or large numbers and prevent the arithmetic underflow or overflow. Some CG simulation

methods, such as dissipative particle dynamics (DPD) widely used for soft matter, work in units

where the length scale is defined from the reduced density and the CG degree, both of which one

is free to choose [7]. As a result, the conversion from real to reduced units while preserving the

physical properties has been rather ambiguous, and the comparison of same physical settings

simulated at different CG degrees nearly impossible. The purpose of this chapter is to address

this challenge through a consistent scaling approach.

The standard version of DPD has been successfully applied to a wide range of soft matter

systems in the past two decades [27]. Besides, a many-body dissipative particle dynamics

(MDPD) has been proposed by adding a density-dependent term into the force field [35, 36, 37].

This version is thus capable of simulating non-ideal fluids and free surfaces, and hence covering

a much wider range of systems of practical interest [39].
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Unfortunately, no general protocol for deriving the MDPD interaction parameters for real

materials has been proposed so far. In case of standard DPD, the sole parameter a is obtained by

matching the compressibility to an equation of state (EOS) of a pure liquid, and cross-interaction

parameters for mixtures are based on some mean-field approximation, such as Flory-Huggins

theory. However, in case of MDPD, the choice has so far been ad hoc [41, 40, 40, 42].

Furthermore, there has been much discussion about how the DPD interaction parameter

should scale with the coarse-graining (CG) degree. Groot and Rabone [83] originally suggested a

linear dependence, but this was refuted independently by Maiti and McGrother [93] and Füchslin

et al. [30]. Maiti and McGrother also proposed linear scaling for the χ-parameter with the aim

of reproducing the experimental surface tensions. However, we have found inconsistencies in

their reasoning. In case of MDPD, to our knowledge there have been no predictions of the

surface tension for real mixtures and consequently no discussion of the scaling.

The aim of this chapter is to present a general protocol to determine the interaction pa-

rameters as a function of not only material properties, such as compressibility, but also the

coarse-graining degree and temperature. To achieve this, we first need to discuss the choice

and role of the reduced units. We revisit and restate the derivation presented by Füchslin et

al., and correct the temperature-dependence of the interaction parameter originally proposed

by Groot and Warren (GW). More importantly, we explain the derivation and the reasoning

behind the scaling of the Flory-Huggins χ-parameter, a key variable determining the mixing

properties of soft matter. Consequently, demonstrate the improved predictive accuracy of these

methods across a range of CG degrees.

4.1 Summary of reduced units and parameterisation in DPD

The DPD force field is summarised in Section 1.3 of the Introduction. We define the reduced

units of length, mass and energy rc = mc = kBTc = 1, where Tc is a user-selected reference

temperature, and, in the following, denote all variables in reduced units by a diacritical tilde,

following the convention set by Füchslin et al. [30]. The conversion is, for example, r̃ = r/rc,

m̃ = 1 = m/mc, since all the masses are assumed to be same or very similar, and k̃BT =

kBT/kBTc, where kBTc is the energy scale based on the chosen temperature.

In case of a single-component DPD fluid, this force field is sufficiently simple that its EOS

can be easily reverse-engineered, as GW did [7]:

p̃ = ρ̃k̃BT + α̃ãρ̃2, (4.1)

where ρ̃ is number density, and α̃ a fitting constant, which was shown to be approximately 0.1

for ρ̃ > 3. To derive ã, these authors matched the EOS to the isothermal compressibility κ.

From definition,

κ−1 = ρ

(
∂p

∂ρ

)
T

, (4.2)

and, in reduced units,

κ̃−1 = ρ̃

(
∂p̃

∂ρ̃

)
T̃

= ρ̃k̃BT + 2α̃ãρ̃2. (4.3)
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Considering water with compressibility κ ≈ 4.5×10−10 Pa−1, which can be non-dimensionalised

to κ−1
nd = 1/(κnkBT ), where T is absolute temperature and n is molecular number density, and

making the choice that one DPD particle (bead) contains one molecule, the interaction parameter

ã derived by GW for room temperature, when κ−1
nd ≈ 16 (below eq. (16) in their paper [7]), is:

ã =
κ−1

nd − 1

2α̃ρ̃
k̃BT = 25 k̃BT . (4.4)

Note that a has the dimension of force, i.e. kBTc/rc, but rc in the denominator is set to 1.

To bridge the simulation method with real materials, Groot and Rabone defined the length

scale (and interaction cutoff at the same time) rc as follows:

rc = (ρ̃NmV0)1/3, (4.5)

where V0 is the volume of a single water molecule. These authors consequently derived that

parameter ã should scale linearly with the number of molecules in a bead, i.e. CG degree Nm:

ã(Nm) = Nmã(1). However, their reasoning was refuted by Füchslin et al., who showed that, in

real units, the scaling is a power law: a(Nm) = N
2/3
m a(1). More importantly, in reduced units

the interaction parameter does not scale: ã(Nm) = 25.

4.1.1 Temperature dependence

Here we show that the temperature scaling of GW needs to be reconsidered. We start by noting

that in practice there are two equivalent ways to define the reduced units: either kBT = kBTc

and so k̃BT is always held at 1, in which case the EOS is reduced to

p̃ = ρ̃+ α̃ãρ̃2, (4.6)

as was already pointed out by Maiti et al. [93]. A more practical approach is to decide a base

temperature Tc, e.g. 300 K, and thus define the energy scale kBTc = 1. This enables varying

the temperature in the simulation by setting k̃BT to, e.g. 2, and the EOS then becomes

p̃ = ρ̃k̃BT + α̃ãρ̃2. (4.7)

We consider here the latter option, for which the EOS looks the same in real units: p =

ρkBT +αaρ2. Hence, we can obtain an unambiguous value of the interaction parameter via the

compressibility match:

κ−1 = ρ

(
∂p

∂ρ

)
T

= ρkBT + 2αaρ2, (4.8)

from which it follows that

a =
κ−1 − ρkBT

2αρ2
. (4.9)

So in real units a decreases linearly with temperature. Consider here a DPD fluid where one

bead corresponds to one molecule, so Nm = 1. Using dimensional analysis, the conversion to
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reduced units is as follows:1

p = p̃
kBTc

r3
c

, a = ã
kBTc

rc
, α = α̃ r4

c , ρ = ρ̃
1

r3
c

. (4.10)

To non-dimensionalise the compressibility we cannot use the same approach as GW, who took

the molecular density n = 1/V0 instead of the DPD density ρ. These are only equal to each

other in the special case Nm = 1.

To better illustrate this point and also expose the strength of the dimensional analysis, we

note that the inverse compressibility has the same dimensions as pressure:

κ̃−1 = κ−1 r3
c

kBTc
= κ−1 ρ̃V0

kBTc
. (4.11)

On the other hand, the compressibility due to GW is:

κ−1
nd = κ−1 1

nkBTc
= κ−1 V0

kBTc
. (4.12)

By rearranging these equations we see that these are not equal, but differ by the DPD density:

κ̃−1 = ρ̃κ−1
nd .

Non-dimensionalising eq. (4.9) by inserting eq. (4.10), we obtain the following expression for

the interaction parameter in reduced units:

ã =
κ̃−1 − ρ̃k̃BT

2α̃ρ̃2
, (4.13)

and, inserting κ̃−1 = ρ̃κ−1
nd for clarity:

ã =
κ−1

nd − k̃BT

2α̃ρ̃
, (4.14)

which, after setting k̃BT = 1 and κ−1
nd = 16, turns into the form due to GW: ã = 15/(2α̃ρ̃) =

75/ρ̃. This proves that our derivation based on dimensional analysis is a generalised version of

the approach first used by GW.

We now see clearly (Fig. 4.1) that the interaction parameter ã decreases linearly with tem-

perature in reduced units as well, as opposed to the linear increase derived by GW, assuming

constant compressibility. For a bead containing one water molecule at DPD density ρ̃ = 3, the

temperature dependence is: ã = (16− k̃BT )/0.6.

It must be noted that this temperature dependence is very weak and, for most practical

purposes, can be neglected. For example, at 373 K, which is probably the highest temperature

at which one would want to simulate liquid water, k̃BT ≈ 1.25, and ã changes to ≈ 24.6, which

is only a 2% difference from ã = 25 at 300 K. However, this variation becomes more relevant if

one aims to explore materials at extreme temperatures.

In our analysis so far the compressibility was considered independent of temperature. This

1That the dimension of fitting parameter α is r4c can be ascertained from eq. (9) in Ref. [37].
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Figure 4.1: Temperature dependence of interac-
tion parameter ã in reduced units in the range
where water is liquid at ambient pressure, com-
paring the formula due to GW and our revisited
derivation, and the effect of temperature depen-
dence of compressibility.

might be an overly crude approximation, as, in case of water, the variation is about 10%

between 0 and 50 ◦C [94]. However, the framework presented above enables easy inclusion

of this variation by first choosing energy scale kBTc and simulation temperature k̃BT , finding

the experimental value of κ at the given kBT = k̃BT kBTc, and finally non-dimensionalising

κ with respect to kBTc to obtain κ̃. Fig. 4.1 shows the effect of temperature dependence of

compressibility.

4.2 Scaling with coarse-graining degree

Having understood the temperature dependence of the DPD potential, we now turn to the scal-

ing with respect to the coarse-graining degree Nm, which is defined as the number of molecules

in one bead. As mentioned above, Füchslin et al. have proposed that the interaction parameter

scales with N
2/3
m in real units and remains scale-invariant in reduced units [30]. We reproduce

this derivation with simple arguments of dimensionality. Thus we will be able to intuitively

track the scaling of separate variables, which would otherwise get complicated due to the fact

that the length scale rc depends on Nm.

As a first step, we convert the density from reduced to real units. Knowing that the density

of unscaled, Nm = 1 liquid is ρ(1) = 1/V0 = n, it follows that

ρ(Nm) =
ρ̃(Nm)

r3
c

=
ρ̃(1)

Nmr3
c

=
n

Nm
, (4.15)

where rc is a function of Nm as well. We also note that the reduced density is set regardless of

the CG degree, so ρ̃(Nm) = ρ̃(1). Knowing the relation between real and reduced variables, we

can now figure out the EOS of a coarse-grained liquid:

p =
ρ

Nm
kBT + αa

ρ2

N2
m

. (4.16)

For Nm = 1, this simply reduces to the known form p = ρkBT + αaρ2. For a general Nm, we

denote all the variables with a prime: p′ = ρ′kBT
′ + α′a′ρ′2, where ρ′ = ρ/Nm. Now we need to

decide which quantity is scale-invariant. Like Füchslin et al., we choose pressure, which is an

experimental observable, so p = p′. In principle, other variables can be thus chosen. Starting
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from rc(Nm) = (ρ̃NmV0)1/3 ∼ N
1/3
m , we can derive how the quantities of interest change with

the CG degree:

ρ′(Nm) ∼ N−1
m , (4.17)

kBT
′(Nm) ∼ Nm, (4.18)

α′(Nm) ∼ N4/3
m , (4.19)

a′(Nm) = aNmN
−1/3
m ∼ N2/3

m . (4.20)

It might seem surprising that to keep the ideal gas term of the EOS scale-invariant, the energy

kBT should depend on the CG degree. To keep the temperature scale-invariant, this implies that

the Boltzmann constant kB must scale linearly with Nm. This is correct, since the dimension

of the Boltzmann constant is J/K, and energy was from the very beginning decided to scale

linearly, whereas temperature was kept constant.

Importantly, and as already mentioned, the interaction parameter expressed in reduced units

is scale-invariant:

ã′ = a′
rc(Nm)

kBT (Nm)

= aN2/3
m

rc(Nm)

kBT (Nm)
= ã

kBT

rc

rc(Nm)

kBT (Nm)
N2/3

m = ã. (4.21)

This is the main and somewhat understated point from the paper by Füchslin et al.: assuming we

do not enforce any constraints from the outside apart from the invariance of the compressibility,

all the quantities in reduced units remain scale-invariant with respect to the coarse-graining.

This means that any DPD simulation with water serving as the solvent should be done at

ã = 25. What matters is how we map the results back to the real units after the simulation.

This has an important positive side effect in that the interaction parameter does not become

too high at high CG degrees, which could lead to freezing, a generally undesirable phenomenon

in simulations of liquids [95].

Finally, we derive the scaling of time and the friction constant γ from dimensional analysis:

τ =

√
m(Nm)r2

c(Nm)

kBT (Nm)
∼
(
NmN

2/3
m

Nm

)1/2

= N1/3
m , (4.22)

γ ∼ m0(Nm)

τ(Nm)
∼ Nm

N
1/3
m

= N2/3
m . (4.23)

Füchslin et al. wrote that there is a gauge freedom in choosing the scaling of time, but in fact

this exponent is determined by the decision to keep pressure scale-invariant.

However, a problem now arises. Füchslin et al. decided to constrain the three basic units,

length, mass, and energy, in such a way that pressure, compressibility, or any other quantity

with the same dimension will be constant across all the scales. But liquid compressibility is not

the only property that should be kept constant. In general, any experimental observable should

behave so. This is not a priori guaranteed by Füchslin’s scaling scheme.

Consider surface tension and self-diffusivity, two important simulation outputs. The dimen-
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sional analysis reveals their scale dependence:

σ ∼ kBTc(Nm)

r2
c(Nm)

∼ Nm

N
2/3
m

= N1/3
m , (4.24)

D ∼ rc(Nm)2

τ(Nm)
∼ N

2/3
m

N
1/3
m

= N1/3
m . (4.25)

Clearly, these experimental observables vary with CG degree, which is undesirable, as CG degree

is a simulation parameter without physical nature.

The way to rectify this problem is add an appropriate scaling of the reduced units D̃, σ̃

such that these will become scale-invariant after conversion to real units. To achieve this, we

need to understand how these observables depend on the underlying simulation inputs, such as

the interaction parameter ã, the Flory-Huggins χ-parameter, or the friction γ̃. To simplify our

analysis as much as possible, we will restrict ourselves to either pure liquids or binary mixtures.

4.2.1 Surface tension

We first turn to the surface tension, which was extensively discussed by Maiti et al. [93]. Starting

from the Hildebrand solubilities δi of species i, a simple model for the χ-parameter is

χij =
V

kBT
(δi − δj)2, (4.26)

where V is the bead volume, Maiti derived a linear dependence of the χ-parameter on Nm from

the fact that the bead volume varies linearly with the solubilities [93].

There are two problems with this line of reasoning, a technical and a theoretical one. Tech-

nically, these authors kept the energy scale k̃BT invariant. If we corrected this, we would find

out that χ is invariant, which would lead, together with invariant ã, to invariant surface tension

σ̃. However, this would imply the scale dependence of σ, which is undesirable.

The theoretical objection is that mixing is a delicate interplay of various effects on the

microscale and it is not a priori clear how these should vary on the number of molecules bundled

into a bead. This bundling – the coarse-graining – is in itself an artificial process without any

physical substance, the sole aim of which is speeding up the simulation.

