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Abstract

This thesis examines the quantification of uncertainty in real-world engineering systems using the
multilevel Monte Carlo method. It is often infeasible to use the traditional Monte Carlo method to
investigate the impact of uncertainty because computationally it can be prohibitively expensive for
complex systems. Therefore, the newer multilevel method is investigated and the cost of this method
is analysed in the finite element framework.

The Monte Carlo and multilevel Monte Carlo methods are compared for two prototypical examples:
structural vibrations and buoyancy driven flows through porous media. In the first example, the impact
of random mass density is quantified for structural vibration problems in several dimensions using
the multilevel Monte Carlo method. Comparable eigenvalues and energy density approximations
are found for the traditional Monte Carlo method and the multilevel Monte Carlo method, but for
certain problems the expectation and variance of the quantities of interest can be computed over 100
times faster using the multilevel Monte Carlo method. It is also tractable to use the multilevel method
for three dimensional structures, where the traditional Monte Carlo method is often prohibitively
expensive.

In the second example, the impact of uncertainty in buoyancy driven flows through porous media
is quantified using the multilevel Monte Carlo method. Again, comparable results are obtained from
the two methods for diffusion dominated flows and the multilevel method is orders of magnitude
cheaper. The finite element models for this investigation are formulated carefully to ensure that
spurious numerical artefacts are not added to the solution and are compared to an analytical model
describing the long term sequestration of CO2 in the presence of a background flow.

Additional cost reductions are achieved by solving the individual independent samples in parallel
using the new podS library. This library schedules the Monte Carlo and multilevel Monte Carlo
methods in parallel across different computer architectures for the two examples considered in this
thesis. Nearly linear cost reductions are obtained as the number of processes is increased.
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Chapter 1

Introduction

"When one admits that nothing is certain one must, I think, also add that some things are
more nearly certain than others."

Bertrand Russell, Am I An Atheist Or An Agnostic? 1947

Uncertainty quantification is the modelling and characterisation of uncertainties within a system.
Assumptions and approximations are necessary to model real-world engineering systems mathemati-
cally; the more uncertainty there is in these assumptions, the less certainty there is in understanding.
Therefore, it is imperative to understand the impact of uncertainty on specific quantities of interest so
that robust systems can be designed that perform as expected.

Uncertainty in real-world engineering systems can be classified into two categories: epistemic and
aleatoric [32]. The impact of both these types of uncertainty needs to be considered to comprehensively
understand system behaviour. Epistemic, or systematic, uncertainty results from limited knowledge of
the system and the data. This uncertainty can be reduced by taking more, or better, measurements. For
example, it is hard to predict the average value rolled by a six-sided dice from only four observations,
but a better prediction could be obtained by gathering several hundred observations. In contrast,
aleatoric, or statistical, uncertainty is intrinsic to the model of the system and causes variations in the
results each time a computation is repeated. It is characterised by a probability distribution and can
be used to model a random event, which is not considered in the model system otherwise. Unlike
epistemic uncertainty, the impact of aleatoric uncertainty is not reduced by better measurements. For
example, the uncertainty in the expectation of the next roll of a six-sided fair dice is aleatoric. The
roller is no more likely to be able to predict the next outcome by rolling a dice more times; however,
the roller can be confident that the probability of rolling each number is one sixth.

Epistemic and aleatoric uncertainties are inherent in many engineering systems, such as ground-
water pollution, earthquake resistance of buildings, and weather forecasting. These three examples
highlight the importance of quantifying uncertainty in real-world problems. If uncertainties are
not considered in the first example, ill-informed pollution management strategies can result in the
unknown contamination of groundwater resources. The transport of pollution in aquifers in this
system can be modelled as a flow through porous media that is subject to epistemic uncertainties, such
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as the permeability of the aquifer, and aleatoric uncertainties, such as the weather. This can cause the
pollutant to travel at different speeds and pool in different areas of the aquifer than predicted with a
deterministic model.

For the second real-world example, it is important not just to design a building that will withstand
an idealised earthquake, but to ensure that the structure is robust to all likely earthquakes. High
frequency waves radiate from the epicentre of an earthquake and can excite resonant frequencies
of buildings, which may result in catastrophic failure. However, these waves are uncertain, hard to
measure, can radiate from different epicentres and have varying magnitudes. Therefore, to increase
the likelihood of a building surviving, the impacts of uncertainties need to be accounted for to inform
the design, so that the buildings do not resonate at the frequencies of the earthquakes they experience.

Since the 1960s, uncertainty quantification has dominated the third example, weather forecasting,
because the non-linear chaotic weather system is subject to numerous uncertainties [86]. In addition to
the aleatoric uncertainty in the numerical models, epistemic uncertainties in the initial state variables
of the atmosphere, for example temperature, humidity, winds and pressure, can result in diverging
weather forecasts [110]. Therefore, it is important to be able to quantify these uncertainties to
understand long term weather trends and make useful predictions.

Consideration of uncertainty is not a new idea, but recent developments in computer science,
engineering and mathematics have now made advances in the field possible. Despite being able
to solve larger and more complex problems, quantifying the impact of uncertainties in real-world
systems is still often considered too expensive without making model simplifications. So, much
research considers deterministic cases, which may, or may not, provide a good indicator of real-world
performance. The research in this thesis develops and applies a new method to enable uncertainty
to be quantified in real-world engineering systems in feasible time frames. In the remainder of this
chapter, a review of uncertainty quantification methods is presented in Section 1.1, and in Section 1.2
an overview of the work in this thesis is given.

1.1 Methods for uncertainty quantification

The canonical approach for quantifying uncertainty in engineering systems is the Monte Carlo (MC)
method. This method is inherently very simple: the expectation of a quantity of interest (QoI), Q, is
estimated by computing the average value of the QoI over N samples,

E[Q] =
1
N

N

Â
i=1

Q(wi), (1.1)

where wi is the ith sample from a probability space [85, 89].
The MC method was used in 1873 to experimentally determine the value of p [56] by throwing

matchsticks. However, it was not until the 1940s that this method was further developed and used
to compute probabilistic problems in operational research and nuclear physics [57]. Now, MC
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(a) Traditional MC samples. (b) Quasi-MC samples.

Figure 1.1: Examples of sampling distributions for MC based methods. Fig (a) shows an example of a
uniform distribution and Fig (b) shows a Sobol sequence.

based methods have a much wider application in modern engineering, since stochastic problems are
commonplace.

The main limitation of the MC method is that it is slow to converge. Consequently, it can be
prohibitively expensive to sample enough of the probability space to accurately quantify the QoI
when solving a single instance could take hours or days. Alternative methods have been developed to
overcome this cost, which are discussed below: MC based methods, stochastic methods, multilevel
methods, and a tailored method for vibration problems known as statistical energy analysis.

1.1.1 Monte Carlo based methods

Two widely used approaches to accelerate the traditional MC method are the quasi-Monte Carlo
method and variance reduction techniques. The quasi-MC method accelerates convergence of the
expectation of the QoI by using specially chosen samples, but unlike the MC method makes assump-
tions about the smoothness of the problem [91]. In the traditional MC method, the samples might
be clustered because the individual samples are independent, see Figure 1.1a, but this method can
still be advantageous because the error is independent of the stochastic dimension. In contrast, the
clustering of samples is avoided in the quasi-MC method by choosing a correlated set of samples, for
example a Sobol sequence (Figure 1.1b). This can improve the convergence rate of the method [19],
but in practice only makes a difference if the number of samples is large and the number of stochastic
dimensions is small.

Variance reduction methods decrease the error in the MC estimator for a given computational
effort. Such methods include importance sampling, stratified sampling and using control variates.

• Importance sampling: The sampling distribution is distorted by sampling the important regions
in the sample space more frequently, which reduces the variance of the estimator [66]. The
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expectation of the QoI from a target probability space is approximated by a weighted average of
random draws from a similar space [58]. The approximation accuracy depends on the choice of
the second space; the closer the spaces, the fewer samples that are needed [117]. This method
is limited because it requires a good approximation of the target probability space to be known
a priori.

• Stratified sampling: The sample space is stratified and estimates of the QoI are computed from
each stratum to optimise the sampling of a fixed number of stratum and samples. An adaptive
method was formulated where more samples were taken from regions of the probability space,
which were found to have largest variation. This method has better convergence rates for the
expectation of the QoI than the traditional stratified sampling method, but is limited if the
sample space cannot be split easily into different stratum [81].

• Control variate method: Information about the errors in estimates of known quantities are
exploited in this method to reduce the error in an estimate of an unknown quantity. The control
variate method replaces the problem of interest with two parts. The first part, the control variate,
is an estimator of the problem, which can be known analytically or is computationally cheap
to compute. The second part considers the difference between the control variate and exact
problem. If the control variate is a good representation of the exact problem, the variance will
be small and few expensive samples will be required.

1.1.2 Stochastic Galerkin methods

Stochastic methods have been developed as an alternative to the MC method for quantifying the
impact of uncertainty on engineering systems. In these methods, the solution to a stochastic partial
differential equation (SPDE) is represented using a polynomial chaos expansion, which can be formed
from polynomials with unknown coefficients [131]. However, the accuracy in the solution of is
reduced when the probability density function of the polynomial chaos expansion does not match
the distribution of the stochastic variable it is representing [41]. These infinite expansions are also
truncated in practice, which adds further error to the solution. High-order expansions are more
accurate but are computationally more expensive [31].

The coefficients of polynomial chaos expansions can be found with the following two methods:
stochastic Galerkin and stochastic collocation methods. In the stochastic Galerkin method, the error in
the truncated expansion is minimised by applying a Galerkin projection to find the unknown expansion
coefficients from the coupled equations [43, 136]; this error is bound with the estimates in Babuška
et al. [6]. The computational cost of this method can be reduced by using more efficient solvers such
as multigrid preconditioning [101].

Galerkin projection has three limitations. First, the system of complex, high dimensional, inde-
pendent equations is typically larger than the deterministic system, which can make it difficult or
impossible to find the solution with efficient and robust solvers [30, 136]. Second, computationally
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expensive high order expansions are required when the solution varies rapidly over the domain or if a
singularity exists in the random space [47, 49, 136]. Third, since the resulting equations are coupled,
a deterministic solver code cannot be re-used immediately.

The stochastic collocation method overcomes some of the limitations of the stochastic Galerkin
method. In the collocation method, the expansion is interpolated onto polynomial basis functions,
which is then evaluated at compatible collocation points. Similar to the MC method, deterministic
solvers can be used because the equations are uncoupled [7]. For multivariate problems, tensor
products of univariate quadrature approximations can be used [7, 135].

Sparse tensor grid approximations can be used to lower the cost of the method by reducing
the number of collocation points required [8, 92]. However, these methods are still expensive for
quantifying high dimensional uncertainty, so the MC method may still be cheaper when the number
of random parameters is high.

1.1.3 Multilevel methods

The convergence rate of the MC and stochastic methods have been increased by generalising the
control variant approach to use a sequence of models with increasing fidelity. Kebaier [73] computed
the expectation of a QoI for a time dependent stochastic finance problem by sampling the system
many times for a coarse time step and a few additional times for a fine time step. The coarse
representation acts as the control variate and is used to increase the convergence of the method, since
it is computationally cheaper to compute than the fine representation. Heinrich [60] introduced the
multilevel idea as a generalisation of the control variate method for solving the Fredholm integral,
whereby, the value of the integral can be estimated using a number of different levels.

Giles [50] popularised the multilevel approaches from Heinrich and Kebaier as the multilevel
Monte Carlo (MLMC) method. This method uses the convergence rates of the numerical error, cost
and variance to determine the optimal number of levels and samples at each level. The MLMC method
has been further analysed for different SPDEs, see Barth et al. [11], Charrier et al. [20], Cliffe et al.
[26] and Teckentrup et al. [116]

The MLMC method has been further generalised, and applied to the stochastic collocation method,
to reduce the cost of quantifying the impact of uncertainty in the following methods:

• The multi-index Monte Carlo method [55] uses multi-dimensional levels and high-order differ-
ences to further generalise the MLMC method. This method achieves optimal convergence rates
for a wider range of problems than the MLMC method, but is more computationally expensive.

• The multifidelity Monte Carlo method [95] optimises a fixed computational budget for a set of
differing fidelity model evaluations, for example from different surrogate models, to further
generalise the MLMC method. This is beneficial when the convergence of the numerical error,
cost and variance are not well defined. However, this method requires the highest fidelity
method used to be known a priori, instead of selecting the highest fidelity model to satisfy
some numerical error tolerance.
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• The multilevel stochastic collocation method [59] uses a hierarchy of spatial and stochastic
quadrature approximations to reduce the cost of stochastic collocation methods. Convergence
rates for this method are given in Teckentrup et al. [115].

1.1.4 Statistical energy analysis

Statistical energy analysis [87] is a specific uncertainty quantification method that converges faster than
the stochastic and MC based methods for computing the energy of random vibration problems, which
is an application considered later in this thesis. In this method, the flow and storage of vibrational
energy is calculated in complicated stochastic systems by dividing the system into independent
subsystems. The total energy of the system is then computed from the time-average total of each
of the probabilistic subsystems [88]. This method is inexpensive to solve because only a relatively
coarse representation of the system is required [40].

Statistical energy analysis has been combined with finite element methods to solve larger sys-
tems [108]. In this hybrid method, some subsystems are chosen to be fully deterministic and modelled
with the finite element method, and others are chosen to be highly random and modelled with statistical
energy analysis. Non-parametric randomness, or randomness that cannot be parametrised by a finite
number of parameters, is employed in the random subsections. This results in mode shapes and natural
frequencies that conform to a Gaussian orthogonal ensemble and therefore, the mean and variance of
the vibrational energy can be predicted without any knowledge of the physical uncertainty [88].

This hybrid finite element and statistical energy method was further developed by Cicirello and
Langley [24, 25] to allow different uncertainties to be considered in the model. This was achieved
by relaxing the statistical assumption that allow only non-parametric uncertainty to be considered.
Despite this method being known as the hybrid finite element method, methods other than the finite
element method can be used to solve the deterministic equations.

Statistical energy analysis is especially useful for mid to high frequency problems where the
traditional MC method is too expensive [108]. This is because the underlying assumptions in
structural energy analysis allow simplifications to the model that make the computations tractable in
this frequency range.

1.2 Overview

This thesis examines uncertainty quantification in real-world engineering systems using the MLMC
method, since this method shows potential for investigating systems with many dimensions of
uncertainty. Uncertainty is quantified for two prototypical applications: vibration of structures
and buoyancy driven flows through random porous media. These are chosen because they are two
examples where uncertainty has a great impact on response. The impact of a random mass density
field is quantified for frequencies of vibration and energy in the vibration examples, and the impact of
a random permeability field is quantified for the porous media example.
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The finite element method is introduced in Chapter 2, bounds on the approximation error are
presented and different methods to solve the matrix equations that are formed are suggested. Methods
for representing the uncertainty in the engineering systems are also considered, in particular point
masses and Karhunen Loéve expansions.

The MLMC method is derived in Chapter 3, with particular emphasis on using the finite element
method. Cost complexity estimates are presented for both the MC and MLMC methods to highlight
the computational cost benefit and time saving of the MLMC method. The new open source library,
podS, developed for this research is also evaluated.

The cost benefit of using the MLMC method, instead of the traditional MC method, is illustrated
in Chapter 4 for structural vibration problems. Theoretical cost estimates are shown to hold for
eigenvalue problems and with the MLMC method, uncertainty can be quantified orders of magnitude
quicker. This shows that uncertainty quantification of three dimensional structures can be tractable for
random vibration problems.

In Chapter 5, different finite element formulations that can be used to model buoyancy driven
flows through porous media are presented. These formulations are used to illustrate that spurious
flows can be added to the solution if they cannot be represented on the function spaces point-wise.

The buoyancy driven flow formulations are then validated in Chapter 6 by considering the long
term behaviour of CO2 in an aquifer with background flow. The vertical averaged concentration
profile of the two dimensional finite element model is compared with an analytical one dimensional
model and a good match is obtained between the models in the parameter regime found in the aquifer.
However, in other regimes, the flow is two dimensional so the one dimensional analytical model is a
less good match.

In Chapter 7, the impact of uncertainties is considered for a pollution management example using
the validated finite element model. This shows that the MLMC method can be applied to complex
porous media systems. In this example, the CO2 sequestration model is simplified with different
boundary and initial conditions to model an unstable dense liquid on top of a lighter liquid. The
impact of the uncertainty on the amount of the dense liquid that enters the lighter liquid is successfully
quantified.

Finally, conclusions and further work are presented in Chapter 8. This chapter identifies two
main areas where this research has contributed to scientific knowledge. First, the theoretical MLMC
convergence rates are shown to hold for two real-world engineering systems. This means that it is now
feasible to quantify uncertainty in certain circumstances orders of magnitude quicker than previously
possible. Second, greater time savings can be obtained using the new software library podS. This
specifically written library schedules the samples required for the MC and MLMC methods in parallel.

The appendix includes further derivations and analysis to support the research described above.
Analytical expressions for Karhunen Loéve expansion are derived in Appendix A. More information
about podS, the library that was written to implement the Monte Carlo and multilevel Monte Carlo
methods in parallel, is given in Appendix B. Then appendices specific to the vibration application
are presented: the impact of using point masses on the regularity of the structural finite element
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formulation is considered in Appendix C and the time averaged energy density of a Kirchhoff–Love
plate is derived in Appendix D.



Chapter 2

Mathematical preliminaries

Stochasticity can be modelled in partial differential equation (PDE) governed systems using stochastic
boundary conditions, initial parameters, model coefficients and geometries [51, 116]. Multiple
deterministic samples of the stochastic PDE are required to quantify uncertainty in these systems
using MC based methods, where each sample corresponds to one realisation of the system of interest.
In this chapter, methods for solving deterministic samples of the system of interest and representing
uncertainty with stochastic model coefficients are considered.

Various numerical methods, such as finite difference, finite volume and spectral methods, can
be used to solve each deterministic sample of a PDE, but this research uses the finite element (FE)
method. An outline of this chapter is as follows. The FE method is introduced in Section 2.1 and
theoretical bounds on the approximation error are presented in Section 2.2. The FE method is then
used to approximate the solution to an abstract generalised eigenvalue problem in Section 2.3 and the
associated error bounds are presented. Common linear system solvers are discussed in Section 2.4
and two methods for representing uncertainty in the PDEs are presented: point masses in Section 2.5
and Karhunen Loéve expansions in Section 2.6.

2.1 The finite element method

Finite element methods can be used to approximate the solution to the weak form of a PDE in a
domain D 2 Rd , where 1  d  3 is the spatial dimension of the domain [67]. The domain can
be triangulated into non-overlapping simplices, K, where hK is a measure of the the size of the
simplices. The boundary of the domain, G = ∂D can be partitioned into non-overlapping regions such
that GN [GD = ∂D and GN \GD = /0, where the N and D subscripts correspond to the two types of
boundary conditions used in this thesis: Neumann and Dirichlet.

Consider finding the solution u 2 V such that

a(u,v) = L(v) 8v 2 V, (2.1)
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where V is a suitable function space, a(·, ·) is a bilinear form on V ⇥V , and L(·) is a linear functional
on V .

If the Bubnov–Galerkin method is used to approximate the weak form in equation (2.1), the
problem becomes: find uh 2 Vh such that

a(uh,vh) = L(vh) 8vh 2 Vh, (2.2)

where Vh ⇢ V .
After employing a suitable basis, B = (f1, ...,fn), for Vh, equation (2.2) can be formulated in

matrix form
AAAuuu = bbb, (2.3)

where Ai, j = a(fi,f j) and bi = L(fi). Assuming that AAA can be inverted, the solution vector, uuu, can
then be computed.

2.2 A priori error estimates

Two norms of interest are considered to analyse how accurate the finite element solutions are compared
to the exact value of the solution. First, the L2 norm, which is defined as the square root of the integral
of the solution squared,

kukL2 =

✓Z

D
u2 dx

◆1/2

. (2.4)

Then the H1 norm, which also considers the smoothness of the solution by considering the first
derivatives of the solution,

kukH1 =

✓Z

D
u2 +—u ·—u dx

◆1/2

. (2.5)

Assuming a(·, ·) is uniformly elliptic and u 2 H p+1, the error in the FE solution can be bound by
a priori estimates. The error satisfies

ku�uhkHs  Cha |u|H p+1 , (2.6)

where h is the maximum of hK ; s is the norm of interest; p is the polynomial order of the basis
functions; C is a problem dependent constant that is independent of h and u; and

a = min(p+1� s,2(p+1�m)), (2.7)

where m is the highest order derivative in the weak form [67].
From equation (2.6), the L2 error estimate with first order derivatives in the weak form is

ku�uhkL2  Chp+1|u|H p+1 . (2.8)
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This means that the solution converges with O(h2) for linear polynomial basis functions, p = 1. The
H1 error estimate with first order derivatives in the weak form is

||u�uh||H1  Chp|u|H p+1 , (2.9)

so the solution converges with O(h) for linear finite basis functions.

2.3 The generalised eigenvalue problem

Generalised eigenvalue problems are of interest for a range of problems, including structural vibration.
Consider the following variational formulation of an eigenvalue problem with multiple solutions: find
the kth solution lk 2 R and uk 6= 0 2 V such that

a(uk,vk) = lkb(uk,vk) 8vk 2 V, (2.10)

where a(·, ·) and b(·, ·) are bilinear forms on V ⇥V and (lk,uk) are listed in order of increasing size
of eigenvalue, with the smallest eigenvalue pairs being of most interest.

The Galerkin method can be used to find an approximate solution to equation (2.10). The problem
becomes: find lk,h 2 R and uk,h 6= 0 2 Vh such that

a(uk,h,vk,h) = lk,hb(uk,h,vk,h) 8vk,h 2 Vh. (2.11)

The eigenvalue problem in equation (2.11) can be formulated in matrix form using the basis
functions B = (f1, ...,fn)

AAAuuu = lllMMMuuu, (2.12)

where Ai, j = a(fi,f j) commonly defines the stiffness matrix, Mi, j = b(fi,f j) commonly defines the
mass matrix, uuu is a vector of eigenfunctions and lll is a vector of eigenvalues.

