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Abstract 
 

Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy, characterized by the 

uncontrolled proliferation and differentiation arrest of myeloid progenitors. Chemotherapy has been 

the front-line treatment for decades and cure remains elusive for the majority of AML patients. 

Genome-wide CRISPR-Cas9 screens have previously identified KAT7 as an AML-specific cell-

essential gene and therefore may represent a potential novel therapeutic target for AML. Here, I show 

that KAT7 loss leads to a rapid and dramatic global reduction in both H3K14ac and H4K12ac in 

association with reduced proliferation, increased apoptosis or enhanced differentiation of AML cells 

driven by the translocation of Mixed-lineage leukemia (MLL) gene. Mice transplantation with KAT7 

knock-out AML cell line showed delayed disease progression and prolonged survival compared to 

those injected with the wild-type counterpart. The acetyltransferase activity of KAT7 is essential for 

MLL-fusion AML as the E508Q catalytic dead mutant is unable to sustain the leukemic programme. 

Using the auxin-inducible degron (AID) system to induce rapid KAT7 protein degradation, I showed 

that KAT7 is required for the recruitment of the MLL-fusion associated adaptor proteins such as 

BRD4 and AF4 to gene promoters, which are critical for the maintenance of the MLL-AF9 

transcriptional programme. Although not found to be mutated among cases of AML, KAT7 is a 

plausible therapeutic target for this poor prognosis subtype of AML. 
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Chapter 1: Introduction 
 

1.1 Acute myeloid leukaemia and disease pathogenesis 
 

Acute myeloid leukaemia (AML) is an aggressive hematopoietic malignancy, characterised by the 

differentiation arrest and uncontrolled proliferation of myeloid progenitor cells (Döhner et al., 2015). 

Leukaemic blast cells infiltrate the peripheral blood, bone marrow and accumulate in other organs in 

the body. AML is associated with a plethora of clinical symptoms, including leukocytosis, anaemia, 

thrombocytopenia, bleeding and increased risk of infections (De Kouchkovsky and Abdul-Hay, 2016). 

The etiology of AML is not fully established, but it has been known that incidents increase with age 

(Bhayat et al., 2009; Dores et al., 2012). Other associated risk factors include genetic disorders and 

chemical or radiation exposure (Deschler and Lübbert, 2006).  

 

The molecular pathogenesis have traditionally been studied using cytogenetic analysis, which 

elucidated many recurrent chromosomal structural abnormalities (Grimwade et al., 2015; Mrózek et 

al., 2004; Rowley, 2008). With next-generation sequencing technologies, recurrent gene mutations are 

increasingly apparent in AML and gene-gene interactions have been reported (Papaemmanuil et al., 

2016; The Cancer Genome Atlas Research Network, 2013). Notably, the genetic aberrations found in 

AML can be classified into different functional categories, including transcription factor fusions (e.g. 

PML-RARA, RUNX1-RUNX1T1), tumour suppressors (e.g. P53, WT1), DNA methylation (e.g. 

DNMT3A/B, TET1/2, IDH1/2), activated signalling (e.g. FLT3-ITD, KIT, KRAS/NRAS), chromatin 

modifiers (e.g. MLL-fusions, NUP98-NSD1), myeloid transcription factors (e.g. RUNX1, CEBPA), 

cohesin, spliceosome and NPM1 (The Cancer Genome Atlas Research Network, 2013). Beyond 

somatic mutations, dysregulated epigenetic mechanisms are thought to play a role in AML 

pathogenesis, as seen by the recurrent somatic mutations in genes encoding many epigenetic 

modifiers (Figueroa et al., 2010a; Rampal et al., 2014; Shih et al., 2015; The Cancer Genome Atlas 

Research Network, 2013). In addition, studies have reported alterations in genome-wide DNA 

methylation patterns in AML patients (Figueroa et al., 2010b; Li et al., 2016a; The Cancer Genome 

Atlas Research Network, 2013).  

 

Despite the relatively low number of mutations per patient compared to other cancer types, genetic 

and epigenetic heterogeneity has been identified in AML (Lawrence et al., 2013, 2014; Li et al., 2016b). 

This heterogeneity can be found between different patients as well as within a patient. A founding 

leukaemia clone, which is defined by a clone with the highest variant allele frequency, and at least one 
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sub-clone are commonly detected in individual patients (The Cancer Genome Atlas Research 

Network, 2013; Welch et al., 2012). Understanding the underlying mutational profiles of AML can 

have implications on the therapeutic choice for the same patients at different stages of the disease 

(Grimwade et al., 2015). 

 

1.2 Current and emerging treatments for AML 
 

The conventional care for AML has not advanced for more than three decades, whereby induction 

chemotherapy serves as the front-line treatment for many patients (Döhner et al., 2016).  

Anthracycline in combination with cytarabine are given to patients suitable for intense chemotherapy, 

which include those younger than 60 years of age or older but showing favourable- or intermediate-

risk cytogenetics (Döhner et al., 2015, 2016). Antracycline is an antibiotic produced by Streptomyces 

peucetius varcaesitue and thought to interact with nuclear components such as DNA and 

topoisomerase, causing DNA damages (Minotti, 2004; Rabbani et al., 2005). Cytarabine is a 

pyrimidine analogue and the mechanism of cytotoxicity is presumably due to the cumulative effect of 

DNA polymerase inhibition and competitive incorporation of the nucleoside analogue into DNA; the 

latter results in chain termination and subsequent block of DNA synthesis (Galmarini et al., 2001; 

Kufe et al., 1980; Major et al., 1981, 1982). Post-remission treatments, also known as consolidation 

therapy, include further chemotherapy and hematopoietic-cell transplantation. These treatments aim 

to eliminate any residual diseased cells and prevent relapse (De Kouchkovsky and Abdul-Hay, 2016). 

 

Although the majority of the patients younger than the age of 60 achieve complete remission after 

induction therapy, the response rates are less optimistic in older AML patients (Döhner et al., 2015; 

Lowenberg et al., 1999). Relapse and subsequent resistance to chemotherapy are major barriers to the 

long-term survival of AML patients. It is estimated that only about 30% of the patients are cured of the 

disease, whilst the majority of the patients experience relapse (Döhner et al., 2015, 2016; Liesveld, 

2012). This relapse of the disease is associated with the clonal evolution of leukaemic blasts within 

individual patients (Garson et al., 1989; Testa et al., 1979). A recent study using next generation 

sequencing has revealed the pattern of clonal evolution of AML cells that led to disease relapse (Ding 

et al., 2012). The authors found that during or after chemotherapy, primary AML clones acquired 

additional mutations and gave rise to relapse clones. They suggested that although essential for initial 

remission, chemotherapy could introduce relapse-specific mutations into founding AML clones or 

surviving sub-clones, which can undergo selection and clonal expansion.  
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The effort to increase treatment options for AML patients can be reflected by the numerous novel 

agents that are currently in different phases of development. New formulation of chemotherapies 

includes topoisomerase inhibitors (e.g. Vosaroxin), hypomethylating agents (e.g. Guadecitabine) and 

CPX-351. CPX-351 combines cytarabine and antracyclin daunorubicin in 5:1 molar ratio and is 

encapsulated in liposome (Döhner et al., 2015; Stein and Tallman, 2015). In addition, an antibody-

drug conjugate (ADC) was developed to deliver the conjugated drug specifically to CD33+ leukaemic 

cells and have shown myelosuppressive effects (Döhner et al., 2015; Stein and Tallman, 2015). Many 

molecular targeted inhibitors are also under evaluation in clinical trials. Agents that target recurrent 

mutations include inhibitors against FLT3 (e.g. Quizartinib, Crenolanib, Gilteritinib) (Döhner et al., 

2015; De Kouchkovsky and Abdul-Hay, 2016; Stein and Tallman, 2015), IDH1/2 (e.g. AG-221, AG-

120) (Döhner et al., 2015; Pollyea et al., 2014; Stein et al., 2014) and BCL2 (DiNardo et al., 2019; 

Kontro et al., 2015; Pollyea et al., 2018; Pullarkat and Newman, 2016). DNA methyltransferase 

(DNMT) inhibitors Azacitidine and Decitabine have been approved for clinical use (Wouters and 

Delwel, 2016). Other epigenetic modifier inhibitors in clinical trial include a histone lysine 

methyltransferase DOT1L inhibitor EPZ-5676, a histone lysine demethylase LSD1 inhibitor 

GSK2879552, histone deacetylase (HDAC) inhibitors Pracinostat, Vorinostat and Panobinostat, and 

Bromodomain (BET) inhibitor OTX-015 (Daigle et al., 2011; Döhner et al., 2015; Grimwade et al., 

2015; Stein and Tallman, 2015; Wouters and Delwel, 2016). Potential targets in preclinical 

development include histone lysine methyltransferase inhibitors against EZH2 (Girard et al., 2014; 

Knutson et al., 2012), MLL-Menin (Borkin et al., 2015; Grembecka et al., 2012) or MLL-LEDGF 

(Čermaková et al., 2014) interface, histone lysine acetyltransferase inhibitors against CREBBP (Gang 

et al., 2014) and EP300 (Gao et al., 2013b), as well as histone arginine methyltransferase PRMT 

inhibitors (Alinari et al., 2015; Chan-Penebre et al., 2015). Notably, the emergence of many epigenetic 

targeted therapies in AML reflects the involvement of epigenetics in the pathogenesis of AML.  

 

1.3 CRISPR-Cas9 as a powerful tool to identify vulnerabilities in AML 

 

Understanding of the genetic contribution to diseases has been enhanced by advances in targeted 

gene-editing technologies, such as the clustered regularly interspaced short palindromic (CRISPR)-

Cas (CRISPR-associated) system. Originally a defence mechanism found in bacteria and archaea 

(Horvath and Barrangou, 2010), the CRISPR-Cas system has been exploited in a wide range of 

organisms, including mammalian cells (Bassett et al., 2015; Chen et al., 2015; Hart et al., 2015; Matano 

et al., 2015; Sánchez-Rivera and Jacks, 2015; Shi et al., 2015). This system composes of Cas protein and 

CRISPR RNA (crRNA). The latter possesses nucleotide sequence complementary to target region(s) of 

the genomic DNA. Depending on the types of CRISPR system (I-III), the manner in which precursor 
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CRISPR RNA (pre-crRNA) is processed into mature crRNA and the associated effector Cas protein 

differ.  

 

Type II CRISPR-Cas9 system is one of the best characterised versions and most commonly used for 

genome engineering due to its simplicity in terms of the number of genes involved (Makarova et al., 

2015). While type I and III CRISPR-Cas systems utilise a large multimeric crRNA-Cas complex to 

achieve nuclease activity, the type II system requires a single Cas9 endonuclease with crRNA and 

trans-activating crRNA (tracrRNA) and cleave target DNA sequences (Makarova et al., 2011). In the 

engineered CRISPR-Cas9 system, crRNA and tracrRNA are fused together and the system requires 

single guide-RNA (gRNA) (Ran et al., 2013). The simplicity has accelerated its development as a 

molecular tool (Rath et al., 2015). Specificity towards a particular region of the genome relies on a 20-

nucleotide variable region at the 5’ end of the gRNAs (Koike-Yusa et al., 2014). Double stranded break 

(DSB) triggers DNA repair pathways such as non-homologous end joining (NHEJ) or homology-

directed repair (HDR). Exploiting the inaccurate repair of DNA by NHEJ, nucleotide insertion or 

deletion (indels) can lead to frameshift mutations that derives non-functional protein (Ran et al., 

2013; Rath et al., 2015; Sander and Joung, 2014). Compared to RNA interference (RNAi), which 

utilises small interfering RNA (siRNA) or short hairpin RNA (shRNA) to generate knock-down of 

target genes, CRISPR-Cas9 creates targeted gene knock-out using gRNA. Both technologies suffer 

disadvantages. RNAi often results in incomplete suppression of gene expression, whereas the use of 

CRISPR-Cas9 is restricted to target regions in the genome with protospacer adjacent motifs (PAM). 

The possibility of off-targets is common to both technologies (Koike-Yusa et al., 2014; Ran et al., 2013; 

Sander and Joung, 2014; Shalem et al., 2015). Nevertheless, CRISPR-Cas9 serves as an invaluable tool 

to address many biological questions. 

 

The ability to generate bi-allelic mutations at a targeted locus has sparked many questions in the field 

of cancer research (Chen et al., 2015; Hart et al., 2015; Sánchez-Rivera and Jacks, 2015; Shi et al., 

2015). In particular, genome-wide loss-of-function genetic screening allows the identification of 

recessive genes important in cancer. CRISPR-Cas9 screens have been performed in human AML cell 

lines (Erb et al., 2017; Tzelepis et al., 2016; Wang et al., 2017). This method elucidated essential genes 

that drive leukaemic cells. Utilising AML cell lines with different genotypes informed genotype-

specific essentiality. In the CRISPR screen performed by Tzelepis et al., they identified 492 AML-

specific essential genes across 5 AML cell lines (MOLM-13, MV4-11, HL-60, OCI-AML2 and OCI-

AML3), 227 of which are druggable, defined as proteins with enzymatic activity which can potentially 

be targeted (Tzelepis et al., 2016; Wagner et al., 2016). Potential novel therapeutic targets within these 

large datasets may be teased out to ameliorate the current treatment landscape of AML.  
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It has been proposed that targeting leukaemia-specific mutations or dependencies is one of the 

successful examples to achieve higher cure rates in patients (Liesveld, 2012). Given that cure remains 

elusive for the majority of the AML population and the conventional treatment regimens for AML is 

non-specific, toxic and unsuitable for high-risk patients, this thesis aims to identify novel and 

promising druggable candidates by understanding the mechanism of their essentiality. Genome-wide 

CRISPR-Cas9 dropout screens revealed KAT7 as a novel AML-specific vulnerability that could 

potentially be exploited therapeutically (Tzelepis et al., 2016).  

 

1.4 KAT7 protein complexes and histone tail specificity 

 

KAT7, also known as MYST2 or HBO1, is a histone lysine acetyltransferase (HATs/KATs) belonging 

in the MYST family proteins (Avvakumov and Côté, 2007; Sheikh and Akhtar, 2018; Voss and 

Thomas, 2009) . The defining and common feature of MYST family protein is the highly conserved 

MYST catalytic domain, containing an acetyl-CoA binding motif and a C2HC-zinc finger motif 

(Avvakumov and Côté, 2007; Voss and Thomas, 2009). Other members of the MYST family include 

KAT5 (TIP60), KAT6A (also called MOZ or MYST3) and KAT6B (MORF or MYST4). Possessing 

only the zinc finger, serine-rich and MYST domains, KAT7 relies on forming multi-subunit 

complexes with scaffold protein JADE or BRPF, along with Esa1 associated factor 6 (EAF6) and 

inhibitor of growth protein 4/5 (ING4/5) for chromatin binding (Figure 1). ING4/5, JADE and BRPF 

subunits all possess the plant hormone domain (PHD), which is a recognition motif that binds to 

histone modifications on the N-terminal tail of histone H3 (Avvakumov et al., 2012; Lalonde et al., 

2013; Musselman et al., 2012; Saksouk et al., 2009).  

 

Figure 1 Protein complexes of KAT7 

KAT7 is found in complexes containing ING4/5, EAF6 and JADE1/2/3 or BRPF1/2/3. A) KAT7-JADE 

complex facilitates histone H4 acetylation on lysine residues 5, 8 and 12. B) KAT7-BRPF complex has 

affinity for histone H3 tails, acetylating at lysine residues 14 and 23.  
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H4K5/8/12
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KAT7 ING4/5
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ING4/5 consist of one PHD domain while both JADE and BRPF each possess two PHD domains. 

KAT7 complex is localized to H3K4me3 enriched region of the chromatin through the PHD domain 

of ING4/5 (Lalonde et al., 2013; Saksouk et al., 2009). However, the histone tail specificity of KAT7 is 

determined by the scaffold protein in the complex— KAT7-BRPF and KAT7-JADE complex has an 

affinity to histone 3 tails (H3K14ac, H3K23ac) (Feng et al., 2016; Kueh et al., 2011; Lalonde et al., 

2013; Mishima et al., 2011) and histone 4 tails (H4K5ac, H4K8ac, H4K12ac) (Doyon et al., 2006; 

Iizuka et al., 2009) respectively.  

 

All paralogues of JADE and BPPF proteins have multiple shared properties. Firstly, the two PHD 

domains are linked by zinc knuckle and are known as the PZP domain that is essential for chromatin 

binding (Avvakumov et al., 2012; Lalonde et al., 2013). Secondly, flanking the PZP domains are 

domain I and domain II where the former interacts with KAT7 and the latter binds ING4/5 and 

EAF6. It is hypothesized that the PZP domain of the scaffold protein drives the acetylation of lysine 

residues on H3 tail, however, the N-terminal region (EPcA-related N-terminal domain) just before the 

domain I in JADE protein is crucial for the histone H4 tail specificity and lysine acetylation on H4 

tails (Lalonde et al., 2013).  

 

1.5 Molecular, cellular and biological functions of KAT7  
 

1.5.1 DNA-replication 

 

KAT7 is involved in the initiation of DNA replication by regulating the assembly/formation of the 

pre-replication complex (pre-RC) (Doyon et al., 2006; Iizuka et al., 2006; Miotto and Struhl, 2008, 

2010, 2011). In G1 phase of the cell cycle, KAT7 is recruited to the replication origins by direct 

binding with Cdt1 and serving as a co-activator of Cdt1, consequently affect the licensing activity of 

Cdt1 (Miotto and Struhl, 2008). The Cdt1-dependent recruitment of KAT7 leads to global histone 4 

acetylation at the origin, which is positively correlated with the loading of minichromosome 

maintenance (MCM) protein complex required for the firing of replication origins (Miotto and 

Struhl, 2010). Potential involvement of non-histone acetylation by KAT7 in controlling this process 

has been speculated due to in vitro evidence of KAT7 acetylating subunits of the pre-RC such as Orc2, 

Geminin, Mcm2 and Cdc6 (Iizuka et al., 2006). Furthermore, KAT7 has also been reported to play a 

role in the S phase of the cell cycle for DNA synthesis (Doyon et al., 2006). Together, these evidences 

illustrate the catalytic-dependent activity of KAT7 in regulating the cell cycle.  
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1.5.2 Transcription and regulation of gene expression 

 

KAT7 has been implicated in transcription control in various cellular contexts, in part, via its histone 

acetylation function. Occupancy of KAT7 at the 5’ region of genes positively correlated with gene 

expression in RKO colon carcinoma cell lines, with enrichment of KAT7 found both upstream and 

downstream of TSS (Avvakumov et al., 2012). In addition to promoter binding, KAT7 is localized 

at/to gene bodies. Tetrameric KAT7 complex (KAT7-JADE-ING4/5-EAF6) localizes to H3K4me3-

enriched chromatin region to acetylate lysine residues on histone tails, whilst in dimeric form, KAT7-

JADE has affinity to H3K36me3, a modification that marks active coding regions of the gene (Barth 

and Imhof, 2010; Wu and Snyder, 2008), in order to deposit H4 acetylations across the gene body 

(Saksouk et al., 2009). This suggests that KAT7 plays a role not only in the initiation stage but also in 

the elongation of transcription. Furthermore, intragenic region (also known as intronic region) 

H3K14ac and pan-H4 acetylations by KAT7 is implicated in regulating the transcription of 

endothelial genes such as VEGFR-2 transcription in human and zebrafish endothelial cells (Yan et al., 

2018). 

 

Several studies suggested that KAT7 could modulate the transcriptional programme through 

functions other than histone acetylations. In particular, multiple studies have associated KAT7 as co-

factors of hormones receptors (Georgiakaki et al., 2006; Iizuka et al., 2013; IIZUKA et al., 2017; 

Sharma et al., 2000). Intrinsic E3 ligase activity of the MYST domain of KAT7 has been linked to the 

ubiquitination of estrogen receptor (ER) which destabilizes the ER for proteasomal degradation  

(Iizuka et al., 2013; IIZUKA et al., 2017). In another study, Sharma et al., identified interactions 

between KAT7 and androgen receptor (AR) both in vitro and in vivo (CV-1 monkey kidney cell line). 

Binding of KAT7 to AR represses AR-mediated transcription and this is thought to be mediated via 

the N-terminal region of KAT7 (Sharma et al., 2000). In contrast to the findings of Iizuka et al., 

Sharma et al, did not detect inhibitory effect of KAT7 on ER-dependent transcription. KAT7 is a co-

activator of various other nuclear hormone receptor, including progesterone receptor to modulate its 

transcriptional activity (Georgiakaki et al., 2006). Importantly, KAT7 may regulate transcription by 

physical interaction with nuclear factors and/or via its non-histone acetylation function. Depending 

on the context, KAT7 may promote or suppress gene expression.  

 

1.5.3 Physiological roles of KAT7 

 

Loss of KAT7 has severe consequences in development— mice embryos lacking KAT7 do not develop 

beyond mouse embryonic day 10.5 (E10.5) and is arrested at the 10-somite stage due to growth 
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retardation and down regulation of genes essential for embryonic patterning (Kueh et al., 2011). 

Importantly, KAT7 is responsible for global H3K14ac in mouse embryos and primary embryonic 

fibroblasts and the KAT7 mutant of these cell types were able to proliferation normally and showed 

no defects on DNA replication in vitro, suggesting KAT7 is dispensable for general DNA replication, 

cell cycle and proliferation (Kueh et al., 2011). KAT7 is also required to maintain global H3K14ac in 

fetal livers and for the expression erythroid regulator genes in erythropoiesis (Mishima et al., 2011). 

Together, these studies imply the critical role of KAT7 as a transcription regulator for important 

developmental genes.  

 

1.6 KAT7 in cancer and diseases 
 

The role of KAT7 in cancer is not well explored. A study has found the concentration of KAT7 

protein in cancer cell lines are more abundant compared to normal cells (Iizuka et al., 2009). Among 

primary cancers, tissues from testis, breast, ovary and bladder tumours have high KAT7 protein levels 

(Chen et al., 2017; Iizuka et al., 2009). Knock-down of KAT7 has anti-tumour effects in bladder cancer 

cells, via the Wnt/B-catenin signalling pathway, and has been proposed as a potential therapeutic 

target in the treatment of this carcinogenesis (Chen et al., 2017).  Although KAT7 is also normally 

highly expressed in testis (Iizuka et al., 2009; Sharma et al., 2000), it possesses putative tumour 

suppressive roles in hormone receptor driven tumours such as prostate and breast cancers (Iizuka et 

al., 2013; IIZUKA et al., 2017; Sharma et al., 2000). Depending on the context, HATs can serve as an 

oncogene or tumour suppressors. In AML, HATs of the MYST family are frequent targets of 

chromosomal translocations (Sheikh and Akhtar, 2018). While KAT6A and KAT6B are known targets 

of chromosomal translocations that drive AML (Borrow et al., 1996; Carapeti et al., 1998; Esteyries et 

al., 2008; Kitabayashi et al., 2001), the role of KAT7 in AML, if any, remains poorly understood.  

 

1.7 Aims 

 

This thesis aims to validate dropout hits from the genome-wide AML CRISPR-Cas9 screens and 

further elucidate the molecular mechanism of essentiality of the most promising candidate. In 

particular, to decipher the potential role of KAT7 in the pathogenesis of AML, by addressing the 

following broad objectives: 

• Investigate the phenotypic consequences of KAT7 knock-out in various AML cell lines. 

• Characterize the molecular functions of KAT7 in cellular models of AML. 

• Understand the mechanism of action of KAT7 in vulnerable AML subtypes. 



 25 

Chapter 2: Materials and methods 
 

2.1 Cell culture 
 

All Cas9-expressing cell lines, with the exception of Nomo-1, were kindly provided by the Vassiliou 

group. Cas9-expressing MOLM-13, MV4-11, OCI-AML2 and OCI-AML3 were generated in the study 

performed by Tzelepis et al. Cas9-expressing THP-1 and K562 cell lines were generated in a separate 

study in Vassiliou’s group. Nomo-1 cell line was derived from Mathew Garnett. Generation of Cas9 

expressing Nomo-1 is described below.  

 

MOLM-13, MV4-11, THP-1, HL-60 and K562 were cultured in RPMI 1640 medium (52400-25, Life 

Technologies) supplemented with 10% fetal bovine serum (10270-106, Life Technologies). OCI-

AML2 and OCI-AML3 were cultured in MEM-a (BE12-169-F, Lonza) with 20% fetal bovine serum 

(10270-106, Life Technologies) and 1% GlutaMax (35050-038, Life Technologies). Nomo-1 was 

cultured in RPMI 1640 supplemented with 10% FBS, 1% penicillin/streptomycin (15070063, Life 

Technologies), 1% sodium pyruvate (11360039, Life Technologies), 1% glucose (Sigma).  To maintain 

Cas9 expression, blasticidin (R210-01, Invitrogen) was added to MOLM-13, MV4-11, THP-1, Nomo-

1, HL-60, OCI-AML2 and OCI-AML3 at 10 µg/ml, and K562 at 15 µg/ml. 293 FT cells were cultured 

in DMEM (21969-035, Life Technologies) supplemented with 10% fetal bovine serum (10270-106, 

Life Technologies) and 1% GlutaMax (35050-038, Life Technologies). All cell lines were incubated at 7 

°C with 5% CO2. The oncogenic mutations and patient profile of cell lines used in this study are 

indicated in Table 2.1.   

 

Table 2.1 Cell lines used in this study and the oncogenic  

Cell line Oncogenic mutations

MOLM-13 MLL-AF9, FLT3-ITD

MV4-11 MLL-AF4, FLT3-ITD

OCI-AML2 MLL-AF6, DNMT3A

THP-1 MLL-AF9, TP53

Nomo-1 MLL-AF9, KRAS

OCI-AML3 NRAS, NPM1, BAX, DMNT3A

HL-60 NRAS, TP53, CDKN2A

K562 BCR-ABL, TP53,CDKN2A, PDGFRA

MLL-fusion

Non MLL-fusion
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2.2 gRNA design and cloning of gRNA into expression vector   

 

The two best-performing gRNAs (unpublished data) from the genome-wide CRISPR-library used in 

the initial screens (Tzelepis et al., 2016) were selected for the initial validation of candidate genes. For 

KAT7 and SIK3, additional 4-5 gRNAs were designed using WTSI Genome Editing (WGE) 

(http://www.sanger.ac.uk/htgt/wge/). Only gRNAs that target the exon of all putative transcripts and 

have no less than 3 nucleotide off-target mismatches in the sequence were selected. All gRNAs were 

cloned into the Bbsl site of pKLV2-U6gRNA5(insert)-PGKpuro2ABFP-W (Figure 2.1D) (Koike-Yusa 

et al., 2014).  

 

2.3 Virus production and transduction 

 

Lentivirus was produced by transfecting 293 FT cells in one well of 6-well plates. 0.9 µg lentivirus 

vector, 0.9 µg psPax2 packaging vector (12260, Addgene), 0.2 µg pMG2.G (12259, Addgene) and 2 µl 

of PLUS reagent (15338100, Invitrogen) were added to 500 µl Opti-MEM (51985026, Invitrogen) and 

mixed by vortex. The mixture was incubated for 5 min at room temperature. 6 µl of Lipofectamine 

LTX (15338100, Invitrogen) were then added to the mixture, vortexed and further incubated for 30 

min at room temperature. The transfection mixture was added to each well and incubated for 6-8 h at 

37 °C with 5% CO2 and then replaced with DMEM (21969, Invitrogen) supplemented with 10% fetal 

bovine serum (10270-106, Life Technologies) and 1% GlutaMax (35050-038, Life Technologies). Viral 

supernatant was collected on day 2, filtered with 0.45µm surfactant-free cellulose acetate (SFCA) 

syringe filter (190-2545, Nalgene) and stored at -80 °C.   