In order to derive a plausible scaling of σ̃ we follow a different route, which will not require

diving into the complex microscopic origin of mixing. We start from the dependence of surface

tension on the χ-parameter derived by GW in the context of the DPD (eq. (36) in their paper,

with ρ̃ being density and assuming kBT = 1, rc = 1):

σ̃ =

0.75ρ̃χ0.26

(
1− 2.36

χ

)3/2

χ > 2.36

0, χ ≤ 2.36.

(4.27)

To render σ̃ scale-invariant, we need to determine the scaling of the χ-parameter such that
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Table 4.1: Solubilities δ, χ-parameters and
surface tensions σexpt of water-liquid inter-
face, taken from Maiti et al. [93].

Component δ(MPa1/2) χ σexpt (mN/m)

Water 47.9

Benzene 18.6 6.132 35.0

CCl4 17.8 6.474 45.0

Octane 15.6 7.555 51.7
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Figure 4.2: Variation of surface tension for three mixtures with coarse-graining degree: (a)
our derivation using the fine-tuned scaling of χ-parameter, and (b) methodology by Maiti [93],
working up to Nm = 5, for both GW and Wijmans, Smit and Groot (WSG) ∆a− χ relation.

σ̃ ∼ N−1/3
m . In other words, we are looking for the exponent β such that

σ = σ̃
kBTc(Nm)

rc(Nm)2
(4.28)

= 0.75ρ̃(χNβ
m)0.26

(
1− 2.36

χNβ
m

)3/2kBTc

r2
c

Nm

N
2/3
m

∼ constant.

Due to the rather complex power law of eq. (4.27), we resort to numerical minimisation after

defining the relevant range of CG degrees. Although it might be desirable to try to deliver

a perfect analytical solution, given the overall qualitative nature of the DPD, a reasonably

accurate approximation is sufficient for practical simulations.

We consider the mixtures explored by Maiti, that is water-benzene, water-CCl4, and water-

octane. Their χ-parameters are computed from the Hildebrand solubilities, and the data are

summarised in Table 4.1. Defining the range of CG degrees Nm ∈ {1, 2, ..., 10} and the root

mean-square error

RMSE =

√
1

NNm − 1

∑
Nm

(σ1 − σNm)2, (4.29)

we can minimise the RMSE across these mixtures. Hence, we arrive at the scaling of the

χ-parameter χ ∼ N−0.22
m .

To test this scaling, we performed simulations in the LAMMPS software package [96]. We
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Figure 4.3: Self-diffusivity dependence with error bars for (a) ã = 0, i.e. no conservative
interaction, and (b) ã = 25 with power law fits (equations shown in inset).

set a 20 × 10 × 10 orthorhombic cell at density ρ̃ = 3. The time step was set to 0.05. Taking

water as the default liquid, the volume of a bead containing one molecule was V0 = 30 Å, and the

like bead repulsion ãii = 25. We equilibrated the system for 20000 steps and collected data for

another 50000 steps. The surface tension was calculated from the pressure tensor components:

σ̃ =
L̃x
2

(
〈p̃xx〉 −

〈p̃yy〉+ 〈p̃zz〉
2

)
. (4.30)

In parallel, we have reproduced the measurements by Maiti et al. These workers tested two

various relations for ∆a vs χ: a linear one derived by GW:

∆a = χ/0.286, (4.31)

which we used for our simulations as well, and a quadratic one derived by Wijmans, Smit and

Groot (WSG) [33]:
χ

∆a
= 0.3− 0.3− 0.2

115− 15
(∆a− 15). (4.32)

Both of these approaches, if scaled linearly with Nm, lead to extremely large excess repulsions

∆a and allow CG degrees only up to Nm = 5 and 3, respectively.

Fig 4.2 shows the results of analytical predictions and simulations using the scaling argu-

ments presented above, and the approach by Maiti et al. Our method gives satisfactory results

for water-benzene and water-octane mixtures for CG degrees up to Nm = 10 and possibly even

above. The water-CCl4 mixture starts from an incorrect position at Nm = 1, which might be

due to the inability of the overly simple eq. (4.26) to describe real behaviour. Overall, our

derived scaling of χ ∼ N−0.22
m is able to capture the mixing properties over a wide range of CG

degrees and improve the predictive accuracy of mixing in DPD.

4.2.2 Self-diffusivity

The friction parameter γ̃ from the dissipative and random force (eq. (1.9)) is another microscale

parameter that influences the self-diffusivity D, which can be measured experimentally. Overall,
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bead diffusion depends not only on γ, but also on the particle repulsion a. There have been

attempts to analytically derive how γ should vary with the CG degree [97]. Nonetheless, we can

easily derive the scaling that renders the self-diffusivity constant across different CG degrees.

To understand the behaviour of a pure DPD liquid, we exploit the fact that the low number

of simulation parameters enables fast exploration of a large portion of the parameter space.

Defining the self-diffusivity from the MSD:

D̃ = lim
t̃→∞

r̃(t̃)2

6t̃
, D = D̃

r2
c

τ
, (4.33)

we have measured the dependence of D̃ for a wide range of γ̃ values between 2 and 30, and

ã values between 0 and 55. Using 10 × 10 × 10 orthorhombic cell with 3000 beads, we have

equilibrated for 40k steps and measured the MSDs for 1000 steps 10 times in succession to

eliminate noise. We took a smaller time step 0.03 to maintain the temperature at kBT = 1, as

it tends to diverge with increased friction.

Firstly, we consider the case where ã = 0, i.e. beads interact only via the dissipative and

random force. In this case, using mean-field approximation by setting g(r) = 1 GW derived

analytically D = 45/(2πγρr3
c) or, in reduced units, D̃ = 45/(2πγ̃ρ̃) [7]. From simulations

we obtained systematically higher values, as shown on Fig. 4.3 (left). For all the interaction

parameters ã, it is possible to fit the self-diffusivity with the power law of the form:

D̃(γ̃) = c1(γ̃ − c2)c3 , (4.34)

where ci, i ∈ {1, 2, 3} are fitting parameters. We also tried to fit the self-diffusivities for both a

and γ at once via

D̃(γ̃, ã) = c1(γ̃ − c2ã)c3 , (4.35)

but this failed to achieve a desired accuracy, especially at low frictions. This is not an important

obstacle, since most simulations are done with water as the default bead type with the repulsion

ã = 25. Hence, to derive the scaling of γ̃ with the CG degree, it is sufficient to focus only on

this value.

As before with the surface tension, our aim is to obtain the exponent β such that:

D = D̃
rc(Nm)2

τ(Nm)
(4.36)

= 3.303(γ̃Nβ
m + 21.275)−0.736 r

2
c

τ

N
2/3
m

N
1/3
m

∼ constant. (4.37)

Starting from γ̃(1) = 4.5 at Nm = 1 used by GW, we have minimised the RMSE defined as in

eq. (4.29) for Nm ∈ {1, ..., 10}, and obtained β = 1.13. To verify this, we have again simulated

pure liquids at ã = 25 with γ̃ = γ̃(1)N1.13
m . The results on Fig. 4.4 show a reasonably, if not

perfectly flat curve, demonstrating the achieved scale invariance of water self-diffusivity in DPD.

Compared with the experimental self-diffusivity of water 2.3 × 10−9 m2/s at 300 K, the

values from DPD simulations are about 20 times larger. This is expected due to the extremely

soft nature of DPD potential. To precisely target the experimental value, we would need to take
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Figure 4.4: Self-diffusivity of DPD water (in SI
units) as a function of the CG degree, performed
at ã = 25 and γ̃ = 4.5 and plotted with or
without the offsetting scaling of γ̃ with CG de-
gree. Simulation results show agreement with
the scaling γ̃ ∼ N1.13

m predicted from eq. (4.37).

γ̃ of about 1500. Such a large value would severely impact the simulation efficiency in that the

time step would have to be orders of magnitude smaller, and the speed of equilibration, which

is one of the principal advantages of the DPD, would be lost. Nonetheless, having a method to

generate scale-invariant, if shifted self-diffusivities can improve the insight into the dynamics of

soft matter.

4.3 Relaxing the definition of rc

Finally, we address an intriguing theoretical question, whether the definition of rc can be relaxed

by introducing general coefficients ξ1,2, not necessarily equal to 1, such that

rc = (ρ̃ξ1N ξ2
m V0)1/3. (4.38)

Here, we prove that it cannot. Once the two elements from the set of three, containing the

reduced density, CG degree, and rc are decided, the third is automatically fixed, otherwise the

mass would not be conserved. To this end, we devise a diagram scheme in 1D that should make

our reasoning easy to follow.

4.3.1 Visualising the scaling and reduced units in one dimension

Assume a pure liquid in 1D, where all molecules are ordered on a line and obviously non-

overlapping. The molecular number density in 1D is n = 1/L0, where L0 is a length occupied

by one molecule. The definition of rc changes slightly:

rc = ρ̃NmL0. (4.39)

We can illustrate a liquid by a following diagram depicting several molecules in a row. On

x-axis is the distance (box size), on y-axis is the physical mass density ρm. So the mass of one

molecule is m0 = ρmL0. Hence, in our scheme, surface area has the meaning of the mass and

so must be conserved.

Assume we choose a CG degree Nm = 2 and reduced density ρ̃ = 1. Then, the length scale

rc = 2L0, and from six molecules we get three beads:
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L0

mass density ρm

rc = 2L0

To illustrate the meaning of reduced density, choose a different parametrisation with ρ̃ = 3

and Nm = 1. This would mean that rc = 3L0. In real units (denoted in red colour), non-coarse-

grained liquid is the same as coarse-grained:

L0

but in reduced units (denoted in blue colour), the partitioning changes:

rc = 3L0

The blue rectangles correspond to the coarse-grained particles, and stacking of three on top

of each other implies the chosen reduced number density ρ̃ = 3. Note also that the area of one

rectangle corresponds to the mass of one bead, which, in this case, is m = Nmm0 = m0.

What if we chose ρ̃ = 3 and Nm = 2? Then, length scale would become rc = ρ̃NmL0 = 6L0:

Real units:

2L0

Reduced units:

rc = 6L0

Note that the mass of one bead m = Nmm0 = 2m0 gets smeared across a larger space, which

is defined by the length scale rc = 6L0. It then follows that to cover exactly six molecules, the

reduced density must be equal to ρ̃ = 3, which means stacking three particles (rectangles) on

top of each other.
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Choosing ξ1 6= 1

Imagine now that we define the bead size rc = ρ̃ξ1NmL0. This means that we decouple the

definition of rc from Nm and ρ̃. We now illustrate how this approach fails.

Consider again the case ρ̃ = 2, Nm = 3, and choose ξ1 = 2. Hence, rc = ρ̃ξ1NmL0 = 12L0.

The mass of one bead should be m = 3m0. We get the following scheme:

Real units:

3L0

Reduced units:

rc = 12L0

Computing the mass of one bead from the surface area yields:

m =
1

2
ρm × 12L0 = 6m0. (4.40)

However, by choosing Nm = 3 we already fixed the mass at m = 3m0, which is a contradiction!

Choosing ξ2 6= 1

Relaxing ξ2 leads to a similar problem. Consider ρ̃ = 3, Nm = 2 and ξ2 = 2. Then, rc =

ρ̃N ξ2
m L0 = 12L0. Drawing the same scheme as before:

Real units:

2L0

Reduced units:

rc = 12L0

The height of one bead in reduced units is chosen such that the area corresponds to the

mass in the bead m = Nmm0 = 3m0. In such case, however, there appears an empty space not

covered by the beads, meaning that some mass cannot get squeezed into the beads. Again, this

is a contradiction.
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Trying ξ1 = 0 or ξ2 = 0

What if we redefined rc such that it would not contain either ρ̃ or Nm? Would it allow to change

the coefficient without violating the mass conservation?

Consider, for example, rc = N ξ2
m L0. Choosing Nm = 3 and ξ2 = 2, we get rc = 9L0. To

fill all the space, this would automatically decide the density ρ̃ = 3, as demonstrated by the

following scheme:

Real units:

3L0

Reduced units:

rc = 9L0

More generally, deciding Nm and ξ2 would fix ρ̃ = N ξ2−1
m . Similarly, choosing rc = ρ̃ξ1L0

would automatically fix Nm = ρ̃ξ1−1.

4.3.2 Simultaneous variation of ξ1, ξ2

There is a way to relax the definition of rc and maintain mass conservation at the same time.

Starting from rc = ρ̃ξ1N ξ2
m L0, we now derive the relation between ξ1 and ξ2 given the

necessary constraints.

The mass of one bead in real units is m = Nmm0, and m0 = ρmL0. The law of mass

conservation could be stated as follows: the mass of ρ̃ beads occupying one blue block, is ρ̃m

(blue picture), and this is equal to rcρm (red picture). Hence:

m =
rcρm

ρ̃
=
ρ̃ξ1N ξ2

m L0ρm

ρ̃
= ρ̃ξ1−1N ξ2

m m0 = ρ̃ξ1−1N ξ2−1
m m. (4.41)

from which it follows:

ρ̃ξ1−1 = N1−ξ2
m . (4.42)

Using this gauge, we can choose ξ1 independently from ρ̃ and Nm. This would yield ξ2:

ξ2 = 1− (ξ1 − 1)
ln ρ̃

lnNm
. (4.43)

Now the relationship between real and reduced bead density changes to:

ρ =
ρ̃ξ1N ξ2−1

m

rc
, consistent with ρ =

1

NmL0
=

n

Nm
. (4.44)

Having rectified the problem with mass conservation, we still need to devise the transfor-
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mation of the equation of state, starting with the ideal gas term:

p = ρkBT → p̃ = ρ̃k̃BT . (4.45)

We consider the case Nm = 1 for simplicity. Knowing that p̃ = prc/kBTc and k̃BT =

kBT/kBTc, we start from the real form p = ρkBT :

p = ρkBT, (4.46)

p =
ρ̃ξ1

rc
kBT, (4.47)

prc = ρ̃ρ̃ξ1−1kBT, (4.48)

p
rc

kBTc
= ρ̃

kBT

kBTc
ρ̃ξ1−1, (4.49)

p̃ = ρ̃k̃BT ρ̃
ξ1−1. (4.50)

The remaining term ρ̃ξ1−1 cannot be absorbed into any definition of a reduced unit. Hence, It

is impossible to transform p = ρkBT into reduced units with definition of rc other than ρ̃NmL0.

We conclude that relaxing the definition of rc is a dead end.

4.4 Conclusions

In the first part of this chapter, following the derivations by Füchslin et al. [30] we restated

the scaling of the simulation parameters in the dissipative particle dynamics with respect to

coarse-graining degree arguing by dimensional analysis only. The outcome of this procedure

was the rectification of the temperature dependence of the conservative interaction parameter,

which dates back to the original work of Groot and Warren [7]. Consequently, we showed that

some simulation parameters, such as the friction constant γ and the Flory-Huggins χ-parameter,

need to be pre-scaled in reduced units prior to the simulation in order to make the experimental

observables, such as self-diffusivity or surface tension, scale-invariant. Our findings bring in the

consistency and enable to compare simulations across a range of coarse-graining degrees.
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Chapter 5

Bottom-up DPD parametrisation

We wanted the best, but it ended up as

always.