The a priori error estimate of the kth eigenvalue [67] is

lk  lh,k  lk +Ch2(p+1�m)l (p+1)/m
k , (2.13)

where C is a different constant independent of h and lk; and similar to equation (2.6), p is the
polynomial order of the basis functions and m is the highest derivative in the weak from. This means
that the eigenvalues should converge with O(h2) for linear basis functions, and O(h4) for quadratic
basis functions, if the weak form only has first order derivatives.

2.4 Linear system solvers

The solution to the finite element matrix problems in equations (2.3) and (2.12) can be computed
using either direct or iterative solvers, which have different algorithmic complexities and memory
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requirements. A discussion of solver complexity is presented here because it forms an important part
of the MLMC analysis.

As the name suggests, direct solvers compute the solution to equations (2.3) and (2.12) for a
pre-determined amount of work. As the size of the n⇥n system increases, the time taken to compute
the solution is O(n3) if the matrices are dense [46]. The computation time is less for sparse matrices,
but it is dimension dependent: the complexity of sparse direct methods is O(n3/2) in two dimensions
and O(n2) in three dimensions [72]. LU decomposition is the most common type of direct solver used
and is a modified form of Gaussian elimination. If the matrices are symmetric and positive definite
Cholesky factorisation can also be used, which is more efficient version of the LU decomposition
method.

If n is large, direct methods can be expensive and the required matrices may not fit in the
available memory. Instead, it may be possible to use iterative solvers, which generally require less
memory because smaller matrices are stored. Unlike direct methods, Krylov subspace iterative
methods approximate the solution to the matrix equations by repeatedly performing matrix-vector
multiplications, see Saad [102]. If the matrices are symmetric, the conjugate gradient (CG) method [63,
102] can be used, whereas if the matrices are non-symmetric, the generalised minimum residual
(GMRES) [103] can be used instead.

Although Saad [102] shows that Krylov subspace iterative methods are guaranteed to converge
in the absence of round-off errors, their convergence rates can be very slow. Preconditioners can
lead to more rapid convergence. Rather than solving the matrix equations in (2.3) and (2.12), they
approximate the solution to

PPP�1AAAuuu = PPP�1bbb, (2.14)

and
PPP�1 �AAA�lllMMM

�
uuu = 0, (2.15)

where PPP is the preconditioner. The closer the preconditioner is to AAA, or AAA � lllMMM, the faster the
solver converges to the respective solution. Simple preconditioners are the Jacobi and Gauss–Seidel
methods [102].

Multigrid techniques have been developed to overcome the increase in cost of iterative solvers that
sometimes occurs with increases in matrix size. These techniques exploit different mesh discretisations
to obtain optimal convergence rates for iterative methods that, are in theory, independent of matrix
size [102, 130]. These techniques can be used as solvers themselves or to precondition other iterative
methods.

The beginning of this chapter consider using FE methods to solve deterministic PDEs. When
quantifying uncertainty, inherent stochasticity in the system needs to be captured and included in the
model. The following sections consider methods for representing stochastic variables in the model.
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2.5 Point masses for vibration problems

Uncertainty can be represented in deterministic FE formulations using perturbations in stochastic
variables. For each sample of the PDE, a different realisation of the perturbation is computed.
Uncertainty in mass density can be represented by adding small amounts of mass at discrete points.
However, it does not make sense to represent all stochastic variables as point masses, or sources,
because the length scale over which the uncertain variables change is much longer than points.

Point masses can be represented mathematically by Dirac delta functions, which are added to the
FE mass matrix in equation (2.12) at any location. For N point masses located at xn 2 D, the mass
matrix is

M =
Z

D
r0uhvh +

N

Â
n=1

xnd (xn)uhvh dx, (2.16)

where xn is the magnitude of the nth point mass and r0 is the unperturbed density of the material. This
discrete representation of the mass matrix is non-smooth and includes singularities.

Using point masses to represent a stochastic field is simple and is how uncertainty is commonly
represented in the vibration literature, such as Choi et al. [21], and experimentally, such as Adhikari
et al. [2]. However, it is disadvantageous to use point masses because, as shown below, they cause
sub-optimal error convergence rates result. This is because the FE formulations are no longer smooth,
so do not meet the regularity requirements of the error estimate. There is little published analysis
into the impact that singularities in the mass matrix have on the convergence rate. Although Scott
[106] shows that the convergence of the L2 error norm, with a singular forcing term, L(v), and linear
elements, is O(h) instead of O(h2), see equation (2.8).

In Figure 2.1, the sub-optimal convergence rate of the following Poisson equation with a singular
forcing term is computed using the FEniCS libraries [4] for a unit square domain:

�—2u = d (xxx0) on D, (2.17a)

u = 0 in ∂D, (2.17b)

where xxx0 = (0.37654,0.27653) so that the singularity location does not coincide with a node for any
of the meshes considered. The exact solution to equation (2.8) is unknown so a fine approximation of
the solution is used instead. The L2 convergence rate is O(h) for linear elements, as expected from the
analysis in Scott [106], and O(h) for quadratic elements. The observed convergence rate for the H1

norm with linear elements is ⇡ O(h0.3). It is also noted that the tolerances of the eigenvalue solvers
may need to be tightened to ensure that the convergence rate of the L2 error norm is at least O(h).
This can significantly increase the number of iterations required, and so increase the cost of the solver.

A second disadvantage of using point masses is that the mean mass density of the system changes.
This is because experimentally it would be very difficult to remove significant mass from a point,
whilst keeping it intact, and numerically if too much mass is removed, the density field could go
negative, which is non-physical.
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Figure 2.1: A priori error estimates for the Poisson equation with a singular forcing term.

2.6 Karhunen-Loéve expansions

Karhunen–Loève (KL) expansions are an approach to representing variables as stochastic fields.
These expansion are a linear combination of orthogonal functions [20, 48],

X = µ +
•

Â
j=1

pn jf jx j(w), (2.18)

where X(xxx,w) is the stochastic field of interest, w is a sample of the probability space, µ is the mean
of the stochastic field, x j(w) s N(0,1) is a normally distributed random number, and f j(xxx) and n j

are the eigenfunctions and eigenvalues of a covariance kernel respectively. The probability space is
defined as (W,F ,P), where W is a sample space, or the set of all possible outcomes; F is a set of
events, where each event contains a set of zero or more outcomes; and P is a probability measure that
assigns probabilites to events [85].

The eigenfunctions and eigenvectors of the covariance kernel can be found by solving the following
Fredholm integral equation: Z

D
C(xxx,xxx0)f j(xxx0)dxxx0 = n jf j(xxx), (2.19)

where C(xxx,xxx0) is a covariance kernel, which describes the spatial covariance of the random field. The
jth eigenpair, (n j,f j) can be found either numerically or analytically, as described in the following
sections, and the eigenpairs are sorted into descending order of eigenvalues.

In practice, the expansion in equation (2.18) is truncated after the Jth largest eigenvalue,

X = µ +
J

Â
j=1

pn jf jx j. (2.20)
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Figure 2.2: Eigenvalue decay of separable covariance kernel for different dimensions and length
scales. For each dimension D = [�1.0,1.0] and s = 1.0.

The parameter J is chosen by considering the decay rate of n j, from equation (2.19), for the desired
accuracy [85]. Figure Figure 2.2 shows the decay of n j for the one and two dimensional separable
covariance kernel:

C(xxx,xxx000) = s2
d

’
m=1

e� |xm�x0m|
lm on D, (2.21)

where s2 is the variance of the covariance kernel, l is a length scale, and d is the number of spatial
dimensions. An example of a KL expansion with the covariance kernel from equation (2.21) is shown
in Figure 2.3.

The rate of the eigenvalue decay depends on the number of spatial dimensions and the length
scale of the covariance kernel. The higher the number of spatial dimensions, the slower the rate of
decay. This is because more eigenpairs are required to accurately represent higher spatial dimensions.
In addition, the smaller the length scale, the slower the decay rate. So again, more eigenpairs are
required because rougher fields can be represented on shorter length scales; however, more terms are
required in the expansion to represent them accurately.

2.6.1 Numerical eigenpair approximation

The eigenpairs of equation (2.19) can be computed numerically using Galerkin projection. This
method finds the approximate eigenfunctions f̂h, j 2 Vh and eigenvectors n̂h, j 2 R such that

Z

D

✓Z

D
C(xxx,xxx0)f̂h, j(xxx0)dxxx0

◆
th dxxx =

Z

D
n̂h, jf̂h, j(xxx)th dxxx 8th 2 Vh. (2.22)
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Figure 2.3: An example of the exponential of a KL expansion with a separable covariance kernel,
µ = 0.0, s = 1.0 and l = 0.25.

Numerical KL expansions are advantageous because they can be used to realise stochastic
functions for domains with complicated shapes, and any covariance kernel can be used. However,
this method is the computational expensive. Assembling the covariance operator and computing the
eigenpairs of dense matrices are costly operations, even if the expansion is truncated and only a few
eigenpairs are used.

To overcome the computational expense of dense matrices, Lindgren et al. [83] suggested that
Gaussian Markov random fields could be used instead of Gaussian fields. Gaussian Markov ran-
dom fields are discretely indexed and the Markov property ensures that the matrix is sparse so
computationally cheaper algorithms can be used.

2.6.2 Analytical eigenpair expressions

Analytical expressions of the eigenpairs from equation (2.19) can be found for the separable exponen-
tial covariance kernel,

C(x,x0) = s2e
�|x�x0 |

l on D, (2.23)

for the domains:

1. D1 = [�a,a],

2. D2 = [0,a],
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and multi-dimensional domains, which are the product of the one dimensional domains above.
Using analytical eigenpairs enables significantly cheaper computation of the KL expansion for these
restricted cases.

For D1 = [�a,a], the jth eigenpair is

f j(x) :=

8
<

:
A j cos(w jx), j odd,

B j sin(w jx), j even,
n j =

2s2l
w2

j l 2 +1
, (2.24)

where

A j =
1p

a+ sin(2w ja)/2w j
, B j =

1p
a� sin(2w ja)/2w j

, (2.25)

and

w j :=

8
<

:
ŵd j/2e, j odd,

w̃ j/2, j even.
(2.26)

The parameters ŵ j and w̃ j are the positive roots of the two transcendental equations:

l�1 � ŵ j tan(ŵ ja) = 0, (2.27a)

w̃ j +l�1 tan(w̃ ja) = 0. (2.27b)

The roots of equations (2.27a) and (2.27b) can be found numerically, for example using the Newton–
Raphson method. For a full derivation of these eigenpairs see Appendix A.1.

For D2 = [0,a], the jth eigenpair is:

f j = B j(lw j cos(w jx)+ sin(w jx)), n j =
2s2l

w2
j l 2 +1

, (2.28)

where

B j =

s
4w j

(l 2w2
j �1)sin(2w ja)

, (2.29)

and w j are the roots of

tan(w ja) =
2w jl

w2
j l 2 �1

. (2.30)

For a full derivation of these eigenpairs see Appendix A.2.
Since the covariance kernel in equation (2.23) is separable, in higher dimensions the covariance

kernel is the product of the one dimensional kernels,

C(xxx,xxx000) = s2
d

’
m=1

e� |xm�x0m|
lm on D, (2.31)
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Figure 2.4: Comparison of computational cost for KL expansion fields with µ = 0.0 and s = 1.0.
Fig (a) shows the analytical and numerical cost of computing expansions for different fidelity meshes
and Fig (b) shows the analytical cost of computing KL expansions that have been truncated after
different numbers of eigenvalues.

where d is the number of spatial dimensions. Therefore, the eigenfunctions and eigenvalues for d = 3
are

f j = f 1
i (x1)f 2

k (x2)f 3
l (x3), n j = n1

i n2
k n3

l , (2.32)

where the eigenpairs {n1
i ,f 1

i }, {n2
k ,f 2

k } and {n3
l ,f 3

l } are the solutions to the following one dimen-
sional problem: Z

D
s2e� |xm�x0m|

lm f m(x0)dx0 = nmf m(x), m = 1,2,3. (2.33)

2.6.3 Comparisons of methods for computing eigenvalues

The cost of realising one sample of a stochastic field has been investigated in Figure 2.4a for expansions
computed with the first four numeric and analytical eigenpairs on different fidelity meshes. One
process of a desktop computer with one Intel i7-5820K processor and 32 GiB of RAM is used. It
is much more expensive to compute numeric KL expansions in equation (2.22) using the LAPACK
package [79] than using the analytical eigenpairs in Section 2.6.2. For example, it requires less than
1 s to compute the three dimensional KL expansion for h = 0.217 using the analytical eigenpairs in
equation (2.19), but approximately 150 s with the numeric eigenpairs. It is not possible to compute
the three dimensional numeric KL expansion with a smaller cell size due to memory restrictions.

The cost of realising a stochastic field using different numbers of analytical eigenpairs is compared
in Figure 2.4b for h = 0.02. The numerical eigenpairs have not been used here because the computation
times were too great when more than four eigenpairs were used in the computation. As expected,
the cost of computing the expansions increases as more eigenpairs are considered. For example, it
takes approximately 1 s to compute a three dimensional expansion with 15 eigenpairs, but it takes
approximately 2.7 hours to compute a three dimensional expansion with 60 eigenpairs.
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It is, however, only possible to use analytical methods to compute the eigenpairs of the separable
exponential covariance kernels with interval, rectangle or box domains. For other covariance kernels
or geometries, numeric eigenpairs are required. Alternative methods, such as kriging and circular
embedding, can be used to reduce the cost of computing KL expansions using numerical eigenpairs,
but the computational cost is still higher than using analytical expansions [85].





Chapter 3

Monte Carlo based methods for
uncertainty quantification

Three Monte Carlo (MC) based methods are presented in this chapter, their relative cost complexities
are compared and practical implementations of the algorithms are given. In Section 3.1, the canonical
method for uncertainty quantification, the traditional MC method, is presented. The MC method
may be prohibitively expensive for real-world applications, so the control variate method is presented
in Section 3.2. The control variate method is then generalised in Section 3.3 to form the multilevel
Monte Carlo method (MLMC) [51]. This chapter concludes in Section 3.4 with a description of
the library, which was specifically developed for this research, to parallelise the scheduling of the
individual samples required in the MC and MLMC algorithms.

3.1 The Monte Carlo method

Uncertainty quantification involves computing the expectation, or expected value, and variance of
a QoI, Q(w), where w represents a sample from a probability space (W,F ,P). In this section, the
traditional MC method is presented.

The expectation of the continuous QoI is defined as the following Lebesgue integral

Q̃ = E[Q(w)] =
Z

D
Q(w)dP(w), (3.1)

where E[Q(w)] denotes the expectation of the QoI. Equation (3.1) can be approximated numerically
using a MC estimator.

Assuming that the systems of interest are approximated using FE methods, the approximation of
the QoI is denoted by Qh where, similar to FE methods, h is a measure of the fidelity of the model.



22 Monte Carlo based methods for uncertainty quantification

Therefore, the MC estimator, Q̃h,N , of the expectation of the QoI can be approximately defined as

Q̃h,N =
1
N

N

Â
i=1

Qh(wi), (3.2)

where N 2 N is the number of samples. As h ! 0 and N ! •, the FE approximation and sampling
errors tends to zero and Qh,N ! Q̃:

Q̃h,N
h!0���!
N!•

Q̃. (3.3)

Two useful properties of the expectation operator are as follows:

E[E[X ]] = E[X ], (3.4)

E[X +Y ] = E[X ]+E[Y ]. (3.5)

Using equation (3.4), the expectation of the MC estimator is equal to the numerical expectation of the
QoI, E[Q̃h,N ] = E[Qh]. The variance of the MC estimator V[Q̃h,N ] is given by

V[Q̃h,N ] =
1
N

V[Qh]. (3.6)

There are two sources of error in the estimator in equation (3.2): the sampling error (eV ) and the
numerical error (eh). These become obvious from considering the root-mean-square error between the
estimator Qh,N and the exact expectation,

e2 := E
⇣

Q̃h,N � Q̃
⌘2
�

= e2
V + e2

h. (3.7)

Expanding equation (3.7) by adding and subtracting the expectation of the estimator E[Q̃h,N ],

e2 = E
"✓⇣

Q̃h,N �E[Q̃h,N ]
⌘

+
⇣
E[Q̃h,N ]� Q̃

⌘2
◆#

,

= E
h
(Q̃h,N �E[Q̃h,N ])2 +2(Q̃h,N �E[Q̃h,N ])(E[Q̃h,N ]� Q̃)+(E[Q̃h,N ]� Q̃)2

i
. (3.8)

Using the property in equation (3.5), equation (3.8) becomes

e2 = E
h
(Q̃h,N �E[Q̃h,N ])2

i
+E

h
2(Q̃h,N �E[Q̃h,N ])(E[Q̃h,N ]� Q̃)

i
+E

h
(E[Q̃h,N ]� Q̃)2

i
. (3.9)

Since Q̃ = E[Q], after applying the properties from equation (3.4) and (3.5), E[E[Q̃h,N ] � Q̃] =

E[Q̃h,N ]� Q̃. Therefore, equation (3.9) becomes

e = E
h
(Q̃h,N �E[Q̃h,N ])2

i
+2(E[Q̃h,N ]� Q̃)E

h
(Q̃h,N �E[Q̃h,N ])

i
+E

h
(E[Q̃h,N ]� Q̃)2

i
. (3.10)
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Again from applying the properties in equation (3.4) and (3.5), E
h
(E[Q̃h,N ]� Q̃)

i
= E[Q̃h,N ]� Q̃ and

E
h
E[Q̃h,N ]

i
= E[Q̃h,N ]. Therefore, equation (3.10) can be simplified as follows:

e2 = E
h
(Q̃h,N �E[Q̃h,N ])2

i
+2(E[Q̃h,N ]� Q̃)(E[Q̃h,N ]�E[Q̃h,N ])+(E[Q̃h,N ]� Q̃)2,

= E
h
(Q̃h,N �E[Q̃h,N ])2

i
+(E[Q̃h,N ]� Q̃)2. (3.11)

Equation (3.11) can be further simplified because E
h
(Q̃h,N �E[Q̃h,N ])2

i
is the variance of the estima-

tor and E[Q̃h,N � Q̃] = E[Q̃h,N ]� Q̃

e2 = V[Q̃h,N ]+E
h
Q̃h,N � Q̃

i2
. (3.12)

Substituting equation (3.6) into equation (3.12),

e2 =
1
N

V[Qh,N ]
| {z }

e2
V

+E
h
Q̃h,N � Q̃

i2

| {z }
e2

h

. (3.13)

Equation (3.13) reduces to the classical Monte Carlo error estimate if the discretisation error,

E
h
Q̃h,N �Q

i2
, is assumed to be zero. Convergence of the estimator is assumed if the error is

below a certain tolerance, e2 < e2, where e is the tolerance. This tolerance is further decomposed into
the sampling error tolerance eV and the numerical error tolerance eh, so e2 = e2

V + e2
h .

The discretisation error, E
h
Q̃h,N �Q

i2
, can be bound by the usual a priori error estimates

described in Section 2.2. This means that the expectation of the numerical error in the QoI is bound by

E
h
Q̃h,N �Q

i
 caha , (3.14)

where a > 0 is a constant and ca > 0 is a constant that is independent of h . To satisfy e2  e2, the
mesh cell size is determined by e2

h  e2
h , or equivalently

h 
⇣

ehc�1
a

⌘ 1
a
, (3.15)

and the number of required samples is determined by e2
V  e2

V , leading to

N � V[Qh]e�2
V . (3.16)

The cost of computing a single sample of the PDE is assumed to be

Ci(Q(wi)) = cgh�gd , (3.17)
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where cg > 0 and g > 0 are constants that do not depend on h, and d is the spatial dimension of the
problem. Substituting equation (3.15) into equation (3.17) and assuming h = gd

a ,

Ci(Q(wi)) = cge�h
h ch

a . (3.18)

The cost is described in terms of d, since the cost parameter g typically only has a mild dependence
on d.

The total cost of computing Q̃h from N samples is bound by

C(Q̃h)  NCi, (3.19)

where it is assumed that
N = V[Q]e�2

V +1, (3.20)

to ensure the inequality in equation (3.16) holds. Substituting equation (3.18) into equation (3.19)
results in

C  cge�h
h ch

aV[Qh]e�2
V + cge�h

h ch
a . (3.21)

Further assuming the error tolerance is split such that e2
V = (1�d )e2 and e2

h = de2, where d 2 (0,1),
the bound on the cost in equation (3.21) can be re-written as

C  (1�d )�1d� h
2 cgch

aV[Qh]e�2�h + cgd� h
2 ch

ae�h . (3.22)

The cost of the MC method is therefore O(e�2�h) or O(e�2� gd
a ). If the discretisation error is not

considered, this simplifies to the classical MC estimate of O(e�2).

3.1.1 Practical implications

According to the cost bound in equation (3.22), the cost of computing high dimensional models with
large d, and slow-to-converge models with small a , is amplified. This amplification is shown through
two examples:

• High dimensional model: The cost of computing a QoI with a = 1, from a two dimensional
(d = 2) FE model, using sparse LU factorisation (g = 3/2) is O(e�5), whereas, in three
dimensions (d = 3), the cost is O(e�8), since g = 2 for sparse LU factorisation. This extra
dimension causes the rate of convergence of the cost to increase by three. Figure 3.1a illustrates
the impact of these cost convergence rates on the time taken to quantify uncertainty. If the
simulation takes less than 10 s for the expectation of a QoI to converge to a tolerance of 0.1 for
both problems, the two dimensional model would take six hours to converge to a tolerance of
0.01, whereas the three dimensional model would take 240 days.

• Slow-to-converge model: The method for adding uncertainty can cause the cost convergence
rate to vary, see Section 2.5. Computing a QoI from a one dimensional (d = 1) smooth FE
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Figure 3.1: Illustration of practical implications of the MC method. Fig (a) shows the impact on
cost of the dimensionality of the problem and Fig (b) shows the impact on cost of the finite element
convergence rates.

formulation may have a = 4. However, using a non-smooth formulation, for example caused
by representing uncertainty with point masses, may result in a = 1. Assuming g = 1, the cost
of the MC simulation changes from O(e�2.25) to O(e�3.0). Figure 3.1b illustrates the impact of
these cost convergence rates on the time taken to quantify uncertainty. If the simulation takes
less than 10 s for the expectation of a QoI to converge to a tolerance of 0.1 for both models,
the a = 4 model would take 4 minutes to converge to a tolerance of 0.01, whereas the a = 1
model would take 23 minutes.