 

AML and CML cell lines were transduced by adding lentivirus and 8 µg/ml polybrene (Millipore) to 

3.0 x 104 cells per well of 96-well plate (for proliferation assay) or 1 x 106 cells per well of 6-well plate 

and incubated for 22 h at 37 °C.  Viral supernatant was then replaced with culture media and cells 

were passaged. BFP-positive cells were sorted on day 3 post-transduction and used for subsequent 

functional assay (see below).  

 

2.4 Generating Cas9 expressing Nomo-1 cell line and blasticidin selection 

 

Cas9 construct is integrated into the genome by lentivirus transduction. The Cas9 expression vector is 

illustrated in Figure 2.1A and previously reported by Tzelepis et al. The concentration required for 

blasticidin selection was determined by a “kill curve” assay, which is the minimum concentration of 
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blasticidin to kill all wild-type cells. Concentration tested: 1, 5, 10, 15, 30 µg/mL. Blasticidin 

concentration >10 µg/mL killed all Nomo-1 cells. 

 

Figure 2.1 Cas9, Cas9 reporter and gRNA constructs 

A) The Cas9 construct used to generate the Cas9 expressing cell lines used in this study. The Cas9 gene 

and blasticidin resistant (Bsd) genes are expressed under the EF1-alpha promoter. B-C) Cas9 reporter 

construct to assess the Cas9 activity of cells. Gene encoding fluorescence proteins are expressed with the 

PGK promoter and gRNA are expressed under the U6 promoter. B) BFP and GFP expression with gRNA 

targeting GFP (gGFP). C) mCherry and BFP expression with gRNA targeting BFP (gBFP). D) gRNA 

scaffold construct with gRNA insert at the BbsI restriction site, expressed under the U6 promoter. 

Selectable markers Bsd and BFP are expressed under the PGK promoter.  
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2.5 Cell sorting and FACS analyses  

 

Cell sorting was performed using Mo-Flo XDP or BD INFLUX under containment-level 2 (CL2) 

condition. FACS analyses for functional assays were performed using BD LSRFortessa. All raw files 

were analysed using FlowJo.  

 

2.6 Sub-cloning and characterisation of Cas9-expressing AML cells 

 

Single cells of MOLM-13, MV4-11, THP-1, HL-60, OCI-AML2, OCI-AML3 and MOLM-13luciferase 

were sorted into individual wells of 96-well plate and cultured for 2-3 weeks until colonies were 

observed. Growing colonies were transferred to 24-well then 12-well plates, further expanded. Cas9 

activity was examined using the Cas9 reporter construct pKLV2-U6gRNA (target GFP)-PGK-BFP-

T2A-GFP (Figure 2.1B) (Tzelepis et al., 2016). As the presence of luciferase protein in MOLM-

13luciferase give rise to autofluorescence that interferes with the GFP channel, we opted to use a variant 

reporter whereby GFP is replaced by BFP and BFP is replaced with mCherry: pKLV2-U6gRNA (target 

BFP)-PGK-mCherry-BFP-mCherry (Figure 2.1C) (Tzelepis et al., 2016) to assess the Cas9 activity of 

this cell line.  

 

2.7 Functional assays 

 

2.7.1 Proliferation 

 

The validation of each candidate gene was performed in triplicates in 96-well plates. The relative 

percentage of BFP-positive and BFP-negative cells was determined for each well every 2 days between 

day 4 and 12 post-transduction by FACS. Culture media were refreshed every two days. Cells were 

fixed in 4% Paraformaldehyde (PFA) in phosphate-buffered saline (PBS) for 10 min and resuspended 

in 1% bovine serum albumin (BSA) in PBS before analysis.  

 

2.7.2 Differentiation 

 

2.3 x 105 cells were harvested to stain for CD11b (17-0118, eBioscience) or CD13 (17-0138, 

eBioscience). APC-conjugated mouse IgG1 k isotype control (17-4714, eBioscience) was used to 

detect non-specific binding. Cells were washed once in PBS and once in staining buffer (2% fetal 

bovine serum in PBS), followed by resuspension in anti-human CD11b or CD13 antibody solution 
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(1.15 µl antibody per 100 µl staining buffer per test) for 30 min on ice in the dark. After incubation, 

cells were washed twice with staining buffer and then analysed by FACS.  

 

2.7.3 Apoptosis 

 

2.3 x 105 cells were analysed using Annexin V Apoptosis Detection Kit APC (88-8007, eBioscience). 

Cells were washed once with PBS and once in 1X binding buffer.  10X binding buffer (88-8007, 

eBioscience) was diluted by adding 1 mL 10X binding buffer with 9 mL dH2O.  Cell pellets were 

resuspended in 100 µL annexin V binding buffer (1.15 µL Annexin V-APC per 100 µL 1X binding 

buffer) and incubated in dark for 15 min in room temperature. Next, cells were washed in 1X binding 

buffer and resuspended in 200 µL of the same buffer. 1.15 µL of PI solution (88-8007, eBioscience) 

was added immediately before flow cytometry analysis. Samples are kept on ice following staining.  

 

2.7.4 Cell cycle 

 

2.3 x 105 cells were washed twice with PBS and fixed in ice-cold 70% ethanol for at least 24 h at 4 °C. 

Fixed cells were washed once in PBS and resuspended in Propidium Iodide (PI) staining solution 

[Triton X-100 (0.1% v/v), RNase A (50 µg/ml) and PI (25 µg/ml)] overnight at 4 °C. DNA content was 

analysed by flow cytometry. 

 

2.8 Cloning and generation of gRNA-resistant wild-type, G485A and E508Q 

mutant KAT7 cell lines  

 

KAT7 cDNA (wild-type and G485A) that is resistant to gKAT7 (5) and gKAT7 (A10) targeting was 

cloned into a separate lentiviral plasmid backbone (EF1a-GFP-2A). Briefly, the plasmid was linearized 

by BsrGI (NEB) and Not1 (NEB). KAT7 cDNA, in the form of gBlock, is subsequently cloned by 

Gibson assembly according to the manufacturer’s guidelines. The resulting plasmid pKLV-

EF1aGFP2AKAT7-W, expressing wild-type KAT7 was used to generate E508Q transgene. The KAT7- 

plasmid was double digested sequentially by BsaBI (NEB) followed by SrfI (NEB) to remove the 

specific segment in the MYST region of the wild-type KAT7 sequence. Sequential digestion was used 

as the optimal temperature for enzymatic activity differs for these two restriction enzymes. The 

volume of enzyme added is typically <10% of reaction volume where reaction volume is up to 50 µL. 

 

The plasmid is first digested by BsaBI in following mixture and conditions: 
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0.5 µg Plasmid DNA 2.5 µL 

BsaBI  2.5 µL 60 °C for 90 min 

CutSmart 37.5 µL 80 °C for 20 min 

dH2O 47.5 µL Store at 4° C 

 47.5 µL 

 

The BsaBI digested plasmid DNA from the above reaction was then digested by SrfI as follows: 

 

  

 

 

Linearized DNA was extracted by first running the digested DNA in 1% agarose gel (Figure 2.2) and 

using the QIAquick Gel Extraction kit (28704, Qiagen), following manufacturer’s protocol. The image 

of the gel (Figure 2.2) shows the linearized DNA and the circular DNA where the latter appears to be 

smaller in length. This is because circular DNA migrates more rapidly than the linearized plasmid of 

the same mass. Furthermore, a faint band of 600 bp can be seen and this corresponds to the other 

digested product that is smaller in length. Both of these confirms that the plasmid DNA has been 

digested.  

 

Next, we used the Gibson assembly to ligate the linearized vector with E508Q gBlock. Gibson 

assembly was performed following the manufacturer’s protocol (E2611, NEB). The plasmid was 

amplified by transforming NEB 5-alpha Competent E. coli (C2987H/I, NEB) and plated on ampicillin 

agar plates to select for plasmids, conferring ampicillin resistant, that are successful ligated. The next 

day, colonies were picked and grown in 2xTY media + 50 µg/mL ampicillin. The plasmids were 

purified from E. coli using Miniprep Kit (27104, Qiagen). Cloning was confirmed by Sanger 

sequencing. The transgene was introduced to MOLM-13 cells via lentiviral transduction.  

BsaBI digested DNA 47.5 µL 

SrfI 2.5 µL 

 50 µL 

37 °C for 2 h 

Store at 4 °C 
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Figure 2.2 Double digestion of plasmid backbone for the integration of E508Q mutant sequence 

The plasmid pKLV-EF1aGFP2AKAT7-W was digested with BsaBI and SrfI to linearize the plasmid 

backbone and for the cloning of the sequence corresponding to the E508Q mutation by Gibson assembly. 

The thick bands in lane 3 and 4 are the linearized plasmid DNA (pDNA). The blue arrow indicates a 

faint band at ~600bp, corresponding to the digested product. Note that the undigested pDNA in lane 6 

migrate faster along the agarose gel, compared to the linearized pDNA.  

 

2.9 Sanger Sequencing  

 

LIGHTRun tube NightXpress service was used for capillary sequencing to identify successful cloning. 

Samples were prepared as follows: 5 µL of purified plasmid DNA at a concentrate of 80-100 ng/µL 

mixed with 5 µL of 5 µM primer.  

 

2.10 Western blot 

 

The total number of cells was quantified by TC20 cell counter (Bio-Rad). Cells were harvested by 

centrifugation and washed twice in PBS. Cell pellets were then resuspended in NuPAGE LDS sample 

buffer (NP0007, ThermoFisher), NuPAGE sample reducing agent (NP0009, ThermoFisher) and water 

at a concentration of 1 x 106 cells/ 100 µL. Samples were heated at 95 °C for 5 min and vortexed at 

room temperature for 10 min. An equal volume of samples was loaded into each well of Bis-Tris gels 

and electrophoresis were run at 150 V for 60 min in 1X MOPS SDS running buffer (NP0001, 

ThermoFisher). Polyvinylidene difluoride (PVDF) blotting membrane (10600023, Amersham) was 

3 kb

10 kb

0.5 kb

Linearized
pDNA

Undigested
pDNA
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activated by suspending in 100% methanol for 2 min and washed in water before suspending in 1X 

transfer buffer (NP0006-1, ThermoFisher). Gel to membrane transfer was performed in ice-cold 1X 

transfer buffer at 90-110 V for 1.5 h or until good separation. Membrane was block with 5% milk 

(170-6406, Bio-Rad) or BSA (A9647, Sigma) in 0.1% TBS-T (1X TBS buffer (28358, ThermoScientific) 

with 0.1% Tween 20 (P9416, Sigma)) for at least 30 min. Primary antibodies were incubated at 4 °C 

over-night with rolling or shaking. Membranes were washed 3 times in 0.1% TBS-T for 10 min each 

the following day. The secondary antibody was blocked in 5% milk or BSA at room temperature for 1 

h with rolling or shaking. Lastly, membranes were washed 3 times in 0.1% TBS-T for 10 min each. 

Enhanced chemiluminescent (ECL) (RPN3244, Amersham) or SuperSignal Pico PLUS (34577, 

ThermoScientific) was used as the substrate for the detection of horseradish peroxidase (HRP) on 

immunoblots. 

 

All antibodies used for western blots are listed in Table 2.5.  

 

2.11 In vivo mouse work 

 

MOLM-13 luciferase-expressing cells were transduced with lentivirus for gRNA-mediated knock-out 

of KAT7 using gKAT7 (A10) or empty control. BFP-positive cells were sorted at day post-

transduction. 5 x 105 cells were injected via the tail vein of immunocompromised NSGW41 male mice 

(derived by breeding NSG and KITW41 animal to homozygosity, i.e. KitW41/W41, Prkdc-/-, and Il2rg-

/- or Il2rg+/Y) on day 3 post-transduction. 5 mice were injected in each treatment group. 

Bioluminescence was done by injection of 2 mg/mL of D-luciferin (BioVision) per mouse. Mice 

quantification of bioluminescence was performed using IVIS Spectrum In Vivo Imaging 

System (PerkinElmer), with Living Image version 4.3.1 software (PerkinElmer) according to the 

manufacturer’s instructions. Log-rank (Mantel-Cox) test was performed to measure statistical 

significance.          

 

2.12 Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) 

 

For each sample, 500 ng RNA was made up to a volume of 11.875 µL in nuclease-free water. Then, 0.5 

µL random primers (C1181, Promega) and 1 µL dNTP (U1511, Promega) were added to each RNA 

sample. Next, the samples were incubated at 65 °C for 5 min then immediately snap cool on ice for 5 

min. After RNA and primers were denatured, RNA was reverse transcribed to cDNA by adding 4 µL 

5x first-strand buffer (Invitrogen, 18064-071), 2 µL 0.1M DTT (18064-071, Invitrogen), 0.5 µL RNase 
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out (10777-019, Invitrogen) and 0.125 µL Superscript II (Invitrogen, 18064-071) to each sample. 

Then, the mixture was placed in PCR machine with the following cycles: 25 °C for 10 min (primer 

annealing), 42 °C for 50 min (extension) and 70 °C for 15 min (inactivation of enzyme). The cDNA 

was subsequently diluted 1 in 30 times by adding 5 µL of cDNA to 145 µL nuclease-free water to a 

total volume of 150 µL. Next, to perform quantitative-PCR, 5 µL diluted cDNA is added with 0.6 µL 5 

µM forward primer, 0.6 µL 5 µM reverse primer, 1.3 µL nuclease-free water and 7.5 µL 2X SensiMix 

SYBR Low-ROX kit (QT625-05). qPCR cycles are performed using qPCR machine (Mx3005P, 

Agilent) as follows: 95 °C for 10 min followed by 40 cycles of 95 °C for 30 s; 60 °C for 30 s; 72 °C for 

30 s. Primers used for RT-PCR are listed in Table 2.3. Expression fold change is calculated as follows: 

2-DDCT, where DDCT = Dknock-out (target gene- GAPDH) - Dempty (target gene- GAPDH).  

 

2.13 Optimization of qPCR primers 

 

RT-PCR primers were designed using PrimerBank (https://pga.mgh.harvard.edu/primerbank/). 

ChIP-qPCR primers were designed using Primer-BLAST 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). All qPCR primers are tested for specificity prior 

to use for RT-qPCR or ChIP-qPCR. The presence of a single peak in the dissociation curve indicates 

that only one PCR product is present. More than one peak in the dissociation curve is likely due to 

more than one target has been amplified. Primers with more than one peak are discarded and 

redesigned. Only primers that give rise to one PCR product were used.   

 

2.14 Optimization for ChIP-seq 

 

For ChIP-seq purposes, DNA fragments are required to be 100-700 base-pair (bp). This is dependent 

on various factors, including the cell line, cell number and concentration, sonicator equipment model, 

cross-linker(s) used and the duration of cross-linking. Double cross-linking whereby a protein-

protein linker such as disuccinimidyl glutarate (DSG) or ethylene glycol bis(succinimidyl succinate) 

(EGS) are used in addition to formaldehyde (FA), which links protein-DNA, typically requires longer 

cycles. We fixed the cell number per condition to be 20 x 106 cells using 1% FA (ThermoFisher, 

28908).  

 

To determine the number of sonication cycles required to obtain 100-700 bp DNA fragments for 

MOLM-13, MV4-11 and OCI-AML3 cross-linked with the above conditions for 5 and 10 min, we 
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assayed various cycles ranging from 5-25 cycles. For collection at each sonication cycle, 50 µL of 

samples were extracted from the 2 mL suspension.  

 

For 5 min cross-linked MOLM-13, the desired DNA-fragment is achieved between 8-14 sonication 

cycles (Figure 2.3A) and 8-17 cycles for 10 min cross-linked (Figure 2.3B). Therefore, we chose to use 

10 cycles for both 5 min and 10 min cross-linked MOLM-13, under the condition of 20 x 106 cells per 

2mL and cross-linking with 1% FA.  

 

MV4-11 cross-linked for 5 min requires 8-11 cycles while 10 min require 11 cycles (Figure 2.4A). Note 

that, not enough DNA was loaded to the lane 8 (8 cycles, 10 min) and lane 10 (14 cycles, 10 min). 

Given the data available, we chose to use 10 cycles and 11 cycles for 5 min and 10 min cross-linked 

MV4-11, respectively.  

 

OCI-AML3 cross-linked for 5 min requires 8-14 cycles while 10 min require 11-14 cycles (Figure 

2.4B). Lane 4 (11 cycles, 5 min) and lane 8 (8 cycles, 10 min) were not loaded with sufficient DNA. 

However, we are still able to identify the optimal cycles. We opted for 11 cycles for both 5 min and 10 

min cross-linked OCI-AML3.  

 

Summary of optimal cycles for MOLM-13, MV4-11 and OCI-AML3 for 5 min and 10 min cross-

linked with 1% FA, 20 x 106 cells in each condition: 

 

 

 

 

 

 

Additionally, we used the bioanalyzer (5067-4626, Agilent) to analysed the DNA fragment length of 

sonicated samples for 10 min cross-linked input samples of MOLM-13 and OCI-AML3. Although the 

sonication was not entirely efficient, as seen with a peak between 500-1000 bp in both cell lines, the 

majority of the DNA is within the target range (Figure 2.5).  

 

To reverse cross-link the protein-DNA linkage and retain the DNA, the following was added to 10 µL 

of samples and incubated at 65 °C for 2 h 

 

 

 5 minutes 10 minutes 

MOLM-13 10 10 

MV4-11 10 11 

OCI-AML3 11 11 
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Nuclease free H2O 74 µL 

5 M NaCl 4 µL 

20 mg/mL Proteinase K 8 µL 

10 mg/mL RNase A 4 µL 

 90 µL 

 

De-crosslinked DNA was then purified by QIAquick PCR purification Kit (Qiagen, 28104). 10 µL 

purified DNA was added with 2 µL 10X gel-loading buffer (Invitrogen, 10816015) and loaded into 

wells of 1.5%-2% agarose gel with a 100 bp DNA ladder (N3231, NEB). 

 

Figure 2.3 DNA fragments after sonication of cross-linked MOLM-13 

MOLM-13 cells crosslinked with 1% formaldehyde for A) 5 min or B) 10 min and sonicated for various 

cycles to determine the number of cycles required to achieve the optimal 100-700 bp DNA fragments.  
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500
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Base pair (bp)

Cycle # 5 8 11 14 17 20 25
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Base pair (bp)

2

A 
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Figure 2.4 DNA fragments after sonication of cross-linked MV4-11 and OCI-AML3 

A) MV4-11 and B) OCI-AML3 crosslinked with 1% formaldehyde for 5 min or 10 min and sonicated for 

various cycles to determine the number of cycles required to achieve the optimal 100-700 bp DNA 

fragments.  

 

 

Cycle # 5 8 11 14
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Figure 2.5 Analysis of input DNA fragments after the sonication of cross-linked MOLM-13 and OCI-

AML3 by bioanalyzer 

Cells were cross-linked with 1% formaldehyde for 10 min and sonicated for 10 and 11 cycles for MOLM-

13 and OCI-AML3, respectively. Two distinct peaks are evident in both cell lines— one between 35-500 

bp and the other between 500-1000 bp. Majority of the DNA fragments are within the 35-500 bp. These 

samples were submitted as input for ChIP-seq.  

 

 

2.15 Validation of antibodies used in ChIP-seq 

 

The success of ChIP-seq is dependent on the ability of the selected antibody to immunoprecipitated 

the target protein. We analysed two different KAT7 antibodies—monoclonal (58418, Cell Signalling) 

and polyclonal (ab70183, Abcam) for ChIP, followed by western blot analysis of the lysate. In 

addition, we also tested monoclonal and polyclonal H3K14ac antibodies (C15210005, C15410310 

respectively, Diagenode) and H4K12ac antibody (07-595, EMD Millipore) Briefly, ChIP (see below) 

was performed until the washing step, after which, the supernatant was removed by centrifugation 

and the magnetic beads was retained using a magnetic rack. The beads (along with saved input) were 

then resuspended in SDS sample buffer, reducing agent as with standard western blot described above, 

and heated at 95 °C for 5 min followed by shaking at room temperature for 10 min. Samples were 

centrifuged to collect the liquid to the bottom of the Eppendorf tube and the magnet beads were 

removed from the sample using a magnetic rack, the supernatant is transferred into a new Eppendorf 

tube. Samples were stored in -80 °C until the loading on to the gel.  
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A band from the ChIP with polyclonal KAT7 antibody (pAb KAT7), indicated by the yellow arrow, 

corresponds to the expected molecular weight of KAT7, reflecting successful immunoprecipitation of 

KAT7 protein (Figure 2.6). No band was observed for input, IgG control, immunoprecipitation with 

pAb H4K12ac antibodies, mAb and pAb H3K14ac antibodies (Figure 2.6). Insufficient loading could 

explain the lack of bands observed in the input lane. Absence of positive immunoprecipitation using 

the antibodies targeting the histone marks may be due to very little samples loaded, low quality of the 

antibodies or low abundance of the histone marks. 

 

Figure 2.6 Immunoblot of ChIP using KAT7, H3K14ac and H4K12ac antibodies in MOLM-13 

Chromatin immunoprecipitation using monoclonal (mAb) and polyclonal (pAb) antibodies of KAT7 

and IgG (5 µg antibody per ChIP) and other KAT7-mediated histone lysine acetylation targets (2 µg 

antibody per ChIP). 20 x 106 MOLM-13 cells were cross-linked with 1% formaldehyde for 10 min and 5 

min for KAT7 and histone ChIP, respectively. The bands at approximately 60 kDa are signals from the 

heavy chain of the antibodies used in the ChIP. The arrow indicates the successful pull-down of KAT7 

protein using polyclonal KAT7 antibody.  

 

2.16 ChIP-Seq sample preparation 

 

AML cells were cross-linked in 1% FA at room temperature for 5 min (histones ChIP) or 10 min 

(non-histone ChIP) and subsequently clenched with 0.125 M Glycine (Sigma) at room temperature 

for 5 min. Cross-linked cells were washed twice with ice-cold PBS before sequential lysis with LB1 (50 
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mM Hepes, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100), LB2 (10 

mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA), LB3 (10 mM Tris-HCl, 100 mM NaCl, 1 

mM EDTA, 0.5 mM EGTA, 0.1% Na-Deoxycholate, 0.5% N-lauroylsarcosine) on ice for 10 min each.  

Lysed samples were sonicated for 10 cycles (MOLM-13) or 11 cycles (MV4-11 and OCI-AML3) using 

Bioruptor Pico instrument (Diagenode) for 10 min cross-linked cells and 10 cycles (MOLM-13, MV4-

11) for 5 min cross-linked cells. Each cycle is 30 s ON/ 30 s OFF. Triton-X (Sigma) was added to the 

sonicated samples to a final concentration of 1% before centrifugation at 20000x g at 4 °C for 10 min. 

10% of samples were kept as input. Lysates were incubated with antibody (Table 2.5) at 4 °C 

overnight, with rotation. Dynabeads Protein A/G (ThermoFisher) was added the next day and 

incubated at 4 °C for 4h, with rotation. ChIP samples were washed with RIPA wash buffer (50 mM 

HEPES, 500 mM LiCl, 1 mM EDTA, 1% NP-40, 0.7% Na-Deoxycholate) 3 times followed by wash 

with Annealing buffer (TE+ 50 mM NaCl). Elution Buffer (1% SDS, 50 mM Tris-HCl, 10 mM EDTA) 

was added to each ChIP samples and heated at 65 °C for 30 min. Beads were subsequently removed 

and samples were heated, at 14000 rpm, 65 °C overnight to reverse cross-linking whilst supplemented 

with 0.2 mg/mL RNase A (ThermoFisher, 10753721). 0.2 mg/mL Proteinase K (Life Technologies, 

25530049) was added the next day to digest proteins by shaking at 450 rpm at 65 °C for 4h. DNA was 

purified by the QIAquick PCR purification Kit (Qiagen, 28104). PBS and LB1, LB2, LB3 and RIPA 

wash buffers were all supplemented with Sodium Butyrate (Sigma, 303410), cOmplete EDTA-free 

protease inhibitor cocktail (Roche, 4693132001) and PMSF (Sigma. 93482) immediately before use. 

Sequencing was performed on Illumina HiSeq v4 platform with 75-bp paired-end sequencing. 

 

2.17 ChIP-qPCR 
 

ChIP is performed as illustrated above with ChIP-seq. Input DNA is diluted 1 in 20 or 1 in 40, to 

obtain a concentration of <20 ng per 5 µL. KAPA SYBR Fast qPCR kit (KK4620) was used following 

the manufacturer’s protocol. Thermal profile on qPCR machine (Mx3005P, Agilent) are as follows: 1 

cycle of 95 °C for 3 min (enzyme activation); 40 cycles of 95 °C for 3 s (denaturing) and 60 °C for 20 s 

and 72 °C for 20 s (anneal and extend); 1 cycle of 95 °C for 1 min, 55 °C for 30 s, and 95 °C for 30 s 

(dissociation). Percentage Input is calculated as 100 x 2ΔCt, where ΔCt = Ct Normalized input
 – Ct 

ChIP; Ct 

Normalized input = Ct Input – log2 (input dilution factor); input dilution factor = fraction of input saved 

relative to each IP x dilution of input for qPCR. Sequences of primers used in ChIP-qPCR are listed in 

Table 2.4. 
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2.18 ChIP-seq processing 

 

Reads of ChIP-seq sample and input DNA were mapped to the human genome GRCh38 using BWA-

MEM version 0.7.17 (https://github.com/lh3/bwa) using default parameters. Duplicates were marked 

by Samtools mkdup (Li et al., 2009). Peaks (broad and narrow) were called by MACS2 version 1.4.1  

(Zhang et al., 2008) using input DNA as control with parameters --broad-cutoff 0.01 for broad peaks, 

and –q 0.01 for narrow peaks. Broad and narrow peaks were merged into a union set. Broad peaks that 

overlap with one or more narrow peaks were removed. Locations of peaks (promoter, exon, intron or 

intergenic) were computed by customized scripts using Ensembl transcript annotation of GRCh38 

version 91. Peaks were associated with promoter(s) if more than half of the peak length is located within 

±2 kb from the transcription start site. Promoter occupancies of a transcript were quantified as the 

highest MACS2 signal amongst all the peaks within the 2 kb window. If multiple isoforms exist, genic 

promoter occupancy was calculated as the highest signal amongst isoforms. 

 

The public dataset used in this study: Geo Expression Omnibus GSM1845161 and GSM1845133. 

 

2.19 RNA extraction and RNA-seq processing 

 

RNA was extracted from AML cells with RNeasy Plus Mini Kit (Qiagen) according to the 

manufacturer’s instructions. Sequencing was performed on Illumina HiSeq v4 platform with 75-bp 

paired-end sequencing.  

 

RNA-seq reads were mapped to the human genome assembly GRCh38 using STAR version 2.5.0c 

(Dobin et al., 2013). tolerating mismatch rate of 0.01 and allowing maximal intron lengths of 50 kb. 