Viktor Chernomyrdin

This chapter presents a protocol to generate the DPD interaction parameter

a from bottom–up. Our recipe is built on an idea that the radial distribu-

tion function (RDF) of a coarse–grained but atomistically resolved liquid

should be the same as the one from a mesoscale simulation. To coarse–

grain atomistic simulations we use the k–means clustering algorithm, and

to compare the RDFs we explore two approaches. We test our reasoning

on a few liquids and demonstrate that the resulting interaction parameter

gives meaningful and scale-invariant values.

5.1 Introduction

Coarse-graining in simulation reduces the computational expense while retaining vital features

of the system. In some sense, even atomic nuclei, the smallest units in most sophisticated

computer models, are only coarse–grained quarks. In more practical terms, in ab initio simu-

lations core electrons are coarse–grained into a pseudopotential and only valence electrons are

treated as such. In classical molecular dynamics (MD), all electrons are coarse–grained into

a Lennard-Jones potential, which contains only the long-range attractive term due to van der

Waals interactions, and the short-range repulsive term due to the Pauli exclusion principle.

The resulting speed-up from to this effective removal of quantum effects is several orders of

magnitude.

Coarse-graining of atoms into bigger particles has been an important research topic in the

past few decades, motivated by the fact that even atomistically resolved simulations of large

molecules, e.g. proteins, are prohibitive [98]. The theoretical origin of coarse–graining dates

back to Zwanzig [99] and Mori [100]. Common approaches include potential of mean force and

direct or iterative Boltzmann inversion. The resulting potentials can be static or dynamic, i.e.

derived on-the-fly.
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In this chapter we are concerned with dissipative particle dynamics (DPD), a mesoscale

method with a static potential controlled by only one interaction parameter. This very simple

and efficient method has been successfully applied to a wide range of soft-matter systems such

as polymer melts, block copolymers, amphiphiles or ionomers [27].

There have been several attempts to derive DPD simulation parameters from bottom–up.

Espanol showed that the dissipative and random forces in DPD arise by integrating out the

degrees of freedom [101]. The MD simulations of LJ liquids by Lei et al., in which groups of atoms

were constrained, revealed how the potentials of mean force and radial distribution functions

arise [102]. Izvekov derived a scheme to coarse–grain dissipative and random terms [97].

We aim to devise a parametrisation method from bottom–up, using atomistically resolved

simulations, as opposed to top-down macroscopic route using compressibility, which has been

originally presented by Groot and Warren, the authors of the method, and still remains in use [7].

The key idea behind our approach is to match scale-invariant quantities for atomistic and coarse–

grained simulations. The first example is pressure, leading to the possible comparison of the

equations of state. This suggests that the virial expansion should be the same in case of atomistic

and DPD liquid. However, this method is valid only in the dilute regime and thus is unsuitable

at reduced number densities ρ > 1, when the series
∑

iBiρ
i has problems with convergence.

Unfortunately, DPD operates at ρ = 3 and higher. Another scale-invariant quantity is the radial

distribution function (RDF), which is essentially an experimental observable.1

Here, we explore the role of RDF as a means for inferring the DPD interaction parameter

from atomistic simulations. Apart from this aim, we explore the general structure of RDFs of

pure DPD liquids, which are controlled by only two input parameters: density ρ and interaction

parameter a. We demonstrate that these RDFs can be fitted by simple functions combined from

a sine, a Gaussian, and a sigmoid.

We note that the key algorithm that we employ for clustering molecules into beads, k–

means, has also been used in a very similar context by Hadley and McCabe [103]. We found

this coincidence only after defining the main contours of this project.

The organisation is as follows. In Section 5.2 we first present the MD simulations of a

few simple liquids and the algorithm to cluster them into coarse–grained particles. Then, in

Section 5.3 we discuss the general structure of RDFs of a pure DPD liquid. Finally, Section 5.4

introduces two methods to match the RDFs arising from clustered MD and DPD simulations,

which we call first–peak and maximum–overlap.

5.1.1 Protocol to generate DPD interaction parameters

Our approach consists of the following steps:

1. Run an MD simulation of a pure liquid.

2. Compute the centres of mass of (several frames of) the equilibrated liquid.

3. Apply the k–means algorithm to cluster the molecules into coarse grained particles, a step

similar to Izvekov [97] and Hadley et al. [103].

1Its Fourier transform is the structure factor, which arises from X-ray diffraction.

58



CHAPTER 5. BOTTOM-UP DPD PARAMETRISATION

4. Compute the RDFs for a range of CG degrees.

5. By matching the coarse–grained RDFs from MD simulations with RDFs of pure DPD

liquids, infer the DPD interaction parameter.

5.1.2 Brief overview of DPD

Dissipative particle dynamics (DPD) is thoroughly presented in the introduction of this thesis.

Here we summarise only its vital features. DPD a coarse–grained method suitable for simulation

of soft matter. Compared with standard coarse–grained dynamics, the interparticle potential in

DPD is set from the beginning and controlled by only one interaction parameter. The potential

is quadratic (using reduced units rc = kBTc = mc = 1):

V (r) =

a
2 (1− r)2, r < 1,

0, r ≥ 1,
(5.1)

yielding linear force. The temperature is maintained by the Langevin thermostat providing a

dissipative and a random term.

The method is used with reduced units rc = mc = kBTc = 1.The energy scale is set from

the simulation temperature Tc, and the length scale rc from the average molecular volume V0,

the coarse–graining degree Nm and the chosen reduced density ρ, which is essentially a free

parameter:

rc = (ρNmV0)1/3. (5.2)

The simplicity of this force field yields a parabolic equation of state for densities ρ > 3:

p = ρ+ αaρ2, (5.3)

where α = 0.101. The interaction parameter a can be derived by matching the liquid compress-

ibility κ (in reduced units):

a =
κ−1 − ρ

2αρ2
. (5.4)

The cross interactions between different kinds of particles can be obtained via the Flory-Huggins

χ-parameter: ∆aij = 3.27χij , where i, j are different particle species.

To simulate the DPD liquid throughout this chapter we used the DL MESO package version

2.6.

5.2 Coarse-graining molecules from atomistic simulations

Our aim is to approximate an atomistically resolved homogeneous liquid composed of molecules

by DPD beads such that an average bead contains Nm molecules. On these we will consequently

calculate the RDF, which we will later match with model RDFs arising from pure DPD liquids.

Assuming that these RDFs are fundamentally similar, this match will enable us to derive the

DPD interaction parameter.

59



CHAPTER 5. BOTTOM-UP DPD PARAMETRISATION

Figure 5.1: An example of the distribution of
the number of molecules in clusters after run-
ning two different implementations of the k–
means algorithm for the MD simulation of SPC
water with 1728 molecules. An ideal distribu-
tion would contain only one peak at Nm = 5.
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To partition the molecules into groups we employ k–means clustering algorithm. The core

idea is to distribute Nc = N/Nm cluster centres and let them evolve in order to find the close

molecules by moving towards the centre of mass of the nearest molecules until convergence.

The closeness is defined by their distance from the cluster centre, which is the definition of

the Voronoi cell. We then interpret the resulting cluster centres as coarse–grained beads. In

contrast to the work by Hadley and McCabe [103], we perform this only once and do not proceed

iteratively until convergence marked by agreement of the centre of cluster volume and centre of

mass. We will demonstrate that even one step yields satisfactory results. Furthermore, in our

approach the CG degree is a parameter that can be chosen.2

We define the bead as the centre of mass (CoM) belonging to a concrete cluster. Even though

there are other options that could capture the “essence” of a bead, such as the centre of volume

occupied by the molecules, the (CoM) is a simple and reliable choice. Moreover, it naturally

arises as a result of the k–means algorithm.

K-means algorithm is not perfect, and it is practically impossible to obtain a homogeneous

coarse–grained liquid where each cluster would have exactly Nm molecules. There will always

be a distribution around Nm. For example, at Nm = 5 there will be usually 0 to 10 molecules

per cluster. The standard deviation depends on the cluster initialisation, which varies with

implementation. Taking into account the simplicity and efficiency on the algorithm, as well as

aiming to average over many frames, we can still consider k–means well suited for this task.3 We

also note that standard implementations of this algorithm do not consider periodic boundary

conditions, a basic concept in computational physics. However, this deficiency can be considered

as a finite-sized effect, the role of which diminishes with increasing the system size.

We explored two implementations contained in Scipy and Scikit-learn libraries. The Scikit-

learn version produced a significantly lower spread of molecules per cluster and no clusters with

zero molecules. The example of a distribution is visualised on Fig. 5.1. Despite slightly increased

computational expense we consider it far more reliable than the Scipy implementation.

We tested our reasoning on the following seven liquids:

2We had also tried to partition the box by randomly locating the cluster centres and assigning the molecules
to their Voronoi cells. This approach resulted in unphysical RDFs with non-zero values at at r = 0, which
demonstrated the obvious fact: the coarse–grained beads are not be randomly distributed.

3The common problems with performance of k–means are well summarised in this blog post: http:

//varianceexplained.org/r/kmeans-free-lunch/
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1. water in various parametrisations: SPC, TIP3P-EW and TIP4P/2005,

2. methanol,

3. ethanol,

4. acetone.

For simulation we used LAMMPS (version from 11 August 2017). We equilibrated the

system in NpT for 500k steps, evolved in NpT for another 500k steps, and collected the data

in NV T during 20k steps. The time step was set to 1 fs, so overall each simulation took about

1 ns. In case of water, the oxygen-hydrogen bonds and the angle were fixed by the SHAKE

algorithm. To account for finite-size effects, we investigated three sets of boxes: 512, 1000, and

1728 molecules.

The interaction parameters, which include partial charges, bonds, angles and non-bonded

LJ terms for water models can be found on the LAMMPS website4 or on this website5. For

methanol, ethanol, and acetone, we used AMBER force field parameters [104].

The resulting coarse–grained RDFs based on clustered CoMs are shown on Figs 5.2. They

all possess the same features marked by a pronounced correlation hole6 close to r = 0, a smooth

rise towards the first peak, and a fast convergence towards 1 beyond r = 1.5 nm. Furthermore,

beyond Nm > 2 the RDFs show a smooth variation with Nm, marked by a linear shift in the

position and the height of the first peak.

In the following, we will match the key features of these coarse–grained RDFs from MD

simulations to idealised RDFs of a pure DPD liquid, with the aim to infer the appropriate

interaction parameter for a real liquid at a given CG degree.

5.3 Exploring properties of RDFs of a pure DPD liquid

Having demonstrated the systematic variation of the RDFs arising from coarse–graining of

MD simulations we now explore the properties of RDFs of pure DPD liquids. We show that

these vary smoothly with varying the simulation parameters, which will enable us to make the

connection between these systems. In this section we investigate two ways of describing an

RDF: a first–peak method and a maximum–overlap method.

The static properties of a pure DPD liquid are controlled by only one two parameters:

number density ρ and the only force field parameter a representing the interaction strength. In

case of considering the dynamics, another parameter is the friction constant γ.

It is an interesting feature of this method that the density ρ in DPD is, from the point of

view of the interpretation of results, a free parameter. Hence, it is in practise set as low as

possible for the sake of computational efficiency. At ρ > 3 the DPD liquid is in the regime of

the quadratic EOS, so ρ = 3 is the most suitable value. A few times ρ = 5 was used as well,

e.g. in [11].

4http://lammps.sandia.gov/doc/Section_howto.html
5http://www.orsi.sems.qmul.ac.uk/downloads.html
6We borrow here the term exchange-correlation hole from the electronic structure theory, which describes the

motion of electrons.
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Figure 5.2: RDFs of the explored solvents for various CG degrees, showing smooth variation in
first peak size for Nm > 2. Each simulation contained 1728 molecules.

The parameter a is typically equal to 25, the value derived from water compressibility.

Beyond a = 200 the diffusivity drops sharply, which is a signature of freezing [95]. Having

limited the range of available values, it now feasible to fully explore the parameter space.

We generated the RDFs of pure DPD liquids at densities ρ between 1 to 8 and interaction

parameters from 5 to 200. The box size was set to 10× 10× 10, so the number of beads ranged

between 1000 and 8000. The friction was γ = 4.5, time step 0.05 and number of steps 100k.

Figs 5.3, which show the results for ρ = 3 and 5, demonstrate the smooth variation of RDFs.

At ρ = 3, the strongest signature is the rise of the first and at the same time largest peak. At

ρ = 5, a smaller peak is formed before the largest for parameters a > 100, suggesting a small

change in liquid ordering.

Fig. 5.3 enable us to venture that RDFs arising from a pure DPD liquid could be reduced to

a few features. We first explore the height of the first and largest peak, which clearly correlates

with the interaction strength a. Consequently, using a few simple functions we will try to fit

the RDF as a whole.

5.3.1 Dependence of the first RDF peak on parameter a

Extracting the positions and heights of the the first peaks (FP) as a function of the interaction

parameter a, we can observe that these collapse on one curve for densities ρ = 1− 7. Figs. 5.4

show that the first peak positions are essentially constant for all densities and in the range

0.8− 0.9. More importantly, the peak heights h collapse on the power law or a line, depending

on the liquid density:

h(a) =

c1(a+ c2)c3 , ρ < 4,

c1a+ c2, ρ ≥ 4.
(5.5)
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Figure 5.3: Smooth variation of the RDFs of pure DPD liquid at densities ρ = 3 and 5.

0 50 100 150 200
Interaction parameter a

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

A
rb

.
u

n
it

s

ρ = 3

Peak position: 0.843

Peak height: 0.686(x+ 12.166)0.144

0 50 100 150 200
Interaction parameter a

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

A
rb

.
u

n
it

s

ρ = 5

Peak position: 0.884

Peak height: 0.00136x+ 1.052

Figure 5.4: Positions and heights of first RDF peaks (FP) as a function of interaction parameter
a. FP positions show little variation with a and can be treated as only density-dependent. FP
heights vary linearly or as a power law with a, depending on density.

where ci are the fitting parameters. At ρ = 3 the resulting dependence is.

h(a) = 0.928(a+ 12.166)0.144. (5.6)

We will later use this form to match the RDFs arising from coarse–grained MD simulations.

5.3.2 Maximum-overlap method: fitting the whole RDF

Having revealed the relative similarity and smooth variation of the RDFs representing DPD

liquid for a wide range of parameters, we can attempt to explicitly design a fitting function.

A passing visual observation suggests three basis functions that should be able to capture the

essential features of the RDFs above, as schematically shown on Fig. 5.5:

1. a sine for the oscillatory behaviour,
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=( + )+1 ×

Figure 5.5: Using a combination of a sine, a Gaussian and a hyperbolic tan one in principle
should be able to compose any RDF.

Nparam g(r)

1. 5 [d1e
−|x−d2| sin(d3(x− d2)) + 1][tanh(d4(x− d5)) + 1]/2

2. 6 [d1e
−|x−d2| sin(d3(x− d4)) + 1][tanh(d5(x− d6)) + 1]/2

3. 5 [d1e
−(x−d2)2 sin(d3(x− d2)) + 1][tanh(d4(x− d5)) + 1]/2

4. 6 [d1e
−(x−d2)2 sin(d3(x− d4)) + 1][tanh(d5(x− d6)) + 1]/2

5. 6 [d1e
d2(x−d3)2 sin(d4(x− d3)) + 1][tanh(d5(x− d6)) + 1]/2

6. 7 [d1e
d2(x−d3)2 sin(d4(x− d5)) + 1][tanh(d6(x− d7)) + 1]/2

Table 5.1: Tried fitting functions for the RDFs.