3.1.2 Implementation

The implementation of the MC method in this thesis approximates the expectation Q̃h and vari-
ance V[Q̃h] of the estimator of the QoI for an initial number of samples. This initial approximation
is then used to compute the necessary number of samples from equation (3.20). Once the necessary
samples have been computed, the size of the sampling error, eV from equation (3.13), is checked to
ensure e2

V  e2/2. If convergence is not obtained, a new approximation for the number of samples is
computed using equation (3.20) and the new samples are obtained until the solution has converged.

This implementation assumes that the error tolerance is split equally between the sampling and
discretisation error. For the MC method, the mesh fidelity is chosen a priori to ensure e2

h  e2/2
(equation (3.15)). Pseudo-code for this implementation is included in Algorithm 1.
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Algorithm 1 MC implementation.

Choose mesh size, h, to ensure e2
h < e2/2.

Compute 10 initial samples.
Compute Q̃h,N and V[Qh].
Calculate eV using equation (3.13).
if e2

V > e2/2 then
Compute new number of samples necessary using equation (3.20).
Compute additional samples required.
Compute new Q̃h,N and V[Qh] from existing and extra samples.
Calculate new eV .

end if

3.2 Control variate approach for accelerating the Monte Carlo method

The MC method can be accelerated using control variates to reduce the variance of the estimator [52].
In the control variate method, an estimator Q0(wi) is introduced, which is close to Qh(wi):

Q̃h,diff =
1

N0

N0

Â
i=1

Q0(wi)+
1

N1

N1

Â
i=1

(Qh(wi)�Q0(wi)). (3.23)

Clearly,
E[Q̃h,diff] = E[Qh]. (3.24)

Following the root-mean-square error analysis in equation (3.13),

e2 = V[Q̃h,diff]+E[Q̃h,diff �Q]2

=
1

N0
V[Q0]+

1
N1

V[Qh �Q0]
| {z }

e2
V

+E[Q̃h,diff �Q]2
| {z }

e2
h

. (3.25)

Again the error is split into two parts, the numerical error, eh, and the sampling error, eV . The fidelity
of the model Qh is chosen to achieve the desired numerical error, whereas, the control variate, Q0,
is used to reduce the number of the expensive models of Qh that need to be solved. If V[Qh � Q0]

is small and samples of Q0 are inexpensive to compute, the overall cost of the estimator will be
significantly lower than the traditional MC method because fewer samples of Qh are required. An
examples of control variates being used to reduce the computational expense of MC is Johannes [70].

3.3 The multilevel Monte Carlo method

The MLMC method [26, 51] generalises the two-level control variate approach to L levels. The
presented derivation is close to that in Cliffe et al. [26].
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3.3.1 Multilevel estimator

If the approximation of a QoI on a given level is denoted as Ql , where l 2 [0...L] and indicates levels
with decreasing h, the multilevel expectation can be expressed as

E[QL] = E[Q0]+
L

Â
l=1

E[Ql �Ql�1], (3.26)

which is calculated by a coarse approximation of the expectation plus a telescopic sum of the
differences in the expectation across the different levels. The expectation in equation (3.26) can be
estimated by generalising equation (3.23):

Q̃L =
1

N0

N0

Â
i=1

Q0(wi)+
L

Â
l=1

0

@ 1
Nl

Nl

Â
j=1

(Ql(w j)�Ql�1(w j)

1

A . (3.27)

It is important to ensure that w j, or the realisation of the random field, is the same between the second
and third terms in equation (3.27) to ensure that the difference in solution is only dependent on the
numerical error and not from sampling two different distributions. Equation (3.27) is more compactly
written as

Q̃L =
L

Â
l=0

Q̃l, (3.28)

where

Q̃l =

8
><

>:

1
N0

ÂN0
i=1 Q0(wi) l = 0,

ÂL
l=1

⇣
1
Nl

ÂNl
j=1(Ql(w j)�Ql�1(w j)

⌘
l > 0.

(3.29)

.
The variance of the estimator in equation (3.28) is given by the sum of the variances across each

level

V[Q̃L] =
L

Â
l=0

V[Q̃l],

=
L

Â
l=0

1
Nl

Vl, (3.30)

where

Vl =

8
<

:
V [Q0] l = 0,

V [Ql �Ql�1] l > 0.
(3.31)
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The root-mean-squared error estimate of this estimator, from equation (3.7), is given by

e2 =
L

Â
l=0

1
Nl

Vl

| {z }
e2

V

+E[Q̃L �Q]2| {z }
e2

L

, (3.32)

where again the error is split between the sampling error, eV , and the numerical error of the finest
level, eL. The error estimate in equation (3.32) is used to determine the fidelity of the meshes required
and the number of samples at each level Nl that correspond to the minimum cost.

3.3.2 Determining the fidelity at level L

The fidelity of level L is determined by the numerical error

e2
L := E[Q̃L �Q]2  e2

h . (3.33)

Assuming the bound on h from equation (3.15) holds,

hL  c� 1
a

a e
1
a

h . (3.34)

The constant ca may be known a priori or could be approximated during the computation from a
posteriori estimates.

3.3.3 Determining the number of samples at each level

The number of samples at each level is determined by the sampling error. The cost of computing the
multilevel estimator is

C =
L

Â
l=0

NlCl, (3.35)

where Cl is the cost of computing one sample of Ql � Ql�1 for level l � 1, and C0 is the cost of
computing one sample of Q0.

To select the number of samples at each level, the total cost of the estimator is minimised for a
given sampling error eV . The functional of interest is

L (N0,...,L,z 2) :=
L

Â
l=0

(NlCl +z 2N�1
l Vl)�z 2e2

V , (3.36)

where z 2 R is a Lagrange multiplier.
If Nl is treated as a continuous variable, N̄l , the optimum number of levels can be found by

considering the directional derivative of equation (3.36):

∂L

∂ N̄l
= Cl �

z 2Vl

N̄2
l

= 0. (3.37)
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Rearranging equation (3.37),
N̄l = zV 1/2

l C�1/2
l . (3.38)

The Lagrange multiplier can then be found by substituting equation (3.38) into the sampling root-
mean-squared error, eV from equation (3.32), for each level

z = e�2
V

L

Â
l=0

V 1/2
l C1/2

l . (3.39)

The optimum number of samples in the continuous setting is found by substituting equation (3.39)
into equation (3.38)

N̄l = e�2
V

 
L

Â
l=0

V 1/2
l C1/2

l

!
V 1/2

l C�1/2
l . (3.40)

Since the number of samples is a discrete value, equation (3.40) is bound by

Nl � cNV 1/2
l C�1/2

l , (3.41)

where cN is a constant, which is the same for all levels and chosen to ensure e2
V < e2

V . Detommaso
et al. [33] has since undertaken further research on generalising the MLMC method for a setting
where the level parameter can remain continuous.

Since equation (3.41) weights samples towards levels where the variance is largest, the greatest
speed increases are for problems where the sampling error tolerance can be satisfied on coarse levels
and the fine levels are only required to satisfy the discretisation error.

3.3.4 Cost estimates

The cost analysis requires a bound on the variance Vl . It is assumed that Vl decreases with increasing l
such that

Vl  cb hb
l , (3.42)

where b > 0 and is constant and cb is a constant that does not depend on h. Following Cliffe et al.
[26], three different cost estimates can be obtained depending on the relationship between b and gd
and assuming that a � 1/2 min(b ,g):

C(Q̃h)

8
>>><

>>>:

 c1e�2 if b > gd,

 c2e�2(loge)2 if b = gd,

 c3e�2�(gd�b )/a if b < gd,

(3.43)

where c1, c2 and c3 are constants that do not depend on e . This analysis demonstrates that the cost of
the MLMC method is lower than the MC method, given in equation (3.17), for all three cases but is
optimal if b > gd. This corresponds to the variance converging faster than the cost of the solver.
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Figure 3.2: Illustration of practical implications of MLMC method for a three dimensional problem
with a = 4 and g = 2. The blue solid line shows the MC convergence rate and the red and green
dashed lines show the MLMC convergence rates for b = 1 and b = 8.

3.3.5 Practical implications

The bounds in equation (3.43) are illustrated for an idealised problem with d = 3, g = 2 and a = 4.
From equation (3.22), the convergence rate of the MC method is O(e�3.5) independent of b , whereas,
the convergence rates of the MLMC method, from equation (3.43), depend on b . If b = 8, the order of
convergence is O(e�2), since b > gd. However, if b = 1, the order of convergence is O(e�3.25), since
b < gd. This means that if it takes approximately 1 s to compute all three examples for a tolerance of
0.1, it would take over 1.4 hours to converge to a tolerance of 0.01 with the MC method, 45 minutes to
converge with the MLMC method for b = 1, but only 3 minutes with the MLMC method for b = 8.

A disadvantage of the MLMC method is that no information other than the expectation and
variance is known about the distribution of the QoI. In contrast in the MC method, an expectation of
the QoI is computed for each sample, so a histogram can be drawn that depicts the distribution.

3.3.6 Implementation

The implementation of the MLMC method in this thesis approximates E[Q̃] for an initial number
of samples and levels. The parameters Vl , Cl and the quasi-optimal number of samples, Nl given in
equation (3.41), are then approximated from this data initially assuming cN = 1. Extra samples are
computed until the number of samples is greater than or equal to Nl . If fewer samples are required
than computed initially, this initialisation stage can miss represent the cost of the computation.



3.3 The multilevel Monte Carlo method 31

Once enough samples have been computed, the total error of the simulation is checked to ensure
that it is smaller than the given tolerance. In this implementation, it is assumed that the error is equally
distributed between the sampling and numerical error: e2

V = e2
h = e2/2.

• The numerical error convergence is checked to ensure that e2
h  e2/2 and enough levels are

used in the simulation. Then, Q̃l+1 is approximated using a , which is estimated from the
samples. If (Q̃l+1)2 > e2/2, the numerical error is too large and an extra level is required.
The parameter Vl+1 and Cl+1 are then estimated from the data, and the quasi-optimum number
of samples at this new level is estimated. Once the quasi-optimum numbers of samples are
obtained, convergence is checked again.

• If the numerical error has converged, the sampling error is checked to ensure e2
V  e2/2. If

this criterion is not met, the value of cN is increased. The quasi-optimal number of samples is
estimated with the new cN , and the extra samples are computed. Convergence is then checked
again.

Once both the numerical and sampling errors have converged, E[Q̃L] and V[Q̃L] have converged for
the given tolerance. Pseudo-code for this implementation is included in Algorithm 2.

Algorithm 2 MLMC implementation.
Choose initial mesh, h0, initial number of levels, L, maximum number of levels, Lmax, initial cN
and initial number of samples at each level, Nl .
Compute initial samples at each level.
Compute Ql , Vl , Cl .
Calculate quasi-optimum number of samples Nl .
if Number of samples computed at each level, Ñl < Nl then

Compute extra samples.
Compute Ql , Vl , Cl .
Calculate Nl .

end if
Calculate a , b and g using linear regression.
Calculate eh and eV
while e2

h > e2/2 and L < Lmax do
Add new level, L = L+1.
Estimate VL, CL and NL from previous data.
Compute extra samples.
Compute new Ql , Vl , Cl , a , b , g and eh.

end while
while e2

h > e2/2 do
Increase cN .
Calculate new Nl .
Compute extra samples.
Compute new Ql , Vl , Cl , a , b , g and eV .

end while
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Figure 3.3: PodS module schematic.

3.4 Software library implementation of Monte Carlo based methods

A library, podS [124], has been specifically written to implement the MC and MLMC algorithms
described in Sections 3.1.2 and 3.3.6. This is valuable because great reductions in computation time
are possible from sampling the multiple independent realisations of the PDE in parallel since MC is
an embarrassingly parallelisable problem.

PodS manages this parallelisation for the DOLFIN module of the FEniCS library [4], the chosen
finite element package for this thesis. The name podS is a play on the name DOLFIN because a
group of dolphins is called a pod and the ’S’ indicates that stochastic computations are being solved.
The majority of this library has been written by the author for this thesis, but the scheduling and
pod module, discussed later in this section, was developed by Hadfield for a Masters project at the
University of Cambridge [54]. The library is open source with a LGPLv3 license and is sufficiently
generalised for other researchers to use it to implement the MC and MLMC methods efficiently for
their applications.

The podS library is written in C++ for speed, portability and the availability of the MPI li-
braries [90]. It consists of seven different modules: statistics, solver, uncertainty, mesh, pod, schedul-
ing and log. The implementation of the library is discussed in Section 3.4.1, with further detail
provided in Appendix B. The outcomes of using this library are then presented in Section 3.4.2.

3.4.1 Module description

Figure 3.3 shows the relationships between the modules in podS. The solver module is indicated in
blue because this is the only module that includes user written code. This library can be simplified
into three loops, with the log module interacting with all the other modules.
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Time

Process  
number 0 1 2 3 4 5 6 7

Figure 3.4: Schematic for current scheduler. The blue boxes correspond to level zero simulations of
E[Q], green level one, red level two and orange level three.

The first loop, which is indicated with black arrows, contains the statistics and scheduler modules.
This loop uses an initial estimate, or previous data, to determine how many samples should be
computed at each level. The library then schedules these samples into batches. A simple scheduler is
used, which runs batches of the problems with increasing numbers of degrees of freedom, until all the
necessary samples have been computed; see Figure 3.4 for a schematic of the current scheduler. More
complex schedules have been proposed by Gmeiner et al. [53].

The second loop, indicated with blue arrow, contains the scheduler, pod and solver modules. This
loop is used to solve each scheduled batch, which contains multiple samples of the same level, in turn.
It ensures that no more samples than will fit in the available memory are scheduled at the same time,
which may result in more low fidelity modules being scheduled at the same time than high fidelity
modules.

The third loop, indicated with red arrows, contains the solver, mesh and uncertainty modules. This
loop solves an individual sample of the PDE in parallel using split MPI communicators. Each of the
processes is seeded with its own random number generator to ensure that independent realisations of
the random field are used in each sample.

3.4.2 Outcomes

PodS successfully enables samples of the MC and MLMC algorithm to be computed in parallel. This
enables great savings in time, and so computational expense, to be obtained. Figure 3.5 shows the
time taken to compute uncertainty in the one dimensional wave equation to the same tolerance using
the MC and MLMC methods; here the solver is treated as a black box.
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Figure 3.5: PodS run time for the MC and MLMC simulations in parallel on varying numbers of cores
for a fixed e .

Two key features of the podS implementation of the MC and MLMC methods can be seen from
Figure 3.5. First, the rate of convergence of the cost of the MLMC method is generally faster than the
MC method. Once the number of samples computed is greater than the initial start up number, the
reduced costs occur because the cost complexity of the MLMC method is lower, see Section 3.3.5.
The exact speed up is dependent on the cost, variance and error convergence rates of the finite element
models. In this example, it is approximately ten times quicker to compute the expectation of the QoI
with the MLMC method instead of the MC method.

The second feature is that the simulation time is approximately halved when the number of
processes is doubled. This is expected because each sample is solved independently of the others. The
MLMC method does not quite achieve this optimal speed up when using more than four processes
to quantity uncertainty in this black box problem. This is probably due to more processes being
scheduled to solve some problems than necessary and the overhead of communicating the expectations
between all processes.



Chapter 4

Structural vibration problems under
uncertainty

Small perturbations in engineering structures can affect their natural frequencies, vibration modes
and energy density. Unwanted resonance, resulting from small variations in the natural frequencies,
can reduce performance life or in some cases cause catastrophic failure. However for others systems,
it is necessary to design the structure to resonate with maximum energy. Therefore, it is important
to quantify the impact of perturbations on system behaviour so that designs, which are robust to the
realities of manufacture and operation, can be found.

Turbomachinery blade mistuning is one example where quantifying uncertainty is important
for vibrating structures. Individual blades have small differences in structural properties due to
manufacturing, material tolerances or in-service wear. These break the cyclic symmetry of the system
and thus change its behaviour. This results in some blades experiencing deflections and stresses
that are much larger than expected, which can cause failure before the design life of the blade is
reached [12].

It is usually considered impractical to use traditional MC methods to quantify uncertainty in
random vibration problems due to the computational cost [2, 21, 34, 45, 129]. Instead, probabilistic
methods, such as statistical energy analysis, are often used. In this chapter, the MLMC method
is demonstrated as a viable alternative method for quantifying uncertainty in large-scale structural
vibration problems.

An outline of this chapter is as follows; the FE formulations for the wave, Kirchhoff–Love plate
and linearised elastodynamics equations are presented in Section 4.1 and the eigensolvers used are
discussed in Section 4.2. Then in Section 4.3, the expectation and variance of the first eigenvalues
are computed for the three examples, and in Section 4.4, the expectation and variance in the energy
density of the Kirchhoff–Love plate is computed. Conclusions are drawn in Section 4.5.
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4.1 Finite element formulations

In this section, the FE formulations for the three models are presented: the wave equation, the
Kirchhoff-Love plate equation and the linearised elasticity equation. In keeping with the notation in
Section 2.1, the spatial domain for each problem is denoted by D ⇢ Rd , where d is the number of
spatial dimensions, and D is triangulated into non-overlapping cells, K. The boundary of D is denoted
by ∂D.

4.1.1 Wave equation

The time-harmonic wave equation and associated boundary conditions in one spatial dimension read
given t > 0 and r 2 W (D), find the mode shapes u 6= 0 and corresponding eigenvalues l such that

� d
dx

t du
dx

= lru in D, (4.1a)

t du
dn

= 0 on ∂D, (4.1b)

where the density field, r , is sampled from a space of random fields and W is an appropriate function
space. The FE formulation of problem (4.1a) is to find uh,lh 2 Vh ⇥R+ such that

Z

D
t duh

dx
dvh

dx
dx = lh

Z

D
ruhvh dx 8vh 2 Vh, (4.2)

where
Vh := {uh 2 H1(D), uh|K 2 Pm(K) 8K 2 D}, (4.3)

and Pm(K) is a standard Lagrange polynomial finite element space of degree m � 1.

4.1.2 Kirchhoff–Love plate equation

For a linear isotropic elastic Kirchhoff–Love plate, the problem and associated boundary conditions
read, given a mass density field r 2 W (D), find the vibration modes u 6= 0 and corresponding
eigenvalues l that satisfy

—4u = l 2ar
K

u in D, (4.4a)

—u ·nnn = 0 on ∂D, (4.4b)

—(—2u) ·nnn = 0 on ∂D. (4.4c)
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where 2a is the plate thickness and K is the bending stiffness. Using the Ciarlet–Raviart method [23],
the FE problem is formulated by splitting the operator in equation (4.4a) according to

w := �—2u (4.5)

�—2w = 2al r
K

u. (4.6)

This leads to the problem, find uh,wh,lh 2 Vh ⇥Vh ⇥R+ such that

�
Z

D
whzh dx+

Z

D
—uh ·—zh dx = 0 8zh 2 Vh, (4.7a)

Z

D
—wh ·—vh dx =

2alh

K

Z

D
ruhvh dx 8vh 2 Vh, (4.7b)

where Vh 2 H1(D).

4.1.3 Linearised elastodynamics equation

The time harmonic formulation of the linear elastic wave equation and corresponding boundary
condition read: given the mass density r 2 W (D), find mode shapes uuu 6= 000 and their corresponding
eigenvalues l such that

�— ·s = lruuu in D, (4.8)

s ·nnn = 000 on ∂D, (4.9)

where s(uuu) = 2µe (uuu)+Ltr
�
e (uuu)

�
III is the tensor stress, µ and L are the Lamé parameters, and e is

the strain tensor. The FE formulation of problem (4.8) is to find uuuh,lh 2 VVV h ⇥R+ such that
Z

D
sh (uuuh) : e (vvvh)dx = lh

Z

D
ruuuh · vvvh dx 8vvvh 2 VVV h, (4.10)

where VVV h = [Vh]d and Vh 2 H1(D).

4.2 Eigensolvers

The choice of eigensolver is critical for performance, particularly in three dimensions, where the
MC and MLMC algorithms demand multiple large solves of the matrix equation in (2.12). Two
different eigenvalue solvers, which are used to solve the FE formulations above, are the preconditioned
Jacobi–Davidson [109] method and the Krylov–Schur method [111]. The Jacobi–Davidson method
uses the conjugate gradient iterative method with algebraic multigrid preconditioning. In contrast,
the Krylov–Schur method applies shift-and-invert spectral transformation to the eigenvalue problem,
which target specific spectral regions close to the natural frequency of interest. Then Cholesky
factorisation is used to directly solve the eigenvalue problem.
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Figure 4.1: Comparison of computation times, Fig (a), and memory requirements, Fig (b), of the
Krylov–Schur and Jacobi–Davidson eigenvalue solvers. The smallest 20 eigenvalues were computed
for problems with increasing degrees of freedom. No parallelisation was used; all computations were
conducted with one process.

The time and memory requirements for individual three dimensional eigenvalue problem solves,
with different numbers of degrees of freedom, have been compared in Figure 4.1 for smallest 20
eigenvalues found using the Krylov–Schur and Jacobi–Davidson solvers in the SLEPc library [127].
The data in this chapter is computed using a workstation with two Intel Xeon CPU E5-2690 v4
processors with 14 cores each, a clock speed of 2.60 GHz and 256 GiB RAM. No parallelisation was
used to give an indication for timings of computations on single processes.

Figure 4.1a indicates that the Krylov–Schur solver is faster than the Jacobi–Davidson solver
for the problem sizes tested. However, the Krylov–Schur solver has higher complexity than the
Jacobi-Davidson solver, which is showed by the steeper gradient of the Krylov–Schur line, meaning
that the Krylov–Schur solver will be more expensive for larger problems. Figure 4.1b shows the
memory usage of the two methods for solving the eigenvalue problem. The Jacobi–Davidson solver
requires considerably less memory than the Krylov–Schur solver, but as previously stated, is more
computationally expensive for smaller problems. Therefore, the Krylov–Schur method is used for
the problems with smaller memory requirements (wave and Kirchhoff–Love plate), whereas the
Jacobi–Davidson method is used for the larger problem (elastodynamics).

