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Protein levels and function are poorly predicted by genomic and transcriptomic analysis of patient 

tumors. Therefore, direct study of the functional proteome has the potential to provide a wealth of 

information that complements and extends genomic, epigenomic and transcriptomic analysis in 

The Cancer Genome Atlas (TCGA) projects. Here we use reverse-phase protein arrays to analyze 

3,467 patient samples from 11 TCGA “Pan-Cancer” diseases, using 181 high-quality antibodies 

that target 128 total proteins and 53 post-translationally modified proteins. The resultant proteomic 

data is integrated with genomic and transcriptomic analyses of the same samples to identify 

commonalities, differences, emergent pathways and network biology within and across tumor 

lineages. In addition, tissue-specific signals are reduced computationally to enhance biomarker 

and target discovery spanning multiple tumor lineages. This integrative analysis, with an emphasis 

on pathways and potentially actionable proteins, provides a framework for determining the 

prognostic, predictive and therapeutic relevance of the functional proteome.
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Introduction

The Cancer Genome Atlas (TCGA) is generating comprehensive molecular profiles for each 

of at least 33 different human tumor types (http://cancergenome.nih.gov). The overarching 

goal is to elucidate the landscape of DNA and RNA aberrations within and across tumor 

lineages and integrate the information with clinical characteristics, including patient 

outcome.

Previous studies have indicated only a partial concordance between genomic copy number, 

RNA levels and protein levels in both patient samples and cell lines1, 2, 3 at least, in part, 

because protein levels and, in particular, phosphoprotein levels represent an integration of 

the complex genomic and transcriptomic aberrations accumulated in each tumor combined 

with translational and post-translational regulation that cannot be fully captured by genomic 

and transcriptomic analysis. Hence, functional protein analysis using reverse-phase protein 

arrays (RPPA), which are highly applicable to study the large numbers of TCGA samples, 

was added to the TCGA effort to integrate proteomic characterization of tumors with already 

available genomic, transcriptomic and clinical information. The Clinical Proteomic Tumor 

Analysis Consortium (CPTAC, http://proteomics.cancer.gov/programs/cptacnetwork) is 

starting to use mass spectrometry to analyze a large fraction of the human proteome for a 

select subset of TCGA tumors. However, a comprehensive mass spectrometry analysis 

across all TCGA samples is not likely to be available in the near future. Thus, while earlier 

TCGA analyses were primarily based on genomic and transcriptomic 

characteristics4, 5, 6, 7, 8, 9, 10, the current study is driven by proteomic processes within and 

across cancer types.

Here we report an RPPA-based proteomic analysis using 181 high-quality antibodies that 

target total (n=128), cleaved (n=1), acetylated (n=1) and phosphorylated forms (n=51) of 

proteins in 3,467 TCGA patient samples across 11 “Pan-Cancer” tumor types. The function 
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space covered by the antibodies used in the RPPA analysis includes proliferation, DNA 

damage, polarity, vesicle function, EMT, invasiveness, hormone signaling, apoptosis, 

metabolism, immunological, and stromal function as well as transmembrane receptors, 

integrin, TGFβ, LKB1/AMPK, TSC/mTOR, PI3K/Akt, Ras/MAPK, Hippo, Notch, and 

Wnt/beta-catenin signaling. Thus, the function space encompasses major functional and 

signaling pathways of relevance to human cancer. The TCGA tumor types included are 

those with mature RPPA data: breast cancer (BRCA, n=747), colon (COAD, n=334) and 

rectal (READ, n=130) adenocarcinoma, renal clear cell carcinoma (KIRC, n=454), high-

grade serous ovarian cystadenocarcinoma (OVCA, n=412), uterine corpus endometrial 

carcinoma (UCEC, n=404), lung adenocarcinoma (LUAD, n=237), head and neck squamous 

cell carcinoma (HNSC, n=212), lung squamous cell carcinoma (LUSC, n=195), bladder 

urothelial carcinoma (BLCA, n=127) and glioblastoma multiforme (GBM, 

n=215) 4, 5, 6, 7, 8, 9, 10. We show that the functional proteome gives important, independent 

insights in TCGA data that are not captured by genomics or transcriptomics. Although 

samples predominantly cluster by tumor lineage, we also show that part of the tissue 

dominant effects can be removed computationally to elucidate common processes driving 

cellular behavior across tumor lineages. We present proteins and pathways that correlate 

with outcomes within certain tumor lineages and we identify multiple protein links and 

proteins that are associated with pathway activation. Taken together, the data and analytical 

resources presented in this manuscript are aimed at facilitating future research for targeted 

therapies that span multiple tumors.

Results

Correlations between protein and other data types

Protein data for 3,467 samples across 11 diseases were compared to mRNA, miRNA, copy 

number, and mutation data for the same samples. A novel approach, called “replicates-based 

normalization” (RBN, Methods), mitigated batch effects facilitating creation of a single Pan-

Cancer protein dataset merging samples across 6 different batches. The RBN output is 

equivalent to all 3,467 samples being run in a single batch. In contrast to random (trans) 

protein:mRNA pairs (mean Spearman’s ρ = −0.006), almost half of matched (cis) 

protein:mRNA pairs in the RBN set demonstrated correlation beyond that expected by 

chance (mean Spearman’s ρ = 0.3) in both the overall Pan-Cancer dataset (t-test P < 2.2e-16, 

n=206 matched protein:mRNA pairs) and within particular diseases (Fig. 1a, Supplementary 

Fig. 1, Supplementary Data 1,2). Approximately 44% of matched (cis) protein:mRNA pairs 

had a correlation >= 0.3. For micro-RNAs, as expected, (trans) protein:miRNA correlations 

were much weaker with a mean positive Spearman’s ρ = 0.07, and a mean negative 

Spearman’s ρ = −0.07 (Supplementary Data 3). On the other hand, (trans) protein:protein 

correlations, including phosphoproteins, were higher (mean positive Spearman’s ρ = 0.15, 

mean negative Spearman’s ρ = −0.13, Supplementary Data 4). Detailed protein:protein and 

phosphoprotein:protein correlations across the total dataset and in particular diseases are 

available at the TCPA portal11. The results show, not surprisingly, that matched (cis) 

mRNA:protein correlations were the highest on average (ρ = 0.3), followed by (trans) 

protein:protein correlations (ρ ≈ ±0.15), whereas (trans) protein:miRNA correlations were 

lowest on average (ρ = ±0.07).
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A similar analysis for CNV vs. protein fold change showed a mean fold change of 1.05 for 

amplifications and 0.95 for deletions in cis (Supplementary Data 5,6). Mutation vs. protein 

(cis) analysis showed a mean fold change of 1.2 for mutations that increased expression, and 

0.9 for mutations that decreased expression (Supplementary Data 7,8), showing that 

mutations, in general, are associated with greater average fold changes than copy number 

variations, perhaps due to nonsense mediated RNA degradation. Complete tables are 

available at: (http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).

HER2 analysis as an example

We then focused on HER2 as an illustrative example. A comparison of relative HER2 

(ERBB2) protein levels across tumor types illustrates the potential utility of a pan-cancer 

proteomic analysis. While the overall HER2 protein:mRNA correlation was 0.53 (P = 

5e-177), the correlation was 0.61 (P = 1e-69) in BRCA, where HER2-targeted therapy has 

been demonstrated to be effective (Spearman’s correlations Fig. 1, Supplementary Data 1). 