Read counts were calculated by STAR --quantMode using Ensembl annotation of GRCh38 version 91 

and normalized as fragments per kilobase of gene length per million uniquely mapped reads (FPKM). 

Differential expression analysis was done by DESeq2 (Love et al., 2014) using paired sample design and 

significant genes were identified using adjusted p-values of 0.05 as the cut-off. 

 

2.20 Data availability 

 

The ChIP-seq and RNA-seq data have been deposited in the GEO database under accession numbers 

GSE133516. 
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2.21 Generation of Auxin Inducible Degron (AID) KAT7 protein degradation 

system and treatment with indole-3-acetic acid (IAA) 
 

MOLM-13 and MV4-11 cells were introduced with pKLV-EF1aGFP2AKAT7_linkermAID-W by 

lentivirus transduction. Transduced AML cells were subsequently sorted for GFP-expression to enrich 

for population with KAT7-AID integration. KAT7-AID transgene is resistant to modification by 

gRNA (5) and gRNA (A10). KAT7-AID cells were subsequently transduced with lentivirus expressing 

pKLV2-U6gKAT7(A10)-PGKpuro2ABFP-W, as with gRNA-mediated knock-out described above, to 

knock-out endogenous KAT7 and subsequently sorted for BFP-positive cells to enrich for knock-out 

population. GFP-BFP-double- positive cells were introduced with OsTIR1 F-box transgene via 

lentivirus transduction of pKLV-EF1a-mCherry-2A-OsTIR1-W. Cells with OsTIR1 transgene 

integration was enriched by sorting for the mCherry-positive cells. Indole-3-acetic acid (IAA) is the 

most common plant hormone of the auxin family. IAA (Sigma) was dissolved in water (W3500, 

Sigma) at a concentration of 500 mM and stored in -20 °C. MOLM-13 and MV4-11 AID cells were 

treated with 500 µM IAA for 24h at 37 °C, 5% CO2 for ChIP-qPCR experiments and 48 h at 37 °C, 5% 

CO2 for differentiation assay. 

 

2.23 IBET -151 treatment and viability assay 

 

IBET-151 was dissolved in ethanol at a concentration of 10 mM. All cells tested was treated with 1 

nM, 3 nM, 10 nM, 30 mM, 100 nM, 300 nM, 1 µM and 3 µM of IBET-151 (0.1% ethanol) for 3, 4 or 5 

days, in 96-well plate. Viability of cells was assayed at each time point using CellTiter-Glow 

Luminescent Cell Viability Assay (7572, Promega), following the manufacturer’s protocol. Briefly, 

both cells and reagent were equilibrated at room temperature for approximately 20 min. 100 µL 

reagent was added to each well and mixed by pipetting. Next, the plates were shaken for 2 min and left 

at room temperature for 10 min. Luminescent was assayed using the Infinite F200 Pro plate reader. 

 

2.24 Statistical analysis 
 

Student’s t tests (two-tailed) were used for statistical testing unless stated otherwise. Mean was 

calculated from at least three replicates, as indicated in each figure, and the error bars represent the 

standard deviation. Student’s T-test (two-tailed) statistical testing was used unless indicated 

otherwise. P value of ≤0.05 were considered statistically significant. 
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Table 2.2 List of gRNAs used in this study 

gRNA gRNA sequence (5'-3') 

HIPK1_A1 GAGACCTTAAGCCTCCACAG 

HIPK1_A2 GATATGTCTACAGACCTGGA 

SIK3_A3 GGATCCCACCGGACCTACAA 

SIK3_A4 GATCGACCGCACCATCGGCA 

STK3_A5 GGGTCTCTTAATATTGATAC 

STK3_A6 GACATTATTGCAGGATACAA 

KAT6A_A7 GCGGCGGATAATCACAAATC 

KAT6A_A8 GGAACTAACGGTTCGAGTGA 

KAT7_A9 GGGAAAAAGTGGCTGAACTC 

KAT7_A10 GCCGCTATGAGCTTGATACC 

KDM2A_A11 GCCGAGTGGGGAATTTAAGC 

KDM2A_A12 GGCTCCTGACACAATCGGGG 

KDM5B_B1 GGCAGAATCTTACAACGAAT 

KDM5B_B2 GTCCAGGTATAGGTACACGC 

KAT2A (1) GGATGAGATAAACCGACTGC 

SIK3 (1) GATCTCGTAGTAGCCGATAC 

SIK3 (2) GGATCTCGTAGTAGCCGATA 

SIK3 (3) GACGAGATCGACCGCACCAT 

SIK3 (4) GTCGTAGTAGCCGATACGGG 

SIK3 (5) GCGGCTGGTGAGCATACCCG 

SIK3 (6) GCTTGAGTACCGGTGGACCT 

KAT7 (1) GGTGACTCGAGCAGATCGTC 

KAT7 (2) GGGTGACTCGAGCAGATCGT 

KAT7 (3) GCTTTAACAGGACACCTTAC 

KAT7 (4) GATCGAAGCTGTCTCTCCGT 

KAT7 (5) GGCTACCTGCATAATTTTCA 
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Table 2.3 Sequences of primers used for RT-qPCR 

 
Primer sequence (5'-3') 

Gene Forward  Reverse 

HOXA11 TGCCAAGTTGTACTTACTACGTC GTTGGAGGAGTAGGAGTATGTCA 

HOXA10 CTCGCCCATAGACCTGTGG GTTCTGCGCGAAAGAGCAC 

HOXA9 TACGTGGACTCGTTCCTGCT CGTCGCCTTGGACTGGAAG 

HOXA7 TCGTATTATGTGAACGCGCTT CAAGAAGTCGGCTCGGCATT 

HOXA5 AACTCATTTTGCGGTCGCTAT TCCCTGAATTGCTCGCTCAC 

MEIS1 GGGCATGGATGGAGTAGGC GGGTACTGATGCGAGTGCAG 

PBX3 ATTACAGAGCCAAATTGACCCAG TCTCGGAGAAGGTTCATCACAT 

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG 

BCL2 GGTGGGGTCATGTGTGTGG CGGTTCAGGTACTCAGTCATCC 

c-Myc GGCTCCTGGCAAAAGGTCA CTGCGTAGTTGTGCTGATGT 

CDK6 GCTGACCAGCAGTACGAATG GCACACATCAAACAACCTGACC 

JMJD1C CAGGTCTCGTGCCAATCAAAA GCTGTTGCTGGTGTGTATTCT 

SENP6 TCCTGTAAGGTTAAGTCGGCT AGATAGAGGAGGAGTAGGCTGAT 

 

 

Table 2.4 Sequences of primers used for ChIP-qPCR 

 
Primer sequence (5'-3') 

Gene Forward  Reverse 

control GGCTCCTGTAACCAACCACTACC CCTCTGGGCTGGCTTCATTC 

SENP6 TGCCTTTGTATAGGCCCGTC ACGCCGCCTCCTTCTTAATC 

PBX3 CAGATGGGTCCGCCTTGTTC TGAACCGTGGGAAGTCAACA 

PBX3 (intron) AGTCAGAACCTCTCCGTGGT CCTCTGAGAAACCGGAGTCG 

MEIS1 TTCCCCAAGTTAGCTGAGCG AGGATCCGGTGGAGGAGAAA 

MEIS1 (intron) CTTCAGAGAACGATGCGGGT AAGTCTAGCAACTGGGTGGC 

JMJD1C TGAAACAAAACCCAACGCGG GGAGGGAGACGGAGCAGTA 

CDK6 TACTCTGGCGCTTTGTTGTG CGCTGTAGGTAGCAGAGGT 

BCL2 GAGGAGGGCTCTTTCTTTCTTC GCCTGTCCTCTTACTTCATTCTC 

BCL2 (enhancer) GAGCCCTCAACCTTGTGATAG AAGGTAGCCCTGACCATAGA 

HOXA9 ATGCTTGTGGTTCTCCTC CAGTTG CCGCCGCTCTCATTCTCAGC 

HOXA10 CGCAACCACCCCAGCCAG TTGTCCGCCGAGTCGTAGAGG 
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Table 2.5 List of antibodies used for ChIP and Western Blot 

Antibody Company 
Catalogue 

No. 
Application Type  Host 

KAT7  Abcam ab70183 ChIP pAb rabbit 

MLL1 Bethyl Lab A300-086A ChIP pAb rabbit 

BRD4 Bethyl Lab A301-985A ChIP pAb rabbit 

AF9 Bethyl Lab A300-597A ChIP pAb rabbit 

AF4 Abcam ab31812 ChIP pAb rabbit 

RNA Pol II S5 Abcam ab5131 ChIP pAb rabbit 

H4K5ac Abcam ab51997 ChIP mAb rabbit 

H4K8ac Abcam ab15823 ChIP pAb rabbit 

H3K14ac Diagenode  C15210005 ChIP mAb rabbit 

IgG Cell Signalling 3900S ChIP mAb rabbit 

          

KAT7  Cell Signalling 58418 WB mAb rabbit 

H3K14ac Diagenode  C15410310 WB pAb rabbit 

H3K23ac Abcam ab61234 WB pAb rabbit 

H4K5ac Diagenode  C15410025 WB pAb rabbit 

H4K8ac Diagenode  C15410103 WB pAb rabbit 

H3K12ac Abcam ab177793 WB mAb rabbit 

H4K16ac Abcam ab109463 WB mAb rabbit 

H3K9ac Cell Signalling 9649 WB mAb rabbit 

H3K4me3 Diagenode  C15410003 WB pAb rabbit 

H3K27ac Diagenode  C15410196 WB pAb rabbit 

H3K79me2 Abcam 
ab3594 

 

WB 

 

pAb 

 

rabbit 

 

H3K27me3 Diagenode  C15410195 WB pAb rabbit 

Actin Sigma-Aldrich A2228 WB mAb mouse 

Anti-rabbit IgG, 

HRP- linked 
Cell Signalling 7074 WB  

goat 

 

Anti-mouse IgG, 

HRP-linked 
R&D Systems HAF007 WB pAb goat 

 

  



 45 

Chapter 3: Phenotypic validation of CRISPR-Cas9 AML-specific 

cell essential genes identify KAT7 as a potential novel therapeutic 

target for MLL-fusion AML 
 

3.1 Introduction 
 

Functional genomic screens using CRISPR-Cas9 is a powerful tool for identifying a wealth of novel 

drug targets for diseases such as oncology due to the ease of generating targeted bi-allelic mutations 

(Chen et al., 2015; Hart et al., 2015; Sánchez-Rivera and Jacks, 2015; Shi et al., 2015). Large-scale 

screenings will often identify false-positive hits (Sharma and Petsalaki, 2018), therefore major efforts 

are needed to distinguish biologically or therapeutically meaningful candidates from the extensive 

output of viability-based negative-selection screens.  

 

Focusing on the dropouts generated from the AML CRISPR-Cas9 screens performed by Tzelepis et 

al., we aim to confirm and provide biological insights on promising genetic vulnerabilities in the hope 

to advance the current therapeutic landscape of AML. In this chapter, we perform downstream 

validation of a selection of genes which protein product encodes a catalytic activity, namely kinases 

and epigenetic modifiers, that have not previously been mechanistically studied from a therapeutic 

angle in the context of AML. In addition to proliferation which was the phenotypic readout of the 

AML CRISPR-Cas9 screens, we also assayed the effects of candidate gene knock-out on cellular and 

biological processes such as apoptosis, differentiation and cell cycle.  

 

3.2 Assessing the Cas9 activity of human AML cell lines 

 

Prior to the validation of candidate genes from the AML CRISPR-Cas9 screens (Tzelepis et al., 2016), 

we first assessed the Cas9 activity of the AML cell lines that were used in the dropout screens 

(MOLM-13, MV4-11, OCI-AML2, HL-60 and OCI-AML3) as well as additional leukemic cell lines 

(THP-1, Nomo-1 and K562). The reporter construct pKLV2-U6gRNA (target GFP)-PGK-BFP-T2A-

GFP (Tzelepis et al., 2016, refer to Chapter 2.6 for details), which expresses the BFP gene, GFP gene 

and gRNA targeting GFP (gGFP), was used. In the presence of active Cas9 proteins within the cell, the 

GFP gene sequence will be modified and consequently result in truncated or non-functional GFP 

protein, thereby lacking GFP expression. The proportion of active Cas9 cells within the population 

can, therefore, be assessed by calculating the proportion of BFP-positive population against the total 
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of all transduced cells (BFP-GFP-double-positive and BFP-single positive populations). Among the 

cell lines, K562 bulk population has the highest Cas9 activity (98.8%) and THP-1 has the lowest Cas9 

activity (35.7%) (Figure 3.1). The Cas9 activity of other cell lines ranged from 70-80% in the bulk 

population— MOLM-13 (70.7%), MV4-11 (85.8%), OCI-AML2 (78.2%), OCI-AML3 (71.8%), HL-60 

(87.2%) and Nomo-1 (82.5%) (Figure 3.1). The presence of Cas9-inactive cells within the cell 

population would predictively lead to lower gene editing efficiency, we therefore enriched for clones 

with high Cas9 activity by single-cell sub-cloning. After testing the Cas9 activity of individual clones, 

the clones with the highest Cas9 activity (>93%) were selected for use in validation and mechanistic 

studies (Figure 3.2). The importance of high Cas9 activity in functional studies is illustrated in Figure 

3.3, using a previously validated gene, KAT2A. Loss of KAT2A was reported to induce CD11b 

expression, a marker for myeloid differentiation (Tzelepis et al., 2016) and we showed that lower Cas9 

activity (pre-cloned population) results in no observable CD11b expression on day 4 post-

transduction, while an increase in CD11b is seen in MOLM-13 with higher Cas9 activity (post-cloned 

population) (Figure 3.3). 

 

The oncogenic mutations of the human leukemia cell lines used in this study are listed in Table 2.1. 
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Figure 3.1 Cas9 activity of AML and CML cell lines before single-cell cloning. 

The left panel shows mock (non-transduced, BFP-GFP double negative) population for gating purposes. 

The right panel shows reporter gRNA transduced population on day 3 post-transduction. The percentage 

of cells with active Cas9 activity is indicated and calculated by the proportion of BFP-positive population 

against the total of all transduced cells (BFP-GFP-double-positive and BFP-single positive population).  

 

 

Figure 3.2 Cas9 activity of AML and CML cell lines after single-cell cloning. 

MOLM-13, MV4-11, OCI-AML2, OCI-AML3 and THP-1 were transduced with lentivirus expressing 

the gGFP-BFP-GFP reporter construct and HL-60 and MOLM-13luciferase were transduced with lentivirus 

expressing the gBFP-mCherry-BFP construct (refer to Chapter 2.6 and Figure 2.1). Colonies with >93% 

Cas9 activity were selected for downstream experiments. 

  

THP-1 OCI-AML3 MOLM-13 OCI-AML2 MV4-11 

HL-60 MOLM-13luciferase
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Figure 3.3 Cas9 activity and effect on functional phenotype 

A-B) MOLM-13 cells transduced with Cas9 reporter virus reveal a difference in Cas9 activity in old (pre-

cloned) and new clones (post-cloned). BFP and GFP double-positive reflects cells with inactive Cas9, 

whilst cells with BFP positive only are Cas9 active. A)  83.9% of cells have active Cas9 in old clone, B) 

98.3% Cas9 activity in new clone. C-D) gRNA-mediated knock-out of KAT2A induce different levels of 

CD11b expression in the old (C, blue histogram) and the new (D, orange histogram) MOLM-13 clones, 

compared to empty control (grey histogram).  

 

3.3 Validation of AML-specific druggable candidate genes from CRISPR-Cas9 

dropout screens  

 

In the AML CRISPR-Cas9 screens, 492 dropouts were AML-specific cell essential genes (not a 

dropout in HT-29 colon cancer line and HT-1080 fibrosarcoma line), 227 were “druggable” (Tzelepis 

et al., 2016).  The Drug Gene Interaction Database (DGIdb) define druggable genes as genes/proteins 

that have potential or known to interact with drugs (Cotto et al., 2018). Within the “druggable” 

categories, many targets are either implicated in cancer and/or inhibitors are in clinical trials such as 

DOT1L, MCL1 and BCL2 (Caenepeel et al., 2018; Hird and Tron, 2019; Klaus et al., 2014; Li et al., 

2019; Montero and Letai, 2018; Perini et al., 2018; Stein et al., 2018).  We selected histone modifiers 

and kinases that have not been linked to AML or broadly in cancer for validation (Table 3.1). The 

	

CD11b 

Count 

BFP 

GFP 

A	 B	

C	 D	
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candidates include four kinases (HIPK1, STK3, SIK3 and RSK1) and four epigenetic modifiers 

(KDM2A, KDM5B, KAT6A and KAT7). The 2 best performing gRNAs from the CRISPR-Cas9 screen 

performed by Tzelepis et al. (unpublished data) were used for validation in selected two cell lines, 

MOLM-13 and OCI-AML3. As all candidate genes, except for SIK3 and RSK1, were essential in 

MOLM-13 but not in OCI-AML3 according to the screen results, these 2 cell lines could serve to 

validate essentiality and non-essentiality of the selected candidates. 

 

 

Table 3.1 List of novel histone modifiers and kinases that are AML-specific cell-essential genes. 

Values indicated are the false discovery rate (FDR) of each gene in the respective cell lines (data derived 

from Tzelepis et al.). FDR <0.2 is considered significant cell-essential genes (highlighted in blue). 

Homeodomain interacting protein kinase 1 (HIPK1); Serine/threonine-protein kinase 3 (STK3); Salt 

inducible kinase 3 (SIK3); Ribosomal protein S6 kinase (RSK1), also known as RPS6KA1; lysine 

demethylase 2A (KDM2A); lysine demethylase 5B (KDM5B); lysine acetyltransferase 6A (KAT6A); 

lysine acetyltransferase 7 (KAT7). 

 

Knock-out of HIPK1 and STK3 showed a weak suppressive effect on the proliferation of MOLM-13 

(Figure 3.4A, C) and had no effect in OCI-AML3 (Figure 3.4B, D). KAT6A, SIK3 and RSK1 knock-out 

confirmed the screen results. Targeting SIK3 and KAT6A in MOLM-13 had a strong and moderate 

suppressive effect, respectively (Figure 3.4E, K) but weak and no effect on proliferation in OCI-AML3, 

respectively (Figure 3.4F, L). RSK1 showed a slight effect in both cell lines (Figure 3.4G-H). KDM2A 

showed weak phenotype in MOLM-13 (Figure 3.4I) and OCI-AML3 (Figure 3.4J). KDM5B knock-out 

did not affect the proliferation of MOLM-13 or OCI-AML3 (Figure 3.4M-N). KAT7 knock-out in 

OCI-AML3 showed a slight decrease in proliferation over a period of 12 days (Figure 3.4P); however, 

proliferation was strongly decreased in MOLM-13 (Figure 3.4O). In summary, both SIK3 and KAT7 

knock-out showed a prominent decrease in proliferation and therefore selected these two genes for   

further investigations.   

 

MOLM-13 MV4-11 HL-60 OCI-AML2 OCI-AML3 HT-1080 HT-29
HIPK1 0.08 1.00 1.00 1.00 1.00 1.00 1.00
STK3 0.15 1.00 1.00 0.87 1.00 0.95 1.00
SIK3 0.05 0.70 1.00 1.00 0.16 1.00 1.00
RSK1 0.01 1.00 0.02 0.00 0.00 1.00 1.00

KDM2A 0.09 0.65 0.60 0.26 0.69 1.00 1.00
KDM5B 0.15 0.49 1.00 0.53 0.22 1.00 1.00
KAT6A 0.15 0.07 0.78 0.04 0.42 1.00 1.00
KAT7 0.05 0.16 1.00 0.05 0.48 0.53 0.73

FDR 
0 

0.2 
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Figure 3.4 Validation of candidate hits from the CRISPR-Cas9 dropout screen in MOLM-13 and 

OCI-AML3 
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The left and right panel depicts MOLM-13 and OCI-AML3 knock-outs respectively. Competition-based 

proliferation assay between transduced (BFP-positive) and non-transduced (BFP-negative) cells. Two 

gRNAs for each gene were selected from the CRISPR library and gRNA was delivered to AML cells by 

lentivirus transduction. The proportion of BFP-positive population is normalized to day 4. Each data 

point is the average of triplicates.  

 

3.4 Proliferation of KAT7 and SIK3 knock-out in various AML and CML cell lines  

 

As SIK3 and KAT7 knock-out showed the most drastic effect on proliferation in MOLM-13, we 

further tested the effect of these two genes in 3 additional AML cell lines (MV4-11, OCI-AML2 and 

THP-1) and a chronic myeloid leukaemia (CML) cell line (K562) by using the best performing gRNA 

among the one selected from the library—gSIK3 (A4) and gKAT7 (A10) (Figure 3.5). SIK3 knock-out 

showed a strong reduction in the proliferation in MOLM-13 and MV4-11 cells (Figure 3.5A, D), a 

moderate decrease in OCI-AML2 and THP-1 proliferation (Figure 3.5B, E) and no apparent effect in 

OCI-AML3 and K562 (Figure 3.5C, F). Knock-out of KAT7 strongly reduced the proliferation of 

MOLM-13, MV4-11, OCI-ALM2 and THP-1 cells (Figure 3.5A, B, D, E), whilst minimal effect was 

observed in OCI-AML3 and K652 (Figure 3.5C, F). According to the dropout screens (Tzelepis et al., 

2016), SIK3 was not essential in MV4-11 or OCI-AML2 but was found to be essential in the validation 

experiments. KAT7 knock-out was validated in all cell lines used in the screen and additionally found 

to be a vulnerability in THP-1. To address the potential off-target effects of the gRNAs chosen from 

the genome-wide library, we designed and tested additional gRNAs for KAT7 (gKAT7) and SIK3 

(gSIK3), in MOLM-13 and MV4-11 (Figure 3.6). Among the gKAT7, only gKAT7 (5) has a 

comparable effect on proliferation as gKAT7 (A10) which was derived from the CRISPR library 

(Figure 3.6A). gSIK3 (A4) from the genome-wide library, gSIK3 (1), gSIK3 (2), gSIK3 (3), and gSIK3 

(4) all have a similar effect on proliferation in MOLM-13 and MV4-11 (Figure 3.6B). For the purpose 

of further validation, we used gKAT7 (A10) and gSIK3 (A4) for downstream experiments. 

Furthermore, MOLM-13 was selected as the model cell line initially to investigate the cellular 

mechanism underlying the proliferation phenotype as it showed the strong anti-proliferative 

phenotype and the wild-type cells grow well in cell culture.  
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Figure 3.5 Proliferation of SIK3 and KAT7 knock-out in additional cell lines 

Competition-based proliferation assay between transduced (BFP-positive) and non-transduced (BFP-

negative) cells. Best performing gRNA for SIK3 and KAT7 was delivered by lentivirus. The proportion of 

BFP-positive population is normalized to day 4. Mean ± standard deviation, n=3. KAT7 knock-out 

showed a strong decrease in proliferation in A) MOLM-13, B) OCI-AML2, D) MV4-11, and E) THP-1 

whilst no effect on the proliferation of C) OCI-AML3 and F) K562. SIK3 knock-out has a strong 

reduction in the proliferative ability of A) MOLM-13 and D) MV4-11, moderate effect in B) OCI-AML2 

and E) THP-1 and no effect in C) OCI-AML3 and F) K562.  
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Figure 3.6 Proliferation of MOLM-13 and MV4-11 with different gRNAs targeting KAT7 (gKAT7) 

and SIK3 (gSIK3). 

Competition-based proliferation assay between transduced (BFP-positive) and non-transduced (BFP-

negative) cells. A) gKAT7 B) gSIK3. The proportion of BFP-positive population is normalized to day 4. 

Mean ± standard deviation, n=3.  
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3.5 KAT7 and SIK3 knock-out in MOLM-13 

 

3.5.1 Apoptosis 

 

To understand the cellular processes underlying the proliferation phenotype observed in SIK3 and 

KAT7 knock-out, we asked whether apoptotic cell death was responsible for the decrease in 

proliferation of the AML cells (Figure 3.7). Knock-out of KAT7 in MOLM-13 results in a 13.7-times 

increase in Annexin V-positive cells compared to the empty negative control (p=0.03) on day 9 post- 

transduction (Figure 3.7A, C, E). This is four times more than the positive control, KAT2A knock-out 

(Figure 3.7A, D, E). On a smaller magnitude, SIK3 knock-out in MOLM-13 has a 1.8-fold increase in 

Annexin V-positive cells (Figure 3.7A, B, E) but this difference is not statistically significant (p=0.15). 

 

Figure 3.7 Apoptosis of SIK3 and KAT7 knock-out in AML cell lines 

MOLM-13 was transduced by lentivirus expressing gSIK3 (A4), gKAT7 (A10), gKAT2A (1) or empty 

control. BFP-positive (knock-out) cells were sorted on day 3 and levels of apoptosis measured on day 9.  

A-D) MOLM-13 transduced with gRNA targeting A) empty, B) SIK3, C) KAT7, and D) KAT2A and 

stained for Annexin V and Propidium Iodide (PI). E) Significant increase in Annexin V-positive cell 

population in KAT7 knock-out relative to empty day 7 post- transduction. Mean ± standard deviation, 

n=3. Two-tailed t-test, *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 
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3.5.2 Differentiation  

 

Previous studies found that the inhibition of KAT2A induces myeloid differentiation in AML 

(Tzelepis et al., 2016). We thus investigated whether knock-out of SIK3 or KAT7 induces 

differentiation in AML cells, by assessing the expression of two myeloid differentiation markers, 

CD11b and CD13, on day 5, 6 and 7 post-transduction. KAT2A knock-out was used as a positive 

control. Increase in CD11b expression, relative to the empty transduced cells, is detectable in KAT7 

knock-out and KAT2A knock-out but not in SIK3 knock-out MOLM-13 cells (Figure 3.8). CD11b 

levels in knock-out also increase by approximately 10% each day from day 5 to day 7 post-

transduction in KAT7 knock-out cells (Figure 3.8). A marginal increase in CD13 expression, 

compared to empty control, can be seen in all knock-out cells by day 7 (Figure 3.9), however, not as 

striking as CD11b. Further repeats showed that genetic ablation of KAT7 strongly induced CD11b 

expression in MOLM-13 and leads to 6 times more differentiated cells on day 7 (Figure 3.10B, G; 

p=0.003) than the empty control. This is 2 times higher than the positive control KAT2A knock-out 

(Figure 3.10C, G). CD13 expression increased by 2.6-fold in KAT7 knock-out, compared to the empty 

control (Figure 3.10E, H), but this increase was slightly weaker than KAT2A knock-out (Figure 3.10F, 

H). SIK3 knock-out did not show a drastic increase in CD11b or CD13 differentiation markers (Figure 

3.10A, D). The levels of CD13 expression is comparable between the knock-outs (Figure 3.10H).   
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Figure 3.8 Time course CD11b differentiation assay in SIK3, KAT7 and KAT2A knock-out MOLM-

13 cells 

MOLM-13 was transduced by lentivirus expressing gSIK3 (A4), gKAT7 (A10), gKAT2A (1) or empty 

control. BFP-positive (knock-out) cells were sorted on day 3 post-transduction and assayed on day 5, 6 

and 7. CD11b expression in SIK3 knock-out (green), KAT7 knock-out (blue) and KAT2A knock-out 

(red), against empty (grey). 
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Figure 3.9 Time course CD13 differentiation assay in SIK3, KAT7 and KAT2A knock-out MOLM-13 

cells 

MOLM-13 was transduced by lentivirus expressing gSIK3 (A4), gKAT7 (A10), gKAT2A (1) or empty 

control. BFP-positive cells (knock-out) were sorted on day 3 post-transduction and assayed on day 5, 6 

and 7. CD13 expression in SIK3 knock-out (green), KAT7 knock-out (blue) and KAT2A knock-out (red), 

against empty (grey). 
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Figure 3.10 CD11b and CD13 cell surface marker expression of SIK3 and KAT7 knock-out in 

MOLM-13 

MOLM-13 was transduced by lentivirus expressing gSIK3 (A4), gKAT7 (A10), gKAT2A (1) or empty 

control. BFP-positive (knock-out) cells were sorted on day 3 and assayed on day 7. Mean ± standard 

deviation, n=2 (except KAT7-knock-out: CD11b, n=5; CD13, n=3). A-C) CD11b expression in knock-

out (coloured), against empty (grey), with 10% spontaneous differentiation in wild-type cells. D-F) CD13 

expression in knock-out (coloured), against empty (grey), with 10% spontaneous differentiation in wild-

type cells. G) Relative CD11b levels in wild-type and knock-out, with KAT7 showing statistical 

significance. H) Relative CD13 levels in wild-type and knock-out. Two-tailed t-test, *, P ≤ 0.05; **, P ≤ 

0.01; ***, P ≤ 0.001.  