4.3 Eigenvalues of structures

So that the impact of the uncertain mass density can be quantified using the MC and MLMC methods
implemented in parallel using podS [122], the three FE formulations described in Section 4.1 are
coded in C++ using FEniCS [4], PETSc [10] and SLEPc [127]. The code for this chapter is avaliable
online [119].
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The jth eigenvalues, l j, of the structure is chosen as the first QoI. A relative tolerance ē is
introduced to ensure that the error scales with the QoI. In the eigenvalue examples below, the total
error is scaled by the expectation of the QoI:

e
E[Q̃L]

< ē, (4.11)

where e is the total error in the simulation from equation (3.13) and E[Q̃L] is the expectation of the
MLMC estimator of the QoI.

4.3.1 Wave equation

In the first example, the impact of 30 uniformly randomly placed point masses is quantified for the
first four eigenvalues of the one dimensional wave equation in (4.2). The domain is unit length, a = 1,
with r = 8000kg/m3, t = 200 N and the maximum mass of each point is 10% of total mass of the
unperturbed string. An FE space of polynomial degree two is used, so m = 2 in equation (4.3). The
coarsest mesh in the MLMC simulations has 30 elements, and the number of elements, n, doubles for
each level of refinement. The value of h for each mesh is a/n. This resolution was chosen to ensure
the eigenvalues were sufficiently accurate but not too fine to limit the benefit of the MLMC variance
reduction. As mentioned in the MC implementation, the number of elements for the MC mesh used is
chosen a priori to ensure that eh < eh.

Figure 4.2 shows the probability density distributions of the expectations for the first four non-zero
eigenvalues, computed using both the MC and MLMC methods, for a relative error tolerance of
ē = 10�3. There is good agreement between the two methods for each eigenvalue, but the difference
between the expectation and variance of the two methods is slightly larger for the higher eigenvalues.
This is expected because, when the eigenvalues are converged to the same relative tolerance, the larger
eigenvalues have a greater absolute error. As explained earlier, a histogram cannot be drawn from the
MLMC results since only an expectation and variance are computed unlike MC where each individual
sample QoI is known.

Prediction of theoretical complexities of the MC and MLMC method
The convergence parameters (a,b and g), which were introduced in Section 3.3, can be estimated
from the individual samples to predict the theoretical convergence rates of both the MC and MLMC
method. The parameter a is the finite element convergence rate, b is the convergence rate of the
variance and g is the complexity of the solver. These constants are shown in Figures 4.3a to 4.3c
for the first stable eigenvalue of the wave equation, in (4.2), for ē = 10�4. The data point from the
largest elements is not used to compute the gradients in Figure 4.3 because samples for level zero
only involve computations on the coarsest mesh instead of two different meshes, see equation (3.27).

It is immediately obvious from Figure 4.3a that the FE convergence rate, a < 4, which is
the expected a priori error estimate for quadratic elements with sufficiently regular data given in
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Figure 4.2: Comparison of the MC and MLMC probability distributions for the first four non-zero
eigenvalues of the wave equation for ē = 10�3. The mesh used in the MC simulation had 514
elements.

equation (2.8). As discussed in Section 2.5, this sub-optimal convergence rate results from reducing
the regularity of the FE formulation by adding singular point masses. The impact of using point
masses on the finite element error convergence rates of the three structural vibration examples is
considered further in Appendix C.

It can also be seen from Figures 4.3b and 4.3c that b > gd. This means that the MLMC samples
should be weighted heavily towards the coarser meshes and the complexity of the method should be
O(e�2), see Section 3.3.4. In contrast, the MC complexity is O(e�2�gd/a), from equation (3.22), or
O(e�2.97) for this problem.

Comparison of theoretical and computed MC and MLMC complexities
The theoretical and simulation complexities are compared in Figure 4.4 by computing the cost of the
MC and MLMC simulations for varying relative tolerances using eight cores of the system described
above. As expected, the gradients of the slopes match the theoretical complexity values very well.
There is not much difference in the timings between the two methods for the large tolerances and
it is noted that sometimes the MLMC method is more expensive than the MC method. This is due
to the overhead of setting up the MLMC method, since initial samples are required from all four
levels. The difference between the time taken for each method increases as the tolerance tightens
due to the difference in complexities of the two methods. For ē = 10�4 there is nearly a two order
of magnitude predicted difference in time. The MLMC method takes 38 minutes, whereas the MC
method is predicted to take over one day.
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Figure 4.3: MLMC convergence rates for the first stable eigenvalue of the wave equation. Fig (a)
shows the finite element convergence rate a = 1.001, Fig (b) shows the convergence rate of the
variance b = 2.113 and Fig (c) shows the convergence rate of the cost of solving each different level
g = 0.967, for ē = 10�4.
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Figure 4.4: Comparison of time cost for the MC and MLMC simulations for the wave equation for
different relative tolerances on eight cores.

The number of elements and samples necessary for each of the MC simulations in Figure 4.4
are shown in Table 4.1. The changes in order of magnitude are highlighted in grey. The number
of samples increases with O(e�2), as expected from the traditional MC convergence. This means
that 100 times more samples are required for one order of magnitude decrease in the tolerance. The
added complexity of the MC method comes from sampling a finer mesh, which is required to meet
the numerical error constraints. This is shown in the theory from Section 3.1.

The number of samples computed at each level of the MLMC simulations in Figure 4.4 are shown
in Table 4.2. No required samples at a given level is denoted by ‘-’. Initially 10 samples are computed
at each level so convergence parameters can be calculated, even though theory may predict that fewer
are needed. When the relative tolerance is decreased by an order of magnitude, there is an approximate

Table 4.1: Number of elements and samples required for the MC simulation to ensure convergence of
the wave equation to a specified relative tolerance.

ēee Number of elements Number of samples
2.15⇥10�2 25 100
1.0⇥10�2 53 457
4.64⇥10�3 113 2095
2.15⇥10�3 241 9693
1.0⇥10�3 514 44915
4.64⇥10�4 1097 208368
2.15⇥10�4 2341 966764
1.0⇥10�4 4995 44869881

1 This value is extrapolated.
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Table 4.2: Number of samples computed at each level for MLMC simulations of wave equation for
specified relative tolerances.

MLMC level index
ēee 0 1 2 3 4 5 6 7 8

2.15⇥10�2 34 10 10 10 - - - - -
1.0⇥10�2 191 10 10 10 - - - - -

4.64⇥10�3 1136 10 10 10 - - - - -
2.15⇥10�3 6100 76 29 10 3 - - - -
1.0⇥10�3 53187 668 199 48 11 - - - -

4.64⇥10�4 123894 1539 476 141 53 18 6 - -
2.15⇥10�4 578246 7326 2113 691 231 77 26 7 -
1.0⇥10�4 5361364 65547 19327 5995 1858 673 199 61 27

Table 4.3: Number of samples computed for the 25th eigenvalue of the wave equation using the MC
and MLMC method.

MLMC level index MC
ēee 0 1 2 3 4 5 6 7

1⇥10�4 40204 5733 1660 616 251 88 24 6 26301

100 times increase in number of samples because the complexity is O(ē2). This is only noticeable
when more than 10 initial samples are required. It is noted that the number of samples for ē = 10�2 is
quite low. This is not of concern because the point does not lie on the complexity trend line and it is
very quick to compute. This means that other stages, such as set-up time, could be dominating the
timing instead of the solve time.

Comparison of 25th eigenvalue
It is also possible to use the MLMC method to compute higher eigenvalues. The highest eigenvalue
that can be computed depends on the fidelity of the coarsest mesh, or more specifically the number of
degrees of freedom in the FE model.

The probability density functions for the 25th eigenvalue are shown in Figure 4.5 for both the
MC and MLMC methods and ē = 10�4. The number of elements in the coarsest MLMC mesh is
increased to 100 to ensure accuracy in the higher eigenvalues and the MC method requires a mesh
with 12800 elements. It is noticeable that although there is good agreement between the expectation
and variance of the 25th eigenvalue, they no longer exactly agree despite the solution converging to a
relative tolerance an order of magnitude smaller than in Figure 4.2. This is because the absolute error
is greater for the 25th eigenvalue than the first to fourth eigenvalues. The number of MLMC samples
at each level and MC samples are shown in Table 4.3.
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Figure 4.5: Comparison of the MC and MLMC probability distribution functions for the 25th
eigenvalue of the wave equation for ē = 10�4.

4.3.2 Kirchhoff–Love plate equation

In the second example, the impact of 30 uniformly randomly placed point masses is quantified for
the two dimensional Kirchhoff–Love plate, described in equation (4.7). A rectangular domain, with
dimensions of x = 0.1 m ⇥ y = 0.13 m, is used to represent the plate. The maximum magnitude of each
point mass is 1% of the total mass of the unperturbed plate, E = 70 GPa, n = 0.32, r = 2700 kg/m3 and
2a = 0.001 m. Second order polynomials are chosen for the function space so m = 2 in equation (4.3).
The coarsest mesh in the MLMC simulations has 50 elements and each subsequent level has four

times as many elements. The value of h =
q

(x/nx)
2 +
�
y/ny

�2, where nx,y describes the number of
elements in each direction. The number of the elements in the MC samples again ensures that eh < eh.

The probability distributions for the expectation of the first and second eigenvalues are shown in
Figure 4.6 for the MC and MLMC methods, which have converged to ē = 10�3. These are not plotted
on the same graph due to the different magnitude of the eigenvalues. The computed results cannot be
distinguished since the solid and dashed lines lie on top of each other.

The MLMC convergence parameters are shown in Figure 4.7 for ē = 10�5. It was possible to
obtain tighter tolerances for the Kirchhoff–Love plate because a is larger since equation (4.4a) is
fourth order and, as shown in Appendix C, is less impacted by adding point masses. Again b > gd,
so most of the computational effort is on the coarser levels. This means that the MLMC method has a
predicted complexity of O(e�2) and the MC method has a predicted complexity of O(e�2.68).

The time taken to compute the expectation of the first two eigenvalues is compared in Figure 4.8
for the MLMC and MC methods, using 16 cores of the system described above. Again, the gradients
of the lines match the theoretical complexities well and it is shown to be much quicker to compute
samples using the MLMC method.
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(a) First eigenvalue.
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(b) Second eigenvalue.

Figure 4.6: Comparison of the MLMC and MC probability distribution functions for the first and
second eigenvalues of a two dimensional Kirchhoff–Love plate for ē = 10�3. Fig (a) shows the first
eigenvalue and Fig (b) shows the second eigenvalue. Here the two lines are indistinguishable because
the dashed and solid line lie on top of each other.

Table 4.4: Number of elements and samples required for the MC simulation to ensure convergence of
the Kirchhoff–Love plate equation to a specified relative tolerance.

ēee Number of elements Number of samples
1.0⇥10�3 98 17695

4.64⇥10�4 200 82172
2.15⇥10�4 288 381311
1.0⇥10�4 578 1769829

4.64⇥10�5 1058 8214572
2.15⇥10�5 2178 381311001

1.0⇥10�5 4232 1769829001

1 This value is extrapolated.

Using the MLMC method is one order of magnitude faster than using the MC method for ē = 10�4

and the MLMC method is predicted to be over one and a half orders of magnitude faster for ē = 10�5.
This corresponds to the MLMC method taking approximately 10 minutes to compute the result for
ē = 10�4 instead of MC taking over 1.25 hours. For ē = 10�5, the MLMC method takes approximately
17 hours, whereas MC is predicted to take approximately 28 days. This suggests that as it becomes
prohibitively expensive to use the MC method, great savings in cost can be found by using the MLMC
method.

The number of elements and samples required for each of the MC computations in Figure 4.8
are shown in Table 4.4 and the number of samples at each level computed for MLMC simulations
are shown in Table 4.5. Again grey highlighting is used to indicate a change in order of magnitude.
The number of samples is found to increased 100 fold when the tolerance is increased by an order of
magnitude. Table 4.5 also illustrates the impact of large b values. This is because many more samples
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Figure 4.7: MLMC convergence rates for the first eigenvalue of the Kirchhoff–Love plate equation for
ē = 10�5. Fig (a) shows the finite element convergence rate a = 2.933, Fig (b) shows the convergence
rate of the variance b = 5.895 and Fig (c) shows the convergence rate of the cost of solving each
different level g = 1.998/2 = 0.999.

Table 4.5: Number of samples computed at each level for MLMC simulations of Kirchhoff–Love
plate for specified relative tolerances.

MLMC level index
ēee 0 1 2 3

1.0⇥10�3 16624 18 10 10
4.64⇥10�4 77826 102 10 10
2.15⇥10�4 368362 429 29 10
1.0⇥10�4 1687808 1937 92 10

4.64⇥10�5 7784733 9435 547 48
2.15⇥10�5 36757259 43172 2684 207
1.0⇥10�5 168316056 198827 12301 1041



4.3 Eigenvalues of structures 47

10�5 10�4 10�3

�̄

101

102

103

104

105

106

ti
m

e
(s

)

1
-1.972

1

-2.674

MLMC

MC

Figure 4.8: Comparison of time taken for the MC and MLMC simulations for the Kirchhoff–Love
plate equation for different relative tolerances on 16 cores.

are computed on the cheaper coarse levels relative to the more expensive finer levels compared to
Table 4.2, because the variance of the Kirchhoff–Love plate converges faster than the wave equation.

4.3.3 Linearised elastodynamics equation

The MLMC method can also be applied to three dimensional structures, where in the past it was
often considered infeasible with traditional MC methods. In this third example, the first eigenvalue is
computed for slender and curved plate-like structures. In both examples E = 70 GPa, n = 0.32 and
r = 2700 kg/m3. Third order polynomial function spaces are used, so m = 3 in equation (4.3). This
high order space was used to encourage fast convergence of error and reduce the impact that the point
sources had on convergence.

Slender plate-like structure
The first eigenvalue for the structure shown in Figure 4.9, with dimensions 5 ⇥ 10�3 m ⇥ 0.1 m
⇥ 0.1 m, has been computed for different relative tolerances using the MLMC and MC methods.
Twenty point masses are added at random locations in the domain and with maximum magnitude
of 10�5 of the mass of the unperturbed structure. The number of elements and degrees of freedom
for the levels in the MLMC computations are given in Table 4.6 and, as previously, are computed by
dividing the elements in each direction of the mesh by two.

The probability distributions, computed using the MLMC method, have converged for ē =

7⇥10�7 and 8⇥10�7 in Figure 4.10. No comparison to the MC method have been made because,
as shown later, it is too computationally expensive to use MC methods in three dimensions. The
convergence parameters for the MLMC method are shown in Figure 4.11 for ē = 8 ⇥ 10�7. Since
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Figure 4.9: Level two slender plate-like structure mesh.

Table 4.6: Number of elements and degrees of freedom in the meshes for each level in the slender
three dimensional plate-like MLMC simulations.

MLMC level index
0 1 2 3 4

Number of elements 294 2352 23520 206976 1655808
Number of degrees of freedom 5808 38829 346800 2913222 22827369

1.01145 1.01150 1.01155 1.01160 1.01165
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Figure 4.10: The MLMC probability distribution functions for the first eigenvalue of a three dimen-
sional slender plate-like structure for ē = 7⇥10�7 and ē = 8⇥10�7.
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Figure 4.11: MLMC convergence rates for the first eigenvalue of the slender three dimensional
plate-like structure for ē = 8⇥10�8. Fig (a) shows the finite element convergence rate a = 3.713,
Fig (b) shows the convergence rate of the variance b = 7.095 and Fig (c) shows the convergence rate
of the cost of solving each different level g = 1.353/2 = 0.677.
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Figure 4.12: Comparison of time taken for the MC and MLMC simulations for the slender three
dimensional plate-like structure for different relative tolerances on 24 cores. The green line shows
predicted complexity because it was too expensive to compute the actual complexity.

b > gd, it is again expected that the MLMC method has a complexity of O(e�2) and that the MC
method has a complexity of O(e�2.364). The MC complexity seems lower than expected, but this is
probably due to the slow convergence of the cost in Figure 4.11, and that the small point masses do
not impact the FE error convergence very much since a ⇡ 4.

The predicted complexity of the MLMC methods has been checked in Figure 4.12 using 24 cores.
As the figure shows, the complexity of the MLMC simulation matches the theoretical prediction.
However, due to machine memory restrictions, it was not possible to obtain data for any tighter
tolerances. The number of samples at each level of the MLMC simulations is shown in Table 4.7.

It was not possible to check the complexity of the MC method for this slender plate-like structure
due to the computational expense and memory requirement of the individual samples. The MC

Table 4.7: Number of samples computed at each level for MLMC simulations of the slender three
dimensional plate-like structure for specified tolerances.

MLMC level index
ēee 0 1 2 3 4

1.0⇥10�5 27 4 4 4 -
4.64⇥10�6 117 4 4 4 1
2.15⇥10�6 694 4 4 4 1
1.0⇥10�6 2826 4 4 4 1
8.5⇥10�7 7786 8 4 4 1
8.0⇥10�7 9433 28 4 4 1
7.0⇥10�7 12376 24 4 4 1



4.3 Eigenvalues of structures 51

Figure 4.13: Level two curved plate-like structure mesh.

simulation takes approximately two hours for ē = 10�5 using the level three mesh with 2913222
degrees of freedom. However, it it predicted to take approximately 17 days to converge to ē = 10�6

using a mesh with at least 22827369 degrees of freedom. In reality, the time taken would be much
longer because two or more of these large solves would not fit in parallel in the memory on the
machine used. Therefore, only an estimate of the MC complexity has been plotted in Figure 4.12.

Curved plate-like structure
One benefit of the MLMC method is that more complicated structures, such as the curved plate-like
structure shown in Figure 4.13, can be considered easily without making model simplifications or
assumptions. The dimensions of the plate-like structure are 0.1m ⇥ 0.1m ⇥ 0.01m. The number of
elements and degrees of freedom for the MLMC levels are the same as the slender plate and given
in Table 4.6. Twenty point masses are added at random locations in the domain, with maximum
magnitude of 5⇥10�3 the total mass of the unperturbed structure.

The probability distributions in Figure 4.14 indicate that the MLMC method is converging for
ē = 4.56⇥10�3 to ē = 2.15⇥10�3. Tighter tolerances cannot be obtained due to memory restrictions.
Again no comparison is made with the MC method because it is prohibitively expensive to use the
MC method in three dimensions. The convergence parameters for the MLMC method are shown
in Figure 4.15. Again since b > gd, the theoretical complexity of the MLMC method is O(ē�2).
If computed, the MC complexity should be O(ē�2.49). It was noted that the cost of the level three
sample looks cheaper than the level two sample. This is most likely due to poor estimation of cost
since each solve of the larger meshes uses multiple cores.

The predicted complexities of the MLMC method for the curved plate-like structure has been
checked in Figure 4.12 and found to agree with theoretical predictions. Again, since the MC method
takes over 1 hour to converge to ē = 10�2 on a mesh with 206976 elements, and the predict complexity
is O(ē2.49), it is predicted that the MC method would take 16 days for ē = 10�3. The number of
samples at each level of the MLMC simulations are shown in Table 4.8.
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Figure 4.14: The MLMC probability distribution functions for the first eigenvalue of the curved three
dimensional plate-like structure for varying tolerances.

Table 4.8: Number of samples computed at each level for MLMC simulations of the curved three
dimensional plate-like structure for specified tolerances.

MLMC level index
ēee 0 1 2 3 4

1.0⇥10�2 41 14 6 4 -
6.81⇥10�3 74 27 14 4 -
4.64⇥10�3 107 77 35 4 -
3.16⇥10�3 165 141 56 4 1
2.15⇥10�3 426 340 212 7 1
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Figure 4.15: MLMC convergence rates for the first eigenvalue of the curved three dimensional plate-
like structure equation ē = 3.16⇥10�3. Fig (a) shows the finite element convergence rate a = 2.876,
Fig (b) shows the convergence rate of the variance b = 6.622 and Fig (c) shows the convergence rate
of the cost of solving each different level g = 1.424/2 = 0.712.
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Figure 4.16: Comparison of time taken for the MC and MLMC simulations for the curved three
dimensional plate-like structure for different relative tolerances on 24 cores.

4.4 Energy density of Kirchhoff–Love plate

The energy density of the Kirchhoff–Love plate is chosen as the second QoI because this property is
of particular interest to the vibrations community, for example Langley and Brown [78] and Cotoni
et al. [27]. The time averaged kinetic energy density of the Kirchhoff–Love plate is given by

E(z ) =
z 2

4R

Z

D
r
��s(z ,xxx0,xxx)

��2 dx, (4.12)

where r is the unperturbed mass density, R is the area of the plate and s(z ,xxx0,xxx) is the transfer
function between the response point xxx and the drive point xxx0, at a frequency z . This can be written as
the following sum over the modes for a proportionally damped Kirchhoff–Love plate,

s(z ,xxx0,xxx) =
N

Â
n=1

fn(xxx)fn(xxx0)

K(z 2
n �z 2 + ihz zn)

, (4.13)

where fn is the nth eigenfunction, zn is the nth natural frequency and h is the loss factor. See
Appendix D for a derivation.

Since the eigenfunctions are orthogonal with respects to density

Z

D
rf 2

n =
K
2a

, (4.14)
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Figure 4.17: Time averaged energy density frequency response for different forcing frequencies.

the time averaged kinetic energy density of the plate is

E(z ) =
N

Â
n=1

z 2yn�
z 2

n �z 2
�2

+
�
hz zn

�2 , (4.15)

where

yn =
f 2

n (xxx0)

4R(2aK)
. (4.16)

4.4.1 Comparison of the frequency response

The time averaged energy density is computed using equation (4.15) with the first 20 eigenvalues and
eigenfunctions of the plate formulation, given in equation (4.7). The dimensions of the unperturbed
plate are 1.0 m ⇥ 0.8 m with E = 70 GPa, n = 0.32, r = 2700 kg/m3 and 2a = 0.003 m. Seven
point masses, totalling 10% of the total mass of the unperturbed plate, are added at random points
in the domain and the loss factor is 0.05. The plate is forced at x = 0.5 and y = 0.35. The coarsest
mesh used for the MLMC simulation has 50 elements and the number of elements increased by four
for each level. The mesh for the MC simulation for ē = 1.0 has 50 elements and ē = 0.1 has 450
elements.