Importantly, phosphoHER2Y1248 protein:mRNA correlation was 0.552 (P = 3e-54) and 

HER2:phosphoHER2Y1248 protein:protein correlation was 0.67 (P = 4e-98) in breast cancer 

consistent with ability of RPPA to capture both total and phosphoprotein levels from TCGA 

samples (n=2,503 for overall and n=674 for BRCA correlations and P-value computations 

using t-distribution test and adjusted for multiple hypotheses testing using Benjamini 

Hochberg adjustment. n=2,479 in Fig. 1). Based on correlations with DNA, RNA and 

protein levels in HER2-positive breast cancers, HER2 protein levels were defined as 

elevated if the relative HER2 level was ≥1.46 (see Methods) (Fig. 1b-d). We also set a cutoff 

at the relative protein level of 1.00 (which is roughly equivalent to 3+ staining on clinical 

immunohistochemistry analysis of the breast cancer samples and represent the top 12% of 

patient samples, see Methods). Using either cutoff, 10–15% of breast cancers demonstrated 

elevated HER2 by DNA copy number, RNA and protein consistent with clinical data12, 13 

(Fig. 1b). Based on those cutoffs, approximately 25% of serous endometrial cancers had 

coordinated elevation of HER2 DNA, RNA, and protein levels, an even higher frequency 

than breast cancer. BLCA, colorectal cancer and LUAD demonstrated a higher frequency of 

elevated protein levels than predicted by mRNA and DNA levels. In an independent cohort 

of 26 LUAD cell lines using the same cutoffs, 7 of the cell lines had high HER2 protein 

levels, whereas only 2 cell lines had high mRNA levels, consistent with our observation of 

elevated protein levels occurring at a higher frequency than elevated RNA levels 

(Supplementary Table 1, Supplementary Fig. 2)14.

Discordance between HER2 DNA copy number and protein levels has been observed in 

multiple individual tumors types previously15, 16, 17, 18, 19, 20. Besides diversity in 

methodology, a number of cancer specific hypotheses, including post-translational 

regulation of HER2 expression, cytoplasmic HER2 localization16, intratumoral 

heterogeneity of HER2 amplification19 or polysomy 1717, 20 have been suggested. This 

clearly contrasts breast cancer, where HER2 levels are usually highly correlated at the DNA, 

RNA and protein level21, 22, 23, 24. With the advent of TDM1 toxin conjugate therapy 

(trastuzumab emtansine)25, 26, the higher frequency of elevated HER2 protein levels in 

BLCA, LUAD, endometrial, and colorectal cancers supports the (pre)clinical exploration of 

TDM1, which binds HER2 to deliver a potent cell-cycle toxin (a mechanism of activity 
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independent from trastuzumab, a drug with limited activity in endometrial cancer in 

previous studies27) in these tumor lineages.

Unsupervised clustering analysis

Unsupervised clustering identified eight robust clusters (Clusters A-H, Fig. 2a) when batch 

effects were mitigated by RBN. Not surprisingly, RBN cluster membership is defined 

primarily by tumor type with the exception of cluster_E and cluster_F, which include 

multiple diseases (Fig. 2b). Bladder cancer, however, did not generate a dominant cluster 

but, rather, was co-located with other tumor lineages in multiple clusters. To identify 

potential discriminators of clusters, we compared the ability of proteins, RNAs, miRNAs 

and mutations for each cluster to different samples from those in all other clusters (top 25 

discriminators, Supplementary Tables 2-5, all the discriminators at http://

bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA). Supplementary Table 2 

highlights the contribution of individual proteins in driving the different clusters. 

Associations of specific mutations and copy number changes with the clusters were 

primarily based on known associations of mutations and copy number changes with tumor 

lineage.4, 5, 6, 7, 8, 9, 10

Cluster_E includes 70% of basal-like breast cancers, the majority of HER2 positive breast 

cancers (87%) and the largest group of bladder cancers (35%), including many with 

amplified HER2 (Fig. 2a,b). Cluster_E is defined by TP53 mutations, elevated HER2, 

cyclinB1 and Rab25 protein levels and low ER and PR levels (Supplementary Table 2). 

Cluster_F includes smoking-related, upper aerodigestive tract cancers (HNSC, LUAD, and 

LUSC) and subsets of other tumor types. Cluster_F contains the majority of a “squamous 

cancer” subset (94%), P<0.0001, Chi-squared test), recently identified through other Pan-

Cancer subtype analyses (Hoadley K, personal communication). However, cluster_F also 

contains an equally large number of non-squamous tumors, predominantly LUAD (58% of 

the non-squamous tumors in cluster_F). Membership in cluster_F is associated with TP53 

mutations and elevated total and phosphorylated EGFR (EGFRp1068 and EGFRp1173), 

phosphorylated SRC (SRCpY527) and low ER and PR levels. Although TP53 mutations are 

usually associated with copy number changes and a limited number of recurrent mutations in 

cancer genes7, cluster_F is unexpectedly enriched in recurrent cancer gene mutations 

(Supplementary Table 6). Within the group of current smokers in cluster_F (Supplementary 

Fig. 3), tumors with TP53 mutations show significantly higher rates of co-mutations in the 

top-25 driver mutations (Methods, P<0.0001, t-test, n=162).

Hormonally responsive ‘women’s cancers’ (luminal BRCA, OVCA, UCEC) form a major 

tumor super cluster. Basal-like breast cancers and HER2-positive breast cancers are distinct 

from luminal breast cancers, being located in cluster_E (the majority of HER2 (87%) and 

basal-like (70%)) and cluster_F (subset of basal-like (25%)). This is consistent with previous 

data suggesting that HER2 and basal-like breast cancer are distinct from luminal breast 

cancer5. In light of the recent identification of a “reactive” breast cancer subtype5, we split 

the luminal cluster into two (reactive breast cluster_A1 and non-reactive ER-positive breast 

cluster_A2).
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For some tumor lineages, localization to different clusters reflects differences in prognosis. 

Breast cancers located in different clusters demonstrate distinct outcomes: tumors in 

cluster_E and cluster_F are associated with the worst outcome, probably due to the inclusion 

of HER2-positive and basal-like tumors. Reactive cluster_A1 shows a better outcome than 

cluster_A2 (Fig. 2c). The poor outcome associated with KIRC in cluster_F (Fig. 2d) may be 

due to the absence of VHL mutations (Fisher's exact test (FE), P = 0.008, n=454), which has 

been associated with a worse outcome in kidney cancer28. Bladder cancers in cluster_B 

show worse survival compared to all other BLCA, which may be due to associations with 

TP53 mutation (FE, P<0.001) and cMYC amplification (FE, P = 0.042) (n=127) (Fig. 2e).

We evaluated the concordance between RBN protein clusters and mRNA clusters derived 

from the same sample set (Supplementary Table 7). Most of the protein clusters 

predominantly corresponded to a single respective mRNA cluster despite the mRNA clusters 

being defined with a pool of about 20,000 mRNAs, whereas only 181 proteins and 

phosphoproteins were used to generate the protein clusters. Therefore, many of the features 

defining the mRNA clusters were captured by just a few proteins. This agreement between 

RNA and protein based clustering provides validation of the quality of the protein data, as 

well as the selection of protein targets in the arrays. However, clusters E and F were 

noticeably different from their mRNA counterparts. Unlike protein cluster_E that contains 

BLCA and BRCA, bladder cancer formed a separate cluster in mRNA data, distinct from 

HER2 and basal-like breast cancers. LUAD also formed a separate mRNA cluster, distinct 

from the LUSC/HNSC mRNA cluster, unlike protein cluster_F that contains LUAD as well 

as LUSC and HNSC.

Reduction of tissue-specific proteomic signatures

Tumor lineage represents the dominant determinant of protein clustering using the RBN 

approach (Fig. 2). We, therefore, investigated whether further transforming the RBN data to 

reduce tissue signatures by median centering within tissue types (MC, see Methods) would 

identify clinically or biologically relevant protein patterns that span multiple tumor lineages 

(Fig. 3a). Using MC, we obtained 7 clusters (I-VII) that were no longer strongly correlated 

with tumor lineage, as evident from the top annotation bar in Fig. 3a (Supplementary Fig. 4), 

and from the tissue vs. cluster cross-tabulation (Fig. 3b). This allowed exploration of 

molecular events that spanned multiple tissues, which was not possible with the RBN 

approach. Supplementary Table 8 shows a contingency table the distribution of samples 

across RBN vs. MC clusters, highlighting the differences between the clusters. 