2. a Gaussian or an exponential for the large first peak,

3. a hyperbolic tan, or a sigmoid, for the correlation hole close to r = 0.

From now on we will only focus on the most widely used DPD density ρ = 3, which could

lead to the greatest applicability. We fit the RDFs using the combination of these three basis

functions. Each of these bases requires about two parameters, overall leading to up to 10 fitting

parameters. Some of these have clear interpretation in how they capture the essential features

of an RDF, such as the height of the first peak, the period of the sine, or the position of the peak

of the Gaussian. Others are more open to removal in the attempt to simplify the models, such

as the steepness and the shift of the hyperbolic tan, the position of the sine, or the steepness of

the Gaussian.

We tried several plausible combinations, presented in Table 5.1, of increasing complexity

measured by the number of the parameters, We tried to reduce the parameters where possible,

e.g. by controlling the Gaussian/exponential peak and a sine peak by only one parameter. For

each of the explored functions we measured the correlation, defined as

C(x, y) =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2
∑

i(yi − ȳ)2
, (5.7)

where xi, yi are the vectors of the simulated and fitted RDFs, respectively. Only correlations

above 0.99 led to a visibly satisfactory overlap of the predicted and training curves. The 7-

parameter fit no. 5 turned out as the most reliable as well as sufficient. This is no surprise, as

generally more parameters lead to a better fit.

Having found the set of parameters {di} for on a set of RDFs arising from pure DPD liquid,

we now determine their dependence of each di on the interaction parameter a. Expecting smooth
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Figure 5.6: Dependence of fitting parameters di on the interaction parameter a.

variation, we assume that these can be captured by a polynomial of a certain order. It turns

out that 3rd order polynomial (with four parameters each) provides a satisfactory fit:

di(a) = c3,ia
3 + c2,ia

2 + c1,ia+ c0,i, i ∈ {1, ..., 7}, (5.8)

The variation of di with a is shown on Fig. 5.6.

Thus predicted RDFs really lie on the curve with sufficient accuracy, as shown on Figs. 5.7.

The only deviations occur at both extremely low and high interactions. At a = 10 the correlation

hole at r ≤ 1 is not well pronounced, and at a = 180 or 200 the height of the first peak is slightly

overshot. Further investigation showed that the latter imperfection can be smoothed with a 4th

order polynomial fit of di’s. Since in practise such high interactions are unlikely, we decided to

stick with the 3rd order polynomial.

Finally, we briefly discuss if the number of fitting parameters Np = 28 is not too high.

Considering the amount of data that went into the fitting (20 RDFs, 500 point per RDF, overall

around 1000 points), Np is reasonably low. There might be small room for improvement, since

d5 is almost constant and could be set to 1, which would reduce Np to 24. Similarly, it might

be possible to fit the other di’s with a lower-order polynomial, but it is questionable if the time

spent on this tuning would be worth the effort.

An advanced challenge would be to exploit one of numerous machine learning approaches to

devise an implicit fit of any RDF. This line of research might lead to a genuinely useful solution,

not only in the context of the parameter generation for the DPD. However, this would be far

from trivial, especially without the intuition provided by the basis functions, which would be

more difficult to incorporate, and is beyond the scope of this work.

5.4 Deriving DPD interaction parameters by matching RDFs

Having coarse–grained the MD simulations by clustering molecules using k–means algorithm

and understood the trends in the RDFs generated by the DPD, we now in a position to predict

the DPD interaction parameters bottom–up for a few pure liquids.

Starting from the assumption that RDFs should be independent of the simulation method,
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Figure 5.7: A few examples of predicted RDFs as a function of a using 28 parameters using
sine, exponential and hyperbolic tangent. The agreement is excellent for a < 180
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Figure 5.8: Predicted interaction parameters for several solvents via first–peak (FP) method
CG degrees Nm for 1728 molecules.

we present two approaches to generate the interaction parameter for the DPD: the simple first–

peak method, and the more sophisticated maximum–overlap method. The advantages of both

methods are conceptual simplicity, the easiness in visualising the process, and no need to iterate.

Before presenting the results, we need to clarify an important technical point. In reduced

units, the DPD interaction parameter for a specific liquid remains constant across all the scales,

as was first shown by Füchslin [30].7 For example, water in DPD has a = 25 regardless of the

CG degree. In real units, a ∼ N
2/3
m . Since the MD simulations are done in real units, we need

to divide the derived interaction parameter by this scaling factor.

5.4.1 First–peak method

Figs. 5.8 show the interaction parameters predicted by reversing eq. (5.6).and compare them

with the compressibility route proposed by Groot and Warren [7].

Visual inspection shows that nearly all derived values are within a factor of two from the

compressibility line. Furthermore, excluding the pathological behaviour CG degree Nm = 2,

all the FP-derived parameters reveal an unexpected steady increase with Nm. For the water

models, the FP and compressibility curve cross each other and hence agree well at intermediate

7We prove this in Chapter 4.
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CG degrees Nm = 5−8. Apart from water, methanol seems to agree well up to Nm = 8, whereas

ethanol converges towards the compressibility only at Nm ≥ 8. Acetone deviates most strongly.

In conclusion, the increase of FP–derived interaction parameters with CG degree is un-

satisfactory. This deficiency provides motivation for the exploration of a more sophisticated

method.

5.4.2 Maximum–overlap method

We apply the tools built in chapter 5.3.2 to generate the interaction parameters for the real

liquids. We consider only the DPD liquids with density ρ = 3. At this density, the whole

RDF is controlled by only one parameter, and the problem is reduced to finding the interaction

parameter for which the overlap with the given RDF of the coarse–grained MD simulation is

minimised.

We define the cost function as a continuous version of the square error:

J(a) =

∫ cut

0
(gMD(r,Nm)− gfit(r, a))2dr, (5.9)

where gMD(r,Nm) is the clustered MD RDF and gfit(r, a) the idealised RDF of a pure DPD

liquid. The cutoff is effectively about 20 Å, at which point both RDFs are about equal to 1.

We used the Nelder-Mead optimisation algorithm from the Scipy library to minimize J for each

CG degree.

Figs 5.9 show the resulting interaction parameters. Not considering Nm = 2, which deviate

strongly in all the explored cases, we observe excellent good agreement for all water models.

Methanol is satisfactory, while ethanol and acetone tend to deviate by a factor of up to 2. It

is especially encouraging that the correct scaling is reproduced, which is marked by the fact

that the derived interaction parameters are, for all cases and up to small deviations, broadly

invariant to the CG degree, especially compared with the FP method. However, we can observe

a small tendency of acetone to decrease a with the CG degree. Without further investigation,

it is difficult to conclude if this is a genuine trend or a finite size effect (at Nm = 10 and with

1728 molecules, there were only 173 clusters to compute the RDF).

Furthermore, the deviation of ethanol and acetone from the compressibility route does not

necessarily mean that these parameters are less suitable. One interpretation of this feature

might be that derivation based on compressibility fails sufficiently capture the essence of certain

molecules. That compressibility might be overly restrictive in DPD parametrisation has also

recently been discussed by Anderson et al. [105].

5.5 Temperature dependence of interaction parameters

Having developed two methods, first–peak and maximum–overlap, to extract interaction pa-

rameters from bottom up via comparison of atomistic and coarse–grained RDFs, we now apply

these to derive how the coarse–grained interaction parameters depend on temperature.

In Chapter 4 we showed that the DPD parameter a derived from compressibility varies with
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Figure 5.9: Predicted interaction parameters for several solvents via maximum–overlap (MO)
method. The resulting parameters agree more closely with the compressibility derivation and
preserve the scaling.

temperature kBT (expressed in reduced units) as follows:

a =
κ−1 − kBT

2αρ
. (5.10)

Setting the energy scale kBTc to, e.g., 300 K, kBT = 1.2 at 360 K. For water with a(300 K) = 25,

the new interaction parameter would be a(360 K) = 24.66. The decrease in the value of a with

temperature is in contrast to the original work on DPD [7] claiming that a(T ) = akBT , i.e.

a(360 K) = 30. In this section, we demonstrate that the bottom–up parametrisation protocol

reproduces the top-down derivation from Chapter 4 based on scaling arguments only and the

assumption of temperature–independent compressibility.

We consider two water models, SPCE and TIP4P-2005 at three CG degrees, Nm = 3, 5

and 8. As in previous MD simulations, we set up a simulation cell 10 × 10 × 10 of 1000

molecules in LAMMPS. Using time step to 1 fs, we equilibrate in NpT for 500k steps and in

NV T for another 500k steps, collecting data over subsequent 20k steps. For analysis we repeat

the procedure outlined in previous sections, i.e. computing the centre of mass of molecules,

coarse–graining them via k–means clustering, computing the RDFs at various CG degrees and

extracting the interaction parameter. We explored temperatures ranging from 280 K to 360 K.

Fig. 5.10 shows the resulting variation of a with temperature using both FP and MO methods

of parameter extraction. While the FP method yields a rather noisy behaviour for SPCE water

model and large, systematic variation with CG degree, the temperature variation follows the

expected trend of slight decrease. The MO method yields a solid agreement with both expected

temperature dependence and compressibility, with precision increasing in line with CG degree.

Hence, our bottom–up parametrisation method is suitable not only at room temperature, but

remains robust with respect to a wider range of simulation inputs.
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Figure 5.10: Dependence of the interaction parameter a on temperature for two water models,
SPCE (left) and TIP4P-2005 (right), at a range of CG degrees Nm and using two methods of
parameter extraction from coarse–grained RDF, FP and MO.

5.6 Conclusions

The original aim of the work summarised in this chapter was to develop a method to generate

the DPD interaction parameters from bottom–up. This approach should, in theory, capture the

microscopic essence of a liquid. We started by the notion that RDFs as essentially experimental

observables8 should be invariant with respect to a simulation method.

However, mesoscale simulations occur at different coarse–graining degrees, and hence, as a

first step, it is vital to devise a method to compare RDFs across different scales. To this end, we

employed the k–means algorithm to group atomistically resolved molecules into clusters. Thus

generated clusters yielded RDFs that could be compared with RDFs arising from mesoscale

simulation methods such as, but not exclusively, DPD.

We presented two tools to extract DPD interaction parameters by comparing RDFs. The

first, first–peak method (FP), was based on matching the first or largest RDF peak of a clustered

MD liquid with an idealised DPD liquid. The second, maximum–overlap method (MO), was

based on fitting the RDF of a pure DPD liquid with a few simple basis functions predicting the

whole RDF as a function of the interaction parameter only, and consequently finding a which

maximised the overlap with clustered RDFs arising from atomistic simulations.

The interaction parameters generated by the FP method are rather imperfect in that they

do not follow the basic condition on the scaling of the interaction parameter, and also show

considerable noise. The MO method is significantly more reliable, providing excellent scaling

and also matching the results of water perfectly at CG degrees Nm > 2.

We also briefly explored the idea of generalising this bottom–up parametrisation method

to liquid mixtures, as these are at the heart of the interest of coarse–grained or mesoscale

simulations. A reasonable aim would be the derivation of the Flory-Huggins χ-parameter, a key

driver of the phase behaviour. Unfortunately, (de)mixing is by its very nature concerned with

inhomogeneity and anisotropy in liquids, and these in principle cannot be captured by RDF

that is isotropic in its nature. Hence, our method remains valid for pure mixtures only, which

are, in the context of mesoscale simulations, of limited interest.

8Strictly speaking, it is the Fourier transforms of RDFs which are experimentally observable.
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Another drawback is non-negligible computational expense. Compared with the straight-

forward compressibility route introduced by Groot and Warren [7], our method requires prior

atomistic simulations, which take the order of hours on computers with about ten cores. In

light of the limited scope of application caused by the inability to generalise to mixtures and

more complex systems, this extra expense is hard to justify.

Notwithstanding these concerns about usefulness, this work is a playful exercise in fitting

functions and trying to extract as much information from RDFs as possible. Since RDFs

are important experimental observables, this exploration might later reveal avenues for further

research into classification and possibly inference of material properties from experimental data.
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Chapter 6

Exploration of many-body DPD

Education is an admirable thing, but ...

nothing that is worth knowing can be

taught.

Oscar Wilde

In this chapter we present a thorough exploration of the phase diagram of

many-body dissipative particle dynamics (MDPD) force field. Having iden-

tified the liquid phase, we then devise a bottom-up parametrisation method

based on compressibility and surface tension, and generate interaction pa-

rameters of water at a range of coarse-graining degrees. Finally, we derive

the relationship between the χ-parameter and surface tension, and verify

on three simple mixtures that our parametrisation gives meaningful surface

tension predictions for a wide range of coarse-graining degrees.

6.1 Introduction

In designing a new force field it is vital to understand its phase diagram before applying it to

real systems. It is generally prohibitively expensive to derive the equation of state (EOS), from

which all the experimental observables would follow, from a molecular dynamics force field, due

to many parameters that can be varied. However, the EOS can be inferred for some mesoscale

potentials, which possess few parameters. This is the case for dissipative particle dynamics

(DPD), for which the EOS can be easily reverse-engineered, as first Groot and Warren [7]

showed for standard DPD, and consequently Warren [37] for many-body DPD (MDPD):

p = ρ+ αAρ2 + 2αBr4
d(ρ3 − cρ2 + d), (6.1)

where α = 0.1, c = 4.16, and d = 18 are fitting constants.

The standard DPD, which is presented in the introductory chapter, has an important draw-
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back in that its purely repulsive force field:

F (r) =

A(1− r), r < 1,

0, r ≥ 1
(6.2)

with r being distance between two particles and parameter A > 0, cannot support liquid-

vapour coexistence. In order to overcome this deficiency and retain the simplicity and other

advantages of the extremely soft potential, there have been several attempts to generalise DPD

and increase its scope of applicability. A simple extension called many-body DPD (MDPD)

adds a density-dependent repulsive term [35, 36, 37]

Frep(r) =

B(ρ̄i + ρ̄j)(1− r/rd), r < rd,

0, r ≥ rd,
(6.3)

where B, which is greater than zero, is the repulsion parameter, rd < 1 a new, many-body

lengthscale, and ρ̄i a local density for ith particle, which we define later. For some specific set

of parameters, this force field can simulate a water slab with correct surface tension [41].

Since its introduction, MDPD has been linked to Flory-Huggins theory [38, 42] and tested

on several simplified models of pure liquids [42, 106] or polymers [43, 10]. However, the scope

of its applications is still limited, when compared with standard DPD, and so far this method

has not been applied to more complex systems of industrial relevance with the aim of behaviour

prediction or material design.

The first restriction on the applicability of MDPD is the lack of a systematic protocol for

generating the interaction parameters that would reproduce the properties of real liquids. For

example, Ghoufi et al. [41] simulated pure water at a coarse-graining (CG) degree of three

molecules per bead, and showed that their set of parameters leads to the correct density and

surface tension. However, these authors did not explain how they generated these parameters,

or how these should be modified if one wanted to simulate water at a different CG degree. As

these authors admitted in a different publication [42], there is not “rigorous route” to calculate

realistic MDPD interaction parameters.