 

3.5.3 Cell cycle  

 

An alternative explanation for the observed proliferative phenotype could be due to cell cycle arrest. 

In particular, we saw a strong decrease in proliferation in MOLM-13 upon the knock-out of SIK3, but 

apoptosis assays revealed non-significant increase cell death. This prompted us to look at the cell cycle 

status of the knock-outs. Using propidium iodide (PI) to stain DNA, we detected an increase in the 

number of cells in Sub G1, S and G2/M phases and a corresponding decrease in G1 phase of MOLM-

13 SIK3 knock-out compared to empty on day 8 post-transduction (Figure 3.11). However, this result 

is not consistently observed across independent biological replicates. 
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Figure 3.11 Cell cycle analysis of SIK3 and KAT7 knock-out in MOLM-13 

MOLM-13 was transduced by lentivirus expressing gSIK3 (A4), gKAT7 (A10), gKAT2A (1) or empty 

control.  BFP-positive (knock-out) cells were sorted on day 3 and cells are stained with PI on day 8.  

Mean ± standard deviation, n=2. MOLM-13 cells with either SIK3, KAT7 or KAT2A knock-out on day 

8 post-transduction 

 

 

3.6 KAT7 knock-out in additional AML cell lines 

 

The data thus far showed gRNA-mediated KAT7 knock-out and SIK3 knock-out induces prominent 

proliferation defects in multiple AML cell lines. KAT7 knock-out, in addition, showed increased 

apoptosis and CD11b expression in MOLM-13.  A slight increase in apoptosis was observed in 

MOLM-13 SIK3 knock-out whilst no changes in CD11b expression was observed. Due to these 

striking phenotypes as a result of genetic loss of KAT7, we thus chose to focus our efforts on 

understanding the mechanism of essentiality of KAT7 in AML. After selecting, designing and testing 

various gRNAs that target KAT7, we opted to use gKAT7 (A10) and gKAT7 (5) for further 

experiments as these two gRNAs resulted in the most rapid loss of proliferation across cells in which 

KAT7 is essential. 

 

3.6.1 Apoptosis  

 

Focusing on KAT7 as a vulnerability in AML, we investigated the effect of KAT7 knock-out in MV4-

11, OCI-AML2, THP-1 and OCI-AML3, in addition to MOLM-13. Loss of KAT7 in MV4-11, OCI-
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AML2 and THP-1 result in a significant increase in the proportion of Annexin V-positive cells on day 

9 post-transduction (Figure 3.12). There is no significant increase in apoptotic cells in OCI-AML3 

following the genetic ablation of KAT7 (Figure 3.12). These data are consistent with the proliferation 

phenotype described above in Chapter 3.3. Notably, levels of annexin-V in THP-1 knock-out 

compared to empty control was not as drastic as MOLM-13, MV4-11 and OCI-AML2. This could be 

due to the fact that THP-1 possess the p53 mutation (Sugimoto et al., 1992). Wild-type p53 is a 

positive regulator of apoptosis, among many other cellular processes (Aubrey et al., 2018). In the case 

of THP-1, the presence of p53 mutant may compromise the protein’s ability to induce maximal 

apoptosis under stress, such as coping with the loss of KAT7. This may suggest that KAT7-induced 

apoptosis is mediated through p53. Existing studies suggest that p53 negatively regulates KAT7 in 

Saos-2 osteosarcoma cells and mouse embryonic fibroblast, most likely through the binding of p53 

protein to the catalytic domain of KAT7 (Iizuka et al., 2008). The possibility of KAT7 in regulating 

p53 has been briefly explored in this study. Iizuka et al., compared the ability of KAT7 to acetylate 

histone or p53 as substrates and found KAT7 prefers histone substrates. p53 acetylation is only 

detectable in reactions without histones (Iizuka et al., 2008). To address whether the apoptosis 

associated with KAT7 loss is mediated through p53 in AML, more p53 mutation cell lines need to be 

assayed. Possibly through generating isogenic p53 mutant cell lines of MOLM-13 or inhibiting KAT7 

in other p53 mutated AML cell lines.   

 

 
Figure 3.12 Apoptosis of KAT7 knock-out in AML cell lines 

AML cells were introduced with gKAT7(A10) via lentivirus transduction and BFP-positive cells were 

sorted day 3 post-transduction and stained with Annexin-V-APC antibody on day 9 post-transduction. 

Mean ± S.D., n= 3 (biological replicates), two-tailed t-test (N.S. non-significant, P > 0.05; *, P ≤ 0.05; **, 

P ≤ 0.01; ***, P ≤ 0.001).  
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3.6.2 Proliferation  

 

Next, we repeated the proliferation assay in the MOLM-13, MV4-11, THP-1, OCI-AML2, OCI-AML3 

with gKAT7 (A5) in addition to gKAT7 (A10) that was previously used in Figure 3.5. Furthermore, we 

utilized HL-60 and Nomo-1 to investigate the essentiality of KAT7 in other AML cell lines. The 

proliferation of HL-60 was not affected by the loss of KAT7 whereas Nomo-1 proliferation was 

compromised in KAT7 knock-out (Figure 3.13). Collectively, our findings so far suggest KAT7 may be 

essential for MLL-fusion positive AML, but not in MLL-fusion negative cell lines.  

 

 

Figure 3.13 Proliferation of KAT7 knock-out in AML cell lines 

The proliferation of KAT7 knock-out using two individual gKAT7 (5 and A10) or empty control in 

different AML cell lines. The relative percentage of BFP-positive (gKAT7-transduced) cells were assayed 

over time and all time points were normalized to day 4. Mean ± SD, n= 3 

 

 

In OCI-AML2, gKAT7 (5) transduced cells have a less pronounced effect on proliferation, compared 

to gKAT7 (A10) transduced cells of the same cell line. This may be due to the high transduction 

efficiency which resulted in ~80% transduced cells. Figure 3.14 illustrates a gRNA depletion 

simulation comparing the changes in proliferation of experiment starting with high transduction 

efficiency (80% cells transduced) with that of low transduction efficiency (30% cells transduced). 
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Fig. S1. KAT7 gRNA-mediated knock-out shows the strongest anti-proliferative compared to KAT6A and KAT2A.
A) gRNAs targeting various histone lysine acetyltransferase (HAT/KATs) in MOLM-13 and MV4-11. gRNA against 
KAT2A (gKAT2A) KAT6A (gKAT6A) and KAT7 (gKAT7). B) Proliferation of KAT7 knock-out using two individual gRNA 
or empty control in MLL-fusion AML cell lines. C) Proliferation of KAT7 knock-out using one individual gRNA or 
empty control in non-MLL-fusion CML cell lines.
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Assuming that non-transduced, BFP-negative cells double every 24 hours, whilst transduced, BFP-

positive, KAT7 knock-out cells conferring growth disadvantage duplicate 1.8 times every 24 hours. An 

initial 80% transduced cells (20% non-transduced) at time point 0 will give rise to 43.9% viable cells at 

day 19. On the contrary, starting with 30% transduced cells (70% non-transduced) will result in 18.2% 

proliferative cells at day 19. Although KAT7 is an essential gene in some AML cell lines, such as OCI-

AML2, the proliferation assay is based on the competition between BFP-positive and BFP-negative 

cells, therefore, the relative proportion of transduced and non-transduced cells can influence the 

dynamic of depletion. Keep transduction efficiency between cell lines and between gRNAs as similar 

as possible when making comparisons is ideal. Transduction efficiency is dependent on both virus 

titer as well as cell lines. Virus titer can vary between batches of virus production and titration for each 

batch is important for achieving consistent proportion of transduced cells at the start of every 

experiments.  

 

 

Figure 3.14 Simulation of cell proliferation with different percentage of initial transduced cells 

Prediction of the cell proliferation dynamics of knock-out cells, conferring growth disadvantage, overtime 

with a high or low proportion of transduced cells on day 0. Given that the effect of knock-out is constant, 

high percentage of transduced cells (80% transduced at day 0) results in a slower depletion dynamic 

compared to a low percentage of transduced cells (30% transduced at day 0).  
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3.6.3 Differentiation  

 

Differentiation time-course experiment in Chapter 3.5.2 showed day 7 represents the time point in 

which significant levels of CD11b marker was observed (Figure 3.8), we therefore assayed the effect of 

KAT7 knock-out on CD11b expression using gKAT7 (A10) in various cell lines at this time point 

(Figure 3.15). Notably, an increase in CD11b was associated with the loss of KAT7 in MOLM-13 

(61%), OCI-AML2 (32%) and Nomo-1 (21.1%).  

  

 

Figure 3.15 CD11b expression of KAT7 knock-out in AML cell lines 

CD11b-APC staining in empty (grey) and KAT7 knock-out (red) cells on day 7 post-transduction in 

different AML cell lines. BFP-positive knock-out cells were sorted day 3 post-transduction.  

 

Initially, we observed 40% population of differentiated cells in MV4-11 on day 6 (Figure3.16A) and by 

day 7, the CD11b-positive population reduced to 22.8% (Figure3.16B), suggesting that MV4-11 

undergo apoptosis soon after signs of differentiation. However, this finding was not reproducible, 

therefore MV4-11 is unlikely to have increased CD11b expression following knock-out of KAT7. It is 

likely that following the loss of KAT7, MV4-11 induces apoptosis without differentiation. As we did 

not observe CD11b changes in THP-1 knock-out nor did we observe a drastic increase in apoptosis, 

we assessed CD14, another marker for myeloid differentiation, and day 7 showed 24.1% of 

differentiated cells (Figure3.16C).  

Empty

gKAT7 (A10)
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Figure 3.16 Expression of myeloid differentiation marker in KAT7 knock-out MV4-11 and THP-1 

BFP-positive knock-out cells were sorted day 3 post-transduction. A and B) CD11b expressions in empty 

(grey) and KAT7 knock-out (red) MV4-11 cells on day 6 and day 7 post-transduction respectively.  C) 

CD13 expressions in empty (grey) and KAT7 knock-out (blue) THP-1 cells on day 7 post-transduction.  

 

3.7 In vivo effects of KAT7 loss 

 

To assess if KAT7 inactivation has effects in vivo, we injected KAT7 knock-out luciferase-expressing 

MOLM-13 cells into NSGW41 male mice (derived by breeding NSG and KITW41 animal to 

homozygosity, i.e. KitW41/W41, Prkdc-/-, and Il2rg-/- or Il2rg+/Y). This breed of mice was chosen based on 

several considerations. Firstly, previous experiments have demonstrated efficient and sustained 

engraftment of MOLM-13 cells into the bone marrow of NSGW41 mice. Kit signalling is required for 

the expansion of progenitor cells, as such human Kit-proficient cells populate the bone marrow, 

replacing the endogenous murine Kit-mutant hematopoietic cells (Waskow et al., 2014).  Secondly, the 

agouti coat of NSGW41 mice allows for better visualization of the bioluminescent signal, compared to 

dark-furred mice. Lastly, male mice were chosen as MOLM-13 was derived from a male AML patient. 

Mice transplanted with KAT7 knock-out MOLM-13 cells had significantly slower AML progression 

and increased survival compared to those injected with wild-type cells (Figure 3.17). Transplantation 

of KAT7 knock-out MOLM-13 cells eventually led to the development of abnormal masses at ectopic 

parts of the body, including under the skin and on the liver. This might be due to KAT7 knock-out cells 

undergoing differentiation, whereby the maturation of AML cells allows for “metastasis” in other organs. 

On the contrary, wild-type MOLM-13 localizes in the bone marrow of the mice. 

 

 

CD11b CD14 

A B C THP-1 MV4-11 

day 7 

MV4-11 

day 6 
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Figure 3.17 Disease progression and survival of mice injected with luciferase-expressing MOLM-13 

cells 

Luciferase expressing MOLM-13 with KAT7 knock-out or empty control cells were transplanted into 

NSGW41 male mice day 3 post-transduction. BFP-positive cells were sorted day 2 post-transduction. A) 

bioluminescent signal on day 8 and day 15 post-injection B) Kaplan-Meier survival plot (n=5 in each 

arm). Experiment and figures generated in collaboration with Etienne De Braekeleer. 

 

 

3.8 Expression of KAT7 in normal haematopoiesis  

 

To understand the expression of KAT7 in normal hematopoiesis, we utilized the BloodSpot platform 

(Bagger et al., 2019). Gene expression profiles of hematopoietic cells obtained from the bone marrow 

of healthy subjects showed that levels of KAT7 transcript fluctuate through hematopoietic 

differentiation (Bagger et al., 2019; Rapin et al., 2014). Notably, common myeloid progenitor (CMP) 

and megakaryocyte-erythroid progenitor (MEP) appear to have the highest expression of KAT7, 

compared to other hematopoietic cells in the myeloid lineage differentiation tree (Figure 3.18) (Bagger 

et al., 2019; Rapin et al., 2014), which may suggest that KAT7 is required to maintain the potency of 

these cells.  
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Figure 3.18 Expression of KAT7 in normal hematopoietic cells 

Transcripts (Log2 expression) of KAT7 in cells extracted from the bone marrow healthy patients (Bagger 

et al., 2019; Rapin et al., 2014). A) Myeloid hierarchical differentiation tree and expression of KAT7 in 

the corresponding stem and progenitor and myeloid cells. B) Jitter strip chart, corresponding to the cells 

depicted in the differentiation tree. Each dot represents one sample and the lines represent the median 

expression of each cell type. Hematopoietic stem cell (HSC); Multipotent progenitors (MPP); common 

myeloid progenitors (CMP); Granulocyte monocyte progenitors (GMP); megakaryocyte-erythroid 

progenitors (MEP); early promyelocyte (early_PM); late promyelocyte (late_PM); myelocyte (MY); 

metamyelocytes (MM); band cell (BC); polymorphonuclear cells (PMN); monocytes (mono). 

 

 

 

A 
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3.9 KAT7 mutations and expression in other cancer types 

 

Among normal cell types, KAT7 is most highly expressed in testis (Iizuka and Stillman, 1999; Sharma 

et al., 2000). In the context of cancer, analysis of the The Cancer Genome Atlas (TCGA) dataset 

(genomics data of 37 cancer types) showed that testicular germ cell cancer (TGCT) represents the 

tumour type with the highest expression of KAT7 (Figure 3.19) (Deng et al., 2017), possibly correlated 

to the high expression in normal testis cells. We utilized the cBioPortal platform that facilitates the 

analysis and visualization of large-scale cancer genomics datasets to look for mutations in KAT7 

among AML patients. We assessed 3 AML genomic studies (TCGA Research Network, 2013; Tyner et 

al., 2018; Welch et al., 2016), which consist a total of 1008 AML patient samples (878 patients queried) 

and found no KAT7 alterations—mutations, amplification, deletion or fusion—among those profiled 

(Cerami et al., 2012; Gao et al., 2013a). The lack of KAT7 alterations found among AML patients 

could suggest that KAT7 is not an oncogene involved in AML initiation however, may play a critical 

role in maintaining leukemogenesis which could potentially be exploited therapeutically. Interestingly, 

we observed KAT7 mutations in other cancer types, most frequently in uterine corpus endometrial 

carcinoma (UCEC), whereby 7.89% of UCEC patients possess a mutation in this gene (Cerami et al., 

2012; Gao et al., 2013a; Grossman et al., 2016). 164 mutations were detected among all the TCGA 

datasets, 118 of which are mutations in the protein-coding region of KAT7 (Grossman et al., 2016). 

Missense mutations are the predominant alterations in KAT7 among the various cancer types, 

constituting 89.8% (106 of 118) of all KAT7 alterations documented (Figure 3.20) (Grossman et al., 

2016). There is no obvious mutational “hotspot” within the coding region of KAT7 and mutation sites 

appears to be distributed across the gene (Figure 3.20). It is unclear if these mutations are oncogenic 

and contribute to the fitness of other cancer types.  
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Figure 3.19 KAT7 expression in 37 cancer types from The Cancer Genome Atlas (TCGA) 

Log2 transformed reads per kilobase million (RPKM) transcript levels of KAT7 obtained from 

FireBrowse (Deng et al., 2017). In the corresponding tumour types (red), as well as normal tissues (blue). 

Normal tissue samples missing in some cancer types (grey). Testicular germ cell tumour (TCGT); Uveal 

melanoma (UVM); brain lower grade glioma (LGG); glioma (GBMLGG); acute myeloid leukemia 

(LAML); glioblastoma multiforme (GBM); thyroid carcinoma (THCA); Pheochromocytoma and 

Paraganglioma (PCPG); skin cutaneous melanoma (SKCM); breast invasive carcinoma (BRCA); 

ovarian serous cystadenocarcinoma (OV); thymoma (THYM); esophageal carcinoma (ESCA); lung 

squamous cell carcinoma (LUSC); prostate adenocarcinoma (PRAD); kidney renal clear cell carcinoma 

(KIRC); stomach and esophageal carcinoma (STES); lung adenocarcinoma (LUAD); stomach 

adenocarcinoma (STAD); Pan-kidney cohort (KIPAN); uterine carcinosarcoma (UCS); mesothelioma 

(MESO); sarcoma (SARC); kidney renal papillary cell carcinoma (KIRP); rectum adenocarcinoma 

(READ); head and neck squamous cell carcinoma (HNSC); Cholangiocarcinoma (CHOL); colorectal 

adenocarcinoma (COADREAD); cervical and endocervical cancer (CESC); bladder urothelial carcinoma 

(BLCA); colon adenocarcinoma (COAD); pancreatic adenocarcinoma (PAAD); kidney chromophobe 

(KICH); lymphoid neoplasm diffuse large b-cell lymphoma (DLBC); adrenocortical carcinoma (ACC); 

liver hepatocellular carcinoma (LIHC).  
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Figure 3.20 Location and type of mutations in the protein-coding region of KAT7 found across The 

Cancer Genome Atlas (TCGA) dataset 

Image obtained from NCI GDC Data Portal (Grossman et al., 2016). Each circle represents a mutation. 

The position of each mutation is presented relative to the domains of KAT7 protein. The height (y-axis) 

of the circles indicates the frequency of the mutation within the TCGA dataset. Missense mutations 

(blue), frameshift mutations (red), stop gained mutations (purple) are indicated by the respective 

colours. The number within a circle represents the number of different mutations found at the same 

position.  

 

 

3.10 Discussion 

 

CRISPR-Cas9 dropout screens provide a wealth of novel therapeutic targets. Validation of genome-

wide CRISPR-screens is imperative due to false-positive and false-negative hits. Despite the 8 chosen 

novel druggable candidate genes are significant dropouts (<20% FDR) in the MOLM-13 cell line, only 

SIK3, KAT6A and KAT7 knock-outs show strong phenotypic consequence on cellular proliferation 

over the course of 14 days. Whilst KDM5B knock-out shows no effect in MOLM-13, HIPK1, STK3, 

RSK1 and KDM2A knock-outs induce a weak effect on the proliferative ability of MOLM-13 cells 

based on our validation. This may be partly explained by the difference in the duration of the 

experiment between validation (14 days) and screening (30 days). These genes may affect the fitness of 

MOLM-13 over a longer time-course. Although it is possible that the chosen gRNAs for each gene 

may not effectively modify the genetic target, thus result in functional protein, this scenario is less 

likely given our gRNA selection criteria were based on those that were depleted in the AML CRISPR-

Cas9 screen performed by Tzelepis et al. From our validation, we found SIK3 is additionally essential 

MYST Znf KAT7 protein 
domain 
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in MV4-11 and OCI-AML2 as this was not picked up from the screens. The output of KAT7 

validation is consistent with the screening output across all AML cell lines. Interestingly, KAT5 is also 

a member of the MYST family protein like KAT6A and KAT7 and is an AML-specific essential gene 

(Tzelepis et al. screening results reflect dropout in MOLM-13 and OCI-AML2 cell lines), but was not 

identified as a druggable gene in the DGIdb characterization.  

 

SIK3 knock-out has a strong defect in proliferation across multiple AML cell lines. However, this 

phenotype was not associated with a significant increase in apoptosis or differentiation. The 

proliferation may be associated with growth or cell cycle arrest. Recent studies have shown that the 

catalytic activity of SIK3 is important for the proliferation of MLL-fusion positive AML cells 

(Tarumoto et al., 2018). Tarumoto et al., went on to show that SIK3-dependent phosphorylation of 

HDAC4, prevents HDAC4-mediated inhibition of MLL-fusion target genes such as MEF2C. 

 

Genetic ablation of KAT7 induces anti-proliferation and pro-apoptotic phenotypes in various AML 

cell lines, particularly those habouring MLL-fusion mutations. Myeloid differentiation of various 

magnitude is further observed in KAT7 knock-out in the MLL-fusion positive AML cell lines MOLM-

13 (MLL-AF9), OCI-AML2 (MLL-AF6), THP-1 (MLL-AF9) and Nomo-1 (MLL-AF9) but not in 

MV4-11 (MLL-AF4). Before the knock-out cells eventually undergo cell death, cell lines that 

differentiate after KAT7 knock-out may temporarily restore the function of the transformed 

hematopoietic cell. Our validation revealed KAT7 is a genetic vulnerability in an MLL-AF4 positive 

AML cell line. MLL-AF4 translocation is commonly associated with acute B lymphoblastic leukaemia 

(B-ALL) (Ayton and Cleary, 2001; Meyer et al., 2013, 2018). KAT7 may also be essential for MLL-AF4 

positive B-ALL and whether KAT7 can be therapeutically exploited in this subtype of leukemia is an 

interesting avenue to explore. 

 

We have briefly investigated the effects of KAT7 loss in vivo, by transplanting KAT7-knock-out 

luciferase-expressing MOLM-13 cells into immunodeficient mice. Even though this experiment 

showed that mice harbouring MOLM-13 KAT7 knock-out have delayed disease progression and 

prolonged survival, the in vitro studies thus far suggests that differentiation may be initiated by the 

day of injection (day 3 post-transduction) and could affect the engraftment of AML cells at the bone 

marrow. Cells undergo differentiation soon after transduction (approximately 30% CD11b 

differentiated cells on day 5 post-transduction), and thus would likely to have changes in gene 

expression by day 3 post-transduction, thereby changing the properties of the cells. This could explain 

the ectopic engraftment of KAT7 knock-out MOLM-13 cells seen in the mice experiment. 
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An inducible KAT7-knock-out mouse model would be invaluable to comprehensively assess the loss 

of KAT7 in vivo, particularly in evaluating if the loss of KAT7 has detrimental effects. Furthermore, 

the lack of KAT7 inhibitor presently means that it is not yet possible to assess the wholistic effect of 

inhibiting KAT7 at an organismal level, including effects on normal haematopoiesis and other cell 

types. Development of small molecules or drugs against KAT7 will facilitate our understanding of 

whether targeting KAT7 results in minimal toxicity and possess AML-specific efficacy. Encouragingly, 

a recent genome-wide CRISPR-Cas9 study on haematopoiesis of human primary CD34+ human 

progenitor and stem cells (HPSCs) and T-cells (Ting et al., 2018) did not identify KAT7 as a 

significant player in the development of these cells, which suggests that inhibiting KAT7 may not have 

detrimental effects on the development of normal blood cells. Possible additional experiments using 

the CRISPR-Cas9 based gene-editing methods include knocking-out KAT7, by co-transfection of 

gRNA and Cas9, in CD34+ human cord blood cells and AML cells (MLL-fusion positive and MLL-

fusion negative) from human patients. 
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Chapter 4: Molecular characterization of KAT7 in AML 
 

4.1 Introduction 
 

In the previous chapter, we validated KAT7 as an essential gene in AML following reports of it being a 

CRISPR-Cas9 dropout candidate (Tzelepis et al., 2016; Wang et al., 2017). Histone acetyltransferases 

can be found in many eukaryotic organisms, ranging from yeast to human. This class of enzyme 

controls cellular homeostasis and a plethora of biological processes through their function in 

catalysing the transfer of acetyl group from acetyl-CoA to e-lysine residues onto proteins, including 

histones proteins (Sheikh and Akhtar, 2018). Among many important functional roles of KAT7 is its 

ability to regulate gene expression (Avvakumov et al., 2012; Saksouk et al., 2009; Sheikh and Akhtar, 

2018; Yan et al., 2018).  

 

Information on KAT7 in the context of AML is scarce with only one study to date that has explored 

this topic. Sauer and colleagues reported that the expression of KAT7 is decreased in human AML 

blast cells compared to the non-malignant CD34+ progenitor cells. Furthermore, the overexpression 

of KAT7 negatively affects the proliferative ability of mouse hematopoietic stem cells and the knock-

down of KAT7 by shRNA boosted colony formation in THP-1 (AML cell line) and SEM (B-ALL cell 

line) (Sauer et al., 2015). The inconsistency between this study and our findings thus far prompted us 

to explore further into the molecular function of KAT7 in our cellular models of human AML.  

 

In this chapter, we characterize the changes in histone acetylation marks following KAT7 loss and 

explore whether the catalytic function of KAT7 is important for sustaining AML. We investigate the 

genome-wide binding profiles of KAT7 to identify its distribution across various functional elements 

of protein-encoding genes. We subsequently link KAT7 occupancy with gene expression data to 

narrow down the group of genes that are likely regulated by KAT7. Together, the aim is to enhance 

our understanding of the general molecular functions of KAT7 in AML cells.  