Supplementary Tables 9-12 show the top 25 proteins, mRNAs, miRNAs, and mutations that 

discriminated different MC clusters (full table available at http://

bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).

Cluster_I was primarily driven by phosphoPEA15, YB1, EEF2 and ETS1 proteins 

(Supplementary Table 9), which were markedly elevated in a subset of colorectal tumors 

(18%). Cluster_I exhibited enrichment of APC and KRAS mutations, very few HER2 

amplifications, but moderately high HER2 protein levels (Fig. 3a, Supplementary Tables 

9,12). It also had evidence for suppressed DNA damage response, apoptosis, and mTOR and 

MAPK pathway levels (Fig. 4b). Cluster_II was divided into two further sub-clusters, one 
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primarily driven by HER2 (IIa) and one by EGFR (IIb) (Supplementary Table 9). 

Interestingly, a subset of OVCA, UCEC, BLCA and LUAD samples that had HER2 

amplification and HER2 protein levels comparable to breast HER2+ samples were located in 

cluster_IIa, raising intriguing opportunities for (pre)clinical investigation of HER2 targeted 

therapy and particularly TDM1 therapy as noted above. Cluster_IIa also had activated RTK 

and cell cycle pathways, but suppressed hormonal signaling pathways (Fig. 4b). Similarly, a 

subset of HNSC and lung samples that had EGFR levels comparable to a subset of GBM 

samples (28%) were located in cluster_IIb, warranting exploration of potential benefit from 

EGFR pathway-targeted drugs29. Tumors in cluster_IIb were enriched in EGFR mutations, 

contained few PTEN mutations, and had elevated RTK pathway and suppressed mTOR 

pathway signatures. Clusters III-VII consisted of a mixture of all tissue types. Cluster_V was 

the most distinctive, exhibiting a strong “reactive” signature5, with elevated MYH11, 

RICTOR, Caveolin1, and Collagen VI, and an activated EMT signature. Cluster_V also 

exhibited low cell cycle, Wnt-signaling and DNA damage response pathway signatures. 

Cluster_V contained the majority of the breast reactive samples along with multiple other 

tumors with a “reactive” signature consistent with the reactive phenotype being a pan-cancer 

characteristic. Cluster_III was the antithesis of “reactive” cluster_V and was primarily 

driven by elevated BRAF, ER-alpha and E-cadherin (Fig. 3b). In contrast to cluster_V, 

cluster_III had low EMT, apoptosis, and MAPK pathway signatures, but high DNA damage 

and hormonal pathway signatures. Patients in cluster_III may potentially benefit from 

(pre)clinical hormone targeting therapies. Cluster_III also had high beta-catenin levels, 

suggesting activation of the canonical Wnt-signaling pathway. Cluster_IV also had high 

beta-catenin, as well as activated AKT, MAPK and mTOR pathways, but suppressed DNA 

damage, apoptosis, EMT and cell cycle pathways. Cluster_IV and cluster_VII were 

antitheses. The high levels of phosphoAKT and phosphoMAPK in cluster_IV, suggested 

evaluation of (pre)clinical benefit from kinase-targeted therapies. Cluster_VI showed high 

EMT, cell cycle, apoptosis, mTOR and MAPK pathway signatures, also suggesting further 

evaluation of kinase-targeted therapies. Cluster_VI had low beta-catenin, consistent with 

suppressed Wnt-signaling. Cluster_VII also showed low beta-catenin, with suppressed 

AKT, MAPK, mTOR and RTK pathways.

Interestingly, clinical outcomes correlated with MC cluster membership, indicating the 

power to identify important tissue-independent processes. COAD in cluster_V had better 

outcome compared to COAD located in other clusters (Fig. 3g) (n=334), which may, in part, 

be due to depletion of mutations in TP53 (6% vs. 15%, Fisher’s Exact (FE) P = 0.05), APC 

(14% vs. 25%, FE P = 0.044) and KRAS (5% vs. 16%, FE P = 0.013), consistent with 

previous literature showing these are associated with a worse outcome30, 31, 32. The poor 

outcome for KIRC in cluster_VII may be partly due to enrichment of TP53 mutations (6% 

vs. 0.8%, FE P = 0.005, n=454) (Fig. 3c). In contrast, KIRC in cluster_IV are associated 

with better prognosis (Fig. 3e). For OVCA, membership in cluster_VII is associated with 

improved survival (Fig. 3d). LUSC in cluster_V appear to have worse prognosis, which may 

be related to elevated EMT pathway activity compared to LUSC in other clusters 

(Supplementary Fig. 5)33, 34, as well as low E-cadherin protein levels (Fig. 3f). Thus, 

reduction of tissue-specific signatures reveals a number of processes that transcend tissue 
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boundaries and may represent cross-tissue biological, prognostic, and therapeutic 

opportunities.

Analysis of pathways and targets

To capitalize on the RPPA data, we developed a series of pathway predictors (see Methods), 

based on member proteins selected by literature review (Supplementary Table 13). TSC/

mTOR signaling, which integrates information from the PI3K/Akt, Ras/MAPK and LKB1/

AMPK pathways35, was treated as a separate pathway, as was the hormone_a (ER, pER and 

PR) and a series of downstream components of the hormone signaling pathway 

(hormone_b36, 37, 38). All proteins and genomic events with a Spearman’s ρ>0.3 or ρ<−0.3 

for association with the pathway score are also presented (See methods, Fig. 4, 

Supplementary Figs.6-9, Supplementary Table 13) providing additional information on 

potential pathway membership.

In general in the RBN analysis, pathway scores were associated with tumor lineage (Fig. 4a, 

Supplementary Fig. 10). In Figures 4a,b, each cell in the heatmap represents the mean 

pathway score for that cluster or tumor lineage. Blue represents a suppressed pathway, red 

means an activated pathway, and white representing a score that does not differ across the 

set (see Methods). As expected, individual RBN clusters (Fig. 4a) show similar pathway 

scores to their dominant constituent tumor lineages, e.g. GBM is similar to cluster_H, KIRC 

is similar to cluster_G, etc. However, as clusters E and F do not consist of a single 

predominant lineage, their pathway score pattern is not concordant with any one tumor 

lineage. Similarly, the MC heatmap (Fig. 4b) shows that MC clusters, in which tissue 

specific effects are removed, do not reflect a single tumor type. This emergent phenotype 

illustrates the mitigation of tissue-specific signatures by MC, and the emergence of new, 

pan-cancer patterns that span multiple tumor types. In Supplementary Fig. 10, the data is 

transformed so that the color spectrum in the heatmaps represents absolute values of 

pathway scores (where only score magnitude is considered) and thus reflects ‘distance from 

the global pathway mean’, rather than relative protein level (see Methods). This emphasizes 

that both low (e.g. inhibitors) and high protein levels can be markers of pathway activity. 

Thus in Supplementary Fig. 10, UCEC and HNSC have a near identical hormone_a score, 

caused by a high (UCEC) and low (HNSC) protein score respectively. The pathway-based 

analyses benefit hugely from the large dataset providing sufficient power to identify 

associations that could otherwise not be robustly identified.