Secondly, while the behaviour of standard DPD, which is controlled by only one interaction

parameter, A, is relatively well understood, MDPD has three: A,B and rd. The two additional

parameters significantly increase the complexity of the phase diagram and the risk of unexpected

and unphysical behaviour if not chosen well.

The aim of this chapter is to resolve these two problems. To this end, we explore a large

portion of the phase diagram of an MDPD fluid by systematically varying the values of repulsion

B, attraction A and many-body cutoff rd. By measuring the density and the self-diffusion

coefficient, we reveal the region of the liquid-vapour coexistence as well as the gas phase, where

the particles homogeneously fill the whole simulation cell, and a solid phase with a well-defined

lattice and negligible particle diffusion, but lacking a proper stress-strain relation. Having

determined the phase boundaries, we then discuss how these findings can be applied to define

a top-down parametrisation protocol. Finally, we demonstrate how this protocol can yield the

interaction parameters for water at varying CG degrees.
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We note that there is an extension generalising both DPD and MDPD called smoothed DPD

(SDPD). This method corrects for the problems with transport and an inability to simulate

non-isothermal settings based on discretising Navier-Stokes equations [107, 108]. However, the

simplicity and versatility of MDPD makes the effort of parametrising it a worthwhile pursuit

before considering a more general SDPD.

This chapter is organised as follows. In Section 6.2 we present the simulation details and

tools used for determining the phase behaviour, namely the density profile, self-diffusivity, sur-

face tension and coordination number, and determine the lattice type of the solid phase. In

Section 6.3 we develop a top-down parametrisation protocol for the liquid phase and derive in-

teraction parameters for water. Consequently, in Section 6.4 we investigate the relation between

the Flory-Huggins χ-parameter and the surface tension, and predict interfacial surface tensions

of a few simple binary mixtures using the formalism built in Section 6.3.

6.2 Measurement of properties

6.2.1 Simulation details

Following Ghoufi et al. [41], we set a simulation cell size of 22× 5× 5 (in reduced units), with

one dimension significantly larger than the others. This asymmetry forces the liquid to form

a rectangular slab instead of a spherical droplet, which facilitates calculation of the surface

tension. The simulation step ∆t is set to 0.01, which is significantly lower than the one used

in standard DPD simulations (0.05). The MDPD force field is not strictly linear and so one

should expect the need to lower the simulation step in order to keep the temperature within

manageable limits. On several occasions, especially at lower values of rd, the temperature in

our simulations diverged by more than 10%, which is considered undesirable [37]. While this

problem can be generally ameliorated by further lowering the timestep, this creates a penalty

in the form of decreased simulation speed and undermines the main advantage of DPD and

MDPD as a mesoscale method. For this reason, we did not use timesteps below 0.01 and did

not explore many-body cutoffs below rd = 0.55.

In each simulation we used 1000 particles, equilibrated for 500k steps and measured during

the following 5k steps, a long enough interval to capture mass transport since a bead with

average speed would be displaced by 50 length units. The dissipation parameter γ was set to

4.5, a value commonly used in the literature. We note that varying γ would change the diffusive

behaviour, but it would not influence the position of phase boundaries or equilibrium behaviour

in general. To perform the simulations we used the DL MESO software package version 2.6 [84].

We have explored a wide range of values A and B. We also note that A should always be

negative in order to create van der Waals loop [37] and the liquid-vapour interface, whereas

values of B should always be positive to keep the core of the force field repulsive. We chose the

range [−100, 0] for A and [0, 100] for B and henceforth refer to them as attraction and repulsion,

respectively. In Section 6.3, we will show that a real liquid can fall into this range for a wide

number of CG degrees.
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Figure 6.1: Representative density profiles of MDPD depicting solid phases with clear lattice at
rd = 0.65 ((a), (b), (c)), and gas, liquid and solid phase at rd = 0.75 ((d), (e), (f) respectively).
From the similarity of (e) and (f) it is clear that the solid phase cannot by reliably identified
only by its density profile.

6.2.2 Density

Our first tool in describing the properties of MDPD fluid is density, which arises naturally as a

function of the repulsion, attraction and the many-body cutoff rd and not due to the constraints

of the simulation cell as in case of standard DPD. Fig. 6.1 shows typical density profiles in a

cell of size 22 × 5 × 5 for rd = 0.75 and 0.65. For low values of both |A| and B, we observed

homogeneously dispersed particles signalling the gas phase. For intermediate values between

0 and 100 there is a liquid phase with well-defined interface. Finally, the periodic variation of

zero and very high density at rd = 0.65 indicates a lattice of a solid phase.

To quantify these observations we fitted the density profiles with a symmetrised hyperbolic

tangent:

ρA,B(x) = c1[tanh(c2|x− c3|+ c4) + 1]/2 + c5. (6.4)

where c1 is the excess density of the liquid phase, c5 is the density of the gas phase, c3 and c4

are the centre and the half-width of the liquid droplet respectively, and c2 is the steepness of

the interface. The resulting liquid density is then ρ = c1 + c5.

Fig. 6.2 shows heat maps of the computed densities ρ = c1 + c5, with each subfigure repre-

senting a specific many-body cutoff. At rd = 0.85, the gas phase (dark colour) occupies almost

one half of the phase diagram, indicating that at higher values of rd there would be no space for

the liquid phase within a reasonable range of repulsions and attractions. On the other hand, at

low values of rd, such as 0.55, the gas phase is limited to very low values of |A|, and most of

the region is occupied by the solid phase, as will be confirmed by self-diffusivity measurements

in Section 6.2.3.
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rd d1 d2 d3

0.65 5.01±0.03 2.11±0.05 −0.870±0.01

0.75 3.01±0.03 1.21±0.03 −0.856±0.01

0.85 1.50±0.05 0.60±0.02 −0.756±0.01

Table 6.1: Fitting coefficients for liquid and
solid densites (eq. (6.5)) as a function of A, B,
and rd.
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Figure 6.2: Density heat maps for rd ∈ {0.55, 0.65, 0.75, 0.85}. Dark regions at low values of |A|
show the gas phase, and yellow regions of high density show at the top left corner reveal the
no-go region with attractive force at zero interparticle distance.

We now determine how the liquid or solid density vary with the force field parameters. For

simplicity, we perform this fitting separately for each value of rd. In principle it is possible to

obtain such dependence by analytically finding the roots of the EOS at zero pressure. However,

our attempt to solve Warren’s EOS (eq. (6.1)) analytically resulted in an expression that was

too long and intractable for further use. Our aim is instead to produce a density function which

is more empirical but at the same time more practical for subsequent applications. This can be

achieved using only a few fitting parameters and simple polynomial, power law or exponential

functions.

Visually observing the cuts through the phase diagram and exploring several candidate

functions we arrived at a simple three-parameter fit suitable for all considered many-body

cutoffs:

ρ(A,B) = d1 + d2(−A)Bd3 (6.5)

with fitting coefficients di, i ∈ {1, 2, 3}. Their values and associated errors are shown in Table 6.1.

We did not fit the lowest explored value of the cutoff rd = 0.55 due to its very small liquid phase,

but in principle this can be done as well as for any other cutoff. A more detailed analysis,

including the model selection, is provided in the appendix.

6.2.3 Self-diffusivity

To reliably identify the boundary between solid and liquid phase for rd ∈ {0.65, 0, 75, 0.85},
we investigate the dynamic properties of MDPD. The self-diffusivity of an unknown material

is an important signature differentiating between liquid, solid and gas phases. We expect this

quantity to be negligible in solids, while in pure liquids or gases it should follow the Einstein

regime marked by the linear dependence of the mean-square displacement on time.

We measured the self-diffusion coefficient for every configuration via the mean-square dis-
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Figure 6.3: Mean-square displacements for the representative configurations observed in the
many-body DPD, depicting typical behaviour of gas ((d), (g), (h)), liquid ((a), (e), (i)) and
solid phase ((b), (c), (f)).

placement (MSD):

D = lim
t→∞

〈|r(t)− r(0)|2〉
6t

(6.6)

where the average 〈.〉 is over all the particles.

Typical MSDs are shown on Figs 6.3. The scale on the y-axis demonstrates a clear difference

between solids, liquids and gases. The solid phase poses a limit to the beads in how far they

can diffuse. The liquid phase allows only the linear regime, whereas the gas phase contains a

polynomial transient response and then gradually becomes linear.

Plotting all the self-diffusivities in a heat map (Figs 6.4) enables us to distinguish the different

phases. Dark blue regions corroborate the existence of the solid phase, whereas the yellow regions

show the gas phase. The region in between is liquid.
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Figure 6.4: Self-diffusivity heat maps for rd ∈ {0.55, 0.65, 0.75, 0.85}. Yellow regions at the top
reveal the solid phase; dark regions regions at the bottom show the gas phase.

6.2.4 Lattice of the solid phase

Having located the whereabouts of the solid phase in the phase diagram via the self-diffusion

coefficient, we now determine its lattice. There are in fact two lattice types, implying two

different phases. Starting with rd = 0.75, we observe the first type occurring at large values of

both repulsion and attraction, around (A,B) = (−100, 100). The density of this configuration is

ρ ≈ 5. Another phase, which is formed at high repulsions A < −80 and intermediate attractions

B = 30–50, is more closely packed, with a typical density of ρ ≈ 8 at rd = 0.75.

To identify these phases, we plotted the radial distribution functions (RDF) and compared

them with a set of RDFs of several Bravais lattices smeared by temperature fluctuations. The

first phase was identified with the body-centred cubic (bcc) lattice (Fig. 6.7), and the second

one with the hexagonal (hex) lattice with an interlayer distance lower than the in-plane lattice

constant.

As another verification, we computed the coordination numbers (CN) for all the solid con-

figurations (A,B, rd), which we chose by their self-diffusivity. CN is defined as the number of

nearest neighbours of a particle, which can be computed by integrating the RDF g(r):

z(r) = ρ

∫ r

0
g(r′) 4πr′2 dr′. (6.7)

In a lattice, neighbouring particles reside in so-called coordination shells, which give rise

to local maxima in the RDF. Separating the adjoining coordination shells can be realised by

identifying the plateaus in the CN as a function of the distance, i.e. the minima in the first

derivative of z(r). Fig. 6.5 unambiguously shows that all the solid configurations (A, B, rd)

indeed fall into two groups: the bcc phase with a plateau value of z ≈ 14, which includes first

two coordination shells, and the hex phase with a first plateau z = 2, which captures out-of-

plane vertically aligned atoms, followed by z ≈ 20, which comprises two hexagons above and

below and one in the plane of any particle.

From Fig. 6.5 it is also clear that the solid phase occupies a major part of the phase diagram

at rd = 0.55, rendering the usefulness of this value of this many-body cutoff rather limited for

simulations of liquids. On the opposite end, at rd = 0.85, the solid phase is non-existent within

the explored range of repulsions and attractions. From these observations it follows that most

practical for simulation of multiphase systems, as well as richest in terms of the number of

phenomena to capture, are simulations at rd = 0.75, which has already been widely employed

in the literature, as well as 0.65.
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Figure 6.5: Heat map of coordination numbers for each many-body cutoff rd containing a solid
phase, with the lattice denoting a specific phase type.

We further investigated the stability of both phases, performing simulations in multiple

orthorhombic simulation cells of varying degree of asymmetry, between 16×4×4 up to the cubic

shape, 16× 16× 16, and for a range of densities. For the bcc phase, we took the configurations

(A, B, rd) = (−100, 100, 0.75), at which the equilibrium density was ρbcc ≈ 5.5. When setting

the initial density to around 5.5, the randomly initialised particles indeed formed a bcc lattice

for every cell box shape, implying a stable minimum.

To reproduce the hex phase, we chose the configuration (−100, 40, 0.75) leading to the

equilibrium density ρhex = 8.5. Starting again from randomly initialised positions, the hex

phase formed only when the initial density was set below ρhex, and only in the more asymmetric

cells. This suggests that the hex phase is stabilised by the negative pressure.

Further investigation by measuring excess chemical potential via the Widom particle inser-

tion method [3] revealed that the bcc phase is significantly more stable than the hex phase at

both (A,B, rd) = (−100, 100, 0.75) and (−100, 40, 0.75). We can hence safely conclude that

the hex phase is metastable and cannot be considered as a true bulk phase of the MDPD force

field.

Finally, to estimate the stress-strain relation of the solid phase, we put an already solid

cuboid into a larger simulation cell. After a short simulation period, its shape became spherical.

Hence, the true stress-strain relationship of the solid phase cannot be captured by MDPD.1

6.2.5 Liquid phase and surface tension

We now return to the examination of the liquid phase by excluding solid and gas regions. We

computed the surface tension for each configuration as follows:

σ =
Lx
2

(
〈pxx〉 −

〈pyy〉+ 〈pzz〉
2

)
, (6.8)

where pββ are the diagonal components of the pressure tensor. As in case of density, we obtain

the functional dependence of the surface tension by fitting over the measured points for each

many-body cutoff rd. Visual observation of the cuts through the phase diagram at constant A

or B and trial of several functions revealed that different many-body cutoffs rd are best fit by

different functions with varying number of parameters. Table 6.2 summarises these functions and

1We thank an unknown reviewer for inspiring this analysis.
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Figure 6.6: Radial distribution functions of (a) bcc and (b) hex phase for rd = 0.75. The
lattices of the simulation were identified by comparing these with RDFs arising from ideal
temperature-smeared lattices.

(a) (b)

Figure 6.7: Lattice visualisations from various high-symmetry directions of (a) bcc and (b) hex
phases for rd = 0.75.

their coefficients. We explain the reasoning for the model selection more fully in the appendix.

6.3 The connection to real liquids

Having described the phase diagram of an MDPD fluid and determined the dependence of

density and surface tension on the force field parameters A,B, and rd, we now discuss how

these findings can be used in parametrising real liquids. In the standard DPD, the simulation of

a pure fluid is controlled by one parameter A > 0, and hence only one physical quantity is needed

to bridge the simulation with the experiment. Groot and Warren chose compressibility [7], but

rd Function Coefficients

0.65 (f1A
2 + f2A+ f3)(B − f4 + f5A)f6 (0.0592,−4.77,−66.8,−1.62, 0.146,−0.665)

0.75 (f1A
2 + f2A)(B + f3A)f4 (0.0807, 0.526, 0.0659,−0.849)

0.85 (f1A
2 + f2A)(B − f3)f4 (0.0218, 0.591, 7.52,−0.803)

Table 6.2: Fitting functions and their coefficients for the surface tension dependence on A and
B.
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in principle many other experimental properties could be used.

In developing the parametrisation for MDPD, we first assume that rd is fixed. There remain

two free parameters, repulsion and attraction, and so two physical quantities are needed. Having

obtained functional relations for density and surface tension over a wide range of configurations

(A,B, rd), we now understand how the behaviour of the liquid, gas or solid varies with the

interparticle potential. Furthermore, compressibility is readily available as a function of density

and (A,B, rd) from the EOS due to Jamali et al. [38] (eq. (1.25)):

κ−1 = ρ
∂p

∂ρ
= ρ+ 2αAρ2 + 2αBr4

d(3ρ3 − 2c′ρ2 + d′ρ)− αBr4
d

|A|1/2 2ρ2, (6.9)

where kBT was set to 1 and c′, d′ are fitting constants.