 

4.2 KAT7 protein and H3K14ac levels are depleted after gKAT7 mediated knock-

out 
 

In chapter 3, we concluded that introducing KAT7 gRNA resulted in proliferation, apoptosis and/or 

differentiation phenotypes in many AML cell lines. To determine if these phenotypes are attributed to 

on-target editing in the KAT7 gene by the selected gKAT7, we assess if KAT7 is knocked-out at a 
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protein level using gKAT7 (A10). Firstly, we wanted to establish the time point at which KAT7 

protein is depleted after transduction. We assessed day 3 and day 4 post-transduction in MOLM-13 

and THP-1 and found that KAT7 protein in gRNA transduced cells are reduced, compared to empty 

control, but still detectable at day 3 for both cell lines (Figure 4.1A). By day 4, KAT7 protein levels are 

abolished for both cell lines (Figure 4.1A). We further assess H3K14ac, a histone mark modified by 

KAT7 and strongly reduced with the loss of KAT7 in vivo (Kueh et al., 2011). Interestingly, global 

H3K14ac levels are depleted in knock-out cells compared to empty control at day 3 post-transduction, 

even in the presence of detectable levels of KAT7 protein (Figure 4.1A). Expectedly, levels of this 

histone mark are further reduced at day 4 (Figure 4.1A). These data, therefore, reveal that at day 4 for 

post-transduction, the global KAT7 protein level is abolished and the loss of KAT7-modified histone 

marks is rapid. Importantly, we detected the on-target effect by gKAT7 (A10) and day 4 is an 

appropriate time point for further analysis.  

 

 

4.3 KAT7 modified histone marks H3K14ac and H4K12ac are depleted in KAT7 

knock-out cells 
 

In vitro and in vivo studies have elucidated the histone lysine residues acetylated by KAT7, as 

mentioned in Chapter 1. Briefly, KAT7 protein complex has specificity for lysine residues on histone 3 

and histone 4 tails. On histone 3, lysine residues 14 and 23 are reported targets for KAT7-BRPF 

complex (Feng et al., 2016; Kueh et al., 2011; Lalonde et al., 2013; Mishima et al., 2011). On histone 4, 

KAT7-JADE complex acetylates lysine residues 5, 8 and 12 (Doyon et al., 2006; Iizuka et al., 2009). We 

hence investigate whether loss of KAT7 results in changes in the levels of these histone lysine 

acetylation, using MOLM-13 as the model cell line. Strikingly, we see a global loss in H3K14ac and 

H4K12ac acetylation marks in the knock-out, relative to the control, on day 4 after transduction 

(Figure 4.1B). Minor depletion of H4K8ac marks can be seen in the knock-out relative to the empty 

control (Figure 4.1B) and H3K23ac and H4K5ac appear to have no global change associated with the 

loss of KAT7 protein (Figure 4.1B). These data suggest that KAT7 is the main HAT responsible for 

global H3K14ac and H4K12ac levels in MOLM-13, whilst the levels of other known KAT7 histone 

targets may be compensated or acetylated by other HATs within the cell.  

 

Next, we investigated if levels of H3K14ac and H4K12ac are reduced in other AML cells, including cell 

lines which proliferation was unaffected by KAT7 knock-out. Indeed, across various AML cell lines, 

global depletion of H3K14ac and H4K12ac was observed, irrespective of whether KAT7 is an essential 

gene in that cell line (Figure 4.1C). Although we cannot attribute the loss of H3K14ac and H4K12ac 
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marks to the proliferation and apoptosis phenotype from these set of experiments, however, we can 

deduce that H3K14ac and H4K12ac are dispensable for general proliferation and apoptosis. This is 

because, despite the loss of KAT7 protein and the corresponding depletion of these two histone 

marks, OCI-AML3 and HL-60 can proliferate and not induce apoptosis. 

 

 

Figure 4.1 Changes in levels of KAT7 protein and KAT7-mediated histone lysine acetylation 

following gRNA-mediated knock-out of KAT7 

AML cell lines were transduced with lentivirus expressing empty (-) or gKAT7(A10) (+) and were sorted 

by flow cytometry for BFP-positive population on day 3 post-transduction. A) Time-course experiments 

in MOLM-13 and THP-1. Lysates were harvested on day 3 (D3) and day 4 (D4) post-transduction for 

immunoblot of KAT7 and H3K14ac. B) Immunoblots of all known KAT7 histone lysine acetylation 

targets on day 4 post-transduction in MOLM-13. C) Changes in global H3K14ac and H4K12ac levels in 

MLL-fusion positive (MOLM-13 and THP-1) and MLL-fusion negative (OCI-AML3 and HL-60) cell 

lines on day 4 post-transduction. 
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4.4 Changes in other histone modifications upon KAT7 loss 

 

To begin to address if the global level of gene expression is affected after KAT7 knock-out, we looked 

into various histone modifications in MOLM-13 on day 4 post-transduction. We first looked at 

histone modifications that are found on the promoter region actively transcribed genes such as 

trimethylation at H3K4 (H3K4me3) (Barth and Imhof, 2010; Liang et al., 2004; Zhang et al., 2015) and 

found that knock-out of KAT7 did not lead to changes in global H3K4me3 (Figure 4.2A). We next 

assessed H3K9ac, which is commonly found to be positively correlated with both gene expression and 

H3K14ac levels (Barth and Imhof, 2010; Karmodiya et al., 2012; Liang et al., 2004). As histone 3 lysine 

9 residue is not a known direct target for KAT7, it is therefore not surprising to observe no changes in 

the acetylation level with the loss of KAT7 protein (Figure 4.2A).  

 

H3K27ac, a histone modification that is also associated with the promoter region of active genes as 

well as with enhancers (Creyghton et al., 2010; Heintzman et al., 2009; Sheikh and Akhtar, 2018; 

Wang et al., 2008), decreases after KAT7 loss (Figure 4.2A). This is an interesting observation as it 

implies that the loss of H3K14ac and/or H4K12ac may result in reduced acetylation levels of 

neighbouring lysine residues. It could be that KAT7-mediated acetylation can act as docking sites for 

other HATs, such as p300 and CBP that writes H3K27ac (Bose et al., 2017; Jin et al., 2011; Sheikh and 

Akhtar, 2018; Tie et al., 2009). To probe into this further, we performed a time course experiment and 

observed that like H3K14ac, H3K27ac is gradually reduced but not abolished at day 5 post-

transduction in MOLM-13 cell line (Figure 4.2C). Furthermore, from day 3 after transduction in 

which we see the depletion of global H3K14ac levels, we do not observe as much decrease in H3K27ac, 

when comparing the knock-out with the empty control. This further implies that the loss of H3K27ac 

is a secondary event following loss of KAT7 protein and KAT7 modified acetylation marks. This 

change in global H3K27ac levels is not as pronounced in other AML cells such as THP-1 and OCI-

AML3 on day 4 post-transduction (Figure 4.2B), compared to MOLM-13 (Figure 4.2C), suggesting 

that the magnitude of change in H3K27ac levels may be cell-line specific.  

 

In addition, we also assessed levels of H3K27me3, a transcriptional repressive mark at promoters 

(Barth and Imhof, 2010; Calo and Wysocka, 2013; King et al., 2016; Wang et al., 2008) and saw no 

apparent change of this histone modification globally in MOLM-13 KAT7 knock-out cells on day 4 

post-transduction (Figure 4.2A). Similarly, the levels of H3K79me2, a mark that is only known to be 

methylated by DOT1L and is associated with the gene body of actively-transcribed genes (Barth and 

Imhof, 2010; Nguyen and Zhang, 2011; Steger et al., 2008; Wood et al., 2018), did not change in 

knock-out cells compared to empty control (Figure 4.2A). The turnover rates and half-life of 
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methylation marks are relatively slower and longer respectively, compared to histone acetylation and 

phosphorylation (Barth and Imhof, 2010), therefore assessing at a later time point might be more 

appropriate. Conversely, later time point changes are more likely to be secondary effects as opposed to 

acute, primary consequences. Collectively, these findings suggest that loss of acetylation marks, 

particularly H3K14ac and H4K12ac are the primary changes following the loss of KAT7 protein in 

AML cells. 

 

 

 

Figure 4.2 Levels of activating and inactivating histone marks after KAT7 knock-out 

AML cell lines were transduced with lentivirus expressing empty (-) or gKAT7(A10) (+) and cells were 

sorted by flow cytometry for BFP-positive population on day 2 or day 3 post-transduction. A) 

Immunoblot of activating histone marks H3K9ac, H3K27ac, H3K4me3 and H3K79me2; and 

inactivating histone marks H3K27me3 and H3K27ac of MOLM-13 lysates harvested on day 4 post-

transduction. B) Immunoblot of H3K27ac levels in THP-1 and OCI-AML3 on day 4 post-transduction. 

C) Time course experiment in MOLM-13. Lysates were harvested from day 2 to day 5 post-transduction 

for the immunoblot of H3K27ac.  

 

 

4.5 KAT7 catalytic activity 

 

We next investigated whether H3K14ac and H4K12ac are associated with the previously observed 

proliferation and differentiation phenotypes in cell lines in which KAT7 is an essential gene. To 

THP-1 OCI-AML3 MOLM-13 
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address this, we can ask if the catalytic activity of KAT7 is required for the phenotypes. Interestingly, 

among the gKAT7 used in the study, gRNAs that target the MYST catalytic domain –gKAT7 (A10) 

and (5)—resulted in the most drastic proliferative defect, compared to gRNAs that target the serine-

rich domain (gKAT7 (1) and (2)), zinc finger domain (gKAT7 (3)) or gRNA that does not target a 

protein domain (gKAT7 (4)) (Figure 4.3 and Figure 3.6A proliferation in chapter 3). gRNAs targeting 

of the non-catalytic domain may result in truncated but catalytic active protein product, whereas 

gRNAs that target the highly conserved MYST domain are likely to impair the catalytic function even 

if truncated KAT7 proteins are produced.  

 

 

 

Figure 4.3 Schematic of KAT7 protein and the targeting sites of the different gKAT7 

The various gKAT7 used in this study, targets different protein domains of KAT7. gKAT7 (1) and 

gKAT7 (2) targets DNA sequences corresponding to the Serine-rich domain (Ser) while gKAT7 (3) 

targets the Zinc finger domain (ZnF) of KAT7. Sequences modified by gKAT7 (4) do not correspond to a 

protein domain. gKAT7 (A10) and gKAT7 (5) target the MYST catalytic domain and display the most 

drastic proliferative defect.  

 

4.5.1 G485A catalytic active mutant 

 

We initially adopted the G485A MYST domain mutation of KAT7 that is widely referenced in the 

literature (Chen et al., 2013; Iizuka et al., 2008, 2009, 2013; Miotto and Struhl, 2010; Wong et al., 2010) 

to investigate the involvement of KAT7 catalytic activity in the observed phenotype, namely 

proliferation and differentiation, in MOLM-13. As KAT7 is an essential gene, we utilized a knock-in-

knock-out approach to first introduce the G485A mutant KAT7 transgene followed by knock-out of 

the endogenous KAT7. Importantly, the KAT7 transgene is resistant to gRNA-mediated modifications 

by gKAT7 (5 and A10), by altering the nucleotide sequences to create synonymous mutations in the 

gRNA targeted region of the KAT7 cDNA. Therefore, the endogenous KAT7 gene can be ablated 

without affecting the mutant KAT7 transgene. 

 

MYSTZnFSer 611aa

gKAT7 (1)
gKAT7 (2)

gKAT7 (3) gKAT7 (4) gKAT7 (A10) gKAT7 (5)
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The KAT7 construct is designed to incorporate a selectable marker for the positive integration and 

expression of mutant KAT7. To achieve this, we link the GFP transgene to the KAT7 transgene using 

T2A sequence, where both genes are under the expression of EF1-alpha promoter (Figure 4.4A). GFP 

and KAT7 transgenes are transcribed and translated as one mRNA transcript. Once translated, the 

T2A peptide induces “self-cleavage”, generating two separate proteins (Ibrahimi et al., 2009; Kim et 

al., 2011)—GFP and mutant KAT7. The levels of GFP signal, therefore, reflects the integration of 

KAT7 transgene into the genome and the expression of KAT7 mutant protein. The targeted G485A 

mutation was confirmed at the plasmid level by Sanger Sequencing (Figure 4.4B). Using the same 

approach described above, we also generated wild-type KAT7 that is resistant to gKAT7 (5 and A10). 

The KAT7 transgene was subsequently introduced to MOLM-13 cells via lentivirus transduction. The 

resulting MOLM-13 cells express the transgene KAT7 (G485A or wild-type) and the endogenous 

KAT7, hereafter referred as G485A KAT7 and wild-type KAT7 MOLM-13.  

 

To assess the function of the G485A KAT7 mutant, we targeted the endogenous KAT7 by gRNA-

mediated knock-out so that the MOLM-13 cells only express the mutant KAT7. To our surprise, we 

found that G485A KAT7 mutant did not result in loss of H3K14ac (Figure 4.5A). This finding is 

inconsistent in two aspects. Firstly, previous reports of G485A implied that this mutation in KAT7 

results in abolished of catalytic activity (Chen et al., 2013; Iizuka et al., 2008, 2009, 2013; Miotto and 

Struhl, 2010; Wong et al., 2010). Secondly, based on our findings above and findings of previous in 

vivo studies which implied the loss of H3K14ac is associated with the loss of KAT7 protein (Kueh et 

al., 2011; Mishima et al., 2011), we would expect H3K14ac to be abolished or at least strongly reduced 

in a KAT7 catalytic dead mutant. A catalytic mutant of KAT7 would predictively phenocopy the 

effects of KAT7 protein loss if KAT7 enzymatic activity is required for the acetylation of histone 3 

lysine 14. Proliferation and differentiation assays also showed that G485A KAT7 mutant does not 

affect the proliferative potential of MOLM-13 cells (Figure 4.5B) and does not induce CD11b 

expression (Figure 4.5C). In contrast, the GFP control MOLM-13 cell lines phenocopies parental 

MOLM-13 in both proliferation and differentiation phenotypes (Figure 4.5B-C).  
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Figure 4.4 Genetic construct of G485A mutant KAT7 transgene. 

A) Expression of G485A KAT7 mutant under the expression of EF1a promoter. GFP is expressed under 

the same promoter and separated with the G485A transgene by a T2A peptide. KAT7 cDNA is resistant 

to gKAT7 (5) and gKAT7 (A10) modification by generating synonymous mutations in the DNA 

sequence at the gRNA targeting sites. B) Single nucleotide mutagenesis (highlighted in blue) to generate 

the glycine to alanine (G>A) substitution at amino acid position 485. C) Validation of G485A KAT7 by 

Sanger sequencing after cloning of KAT7 cDNA into the plasmid backbone.  

 

A 

B 

C 
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Figure 4.5 G485A mutant possesses catalytic activity and does not affect proliferation and 

differentiation of MOLM-13 

A and C) MOLM-13 cell lines were transduced with lentivirus expressing empty (-) or gKAT7(A10) (+) 

and cells were sorted by flow cytometry for BFP-positive population on day 3 post-transduction. A) 

Parental MOLM-13 with GFP-expression (endogenous KAT7) and transgenic MOLM-13 cells with 

either knock-in of wild-type KAT7 (Wild-type KAT7) or G485A mutant (G485A KAT7). Changes in 

H3K14 acetylation levels day 4 post-transduction using gKAT7 (A10) to knock-out endogenous KAT7 

but not wild-type or G485A mutant KAT7 transgene. B) The proliferation of MOLM-13 cells with 
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endogenous KAT7 knock-out in the presence of G485A mutant (MOLM-13 G485A KAT7) compared to 

parental MOLM-13 cell line (MOLM-13 GFP). The relative percentage of BFP and GFP double-positive 

cells were assayed over time and all the time points were normalized to day 4. Mean ± S.D., n= 3. C) Left 

panel: CD11b staining of MOLM-13 cells expressing GFP, G485A KAT7 and no endogenous KAT7 

(orange) and in cells expressing GFP, endogenous KAT7 and G485A KAT7 (grey); right panel: CD11b 

staining of parental MOLM-13 cells expressing GFP and endogenous KAT7 (grey) and of cells with 

KAT7 knock-out (orange), assayed on day 7 post-transduction.  

 

4.5.2 E508Q catalytic dead mutant 

 

We went on to search for other catalytic mutants by looking into other residues to mutate in the 

MYST domain of KAT7. Information on catalytic dead mutants in human KAT7 protein is scarce, 

however, MYST domain appears to be evolutionarily conserved between human and Saccharomyces 

cerevisiae (Figure 4.6) and the enzymatic activity of Esa1 in budding yeast has been extensively 

studied. Figure 4.6 shows the sequence homology of the human KAT7 protein with the mouse KAT7 

and the budding yeast Esa1. The boxed area in Figure 4.6 emphasizes the region of the MYST domain 

where mutation(s) of the highlighted amino acid has been shown to disrupt the enzymatic activity 

(Adachi et al., 2002; Berndsen et al., 2007; Decker et al., 2008; Smith et al., 1998; Yan et al., 2002; Yuan 

et al., 2012). The amino acid highlighted in blue was the one we chose to mutate in our study as the 

glutamic acid (E) to glutamine (Q) substitution in Esa1 give rise to a charge-switch mutation, thereby 

inducing maximal disruption to the catalytic activity. This residue corresponds to the amino acid at 

position 508 (E508Q) of the human KAT7 protein and the nucleotide sequence that give rise to this 

mutation is depicted in Figure 4.7A. Figure 4.7A also illustrates the synonymous mutations (lower 

case nucleotides) that render the E508Q mutant KAT7 transgene unmodifiable by gKAT7(A10) and 

gKAT7(5). The selectable marker for the integration and expression of E508Q mutant transgene is 

identical to one described above for G485A mutant and also introduced to MOLM-13 cells via 

lentivirus transduction. Cloning of E508Q was confirmed by Sanger Sequencing at the plasmid level 

(Figure 4.7B).  
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Figure 4.6 Potential human KAT7 catalytic mutants based on studies in yeast Esa1 

Many residues in the MYST domain of human, mouse and yeast are evolutionary conserved (boxed 

region). Arrow and blue residue indicate the E508Q mutation used in this study. Residues highlighted in 

yellow indicate other amino acids important for the HAT catalytic function based on published 

biochemical studies in yeast Esa1 listed on Uniprot (Adachi et al., 2002; Berndsen et al., 2007; Decker et 

al., 2008; Smith et al., 1998; Yan et al., 2002; Yuan et al., 2012).  
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Figure 4.7 Genetic construct of E508Q mutant KAT7 transgene. 

A) Knock-in transgene construct of KAT7 cDNA harbouring the glutamic acid to glutamine (E>Q) 

substitution and GFP separated by T2A peptide. Nucleotide sequences that give rise to the E508Q 

mutations and gRNA7 (5 and A10)-resistant modifications are shown in lower case letters. B) 

Validation of the presence of E508Q mutation by Sanger sequencing after the cloning of E508Q KAT7 

cDNA into the plasmid backbone. Top panel shows the targeted mutations at amino acid position 508 

and the flanking nucleotides.  Bottom panel shows the nucleotide readout from Sanger sequencing.  

 

 

After generating the E508Q KAT7 mutant MOLM-13 cell line which expresses both E508Q KAT7 and 

the endogenous KAT7, we compared its growth (Figure 4.8A, grey line) with parental MOLM-13 

without the expression of GFP (yellow line), MOLM-13 with GFP expression (blue line) and MOLM-

13 expressing both wild-type KAT7 transgene and GFP (orange line). Compared to parental MOLM-

13 cells with no GFP, expression of GFP protein reduces the growth of MOLM-13 cells marginally 

(Figure 4.8A). Additional expression of either wild-type KAT7 or E508Q KAT7 further reduces the 
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growth of MOLM-13 (Figure 4.8A). Simultaneous expression of GFP, E508Q KAT7 and endogenous 

KAT7 appears to reduce the growth of MOLM-13. 

 

Next, we knocked-out the endogenous KAT7 using gKAT7(A10) or gKAT7(5) to assess the effect of 

E508Q KAT7. We first evaluated if E508Q mutation gives rise to a catalytic dead KAT7, by western blot 

analysis. Whilst wild-type KAT7 rescues the knock-out phenotype, E508Q KAT7 cannot “write” 

H3K14ac and H4K12ac in MOLM-13 cells (Figure 4.8B), implying that this mutation abolishes the 

enzymatic activity of KAT7. Interesting, we see reduced levels of H3K14ac and H4K12ac in cells 

expressing both E508Q and endogenous KAT7, although catalytic active KAT7 is present. This suggests 

that E508Q mutant has a dominant negative effect, by competing with endogenous KAT7 for histone 

substrates. In particular, we see H4K12ac level is more strongly affected compared to H3K14ac (Figure 

4.8B). This dominant negative effect at a histone level did not induce short-term effects on the growth 

or proliferation of MOLM-13. 

 

MOLM-13 harbouring E508Q phenocopied the KAT7 knock-out cells both in terms of their 

proliferation defect (Figure 4.8C) and the increase in CD11b expression (Figure 4.8D), suggesting that 

the catalytic activity of KAT7 is crucial for leukemic maintenance. We further demonstrated that the 

introduction of gKAT7(5) and gKAT7(A10)-resistant wild-type KAT7 transgene rescued the 

proliferation and differentiation phenotype, implying that the results from experiments using gKAT7 

(5 and 10) is attributed to the on-target effects of the gRNAs used (Figure 4.8C-D). 
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Figure 4.8 E508Q catalytic dead mutant KAT7 affects the proliferation and differentiation of 

MOLM-13 

A) Proliferation of parental MOLM-13 (GFP negative) and (GFP positive), MOLM-13 expressing wild-

type KAT7 transgene (Wild-type KAT7) and MOLM-13 expressing E508Q mutant transgene (E508Q 

KAT7). B and D) MOLM-13 transduced with gKAT7 (A10) were sorted by flow cytometry on day 3 

post-transduction to enrich for pure knock-out population. B) Changes in histone lysine acetylation 

levels after the knock-out of endogenous KAT7 in parental MOLM-13 cell line (Endogenous KAT7) and 

in MOLM-13 cells expressing either wild-type KAT7 transgene (wild-type KAT7) or E508Q mutant 

transgene (E508Q KAT7). C) Proliferation of MOLM-13 cells with endogenous KAT7 knock-out (BFP-

positive) in the presence of E508Q mutant or wild-type KAT7 transgene (GFP-positive). Relative 

percentage of BFP and GFP double-positive cells were assayed overtime and all timepoints were 

normalized to day 4. Mean ± S.D., n= 3. D) CD11b staining of MOLM-13 cells expressing either E508Q 

or wild-type transgene (green) and in MOLM-13 with endogenous KAT7 and the respective KAT7 

transgene (grey), day 7 post-transduction.  

 

4.5.3 Dominant negative effect of E508Q KAT7 on histone acetylation and cell proliferation 

 

The dominant negative phenotype of E508Q prompted us to investigate further on the mutant’s effect 

on H3K14ac and H4K12ac. Particularly, we are interested in whether one histone acetylation plays a 

more important role than the other in terms of maintaining leukemogenesis. One approach is to 

identify which KAT7 complex, KAT7-BRPF or KAT7-JADE is more “essential”. We analysed the 

AML CRISPR-Cas9 screening dataset and gene expression profiles in the AML cell lines of all the 

members of KAT7 protein complex, including paralogues in the BRPF (BRPF1/2/3) family and JADE 

(JADE1/2/3) family (Figure 4.9). As mentioned in Chapter 1, KAT7-BRPF and KAT7-JADE has an 

affinity for specific lysine residues on H3 and H4 histone tails, respectively. Expect for JADE3, all 

members of the KAT7 complexes seems to be relatively highly expressed in the five AML cell lines 

(Figure 4.9). For MOLM-13 cell line, JADE2 and BRPF1 both showed similar levels of essentiality 

(log10 (P-dropout)) as KAT7 (Figure 4.9). This data suggests that KAT7-JADE2 and KAT7-BRPF1 

may be the predominant complexes in MOLM-13 that acetylates H4K12ac and H3K14ac, respectively. 

In MV4-11, BRPF1 and BRPF2 are more essential than JADE family (Figure 4.9), implying perhaps 

acetylation on H3 tail may be more important. JADE2 and BRPF3 are the strongest dropouts among 

the two families of proteins in OCI-AML2 (Figure 4.9), suggesting perhaps both H3K14ac and 

H4K12ac may be involved in the regulation of the pro-proliferation and anti-differentiation 

phenotypes. In HL-60 and OCI-AML3, the two cell lines in which KAT7 is not cell-essential, BRPF1 
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seems to be the most essential, although not as strongly depleted as in MOLM-13 and MV4-11 (Figure 

4.9).  

 

Figure 4.9 CRISPR-Cas9 depletion and gene expression of the members within the KAT7 protein 

complex 

Left panel: Depletion p-value of each gene in the corresponding cell line. The lower the log10(P-dropout), 

the more significant the gene is considered a drop-out. Right panel: Gene expression in log-transformed 

reads per kilobase millions (RPKM) of each gene in the corresponding cell line. log10 (P-dropout) values 

and transcriptomics data were obtained from the study performed Tzelepis et al.  

 

To approach this question from another angle, we looked into the E508Q KAT7 mutant in MOLM-13 

by sorting the bulk population into “low”, “mid” and “high” levels of mutant KAT7 expression via the 

levels of GFP signal. The aim is to explore the dominant negative effect of E508Q and its correlation 

with H3K14ac and H4K12ac levels as well as growth/proliferation. Notably, when sorting the MOLM-

13 E508Q cells, we noticed two distinct GFP populations, which together constitute the bulk of the 

total cell population. We gated these two populations for cell sorting and named them “low” (brown) 

and “mid2” (purple) (Figure 4.10A).  Additionally, we also sorted the population between “low” and 

“mid2” that we named population “mid1” (blue) as well as the populations at the extreme ends— 

“very low” (lime green) and “high” population (grey) (Figure 4.10A). The “very low”, “low”, “mid1”, 

“mid2” and “high” population constitutes 7.9%, 41.2%, 11.7%, 25.7% and 5.5% of the total population 
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respectively. Unfortunately, not enough cells were collected from the “very low” and “high” 

populations for western blot analysis but were sufficient for proliferation assay. Wild-type KAT7 

MOLM-13 cells were also sorted by flow cytometry according to GFP expression, using the same 

gating as E508Q mutant.  

 

Both H3K14ac and H4K12ac levels were significantly reduced in MOLM-13 despite having catalytic 

active KAT7 present in the cells (Figure 4.10B). In the varying concentration of E508Q KAT7 within 

the cell, higher “dose” of E508Q KAT7 protein, is associated with further reduction of H3K14ac and 

H4K12ac (compared to bulk), even with the presence of endogenous KAT7 (Figure 4.10B). This is 

particularly pronounced for H4K12ac as levels of this histone mark appears to be abolished in the 

“mid1” and “mid2” populations, whilst still detectable in the “low” population (Figure 4.10B). 

Conversely, H3K14ac has detectable levels across the “low”, “mid1” and “mid2” populations, although 

H3K14ac levels in the “mid2” population were significantly diminished compared to the bulk E508Q 

population (Figure 4.10B). In summary, cells with “low” amounts of E508Q has detectable levels of 

H3K14ac and H4K12ac, while “mid1” and “mid2” levels of this mutant KAT7 has detectable levels of 

H3K14ac but not H4K12ac. This recapitulates the findings in Figure 4.8B, where H4K12ac is relatively 

more affected than H3K14ac. In the wild-type KAT7 MOLM-13 population, higher levels of wild-type 

KAT7 transgene is associated with higher levels of H4K12ac, as seen with the “low”, “mid1” and 

“mid2” populations (Figure 4.10B). Regrettably, the exposed films of histone acetylation and KAT7 

levels were not numerically quantified by densitometry for proper statistical analysis. 

 

The proliferation of the GFP-sorted MOLM-13 populations with varying levels of KAT7 transgene 

was assessed over a 6-day time course, starting with 30000 cells in each well of a 96-well plate. At day 

3, wild-type KAT7 populations appear to proliferate better than E508Q populations (Figure 4.10C). 