Focusing on individual pathway analysis (Fig. 4c-f, Supplementary Figs. 6-9), the high 

degree of correlation between pathway members, including phosphoproteins, supports the 

ability of RPPA to capture high-quality information including phosphoprotein levels from 

TCGA samples. Unexpectedly, the proteins driving the pathway signatures varied across 

individual tumors and tumor lineages, as did the associated proteins and genomic aberrations 

(Fig. 4, Supplementary Figs. 6,8). This suggests that intrinsic gene expression patterns or 

mutational patterns provide important contributions to convergent functional pathway 

output. The EMT signature, which may also represent reactive stroma, showed the greatest 

variation, being markedly elevated in GBM and reactive BRCA tumors (Fig. 4c,e). 

Significant variation in EMT was also observed within disease type and RBN clusters. For 
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example, Cluster_F (HNSC, LUAD, LUSC) showed a separation into distinct epithelial and 

mesenchymal groups based on the EMT score and related protein EMT markers. RTK and 

downstream signaling signatures were elevated in GBM, likely due to EGFR amplification 

and activation of downstream signaling events (Fig. 2). Endometrial, ovarian and most 

breast cancers demonstrated a high hormone_a signature (Fig. 4d,f). However, an elevated 

hormone_b signature, indicative of functional downstream activation, was restricted to 

luminal, reactive, and HER2-positive breast cancers (Supplementary Fig. 11) suggesting 

differential “wiring” of hormonal signaling across tumor lineages. HER2-positive breast 

cancers, whether ER-positive or -negative, demonstrated elevated levels of GATA3, 

INPP4B, and AR (hormone_b signature) suggestive of active downstream hormonal 

signaling despite low levels of ER, pER and PR in many of the HER2-positive tumors (Fig. 

2, Supplementary Fig. 11). A subset of endometrial cancers had massively elevated pAkt 

levels, likely due to the high frequency of coordinated genomic aberrations in the PI3K 

pathway, in particular, the loss/mutation of PTEN10, 39 which is consistent with 

responsiveness of endometrial cancers to PI3K pathway inhibitors40, 41.

We analyzed a number of potentially actionable proteins (n=25, Fig. 5a,b), selected based on 

a literature review (Supplementary Methods) for associations with proteomic and genomic 

events as well as for potential ability of proteomics to identify patients likely to benefit from 

targeted therapies. Luminal breast cancers (including AR-positive triple-negative breast 

cancers which cluster with luminal breast cancers) demonstrated selective elevation of AR, 

BCL2, FASN and pACC, suggesting these molecules or their associated pathways as 

potential therapeutic targets. The elevation of HER3 in KIRC may represent a therapeutic 

opportunity. SRC is activated in all but the hormone-responsive and bladder cancers, 

offering another potential therapeutic opportunity. EGFR activity, in general, parallels SRC 

activity, but in GBM is associated with NOTCH1 and HER3 activation, suggesting an 

interesting opportunity for exploration of combination therapy in (pre)clinical studies. 

PhosphoSRC, which is a downstream target of EGFR, was highly expressed in a subset of 

HNSC tumors, suggesting that these may be more sensitive to EGFR targeting strategies. As 

noted above, HER2 levels are elevated in a subset of UCEC, BLCA, BRCA and colorectal 

cancers and may represent responsiveness to HER2 targeted therapy. MYC, which may 

become targetable by emerging therapeutic approaches42, is selectively amplified and 

expressed in high-grade serous ovarian cancer and may represent an important target in this 

disease that currently lacks targeted opportunities7.

To determine whether protein levels, including phosphoproteins, can predict patient 

outcome, we determined correlations with overall survival (see TCPA11) for a 

comprehensive analysis) using Cox Proportional Hazards (CoxPH) models. In the complete 

Pan-Cancer dataset, 80 (including 24 phosphoproteins) of the 181 proteins demonstrated a 

significant (corrected for multiple comparisons) correlation with outcome. Importantly, 57 

proteins, including 19 phosphoproteins, showed a multiple comparisons corrected 

correlation with outcome in KIRC. However, with the exception of breast cancer (13 

candidates), this approach showed five or fewer proteins correlating with outcome in other 

tumor lineages. Why kidney cancer shows such strong correlations is not completely 

understood, but may reflect the maturity of the outcome data in this dataset. For some of the 
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other diseases included in the Pan-Cancer dataset, the associated outcome data are 

immature, for example, the low number of events in the BRCA and endometrial cancer 

datasets limits the ability to detect the prognostic and predictive value of protein markers.

To extend the single protein analysis available in TCPA, we performed a formal training/test 

set analysis of pathways and potentially actionable proteins. As indicated in Supplementary 

Table 14; 17 predictors (4 pathways, 9 total proteins and 4 phosphoproteins) passed a 

rigorous training/test set approach and showed a robust correlation with outcome in at least 

one disease. As expected from the analysis of single proteins, most surviving correlations 

were in kidney cancer. Several pathway predictors that survived the training/test set 

approach demonstrated marked associations with patient outcome in the overall sample sets 

(Supplementary Fig. 12). PhosphoSRC (SRCpY416) and the transferrin receptor (TFRC) 

showed an association in three diseases suggesting particular importance for outcome. 

However, the effects of the TFRC on patient outcomes were different across diseases 

suggesting an interaction with lineage-specific events. TFRC expression was associated with 

a significantly worse prognosis in LUAD and KIRC. These findings have potential 

implications for clinical targeting using TFRC for targeted delivery of chemotherapy or 

other agents43. Comparing the performance of the optimized cutoff approach with medians, 

quartiles or tertiles, more often applied in literature, we note that up to 50% of the 

predictions from the optimized cutoff approach were confirmed using these alternative 

cutoffs. However the optimized cutoff approach, combined with a rigorous training and test 

set evaluation, performed better in 17 out of 21 (81%) cases (as indicated by lower P-values) 

compared to the use of median, tertiles or quartiles.

Network visualization

Based on the availability of protein data across a large number of samples, we used a 

probabilistic graphical models approach44, 45 without the inclusion of prior knowledge to 

create an unbiased signaling network (Fig. 6, see Methods). We used the relatively large 

number of samples per tumor lineage to elucidate links in specific cancers and across 

multiple cancers, inferring networks using tumor lineage-specific samples. Interplay 

between nodes was quantified using scores from the graphical model analysis (see Methods) 

that identify links between nodes whilst controlling for the effects of all other observed 

nodes. Several expected links were observed across most tumor types, including pMEK with 

pERK, beta-catenin with E-cadherin and pPKCdelta with pPKCalpha and pPKCbeta, 

supporting the ability of RPPA analysis to yield high-quality signaling information from 

TCGA samples. Other expected links were seen in only a subset of tumors such as pAKT 

with pPRAS40 and pTSC2 (tuberinPT1462), consistent with differential wiring of signaling 

pathways in different cancers. A number of other links such as MYH11 with Rictor, cyclinB1 

with FOXM1, and pACC with FASN were not expected and warrant further exploration. The 

interplay between p85 and PTEN is consistent with our demonstration that p85 is a key 

determinant of PTEN stability39, 46. The negative link between pAKT and PTEN was 

expected, but the one between p85 and claudin7 in LUSC was not and may be worthy of 

further exploration. PI3K/AKT signaling does not link clearly to mTOR, which appears to 

primarily be downstream of MAPK signaling47, 48, 49. The relatively weak links in the 

PIK3K/AKT pathway are striking given the degree of antibody representation for this 
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pathway in the RPPA analysis. Key nodes such as CDK1 unexpectedly linked a wide range 

of protein pathways. Overall, the data suggest that the EGFR receptor family, together with 

the linked MEK and MAPK pathways, is the dominant determinant of signaling across the 

cancer lineages in the Pan-Cancer analysis. Using independent datasets in breast cancer, 

ovarian cancer and endometrial cancer, as well as published research, many of the strongest 

protein links in the network could be validated (Supplementary Fig. 13 and Supplementary 

Table 15), supporting the notion that large RPPA-based protein datasets can be used to 

“learn” networks in an unbiased manner.