The expectation of the energy from each forcing frequency is shown in Figure 4.17 for ē = 1 and
ē = 0.1. The energy is normalised by 1⇥10�2. The solid lines correspond to the expectation of the
energy for the given forcing frequency and the dashed lines correspond to the upper bound of the
95% confidence level. There is good agreement between the expectation of the energy for the MLMC
and MC methods at ē = 0.1 and a reasonable agreement in the 95% confidence level for the given
tolerances that the solution has converged to.
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Table 4.9: Time taken to compute the MLMC and MC simulations of the time averaged energy density
for different tolerances.

ēee MLMC time (s) MC time (s)
1.0 52 95
0.1 4782 15206
0.01 4782001 27040001

1 This value is extrapolated.

Table 4.10: Number of samples taken to compute the time averaged energy density for different
tolerances.

MLMC level index MC
ēee 0 1 2 3

1.0 4116 133 10 10 8113
0.1 411468 13308 912 477 929186

4.4.2 Comparison of time cost

Table 4.9 shows that the expectation of the energies is found approximately twice as fast with the
MLMC method, for ē = 0.1, than the MC method. The complexity of the MLMC method is O(e�2)

as expected because a 100 fold difference in time taken occurs from an order of magnitude decrease
in tolerance. The complexity of the MC method is predicted to be between O(ē�2.25) and O(ē�2.5)

because b = 5 > gd = 2 and a = [0.5,1]. The value of a varies since the energy from some forcing
frequencies converges faster than others as the mesh is refined. These complexities have been used to
predict the times taken for ē = 0.001. The MLMC method would take 5.5 days and MC would take
over 31 days on 16 cores, so has not been computed. The number of samples for both methods is
shown in Table 4.10 for the two relative tolerances.

4.5 Conclusions

In this chapter, the MLMC method is shown to be a viable alternative to the traditional MC method for
quantifying uncertainty in structural vibrations problems subject to random density perturbations. The
expectations and variances, that are computed using the MC and MLMC methods, are comparable for
the four examples in Sections 4.3 and 4.4. However, the computational cost of the MLMC method
in each case is much lower than the MC method. For example, for certain scenarios a two orders
of magnitude speed up is obtained using the MLMC method for the wave equation, rather than the
traditional MC method. Quantifying uncertainty is also now shown to be tractable in three dimensional
plate-like structures.

The MLMC method is computationally cheaper than the MC method because the MLMC sampling
error can be reduced by sampling a coarse representation of the models multiple times, which is
cheaper to solve than the fine representation. Therefore, only a few samples of the expensive fine
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models are required to satisfy the numerical error tolerance. In contrast, in the MC method, all the
samples have to be computed using the fine model.

The expected theoretical complexities from Sections 3.1 and 3.3.4 are shown to hold for eigenvalue
problems. The optimal MLMC method complexity of O(e�2) is obtained in the four examples
presented, since b > gd. Where possible, the complexity of the MC method has also been shown to
equal O(e�2�gd/a), as expected.

It is also noted that the regularity of the FE formulation is disturbed when using point masses.
This results in sub-optimal convergence rates, which means the convergence of the QoI is slower
using point masses than predicted with continuous formulations.





Chapter 5

Modelling of buoyancy driven flows

The second application considered in this thesis is buoyancy driven flows through porous media.
These flows result from variations in buoyancy due to changes in parameters such as density or
temperature and can be modelled by the Darcy equations coupled to a scalar transport equation. They
are important in many real-world applications, such as CO2 sequestration and pollution management.

In this chapter, an overview of modelling methodologies for buoyancy driven flows in porous media
is given. In Section 5.1, a focused review of difficulties in modelling this type of flow is presented.
Then in Section 5.2, the general equations for the Darcy equations and a scalar transport equation
are given and in Section 5.3, different FE formulations are proposed. A priori error estimates are
considered in Section 5.4 to explain why spurious flows form when function spaces are incompatible
and numerical examples are presented in Section 5.5 and Section 5.6, which support this theory. Then
conclusions are drawn in Section 5.7.

5.1 Spurious buoyancy driven flows

Segol et al. [107] used a primal FE formulation to solve the Darcy equations. In this formulation, the
pressure field is computed directly, but the velocity field is computed diagnostically. They found that
the resulting flows from the primal formulation may be inaccurate due to problems with representing
the solution to the PDE accurately.

Voss and Souza [128] found that spurious velocities may result from using a primal formulation
of the Darcy equations with linear piecewise continuous quadrilateral elements and a linear forcing
term. They proposed using a significant modification to the primal formulation to ensure a consistent
velocity approximation is obtained for quadrangle elements. This method has since been generalised
for multiple elements [44, 74] and mesh independent approximations [3].

An alternative method to the consistent velocity approximations, for ensuring no spurious veloci-
ties are added to the primal formulation, is to raise the degree of the pressure function space [61, 128].
This may enable the gradient of the pressure to be represented accurately, but has not always been
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possible to due to computer memory restrictions. Even today, some software packages may not offer
higher order function spaces [35].

Solutions to density driven flows in porous media can also be obtained using mixed finite element
methods, where both the pressure and velocity are computed directly. For example, an H(div) function
space could be used for the unknown velocity field and a discontinuous function space could be used
for the unknown pressure field, where an H(div) space has components in L2 such that div(H) 2 L2.
As long as the inf-sup condition [15] is met, no spurious flows should result, even if the pressure and
velocity function spaces cannot match the solution accurately [44, 74, 128].

Although spurious numerical artefacts have been shown in the literature to result from incompati-
bilities in representing the solution on function spaces, little clear explanation has been provided to
explain why they form. In addition, the long term impact of incorrectly modelling density driven
flows through porous media has not been investigated. Therefore, the following work aims to answer
these questions.

5.2 General formulation

Similar to the notation in Section 2.1, the domain for these buoyancy driven flows is D ⇢ Rd , where
1  d  3, and D is triangulated into non–overlapping cells, K. The boundary is denoted by G = ∂D,
and P is a point on the boundary. A time-dependent model is formulated on the time interval
t 2 I = [0, tN).

The Darcy equations and corresponding boundary conditions read: given the buoyancy driven
forcing fff (xxx,c), which is dependent on the concentration of the fluid c, find the pressure field p(xxx) and
velocity field u(xxx) such that

— ·u = 0 on D⇥ I, (5.1a)

u =
k
µ

(�—p+ f) on D⇥ I, (5.1b)

p = pD on P⇥ I, (5.1c)

u ·n = uD on G⇥ I, (5.1d)

where the coefficients k > 0 and µ > 0 are the permeability and viscosity respectively, pD is a
prescribed pressure, uD is a prescribed velocity and nnn is the outward unit normal vector to the
boundary.

The Darcy equations are coupled to a scalar transport equation through the forcing term, fff . The
scalar transport equation and corresponding boundary conditions read: given u(x, t), find c(x, t) such
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that

∂c
∂ t

+—c ·u�— ·D—c = 0 on D⇥ I, (5.2a)

�D—c ·n = cD,G on G⇥ I, (5.2b)

cu ·n = cU,G on G⇥ I, (5.2c)

�D—c ·n = cD,P on P⇥ I, (5.2d)

cu ·n = cU,P on P⇥ I, (5.2e)

c(x,0) = c0 on D, (5.2f)

where D � 0 is the pore-scale diffusivity, c0 � 0 is the initial mass fraction of the solute, and cD,G,
cD,P, cU,G and cU,P describe the transport of the solute on the boundary.

5.3 Finite element formulation for buoyancy driven flows

The Darcy and scalar transport equations can be solved with various FE formulations. However, the
sharp fronts and jumps in concentration, which are inherent in problems with low diffusion, can be
difficult to represent numerically. Therefore, a careful selection of the formulation is important. In
this section, different FE formulations are discussed and presented.

5.3.1 Darcy equations

It is possible to use either a primal or a mixed formulation to solve the Darcy equations. In the primal
formulation, equation (5.1b) is substituted into equation (5.1a) and the formulation reads: given fff ,
find ph 2 Qh such that

Z

D
—qh · k

µ
—ph dx�

Z

D
—qh · k

µ
fff dx+

Z

G
uD ·nnndG = 0 8qh 2 Qh, (5.3)

where

Qh := {ph 2 H1(D), ph|K 2 Pm(K) 8K 2 D}, (5.4)

and P(m) denotes a space of Lagrange polynomials on K of degree m > 0.
In contrast, the mixed formulation of the Darcy equations in (5.1a)-(5.1b) reads: given fff , find

ph 2 Qh and uuuh 2 VVV h such that
Z

D
qh— ·uuuh dx = 0 8qh 2 Qh, (5.5a)

Z

D
uuuh · vvvh dx�

Z

D

k
µ

ph— · vvvh dx =
Z

D

k
µ

fff · vvvh dx�
Z

GA

k
µ

pDvvvh ·nnndG 8vvvh 2 VVV h. (5.5b)
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where

Qh :=
n

ph 2 L2(D), ph|K 2 Pm(K) 8K 2 D
o

, (5.6)

VVV h :=
n

uuuh 2 H(div,D), uuuh|K 2 BDMm+1(K) 8K 2 D
o

, (5.7)

form a mixed function space, Qh ⇥VVV h, where m > 0 is the degree of the Lagrange polynomials and
m+1 > 0 is the degree of the Brezzi-Douglas-Marini (BDM) elements [16].

BDM elements are used here because, as with the more common Raviart-Thomas elements [98],
they form a conforming space of H(div) that describes the continuous normal components of the
solution across the cell facets and have similar error estimates. However, BDM elements require fewer
degrees of freedom than the same degree Raviart Thomas elements [16].

5.3.2 Scalar transport equation

When diffusion is not the dominant transport mechanism in the flow, sharp fronts can propagate
through the domain, which are hard to model numerically. One technique to overcome this is the
Streamline-Upwind Petrov-Galerkin (SUPG) method [36]. This adds residual based artificial diffusion,
which acts only in the flow direction, by modifying the standard Galerkin weight functions with a
streamline upwind perturbation in the flow direction [18]. However, the smoothing is not always
sufficient to stabilise the sharp front and numerical instabilities can still result.

Instead, a fully up-winded discontinuous Galerkin finite element method (DGFEM) can be
implemented to ensure cell-wise mass conservation. Assuming a backward Euler time discretisation
scheme, the formulation of the scalar transport equation (5.2a) reads: given uuuh 2 VVV h, find cn+1

h 2 Wh

such that

Z

D
th

cn+1
h � cn

h
Dt

dx�
Z

D
cn+1

h —th ·uuuh dx+
Z

D
D—th ·—cn+1

h dx

+
Z

GC

th

⇣
min(uuuh ·nnn,0)cD +max(uuuh ·nnn,0)cn+1

h

⌘
dG

+
Z

S
JthK

⇣
max(uuuh ·nnn,0)+cn+1,+

h �max(uuuh ·nnn,0)�cn+1,�
h

⌘
dS

+
Z

S
D

g
h+

JtttnK · JcccnKdS �
Z

S
D{—th} · JcccnKdS �

Z

S
D{—cn+1

h } · JtttnKdS = 0 8th 2 Wh,

(5.8)
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where g � 0 is a constant and

JthK = t+
h � t�

h , (5.9a)

JtttnK = t+
h nnn+ � t�

h nnn�, (5.9b)

JcccnK = cn+1,+
h nnn+ � cn+1,�

h nnn�, (5.9c)

{—th} =
1
2
�
—t+

h +—t�
h
�
, (5.9d)

{—ch} =
1
2

⇣
—cn+1,+

h +—cn+1,�
h

⌘
. (5.9e)

The superscript ‘+’ and ‘�’ refer to opposite sides of the interior cell edge, denoted by S, and ‘[]’
refers to a jump and ‘{}’ to an average across the interior cell edges. The function space Wh is defined
as

Wh := {cn+1
h 2 L2(D),cn+1

h|K 2 Pk(K) 8K 2 D}, (5.10)

where Pk(K) denotes a space of Lagrange polynomials on K of degree k [17, 76].

5.4 A priori error estimates for Darcy equation formulations

The existence of the spurious buoyancy driven flows, which are identified in Section 5.1, can be
explained by considering a priori error estimates. The standard a priori estimate for the primal
formulation of the Darcy flow, in equation (5.3), is

kp� phk1  C inf
q2Qh

kp�qk1, (5.11)

where Qh is the function space for the pressure in equation (5.6) and C is a constant that is independent
of h, ph and p. This estimate means that even if the gradient space of ph contains fff , —ph will
not necessarily balance fff . This balance between —ph and fff can only occur if the exact solution is
contained in the finite element space. Otherwise, numerical errors can be added to the solution, which
result in spurious velocities. Segol et al. [107] proposed that the buoyancy force, fff must at least come
from the gradient space of ph to capture uuu = 000 point-wise. From equation (5.11), this is an insufficient
condition.

For the stable mixed formulation in equation (5.5), the pressure and velocity are bound indepen-
dently; the pressure is bound by equation (5.11) and the velocity is bound by

k— · (uuu�uuuh)k  C inf
vvv2VVV h

k— · (uuu� vvv)k, (5.12)

where VVV h is the function space for the velocity field in equation (5.7) and C is another constant. This
implies that if a problem is in hydrostatic equilibrium, uuu = 000, the finite element approximation of the
flux uuuh will also be zero. This means that hydrostatic equilibrium can be satisfied point-wise for any
functional form of the buoyancy term, fff , irrespective of the degree of the function spaces. Therefore,
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Figure 5.1: Boundaries of domain for compatible function space investigation.

no spurious velocities should be added to the solution from the mixed formulation, as in the primal
formulation, due to errors in the pressure.

5.5 Numerical examples of compatible function spaces for Darcy flow

The coupled Darcy equations (5.1) and the scalar transport equation (5.2) are solved for two different
forcing terms to illustrate the a priori error estimate explanation. The first forcing term is polynomial
and the second sinusoidal.

Only advection terms are considered in the scalar transport equation to avoid artificial smoothing
by diffusion; therefore D = 0 in equation (5.2). The problems are solved on the unit square domain
in Figure 5.1, and discretised using a structured mesh. From equations (5.1) and (5.2), the constants
pD = 0, uN = 0, cD,G = 0, cD,P = 0, cU,G = 0, cU,P = 0 and k/µ = 1 are chosen to ensure hydrostatic
equilibrium, and the time-step Dt = 0.001. The initial concentration field,

c0 =

8
>>>><

>>>>:

1 if 0  y < 0.4,

1�5
⇣

y� 2
5

⌘
if 0.4  y < 0.6,

0 if 0.6  y  1,

(5.13)

is chosen to represent a stable scenario, with a less dense layer of fluid on top of a more dense layer
and a linear mixing region in between. This flow is in hydrostatic equilibrium so the velocity should
be negligible everywhere and the concentration profile should not change.

The first forcing term,
fff p = ggg(1+bc), (5.14)

is a linear polynomial, where ggg = (0.0,�1.0) is a gravity-like term and b = 0.01 is an expansion
coefficient. The velocity profiles for the primal and mixed formulations are depicted in Figure 5.2 for
time t = 400Dt.
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(a) Primal formulation, m = 1. (b) Primal formulation, m = 2.

(c) Mixed formulation, m = 1. (d) Mixed formulation, m = 2.

Figure 5.2: Velocity profile of coupled Darcy and scalar transport equation flow for different finite
element formulations with polynomial forcing fff p = ggg(1+bc) at time t = 400Dt. The flow velocity
profile are depicted using arrows scaled by the magnitude of the velocity. Hydrostatic equilibrium is
maintained when no arrows are visible.
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Figure 5.3: Concentration profile along y-axis at x = 0.5 for fff = ggg(1 + bc). Note the dot-dashed,
solid, and dotted lines are the same.

It is evident from Figure 5.2a that hydrostatic equilibrium is not maintained for the primal
formulation when the degree of the pressure function space, m = 1, see equation (5.4). This is because,
as expected from the error estimates in equation (5.11), —ph does not balance fff p point-wise since
the forcing term is also linear. In contrast, no flow occurs when the degree of the function space in
equation (5.4) is increased to two, see Figure 5.2b. This is because fff p can be matched point-wise
by —ph, when ph is represented by quadratic elements. No spurious flows are found in Figures 5.2c
and 5.2d when either linear or quadratic degree mixed function spaces are used for the pressure, which
corresponds to m = 1,2 in equation (5.6). This is because the error in the mixed method velocity
approximate is bound by its own error estimate in equation (5.12), which holds irrespective of fff p.

The impact of the spurious flows for the primal Darcy formulation is also shown in the concen-
tration profile. If the flow remains in hydrostatic equilibrium, the concentration should remain the
same as the initial condition because there is no diffusion. However, as shown in Figure 5.3, the
concentration profile for the primal first order formulation at x = 0.5 is not the same as the initial
condition. This implies that spurious velocities have been generated. Again, the second order primal
and both mixed formulations do not change showing that hydrostatic equilibrium is maintained.

The second forcing term
fff s = ggg(1+ cos(c)) (5.15)

is sinusoidal and the velocity fields for the different FE formulations are depicted in Figure 5.4. For
this sinusoidal forcing, hydrostatic equilibrium does not remain for either of the primal formulations
because the gradient of the pressure space does not contain sinusoidal terms. However, hydrostatic
equilibrium is maintained by both degree mixed function spaces, for this example, because the velocity
error estimate in equation (5.12) is independent of the forcing.
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(a) Primal formulation, m = 1. (b) Primal formulation, m = 2.

(c) Mixed formulation, m = 1. (d) Mixed formulation, m = 2.

Figure 5.4: Velocity profile of coupled Darcy and scalar transport equation flow for different finite
element formulations with sinusoidal forcing at t = 400Dt with fff s = ggg(1+ cos(c)). The vectors in
Fig (b) are scaled five times bigger than the arrows in Fig (a) so they can be seen. In Fig (c) and (d)
there is no flow since the problem is in hydrostatic equilibrium.
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Figure 5.5: Darcy flow concentration profile along y-axis at x = 0.5 for fff s = ggg(1+ cos(c)). Note the
dotted and solid lines are the same.

The concentration profiles in Figure 5.5 again show that only the primal formulations contain
spurious velocities at time t = 400Dt. The profiles of the two primal formulations along x = 0.5 no
longer agree with the initial concentration profile in equation (5.13). However, hydrostatic equilibrium
can be maintained by the mixed formulation, despite the non-polynomial forcing term.

5.6 Numerical examples of compatible function spaces for Stokes flow

Darcy flows through porous media are not the only type of flows that require compatible function
spaces to ensure no spurious velocities are added to the solution. In this section, the impacts of
different FE formulation are investigated for the Stokes equations coupled to an advection dominated
scalar transport equation. This model is used to represent flows with small inertial forces compared to
viscous forces.

For the domain in Figure 5.1, the Stokes equations and corresponding boundary conditions read:
given the density driven forcing fff (xxx,c), which depends on the concentration of the fluid, find the
velocity field uuu(xxx) and pressure field p(x) such that

— ·uuu = 0 on D⇥ I (5.16a)

— ·sss = fff on D⇥ I (5.16b)

sss = pIII �2n—suuu on D⇥ I (5.16c)

uuu = 000 on G⇥ I (5.16d)

p = 0 on P⇥ I (5.16e)
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where sss is the momentum flux of the fluid, III is the identity matrix, n is the viscosity of the fluid and
—suuu = (—uuu+—uuuT )/2 is the symmetric gradient.

5.6.1 Finite element formulations for Stokes flow

Two FE formulations are identified to solve the Stokes equations in (5.16). The first uses Taylor-
Hood (TH) elements [113] and the second uses a hybrid continuous and discontinuous finite element
method [77].

Stokes flow can be formulated using a mixed finite element method, where the pressure and
velocity are computed directly. If the momentum flux is defined as

sssd|h = phIII �2n—suuuh, (5.17)

the finite element formulation of equation (5.16) reads: given fff (c) find ph 2 Qh and uuuh 2 VVV h such
that

Z

D
—qh ·uuuh dx = 0 8qh 2 Qh, (5.18a)

�
Z

D
—vvvh ·sssd|h dx =

Z

D
vvvh · fff dx 8vvvh 2 VVV h, (5.18b)

where

Qh :=
n

ph 2 H1(D), ph|K 2 Pn(K) 8K 2 D
o

, (5.19)

VVV h :=
n

uuuh 2 [H1(D)]d , uuuh|K 2 [Pn+1(K)]d 8K 2 D
o

, (5.20)

and n > 0 denotes the degree of the Lagrange functions spaces of K. The mixed finite element space
Qh ⇥VVV h is known as the Taylor hood element [113].