There is no apparent association between growth and the “dose” of mutant E508Q, among the sorted 

populations of E508Q KAT7 MOLM-13 (Figure 4.10C). MOLM-13 cells with wild-type transgene 

KAT7 has the highest cell number at day 3, further suggesting that having more KAT7 in the cell 

provide MOLM-13 with a growth advantage. Most populations except for E508Q “low”, reach at a 

comparable number of cells at day 6 (Figure 4.10C). Ideally, this assay should be conducted over a 

longer period, where the potentially varying growth rates between the different populations may 

become more pronounced. However, while maintaining the bulk E508Q MOLM-13 population over 

long term culture, we observed that these cells need to be repeatedly re-sorted to enrich for pure GFP-

positive cells, as GFP-negative cells prevail over time, probably due to the growth disadvantage of 

expressing the E508Q mutant. It was not necessary to re-sort of GFP positive cells in wild-type 

MOLM-13, further supporting that KAT7 provides a growth advantage to cells.   
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Collectively, these data reflect that the level of H4K12ac is relatively more affected than H3K14ac by 

the presence of the E508Q mutant KAT7 (Figure 4.8B and Figure 4.10B). However, MOLM-13 E508Q 

can still proliferate, albeit at a slower rate, in the absence of H4K12ac (Figure 4.10B-C), meanwhile, 

these proliferating cells retain detectable levels of H3K14ac. These findings suggest that H3K14ac is 

necessary to sustain the leukemic programme in MOLM-13 cells, although H4K12ac may also play a 

role. In addition, the dominant negative effect of E508Q does not appear to have drastic consequences 

on the short-term proliferation but is unfavourable for MOLM-13 cells in long-term cell culture.  

 

Figure 4.10 E508Q KAT7 mutant MOLM-13 populations with different levels of GFP expression 

A) Flow-cytometry gating used for sorting E508Q KAT7 MOLM-13 cells into populations of different 

levels of GFP expression—very low, low, middle 1 (mid1), middle 2 (mid2), high. B) Immunoblot of the 

unsorted bulk population and the sorted wild-type KAT7 (wtKAT7) and E508Q KAT7 MOLM-13 

populations with different levels of GFP/KAT7 transgene expression and their corresponding levels of 

H3K14ac and H4K12ac. The red box encircles the low levels of H3K14ac and H4K12ac in the sorted 
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population of E508Q KAT7 MOLM-13 cells, compared to the bulk. C) The proliferation of the wild-type 

KAT7 MOLM-13 and the E508Q KAT7 MOLM-13 cells with varying expression of GFP.  

 

4.6 KAT7 predominantly occupies the gene promoter region 

 

Having established that KAT7 is required for the global acetylation of H3K14 and H4K12, we next 

investigated the genomic location of KAT7 activity, using chromatin immunoprecipitation 

sequencing (ChIP-seq). We chose to sequence MOLM-13 and MV4-11 to represent cell lines in which 

KAT7 is essential and OCI-AML3 as the non-essential cell line. By examining the ChIP-seq data, we 

found a clear enrichment of KAT7 at promoters of protein-coding genes in MOLM-13, MV4-11 and 

OCI-AML3 cell lines (Figure 4.11A-B).  

 

Promoter regions (±2kb from TSSs), despite constituting a small fraction of the genome, contain 

63.3%, 40% and 48.5% of the KAT7 signals in MOLM-13, MV4-11 and OCI-AML3, respectively 

(Figure 4.11B). The total number of promoter peaks, by gene, in each cell line is indicated in Figure 

4.11C. Notably, the number of genes bound by KAT7 at the promoter in MOLM-13 is approximately 

half of the promoter peaks found in MV4-11 and OCI-AML3 (Figure 4.11C). This observation could 

be explained, in part, by the immunoblot of the chromatin-immunoprecipitation (ChIP) (Figure 

4.11D). In Figure 4.11D, the input of MOLM-13 showed two distinct KAT7 isoforms (~80 kDa and 

~70 kDa), whilst only one isoform (~80 kDa) predominates in MV4-11 and OCI-AML3. The 

polyclonal KAT7 antibody used could pulldown the larger KAT7 isoform in MV4-11 and OCI-AML3, 

but not in MOLM-13. Furthermore, the ChIP in MOLM-13 pulls down the short isoform exclusively, 

and at a lesser amount than the ChIP in MV4-11 and OCI-AML3.  

 

The immunoblot (Figure 4.11D) shows chromatin-immunoprecipitated IP (ChIP), whereby the KAT7 

protein has been cross-linked with the chromatin using formaldehyde before immunoprecipitating 

with the KAT7 polyclonal antibody. This may suggest that in MOLM-13, only the short isoform of 

KAT7 binds the chromatin, Alternatively, the large isoform may also bind but if it forms a different 

protein complex, where the epitope recognized by the KAT7 antibody may be shielded within the 

macro-complex, which can also explain the relatively less efficient IP in MOLM-13 compared to the 

other two cell lines. It is not possible to distinguish between these two possibilities with the data 

presented. 
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The DNA element that has the next highest proportion of KAT7 occupancy is intergenic region 

and/or intron, depending on the cell line (Figure 4.11B). KAT7 has the lowest occupancy in the exon 

of protein-coding genes (Figure 4.11B). As KAT7 predominantly binds at gene promoter in all three 

AML cell lines, we subsequently focus on KAT7 promoter binding in the pathogenesis of AML at a 

chromatin level. Binding of histone acetyltransferases at the promoter and the subsequent acetylation 

of histones tails are typically associated with gene expression (Sheikh and Akhtar, 2018). Correlating 

KAT7 binding with gene expression, we found that the KAT7 occupancy at active promoters (purple) 

is significantly higher than inactive promoters (black) in MOLM-13 (Figure 4.11E-F), OCI-AML3 

(Figure 4.11G-H) and MV4-11 (Figure 4.11I-J), which is consistent with the activating effect of 

promoter acetylation. Moreover, the highly active genes (red) has the highest KAT7 binding, 

reflecting a positive correlation between KAT7 promoter occupancy with gene expression in all cell 

lines.  
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Figure 4.11 Genome-wide chromatin binding of KAT7 in MOLM-13, OCI-AML3 and MV4-11 
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A) KAT7 occupancy around 5kb windows at TSSs of protein-coding gene. B) Distribution of KAT7 

occupancy at promoters (TSS±2kb), exons (excluding promoter exons), introns and intergenic regions 

quantified by MACS2 peaks. C) The total number of promoter binding peaks (by gene) from KAT7 

ChIP-seq in each cell line. D) Immunoblot of KAT7 ChIP identical to the antibody and protocol used to 

generate KAT7 ChIP-seq. E, G and I) Average occupancy of KAT7 per gene per base of highly active 

genes (>10 FPKM), active genes (0-10 FPKM) and inactive genes (FPKM=0). F, H and J) Significant 

higher promoter (TSS±2kb) KAT7 in highly active genes than active genes and inactive genes by Mann-

Whitney-Wilcoxon test. Highly active vs active: MOLM-13 (p = 3.5 × 10-227); OCI-AML3 (p = 5.35 × 10-

273); MV4-11 (p = 9.3 × 10-100); highly active vs inactive: MOLM-13 (p = 5.0 × 10-324); OCI-AML3 (p = 

5.0 × 10-324); MV4-11 (p = 0). Gene expression dataset was obtained from the study performed Tzelepis 

et al. ChIP-seq bioinformatics analysis and the corresponding figures are generated in collaboration with 

Muxin Gu. 

 

4.7 Transcriptomics changes following KAT7 loss 

 

To identify the genes which are regulated by KAT7, we performed RNA sequencing (RNA-seq) in 

MOLM-13, OCI-AML3 and MV4-11 for KAT7 knock-out cells and empty as control. From the time 

course experiment presented earlier in this chapter, KAT7 protein was reduced as early as day 3 post- 

transduction and was depleted by day 4. We, therefore, extracted mRNA from cells on day 3 and day 5 

post-transduction to capture primary and secondary gene expression changes respectively.  

 

Figure 4.12 showed the number of up and downregulated genes for MOLM-13, OCI-AML3 and 

MV4-11. Expectedly, day 3 has a significantly fewer number of differentially expressed genes 

compared to day 5 in all cell lines. By day 3 of KAT7 knock-out, we observed 317 up-regulated and 

227 down-regulated genes in the MOLM-13 cell line. For MV4-11 and OCI-AML3, the transcriptomic 

response to KAT7 knock-out is slower and by day 5 reaches comparable numbers of differentially 

expressed genes as MOLM-13 day 3 (Figure 4.12). The relationship between KAT7 binding and gene 

expression changes in MOLM-13, MV4-11 and OCI-AML3, will be discussed further in the next 

chapter, particularly in the context of MLL-fusion transcriptional programme.   
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Figure 4.12 Gene expression changes after KAT7 knock-out 

Number of differentially expressed genes in KAT7 knock-out versus empty control on day 3 and day 5 

post-transduction in MOLM-13, OCI-AML3 and MV4-11. BFP-positive cells were sorted by flow 

cytometry on day 3 post-transduction and RNA were harvested at the respective time points. RNA-seq 

bioinformatics analysis and the corresponding figures are generated in collaboration with Muxin Gu 

and Swee Hoe Ong. 

 

4.8 Discussion 
 

The catalytic activity of KAT7 is essential for the proliferation of MLL-fusion AML. Drastic reductions 

in H3K14ac and H4K12ac can be seen following the loss of KAT7 protein and in E508Q catalytic dead 

KAT7, however, it remains unclear if one modification or a combination of acetylation at both residues 

are responsible for the phenotype. Our findings hint that H3K14ac might be more critical in MOLM-

13, however, we cannot discount the additive effects of the lysine acetylation deposited by KAT7. 

Regrettably, we did not generate E508Q mutant in other AML cell lines therefore, unable to make 

broader conclusions on the dominant negative effects of the catalytic mutant of KAT7. Moreover, the 

extent to which non-histone protein acetylation by KAT7 in mediating transcription of target genes 

warrants further investigation as acetylation of nuclear and cytoplasmic protein such as transcription 

factors and tumour suppressors by other HATs have previously been reported (Roe et al., 2015; Sharma 

et al., 2000; Sheikh and Akhtar, 2018). Interestingly, both erythroblast and embryonic knock-

down/knock-out of KAT7 in mice showed depletion of H3K14ac but not H4K12ac (Kueh et al., 2011; 

Mishima et al., 2011). KAT7 knock-down in erythroblasts also results in reduced H3K9ac levels, which 
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was not observed in our study (Mishima et al., 2011). Furthermore, H4K5ac and H3K9ac levels were 

found to increase after the knock-out of KAT7 in mouse embryos (Kueh et al., 2011). These 

observations further imply that the net change in acetylation upon KAT7 depletion is likely to be cell-

type and context-specific. In contrast to the findings of Sauer et al., we did not observe significant 

changes in H4K5ac levels, at a global level. 

 

Our attempt to generate H3K14ac ChIP-seq data has been unsuccessful, most likely due to the quality 

of the antibodies, as previously illustrated in Chapter 2. Possibly, H3K14ac levels may not be as 

abundant as other histone acetylation marks— which can also hinder the efficiency of ChIP experiments. 

Generating H3K14ac and H4K12ac ChIP-seq datasets from our cellular models will be pivotal in 

enhancing our understanding of whether these marks are important for the expression of KAT7-bound 

genes. Importantly, we confirmed that KAT7 promoter occupancy positively correlates with gene 

expression, typical of the effects of HATs and histone lysine acetylation (Sheikh and Akhtar, 2018).  
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Chapter 5: Mechanistic link between KAT7 and the pathogenesis of 

MLL-fusion AML  
 

5.1 Introduction 
 

Genetic ablation of KAT7 had the most pronounced anti-leukemic effects in AML cell lines 

harbouring the translocations involving the mixed-lineage leukemia (MLL or KMT2A) gene based on 

the findings described in Chapter 3. Partial tandem duplication (PTD) mutations of the MLL gene 

have also been found in patients, although less commonly than translocations of MLL (Ballabio and 

Milne, 2012; Meyer et al., 2013, 2018; Zeisig and So, 2015). Despite the fact that only 5-10% of adult 

acute leukemias possess the MLL gene fusion (Chen and Armstrong, 2015; Meyer et al., 2013, 2018; 

Slany, 2016), MLL-fusion leukemia generally characterize a subtype of the disease associated with a 

poor prognosis (Ayton and Cleary, 2001; Krivtsov and Armstrong, 2007; Papaemmanuil et al., 2016; 

Saultz and Garzon, 2016). The wild-type MLL gene encodes a histone methyltransferase that catalyzes 

the methylation of histone 3 lysine 4 residues (H3K4) and is crucial for the regulation of embryonic 

development and hematopoiesis (Jude et al., 2007; Yagi et al., 1998; Yokoyama, 2015, 2017; Yu et al., 

1995). More than 70 fusion partners of MLL have been identified, however, the majority of the fusion 

partners are proteins involved in transcriptional elongation, namely AF9, AF4, AF6, AF10, ENL and 

ELL (Meyer et al., 2018; Slany, 2009, 2016; Zeisig and So, 2015). Interestingly, these fusion partners 

biochemically interact with one another and are part of the same protein complexes (Deshpande et al., 

2012; Zeisig and So, 2015). 

 

Target recognition and transcriptional activation of the MLL-fusion oncoprotein is hypothesized to be 

mediated through the MLL portion and the fusion partner portion, respectively (Yokoyama, 2015). 

MLL-fusion preferentially binds to non-methylated CpGs sites in the promoter-proximal regions via 

its CXXC domain of the N-terminal portion of the MLL retained in the fusion protein (Ayton and 

Cleary, 2001; Birke et al., 2002; Cierpicki et al., 2010; Yokoyama, 2017). In addition, target recognition 

of MLL-fusion protein is thought to depend on additional interactions of the N-terminal portion 

(MLL) with MENIN (Caslini et al., 2007; Grembecka et al., 2012; Kühn and Armstrong, 2015; 

Muntean and Hess, 2012; Yokoyama and Cleary, 2008; Yokoyama et al., 2005), LEDGF (Ashkar et al., 

2018; Liedtke and Cleary, 2009; Okuda et al., 2014; Yokoyama and Cleary, 2008) and PAFc (Milne et 

al., 2010; Muntean and Hess, 2012; Muntean et al., 2010; Yokoyama, 2015, 2017). The C-terminal 

portion of the fusion protein, consisting of the fusion partner, can subsequently interact and form 

multiprotein complexes with the super elongation complex (SEC), AF4 family/ ENL family/ p-TEFb 
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(AEP) complex and DotCom complex (Ballabio and Milne, 2012, 2014; Deshpande et al., 2012; Zeisig 

and So, 2015). 

 

p-TEFb (CDK9 and Cyclin T1/2) can be found in SEC, AEP and EAP complexes, whilst DOTCOM 

complex lacks p-TEFb but possesses DOT1L protein (Table 5.1). It is thus suggested that p-TEFb and 

DOT1L exist in a mutually exclusive manner with the MLL-fusion protein. However, some studies 

have reported the association of MLL fusion proteins with ENL associated protein (EAP) complex, 

which consists of both p-TEFb and DOT1L (Deshpande et al., 2012; Zeisig and So, 2015) (Table 5.1). 

The findings from these biochemical studies suggest that MLL-fusion does not act in isolation to 

regulate the leukemic transcriptional programme.  

 

 

Complex name AEP SEC DotCom EAP 

Components 

p-TEFb p-TEFb   p-TEFb 

AF4 AF4   AF4 

AF5Q31 AF5Q31   AF5Q31 

ENL ENL ENL ENL 

  AF9 AF9   

    DOT1L DOT1L 

Others   ELL1-3 AF10, AF17 

LAF4, 

CBX8 

 

Table 5.1 Multiprotein complexes associated with MLL-fusion proteins 

 

In Chapter 4, we established a positive correlation between KAT7 promoter binding and gene 

expression. In this chapter, we explored the molecular mechanism by which KAT7 regulate the 

expression of MLL-fusion target genes.  

 

5.2 Majority of the MLL-AF9 and MLL-AF4 spreading targets are bound by KAT7  
 

Analysis of ChIP-seq in MOLM-13, MV4-11 and OCI-AML3 revealed that KAT7 predominantly 

occupied gene promoter, compared to other DNA regulatory elements, as described in Chapter 4. 

MLL-fusion protein binding to non-methylated CpG promoter-proximal regions of target genes is a 

popular model of gene activation by MLL-fusion (Kerry et al., 2017; Marschalek, 2011; Okuda et al., 
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2014; Yokoyama, 2015, 2017). To find shared targets between KAT7 and MLL-fusion, we compared 

KAT7 promoter peaks with existing MLL-AF9 (from THP-1) and MLL-AF4 (from MV4-11) ChIP-

seq datasets (Kerry et al., 2017), specifically those defined as “spreading targets”. Genes in which MLL-

fusion bind to at the gene promoter and spread to the gene body are coined “spreading targets”, whilst 

genes that have promoter-restricted MLL-fusion binding patterns are termed “non-spreading targets” 

(Kerry et al., 2017). Furthermore, spreading targets are associated with higher gene expression 

compared to non-spreading targets and it is suggested that the expression of spreading MLL-fusion 

target genes are important for this subtype of leukemia (Kerry et al., 2017). The MLL-AF9 and MLL-

AF4 spreading gene lists were applied filters to remove duplicates and non-coding genes, giving rise to 

150 and 117 genes respectively. 35.5% (53 out of 150) of MLL-AF9 target genes are also bound by 

MLL-AF4, while 54.7% (53 out of 117) of MLL-AF4 spreading targets are bound by MLL-AF9 (Figure 

5.1). 

 

75.3% of MLL-AF9 spreading targets are bound by KAT7 at the promoter in MOLM-13 (Figure 5.2A). 

In the case of MV4-11, a striking 98.3% of MLL-AF4 spreading targets are bound by KAT7 at the 

promoter (Figure 5.2C). Majority of the MLL-AF9 and MLL-AF4 target genes are also bound by 

KAT7 in OCI-AML3, a cell line without MLL-fusion and this overlap is statistically significant (Figure 

5.2B, D). As KAT7 additionally binds to promoter regions that are not occupied by spreading MLL-

AF9 or MLL-AF4 and that OCI-AML3 (without MLL-fusion) has a large number of KAT7 peaks, 

together suggest that the genome-wide chromatin occupancy of KAT7 may not be dependent on 

MLL-fusion.  

Figure 5.1 Shared spreading targets of MLL-AF9 and MLL-AF4 

Shared spreading targets  
PBX3 

JMJD1C 
CDK6 
REEP3 
FOXP2 
ARID2 
MEF2C 
FOXP1 
FLT3 

SENP6 
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MLL-AF9 and MLL-AF4 ChIP-seq dataset from THP-1 and MV4-11 respectively (Kerry et al., 2017). 

Spreading defines the binding pattern of MLL-fusion at the gene body in addition to the promoter of the 

target genes. The number of unique, protein-coding targets for MLL-AF9 (n = 150) and MLL-AF4 (n = 

117). Notable MLL-fusion spreading targets that are shared between MLL-AF4 and MLL-AF9 are listed.  

 

 

Figure 5.2 Majority of MLL-AF9 and MLL-AF4 spreading targets are co-bound by KAT7 at the 

promoter 

Significant overlap between KAT7-bound and MLL-AF9 spreading targets in A) MOLM-13 (p = 3.9 × 

10-34) and B) OCI-AML3 (p = 4.8 × 10-15) and between KAT7-bound and MLL-AF4 spreading targets in 

C) MV4-11 (p = 1.4 × 10-22) and D) OCI-AML3 (p = 3.6 × 10-16) by Fisher’s Exact test. 

 

5.3 Top KAT7 bound genes are MLL-fusion targets in MOLM-13 and MV4-11 but 

not in OCI-AML3 
 

To investigate the relationship between KAT7 binding and MLL-fusion binding, we ranked KAT7 

occupied promoter from low-to-high in MOLM-13, MV4-11 and OCI-AML3. Strikingly, we observed 

that the top KAT7-bound genes in MOLM-13 are MLL-AF9 exclusive spreading targets or are shared 

targets between MLL-AF9 and MLL-AF4 (Figure 5.3A). Correspondingly, genes with the highest 

KAT7 promoter occupancy in MV4-11 are either MLL-AF4 exclusive spreading targets or targets co-

bound by MLL-AF9 and MLL-AF4 (Figure 5.3B). In contrast, genes with the highest KAT7 promoter 

occupancy in OCI-AML3 are neither MLL-AF9 or MLL-AF4 bound genes (Figure 5.3C-D). This may 

suggest that KAT7 recruitment to these specific promoter sites may be MLL-fusion dependent in the 

context in which MLL-AF9 or MLL-AF4 is present.  

A C 

B D 
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Figure 5.3 Ranked normalized KAT7 promoter occupancy signal 

KAT7 promoter occupancy was normalized for comparison of ChIP-seq signal between cell lines. Blue 

and green dots represent the MLL-AF9 (THP-1) and MLL-AF4 (MV4-11) spreading genes respectively, 

dataset derived from Kerry et al. Top KAT7-bound genes in A) MOLM-13 and B) MV4-11 are bound by 

MLL-AF9 (blue), MLL-AF4 (green) or shared targets of MLL-AF9 and MLL-AF4 (red). C-D) Top 

KAT7-bound genes in OCI-AML3 are not targets of MLL-AF9/MLL-AF4. Normalisation was based on 

the assumption that promoter occupancy of KAT7 is unchanged for the majority of protein-coding genes. 

Promoter occupancies (±1000bp of TSS) of all the 20291 protein-coding genes were calculated for each 

background-subtracted sample and normalised to the median value of promoter occupancies.  

 

5.4 Genes co-bound by MLL-AF9 and KAT7 at promoter are downregulated after 

KAT7 loss in MOLM-13 
 

We next investigated whether KAT7 regulates the transcription of MLL-AF9 targets by examining how 

gene expression changes in KAT7 knock-out cells compared to wild-type using RNA-seq. The up and 

down-regulation of gene expression may be directly affected by the KAT7 loss or due to indirect effects. 

To establish which genes are directly regulated by KAT7, we separated the genes that are occupied by 

KAT7 at the promoter with those whose promoters are not bound by KAT7 and examined whether 
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their expression levels change following KAT7 knock-out. We found that KAT7-bound genes that 

demonstrate spreading MLL-AF9 patterns in MOLM-13 are almost exclusively associated with 

decreased transcript levels at both day 3 and day 5 (Figure 5.4A) in marked contrast to the same genes 

in the OCI-AML3 cell line (Figure 5.4B). In MOLM-13 day 3, 20 (of 150) MLL-AF9 spreading targets 

are significantly downregulated (Figure 5.4C) and these genes display significantly higher KAT7 

occupancy than upregulated (n=4) or non-differentially expressed (n=126) genes (Figure 5.4D). These 

findings are in keeping with down-regulation likely caused by the KAT7 loss at promoters, whereas the 

up-regulation is likely caused by indirect effects.  

 

Notably, no association between high KAT7 occupancy and down-regulation was observed in OCI-

AML3, a cell line which lacks an MLL-fusion oncoprotein (Figure 5.4E-F). Furthermore, in MOLM-13 

only genes that are bound by both KAT7 and demonstrate an MLL-AF9 “spreading” pattern are down-

regulated, whilst the ones bound only by KAT7 are not (Figure 5.4G). These data suggest that KAT7 

likely operates in conjunction with MLL-AF9 to activate leukemogenic genes at these specific loci. As 

expected, the OCI-AML3 cell line displays no significant difference in expression changes with respect 

to the binding of KAT7 at a genome-wide level or among MLL-AF9 bound targets (Figure 5.4H). 
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Figure 5.4 Transcriptomics change after KAT7 knock-out and the chromatin occupancy of KAT7 in 

MOLM-13 and OCI-AML3 

A-B) Heat map showing promoter KAT7 occupancy (Z-transformed log10 values), log2 fold changes of 

expression between KAT7 knock-out and wild-type (WT) in day 3 and day 5, for the 150 MLL-AF9 

spreading genes. Data for heat maps were unscaled and ordered by hierarchical clustering of Euclidian 

distances. C) Scatter plot of promoter KAT7 occupancy against the change of expression in KAT7 knock-

out for MLL-AF9 targets and MEIS1. Significantly up- and down-regulated genes (adjusted p < 0.05 by 

DESeq2) are highlighted in blue and red respectively. D) Significantly higher promoter KAT7 in down-

regulated genes compared to up-regulated genes (p = 0.0027) and genes that are not differentially 

expressed (ND, p = 2.7 × 10-7) by one-tailed T-test. ND versus up-reg p = 0.96. E) Same as C for OCI-

AML3. F) Same as D for OCI-AML3 showing no significant difference. Down-reg versus up-reg p = 0.75, 

down-reg versus ND p = 0.59 and up-reg versus ND p = 0.08. G) Distribution of change of gene 

expression (log2 scale) for KAT7-bound (>10 normalized units) and unbound (zero occupancy) genes in 

MOLM-13. On the genomic scale (Gen) two-tailed T-test p = 0.51 (18,622 unbound versus 85 bound 

genes) and within MLL-AF9 targets p = 4.3 × 10-5 (123 unbound versus 27 bound genes). H) Same as G 

for OCI-AML3. Genomic p = 0.057 (14766 unbound, 3941 bound) and MLL-AF9 targets p = 0.54 (78 

unbound, 72 bound). 

A B C D

E F G H
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5.5 Loss of KAT7 results in general gene expression changes in MV4-11 that is not 

associated with MLL-AF4 spreading targets 
 

Binding of KAT7 does not show an obvious correlation with the gene-expression change of MLL-AF4 

spreading targets in MV4-11 on day 3 and day 5 after KAT7 knock-out (Figure 5.5A). Unexpectedly, 

the changes in gene expression on day 3 and day 5 appears to be contrasting (Figure 5.5A). Majority of 

the targets co-bound by spreading MLL-AF4 and KAT7 are not differentially expressed between 

KAT7 knock-out and empty control on day 3 post-transduction in MV4-11 (Figure 5.5B). On day 3, 

only 9 (of 117) MLL-AF4 targets are significantly downregulated, and the remaining (n=108) are not 

differentially expressed (Figure 5.5B-C). The targets co-bound by MLL-AF4 and KAT7 targets which 

are significantly downregulated on day 3 are NUDT5, JMJD1C, PTEN, FLT3, NUSAP1, RAB27A, 

MRPL33, ITGA4 and SATB1. Notably, there is no significant difference in KAT7 promoter occupancy 

between down-regulated and non-differential expressed MLL-AF4 spreading target genes (Figure 

5.5C), contrasting the trends observed in MOLM-13 (Figure 5.4C-D).  

 

When comparing MLL-AF4 targets in terms of those that are bound or unbound by KAT7 at the 

promoter, those that are occupied by KAT7 (n=60) are downregulated compared to loci that are 

unbound by KAT7 (n=57) on day 3 and the difference in gene expression between these two 

population of genes is statistically significant (Figure 5.5D). This is also the trend at a genome-wide 

level, excluding MLL-AF4 spreading targets (Figure 5.5D). These data suggest that the loss of KAT7 in 

MV4-11 results in the general downregulation of genes bound by KAT7 at the promoter and only a 

minor subset of MLL-AF4 spreading target genes are significantly downregulated despite the majority 

of the MLL-AF4 spreading genes are mutual targets of KAT7. 