Discussion

Cellular biology is effectuated in considerable part by proteins, and, unfortunately neither 

DNA copy number nor mRNA expression are able to faithfully predict protein level and in 

particular the post-translational modifications of proteins that are necessary for function 

(Fig. 1, Supplementary Fig. 1)1, 2, 3, 50, 51. Hence, evaluation of the functional proteome 

offers the ability to complement genomic and transcriptomic analysis in projects like the 

TCGA for identification of biomarkers and elucidation of underlying biological mechanisms 

both within and across diseases. The availability of high-quality proteomic data across large 

numbers of samples makes the case more compelling. In sum, a proteomic view of TCGA 

data yields insights that cannot be acquired through analysis driven solely by genomics or 

transcriptomics. The high degree of correlation between proteins, including 

phosphoproteins, in signaling pathways (Figs. 2,4,6, TCPA11) supports the applicability of 

RPPA analysis to TCGA samples. Further, the ability to construct de novo signaling 

networks (Fig. 6) that capture many known relationships supports the contention that 

proteomic data derived from the RPPA analysis of TCGA samples can be used to inform 

systems-level analyses of signaling pathways and networks. Full integrative analysis of the 

DNA, RNA and protein relationships embodied in the several TCGA datasets will require 

additional analysis, but a number of interesting observations are immediately apparent.

Analysis of this large dataset demonstrates that, in general, tumor type and subtype are the 

dominant determinants of protein levels. This observation highlights the risk inherent in 

disease-specific studies that commonalities, differences, and themes that emerge across 

tumor types will remain undiscovered. We therefore implemented a computational 

approach, MC, to decrease the dominant effect of tissue-specific protein expression. This 

approach allowed for the discovery of processes that drive cellular behavior across tumor 

types and made it possible to identify tumor characteristics that warrant exploration as 

therapeutic opportunities. The analysis of individual therapeutically relevant proteins (e.g., 

HER2, Figs. 1,5) and pathways (Fig. 4) permitted classification of patient samples based on 

pathway activity and therapeutic tractability across different tumor types. The ability of the 

Pan-Cancer analysis to identify the discordance between HER2 CNV, mRNA expression 

and protein expression in colorectal and serous endometrial cancers (Fig. 1) argues that a 

broad protein-based analysis of patient samples across multiple diseases can highlight 

potential therapeutic opportunities not obvious from studies within single diseases or driven 

by RNA and DNA analysis alone.
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The pathway analysis (Fig. 4, Supplementary Figs. 6-9) identifies multiple protein changes 

that are associated with the same functional outcome (i.e., pathway activation) in different 

samples and tumor types (Fig. 4). A number of proteins and genomic events correlate with 

pathway scores, developed using proteins defined by literature review (Fig. 4). Although 

some of those relationships could be identified by including members of upstream or 

downstream signaling or interacting pathways, many of the associations would not be 

predicted a priori, demonstrating that these approaches offer the potential for discovery of 

novel pathway connections. The ability to identify unexpected correlations was particularly 

clear in the network analysis (Fig. 6). For example, the strong links between MYH11 and 

RICTOR and between ETS1 and pPEA15 across tumor types offer opportunities for 

discovering new functional relationships. Some associations we reported, such as that of the 

mTOR pathway with MEK and MAPK, while supported by the literature47, 48, 49, 52 do not 

currently receive adequate consideration. Although molecular pathways often seem “set in 

stone”, the identification of unbiased signaling networks using large datasets can provide a 

powerful tool to identify tissue-specific networks, as well as to demonstrate the importance 

of “non-canonical” interplay, allowing for re-conceptualization of networks and the role 

they play in specific diseases.

A major goal of the molecular characterization of tumors, is the identification of tumor 

subsets and specific aberrations that can be used in the clinic as biomarkers and/or for 

targeted therapy (either single-agent or in combination). A bird’s eye view of the functional 

proteome of large sample sets encompassing multiple tumor lineages may help to suggest 

potential unexpected targets that are applicable to disease subsets or across diseases. The 

ability to identify many biomarkers associated with patient outcome (TCPA) and the ability 

of a set of biomarkers to pass a rigorous training/test set approach (Supplementary Table 14) 

suggest that additional Pan-Cancer analyses, as well as mechanistic analyses of the current 

proteomics study will improve our ability to understand tumorigenesis and identify new 

markers and targets.

Methods

Description of the protein data

Proteomic data were generated by RPPA across 3,467 patient tumors obtained from TCGA, 

including 747 breast (BRCA), 464 colon and rectal adenocarcinoma (COAD and READ), 

454 renal clear cell carcinoma (KIRC), 412 high-grade serous ovarian cystadenocarcinoma 

(OVCA), 404 uterine corpus endometrial carcinoma (UCEC), 237 lung adenocarcinoma 

(LUAD), 212 head and neck squamous cell carcinoma (HNSC), 195 lung squamous cell 

carcinoma (LUSC), 127 bladder urothelial carcinoma (BLCA) and 215 glioblastoma 

multiforme (GBM). Those were all the samples we could obtain from TCGA and no 

samples were excluded. The result is, to our knowledge, the largest and most diversified 

database of tissue protein levels yet available, an unparalleled basis for rich functional 

analysis.

RPPA methodology has been described in 4, 5, 6, 7, 8, 9, 10 and is also provided in the 

Supplementary Methods. In total 181 high-quality antibodies targeting total (n=128), 

cleaved (n=1), acetylated (n=1) and phosphoproteins (n=51) were used (detailed in 
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Supplementary Data 9). In the RPPA assay, antibodies to phosphoHER2 and phosphoEGFR 

have been noticed to cross-react, especially when the opposite molecule is present at very 

high levels. This mainly concerns EGFRpY1068 (but not EGFRpY1173), which cross-reacts 

with overexpressed HER2pY1248. Taking into account their favorable signal:noise ratio 

(10:1), useful information is contributed by both if expressed differentially, and they are thus 

both included. The antibodies encompass major functional and signaling pathways of 

relevance to human cancer. Pathways included are proliferation, DNA damage, polarity, 

vesicle function, EMT, invasiveness, hormone signaling, apoptosis, immunological, stromal, 

TGFα/β, transmembrane receptors, metabolism, LKB1/AMPK, TSC/mTOR, PI3K/Akt, 

Ras/MAPK, Hippo, Notch, and Wnt/beta-catenin signaling (Supplementary Fig. 14 and Fig. 

6) with minimal redundant information (Supplementary Fig. 15). Supplementary Fig. 16 

shows a representative image of a typical antibody slide.

The numbers of patient samples and antibodies are greater than those presented in previous 

TCGA marker papers4, 5, 6, 7, 8, 9, 10 based on the availability of additional samples as well 

as validation of additional antibodies. The detailed TCGA datasets are available online 

(https://tcga-data.nci.nih.gov/tcga) and combined with a number of visualization and 

analytic tools from TCPA (http://app1.bioinformatics.mdanderson.org/tcpa/_design/basic/

index.html). High-resolution images of all heatmaps and the network are available online 

(http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA). Some key clinical 

variables are shown in Supplementary Tables 16-17; extensive clinical information for all 

lineages is available online (https://tcga-data.nci.nih.gov/tcga) and available in the various 

TCGA marker papers4, 5, 6, 7, 8, 9, 10.