Starting from the interaction parameters in reduced units, we can verify that the relations for

density, surface tension, and compressibility yield meaningful liquid properties. As an example,

let us take (A,B, rd) = (−40, 25, 0.75), which were first used by Warren to demonstrate the

capabilities of MDPD by forming a pendant drop [37], and later by Ghoufi and Malfeyt to

prove that MDPD is capable of simulating liquid water [41]. Using the values from Table 6.1

we obtain the density 6.09, which is almost equal to the simulation value 6.08 (also obtained by

Arienti [109]). Employing the appropriate equation and coefficients from Table 6.2, the surface

tension is 7.01 in reduced units.

To convert these numbers into experimental values, we need to define the reduced units.

Following Groot and Rabone’s definition of the units in standard DPD simulations [83], these

depend on the simulated liquid and are based on the average volume per molecule V0, the

number of molecules in a bead (a CG degree) Nm, and the target density ρ:

rc = (ρNmV0)1/3. (6.10)

Having determined ρ from (A, B, rd) and taking Nm = 3, the length scale rc is 0.818 nm. The

experimental observables are summarised in Table 6.3. The density in SI units is trivially 997

kg/m−3, as this is the value on which the parametrisation was based in the form of the volume

per molecule V0.

To convert the compressibility and surface tension to SI values, we first need understand how

these quantities scale with the CG degree. Following Füchslin [30] and the work in Chapter 4,

we note:

kBT ∼ Nm, (6.11)

rc ∼ N1/3
m , (6.12)

κ−1,real = κ−1kBTc/r
3
c ∼ 1, (6.13)

σreal = σkBTc/r
2
c ∼ N1/3

m . (6.14)

The resulting bulk modulus, which is the inverse of the compressibility, is about three times

the experimental value (2.15×109 Pa) and the surface tension is about twice as high as the real

value for water (71.5 mN/m). Compared with more precise, atomistically resolved water models

such as SPC, which yield about 50 mN/m [110], this is not an unreasonable agreement, so we
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Nm = 3 Reduced units Real units

Length scale rc 1 0.818 nm

Density 6.09 997 kg/m3

Surface tension 7.01 130 mN/m

Bulk modulus 294 6.67×109 Pa

Table 6.3: Predicted physical properties of
a typical MDPD liquid with configuration
(A, B, rd) = (−40, 25, 0.75). These can be
compared with experimental values 2.15 ×
109 Pa and 71.5 mN/m for bulk modulus
and surface tension, respectively.

can say that these interaction parameters yield meaningful, if not accurate quantities of interest.

However, we now show that there is space for fine-tuning, which would achieve considerably

improved precision.

6.3.1 Parameterisation for real liquids

Usually, in simulating new materials, one desires to go the opposite way, that is start from

experimental data and obtain the interaction parameters in reduced units to prepare the material

for simulation. Here, we show how this can be achieved. From this point we denote the quantities

in reduced units by a diacritical tilde.

For any liquid defined by compressibility, surface tension and volume per molecule, and

choosing CG degree Nm and temperature defining the energy scale kBTc, we have four highly

non-linear equations with four unknowns: rc, Ã, B̃, and ρ̃. Considering, e.g., r̃d = 0.75, the

fitting coefficients from Tables 6.1 and 6.2 yield:

rc = (ρ̃NmV0)1/3, (6.15)

ρ̃(Ã, B̃) = 3.01 + 1.21(−Ã)B̃−0.856, (6.16)

σ̃(Ã, B̃) = σ
r2

c

kBTc
= (0.0807Ã2 + 0.526Ã)(B̃ + 0.0659Ã)−0.849, (6.17)

κ̃−1 = κ−1kBTc

r3
c

= ρ̃
∂p̃

∂ρ̃
= ρ̃+ 2α̃Ãρ̃2 + 2α̃B̃r̃4

d(3ρ̃3 − 2c′ρ̃2 + d′ρ)− α̃B̃r̃4
d

|Ã|1/2
2ρ̃2. (6.18)

These equations can be solved numerically, either by a root-finding algorithm2 or by a

brute-force search through the parameter space.

In a mesoscale simulation, one does not demand extreme accuracy, so rounding the interac-

tion parameters to nearest integer can often suffice. Hence, working with resolution ∆Ã = 0.1,

∆B̃ = 0.1, a brute-force search through the parameter space with range [−100, 0] and [0, 100]

for Ã and B̃, respectively, requires relatively few evaluations of eqs. (6.18) and an objective

error term. On an average modern computer, this process takes at most a few seconds.

We defined the error function as follows:

Err = w

∣∣∣∣1− σ

σL

∣∣∣∣+

∣∣∣∣∣1− κ−1

κ−1
L

∣∣∣∣∣ , (6.19)

2One can now employ, e.g., the find_root function from the Scipy library

81



CHAPTER 6. EXPLORATION OF MANY-BODY DPD

Table 6.4: Derived interaction pa-
rameters for water at various CG de-
grees and r̃d = 0.65.

Nm ρ̃ Ã B̃ σ (mN/m) κ−1 (109 Pa)

1 22.10 −14.8 2.0 71.1 3.52

2 21.52 −14.3 2.0 71.1 3.37

3 20.61 −14.1 2.1 71.8 3.33

4 21.06 −13.9 2.0 71.8 3.24

5 20.28 −13.8 2.1 71.3 3.23

6 20.83 −13.7 2.0 72.2 3.18

7 20.71 −13.6 2.0 70.8 3.15

8 19.46 −13.6 2.2 71.5 3.20

9 20.60 −13.5 2.0 71.4 3.12

10 19.36 −13.5 2.2 71.4 3.17

where σL and κ−1
L

are experimental surface tension and compressibility, respectively. We chose

the weight factor w = 5, putting more emphasis on reproducing surface tension more accurately

than compressibility, which in itself is too restrictive, as has been recently highlighted in the

context of standard DPD [105].

We have determined the interaction parameters Ã, B̃ for water, which we later apply to

water-solvent mixtures. We need to bear in mind that water is an outlier in that its surface

tension is about three times higher and the volume per molecule several times lower than in

case of other common solvents. We have explored a range of many-body cutoffs r̃d: 0.65, 0.75

and 0.85 and CG degrees Nm from 1 to 10.

Firstly, we focus on water. The resulting values of Ã, B̃ for r̃d = 0.65, which are shown in

Table 6.4, are relatively small and marked by excessive inverse compressibilities. More impor-

tantly, the reduced density, which is a key parameter for simulation efficiency, is extremely high

for any CG degree up to 10, as can be compared by the typical density ρ̃ = 3 used in standard

DPD. We conclude that this many-body cutoff is useless for water simulations and decide not

to proceed.

The parameter search for r̃d = 0.75 yields more suitable results, with accurate surface

tensions as well as compressibilities for all CG degrees, as shown in Table 6.5. The density ρ̃

is still rather high at Nm = 1 and 2, but other CG degrees are viable. r̃d = 0.85 in Table 6.6

produces reasonable parameter values and highly suitable reduced densities, almost on the level

of standard DPD, but slightly low inverse compressibilities. Hence, both of these values of r̃d are

suitable for simulations including water. This analysis also suggests that an intermediate value

of r̃d, such as 0.80, would provide both reasonable densities as well as accurate compressibilities.

To demonstrate the robustness of this parametrisation method, Table 6.7 shows derived

interaction parameters for ethanol and benzene, respectively, as examples of chemically different

solvents. These two liquids have several times lower surface tension (22.3 mN/m for ethanol

and 28 mN/m for benzene) and compressibility than water, which leads to lower and thus more
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Nm ρ̃ Ã B̃ σ (mN/m) κ−1 (109 Pa)

1 9.99 −18.5 3.9 71.6 2.23

2 8.63 −18.1 4.9 71.5 2.16

3 7.76 −18.2 6.0 71.5 2.19

4 7.23 −18.2 6.9 71.3 2.22

5 6.94 −18.0 7.4 71.4 2.20

6 6.70 −17.9 7.9 71.6 2.20

7 6.55 −17.7 8.2 71.5 2.18

8 6.39 −17.6 8.6 71.4 2.18

9 6.23 −17.6 9.1 71.5 2.20

10 6.12 −17.5 9.4 71.5 2.20

Table 6.5: Derived interaction param-
eters for water at various CG degrees
and r̃d = 0.75.

Nm ρ̃ Ã B̃ σ (mN/m) κ−1 (109 Pa)

1 5.71 −39.8 10.0 71.3 1.20

2 5.43 −39.9 11.0 71.6 1.16

3 5.24 −39.6 11.6 71.5 1.10

4 5.07 −40.0 12.5 71.4 1.09

5 4.95 −40.0 13.1 71.4 1.06

6 4.88 −39.6 13.3 71.5 1.01

7 4.80 −39.4 13.6 71.4 0.98

8 4.68 −40.0 14.6 71.6 0.99

9 4.60 −40.0 15.1 71.3 0.96

10 4.54 −40.0 15.5 71.5 0.94

Table 6.6: Derived interaction pa-
rameters for water at various CG de-
grees and r̃d = 0.85.

efficient simulation densities.

Having discussed the properties of pure liquids, we now turn our attention to mixtures.

6.4 Mixing in MDPD

Having provided a general liquid parametrisation protocol for MDPD and derived the interaction

parameters and densities of coarse-grained water, we now turn to the mixing properties of

liquids. In simulating binary mixtures, we keep the parameter B̃ constant across liquid species,

as required by the no-go theorem derived by Warren [111]. Thus, only varying ∆Ã controls the

phase separation.

In the context of standard DPD, mixing was related to the Flory-Huggins theory [7]. In

order to bridge the experiments to mesoscale simulation, the Flory-Huggins χ-parameter, which
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Table 6.7: Derived interaction
parameters for ethanol at r̃d =
0.75 for a range of CG degrees.

Ethanol

Nm ρ A B σreal (mN/m) κ−1,real (109 Pa)

1 6.63 −20.9 9.7 22.3 0.84

2 5.86 −20.3 12.4 22.3 0.84

3 5.49 −19.9 14.2 22.3 0.85

4 5.31 −19.5 15.2 22.3 0.84

5 5.16 −19.2 16.1 22.3 0.84

Table 6.8: Derived interaction
parameters for benzene at r̃d =
0.75 for a range of CG degrees.

Benzene

Nm ρ A B σreal (mN/m) κ−1,real (109 Pa)

1 6.17 −33.3 19.6 28.0 1.05

2 5.48 −32.3 25.2 28.0 1.05

3 5.18 −31.4 28.3 28.0 1.05

4 5.00 −30.8 30.7 28.0 1.05

5 4.87 −30.3 32.6 28.0 1.05

can be computed a priori for a given mixture from Hildebrand solubilities δ via eq. (4.26) or

through a more sophisticated Monte Carlo sampling [34], was related to the excess repulsion

∆Ã.

Denoting χ = ν∆Ã, ν = 0.286 in standard DPD at ρ̃ = 3 and 0.689 at ρ̃ = 5 [7]. In the

context of MDPD, Jamali et al. derived three values of ν at three different densities, considering

positive values of Ã only and hence describing a purely repulsive liquid (eqs. (19)–(21) in their

paper) [38]. Since density in MDPD is not decided a priori but arises by choosing the liquid and

the specific CG degree, we need to understand the general dependence of ν on density. These

three points obtained by Jamali et al. can be fitted by a line:

ν(ρ̃) = −0.259 + 0.196ρ̃. (6.20)

Here, we derive how ν depends not only on density but also many-body cutoff r̃d for negative

values of Ã. Following the protocol presented by GW (Section V and Fig. 7), we set up a

simulation cell 20 × 8 × 8, varied excess repulsion ∆Ã between 0 and 15 and measured the

χ-parameter from the phase-separated density profiles via:

χ =
ln[(1− ρ̃A)/ρ̃A]

1− 2ρ̃A
, (6.21)

where ρ̃A is the density of component A (for illustration, see Fig. 6 in GW). Consequently,

we fitted this dependence of χ on ∆Ã by a line. Fig. 6.9 shows that that the region of linear

dependence is limited for the values of χ between about 2 and 6 and depending on the density,
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Figure 6.8: Dependence of density-scaled surface tension σ̃/ρ̃ on the χ-parameter for (a) r̃d =
0.75 and (b) r̃d = 0.85 with error bars.
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Figure 6.9: Dependence of the Flory-
Huggins χ-parameter on excess repulsion
∆Ã for a range of densities. Compare this
with Fig. 6 from GW [7] and especially
Fig. 10 from Jamali et al. [38].

which should be carefully taken into consideration in simulating binary mixtures.

Exploring four different densities, we obtained a linear dependence of ν on density similar

to Jamali et al.:

ν = −(0.233± 0.019) + (0.188± 0.003)ρ̃, (6.22)

for r̃d = 0.75, and

ν = −(0.285± 0.019) + (0.196± 0.003)ρ̃, (6.23)

for r̃d = 0.85. The influence of r̃d on ν is small and for practical purposes can be neglected.

6.4.1 Surface tension

Having determined the dependence of the χ-parameter on excess repulsion ∆Ã, we now turn

our attention to surface tension, a key quantitative descriptor of behaviour of a binary mixture.

Firstly, we verify how surface tension varies on χ-parameter. We note that Jamali et al.

have also computed this dependence (Fig. 12b in [38]) but did not provide a functional form.

We decided to revisit their results due to a different choice of interaction parameters Ã > 0

by these authors. We used the pressure tensor components for surface tension calculation via

eq. (4.30).

Fig. 6.8a and 6.8b show the surface tension vs χ-parameter for r̃d = 0.75 and 0.85, respec-
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Figure 6.10: Surface tension predicted from a MDPD simulation and compared with experiment
for three solvent mixtures for (a) r̃d = 0.75 and (b) r̃d = 0.85. The scaling of the χ-parameter
with CG degree aims to keep real surface tensions scale-invariant.
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Figure 6.11: Density profiles of equilibrated many-body DPD mixture of water and benzene at
CG degree Nm = 5 for many-body cutoffs (a) r̃d = 0.75 and (b) r̃d = 0.85.

tively. We do not observe the collapse of the ratio σ̃/ρ̃ onto one curve, as GW claimed, beyond

χ > 5, as there still remains a small density dependence. Furthermore, our absolute values of

the surface tension are lower by about a factor of three from the values obtained by Jamali et

al. (Fig.12b), but in agreement with Fig. 1b from Yong [43].

GW suggested a fitting form σ̃ = µiχ
µ2(1 − µ3/χ)3/2. In order to find a universal scaling

where all the surface tension curves collapse onto one, we relaxed this form via coefficient ξ:

σ̃/ρ̃ξ = µiχ
µ2(1− µ3/χ)3/2. (6.24)

Searching for ξ that minimises the standard deviation on µi, which is a signature of universal

scaling, we found that the best fit is provided by ξ = 1.38 for r̃d = 0.75 and 1.24 for r̃d = 0.85.