Alternatively, the hybrid method finite element formulation of the Stokes equations in (5.16) can
be used, which was developed by Labeur and Wells [77]. This method assumes that adjacent elements
in D share a common facet, F , and F =

S
F is the union of all facets, including the exterior boundary

facets. Following on from sssd|h, defined in equation (5.17), the momentum flux multiplied by the cell
normal vector is

sssd,n|h = p̄hnnn�2n—suuuhnnn�2
na
h

((ūuuh �uuuh)⌦nnn)nnn, (5.21)

where a > 0 is a penalty parameter and the bar denotes the variable is defined on cell facets only, and
the interface mass flux is described by

ûn = uuuh ·nnn. (5.22)
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Therefore, the formulation reads: given the forcing fff (c) find ph 2 Qh, p̄h 2 Q̄h, uuuh 2 VVV h and ūuuh 2 V̄VV h

such that
Z

D
—qh ·uuuh dx�

Z

S

�
(qhûn)

+ +(qhûn)
��dS �

Z

G
qhûn dG = 0 8qh 2 Qh, (5.23a)

Z

S
q̄huuuh ·nnn+ + q̄huuuh ·nnn� dS +

Z

G
q̄huuuh ·nnndG�

Z

G
q̄hūuuh ·nnndG = 0 8q̄h 2 Q̄h, (5.23b)

�
Z

D
—vvvh ·sssd|h dx+

Z

S
(vvvh ·sssd,n|h)

+ +(vvvh ·sssd,n|h)
� dS +

Z

G
vvvh ·sssd,n|h dG

+
Z

S
(2n(ūuuh �uuuh) ·—svvvhnnn)+ +(2n(ūuuh �uuuh) ·—svvvhnnn)� dS

+
Z

G
(2n(ūuuh �uuuh) ·—svvvhnnn)+ dG =

Z

D
vvvh · fff dx 8vvvh 2 VVV h,

(5.23c)

Z

S
(v̄vvh ·sssd,n|h)

+ +(v̄vvh ·sssd,n|h)
� dS +

Z

G
v̄vvh ·sssd,n|h dG = 0 8v̄vvh 2 V̄VV h, (5.23d)

where

Qh :=
n

ph 2 L2(D), ph|K 2 Pn(K) 8K 2 D
o

, (5.24)

Q̄h :=
n

p̄h 2 H1(F), p̄h|F 2 Pn(F) 8F 2 D
o

, (5.25)

VVV h :=
n

uuuh 2 [L2(D)]d , uuuh|K 2 [Pn+1(K)]d 8K 2 D
o

, (5.26)

V̄VV h :=
n

ūuuh 2 [H1(F)]d , ūuuh|F 2 [Pn+1(F)]d 8F 2 D
o

, (5.27)

assuming that Pn(K) and Pn+1(K) denote spaces of Lagrange polynomials on K of degree n > 0 and
n+1 respectively; Pn(F) and Pn+1(F) denote spaces of Lagrange polynomials on F of degree n > 0
and n+1 respectively; and dS represents an integral over the interior element facets.

5.6.2 Numerical examples

To illustrate the importance of compatible function spaces, the Stokes equations in (5.16) have been
coupled to the advection driven scalar transport equation in (5.2) for the domain in Figure 5.1. The
advection driven scalar transport equation is modelled using the same formulation as before in
equation (5.8) with D = 0. The boundary conditions are chosen to represent hydrostatic equilibrium,
so cD,G = 0, cD,P = 0, cU,G = 0 and cU,P = 0. The initial concentration profile is the same as for the
Darcy flow example in equation (5.13). The parameters Dt = 0.001, n = 1.0 and a = 6n2, where n is
the degree of the polynomials used to represent the elements in equation (5.24).

The importance of using compatible function spaces is again shown by considering both polyno-
mial and sinusoidal forcing terms. The TH formulation in equation (5.18) and the hybrid formulation
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(a) Polynomial forcing: fff p = r0ceeek.
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(b) Sinusoidal forcing: fff s = r0(1+ cos(c))eeek.

Figure 5.6: Stokes flow concentration profile along y-axis at x = 0.5 for different forcing terms after
1500Dt.

in equation (5.23) are solved for

fff p = r0ceeek, (5.28a)

fff s = r0(1+ cos(c))eeek, (5.28b)

where r0 = 1000.
From Figure 5.6a, spurious velocities result from first order TH elements with linear forcing, fff p,

but not for quadratic elements. This is because the TH a priori error estimates for ph and uuuh are
coupled [15]:

kuuu�uuuhk1 +kp� phk0  C
⇢

inf
vvv2VVV h

kuuu� vvvk1 + inf
q2Qh

kp�qk0

�
, (5.29)

where C is a constant that is independent of h, uh, u, ph and p. Therefore, from equation (5.18),
second order TH elements are required to match fff p point-wise. In contrast, spurious velocities are
shown in Figure 5.6b for both linear and quadratic elements because polynomial function spaces
cannot contain the sinusoidal forcing term.

The hybrid method does not seem to result in spurious velocities for either fff p or fff s in Figure 5.6.
However, despite the hybrid method being more robust that the TH method, the method only satisfies
— · uuuh = 0 point-wise and the pressure still may not be robust to incompatibilities in the function
spaces, see John et al. [71]. A new formulation, which is pressure robust, has been proposed by
Rhebergen and Wells [99].

5.7 Conclusions

In this chapter, the importance of correctly modelling buoyancy driven flows through porous media
is illustrated for the Darcy equations coupled to a scalar transport equation. If a primal formulation
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is used to solve the Darcy equations, spurious velocities may result if the buoyancy driven forcing
cannot match —ph point-wise; this always occurs for non-polynomial forcing. In contrast, if a mixed
formulation is used, no spurious velocities exist because the error in the pressure and velocity are
bound separately. Therefore if uuu = 000, uuuh = 000 and hydrostatic equilibrium is maintained irrespective of
the forcing.

The compatibility of function spaces if also important for the Stokes equations. Despite TH
elements representing a mixed function space, the error estimates for the pressure and velocity are
coupled. Therefore, it is important to ensure the gradients of the pressure and velocity can match
the forcing term point-wise. The hybrid method [77] is an improvement of the TH method since it
ensures — ·uuu = 0 point-wise, but the pressure may not be robust to function space incompatibilities.

In the remaining chapters of this thesis only the mixed Darcy and DG scalar transport equation
are considered.



Chapter 6

Long term dissolution of CO2 in
background flow1

The Darcy and scalar transport models in the previous chapter are used here to investigate the long
term behaviour of CO2 sequestration in the presence of a background hydrological flow. In this
example, CO2 sequestration refers to the long term storage of captured CO2 in layers of porous rock,
which mitigates some of the harmful environmental impacts from generating energy using fossil fuels.

A summary is as follows. The literature about CO2 sequestration is reviewed in Section 6.1
and the equations that describe the flow of the fluid through the aquifer are non-dimesionalised in
Section 6.2. A one dimensional analytical model for the fluid flow through the aquifer is derived in
Section 6.3 and the FE model is presented in Section 6.4. The two models are analysed in Section 6.5
and the physical relevance of this modelling is presented in Section 6.6.

6.1 CO2 sequestration

Oceans and geological structures have been identified as potential storage areas for captured CO2

[9]. Oceans act as a good storage location for CO2 because they naturally store CO2 and take up at
least 70% of the surface of the earth [84]. However, CO2 only remains trapped in the oceans for short
periods of time and can cause ocean acidification [29].

CO2 can also be pumped underground and stored in aqueous form in geological aquifers, or layers
of porous rock encased in non-porous rock. The aqueous CO2 migrates along the sedimentary layers
of rock, owing to the relative buoyancy of CO2 and water at depths of 1�2km, and ultimately pools in
structural highs such as anticlines [69]. The suitable aquifers for CO2 sequestration are deep to avoid
drinking water contamination and to lessen the risk of leakage if cracks are over-pressurised [39].
Depleted oil and gas reservoirs provide potential sites for sequestration because they have proven
trapping ability.

1The chapter is based on Unwin et al. [121].
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There has been much research into the processes that govern the long term storage of CO2. The
integrity of the rock traps, and so the feasibility of gas migrating back to the surface, has already
been considered [13, 62, 97, 126]. Therefore, the current focus of research is the buoyancy driven
flows that arise when the CO2 is dissolved in water [64, 82, 94, 100]. CO2 is soluble in water up
to concentrations of a few weight percent, which increases the density of the groundwater when
added. Convective dissolution develops beneath the CO2 trap and the concentration of CO2 in the
fluid increases until the fluid becomes unstable and sinks to the bottom of the aquifer. This unstable
fluid is then replaced by unsaturated water. Eventually all the water directly beneath the trap becomes
saturated and more dissolution is only possible if this saturated water can be replaced with unsaturated
water. This can occur due to a background hydrological flow, lateral convective flows along the
aquifer [112, 134], or by vertical exchange flows through fractures, which connect multiple aquifers
together [133].

Szulczewski et al. [112] considered the long term evolution of the convective exchange in a
horizontal aquifer. They established that following the initial dissolution of CO2 directly below the
trap, a slowly spreading zone of CO2 enriched groundwater is formed if dissolution continues to
occur. This zone is controlled long-term by a balance between the buoyancy driven shear and vertical
diffusion of CO2. They predicted that the gas may remain trapped in the aquifer for a long time, since
the buoyancy driven shear dispersion leads to a slowly waning rate of dissolution. However, they did
not consider the impact of a background flow, which may be very important in determining the rate of
CO2 dissolution in aquifers.

6.2 Non-dimensional equations

The long term behaviour of CO2 sequestration is modelled by buoyancy driven Darcy flow, which is
dependent on the concentration of the dissolved CO2, coupled to a scalar transport equation. The fluid
density is defined as

r = r0 +b (c� c0)r0, (6.1)

where c 2 [c0,cD] is the concentration of CO2, r0 � 0 is the initial water density and b � 0 is an
expansion coefficient. The dimensional buoyancy driven forcing term is assumed to be

f = (r �r0)gek, (6.2)

where g is the gravitational acceleration and ek is a unit vector in the direction in which gravity acts.
The following non-dimensional scalings are introduced, to recast the Darcy and scalar-transport

equations in (5.1) and (5.2) into non-dimensional form, with non-dimensional quantities denoted by a
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superscript ‘?’:

u =
k0b (cD � c0)r0g

µ
u?, (6.3)

p = b (cD � c0)r0gH p?, (6.4)

t =
Hµ

k0b (cD � c0)r0g
t?, (6.5)

k = k0k?, (6.6)

x = Hx?, (6.7)

where uuu is the velocity, H is a characteristic height of the domain, k is the permeability, k0 is
a characteristic permeability, µ is the viscosity, t is time, p is the pressure and x 2 D. A scaled
concentration c? 2 [0,1] is introduced, where

c = (cD � c0)c? + c0. (6.8)

The domain of interest for this problem is D 2 Rd , where 1  d  3, and it is triangulated into
non–overlapping cells, K. The boundary is denoted by G = ∂D, where Gc [ Gcap [ GB = ∂D and
Gc \Gcap \GB = /0. The time interval for the model is t 2 I = [0, tN). Therefore, in non-dimensional
form, the Darcy equations and corresponding boundary conditions for this example read: given c?,
find u? such that

—? ·u? = 0 on D⇥ I, (6.9a)
1

k?
u? = �—?p? + c?ek on D⇥ I, (6.9b)

p = pD on Gc ⇥ I (6.9c)

uuu ·nnn = 0 on Gcap ⇥ I (6.9d)

uuu ·nnn = �uB on GB ⇥ I, (6.9e)

and the scalar transport equations and corresponding boundary conditions in (5.2) read: given u?, find
c? such that

∂c?

∂ t?
+—?c? ·u? � 1

Ra
—? ·—?c?(x,w) = 0 on D⇥ I, (6.10a)

c?u? ·n = min(u? ·n,0)cD on Gc ⇥ I, (6.10b)
1

Ra
—?c? ·n = 0 on Gc ⇥ I, (6.10c)

✓
� 1

Ra
—?c+ c?u?

◆
·n = 0 on Gcap [GB ⇥ I, (6.10d)

c?(x,0) = c0 on D, (6.10e)
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where the constant Ra is a Rayleigh number,

Ra =
k0b (cD � c0)r0gH

µD
, (6.11)

which describes the ratio between the buoyancy and diffusivity of the fluid. The boundary condition
in (6.10b) is chosen so that the advective flow is only prescribed on the inflow boundary via a density
based forcing term f(c). Since all equations in the remainder of this chapter are non-dimensional, the
‘?’ notation is dropped.

6.3 Analytical model

Consider the two dimensional domain in Figure 6.1a, which represents a high aspect ratio aquifer
formed by a fold in the geological strata that extends much further in the direction normal to the
page than the width of the fold. This aquifer is assumed to be horizontal and uniform in shape, and
a background hydrological flow is assumed to be supplied from the right-hand side boundary, see
Figure 6.1b.

Directly below the CO2 trap, the groundwater is assumed to be fully saturated with CO2 due
to convective dissolution [112, 133]. This saturated water can be moved downstream due to the
background flow, but little is understood about the upstream impact of the dense saturated fluid and
groundwater mixing. Therefore, Gc is chosen to be upstream of the fully saturated region. It is also
assumed that the background hydrological flows in the model are constant in time and that the CO2

does not react with the layers of rock.
Different flow regimes develop depending on the non-dimensional parameters uB and Ra, in

equations (6.9e) and (6.11). The parameter uB is the ratio of the background flow speed to the
buoyancy driven flow speed, and the parameter Ra is the ratio of the buoyancy driven flow speed to
the diffusion. Three different regimes develop, which are derived below: a gravity intrusion regime, a
dispersion dominated regime and a diffusion dominated regime.

6.3.1 Gravity intrusion regime

For advection dominated flows, where 1/Ra in equation (6.10a) is small, a nearly static intrusion of
dense CO2 saturated fluid extends upstream into the aquifer. This intrusion is modelled as a sharp
concentration front at a height h(x) above the lower boundary, where 0  h(x)  1, with approximately
hydrostatic pressure [68, 133]. Therefore in the equilibrium state, the intrusion pressure gradient in
the x-direction dh/dx balances the pressure gradient associated with the background flow above the
intrusion �uB/1�h, since uB is defined in the opposite direction to the flow:

� (1�h)
dh
dx

= uB. (6.12)
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(a) Cartoon of geological problem.

Gc GB

Gcap

Gcap

H

L

y

x

uB,c0

cD

c0

(b) Diagram of model problem.

Figure 6.1: Diagrams of problem of interest. Fig (a) includes a cartoon of the geological problem
with region of interest indicated by dashed box. The large red arrows represent the direction of the
background hydrological flow, while the smaller black curved arrows represent the convective mixing
of the CO2. The smaller blue arrow inside the dashed box represents the buoyancy driven flow of
dense CO2 saturated water flowing upstream into the background hydrological flow. Fig (b) depicts
the model problem for analysis and simulation [121].
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The shape of the intrusion can be found by integrating equation (6.12) with boundary condition
h(0) = 1,

h(x) = 1�
p

2uBx. (6.13)

The maximum distance the intrusion, Xint will extend into the aquifer is the distance at which the
height of the aquifer, in equation (6.13), is zero. Therefore,

Xint =
1

2uB
. (6.14)

The dimensionless time taken for the background flow to pass the intrusion is calculated by

tint =
Z 0

Xint

1
u

dx, (6.15)

where u = �uB/(1�h). Therefore,

tint =
Z 0

Xint

�(1�h)

uB
dx. (6.16)

Substituting the height of the intrusion in the x-direction from equation (6.13) into equation (6.16),

tint =
1

3u2
B
. (6.17)

For the sharp interface to remain between the regions of low and high concentration, which is
indicative of this regime, tint needs to be small relative to the dimensionless diffusion time, tdiff = Ra.
Therefore, to enter the gravity intrusion regime Ra � 1/3u2

B, or u2
BRa � 1/3. This is simplified in

the following analysis to
u2

BRa � 1. (6.18)

As discussed further in Unwin et al. [121], the gravity intrusion extends less far into the domain
as uB increases. This is because Xint  1/uB. Therefore, it is expected that the time scale 1/u2

B is
an upper bound for the advection time ⇠ Xint/uB. It is also important to consider diffusion since
Xint < 1 for large values of uB. Diffusion scales with X2

intRa and so suggests that Ra = 1 is a good
approximation for the upper bound of the transition between the diffusive and intrusive regimes.

6.3.2 Buoyancy-driven shear dispersion regimes

When u2
BRa ⌧ 1, vertical diffusion is fast, the vertical concentration gradient is small, and the

horizontal concentration gradient may be significant. For these values of uB and Ra, two different
parameter regimes can be entered: the buoyancy driven shear regime or the diffusion dominated
regime. Similar to Unwin et al. [121], the subsequent derivations follow Szulczewski et al. [112]
and Woods [133].
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Consider the CO2 concentration, which is decomposed into depth-average and fluctuation parts
denoted by the bar and hat notation respectively:

c(x,y, t) = c̄(x, t)+ ĉ(x,y, t), (6.19)

where
c̄ =

Z 1

0
cdy. (6.20)

Assuming that ĉ is small, that the horizontal dimension of the aquifer is much greater than the vertical
dimension, and that the non-hydrostatic vertical pressure gradient is small, the pressure is assumed to
vary hydrostatically and can be approximated by

p = p0 � yc̄, (6.21)

where p0 = p0(x, t) is the pressure at the base of the aquifer. The velocity of the fluid uuu = (u,v), can
be expressed as the sum of the average velocity across the depth of the aquifer, ūuu = (ū, v̄), and a
fluctuation ûuu = (û, v̂)

uuu(x,y, t) = ūuu(x, t)+ ûuu(x,y, t), (6.22)

where:

ūuu =
Z 1

0
uuudy. (6.23)

Assuming the Darcy velocity balances �dp/dx, the velocity along the aquifer, u, is the derivative in
the x-direction of the pressure, which is given in equation (6.21),

u = �∂ p0

∂x
+ y

∂ c̄
∂x

. (6.24)

Substituting u, from equation (6.24), into equation (6.23) and integrating gives the average velocity,

ū = �∂ p0

∂x
+

1
2

∂ c̄
∂x

. (6.25)

The velocity fluctuation along the aquifer can be found by substituting equations (6.24) and (6.25)
into (6.22) and rearranging,

û =
∂ c̄
∂x

✓
y� 1

2

◆
. (6.26)

Considering the decomposition of the concentration and velocity given in equations (6.19)
and (6.22), and the continuity equation in (6.9a), the scalar transport equation in (6.10a) can be
written as

∂ c̄
∂ t

+
∂ ĉ
∂ t

+ ū
∂ c̄
∂x

+ ū
∂ ĉ
∂x

+ û
∂ c̄
∂x

+ û
∂ ĉ
∂x

+ v̂
∂ ĉ
∂y

+ v̄
∂ ĉ
∂y

=
1

Ra
∂ 2c̄
∂x2 +

1
Ra

∂ 2ĉ
∂x2 +

1
Ra

∂ 2ĉ
∂y2 . (6.27)



80 Long term dissolution of CO2 in background flow

Taking the average of equation (6.27) over the depth of the aquifer results in an equation for the
transport of the mean concentration in the x-direction

∂ c̄
∂ t

+ ū
∂ c̄
∂x

+ û
∂ ĉ
∂x

=
1

Ra
∂ 2c̄
∂x2 . (6.28)

The equation for the concentration fluctuations in the aquifer can be found by subtracting equa-
tion (6.28) from the transport equation in (6.27)

∂ ĉ
∂ t

+ û
∂ c̄
∂x

+ ū
∂ ĉ
∂x

+ û
∂ ĉ
∂x

+ v̂
∂ ĉ
∂y

+ v̄
∂ ĉ
∂y

=
1

Ra

 
∂ 2ĉ
∂x2 +

∂ 2ĉ
∂y2

!
+ û

∂ ĉ
∂x

. (6.29)

After long time periods, the dominant balance in equation (6.29) is between the distortion of c̄, due to
the velocity fluctuations, and the cross layer transport mechanism given by Ra [114]. This gives rise
to the following balance:

1
Ra

∂ 2ĉ
∂y2 = û

∂ c̄
∂x

. (6.30)

By substituting equation (6.26) into equation (6.30),

∂ 2ĉ
∂y2 = Ra

✓
∂ c̄
∂x

◆2✓
y� 1

2

◆
, (6.31)

the concentration fluctuation ĉ can be found by integrating equation (6.31) twice, with the boundary
conditions ∂ ĉ/∂y = 0 at y = 0 and

R 1
0 ĉdy = 0,

ĉ = Ra
✓

∂ c̄
∂x

◆2
 

y3

6
� y2

4
+

1
24

!
. (6.32)

Substituting equations (6.26) and (6.32) into equation (6.28), the depth averaged transport equation
can be expressed as:

∂ c̄
∂ t

�uB
∂ c̄
∂x

=
1

Ra
∂ 2c̄
∂x2 +

Ra
120

∂
∂x

✓
∂ c̄
∂x

◆3

, (6.33)

where uB is the background flow from right-to-left that corresponds to the boundary condition in
(6.9e).

After long time periods, the solution becomes steady, ∂ c̄/∂ t = 0, and by rescaling the x coordinate
with

x =

✓
Ra

120uB

◆ 1
3

x0, (6.34)

and rearranging, the transport equation in (6.33) can be re-written as

� ∂ c̄
∂x0 =

 
120uB

Ra4u3
B

! 1
3 ∂ 2c̄

∂x02 +
∂

∂x0

✓
∂ c̄
∂x0

◆3

. (6.35)
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This can be simplified to

� ∂ c̄
∂x0 = a ∂ 2c̄

∂x02 +
∂

∂x0

✓
∂ c̄
∂x0

◆3

, (6.36)

where

a =

 
120

Ra4u2
B

! 1
3

. (6.37)

The value of a determines which of the two regime is entered. Diffusion dominates for large
values of a whereas, dispersion is dominant for small values of a . No analytical solutions to
equation (6.36) have been found, but useful analytical assumptions can be derived by considering the
limits of a ⌧ 1 and a � 1.

Dispersion dominated regime
In the limit of equation (6.36), where a ⌧ 1, the buoyancy driven dispersion balances the advection
and the rescaled depth average scalar transport equation becomes

� ∂ c̄
∂x0 =

∂
∂x0

✓
∂ c̄
∂x0

◆3

. (6.38)

Integrating equation (6.38) once, and assuming the coefficient of integration is zero,

� c̄ =

✓
∂ c̄
∂x0

◆3

. (6.39)

Rearranging equation (6.39),

� 1

c̄
1
3

∂ c̄
∂x0 = 1, (6.40)

and integrating equation (6.40) with the boundary condition c̄ = 1 at x0 = 0,

x0 = 1� 3
2

c̄
2
3 . (6.41)

Substituting x0 from equation (6.41) into equation (6.34) and rearranging, the buoyancy driven
dispersion regime concentration profile is

c̄ =

0

@1� 2
3

✓
120uB

Ra

◆ 1
3

x

1

A

3
2

. (6.42)

In this regime, the concentrated fluid should not advance further upstream than

Xdis =
3
2

✓
Ra

120uB

◆ 1
3

, (6.43)

since this is the value of x for c = 0.
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Diffusion dominated regime
In the limit of equation (6.36) where a � 1, diffusion balances the advection and the rescaled depth
averaged scalar transport equation becomes

� ∂ c̄
∂x0 = a ∂ 2c̄

∂x02 . (6.44)

Integrating equation (6.44), and setting the constant of integration to zero,

� c̄ = a ∂ c̄
∂x0 . (6.45)

Rearranging equation (6.45),

� 1
a

=
1
c̄

∂ c̄
∂x0 , (6.46)

and integrating equation (6.46) with the boundary condition c̄ = 1 at x0 = 0,

� x0 = aln(c̄). (6.47)

Substituting x0 and a from equations (6.34) and (6.37) respectively and rearranging, the vertically
averaged diffusion dominated concentration profile is

c̄ = e�RauBx. (6.48)

For this regime, the concentrated fluid should not advance further upstream than

Xdiff =
ln cdiff

RauB
, (6.49)

where cdiff is the concentration of CO2 in the groundwater that is considered negligible.