Protein correlations

To match the 181 antibodies available, 162 unique mRNAs were selected from downloaded 

RNASeqV2 data (https://tcga-data.nci.nih.gov/tcga), resulting in 184 matched and 24,282 

random protein:mRNA pairs. Spearman’s rank correlations were computed on both the 

random and matched pairs, with associated P-values (Supplementary Data 1,2 and at http://

bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA). The ρ values of the matched 

pairs were plotted in histogram form; the ρ values of the random pairs are represented as a 

background curve (Fig. 1a, Supplementary Fig. 1). Student’s t-test was used to compare the 

ρ values of all matched pairs with the ρ values of all random pairs (mean matched pairs: 0.3; 

mean random pairs: −0.006) and showed a significant difference (P<2.2e-16). For miRNA 

vs. protein, because the number of miRNAs and proteins were small, we computed all pair-

wise Spearman’s rank correlations with t-test P-values (Supplementary Data 3). For the 

CNV vs. protein expression analysis, we divided the samples into groups of amplified vs. 

copy number neutral and deleted vs. copy number neutral, and computed the mean fold 

changes in protein expression. Similarly, to compare mutation vs. protein, we divided the 

samples into mutated vs. wildtype and computed the fold changes in protein expression. We 

then used t-tests to evaluate statistical significance of the fold changes (Supplementary Data 

5-8 and at ttp://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA

Furthermore, we computed all pair-wise protein:protein correlations using the entire Pan-

Cancer dataset, in total 16,290 correlations (Supplementary Data 4 and at http://
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bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA). The top-10% had a 

Spearman’s rank correlation coefficient magnitude of 0.3 or higher (Bonferroni-adjusted 

P≤3.67e-67). Consequently, we considered a correlation magnitude of 0.3 or higher (sign 

independent) as a reasonable cutoff threshold for the analysis presented in the pathway 

sections of this study (Fig. 4, Supplementary Figs. 6-10, Supplementary Table 13).

Discriminator selection

To detect the discriminating biomarkers for each cluster (obtained by hierarchical clustering 

using the RPPA data normalized by either RBN or MC), LIMMA53 was used for the 

continuous data (protein, mRNA, miRNA) by comparing samples in each cluster with 

samples in all the other clusters together; information gain54 was used to select the 

categorical discriminators (mutation). The resulting data were sorted by decreasing order of 

the log-odds for the former and by decreasing information gain for the latter method. The 

top-25 most significant discriminators are shown in Supplementary Tables 2-5 (RBN) and 

Supplementary Tables 9-12(MC). The complete overview of protein, mRNA, miRNA and 

mutation discriminators can be accessed online (http://bioinformatics.mdanderson.org/main/

TCGA/Pancan11/RPPA).

BRCA and UCEC subdivision

For BRCA subtypes, first the reactive subtypes were classified according to the method 

described in the TCGA marker paper5. The other subtypes were then classified based on 

PAM50. For UCEC subtype classification, serous samples were first selected based on the 

integrative cluster (serous-like) reported in the TCGA marker paper10. Clinical 

histopathological subtype (https://tcga-data.nci.nih.gov/tcga) was used in any remaining 

cases.

HER2 cutoffs

Normal tissues for the lineages studied in this paper have been reported to have low or 

medium HER2 levels (http://www.proteinatlas.org/ENSG00000141736/tissue/staining

+overview)55. To identify the threshold of HER2 mRNA and protein expression in breast 

cancer that could classify tumors as HER2-positive, we obtained PAM50 classifications for 

all the TCGA breast cancer samples, and divided them into two groups; HER2-positive and 

non-HER2-positive samples. We used the conjunctive rule algorithm in Weka software56 to 

determine the best HER2 total protein cutoff that separated the HER2-positive from the non- 

HER2-positive samples based on HER2 (ERBB2) copy number. The best protein threshold 

was found to be 1.46, which yielded 93% accuracy of prediction and a receiver operator 

characteristic (ROC) area under the curve (AUC) of 0.81. We did a similar analysis using 

HER2 mRNA and found a best cutoff of 14.26 (in log2 frame), which yielded an accuracy of 

93% and a ROC AUC of 0.82. In addition to trastuzumab, other drugs targeting HER2 have 

entered clinical trials, such as TDM1, for which HER2 expression on the cell surface is 

sufficient to achieve preferential binding to the cell and therapeutic impact. Since data for 

TDM1 response is not readily available, a threshold of HER2 expression that may be 

sufficient to expect a response could not be calculated. We therefore compared samples in 

which HER2 was amplified vs. not amplified, aiming to find a threshold that might be 
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reasonable to test. Using the dot plots, a protein threshold of ≥1.00 was adopted; roughly 

equivalent to 3+ on immunohistochemistry of clinical samples in breast cancer. The crosstab 

in Figure 1b gives the breakdown of percentage of samples above these thresholds for each 

tumor. If a tumor lineage had more than 5% HER2-positive samples according to any of the 

cutoffs, this is indicated in red.

General heatmap section

A two-way unsupervised hierarchical clustering analysis was used to discover the groups of 

biological objects sharing common characteristics57, 58, and a two-dimensional heat map 

was drawn to visualize protein expression patterns. We used Ward linkage as the 

agglomeration rule and 1-Pearson correlation as the dissimilarity metric. Based on protein 

expression patterns and guided by the clustering dendrogram, we divided the RBN data set 

into 8 clusters and the MC dendrogram into 7 clusters. As seen in the RBN heatmap, most 

clusters represented one major disease. Exceptions were clusters_E and _F. Based on the 

recent TCGA marker paper5, the hormone-responsive breast cancer cluster (cluster_A) in 

the RBN dendrogram was further divided into 2 subclusters, A1 (reactive breast cancers) 

and A2 (remaining luminal breast cancers). Based on marked enrichment with clinically 

relevant proteins, cluster_II in the MC dendrogram was further divided into two subclusters, 

cluster_IIa (HER2 elevated) and cluster_IIb (EGFR elevated). Hierarchical clustering 

analysis was performed using R, version 2.15.1 (http://www.r-project.org/). Heatmaps were 

generated using an NGCHM R-package59. Annotation bars were added to the heatmap that 

included tumor lineage, purity and ploidy; stromal and immune scores; BLCA subtype and 

PAM50 classification (BRCA). Significantly mutated genes (present in more than 5% of 

tumors in the dataset, resulting in 16 genes) are included as are the two most frequently 

observed amplifications. Statistical significance for the annotation bars on top of the various 

heatmaps was calculated by Chi-squared test (tumor lineage, mutations and amplifications), 

ANOVA’s F test (purity, ploidy stromal and immune score), and Fisher’s exact test (PAM50 

and BLCA subtypes). Data are missing for BLCA subtype (15/127), BRCA subtype 

(52/747) and HER2 and MYC amplification (64/3,467).

Batch effects removal

The 3,467 RPPA Pan-Cancer samples were run in 6 batches in total, resulting in potential 

batch effects upon merging the sets. Batch effects in RPPA data are a known concern, even 

when controlling for critical materials such as the treated glass slides, antibodies, enzymes 

and suppliers60. A new algorithm, replicates-based normalization (RBN), was therefore 

developed, using replicate samples run across multiple batches to adjust the data for batch 

effects. The underlying hypothesis is that any observed variation between replicates in 

different batches is primarily due to linear batch effects plus a component due to random 

noise. Given a sufficiently large number of replicates, the random noise is expected to 

cancel out (mean=zero by definition). Remaining differences are treated as systematic batch 

effects. We can compute those effects for each antibody and subtract them out. In one batch, 

many samples with duplicates in the other 5 batches were run, and could therefore serve as 

anchor for all batches. The number of duplicate samples with each batch varied between 71 

and 207. This batch was designated “anchor” batch and was used unchanged. We then 

computed the means and standard deviations of the common samples in the anchor batch 
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and each of the other batches. The difference between the means of each antibody in the two 

batches and the ratio of the standard deviations provided an estimate of the systematic 

effects between the batches for that antibody (both location-wise and scale-wise). Each data 

point in the non-anchor batch was adjusted by subtracting the difference in means and 

multiplying by the inverse ratio of the standard deviations to cancel out those systematic 

differences. Whether RBN could successfully integrate batches while preserving known 

biological variation, was tested on TCGA breast cancer samples. As breast cancer subtypes 

(luminal, HER2-positive and basal-like) are well established13, we expected the subtypes 

from different batches to cluster together. Without RBN, the batches clustered by batch. 