As in the case of standard DPD, in order to enable reliable simulations of real mixtures at

various scales, we need to derive the scaling of the χ-parameter with CG degree in order to keep

surface tension in real units scale-invariant. Fitting for µi in eq. (6.24) and computing surface

tension for the three mixtures considered by Maiti et al. [93], namely: water-benzene, water-
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CCl4 and water-octane, at CG degrees 1-10, we found that χ ∼ N−0.2
m yields the smallest RMSE

with respect to experimental values in Table 4.1, an exponent similar to -0.22 for standard DPD.

To verify the predictive ability of MDPD, we computed via simulation surface tensions of

the three mixtures for a range of CG degrees and the two viable many-body cutoffs, 0.75 and

0.85. We remark that the χ-parameters computed by eq. (4.26) of these mixtures are all on the

top end of the range of validity in Fig. 6.9 at low CG degrees. We setting the simulation cell

20 × 10 × 10 and timestep ∆t̃ = 0.02, we simulated in DL MESO version 2.6 for 150k steps,

using first 50k for equilibration and collecting 10k pressure tensor components for averaging.

The interaction parameters B̃ij were the same for all pairs of species due to the Warren’s no-go

theorem, and Ãij were different only for unlike species:

Ãij = Ã+ ν(ρ̃)χij , (6.25)

B̃ij = B̃, (6.26)

where Ã, B̃ were taken from Tables 6.5 or 6.6 for appropriate CG degree.

For r̃d = 0.75, the results on Fig. 6.10a show a satisfactory albeit not perfect agreement apart

from Nm = 1 and 2. At these low CG degrees, the densities are very high and already out of

the range of validity of the density fit, resulting in incorrect liquid behaviour. Increasing many-

body cutoff to r̃d = 0.85, Fig. 6.10b shows good agreement of up to 10% in case of water-CCl4.

Considering that due to lower density ρ̃ the simulations took about a third of the time required

by the configurations employing r̃d = 0.75, this setting is suitable for water-solvent simulations.

Illustrative density profiles of water and benzene at Nm = 5 are provided on Fig. 6.11.

Finally, we note that treating water and other solvents with the same set of default interac-

tion parameters (Aii, Bii) is sufficient if the simulation cell is filled with liquid phase only, as is

the case of our current simulations. However, to simulate liquid-vapour coexistence it would be

ideal if the two solvents had their own set of default parameters derived from their respective

compressibilities and surface tensions. At present, this is a challenge for MDPD due to the

no-go theorem[111] preventing different values of Bij .

6.5 Conclusion

In this chapter we have demonstrated the richness of many-body dissipative particle dynamics

and established its suitability for simulating a wide range of mesoscale systems. By systematic

variation of the force field parameters we uncovered the regions of liquid, gas and solid phase. We

identified one stable solid phase with the bcc lattice, and one metastable phase with hexagonal

lattice.

For the liquid phase, we fitted the density and surface tension as a function of the force

field parameters and demonstrated how these functional relations can serve to generate the

interaction parameters for real liquids.

By relaxing the definition of the length scale rc, we generated reasonable interaction pa-

rameters from bottom-up for water and significantly improved the precision of predicting the

surface tension of three mixtures. In principle, this parametrisation protocol can be applied to

any other liquid.
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This parametrisation now enables to rigorously apply many-body dissipative particle dy-

namics to solid/liquid or liquid/gas interfaces of soft matter systems, or porous structures in

general, and expect more accurate predictions vis à vis experimental data. To point at one

possible application, which is both industrially important as well as relevant in the context of

this thesis, we mention the porous structure of the catalyst layer of fuel cells, which is the main

bottleneck in the performance and commercial deployment of the fuel cells in transport, and,

as a result, has been the source of extensive research effort in the past few decades [69].

Appendix: Fitting

Here, we describe in more detail the fitting procedure for the densities and surface tensions as

functions of interaction parameters A,B discussed in the main paper. For all the fits, we used

the function curve_fit from the Scipy library 3.

Density profiles

By visually inspecting the cuts of the density surface ρ(A,B) it is possible to guess several trial

functions. At constant B, the density varies linearly in the liquid and solid regime for A < −20,

whereas at constant A, the variation follows the power law: (B−β1)β2 . Example cuts are shown

in Fig. 6.12.

We applied two versions of the fitting function, composed as the linear combination of the

line and the power law, one containing three and the other four parameters. To gauge their

relative performance, we randomly split the data into training and validation sets with 80/20

ratio, respectively. We carried out 500 such splits and estimated the average root-mean-square

error (RMSE) in the validation set. For further certainty, we also computed the median RMSE

to verify that the distribution of the RMSEs is normal. This turned out to be the the case,

which was marked by the similar values of median and average RMSE.

The results shown in Table 6.9 reliably conclude that the four-parameter fit performs better

for all of the many-body cutoffs rd. However, considering the similarity of the RMSEs and the

fact that later, in Section IV of the paper, we would use this fit for deriving the interaction

parameters A,B via minimisation, we decided to proceed with the three-parameter fit. The

parameters for each of the explored values of rd are summarised in Table 6.1.

ρ(A,B) Nparam Avg RMSE (rd)

0.65 0.75 0.85

1. c1 + c2(−A)(B − c3)c4 4 0.20 0.16 0.13

2. c1 + c2(−A)Bc3 3 0.21 0.18 0.16

Table 6.9: Attempted fitting functions for density ρ(A,B) and their respective average RMSEs
vs rd’s.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

88

https://docs.scipy.org/doc/scipy/ reference/generated/scipy.optimize.curve_fit.html


CHAPTER 6. EXPLORATION OF MANY-BODY DPD

0 50 100
B

0

5

10
ρ

Fixed A = -40

−100 −50 0
A

0

5

10

ρ

Fixed B = 30

Figure 6.12: Example density surface cuts at rd = 0.75 (in reduced units), suggesting linear and
power law variation with A and B, respectively.
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Figure 6.13: Examples of surface tension surface cuts for rd = 0.75 (in reduced units).

Surface tension profiles

Visual inspection of the surface tension as a function of A,B (Fig. 6.13) suggest more candidates

for fitting functions. The cuts at constant B seemed to indicate a quadratic dependence on A,

whereas the cuts at constant A gave a power law, as in case of density.

We tried 10 linear combinations of these two functions. In each case, we followed the protocol

outlined in the section I.: splitting the data 500 times into training and validation sets with

80/20 ratio, and for each split fitting on the training set and computing the RMSE on the points

from the validation set.

The average and median RMSEs showed a non-negligible difference. In such case, we con-

sidered median to be a more appropriate measure of the quality of a fitting function. The trial

fitting functions and their respective median RMSEs are summarised in Table 6.10. Each rd is

best represented by a different function. Deciding between functions with very similar values

of median RMSEs, which happened at rd = 0.85, we chose the one with the lower number of

parameters. The resulting function choices for each value of rd are summarised in Table 6.2.
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σ(A,B) Nparam Median RMSE (rd)

0.65 0.75 0.85

1. (c1A
2 + c2A+ c3)(B − c4)c5 5 3.64 1.80 0.34

2. (c1A
2 + c2A+ c3)(B − c4 + c5A)c6 6 2.09 NA 0.34

3. (c1A
2 + c2A+ c3)(B − c4)c5+c6A 6 3.76 1.66 0.33

4. (c1A
2 + c2A)(B − c3)c4 4 3.65 1.76 0.34

5. (c1A
2 + c2)(B − c3)c4 4 3.65 1.67 0.39

6. (c1A
3 + c2A

2 + c3A+ c4)(B − c5)c6 6 3.39 1.90 0.34

7. (c1A
3 + c2A

2 + c3A)(B − c4)c5 5 3.49 1.86 0.34

8. (c1A
2 + c2A)Bc3 3 3.91 1.74 0.51

9. (c1A
2 + c2A+ c3)Bc4 4 3.88 1.78 0.51

10. (c1A
2 + c2A)(B + c3A)c4 4 2.33 1.47 0.43

Table 6.10: Attempted fitting functions for surface tension σ(A,B) and their respective median
RMSEs vs rd. The numbers in bold point at the best-fitting functions given the number of
parameters.
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Chapter 7

Thin Nafion films via many-body

DPD

Kancelária nesmie slúžit’ ako

zhromaždisko pre vol’nú debatu

nepracovného charakteru, poṕıjania kávy

bez pracovnej náplne, či inej pracovnej

nečinnosti.

Minutes from a business meeting

Having developed the parametrisation for many-body dissipative particle

dynamics in the previous chapter, we apply it here for the first time to

industrial soft matter systems. We simulate an unconfined thin Nafion film

on carbon support, a typical setting found in the catalyst layer of fuel cells.

The results reveal several insights, including the hairy caterpillar structure

of the PTFE backbone chains on the surface, periodic clustering of water,

and the transition from hydrophilic to hydrophobic behaviour with increas-

ing film thickness.

In the catalyst layer (CL) of fuel cells, thin ionomer films of thickness of the order of several

nanometres cover the porous structure created by the carbon support with attached catalytic

PGM nanoparticles. This environment is delicate structure in which protons tunnel through

the water channels in the ionomer, the electrons arrive through the carbon support, and oxygen

passes from the air and through the ionomer film to form water via the oxygen reduction reaction

on the surface of the nanoparticles.

The CL is a key performance bottleneck in fuel cell operation. However, due to its compli-

cated structure spreading several length scales, it is very difficult to obtain experimental data

and analyse the effects of various independent variables. Therefore simulations can play a vital

role.

Building on the DPD simulations of thin but confined ionomer (Nafion) films with no wapour

phase [20, 85] presented in Chapter 2, we exploit many-body dissipative particle dynamics

(MDPD) with the parametrisation scheme developed in Chapter 6 to simulate a more realistic

91



CHAPTER 7. THIN NAFION FILMS VIA MANY-BODY DPD

experimental setting of the CL. We hope to gain insight into the equilibrium structure of an

unconfined thin ionomer film deposited on carbon support and distribution of water at a range

of distances from the carbon support.

7.1 Simulation details

As in case of standard DPD simulations in Chapter 2, we start by defining water as the default

material and the coarse-graining (CG) degree Nm = 6, which was first used by Wu et al. for

bulk Nafion simulations [14]. Each MDPD bead thus contains a volume roughly equivalent

to six water molecules. Setting the many-body cutoff rd = 0.75, a suitable value according

to findings summarised in Chapter 6, the MDPD interaction parameters (A,B) can now be

computed by matching compressibility and surface tension with experimental values for pure

water. This procedure yields A = −17.9, B = 7.9 and the reduced number density of MDPD

beads ρ = 6.70.

The temperature in the simulation is set to ambient conditions, T = 300 K, and defines the

energy scale kBT as one of the reduced units apart from the mass scale mc = Nm × 18 AMU,1

which is the mass of one bead containing six water molecules, and the length scale rc:

rc = (ρNmV0)1/3 = 1.064 nm, (7.1)

where V0 = 30 Å3 is the average volume per water molecule. From these units also follows the

time scale is τ =
√
mcr2

c/kBT = 2.58 ps.

Unlike bead interactions δAij are obtained from the Flory-Huggins χ-parameters as follows:

∆Aij = 1.027χij , (7.2)

where the values of χij are taken from Wu et al., where available, as well as from the Hildebrand

solubilities for the cross-interactions involving carbon (Table 7.1). Following Warren’s no-go

theorem [111], the values of ∆Bij are kept constant for all pairs (i, j).

As before in Chapters 2 and 3, we consider Nafion chains with polymerisation of 15 monomers

per chain, with each monomer composed of five beads (Fig. 2.1). Each A bead contains six CF2

groups, a structure corresponding to an equivalent weight (EW)2 of about 1200. This is close

to Nafion 117 with 1100 g/mol EW, which is considered an industrial standard.

The vapour phase is approximated by empty space. This is reasonable, since, at 100%

relative humidity at 20 ◦C, the density of water in air is about 20 g/m3. This corresponds to 25

water molecules in the volume of a typical simulation cell of side L ≈ 30 nm, or about four W

beads. This is in practice a negligible number. Throughout the simulation of thin films, several

water beads escaped into the empty space, so the VMD screenshots depicted a visible vapour

phase, but the density profiles revealed no significant mass contribution of this phase.

1Atomic mass unit, 1.66 × 10−27 kg.
2Equivalent weight is defined as the mass of dry PTFE backbone per mole of sulfonic acid groups.
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δ (MPa1/2) χ (no units)

A B C W

A 12.7 0

B 13.6 1.23 0

C 23.0 7.44 2.70 0

W 47.8 3.36 1.53 1.48 0

E 25.0 1.10 0.94 0.03 3.77

Table 7.1: Flory-Huggins χ-parameters
defined between pairs of beads of a given
type (A, B, C, W, or E) used in the sim-
ulation, also used in Chapter 2.

(a) λ = 9 (b) λ = 16 (c) λ = 24

Figure 7.1: VMD screenshots of the simulation cell and water density profiles for bulk Nafion
simulated via many-body DPD at various water contents λ. Coloring follows convention set in
Chapter 2: blue is water, red backbone and green sulfonic acid groups.
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Figure 7.2: Structure factors of bulk
Nafion as a function of water content
λ. The peaks representing cluster
spacing move towards lower wave-
lengths q with increasing λ, in agree-
ment with experiment.
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Table 7.2: Scattering maxima qmax as a
function of water content, both in terms
of λ and volume fraction (wt) and the re-
sulting water cluster spacing d. Compar-
ison with experimental trends in Fig. 3 in
Elliott et al. [112].

λ Vol. frac. qmax (nm−1) d (nm)

9 0.250 1.312 2.39

15 0.357 0.525 5.99

24 0.471 0.394 7.98

7.2 Verification: Bulk Nafion

Before embarking on simulations of unconfined thin Nafion film using MDPD, we verify that this

method is able to reproduce the key properties of bulk Nafion that are well-documented in the

literature [17, 14]. We explored three water contents λ defined as the number of water molecules

per sulfonic acid group of the ionomer: 9, 15 (approximately equal to 100% relative humidity)

and 24. Setting the cell 30 × 30 × 30, we simulate for 200k steps with timestep ∆t = 0.01τ ,

so the total simulation time is T = 2000τ . This should be sufficient for equilibration based

on findings by Yamamoto [17], who explored in Fig. 6 in their paper times up to T = 10000τ .

From the last frame we compute the radial distribution functions (RDF) g(r) of W beads and

two-dimensional density profiles across the plane cuts. From these RDFs, structure factors of

water, which are a key experimental observable, are subsequently calculated as follows:

S(k) = 1 + ρ

∫ ∞
0

(g(r)− 1)
sin(kr)

kr
4πr2 dr. (7.3)

Fig. 7.2 shows these structure factors. The position of the main peak demonstrating the

distance between the clusters shifts to the left with increasing water content, in line with exper-

iment. Computing the peak maxima qmax yields the average distance between water clusters

d via the Bragg’s law: 2d = nλ. Setting n = 1 and using λ = 2π/qmax leads to d = π/qmax.