Regime transition
The value of a at which the dispersion and diffusion regimes transition, can be found by equating Xdis

from equation (6.43) and Xdif from equation (6.49)

ae =
3

2ln cdiff
. (6.50)

The point at which the concentration becomes negligible is chosen to be cdiff = 0.01. For this value,
ae = 0.326.

Figure 6.2 shows how Xdiff and Xdis vary as function of Ra for two different values of uB to
illustrate which regime controls the distance that the CO2 propagates upstream. The flow belongs to
the regime with the longer upstream propagation distance. Therefore, when the Rayleigh number is
large the dispersion regime is entered. In contrast a transition to diffusive regimes occurs for small
Rayleigh numbers. This is expected since Ra µ 1/D , see equation (6.11).



6.4 Numerical model 83

0 200 400 600 800 1000
Ra

0

10

20

30

40

50

60

X

Xdis : uB = 8.0e � 04

Xdi� : uB = 8.0e � 04

Xdis : uB = 8.0e � 03

Xdi� : uB = 8.0e � 03

Figure 6.2: Illustration of the distance that CO2 extends upstream in the dispersion and diffusion limit
as a function of Ra for two different values of uB [121].

6.3.3 Regime differentiation

From the above derivations, one of three different regimes can occur if uB < 1, see Figure 6.3.
This figure is important since a background flow has not been considered in previous work, such
as Szulczewski et al. [112] and Woods [133].

Gravity intrusions occur when u2
BRa � 1 whereas, depending on the value of a (6.37), either a

dispersive or diffusive regime is entered if u2
BRa ⌧ 1. When uB approaches one, the above analysis

suggests that transition between the dispersion and intrusive regimes and the dispersive and diffusive
regimes converge. From Figure 6.3, the regime transition occurs at Ra = 4.93. This is similar to
the upper bound of Ra = 1 for the transition between the intrusive and diffusive regimes found in
Section 6.3.1.

6.4 Numerical model

A mixed method is used to solve the Darcy equations in (6.9), as explained in Section 5.4, to ensure
local mass conservation. Therefore, the finite element formulation reads: given cn+1

h 2 Wh, find
ph 2 Qh and uuuh 2 VVV h such that

Z

D
qh— ·uuuh dx = 0 8qh 2 Qh, (6.51a)

Z

D

1
k

uuuh · vvvh dx�
Z

D
ph— · vvvh dx =

Z

D
ceeek · vvvh dx�

Z

GA

pDvvvh ·nnndG 8vvvh 2 VVV h, (6.51b)
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Figure 6.3: Illustration of different regimes. The red dashed line denotes a = 1 and so separates the
dispersive and diffusive lines. The blue solid line denotes Ra = 1/u2

B and for uB < 1 separates the
intrusive and dispersive regimes. The green dot dashed line denotes Ra = 4.93. This is an upper
bound on the transition between the diffusive and intrusive regimes for uB > 1.

where

Wh := {cn+1
h 2 L2(D),cn+1

h|K 2 Pk(K) 8K 2 D}, (6.52)

Qh :=
n

ph 2 L2(D), ph|K 2 Pm(K) 8K 2 D
o

, (6.53)

VVV h :=
n

uuuh 2 H(div,D), uuuh|K 2 BDMm+1(K) 8K 2 D
o

, (6.54)

and Pk(K) and Pm(K) denote spaces of Lagrange polynomials on K of degree m and k respectively
and BDMm+1(K) denotes a space of BDM elements [16] with degree m+1.

A non-dimensional fully up-winded discontinuous Galerkin finite element method is used to
discretise the scalar transport equation in (6.10). Assuming a backward Euler time discretisation
scheme, the formulation of the scalar transport equation reads: given uuuh 2 VVV h, find cn+1

h 2 Wh such
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that

Z

D
sh

cn+1
h � cn

h
dt

dx�
Z

D
cn+1

h —sh ·uuuh dx+
Z

D

1
Ra

—sh ·—cn+1
h dx

+
Z

GC

sh

⇣
min(uuuh ·nnn,0)cD +max(uuuh ·nnn,0)cn+1

h

⌘
dG

+
Z

S
JshK

⇣
max(uuuh ·nnn,0)+cn+1,+

h �max(uuuh ·nnn,0)�cn+1,�
h

⌘
dS

+
Z

S

1
Ra

g
h+

JsssnK · JcccnKdS �
Z

S

1
Ra

{—sh} · JcccnKdS �
Z

S

1
Ra

{—cn+1
h } · JsssnKdS = 0 8sh 2 Wh,

(6.55)

where g � 0, Wh is the function space defined in equation (6.52), and

JshK = s+
h �s�

h , (6.56a)

JsssnK = s+
h nnn+ �s�

h nnn�, (6.56b)

JcccnK = cn+1,+
h nnn+ � cn+1,�

h nnn�, (6.56c)

{—sh} =
1
2
�
—s+

h +—s�
h
�
, (6.56d)

{—ch} =
1
2

⇣
—cn+1,+

h +—cn+1,�
h

⌘
(6.56e)

Similar to Section 5.3.2, the superscript ‘+’ and ‘�’ refer to opposite sides of the interior cell edge,
denoted by S, and ‘[]’ refers to a jump and ‘{}’ to an average across the interior cell edges.

For this example, the domain D = [0,100]⇥ [0,1] to ensure that the aquifer length is much greater
than the height. From equations (6.9c) and (6.10b), the boundary conditions pD = �y and cD = 1,
from equation (6.9b) k = 1, and from equation (6.55) g = 5. To simulate the different regimes, uB is
fixed at 8⇥10�4 and Ra is altered to vary a , see equation (6.37). The function spaces are such that
k = 1 and m = 0 from equations (6.52) and (6.53) respectively. The FEniCS libraries [4] are used to
solve equations (6.51) and (6.55) and the code for the simulations can be found as Unwin and Wells
[120].

6.5 Model comparison

The concentration and velocity profiles for the three different regimes are considered in this section for
background flows with varying velocities. First weak background flows are considered with uB < 1
and then strong background flows with uB � 1, see Figure 6.3.

6.5.1 Weak background flow: uB < 1

Figure 6.4 shows the two dimensional numerical concentration profiles for uB = 0.1 and three
different values of Ra. This illustrates the three different regimes that can be entered: gravity



86 Long term dissolution of CO2 in background flow

(a) Gravity intrusion: Ra = 3000.

(b) Dispersive regime: Ra = 50.

(c) Diffusive regime: Ra = 1.0.

Figure 6.4: Concentration contours for uB = 0.1 and different values of Ra. The colours show the
concentration locally as defined by the scale in the figure and the contour lines are shown at equal
intervals of 0.1 from 0.1 to 0.9. The x-axis is longer in (c) than (a) or (b) to display the full diffusive
regime [121].

intrusion, dispersion dominated and diffusion dominated. First, the gravity intrusion is characterised
in Figure 6.4a by the sharp interface between the regions of high and low concentration, which is
indicated by the close contour lines. Second, the dispersion regime is characterised in Figure 6.4b by
the curved contour lines that are formed from the concentrated fluid slumping to the bottom of the
domain and the strong flow recirculation. Third, the diffusion regime is characterised in Figure 6.4c
by the nearly straight contour lines that move across the flow linearly. The concentration and velocity
profiles for these three different flow regimes are analysed below.

Concentration profiles
The concentration profiles for the analytical and numerical models can be compared by computing the
vertical concentration average, c̄, for the steady two dimensional finite element model. Since no ana-
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Figure 6.5: Computed and analytical variation of c̄ along the x dimension in the domain for different
values of Ra when uB = 8⇥10�4. The solid lines represent the vertically averaged two dimensional
numerical solution and the dashed lines represent the one dimensional solution [121].

lytical solution can be found for the one dimensional analytical model, the solution to equation (6.36)
can be approximated numerically using the FEniCS libraries. The full finite element formulation can
be found in Unwin and Wells [120].

Figure 6.5 shows how c̄ varies along the x dimension of the domain for both numerical and
analytical models, uB = 8⇥10�4 and values of Ra between 100 and 10,000. There is good agreement
of the one dimensional and vertically averaged two dimensional models between the dispersion limit
and the diffusion limit. However, as expected in the limiting cases of small or very large Ra, the one
dimensional and two dimensional numerical models diverge. This is because the analytical modelling
assumptions do not capture all the physics of the flow in those areas.

The flow begins to enter the gravity intrusion regime for Ra = 10,000, so neither the diffusive or
dispersive concentration profiles match the vertically averaged concentration profile in Figure 6.5.
This is because there are no significant concentration fluctuations in this regime along the height of
the aquifer and the model more closely follows the height profile given in equation (6.13).

The gravity intrusion profile is compared to the two dimensional numerical solution in Figure 6.6
for Ra = 3000 and uB = 0.1. These parameters result in flow that is definitely in the gravity intrusion
regime, see Figure 6.3. There is a reasonable match between the analytical and two dimensional
numerical models for x < 3.5. However, further into the domain the fluid recirculates weakly in a
diffusive boundary layer, which is not present in the analytical model. This suggests that the two
dimensional model is well formulated and the one dimensional models are a good approximation of
the flow, where the analytical assumptions hold.



88 Long term dissolution of CO2 in background flow

Figure 6.6: Concentration as a function of position in the domain for the gravity intrusion regime,
with uB = 0.1 and Ra = 3000. The predicted analytical shape of the intrusion, from equation (6.13),
is overlain as a dotted white line. The scale is the same as shown in Figure 6.4 [121].
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Figure 6.7: Normalised L1 error norm for the computed two dimensional numeric and analytical
values of c̄.

To investigate further how closely the one dimensional analytical models match the numerical
model, the following error norm has been computed

e =

R
|c̄T � c̄N |dxR

c̄T dx
, (6.57)

where c̄N is the vertically averaged two dimensional numerical concentration profile and c̄T is one
of three analytical models: the dispersion profile from equation (6.42), the diffusion profile from
equation (6.48) and the full one dimensional numerical model from equation (6.36). The error for the
three analytical models has been calculated in Figure 6.7, for four different values of a . As expected,
when a ⌧ 1, the error between the dispersion dominated solution and c̄N is small since the flow
is in the dispersive regime. In contrast, when a � 1, the error between the diffusion dominated
solution and c̄N is small since the flow is in the diffusive regime. The error between c̄N and the full
one dimensional solution is always small, since the model represents the physics of the flow well for



6.5 Model comparison 89

(a) Dispersive regime: Ra = 100.

(b) Transitional regime: Ra = 10.

(c) Diffusive regime: Ra = 1.

Figure 6.8: Typical streamlines of the flow for uB = 0.01 and Ra = 100,10 and 1.

the whole regime. However, the increase in the error for the higher a values is a result of the one
dimensional model better representing the dispersive regime than the diffusive one.

Velocity profiles
The velocity streamlines are presented in Figure 6.8 for uB = 0.01 and three different values of Ra
that correspond to a dispersion regime, a transitional regime and a diffusive regime. For large values
of Ra, the groundwater is diverted towards the top of the aquifer and a recirculation region arises
upstream, which is characterised by the curved streamlines in Figure 6.8a. In contrast, the streamlines
straighten as Ra decreases and transition to a diffusion driven regime occurs. In the diffusion limit
in Figure 6.8c, the streamlines are uniformly horizontal. This shows that the background flow is
dominant in the diffusion regime.

In the buoyancy driven shear regime, a  1 and u2
BRa  1, linear velocity fluctuations are predicted

from the analytical model derivation. If the velocity fluctuations û are rescaled with the depth average
concentration gradient, equation (6.26) suggests that û∂ c̄/∂x = �0.5 for y = 0 and û∂ c̄/∂x = 0.5
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Figure 6.9: Scaled velocity profiles at different points along the domain for different values of a
with uB = 8 ⇥ 10�4. Fig (a) shows the velocity fluctuations û scaled by concentration gradient for
Ra = 1000 and uB = 8⇥10�4, which corresponds to a = 0.0527 from equation (6.37). Fig (b) shows
the velocity fluctuations û for different values of a at different values of x [121].

for y = 1. The scaled velocity profiles are shown in Figure 6.9a for different distances along the x
axis, Ra = 1000 and uB = 8⇥10�4, which correspond to a dispersion dominated flow. While x/Xdis

is small, the velocity profiles considered are for distances that are far from the stall point, or the
maximum distance the saturated fluid will enter the domain. Here, the velocity fluctuations are linear
and have a range of [�0.5,0.5]. In contrast, the velocity profiles near the stall points deviate from the
simplified analytical theory.

The scaled velocity fluctuations are shown in Figure 6.9b for the three different flow regimes with
various values of a . As the flow transitions from dispersion to diffusion dominated, the model for
û in equation (6.26) becomes less applicable. For 0.0572  x  0.1442, the scaled velocity profiles
have the predicted linear relationship in equation (6.26). However, as alpha increases the diffusion
transport regime becomes more dominant and the fluctuations are small compared to the background
flow. For a = 0.0027, the gravity intrusion regime is approached, so the velocity fluctuations across
the domain are no longer small. This means that the assumptions for equation (6.26) do not hold and
the velocity fluctuations do not match the predicted profile.

6.5.2 Strong background flow: uB & 1

The two dimensional concentration profiles for three values of Ra are shown in Figure 6.10 for
uB = 1.0. Two different regimes develop, as predicted by the regime diagram in Figure 6.3, because
diffusion becomes dominant before the buoyancy driven dispersion has time to develop. Figure 6.10a
shows a gravity intrusion, Figure 6.10b shows a transitional regime and Figure 6.10c shows a diffusive
regime.
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(a) Gravity intrusion regime: Ra = 1000.

(b) Transitional regime: Ra = 2.

(c) Diffusive regime: Ra = 0.5.

Figure 6.10: Concentration fields for uB = 1.0 and different values of Ra. The white contour in (b)
and (c) is the c = 0.01 contour. The domains have been truncated at different lengths to best represent
each regime. Note that the maximum concentration for the colour bar is set equal to 0.3, which is
greater than the highest concentration for panels (b) and (c) [121].
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Figure 6.11: Concentration profiles for uB & 1. Fig (a) shows the vertically averaged concentration
computed from the two dimensional numerical model for various values of Ra and uB at x = 0. Fig (b)
shows the computed and analytical variation of c̄ with x for different values of Ra when uB = 1.0.
The solid line represents the two dimensional numerical solution and the dashed line represents the
diffusion limit if using the numerically computed c̄ as the boundary condition at x = 0 [121].

The vertically averaged concentration profiles at x = 0 are shown in Figure 6.11a for different
values of the background flow, uB and Ra. For all values of Ra, c̄ at x = 0 decreases as uB increases.
This is because there is a progressively stronger background flow, with which the buoyancy driven
flow has to compete. This reduces the amount of saturated water that enters the domain.

For small values of Ra in the presence of a strong background flow, the diffusive c̄ from equa-
tion (6.48) can be rescaled to

c̄(x) = c̄(0)e�RauBx, (6.58)

where c̄(0) is the vertically averaged concentration at x = 0. Figure 6.11b shows the variation in
the averaged concentration profiles for different values of Ra. For Ra = 0.1, the flow is diffusive
because the numerical solution matches the theoretical curve from equation (6.58). As the value of
Ra increases, the numerical solution diverges from the theoretical prediction as the gravity intrusion
regime is entered.

6.6 Conclusions

In this chapter, analytical and numerical models are developed for the long-term buoyancy driven
transport of aqueous CO2 along horizontal aquifers in the presence of a background flow. The
dispersion dominated, diffusion dominated and gravity intrusions regimes can be identified in the two
dimensional numerical models for the expected values of Ra and uB, which validates both models.

This research identifies that a is a function of uB, so the background hydrological flow has a
significant impact on the long term dissolution of CO2. Therefore, new estimates can be made for
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behaviour of the buoyancy driven mechanisms. If typical parameters for aquifers are considered, it
is expected that the flow dynamics are controlled by a balance of buoyancy driven shear dispersion
and the background hydrological flow. For a typical aquifer with height 20�30m, Ra = 103 �104

and a non-dimensional background velocity of 0.01 � 1.0, the length scale for dispersion will be
100�400m and will take 105 �106 years [121].

Real aquifer geometries and parameters could be considered to develop this model further. This
would enable scientists to approximate the volumes of CO2 that could be stored in an actual aquifer
so that better informed decisions could be made about the viability of CO2 sequestration.





Chapter 7

Quantifying uncertainty in buoyancy
driven flows

Uncertainty in buoyancy driven flows through porous media needs to be quantified to understand flow
behaviour fully. As discussed in Chapter 1, epistemic uncertainty can be added to hydrogeological
models through poor measurement of the rock permeability over the length of an aquifer [133].
Variations in weather conditions can also add aleatoric uncertainty to the model. Different rainfall
levels result in varying groundwater velocity and aquifer saturation levels. This means that the real
system behaviour can be very different to that described by a deterministic system.

This chapter focuses on one particular type of buoyancy driven flow, where a layer of dense fluid
lies on top of a layer of less dense fluid. This unstable scenario results in a phenomena known as
fingering. The literature about modelling fingering in buoyancy driven flows is presented in Section 7.1
and the numerical model of interest is described in Section 7.2. Then in Section 7.3, attempts are
made to quantify uncertainty in advection dominated buoyancy driven fingering. However, difficulties
are found with resolving the fingering phenomena on different fidelity meshes. Therefore, the model
is further simplified in Section 7.4 by considering diffusion dominated flows, where fingering is less
prominent. Conclusions are then presented in Section 7.5.

7.1 Buoyancy driven fingering

From a one dimensional stability analysis and experiments, where liquid sugar was run through water
saturated granular bone charcoal, Hill [65] identified that ‘finger-like’ structures can grow in porous
media flows under certain conditions. His research established that there are two mechanisms that
drive the growth of fingers: the difference between the viscosities of the fluid and the difference
in density between the fluids. The flow is unstable if the top fluid is more dense and more viscous
than the bottom flow, or if the combination of differences between the viscosity and density of the
fluids across the interface is unstable. This instability causes fingers of the more dense fluid to grow
vertically into the less dense fluid, see Figure 7.1a. It should be noted that the problem is stable and
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(a) More viscous fluid on top.

Less viscous/  
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More viscous/ 
more dense fluid

(b) Less viscous fluid on top.

Figure 7.1: Diagram indicating fingering behaviour in porous media flows.

no fingers grow if these properties are inverted and the more viscous dense fluid is underneath, see
Figure 7.1b.

Chuoke et al. [22] and Saffman and Taylor [104] both presented similar in-depth one dimensional
linear stability analyses using experiments in Hele-Shaw cells, which gave more detail than Hill [65].
Their new analysis found that the instabilities, and so resulting fingers, are dependent on the density
and viscosity of the fluids, as identified by Hill, but also the surface tensions and relative velocities
of the fluids and the permeability and length scale of the porous media. In addition to the stability
analysis, Saffman and Taylor [104] also considered the shape and evolution of a single dominant
finger.

Elder [37, 38] then modelled fingering in thermal flows to form the benchmark for density driven
flows in porous media. He considered the effects of heating a small portion of fluid in a rectangular
box and found that finger-like structures grow both experimentally, using a Hele Shaw cell, and
numerically. Voss and Souza [128] then recast the problem to consider dense fluid mixing into a
domain filled with less dense fluid. Again, this unstable scenario resulted in the growth of fingers in
the domain.

The suitability of the Elder problem as a benchmark has since been questioned by van Reeuwijk
et al. [125] and Diersch and Kolditz [35], who showed that the solution depends on the fidelity of
the mesh, the numerical method used, and initial conditions applied. For a coarse representation of
the domain, the concentration profile tends to match the profiles in Elder [37] and Voss and Souza
[128], where three fingers form in the domain and at the centre there is a downwelling of fluid, see
Figure 7.2a. However, a more refined representation results in a central upwelling with four fingers
present [1, 35, 93, 125], see Figure 7.2b. Most research also only considered half of the domain, since
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(a) Coarse representation.

(b) Fine representation.

Figure 7.2: Elder benchmark contours indicating 20% of the maximum concentration computed using
FEniCS.

symmetrical flow behaviour was assumed. This may be a poor assumption because the solution does
not necessarily remain symmetric on non-symmetric meshes.

Elder [37] used his benchmark to propose that the growth of the fingers is accelerated by more
less-buoyant fluid, from the dense layer, being drawn into the finger. Wooding [132] developed
this work by identifying that if the density gradient at the tips of the fingers exceeds the stabilising
mechanisms as the fingers grow, this results in the fingers bifurcating.

The research discussed so far considers homogeneous and deterministic porous media, but Kueper
and Frind [75] hypothesised that heterogeneous permeability fields would result in a better model of
the rock. They further suggested that this makes the previous stability analysis by Chuoke et al. [22]
and Saffman and Taylor [104] invalid because fingering will simply be initiated in the most permeable
regions, which exhibit the easiest pathway for the advancing front. Figure 7.3a shows that when the
permeability is homogeneous, the fingering is fairly constant across the interface between the two
layers of fluid; whereas, Figure 7.3b shows that when the permeability is heterogeneous, the fingering
initiates along a region of the interface corresponding to the area of highest permeability.

With the development of efficient high speed computation, Kueper and Frind [75] and Leclerc
and Neale [80] advocated modelling the uncertain nature of these flows using the MC method. Both
papers simplified the numerical models because it is prohibitively expensive to quantify uncertainty in
complex PDE governed systems using the traditional MC method. Uncertainty is now beginning to
be quantified in porous media flows using new techniques that are computationally cheaper than the
MC method. Cliffe et al. [26] used the MLMC method to assess the safety of geological reservoirs
from radioactive waste and Crevillén-Garcia et al. [28] used a Gaussian process emulation method to
model CO2 storage.
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(a) Homogeneous permeability. (b) Heterogeneous permeability.