After RBN, the batches clustered by subtypes spanning multiple batches (Fig. 2). Details of 

these experiments have been published previously61.

Reducing tissue differences to cluster across tumors

Using RBN, batches of RPPA data could be merged successfully. However, as protein levels 

of different tumors are (usually) quite distinct from each other, most samples clustered by 

tumor lineage (Fig. 2). Normal cells differentiate into different tissues by turning on or off 

different sets of genes. When cells become malignant, they retain many tissue-specific 

expression characteristics. We hypothesized that tissue-specific effects exist because of 

those expression differences and equalizing the median expression of genes across tumors 

might reduce those effects. A gene that is turned off in all the samples of a tumor lineage 

will have little variation in expression, similar to a gene that is always turned on, which will 

also have little variation, but an overall high level. To compare across tumor lineages, we 

started with the batch corrected RBN data and took sets of all samples belonging to each 

tumor lineage. We subtracted the median protein expression across all the samples from a 

single lineage (median centering, MC), making the median expression of all proteins within 

any given tumor equal to zero. That removed the fixed, bias component from that tissue 

lineage but retained the variable component found in each tumor. Since the tissue specific 

component had been removed, we could then compare the variable component (which was 

relative in scale) in each tumor sample across different tissues. That allowed for the 

comparison between samples with high/low expression in one tumor and samples with 

high/low expression in another tumor, such as HER2 or EGFR expression. Basal-like breast 

cancer was treated as a separate tumor lineage from the other breast cancer samples due to 

its expression profile being so different that it did not merge with any other tumor or even 

other breast samples during RBN clustering.

Tumor purity and ploidy

We obtained tumor purity and ploidy data based on the ABSOLUTE algorithm62 from 

TCGA Pan-Cancer working group. We calculated stromal and immune scores based on the 

ESTIMATE algorithm using the TCGA Pan-Cancer gene expression dataset (syn1695373, 

https://www.synapse.org/#!Synapse:syn1695373 63).

Pathway analysis

For each pathway, members, illustrated in Supplementary Table 13, were predefined based 

on a Pubmed literature search on review articles describing the various pathways in detail. 
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RBN RPPA data were median-centered and normalized by standard deviation across all 

samples for each component to obtain the relative protein level. The pathway score is then 

the sum of the relative protein level of all positive regulatory components minus that of 

negative regulatory components in a particular pathway. We averaged antibodies targeting 

different phosphorylated forms of the same protein with ρ >0.85 (Pearson’s correlation). The 

pathway scores are visualized in the bar just above the heatmap and as a dotplot below the 

heatmap (median and inter-quartile range indicated, Fig. 4c-f, Supplementary Figs. 6-9). 

Subsequently, for each version of the pathway scores (RBN or MC derived), a Spearman’s 

rank correlation test was performed between each pathway score and every protein. If the ρ 

was >0.3 or <−0.3, the protein was included in the heatmap. Regardless of the ρ, pathway 

members for the given pathways were included. Annotation bars (from Fig. 2) were included 

if they were statistically significantly associated with the pathway (P<0.05, Kruskal-Wallis 

test, n=3,467), corrected for multiple testing64. Tumor lineage and cluster were included to 

facilitate interpretation. For each pathway heatmap (RBN or MC), the samples were first 

sorted by the alphabetic order of either cluster or tumor, and then by the increasing order of 

a pathway score.

Using the heatmap method described above, two additional summary heat maps for the 

pathway scores (RBN and MC) were generated (Fig. 4a,b) to provide an overall view of the 

relationships between tumors, unsupervised clusters and pathways. Mean pathway scores 

were calculated for each tumor as well as cluster variables, and the combined mean pathway 

scores were standardized for each pathway across all tumor and clusters. In both the 

individual pathway plots and the heatmap summary plots, hierarchical clustering was based 

on Pearson’s correlation-based distance matrices65 and Ward linkage. The dynamic heat 

maps were generated using the R-package NGCHM59. Each cell in the heatmap represents 

the mean pathway score of all the samples in that cluster or tumor lineage, with blue 

representing a suppressed pathway, red representing an activated pathway, and white 

representing neither.

Supplementary Figure 10a,b shows a similar measure of pathway activity, but on the 

absolute scale. The supplementary figure is derived as follows. First, the RPPA dataset 

(either RBN or MC normalized) is globally scaled so that the protein expression level 

measurements have zero mean and unit standard deviation over all samples. Next, for each 

cluster and tumor lineage, we calculate the mean (scaled) protein expression level for each 

protein. We then convert these means to their absolute value (as low or high mean protein 

levels could both be markers of pathway activity), obtaining an absolute mean protein level 

for each protein in each cluster or tumor lineage. Finally, for each pathway, we calculate the 

average of the absolute mean levels over the proteins that participate in the pathway. This 

value is designated the differential pathway activity score, as it indicates the deviation from 

the mean expression of a pathway in a given cluster or tumor lineage, and can thus be seen 

as a proxy for pathway activation/deactivation.

Actionable protein analysis

The analysis focused on the potential ability of proteomics to predict response to proteins 

currently of increased interest, due to proposed targetability or potentiality as a drug target in 
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the drug development stage. The list of proteins is not exhaustive, but rather includes many 

different processes and pathways with varying importance in different tumor lineages 

included in this study. In the Supplementary Methods, registered trials targeting many of 

these proteins are included.

To visualize the expression pattern of these 25 proteins, heatmaps were generated59 using 

the RBN dataset (Fig. 5). Proteins were ordered by unsupervised hierarchical clustering and 

samples were ordered by cluster (disease) membership and within each, ordered by 

unsupervised hierarchical clustering. Ward’s method and 1-Pearson correlation were used as 

a dissimilarity metric and linkage.

Network analysis

Networks were estimated using statistical models known as a probabilistic graphical models 

(specifically Gaussian graphical models)45. These models use an undirected graph or 

network to describe probabilistic relationships between variables. In contrast to pair-wise 

correlation analysis, the networks are rooted in a global, multi-dimensional approach that 

identifies links between nodes whilst controlling for the effects of all other observed nodes.

Statistical inference of networks is a so-called ‘high-dimensional’ problem because network 

descriptions require a large number of parameters relative to available sample sizes 

(especially at the disease or cluster level). This motivates a need for regularization to learn 

sparse, parsimonious networks and thereby control over-fitting. We used l1-penalization for 

this purpose, specifically via an algorithm known as graphical lasso44, as implemented in the 

R-package huge66. A parameter λ that controls the strength of penalization was set by 10-

fold cross-validation in all cases. To prevent artifacts that can arise due to duplicated nodes, 

related nodes that were relatively highly correlated were merged prior to network analysis. 

In each such case, only one of the set of correlated nodes was used for network inference 

and the remaining merged nodes are shown in white. Since protein levels are measured in 

arbitrary units (depending on affinity and avidity of specific antibodies), for each network 

the data were standardized before applying the graphical lasso, such that each protein had 

zero mean and unit variance.

Outcome analysis

A training-test approach was adopted for survival analysis. In each of the 11 tumor lineages, 

samples with survival data available were randomly divided into training (2/3) and test (1/3) 

sets with balanced events in both sets. The training set was used to obtain an optimized 

cutoff, which was “locked” (i.e. used without change) on the test set. Essentially, samples 

were sorted based on the protein expression of the interesting gene or pathway score. Each 

possible cutoff in the middle 60% of samples was checked using Cox’s regression model. 