Comparison of the scattering maxima in Table 7.2 with experiments performed by Elliott et

al.[112] (Fig. 3 in their paper, also Fig. 3 in James et al. [113]) is satisfactory, if qualitatively not

exact. Hence, we conclude that MDPD can be relied upon as a mesoscale simulation method

for complex polymer systems.

7.3 Thin film profiles

Having verified that MDPD is able to qualitatively capture the structure of bulk Nafion, we

now proceed with simulations of thin Nafion film on carbon support. We vary water content λ

from 3, essentially a dry state, up to 24, which corresponds to significant solvation. Fixing the

thickness of the carbon support to 5 nm, we investigate ionomer films put on carbon surface

of the following thicknesses: 2, 3, 5, 10, 15 and 20 nm. As before, we set the simulation cell

30×30×30 in reduced units, with side equal to about 32 nm, and simulate for 100k steps using

time step ∆t = 0.02τ , corresponding to physical time of T = 2000τ = 5.7 ns.

Fig. 7.3 shows one-dimensional density profiles of water and backbone across the x-coordinate

for 5, 10 and 15 nm, along which is the interface with the vapour phase. At low values of λ,

there is a tendency to form periodic structures of excess and lack of water with wavelength of
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about 5–6 nm, persisting up to λ = 9–12.

Films of thickness of 5 nm or thinner behave very differently, as shown on Fig. 7.4. There

is clearly not enough space to accommodate the water inside the film, so nearly all water is

displaced to the outside surface of the film. As a result, the PTFE backbone shrinks and

adheres to the carbon surface. Hence, very thin ionomers can be considered hydrophilic in that

water sticks to their outside surface.

On the other hand, 10, 15 and 20 nm films are hydrophobic at low values of λ, but eventually,

passing through λ = 15 for 10 nm and λ = 9 for 15 nm, hydrophilicity sets on and at higher

contents λ > 18 a large pool of water appears on the outer surface of the film as well.

To further probe the structure of the thin Nafion film, we analyse water density on the slices

parallel to the film for thicknesses 5, 10 and 15 nm. We compute density profiles by smearing

W beads and one half of C beads on a grid with a Gaussian function. We focus our analysis on

the water contents that most resemble the operational conditions of a fuel cell: λ = 9 to 15.

Fig. 7.5 shows water densities at various distances from the substrate. For 3-5 nm above

substrate surface, clustering is established and there is no evidence of a continuous pool of

water that would indicate a lamellar phase, which has been suggested several times by the

NIST group [56, 57]. All the explored film thicknesses have a depletion zone with very little

water close to the substrate at a distance lower than 2 nm. Water uptake λ = 15, which

corresponds to relative humidity 100% [113] and which is shown on Fig. 7.6, reveals the same

depletion zone close to the substrate, but also considerably larger clusters and strong percolation

across all of the simulation cell for distances greater than 3 nm from the carbon support.

7.4 Larger-scale simulations

Finally, to explore systems more comparable to available experimental data, we run a larger-

scale simulation in a cell of size 60 × 60 × 60, i.e. 66 nm in real units. Such a scale enables a

clear depiction of water clusters and comparison with available atomic force microscopy (AFM)

data obtained by James et al. [113]. Fig. 5 (vi) in their paper shows a 1000 nm screenshot of

the surface of bulk Nafion at 33% relative humidity. The simulation details are the same as

before with timestep ∆t = 0.02τ and 100k simulation steps. The cell containing 5 nm film was

minimised by running at temperature 0.01kBTc prior to simulation.

Focusing again on water uptakes λ = 9 and 15 as most relevant for operational conditions,

the thin film outer surfaces bordering the vapour phase are visualised on Fig. 7.7. The variation

in the size of blue water regions on these screenshots unambiguously illustrates a gradual shift

from hydrophilic behaviour at low film thicknesses, where water is pushed to the outer surface

of the ionomer (Fig. 7.7a), up to hydrophobic behaviour at higher film widths (Fig. 7.7c).

Furthermore, increasing water content λ also tends to push water to the outside ionomer surface

and thus make it hydrophilic.

The practical consequences of these findings for fuel cell operation lie in the aim to keep the

outer thin film surface hydrophobic. Water should not accumulate here and block the incoming

oxygen from air arriving at the nanoparticle surface right under the ionomer. Our simulations

suggest that hydrophobic film surface can be achieved by simply increasing the film width above
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Figure 7.3: Relative density profiles of water (blue) and PTFE backbone (red) along x-axis,
showing the coexistence with the vapour phase (free space) for water contents ranging (verti-
cally) between λ = 4 and 24.
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Figure 7.4: Relative density profiles of water (blue) and PTFE backbone (red) along x-axis,
showing the coexistence with the vapour phase (free space) for water contents ranging (verti-
cally) between λ = 4 and 24.
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Figure 7.5: Slices through Nafion
films depicting water clusters and
channels at a varying distance from
the substrate at water content λ = 9.

5 nm film, λ = 9

(a) 1.7 nm

5 nm film, λ = 9

(b) 3.3 nm

5 nm film, λ = 9

(c) 5 nm
10 nm film, λ = 9

(d) 1.7 nm

10 nm film, λ = 9

(e) 5 nm

10 nm film, λ = 9

(f) 8.4 nm
15 nm film, λ = 9

(g) 1.7 nm

15 nm film, λ = 9

(h) 5 nm

15 nm film, λ = 9

(i) 8.4 nm

Figure 7.6: Slices through Nafion
films depicting water clusters and
channels at a varying distance from
the substrate at water content λ =
15.
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(a) 5 nm, λ = 9 (b) 10 nm, λ = 9 (c) 15 nm, λ = 9

(d) 5 nm, λ = 15 (e) 10 nm, λ = 15 (f) 15 nm, λ = 15

Figure 7.7: VMD screenshots (color coding: water in blue, backbone in red, sulfonic acid groups
in green) of large-scale thin ionomer films in a 66 nm simulation cell depicting gradual shift from
hydrophilic to hydrophobic behaviour with increasing film width.

a certain threshold lying between 5 and 10 nm. On the other hand, oxygen permeation through

the ionomer decreases with increasing film thickness. The need to maximise these two opposing

processes suggests an optimal intermediate value of film thickness.

7.5 Conclusions

In this chapter we employed for the first time many-body dissipative particle (MDPD) dynamics

in simulations of complex polymers. Firstly, we explored bulk Nafion, which has already been

well-studied in the literature. Having verified that MDPD yields plausible results, we investi-

gated thin ionomer films on carbon support, a setting typical for the catalyst layer of a PEMFC.

We have explored a wide range of conditions at ambient temperature, varying the ionomer film

width and water content λ.

We found out that thin films of thickness below 5 nm cannot accommodate water within and

expel it to their outer surface. In other worlds, their surface is hydrophilic, an undesirable effect

for fuel cell performance. With increasing film thickness, periodic structures of excess and lack

of water are formed at a typical wavelength of 5–6 nm, and the surface becomes hydrophobic.

However, with increasing water content above λ ≈ 9, even relatively thicker films of 10 nm and

above push water to their outer surface and the hydrophilicity sets on. Considering the internal

structure of the film, two-dimensional water density maps reveal a well-established network of

clusters and channels at intermediate water contents λ = 9 a phenomenon desirable for proton

transport.

Our results demonstrate that MDPD can provide insight into the mesoscopic structure of

the catalyst layer and thus aid performance optimisation of the key constituent of every fuel cell

with respect to the structure of water channels and film thickness. Further research could involve
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the investigation of the role of the size of PTFE chains, the ordering of side chains, different

ionomer types, such as SSC or 3M, the type of support material or the effect of temperature.
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Chapter 8

Conclusions and outlook

Didn’t you know that manuscripts don’t

burn?

Master and Margarita

In this thesis we have employed mesoscale simulation methods to gain insight into a pressing

industrial problem of the efficiency of hydrogen fuel cells serving as a vehicle engine. As this clean

technology gradually gains traction in the automotive market, any improvement in performance

or efficiency can increase the interest of consumers and consequently mitigate the emission of

CO2, which impacts climate change.

At the heart of a fuel cell is a proton exchange membrane, such as Nafion, which serves as an

electrode separator and electrolyte. Its structure has now been debated for about 50 years and is

still far from resolved. More importantly, there is a catalyst layer on both sides of this membrane;

on the cathode, protons conducting through the membrane and electrons arriving via the outside

circuit recombine with oxygen from air on the surface of catalytic nanoparticles, typically formed

from platinum-group metals (PGMs) to form water. The combination of oxygen, electrons and

protons is the process known as the oxygen reduction reaction (ORR) and is the most significant

efficiency loss. For this reason, ORR has attracted a lot of scientific interest in the past decades.

The catalyst layer is an intricate porous environment with structures and empty spaces

(pores) of the order of tens of nanometres. Here, carbon serves as a material that supports

PGM nanoparticles as well as delivers the electrons to the nanoparticle surface. Both carbon

and PGM nanoparticles are coated by a thin layer of ionomer of thickness of the order of a few

nanometres; it is chemically the same material as the bulk membrane and conducts the protons

to the nanoparticle surface.

It is very challenging to gain both experimental and theoretical insight into the structure

and behaviour of the catalyst layer, especially the ionomer within the layer. Even outside the

catalyst layer, it is difficult to prepare and probe polymer films only a few nanometres thick.

Theoretically, it is very costly to simulate structures on the scale of tens to hundreds of nm.

Hence, the focus of this thesis has been to develop suitable simulation tools to predict the

structure and properties of these thin ionomer films.

Our starting point is dissipative particle dynamics (DPD), which has been established in

the past 20 years as a useful tool for modelling soft matter systems on the mesoscale. Sadly,
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this method is not able to simulate vapour-liquid coexistence or, in plain words, a liquid blob

with a free space around it. On the other hand, its extension called many-body DPD (MDPD),

which does capture this setting, was not yet suitable for simulating real materials.

This reality motivated the theoretical aspect of this thesis. As a result, in Chapter 6 we

presented a parametrisation method for MDPD to simulate materials based on macroscopic

experimental quantities, which we chose to be surface tension and compressibility. Together with

the Flory-Huggins theory describing unlike particle interaction parameters via the χ-parameter,

we showed that this scheme delivers a certain degree of predictive accuracy. We have verified

our method on a few binary solvent mixtures and proved that the results can be relied upon.

Hence, MDPD is now ready to be applied to a broader range of systems that contain free spaces,

notably porous structures.

An excellent example of such a structure with acute industrial importance is the cathode

catalyst layer in PEM fuel cells. To test the ability of MDPD to describe complex polymers,

in the first part of Chapter 7 we simulated bulk Nafion and showed that the density profiles as

well as the structure of water clusters described via the structure factor and its main peak are

in qualitative agreement with experiment. Furthermore, in the general exploration of the phase

diagram of the MDPD force field we uncovered a solid phase with a thermodynamically stable

bcc lattice, which might later be applied to solid-liquid interfaces on the mesoscale.

As an aside, in Chapter 4 we addressed some long-standing theoretical issues in standard

DPD about the dependence of simulation parameters as well as experimental observables on

the coarse-graining degree, and rederived the variation of the DPD interaction parameter with

temperature. These results should lead to improved precision of standard DPD simulations.

On the practical side, we exploited both standard DPD and the newly parametrised MDPD

with the aim to shed light on the behaviour of the ionomer within a fuel cell catalyst layer. In

Chapter 2, we investigated a thin Nafion film confined on both sides by hydrophobic carbon

and hydrophilic quartz via standard DPD for a range of water contents and film widths. The

simulations revealed confinement-induced water clustering and thickness-dependent diffusivity

anisotropy.

Finally, to fully exploit our MDPD parametrisation from Chapter 6, in Chapter 7 we explored

an unconfined thin Nafion film with carbon support on one side and free space on the other, a

setting very similar to that in a fuel cell catalyst layer. We investigated the role of thickness and

water content on the structure of water in the thin ionomer film in a simulation cell of size about

60 nm, observing the tendency for the ionomer to cluster as well as switch from a hydrophilic

to a hydrophobic film surface with decreasing water content and increasing film thickness. We

found out that a 5 nm film or thinner repels most of the water to its outer surface, but, as the

thickness increases, water is accommodated within the film, forming water clusters and channels

suitable for proton transport.

Suggestions for future work

Having developed a tool to simulate water channels and clusters in thin films serving as pathways

for proton transport, there still remains the question of oxygen diffusion through the film to the
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nanoparticle surface, where it meets protons and electrons to form water, as well as subsequent

water diffusion away from the nanoparticle surface. For example, what is the relative importance

of water transport out through the film into the catalyst layer pore space vs transport within

the ionomer film and into the membrane. As we showed, the thicker the ionomer film is, the

better-established water clustering is and the more the ionomer resembles the bulk membrane.

On the other hand, if the ionomer is too thick, it will slow down the rate of oxygen transport to

the catalytic nanoparticle surface. Hence, we can expect an intermediate film thickness at which

the total performance mediated by water, proton and oxygen transport is optimal. In future

work therefore the predicted structure of the ionomer as a function of film thickness should be

used to derive estimates of oxygen, water and proton transport rates through and within the

thin ionomer film.

To start with more straightforward challenges, an obvious extension of the presented work,

especially from Chapters 2 and 7, is a full exploration of the parameter space of thin films.

Important variables to vary include the degree of polymerisation, equivalent weight, the role of

polydispersity of PTFE chains, the ionomer material (trying ionomer types other than Nafion),

the ordering of side chains (random vs uniform), different chain topologies, as were explored

by, e.g., Dorenbos [24], or the effect of increased temperature. Many of these simulation results

could be consequently verified by small-angle x-ray scattering (SAXS) or neutron reflectometry,

which has been exploited by the NIST group [56, 57].

A more ambitious research would involve the investigation of oxygen diffusion. This is a

formidable challenge for MDPD or generally any mesoscale method, as beads comprising several

water molecules are of different size than oxygen molecules. Hence, it is not a priori clear whether

this problem can be addressed at all by MDPD. So far, only systems with the same bead radius

and mass have been explored by both DPD and MDPD; relaxing this constraint would be a

worthwhile pursuit, especially given the industrial motivation. Firstly, however, a thorough

investigation similar to the one exposed in Chapter 6 would have to be carried out to ensure

that the simulation results are in line with experiment as well as established atomically-resolved

models.

Finally, the development of MDPD in this thesis opens up avenues for broader exploration of

soft matter in contact with free space, solid phase or vapour phase. There is already a substantial

amount of research on soft matter with DPD; this can now be reproduced and extended using

MDPD. Notable examples are diblock copolymer phases following the work in Ref. [11], or vesicle

formation following Ref. [13]. More broadly, the ability of MDPD to describe porous structures

might be beneficial in the oil and gas industry dealing with cracking, where hydrocarbons pass

through porous materials such as zeolites. Another possible application involves predicting the

properties of thin polymer films that serve as oxygen and moisture barriers used in the packaging

industry.

Considering that the total revenue of oil and gas industry amounts to trillions of dollars,1

and that fuel cell electric vehicles are expected to gain a significant market share in the follow-

ing decades, the relevance of computer simulations on the mesoscale can only be expected to

increase.

1https://www.statista.com/statistics/272710/top-10-oil-and-gas-companies-worldwide-based-on-revenue/
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