 

Unexpectedly, although being co-bound by KAT7 and MLL-AF4, established MLL-fusion targets such 

as MEIS1 and PBX3 did not appear to be differentially expressed in KAT7 knock-out compared to 

empty control by RNA-seq on day 3 and day 5 post-transduction. Therefore, we analysed a set of well-

studied MLL-fusion targets, most of which are associated with spreading MLL-AF4 (PBX3, MEIS1, 

CDK6, BCL2, JMJD1C and SENP6) and some associated with non-spreading MLL-AF4 (HOXA9 and 

MYC). We also included a few genes of the HOXA cluster that are not bound by MLL-AF4 in MV4-11 

(HOXA5, HOXA6, HOXA10 and HOXA11) to investigate how they change in gene expression. We 

analysed the same RNA extracts that were submitted for RNA-seq by RT-qPCR to compare the output 

of two different methods that assess transcriptomics changes. Spreading MLL-AF4 targets PBX3, 

MEIS1, CDK6, BCL2, JMJD1C and SENP6 are strongly downregulated in KAT7 knock-out compared 

to wild-type by RT-qPCR on day 5 (Figure 5.5E). Only JMJD1C was significantly differentially 
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expressed in RNA-seq analyses. Genes not bound by MLL-AF4 in MV4-11 such as HOXA10 and 

HOXA11 also appears to be downregulated by RT-qPCR. The inconsistency between RNA-seq and 

RT-qPCR results should be further investigated.  

 

 

 

Figure 5.5 Transcriptomics changes in MV4-11 after KAT7 knock-out and the chromatin occupancy 

of KAT7 

A) Heat map showing promoter KAT7 occupancy (Z-transformed log10 values), log2 fold changes of 

expression between KAT7 knock-out and wild type (WT) in day 3 and day 5, for the 117 MLL-AF4 

spreading genes. Data for heat maps were unscaled and ordered by hierarchical clustering of Euclidian 

distances. B) Scatter plot of promoter KAT7 occupancy against the change of expression in KAT7 knock-

out for MLL-AF4 targets. Significantly up- and down-regulated genes (adjusted p < 0.05 by DESeq2) are 

highlighted in blue and red respectively. C) No significant difference in KAT7 occupancy in down-

regulated genes compared to genes that are not differentially expressed genes (ND, p = 0.39) by one-
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tailed T-test. D) Distribution of change of gene expression (log2 scale) for KAT7-bound (>10 normalized 

units) and unbound (zero occupancy) genes in MV4-11. On the genomic (Gen) scale two-tailed T-test p 

= 2.7 × 10-42 (17619 unbound versus 1121 bound genes) and within MLL-AF4 targets p = 2.2 × 10-3 (57 

unbound versus 60 bound genes). E) Changes in gene expression of established MLL-fusion targets 

between KAT7 knock-out and empty control by RT-qPCR using the same RNA extract submitted for 

RNA-seq. 

 

5.6 Auxin-inducible degron (AID) system for rapid KAT7 protein degradation  
 

To study the acute effects of KAT7 depletion, we utilized the auxin-inducible degron (AID) system to 

rapidly eliminate KAT7 protein in cells (Nishimura et al., 2009). This system requires two components. 

Firstly, the protein of interest needs to be tagged with a mini-AID (mAID) peptide, a 68 amino acid 

fragment of the original AID (Natsume et al., 2016; Nishimura and Kanemaki, 2014). Secondly, the 

plant-specific F-box protein transport inhibitor response 1 (TIR1) gene, needs to be introduced as it is 

not expressed in mammalian system (Natsume et al., 2016; Nishimura and Kanemaki, 2014). Upon the 

treatment of plant hormone auxin, the protein of interest is poly-ubiquitylated by E3 ubiquitin ligase 

and rapidly degraded by proteasome within the cell (Natsume et al., 2016; Nishimura and Kanemaki, 

2014; Nishimura et al., 2009).  

 

Briefly, we generated stable KAT7-mAID expressing MOLM-13 and MV4-11 cells followed by knocked 

out endogenous KAT7 with gKAT7 (A10), such that the only KAT7 protein in cells is the tagged KAT7-

mAID, before introducing the OsTIR1 gene (TIR1 gene derived from Oryza sativa). The MOLM-13 

AID and MV4-11 AID cells were generated after successive rounds of fluorescent marker selection 

(Figure 5.6A). We first confirmed that the proliferation of both MOLM-13 AID and MV4-11 AID cells 

were similar to that of the parental (Figure 5.6B), indicating that the expression of mAID-tagged KAT7 

and ectopic expression of OsTIR1 was not detrimental to the cells.  

 

Then, using this system, we performed time-course experiments following treatment of indole-3-acetic 

acid (IAA), which is the most abundant hormone of the auxin class (Lavy and Estelle, 2016). A dramatic 

reduction of KAT7 protein levels is observed as early as 2 hours after treatment with IAA in both 

MOLM-13 AID (Figure 5.6C) and MV4-11 AID cells (Figure 5.6D). This was associated with the 

complete loss of H3K14ac over the same time course (Figure 5.6C-D). Notably, IAA needs to be 

replenished by 72 hours, as KAT7 levels in MV4-11 is restored following 3 consecutive days of IAA 

treatment (Figure 5.6D). Furthermore, the addition of IAA to parental MOLM-13 and MV4-11 cells do 
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not affect the levels of KAT7 protein or H3K14ac (Figure 5.6C-D), thus reflect that levels of endogenous 

proteins, particularly KAT7, without mAID-tagged is unaltered by the addition of this plant hormone.  

 

Two isoforms of KAT7 can be observed in the immunoblot of MOLM-13 AID and MV4-11 AID cells, 

(Figure 5.6C-D), potentially due to post-translational modifications on KAT7 protein that alter its 

molecular weight. Noticeably, parental MOLM-13 also has two distinct isoforms of KAT7, but this is 

not as distinct in the parental MV4-11. It is unknown if the different isoforms have different roles in 

the pathogenesis of AML. 

 

Figure 5.6 Auxin-inducible degron (AID) MOLM-13 and MV4-11 induces rapid KAT7 protein 

degradation and H3K14ac depletion 

A) Schematic illustrating the sequential rounds of transduction and selection to generate the AID 

MOLM-13 and MV4-11 cell lines. B) Cell proliferation of parental and AID MOLM-13 and MV4-11 

cells. C) Time-course experiment of indole-3-acetic acid (IAA) treatment and the corresponding levels of 

500 µM indole-3-acetic acid (IAA) 500 µM indole-3-acetic acid (IAA) 
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KAT7 protein and H3K14ac in MOLM-13 AID cells (top panel) and parental MOLM-13 cells (bottom 

panel). D) Same as C for MV4-11. m, minutes; h, hours. 

 

5.7 Gene expression changes and the differentiation of IAA treated MOLM-13 AID 

and MV4-11 AID cells 

 

To address if KAT7 knock-out AID cells recapitulate gRNA-mediated KAT7 knock out cells, we 

assessed the differentiation phenotype and changes in gene expression of some of the classical MLL-

fusion targets such as PBX3, MEIS1, CDK6 and BCL2 (Dawson et al., 2011; Guenther et al., 2008; 

Kohlmann et al., 2005; Krivtsov et al., 2006; Liedtke and Cleary, 2009; Neff and Armstrong, 2013) 

following treatment of IAA in MOLM-13 AID and MV4-11 AID cells. These MLL-fusion target genes 

are all downregulated, albeit at different rates in the different cell lines (Figure 5.7A-B). For instance, 

SENP6, PBX3 and JMJD1C, which are bound by KAT7 in MOLM-13 and MV4-11 and are spreading 

target of both MLL-AF9 and MLL-AF4, is strongly reduced in MOLM-13 but to a lesser extent in MV4-

11 over a 48-hour time course. Furthermore, some genes such as MEIS1 and JMJD1C are significantly 

downregulated by 2 hours in MOLM-13. In general, the decrease in gene expression in MV4-11 AID 

cells is less pronounced compared to MOLM-13 AID cells over the same time course. Furthermore, 

myeloid differentiation (CD11b) is observed after 48 hours of IAA treatment in MOLM-13 AID, 

mirroring the phenotype seen CRISPR-Cas9 mediated KAT7 knock-out. A 41.1% increase in CD11b 

expression at 48 hours of IAA treated MOLM-13 AID compared to cells without IAA treatment (cells 

treated with water as control) (Figure 5.7C), corresponds to the differentiation phenotype on day 5 of 

gRNA-mediated KAT7 knock-out. This suggests that the auxin-inducible system leads to a more acute 

effect compared to the CRISPR-Cas9 system, therefore the former is a suitable system to assess primary 

changes immediately following the loss of KAT7 protein. No CD11b differentiation is observed in IAA 

treated MV4-11 AID cells compared to water-treated control (Figure 5.7D). This reinforces the lack of 

differentiation seen in the gKAT7-mediated knock-out MV4-11 cells in Chapter 3.6.3, strengthening 

the evidence that an increase in CD11b differentiation is not a consequent of KAT7 loss in this cell line. 
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Figure 5.7 Changes in gene expression and differentiation after IAA-induced KAT7 depletion in AID 

MOLM-13 and MV4-11 cells 

A-B) Treatment of IAA and the downregulation of well-known MLL-fusion targets over a 48-hour time 

course in A) MOLM-13 AID and B) MV4-11 AID cells. C) Increase in CD11b expression in IAA treated 

MOLM-13 AID (red histogram) compared to H2O treated control (grey histogram) at 48 hours of IAA 
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treatment. D) Similar levels of CD11b expression in IAA treated and H2O treated MV4-11 AID cells at 

48 hours of IAA treatment.  

 

5.8 Loss of KAT7 and the occupancy of MLL-fusion proteins 
 

Given that the majority of MLL-AF4 and MLL-AF9 spreading targets are bound by KAT7, we sought 

to examine if KAT7 is needed for the recruitment of MLL-fusion to its target at the promoter region. 

Table 5.2 summarizes the genes of interest and whether its promoter region is bound by spreading 

(SP) or non-spreading (NSP) MLL-AF9 and MLL-AF4. The time point at which the genes are 

significantly downregulated in the KAT7 knock-out RNA-seq dataset for MOLM-13 and MV4-11 are 

also indicated.  

 

 
 

Table 5.2 Selective established MLL-fusion targets and the binding profiles of KAT7, MLL-AF9, 

MLL-AF4 and the earliest time point of gene down-regulation following KAT7 knock-out. 

Selective KAT7 targets that are also well-known targets of MLL-fusions. A tick in the KAT7 column 

means there is binding of KAT7 at the promoter region of the gene in both MOLM-13 and MV4-11. 

MLL-AF9 and/or MLL-AF4 occupancy with spreading (SP) or non-spreading (NSP) patterns at the 

respective genes are indicated. The earliest timepoint (day post-transduction) at which significant gene 

expression changes are detected in the respective cell lines after KAT7 knock-out from RNA-seq analysis 

is indicated in the last two columns. All gene expression changes indicated in the table are associated 

with downregulation.  

 

Chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) was performed in 

MOLM-13 AID and MV4-11 AID cells. The MLL N-terminal, AF9 C-terminal and AF4 C-terminal 

antibodies were used to probe for the chromatin occupancy of MLL-AF9 and MLL-AF4 binding in 

Gene KAT7 MLL-AF9 MLL-AF4 MOLM-13 (day) MV4-11 (day)
JMJD1C � SP SP 3 5
SENP6 � SP SP 3
HOXA9 � NSP NSP
HOXA10 � NSP 3
PBX3 � SP SP 3
MEIS1 � SP 3
BCL2 � NSP SP 5
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MOLM-13 and MV4-11. In addition to the promoter of the shared targets of MLL-AF9/MLL-AF4 and 

KAT7, we also assayed the KAT-bound introns and enhancer regions of these genes.  

 

5.8.1 MLL-AF9  

 

In MOLM-13, treatment with IAA for 24 hours leads to an insignificant increase in occupancy of 

MLL-N and AF9-C at the promoter of JMJD1C and SENP6 (Figure 5.8A and C). A marginal increase 

in binding of MLL-AF9 upon the loss of KAT7 is similarly observed for HOXA9 and HOXA10, 

although more replicates are needed to determine statistical significance (Figure 5.8A, C). For the 

promoter and intron binding at PBX3, a slight increase can be seen in the MLL-N portion but the 

contrary is observed for AF9-C terminal (Figure 5.8A, C). This inconsistency could reflect noise or the 

difference in occupancy of the wild-type MLL and wild-type AF9 at the PBX3 loci. Although MLL-

AF9 ChIP-seq data derived from THP-1 did not show binding at MEIS1 (Kerry et al., 2017; Prange et 

al., 2017), our ChIP-qPCR suggests that MLL-AF9 might bind to MEIS1 at both promoter and intron 

regions in MOLM-13. However, we cannot eliminate that the ChIP-qPCR signal is picking up the 

wild-type MLL and wild-type AF9 binding, therefore needs to be verified by performing MLL-C and 

AF9-N ChIP-qPCR. Moreover, the binding of MLL-N and AF9-C at BCL2 promoter and enhancer 

region is relatively weak and there are minimal changes in occupancy at these loci after the loss of 

KAT7 (Figure 5.8A, C).  

 

As a control, we performed AF9-C terminal ChIP-qPCR for the same targets in MV4-11 (Figure 

5.8D), and found low levels of AF9 occupancy at these loci, compared to MOLM-13. This is reflected 

by the low ChIP signal levels (percentage input) across all the loci and these are also similar to the 

binding signals detected at a negative, gene desert region (Figure 5.8D). Furthermore, the low 

percentage of input is unlikely to be attributed by poor antibody quality, as identical experimental set 

up using the same AF9 antibody in MOLM-13 yield approximately 100-times stronger signal (Figure 

5.8C, D). Assuming these loci are important for leukemogenesis in MV4-11, this finding could suggest 

that the MLL-AF4 associated protein complex recruited to these loci may not include the wild-type 

AF9.  

 

5.8.2 MLL-AF4 

 

After 24 hours of treatment with IAA, MLL-AF4 show similar trends of increase at all of the above-

mentioned MLL-fusion target loci in MV4-11, except for PBX3 intron (Figure 5.8B, F). Notably, 

signals of MLL-N and AF4-C at all of these loci (Figure 5.8B, F) are significantly stronger than AF9-C 
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in MV4-11 (Figure 5.8D). Repeats are needed to determine the statistical significance. Strikingly, we 

observed a statistically significant decrease in wild-type AF4 binding at these same target loci in 

MOLM-13 (Figure 5.8E). This suggests that KAT7 loss has an effect on the binding of AF4 in MOLM-

13, which could further imply that the MLL-AF9 macromolecule complex in MOLM-13 consists of 

AF4.  

 

Notably, ChIP-qPCR of MLL-N, AF9-C and AF4-C will detect signals from the wild-type 

counterparts as well as the MLL-fusion protein. Therefore, to distinguish between fusion vs wild-type, 

we need to assay MLL-C and AF9-N/AF4-N to account for the signals from the wild-type. If the slight 

increase in the recruitment of MLL-AF9 and MLL-AF4 observed at some loci following the loss of 

KAT7 is true, this could reflect some sort of compensation mechanism in order to restore the 

expression of these genes, at least in MOLM-13. However, the data thus far detects no significant 

changes in MLL-AF9 and MLL-AF4 promoter occupancy at the target loci in MOLM-13 and MV4-11, 

respectively. 
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Figure 5.8 MLL, AF9 and AF4 occupancy at KAT7-bound loci following KAT7 loss 

MOLM-13 and MV4-11 AID cells were treated with IAA for 24 hours. MLL-N terminal, AF9-C 

terminal and AF4-C terminal antibodies were used to probe for the binding of MLL-AF9 and MLL-AF4 

fusion protein at various loci of selective MLL-fusion targets in MOLM-13 and MV4-11, respectively. 

Loci are promoter region unless indicated otherwise. A, C and E) ChIP-qPCR in MOLM-13, Mean ± 

S.D., n = 3, two-tailed t-test (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). B, D and F) ChIP-qPCR in MV4-

11, n = 1.  
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5.9 Occupancy of BRD4 at MLL-fusion target loci is dependent on KAT7 in 

MOLM-13 but not in MV4-11 
                                                                                                                                                                                          

We subsequently investigated whether BRD4 occupancy at these target loci is affected by the loss of 

KAT7. This was motivated by several reasons. Firstly, BRD4 is a bromodomain protein, that is capable 

of “reading” histone acetylation marks, particularly lysine acetylation on H3 and H4 tails (Chiang, 

2009; Devaiah et al., 2016). Secondly, from the findings illustrated in Chapter 4, KAT7 is responsible 

for the global acetylation of H3K14ac and H4K12ac, which are putative marks “read” by BRD4 

(Chiang, 2009; Devaiah et al., 2016; Filippakopoulos and Knapp, 2012; Fiskus et al., 2014). Lastly, 

BRD4 interacts with and is a positive regulator of p-TEFb (a complex consisting of CDK9 and Cyclin 

T1/2), and p-TEFb is a member of various macromolecule complexes associated with MLL-fusion 

(Table 5.1) (Deshpande et al., 2012; Zeisig and So, 2015). Global BRD4 promoter occupancy is 

strongly correlated with the binding of KAT7 (Figure 5.9A). Similarly, at genetic loci co-bound by 

KAT7 and MLL-AF9 which are also downregulated in KAT7 knock-out show striking similarities in 

the binding profiles of these two proteins and BRD4 (Figure 5.9B).  

 

24 hours of IAA treatment in MOLM-13 AID cells leads to a significant decrease in BRD4 occupancy 

at promoters of JMJD1C, SENP6, PBX3, MEIS1 and BCL2, as well as introns of PBX3 and MEIS1 and 

the enhancer of BCL2 (Figure 5.10A). With the exception of the BCL2 promoter region, BRD4 

binding is also slightly reduced at these loci in MV4-11 AID cells following 24 hours of IAA treatment 

(Figure 5.10C). We further assayed how RNA polymerase 2 serine 5 phosphorylation (RNA-PolII 

pS5) levels, a modification associated with transcription initiation and necessary for the transition to 

elongation (Ahn et al., 2004; Ferrari et al., 2014; Koch et al., 2008; Komarnitsky et al., 2000; Nojima et 

al., 2018; Soutourina, 2018), are affected upon loss of KAT7, and found striking decrease in all the 

target loci assessed— including promoter and introns in MOLM-13 (Figure 5.10B). However, in 

MV4-11, the changes in RNA-PollII pS5 levels at these loci are negligible (Figure 5.10D) and this may 

explain why these genes were not differentially expressed between KAT7 knock-out and control cells 

by RNA-seq experiments. Collectively, these findings suggest that BRD4 occupancy at these MLL-

fusion target loci are dependent on KAT7 in MOLM-13 but not in MV4-11, potentially reflecting a 

different mechanism between MLL-AF9 and MLL-AF4 pathogenesis.  

 

Most of the classical MLL-fusion targets assayed showed significant gene expression downregulation 

in MOLM-13 KAT7 knock-out relative to the empty control, but these genes are not differentially 

expressed in MV4-11 (Table 5.2). The weak changes in the occupancy of BRD4 and RNA-PolII pS5 in 

MV4-11 are consistent with the transcriptomic profiles of MV4-11. In particular, among the loci 
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assayed, only JMJD1C showed a significantly reduced expression in knock-out compared to the wild-

type counterpart. It is likely that JMJD1C, along with the other selected MLL-fusion target genes are 

not the effectors responsible for maintaining the proliferation of MV4-11. The expression of the MLL-

AF4 spreading targets that are significantly downregulated upon KAT7 knock-out (NUDT5, PTEN, 

FLT3, NUSAP1, RAB27A, MRPL33, ITGA4 and SATB1), which were not assayed in this study, may 

depend on KAT7-mediated BRD4 binding for its expression and warrants further investigation. 

Alternatively, KAT7 in MV4-11 may have roles that are unrelated to BRD4 recruitment, such as the 

recruitment of other proteins via a different mechanism. Furthermore, KAT7 may be regulating 

transcription elongation rather than transcription initiation in MV4-11 and assaying RNA-PolII pS2 

can elucidate this possibility.  

 

 

Figure 5.9 Co-localization of MLL-AF9, KAT7 and BRD4 at the promoter 

Previously published BRD4 ChIP-seq in MV4-11 cell line (Gilan et al., 2016) and MLL-AF9 ChIP-seq in 

THP-1 (Kerry et al., 2017). A) Genome-wide correlation of KAT7 and BRD4 binding at the promoter. 
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B) Co-localization of KAT7, MLL-AF9 and BRD4 at the promoter of MLL-AF9 target genes JMJD1C, 

SENP6 and PBX3. Notably, the co-localization of these three proteins can also be seen at an intron of 

PBX3.  

 

Figure 5.10 Occupancy of BRD4 and RNA Polymerase II Serine 5 phosphorylation at KAT7-bound 

loci following IAA treatment 

MOLM-13 and MV4-11 AID cells were treated with IAA for 24 hours. The binding of BRD4 and RNA 

polymerase 2 serine 5 phosphorylation (RNA-PolII pS5) at the loci of various MLL-fusion targets in IAA 

treated compared to H2O treated controls. Loci are promoter region unless indicated otherwise. A) 

BRD4 and B) RNA-PolII pS5 ChIP-qPCR in MOLM-13, Mean ± S.D., n = 3, two-tailed t-test (NS, P > 

0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). C) BRD4 and D) RNA-PolII pS5 ChIP-qPCR in MV4-11, 

n = 1. 

 

5.10 Loci-specific changes in KAT7-mediated histone lysine acetylation levels upon 

IAA treatment   
 

As KAT7 loss leads to a global decrease in histone acetylation levels such as H3K14ac, we wanted to 

investigate the local changes of various H3 and H4 lysine residues that are known targets of KAT7 at 

loci co-bound by KAT7 and spreading MLL-fusion.  
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24 hours after the addition of IAA, H3K14ac levels are significantly reduced at the promoter of 

JMJD1C, SENP6 and MEIS1 in MOLM-13 AID cells, (Figure 5.11A). Additionally, an intron of PBX3 

also showed a significant decrease in H3K14ac following the loss of KAT7 in MOLM-13 (Figure 

5.11A). Data of one experimental replicate in MV4-11 suggests that H3K14ac levels are also reduced 

at the promoters of JMJD1C, PBX3, MEIS1 and BCL2, as well as at introns of PBX3 and MEIS1 (Figure 

5.11D). A similar trend is seen at these loci for H4K5ac in MV4-11 (Figure 5.11E). In MOLM-13, only 

the promoter of JMJD1C and the intron of PBX3 showed a significant decrease in H4K5ac after KAT7 

loss (Figure 5.11B). H4K8ac show a pattern of decrease at these loci in IAA treated MOLM-13 AID 

compared to control, but these changes are not statistically significant (Figure 5.11C). H4K8ac showed 

no changes at the promoter region of JMJD1C and BCL2 in MV4-11 while an increase in this 

acetylation mark is observed at the intron of MEIS1 after IAA treatment (Figure 5.11F). Promoter 

regions of SENP6, PBX3 and MEIS1, as well as the intron for PBX3, are relatively decreased in IAA 

treated MV4-11 (Figure 5.11F). For MOLM-13, local changes in H3K14ac are consistent with the 

global depletion of this histone marks by immunoblot analysis. 

 

Although not all statistically significant, KAT7 modified acetylation marks H4K5ac and H4K8ac are 

generally reduced at most loci assayed after the loss of KAT7 in both MOLM-13 and MV4-11. More 

repeats are required for MV4-11 ChIP-qPCR experiments to determine statistical significance.  

Notably, H4K5ac and H4K8ac signals are stronger compared to H3K14ac in both cell lines, which 

may be attributed to the quality of the H3K14ac antibody in recognizing the target or that the global 

levels of H4K5ac and H4K8ac are naturally more abundant than H3K14ac. It would be interesting to 

assay other KAT7-mediated histone lysine acetylation targets H3K23ac and H4K12ac to determine 

how all these histone marks change in response to KAT7 degradation in terms of genome-wide and 

loci-specific levels.   
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Figure 5.11 Changes in H3K14ac, H4K5ac and H4K8ac levels at KAT7-bound loci following 

depletion of KAT7 protein 

MOLM-13 and MV4-11 AID cells were treated with IAA for 24 hours. Loci-specific changes in KAT7-

mediated histone acetylation targets following the depletion of KAT7 protein. Loci are promoter region 

unless indicated otherwise. A) H3K14ac, B) H4K5ac and C) H4K8ac ChIP-qPCR in MOLM-13. Mean ± 

S.D., n = 3, two-tailed t-test (NS, P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). D) H3K14ac, E) 

H4K5ac and F) H4K8ac ChIP-qPCR in MV4-11, n = 1. 
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5.11 Working model for KAT7 mechanism of action in regulating the expression of 

MLL-AF9 target genes  
 

KAT7 recruits BRD4 to the promoter of MLL-AF9 targets, presumably through the acetylation of 

lysine residues on histone H3 and H4 tails. This is associated with the promoter occupancy of AF4 

protein. Binding of BRD4 and other MLL-fusion associated proteins such as AF4 drives the 

transcription of target genes (Figure 5.12A). In the absence of KAT7, acetylation on H3 and H4 tails 

are significantly reduced thereby result in the displacement of MLL-fusion associated proteins such as 

BRD4 and AF4 and consequently reduced expression of target genes (Figure 5.12B).  

 

 

 

Figure 5.12 Working model for KAT7 mechanism of action in regulating the expression of MLL-AF9 

target genes 
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5.12 MOLM-13 E508Q sensitizes cells to IBET-151 treatment  

 

The data thus far provides strong evidence that KAT7 affects the binding of BRD4 at the promoter 

regions, as well as selective introns and enhancer, of many MLL-AF9 target genes. Therapeutically, it 

is interesting to investigate if the loss of KAT7 catalytic activity could sensitize AML cells to treatment 

with BET inhibitors such as IBET-151. We utilized the E508Q catalytic dead MOLM-13 cell line (with 

the presence of endogenous KAT7), in which the mutant would mimic the effects of potential KAT7 

inhibitor. The viability of MOLM-13 E508Q mutant is significantly reduced, compared to GFP 

control, following 4 days of IBET-151 treatment (Figure 5.13). This is continuedly observed at 5 days 

of IBET-151 treatment. This enhanced sensitive in E508Q MOLM-13 cell lines compared to the 

control MOLM-13 cell suggests that BRD4 inhibitor-induced effect on viability is dependent on KAT7 

activity, further strengthening the proposed model that KAT7 acts upstream of BRD4. This finding 

may encourage the combination treatment of BRD4 inhibitor with novel KAT7 inhibitor for MLL-

fusion positive AML.   

 

 

Figure 5.13 E508Q KAT7 mutant sensitizes MOLM-13 to IBET-151 treatment. 