The cutoff with lowest P-value was chosen as the optimized cutoff. In the test set, samples 

were divided into high and low groups according to this optimized cutoff by either 

percentage or absolute value. Then the hazard ratio, Wald’s test P-value and Kaplan-Meier 

survival curves of the two groups were examined by Cox’s regression analysis. Only the 

predictors that were successfully validated in the test set are shown in Supplementary Table 
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14 Kaplan–Meier survival curves were generated to illustrate the survival differences in the 

four significant pathways using the whole sample set (Supplementary Fig. 12).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. HER2 RPPA correlations with copy number and mRNA
a Histogram of Spearman’s rank correlation (ρ values) for 206 pairs of proteins and matched 

mRNAs across all tumor types. The black curve represents the background of ρ values using 

28,960 random protein-mRNA pairs in the same dataset.

b Crosstab identifying HER2-positive tumors by copy number, mRNA expression and 

protein expression across 11 tumor types. Cutoffs are defined in Methods. BRCA and UCEC 

are subdivided for clinical relevance regarding HER2 protein levels. Total sample numbers 

with analyses for all three platforms (CNV, mRNA and protein) are indicated in parentheses. 

Percentages ≥5% are highlighted (red).

c Relationship between HER2 copy number and HER2 protein level by RPPA across all 

tumor types (n=2,479). The box represents the lower quartile, median and upper quartile, 

whereas the whiskers represent the most extreme data point within 1.5 × interquartile range 

from the edge of the box. Each point represents a sample, color-coded by tumor type or 
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subtype. As expected, ERBB2 amplified samples have much higher HER2 protein levels 

than non-amplified samples.

d Relationship between HER2 mRNA and protein expression across all tumor types 

(n=2,479). Each protein represents a sample, color-coded by tumor type or subtype. 

Spearman’s correlation between HER2 protein and mRNA is 0.53.
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Figure 2. Unsupervised clustering and analyses based on the RBN dataset
a Heatmap depicting protein levels after unsupervised hierarchical clustering of the RBN 

dataset consisting of 3,467 cancer samples across 11 tumor types and 181 antibodies. Protein 

levels are indicated on a low-to-high scale (blue-white-red). Eight clusters are defined. 

Cluster_A has been subdivided into two clusters (A1 and A2), based on the differences 

between BRCA reactive and remaining luminal subtypes5. Annotation bars include tumor 

type (BRCA-basal separately indicated); purity and ploidy (ABSOLUTE algorithm); stromal 

and immune scores (ESTIMATE algorithm); BRCA (PAM50 classification) and BLCA 
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subtype; 16 significantly mutated genes and two frequently observed amplifications. The 

statistical significance of correlations between the clusters and each variable is indicated to 

the left of each annotation bar (n=3,467, chi-squared, Fisher’s Exact, and ANOVA’s F test. 

See Methods).

b Crosstab showing the number of tumor samples in each cluster.

c-e Kaplan Meier curves showing overall survival of (c) the BRCA located in four separate 

clusters (A1, A2, E and F, n=740), (d) KIRC in cluster_F vs. KIRC in other clusters (n=454) 

and (e) BLCA in cluster_B vs. BLCA in other clusters (n=127). Follow-up was capped at 60 

months due to limited number of events beyond this time. Statistical difference in outcome 

between groups is indicated by P-value (log-rank test). A high-resolution, interactive version 

of the heatmap with zooming capability, can be found at (http://

bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).
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Figure 3. Unsupervised clustering and analyses based on the MC dataset
a Heatmap showing protein expression after unsupervised hierarchical clustering of 3,467 

cancer samples across 11 tumor types and 181 antibodies. Protein levels are indicated on a 

low-to-high scale (blue-white-red). Seven clusters were defined. Cluster_II has been 

subdivided manually into two clusters (IIa and IIb) based on significant difference in 

expression of the proteins of interest (HER2 and EGFR). Annotation bars include tumor 

lineage (BRCA-basal separately indicated), purity and ploidy (ABSOLUTE algorithm); 

stromal and immune scores (ESTIMATE algorithm); BRCA (PAM50 classification) and 
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BLCA subtype; 16 significantly mutated genes and two frequently observed amplifications. 

Statistical significance of the correlations between the clusters and each variable is indicated 

left of the annotation bars (n=3,467, chi-squared, Fisher’s Exact, and ANOVA’s F test. See 

Methods).

b Crosstab showing the number of tumor samples in each cluster.

c-g Kaplan Meier curves showing overall survival in (c) the KIRC in cluster_VII vs. in all 

other clusters (n=454), (d) OVCA in cluster_VII vs. in all other clusters (n=412), (e) KIRC 

in cluster_IV vs. in all other clusters (n=454), (f) LUSC in cluster_V vs. in all other clusters 

(n=195) and (g) COAD in cluster_V vs. in all other clusters (n=334). Follow-up has been 

capped at 60 months months, due to limited number of events beyond this time. Statistical 

difference in outcome between groups is indicated by P-value (log-rank test). A high-

resolution, interactive version of the heatmap with zooming capability, can be found at 

(http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).
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Figure 4. Pathway analyses
Pathway analyses of the dataset by RBN clusters, MC clusters and tumor type. For pathway 

predictor members see Supplementary Table 13.

a-b Heatmaps depicting mean pathway scores after unsupervised hierarchical clustering on 

tumor lineages and protein clusters based on the (a) RBN and (b) MC datasets. The 

heatmaps were clustered on both axes. As expected, RBN clusters show a strong association 

with tumor lineages, with very similar patterns between them, whereas MC clusters do not 

associate with any particular tumor lineage.
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c-f The heatmaps, supervised on the sample axis, depict the protein levels of the pathway 

members and of proteins with a high correlation (ρ>0.3/ ρ<−0.3, Spearman’s correlation) to 

the pathway predictor across RBN clusters (c-d) and tumor lineages (e-f). The EMT 

pathway (c and e) and the hormone_a pathway (d and f) are shown. Samples are first sorted 

by either cluster (c-d) or tumor lineage (e-f), then by pathway score (from low to high) 

within cluster or tumor lineage. Dotplots (lower panel) represent the pathway score for each 

sample. Each box represents the lower quartile, median and upper quartile, whereas the 

whiskers represent the most extreme data point within 1.5 × inter-quartile range from the 

edge of the box. Annotation bars (selected from Fig. 2) are included if statistically 

associated with the pathway score (P <0.05, Kruskal-Wallis test, n=3,467). Pathway 

members are marked in red on the left hand side. High-resolution images of the heatmaps 

can be found online (http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).
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Figure 5. Analyses of selected potentially actionable proteins
a-b Heatmaps, supervised on the sample axis, depicting protein level of 25 proteins that are 

(potentially) actionable based on the RBN dataset. Proteins were ordered by unsupervised 

hierarchical clustering and samples were ordered by (a) cluster and (b) tumor lineage 

membership and within each ordered by unsupervised hierarchical clustering. Annotation 

bars include tumor lineage, purity and ploidy (ABSOLUTE algorithm); stromal and immune 

scores (ESTIMATE algorithm); BRCA (PAM50 classification) and BLCA subtype; 16 

significantly mutated genes and two frequently observed amplifications. High-resolution 

images of the heatmaps can be found online (http://bioinformatics.mdanderson.org/main/

TCGA/Pancan11/RPPA).
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Figure 6. Unbiased data-driven signaling network
Unbiased signaling network based on a probabilistic graphical models analysis, visualizing 

all 11 tumor lineages individually. Interplay between nodes was quantified using scores 

from the graphical model analysis (see Methods), that identify links between nodes whilst 

controlling for the effects of all other observed nodes. The strength of links is indicated by 

the thickness of the line whilst the color indicates the tumor lineage in which the link was 

observed; only the strongest links are shown. Nodes in white are related nodes that were 

highly correlated and therefore merged prior to network analysis. The adjacent correlated 

(green) node was then used for network generation. Positive (negative) correlations are 

indicated with continuous (dotted) lines. A high-resolution image of the network can be 

found online (http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).
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