MOLM-13 E508Q mutant cells and MOLM-13 GFP cells were treated with 300 nM of IBET-151 for 3, 4 

and 5 days and the viability were assayed at each time-point. Mean ± S.D., n = 3, two-tailed t-test and 

p-value is indicated.  
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5.13 Discussion 

 

Together, our finding suggests that KAT7 functions downstream of the MLL-fusion proteins where it 

is involved in the recruitment of MLL-AF9 associated accessory proteins such as BRD4 and AF4 to 

multiple target loci, presumably via the regulation of histone acetylation such as H3K14ac. The AID 

system mimics a KAT7 degrader as oppose to an enzymatic inhibitor of KAT7, therefore, the potential 

physical association of KAT7 at the promoter to facilitate the binding or recruitment of BRD4 cannot 

be eliminated. However, we have shown in Chapter 4 that the catalytic activity of KAT7 is essential for 

maintaining leukemogenesis in MOLM-13, which strongly implies that the catalytic function of KAT7 

is responsible. Currently, it is not possible to distinguish whether histone or non-histone acetylation is 

functionally important. This is partly due to the lack of study on potential non-histone target of KAT7. 

Therefore, it would be valuable to perform a comprehensive analysis of the acetylated proteome 

(acetylome) before and after the loss of KAT7 protein to examine the possible protein lysine acetylation 

functions of KAT7. Furthermore, it would be interesting to investigate whether KAT7 forms protein 

complexes with MLL-AF9 and/or BRD4 at the promoter of target genes. Intriguingly, KAT7 was found 

to be co-purified with seven distinct MLL-fusion— MLL-AF9, MLL-AF4, MLL-ENL, MLL-AF1p, MLL-

CBP, MLL-EEN and MLL-GAS7 (Skucha et al., 2018). 

 

Our study strengthens previous observations that histone acetylation at the promoter of 

transcriptionally active genes facilitates the binding of BRD4 and the subsequent phosphorylation of 

RNA PolII (Dawson et al., 2011; Roe et al., 2015; Sheikh and Akhtar, 2018; Zhang et al., 2012). Data on 

the occupancy of total RNA PolII and RNA PolII serine 2 phosphorylation following KAT7 loss will 

elucidate further if KAT7 is involved in pre-initiation complex (PIC) binding and transcription 

elongation respectively. Importantly, our findings suggest that the reduction in the promoter binding 

of BRD4 following KAT7 loss is not associated with the change in occupancy of MLL-AF9 at the 

promoter and that the binding of MLL-AF9 without BRD4 is insufficient for maintaining the expression 

of its target genes, especially those highly bound by KAT7. 

 

Interestingly, an intron region of PBX3 is not only co-bound by KAT7, BRD4 and MLL-AF9, but the 

BRD4 binding at this locus is also significantly reduced in MOLM-13 following the depletion of KAT7 

protein. Also, BRD4 is known to occupy enhancer regions (Dawson et al., 2014; Lovén et al., 2013) and 

whether KAT7 plays a role in this aspect can be investigated. The extent of KAT7 in regulating 

transcription via other DNA elements such as introns and enhancers warrants further investigation, in 

particular, the functional role of HAT occupancy, and the corresponding histone acetylation marks at 

introns is not well-characterized. Studies have suggested HATs and HDACS are co-enriched at 
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promoter and introns of transcriptionally active genes (Wang et al., 2009b; Yan Matthew S. and 

Marsden Philip A., 2015). H3K14ac, among other histone acetylation marks, have the majority of peaks 

at intron and distal intergenic regions, more than those found at gene promoters (Karmodiya et al., 

2012; Yan Matthew S. and Marsden Philip A., 2015). KAT7 may additionally control gene expression 

via the binding at introns. In support of this notion, a recent study on endothelial cell (EC) gene 

regulation reported that the expression of VEGFR-2 and other EC-related genes is dependent on KAT7-

mediated H3K14ac/pan-H4 acetylation in the intragenic region (Yan et al., 2018).   

 

Despite the binding of KAT7 at a wide range of loci across the genome, only a subset of genes is 

downregulated upon KAT7 knock-out. This suggests that histone acetylation-mediated transcription 

regulation can be compensated for by other HATs at the majority of KAT7-bound loci. The dynamic 

occupancy of specific HATs and HDACs at a given genomic region likely governs the extent of BRD4 

recruitment. BRD4 is a global regulator of transcription and is essential in a wide range of cells (Roe 

and Vakoc, 2016), however, KAT7 does not appear to be broadly essential at least among AML cell lines, 

suggesting that the mechanisms by which BRD4 is recruited to target loci can be context-specific. In the 

context of MLL-AF9 driven transcription, BRD4 occupancy at the promoter is strongly dependent on 

KAT7.  
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Chapter 6: Discussion and future work 
 

Despite advances in understanding its genomics and molecular pathogenesis, AML remains fatal for 

the majority of the patients (Ferrara and Schiffer, 2013) and mainstream therapies have not changed 

significantly for several decades (Evans et al., 1961). Amongst different AML subtypes, cases driven by 

the MLL-fusion genes continue to represent a poor prognosis category (Krivtsov and Armstrong, 

2007; Papaemmanuil et al., 2016; Saultz and Garzon, 2016) and while there are recent developments in 

the field (Albrecht et al., 2016; Berthon et al., 2016; Daigle et al., 2011; Dawson et al., 2011; Gallipoli et 

al., 2015; Grembecka et al., 2012; Klaus et al., 2014; Zuber et al., 2011) clinical progress is still lacking, 

emphasising the need for new therapies.  

 

Here, we demonstrate that KAT7 represent a putative novel therapeutic target for MLL-fusion AML 

and give insights into its function in the maintenance of these leukemias, mainly in MLL-AF9 positive 

AML model. KAT7 is required for the recruitment of BRD4 and accessory proteins associated with 

transcription elongation complex such as AF4 to the promoter of MLL-AF9 target genes. Following 

reports of KAT7 as an AML-specific vulnerability from genome-wide CRISPR-Cas9 screening studies 

(Tzelepis et al., 2016; Wang et al., 2017), we are the first to decipher the underlying molecular 

mechanism of essentiality. Although no mutations in KAT7 have been found in AML cases, our 

findings accentuate KAT7 as a vulnerability that could be therapeutically exploited in AML. 

 

We are the first to elucidate a mechanistic link between KAT7 and BRD4. BRD4 is thought to be 

recruited to the promoter and enhancer regions genome-wide by lineage-specific transcription factors 

(Roe and Vakoc, 2016; Roe et al., 2015). Through the catalytic function of HATs such as p300 and CBP, 

HATs facilitate the recruitment of BRD4 by acetylation of both histone proteins and transcription 

factors (Roe and Vakoc, 2016; Roe et al., 2015). Interestingly, a study by Roe et al. investigated the 

essentiality of 17 mammalian HATs, KAT7 among one of them, in RN2 cells (murine AML with MLL-

AF9 and NRASG12D mutations). Although KAT7 was essential for the proliferation of RN2 cells, its 

transcriptomics profile following shRNA-mediated knock-down is inversely correlated with the 

transcriptomics of BRD4 knock-down cells, suggesting that KAT7 perform regulatory function in 

opposition to BRD4 (Roe et al., 2015). Instead, the gene expression of CBP and p300 knock-down 

resembles that of BRD4 knock-down. Inhibition of CBP/p300 catalytic activity or knock-down of p300 

resulted in a similar reduction of BRD4 binding at the genome-wide promoter and enhancer regions. 

Although we did not compare the global changes in gene expression upon KAT7 loss and BRD4 loss in 

our human AML models, given that BRD4 promoter occupancy at MLL-AF9 target loci is dependent 

on KAT7, ablation of KAT7 and BRD4 would predictively lead to similar mRNA changes. Conversely, 
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Roe et al., did not investigate whether loss of KAT7 resulted in reduced BRD4 occupancy in RN2 cell 

lines. The potential discrepancy of findings between our studies and the study by Roe et al. may be 

attributed to the difference between human and mice hematopoietic system. The presence of other 

oncogenic mutations in each of the models may also contribute to the identification of different effector 

HATs.  

 

Pharmacological inhibition of BET proteins, including BRD4, is an effective pre-clinical treatment for 

MLL-fusion leukemia (Chaidos et al., 2015; Dawson et al., 2011). Our studies provide evidence that loss 

of KAT7 protein results in the reduction of BRD4 occupancy at the promoter region of many canonical 

MLL-AF9 target loci. When using the AID protein-degradation system to study the molecular 

mechanism, we cannot eliminate the possibility that physical interaction of KAT7 is involved in the 

recruitment of BRD4 to these target loci. Given that potent and specific small molecules inhibiting the 

catalytic activity of KAT7 is not currently available, it is challenging to directly address this possibility 

due to the scalability of the existing experiment set up. However, we have shown through catalytic dead 

E508Q mutant KAT7 that the acetyltransferase activity of KAT7 is essential for leukemic maintenance 

in the MLL-AF9 context. It would be interesting to see if KAT7 physically associates with BRD4 and/or 

MLL-AF9 by co-immunoprecipitation experiments. Notably, our experiments conducted in this study 

does not distinguish between histone acetylation or protein acetylation. It would be interesting to 

ascertain if KAT7 also acetylates hematopoietic transcription factors, as with function identified for 

CBP/p300 (Roe et al., 2015). We cannot firmly conclude that BRD4 occupancy is mediated by KAT7-

dependent acetylation, but the evidence collectively strongly suggests this is the case.  

 

 

Yet to be addressed is how KAT7 genome-wide binding is regulated in the context of AML, particularly 

whether KAT7 is recruited by hematopoietic transcription factors important in MLL-fusion 

leukemogenesis. Although we did not find MLL-AF9 or MLL-AF4 occupancy to be significantly 

affected at various shared target loci after KAT7 protein degradation, we did observe a marginal increase 

in MLL-N and AF9-C and AF4-C occupancy. Furthermore, top KAT7 bound promoters are also 

spreading targets of MLL-AF9/MLL-AF4, suggesting that MLL-fusion may be selectively regulating 

KAT7 occupancy at these shared target loci. If MLL-fusion protein is involved in the recruitment of 

KAT7 to its target genes, a hypothetical theory could be the existence of a compensatory mechanism in 

which MLL-fusion chromatin binding increases in response to KAT7 loss in an attempt to “restore” the 

default levels of KAT7 occupancy at the target loci. A possible way to investigate whether MLL-fusion 

regulates KAT7 binding is to inhibit the chromatin binding of MLL-fusion via small molecules that 
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target the MENIN-MLL-fusion interactions or knock-down of MLL-AF9 by siRNA (Grembecka et al., 

2012; Shi et al., 2012) followed by KAT7 ChIP-Seq or ChIP-qPCR.  

 

It is possible that the chromatin binding of KAT7 and MLL-fusion is independent of one another, but 

the colocalization may depend on the same factors such as the presence of H3K36me3 and/or H3K4me3. 

As described in Chapter 1, depending on the proteins in which KAT7 associates with, the resulting 

protein complex may preferentially localize at H3K36me3 or H3K4me3. H3K36me3 can be recognized 

by the PWWP domain of LEDGF, a protein important for MLL-fusion target recognition (Eidahl et al., 

2013; Okuda et al., 2014; Yokoyama, 2015, 2017; Zhu et al., 2016), whilst H3K4me3 is a mark “written” 

by wild-type MLL protein and the wild-type MLL is essential for MLL-AF9 pathogenesis (Krivtsov and 

Armstrong, 2007; Milne et al., 2010; Rao and Dou, 2015; Thiel et al., 2010; Wang et al., 2009a).  

 

Various phenotypes reflected differences in response to KAT7 loss between MLL-AF9 and MLL-AF4 

models, notably in terms of the ability to induce differentiation and the changes in occupancy of BRD4. 

MLL-fusion can association with distinct biochemical complexes that comprise of different protein 

components (Ballabio and Milne, 2012, 2014; Deshpande et al., 2012; Zeisig and So, 2015), as mentioned 

in Chapter 5. Our findings suggest that KAT7 is not involved in BRD4 recruitment in MV4-11 driven 

by the MLL-AF4 oncogene. Furthermore, KAT7 is an essential gene in OCI-AML2 (possessing MLL-

AF6) and the genetic ablation of KAT7 induces differentiation and apoptosis in this cell line. The 

molecular mechanism by which KAT7 regulates the gene expression of MLL-AF6 transform cells 

remains elusive. In contrast to MLL-AF4 and MLL-AF9 oncoprotein, MLL-AF6 fusion protein 

homodimerizes and recruits DOT1L complex through an alternative mechanism that does not involve 

interaction with any transcriptional component (Ballabio and Milne, 2012, 2014; Deshpande et al., 2013; 

Liedtke et al., 2010; Manara et al., 2014; Yokoyama, 2015; Yokoyama et al., 2010). Regardless of the 

mechanisms of transformation by the respective MLL-fusion proteins, KAT7 is a shared vulnerability 

among our AML models with this oncogene. Therefore, the mechanisms of action of KAT7 in MLL-

fusion other than MLL-AF9 remains an interesting and important avenue for further studies. It is also 

important to replicate the mechanistic study in another MLL-AF9 model such as THP-1 or Nomo-1 to 

ensure that this is a general mechanism common to MLL-AF9 leukemogenesis.  

 

KAT7 does not appear to be involved in the haematopoiesis of human primary CD34+ progenitor and 

stem cells (HPSCs) or T-cells (Ting et al., 2018), which suggests that targeting KAT7 may not have 

detrimental effects on the development of normal blood cells. Critically lacking in this study are data 

on the effects of KAT7 loss on primary human AML cells, particularly of the MLL-fusion subtype. The 

function of KAT7 in other cell types also needs to be addressed comprehensively through appropriate 
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in vivo models. The presence of KAT7 inhibitor and/or KAT7 degrader will facilitate the efforts in 

addressing these questions. Encouragingly, the recent development of inhibitors targeting KAT6A/B 

has shown promising tumour growth inhibitory effects in vitro and in vivo (Baell et al., 2018), 

confirming direct targeting of MYST family of HATs as a valid therapeutic approach.  

 

Collectively, our findings revealed that KAT7 acts upstream of BRD4 to recruit MLL-fusion associated 

machineries to the promoter of MLL-AF9 target genes and may be an alternative therapeutic strategy 

for MLL-fusion leukemia. We anticipate that our work will motivate the development of potent small-

molecules that are highly specific against KAT7 and highlight KAT7 as a potential novel therapeutic 

target for MLL-fusion AML. 

 

 

  



 127 

References 
Adachi, N., Kimura, A., and Horikoshi, M. (2002). A Conserved Motif Common to the Histone 
Acetyltransferase Esa1 and the Histone Deacetylase Rpd3. J. Biol. Chem. 277, 35688–35695. 

Ahn, S.H., Kim, M., and Buratowski, S. (2004). Phosphorylation of Serine 2 within the RNA 
Polymerase II C-Terminal Domain Couples Transcription and 3′ End Processing. Molecular Cell 13, 
67–76. 

Albrecht, B.K., Gehling, V.S., Hewitt, M.C., Vaswani, R.G., Côté, A., Leblanc, Y., Nasveschuk, C.G., 
Bellon, S., Bergeron, L., Campbell, R., et al. (2016). Identification of a Benzoisoxazoloazepine Inhibitor 
(CPI-0610) of the Bromodomain and Extra-Terminal (BET) Family as a Candidate for Human 
Clinical Trials. J. Med. Chem. 59, 1330–1339. 

Alinari, L., Mahasenan, K. V., Yan, F., Karkhanis, V., Chung, J.-H., Smith, E.M., Quinion, C., Smith, 
P.L., Kim, L., Patton, J.T., et al. (2015). Selective inhibition of protein arginine methyltransferase 5 
blocks initiation and maintenance of B-cell transformation. Blood 125, 2530–2543. 

Ashkar, S.E., Schwaller, J., Pieters, T., Goossens, S., Demeulemeester, J., Christ, F., Belle, S.V., Juge, S., 
Boeckx, N., Engelman, A., et al. (2018). LEDGF/p75 is dispensable for hematopoiesis but essential for 
MLL-rearranged leukemogenesis. Blood 131, 95–107. 

Aubrey, B.J., Kelly, G.L., Janic, A., Herold, M.J., and Strasser, A. (2018). How does p53 induce 
apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death and 
Differentiation 25, 104–113. 

Avvakumov, N., and Côté, J. (2007). The MYST family of histone acetyltransferases and their intimate 
links to cancer. Oncogene 26, 5395–5407. 

Avvakumov, N., Lalonde, M.-E., Saksouk, N., Paquet, E., Glass, K.C., Landry, A.-J., Doyon, Y., 
Cayrou, C., Robitaille, G.A., Richard, D.E., et al. (2012). Conserved Molecular Interactions within the 
HBO1 Acetyltransferase Complexes Regulate Cell Proliferation. Mol. Cell. Biol. 32, 689–703. 

Ayton, P.M., and Cleary, M.L. (2001). Molecular mechanisms of leukemogenesis mediated by MLL 
fusion proteins. Oncogene 20, 5695–5707. 

Baell, J.B., Leaver, D.J., Hermans, S.J., Kelly, G.L., Brennan, M.S., Downer, N.L., Nguyen, N., 
Wichmann, J., McRae, H.M., Yang, Y., et al. (2018). Inhibitors of histone acetyltransferases KAT6A/B 
induce senescence and arrest tumour growth. Nature 560, 253. 

Bagger, F.O., Kinalis, S., and Rapin, N. (2019). BloodSpot: a database of healthy and malignant 
haematopoiesis updated with purified and single cell mRNA sequencing profiles. Nucleic Acids Res 
47, D881–D885. 

Ballabio, E., and Milne, T.A. (2012). Molecular and Epigenetic Mechanisms of MLL in Human 
Leukemogenesis. Cancers (Basel) 4, 904–944. 

Ballabio, E., and Milne, T.A. (2014). Epigenetic control of gene expression in leukemogenesis: 
Cooperation between wild type MLL and MLL fusion proteins. Molecular & Cellular Oncology 1, 
e955330. 

Barth, T.K., and Imhof, A. (2010). Fast signals and slow marks: the dynamics of histone modifications. 
Trends in Biochemical Sciences 35, 618–626. 



 128 

Bassett, A.R., Kong, L., and Liu, J.L. (2015). A genome-wide CRISPR library for high-throughput 
genetic screening in drosophila cells. Journal of Genetics and Genomics 42, 301–309. 

Berndsen, C.E., Albaugh, B.N., Tan, S., and Denu, J.M. (2007). Catalytic mechanism of a MYST family 
histone acetyltransferase. Biochemistry 46, 623–629. 

Berthon, C., Raffoux, E., Thomas, X., Vey, N., Gomez-Roca, C., Yee, K., Taussig, D.C., Rezai, K., 
Roumier, C., Herait, P., et al. (2016). Bromodomain inhibitor OTX015 in patients with acute 
leukaemia: a dose-escalation, phase 1 study. The Lancet Haematology 3, e186–e195. 

Bhayat, F., Das-Gupta, E., Smith, C., McKeever, T., and Hubbard, R. (2009). The incidence of and 
mortality from leukaemias in the UK: a general population-based study. BMC Cancer 9, 252. 

Birke, M., Schreiner, S., García-Cuéllar, M.-P., Mahr, K., Titgemeyer, F., and Slany, R.K. (2002). The 
MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against 
methylation. Nucleic Acids Res 30, 958–965. 

Borkin, D., He, S., Miao, H., Kempinska, K., Pollock, J., Chase, J., Purohit, T., Malik, B., Zhao, T., 
Wang, J., et al. (2015). Pharmacologic inhibition of the menin-MLL interaction blocks progression of 
MLL leukemia in vivo. Cancer Cell 27, 589–602. 

Borrow, J., Stanton, V.P., Andresen, J.M., Becher, R., Behm, F.G., Chaganti, R.S.K., Civin, C.I., 
Disteche, C., Dubé, I., Frischauf, A.M., et al. (1996). The translocation t(8;16)(p11;p13) of acute 
myeloid leukaemia fuses a putative acetyltransferase to the CREB–binding protein. Nature Genetics 
14, 33. 

Bose, D.A., Donahue, G., Reinberg, D., Shiekhattar, R., Bonasio, R., and Berger, S.L. (2017). RNA 
binding to CBP stimulates histone acetylation and transcription. Cell 168, 135-149.e22. 

Caenepeel, S., Brown, S.P., Belmontes, B., Moody, G., Keegan, K.S., Chui, D., Whittington, D.A., 
Huang, X., Poppe, L., Cheng, A.C., et al. (2018). AMG 176, a Selective MCL1 Inhibitor, Is Effective in 
Hematologic Cancer Models Alone and in Combination with Established Therapies. Cancer Discov 8, 
1582–1597. 

Calo, E., and Wysocka, J. (2013). Modification of enhancer chromatin: what, how and why? Mol Cell 
49. 

Carapeti, M., Aguiar, R.C.T., Goldman, J.M., and Cross, N.C.P. (1998). A Novel Fusion Between MOZ 
and the Nuclear Receptor Coactivator TIF2 in Acute Myeloid Leukemia. Blood 91, 3127–3133. 

Caslini, C., Yang, Z., El-Osta, M., Milne, T.A., Slany, R.K., and Hess, J.L. (2007). Interaction of MLL 
Amino Terminal Sequences with Menin Is Required for Transformation. Cancer Res 67, 7275–7283. 

Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., 
Heuer, M.L., Larsson, E., et al. (2012). The cBio Cancer Genomics Portal: An Open Platform for 
Exploring Multidimensional Cancer Genomics Data. Cancer Discov 2, 401–404. 

Čermaková, K., Tesina, P., Demeulemeester, J., El Ashkar, S., Méreau, H., Schwaller, J., Řezáčová, P., 
Veverka, V., and De Rijck, J. (2014). Validation and structural characterization of the LEDGF/p75-
MLL interface as a new target for the treatment of MLL-dependent leukemia. Cancer Research 74, 
5139–5151. 



 129 

Chaidos, A., Caputo, V., and Karadimitris, A. (2015). Inhibition of bromodomain and extra-terminal 
proteins (BET) as a potential therapeutic approach in haematological malignancies: emerging 
preclinical and clinical evidence. Ther Adv Hematol 6, 128–141. 

Chan-Penebre, E., Kuplast, K.G., Majer, C.R., Boriack-Sjodin, P.A., Wigle, T.J., Johnston, L.D., Rioux, 
N., Munchhof, M.J., Jin, L., Jacques, S.L., et al. (2015). A selective inhibitor of PRMT5 with in vivo and 
in vitro potency in MCL models. Nature Chemical Biology 11, 432–437. 

Chen, C.-W., and Armstrong, S.A. (2015). Targeting DOT1L and HOX gene expression in MLL-
rearranged leukemia and beyond. Experimental Hematology 43, 673–684. 

Chen, S., Sanjana, N.E., Zheng, K., Shalem, O., Lee, K., Shi, X., Scott, D.A., Song, J., Pan, J.Q., 
Weissleder, R., et al. (2015). Genome-wide CRISPR screen in a mouse model of tumor growth and 
metastasis. Cell 160, 1246–1260. 

Chen, X., Liu, G., and Leffak, M. (2013). Activation of a human chromosomal replication origin by 
protein tethering. Nucleic Acids Res 41, 6460–6474. 

Chen, Z., Zhou, L., Wang, L., Kazobinka, G., Zhang, X., Han, X., Li, B., and Hou, T. (2017). HBO1 
promotes cell proliferation in bladder cancer via activation of Wnt/β‐catenin signaling. Molecular 
Carcinogenesis. 

Chiang, C.-M. (2009). Brd4 engagement from chromatin targeting to transcriptional regulation: 
selective contact with acetylated histone H3 and H4. F1000 Biol Rep 1. 

Cierpicki, T., Risner, L.E., Grembecka, J., Lukasik, S.M., Popovic, R., Omonkowska, M., Shultis, D.D., 
Zeleznik-Le, N.J., and Bushweller, J.H. (2010). Structure of the MLL CXXC domain–DNA complex 
and its functional role in MLL-AF9 leukemia. Nature Structural & Molecular Biology 17, 62–68. 

Cotto, K.C., Wagner, A.H., Feng, Y.-Y., Kiwala, S., Coffman, A.C., Spies, G., Wollam, A., Spies, N.C., 
Griffith, O.L., and Griffith, M. (2018). DGIdb 3.0: a redesign and expansion of the drug–gene 
interaction database. Nucleic Acids Res 46, D1068–D1073. 

Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., 
Lodato, M.A., Frampton, G.M., Sharp, P.A., et al. (2010). Histone H3K27ac separates active from 
poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107, 21931–21936. 

Daigle, S.R., Olhava, E.J., Therkelsen, C.A., Majer, C.R., Sneeringer, C.J., Song, J., Johnston, L.D., 
Scott, M.P., Smith, J.J., Xiao, Y., et al. (2011). Selective Killing of Mixed Lineage Leukemia Cells by a 
Potent Small-Molecule DOT1L Inhibitor. Cancer Cell 20, 53–65. 

Dawson, M.A., Prinjha, R.K., Dittman, A., Giotopoulos, G., Bantscheff, M., Chan, W.-I., Robson, S.C., 
Chung, C., Hopf, C., Savitski, M.M., et al. (2011). Inhibition of BET recruitment to chromatin as an 
effective treatment for MLL-fusion leukaemia. Nature 478, 529–533. 

Dawson, M.A., Gudgin, E.J., Horton, S.J., Giotopoulos, G., Meduri, E., Robson, S., Cannizzaro, E., 
Osaki, H., Wiese, M., Putwain, S., et al. (2014). Recurrent mutations, including NPM1c, activate a 
BRD4-dependent core transcriptional program in acute myeloid leukemia. Leukemia 28, 311–320. 

Decker, P.V., Yu, D.Y., Iizuka, M., Qiu, Q., and Smith, M.M. (2008). Catalytic-Site Mutations in the 
MYST Family Histone Acetyltransferase Esa1. Genetics 178, 1209–1220. 

Deng, M., Brägelmann, J., Kryukov, I., Saraiva-Agostinho, N., and Perner, S. (2017). FirebrowseR: an 
R client to the Broad Institute’s Firehose Pipeline. Database (Oxford) 2017. 



 130 

Deschler, B., and Lübbert, M. (2006). Acute myeloid leukemia: epidemiology and etiology. Cancer 
107, 2099–2107. 

Deshpande, A.J., Bradner, J., and Armstrong, S.A. (2012). Chromatin modifications as therapeutic 
targets in MLL-rearranged leukemia. Trends in Immunology 33, 563–570. 

Deshpande, A.J., Chen, L., Fazio, M., Sinha, A.U., Bernt, K.M., Banka, D., Dias, S., Chang, J., Olhava, 
E.J., Daigle, S.R., et al. (2013). Leukemic transformation by the MLL-AF6 fusion oncogene requires 
the H3K79 methyltransferase Dot1l. Blood 121, 2533–2541. 

Devaiah, B.N., Case-Borden, C., Gegonne, A., Hsu, C.H., Chen, Q., Meerzaman, D., Dey, A., Ozato, 
K., and Singer, D.S. (2016). BRD4 is a histone acetyltransferase that evicts nucleosomes from 
chromatin. Nature Structural and Molecular Biology 23, nsmb.3228. 

DiNardo, C.D., Pratz, K., Pullarkat, V., Jonas, B.A., Arellano, M., Becker, P.S., Frankfurt, O., 
Konopleva, M., Wei, A.H., Kantarjian, H.M., et al. (2019). Venetoclax combined with decitabine or 
azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 133, 7–17. 

Ding, L., Ley, T.J., Larson, D.E., Miller, C.A., Koboldt, D.C., Welch, J.S., Ritchey, J.K., Young, M.A., 
Lamprecht, T., McLellan, M.D., et al. (2012). Clonal evolution in relapsed acute myeloid leukaemia 
revealed by whole-genome sequencing. Nature 481, 506–510. 

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and 
Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. 
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