Figure 7.3: Concentration profiles of fingering simulations indicating difference in flow behaviour
due to varying permeability fields, computed with FEniCS.

Other than the original work in Kueper and Frind [75] very little, or no, research into the impact
of uncertain permeability on the fingering behaviour has been published. Therefore, the impact of
heterogeneous permeability fields on buoyancy driven fingering is investigated in this chapter. The
MLMC method is applied to simplified buoyancy driven flow examples to indicate the feasibility of
using this method to quantify uncertainty. The viscosity of the two fluids is assumed constant in the
analysis and only the density of the fluids vary.

7.2 Model system

Fingering in buoyancy driven flows is governed by the same equations that govern the long term
behaviour of CO2 saturated water flows in aquifers. Therefore, the impact of uncertainty in buoyancy
driven fingering is investigated by solving the coupled Darcy equations and scalar transport equation
using FEniCS [4] and podS [122] for a simplified unit square domain, Figure 7.4. The same equations
and FE formulations can be used as Chapter 6. Using notation consistent with Section 6.4, the
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Figure 7.4: Domain for pollution scenario.

boundary and initial conditions are

uuu ·nnn = 0 on G⇥ I, (7.1a)

(� 1
Ra

—c+ cu) ·n = 0 on G⇥ I, (7.1b)

c(x,y,0) = c0(y) on D, (7.1c)

where

c0(y) =

8
<

:
1 if 0  y < 0.5

0 if 0.5  y  1.
(7.2)

These conditions represent no fluid or concentration flow over the boundary and an unstable initial
condition, from which fingers should grow. Again the equations are coupled by density driven forcing,
which is described in equation (6.2).

A separable analytical exponential KL expansion is used to represent the non-dimensional per-
meability field, k , as described in Section 2.6. This is computed by taking the exponential of the
analytical KL expansion given in equation (2.20) with mean and standard deviation of 0.0 and 1.0
respectively. The expansion is truncated after 100 eigenpairs. The length scale, l = 0.25 ensures that
the uncertain permeability field can be represented on all the meshes considered. The size of time
step is chosen such that dt = 0.005. The code for this solver is published as Unwin [118].
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(a) 3200 elements. (b) 6400 elements.

Figure 7.5: Concentration profiles for one realisation of a random field with different fidelity meshes.
These snapshots are for time step 50 and Ra = 1000.

7.3 Challenges of quantifying uncertainty in density driven fingering

The integral of the concentration along the x-axis at y = 0.4 after 50 time steps is chosen as the QoI
because it provides a measure of how much dense fluid has been transported into the less dense
fluid. An advection dominated flow is chosen initially, with a Rayleigh number of Ra = 1000 from
equation (6.11), which is the same value used to compute the flows in Figure 7.3.

The numerical error in the expectation of the QoI must converge as the mesh is refined to be
able to use the MLMC method to quantify uncertainty in these flows. However, Figure 7.5 shows
that as the mesh is refined, the concentration profiles do not converge to the same solution. This is
similar to the reasons why the Elder problem, identified in Section 7.1, is unsuitable as a benchmark
for buoyancy driven flows. This lack of convergence is shown again in Figure 7.6, where the finite
element error a and variance b diverge as the mesh is refined, for ten realisations of each element
size h.

Alternative QoIs to that identified above have also been investigated; neither the integral of the
concentration for y < 0.5, nor the time taken for the concentrated fluid to reach the bottom of the
domain, converged. Again, this is expected because of the qualitative differences in the solution for
each mesh.
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Figure 7.6: Diverging convergence rates for the integral of the concentration at y = 0.4 for Ra = 1000
and time step 50.

7.4 Impact of uncertainty on diffusion dominated fingering

If the value of Ra is reduced, the flow regime transitions from being advection dominated to being
diffusion dominated. Diffusive flows are easier to model numerically because diffusion adds natural
smoothing to the solution, so sharp fronts do not present. The concentration profiles for models with
Ra = 100 do converge as the mesh is refined, so the impact of uncertainty can be quantified using the
MLMC method.

As shown in Figure 7.7a, fingers do not grow in these regime. However, this problem is still
of interest because the concentration profile is non uniform across the domain, resulting from the
uncertain permeability field. This can be seen in Figure 7.7b, which depicts the concentration profile
along y = 0.4 at time step 50.

In this example, 3200 elements are required for the coarsest mesh to ensure that the QoI converges
for this diffusion dominated flow. Similar to Chapter 4, the number of elements increases two-fold
in each dimension, which gives a total of a four times increase between each level for this scenario.
Again, the number of elements used for each MC computation is chosen to ensure eh < eh. The 50th
time step is chosen as the time step of interest because the impact of uncertainty can be detected, but
each individual simulation, even for the finest resolution, can be solved within three hours.

The probability distributions of the QoI are compared in Figure 7.8 for the MC and MLMC
methods. There is good agreement between the expectation of this QoI for the MC and MLMC
methods, but the variances are different. This is expected because the tolerance of the MC method
is 4.63 ⇥ 10�3, which is only one order of magnitude smaller than the mean. If the tolerance is
reduced, convergence between the variance of the two methods is expected. Tighter tolerances could
not be investigated for the MC method because these required more RAM than was available on
the computer. The expectation and variance of this QoI do converge for the MLMC method as the
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(a) Two dimensional concentration profile.
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Figure 7.7: Concentration profile for one realisation of a random field for Ra = 100 at time step 50.
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Figure 7.9: MLMC Convergence rates for the integral of concentration at y = 0.4 and time step 50.
Fig (a) shows the finite element convergence rate a = 1.101, Fig (b) shows the convergence rate of
the variance b = 4.308 and Fig (c) shows the convergence rate of the cost of solving each different
level gd = 1.944 or g = 0.972, for e = 1.29⇥10�3.

tolerance of the method is decreased. This is shown by the good agreement between the two tightest
MLMC tolerances plotted.

The convergence parameters for this simulation are shown in Figure 7.9 using a sparse LU solver
for e = 1.29⇥10�3 . The FE error for the integral of the concentration for this problem converges
slowly as a = 1.1. This suggests that prohibitively fine meshes may be required to satisfy the
numerical error for tight tolerances. The value of the solver complexity, g ⇡ 1, is also lower for this
coupled problem than what is predicted for the sparse LU solver for the individual two dimensional
Darcy and scalar transport solves, g = 3/2. The optimal complexity of the MLMC method, O(e�2),
is predicted for this problem since, from Figure 7.9, b > gd. In contrast, the complexity of the MC
method is predicted to be O(e�2�gd/a) or O(e�3.76) for this problem.

Again, these simulation complexities have been computed by timing how long the MLMC and
MC simulations take to converge to various tolerances on a workstation with two Intel Xeon E5-2670
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Figure 7.10: Comparison of time taken for the MC and MLMC simulations for the integral of the
concentration at y = 0.4 on ten cores.

Table 7.1: Number of samples taken at each level for MLMC simulations of the integral of the
concentration at y = 0.4.

eee 0 1 2 3 4 5
1.00⇥10�2 36 12 10 10 - -
4.64⇥10�3 96 33 10 10 - -
3.59⇥10�3 134 45 10 10 - -
2.78⇥10�3 224 74 10 10 1 -
2.15⇥10�3 373 123 10 10 1 -
1.66⇥10�3 626 207 10 10 1 1
1.29⇥10�3 1036 342 10 10 1 1

processors, 12 cores on each processor, a clock speed of 2.60 GHz and 128 GiB RAM. The complexity
of the MLMC method is very accurately predicted in Figure 7.10, but the simulation complexity of
the MC method is slightly greater than predicted because it was only possible to compute a few data
points due to memory restrictions on the workstation used. The MLMC data points are clustered in
three linear groups, which can be seen in Table 7.1 to correspond to groups of simulations with the
same number of levels. This suggests that adding a new level is far more computationally expensive
than sampling the current levels more.

7.5 Conclusions

In this chapter, the impact of uncertain permeability fields has been investigated for buoyancy driven
flows through porous media using the MLMC method. The MLMC method could not be used to
quantify uncertainty in advection dominated flows because the fingering pattern of the fluid differed
as the mesh was refined, and the computer memory was insufficient to consider finer meshes. This
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means that the QoIs did not converge and so the required number of MLMC levels and samples kept
growing.

In contrast, when the flow regime was dominated by diffusion, the natural smoothing of the flow
ensured that the QoIs converged as the mesh was refined and so the MLMC method could be used to
quantify uncertainty. This method is shown in Section 7.4 to be a good alternative to the traditional
MC method for these flows because the expectations of the QoI are similar for the error tolerances
that would currently fit into memory. The complexity of the MLMC method is also found to be
approximately half that of the MC method. This means that the expectation of the QoI is predicted to
be computed at least two orders of magnitude faster than using the MC method for e < 10�3.

However, further research into quantifying uncertainty in unstable buoyancy driven flows is still
necessary to usefully apply this technique to pollution management system design. Two areas for
more research are therefore discussed below. First, it is only possible to use the MLMC method to
investigate diffusion dominated flows. Scheichl [105] suggested that it may be possible to use other
multilevel techniques, such as multifidelity modelling, to quantify uncertainty in advection dominated
flows by artificially adding diffusion to the coarse models. This will help to ensure that the coarse
model represents the flow found in the finer models instead of the fingers growing in a different
pattern. Second, analytical KL expansions, which are computed using a separable covariance kernel,
are not especially representative of the permeability fields found in rocks and the domains that can be
investigated are limited. If Matérn fields [83] are used instead, the cost of realising the random field is
comparable, but the domains of interest are no longer limited to lines, rectangles or cuboids.





Chapter 8

Conclusions

In this thesis, the impact of uncertainty has been quantified using the MLMC method for two
prototypical engineering applications: elastic vibrations, and buoyancy driven flows through porous
media. FE models of the vibration and porous media systems have been developed and validated to
ensure that the underlying physics of the system have been captured. Uncertainty has been represented
by methods familiar to the relevant communities: point masses in the structural vibration models, as
in Choi et al. [21]; and KL expansions in the porous media models, as in Teckentrup et al. [116]. The
impact of uncertainty has then been quantified for these models using the podS library parrellisation
of the Monte Carlo and multilevel Monte Carlo algorithms.

This research advances understanding in two main areas. First, in Chapters 4 and 7 the MLMC
method is shown to be a useful alternative to the traditional MC method for quantifying the impact
of uncertainty on structural vibration and porous media applications. The expectation and variance
of the QoIs, computed using the MLMC method, also agree with the values found using the MC
method and the simulated convergence rates agree with the theoretical results. However, the MLMC
simulations take orders of magnitude less time to compute because the complexity of the MLMC
method is always lower than the MC method.

The second advancement is that the simulation time, for calculating uncertainty using the MLMC
method for different tolerances, is significantly accelerated by computing multiple samples in parallel,
see Chapter 3. The podS library, which has been developed specifically for this research, provides
an open source implementation of the MC and MLMC algorithms. This library schedules multiple
parallel samples of the system on different cores and results in approximately linear reductions in
simulation time. This means that the simulation time is approximately quartered when four problems
are solved in parallel on four cores instead of one after the other.

Specific conclusions, drawn from the two applications, are presented in Sections 8.1 and 8.2, and
areas where the research in this thesis can be further developed are identified in Section 8.3.
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8.1 Structural vibration under uncertainty

In Chapter 4, the impact of uncertain mass density has been effectively quantified using the MLMC
method for structural vibration applications in orders of magnitude less time than the MC method.
For example, it took under 40 minutes to quantify uncertainty in the wave equation using the MLMC
method for a relative tolerance of 10�4, but over one day with the MC method, using eight cores on
a workstation. The variances of these structural examples converge faster than the complexities of
the solvers, which means that most of the computational effort is used to sample the coarsest meshes
instead of the fine ones. This means that quantifying the impact of uncertainty is now tractable for
three dimensional domains. In addition to the first eigenvalues, the MLMC method has also been
successfully used to quantify the impact of uncertainty on the 25th eigenvalue of the wave equation
and the vibrational energy of a Kirchhoff–Love plate.

8.2 Buoyancy driven flows under uncertainty

Uncertain permeability fields have also been successfully quantified in Chapter 7 for two dimensional
diffusion dominated buoyancy driven flows through porous media. To ensure no spurious flows are
added to the system, a mixed FE formulation has been used to solve the Darcy equation, which can
represent the solution to the PDE point-wise.

The FE models that were used for this application have been verified against a one dimensional
analytical model of CO2 sequestration as a separate investigation. This research considers the long
term behaviour of CO2 saturated water in the presence of a background flow, which has not been
considered in previous research. This enables better estimates to be found for the volume of CO2 that
could be stored in an aquifer. The two dimensional simulations and the one dimensional analytical
model agree well in the parameter regimes found in an aquifer, thus validating the formulations whilst
considering a novel problem.

Uncertainty has then been introduced to investigate the impact of random permeability fields on
buoyancy driven flows. A similar expectation and variance of a QoI have been found using the MC
and MLMC methods for the tolerances computed. However, the complexity of the MLMC method
was half that of the MC method. This means that the MLMC method is predicted to converge to a
tolerance of less than 10�3 two orders of magnitude faster than the MC method.

8.3 Further research

The research presented in this thesis explores only a few potential avenues for quantifying uncer-
tainty in engineering systems. Areas where this research could be extended include: the MLMC
implementation, application specific future research, and the wider applicability of the MLMC method.
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8.3.1 MLMC implementation

Two methods that could be used to reduce further the time taken to quantify uncertainty with the
MLMC method are as follows. First, the computation costs could be reduced further if instead of
assuming that the error is split equally between the numerical and the sampling error, the error is
weighted towards the error that is easier to reduce. For example, if reducing the numerical error is
costly, the same total error could be achieved by further reducing the sampling error and sampling
the coarser meshes more. Second, the complexity of the MLMC method could be reduced by using
quasi-random sampling, as introduced in Section 1.1.1, to sample the probability space and eliminate
the clustering of samples.

In addition to improving the convergence of the MLMC method, further improvements to the
podS library MLMC implementation could be made. First, methods for approximating the cost
parameter g could be improved. The MLMC algorithm is formulated assuming that g is the solver
cost convergence parameter, but the current implementation uses the time taken to compute the whole
sample to approximate g and assumes that the solver cost is the dominant contribution. Therefore,
a more accurate value could be found by timing individual samples or, if known, using an a priori
complexity value. Second, the scheduling itself could be improved. If the time for individual solves is
measured, different level samples could be solved in parallel. This may relieve some memory restraint
problems that occur from solving multiple large problems in parallel. One core could then be used to
schedule the samples adaptively and the other cores could communicate with it to request jobs.

8.3.2 Application specific developments

Although it is possible to use the MLMC method to quantify uncertainty successfully in structural
vibration and porous media problems, the computational cost still constrains the achievable accuracy in
the QoI. Tighter tolerances and more interesting domains could be considered with more memory and
compute cores, which could be obtained by using different computing facilities such as supercomputers
or cloud computing facilities.

The cost of solving the structural vibration problems could also be reduced by improving the
efficiency of the eigensolver. Both Krylov-Schur and Jacobi-Davidson methods do not converge
quickly for FE formulations with point masses. Therefore, improved FE convergence estimates
could be obtained by investigating other eigensolvers or using an alternative method to representing
uncertainty in the system, such as Matérn fields [83].

The cost of investigating uncertainty in diffusion dominated buoyancy driven flows could also
be reduced by using more efficient solvers such as multigrid, which would interface well with the
MLMC method due to the hierarchical nature of the solver. This would enable an exploration of the
computations limit of feasible values of the Rayleigh number that could be investigated using the
MLMC method.

New multilevel methods, introduced in Section 1.1.3, could be investigated for these two appli-
cations. The multi-index Monte Carlo method [55] may improve the accuracy of the expectation of
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the energy density of the Kirchhoff–Love plate, since this method enables two directions of refine-
ments. As the mesh fidelity is increased, the number of eigenpairs that could be accurately computed
increases, so more eigenpairs could be used in the energy calculation for the finer meshes than the
coarser ones. It may also be possible to use multifidelity modelling [95], instead of the MLMC
method, to quantify uncertainty in advection driven porous media flows. Scheichl [105] suggested
that coarse fidelity models could be developed that contain artificial diffusion, which may stop the
fingering patterns significantly changing as the fidelity of the model is refined.

8.3.3 Wider applicability of the MLMC method

Finally, the MLMC method may also be able to be used to quantify uncertainty in wider engineering
problems, such as optimisation and control of engineering systems. With the order of magnitude
reduction in computational time that have been achieved in this thesis, it may be possible to use
multilevel methods to reduce the cost of optimisation and control under uncertainty. Instead of using
traditional methods to quantify uncertainty for each set of input parameters, great computational
savings can be made if new multilevel methods are used. Research into combining these new
multilevel methods with optimisation techniques is just beginning to emerge for simple test cases,
such as Peherstorfer et al. [96].
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Appendix A

Derivation of analytical eigenpairs for
Karhunen Loéve expansion

In this appendix, the analytical eigenpairs of the one dimensional Fredholm integral equation
Z

D
C(x,x0)f j(x0)dx0 = n jf j(x) for j = 1,2, ...,•, (A.1)

are derived for the separable exponential covariance kernel

C(x,x0) = s2e
�|x�x0 |

l on D, (A.2)

where f j and n j are the jth eigenfunctions and eigenvalues respectively, l is a length scale and s is
the standard deviation. Two domains of interest are considered: D1 = [�a,a] and D2 = [0,a]. This
derivation is based on Cliffe et al. [26], Ghanem and Spanos [48] and Lord et al. [85].

A.1 Domain one

By substituting equation (A.2) into equation (A.1), the Fredholm integral can be written as
Z

D
s2e

�|x�x0 |
l f j(x0)dx0 = n jf j(x) for j = 1,2, ...,• (A.3)

for D1 = [�a,a]. To aid in integration, by expanding the modulus, equation (A.3) can be written as:

n jf j(x) =
Z x

�a
s2e

�(x�x0)
l f j(x0)dx0 +

Z a

x
s2e

(x�x0)
l f j(x0)dx0. (A.4)
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Differentiating equation (A.4) once, using Leibnitz integration rule [42], results in

n jf 0
j(x) = s2e

�(x�x)
l f j(x)�

Z x

�a

s2

l
e

�(x�x0)
l f j(x0)dx0

�s2e
(x�x)

l f j(x)+
Z a

x

s2

l
e

(x�x0)
l f j(x0)dx0

= �
Z x

�a

s2

l
e

�(x�x0)
l f j(x0)dx0 +

Z a

x

s2

l
e

(x�x0)
l f j(x0)dx0. (A.5)

Differentiating equation (A.5) again,

n jf 00
j (x) = �s2

l
e

�(x�x)
l f j(x)+

Z x

�a

s2

l 2 e
�(x�x0)

l f j(x0)dx0 � s2

l
e

(x�x)
l f j(x)

+
Z a

x

s2

l 2 e
(x�x0)

l f j(x0)dx0

= �2s2

l
f j(x)+

Z a

�a

s2

l 2 e
�|x�x0 |

l f j(x0)dx0

= �2s2

l
f j(x)+

1
l 2 nf j(x). (A.6)

By rearranging equation (A.6), an equation for the eigenfunctions, f j, can be found:

f 00
j (x)+w2

j f j(x) = 0, (A.7)

where

w2
j =

2s2l�1 �l�2n j

n j
. (A.8)

The associated boundary conditions for equation (A.7) can be found by evaluating (A.3) and (A.5)
at x = ±a:

n jf j(a) =
Z a

�a
s2e

�(a�x0)
l f j(x0)dx0, (A.9a)

n jf j(�a) =
Z a

�a
s2e

(�a�x0)
l f j(x0)dx0, (A.9b)

n jf 0
j(a) = �

Z a

�a

s2

l
e

�(a�x0)
l f j(x0)dx0, (A.9c)

n jf 0
j(�a) =

Z a

�a

s2

l
e

(�a�x0)
l f j(x0)dx0. (A.9d)

These boundary conditions can be written in a more convenient form by equating equations (A.9a)
and (A.9c), and equations (A.9b) and (A.9d),

f j(a)+lf 0
j(a) = 0, (A.10a)

f j(�a)�lf 0
j(�a) = 0. (A.10b)
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The eigenvectors can be found by solving equation (A.7) to give

f j(x) = A j cos(w jx)+B j sin(w jx), (A.11)

where A j and B j are constants to be found. Substituting equation (A.11) into the boundary conditions
in (A.10a) gives

f j(a)+lf 0
j(a) = 0

A j cos(w ja)+B j sin(w ja)+l (�A jw j sin(w ja)+B jw j cos(w ja)) = 0

A j(cos(w ja)�lw j sin(w ja))+B j(sin(w ja)+lw j cos(w ja)) = 0. (A.12)

Dividing equation (A.12) by lcos(w ja) results in

A j(l�1 �w j tan(w ja))+B j(w j +l�1 tan(w ja)) = 0. (A.13)

Then substituting equation (A.11) into the boundary conditions in (A.10b) gives

f j(�a)�lf 0
j(�a) = 0

A j cos(�w ja)+B j sin(�w ja)�l (�A jw j sin(�w ja)+B jw j cos(�w ja)) = 0

A j cos(w ja)�B j sin(w ja)�l (A jw j sin(w ja)+B jw j cos(w ja)) = 0

A j(cos(w ja)�lw j sin(w ja))�B j(sin(w ja)+lw j cos(w ja)) = 0. (A.14)

Dividing equation (A.14) by lcos(w ja) results in

A j(l�1 �w j tan(w ja))+B j(w j �l�1 tan(w ja)) = 0. (A.15)

Two transcendental equations can be found by taking the non trivial solutions to solving equa-
tions (A.13) and (A.15) simultaneously

l�1 �w j tan(w ja) = 0, (A.16a)

w j +l�1 tan(w ja) = 0. (A.16b)

Assuming ŵ j are the positive roots of (A.16a) and w̃ j of (A.16b),

w j :=

8
<

:
ŵd j/2e, j odd,

w̃ j/2, j even.
(A.17)
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Therefore the eigenfunctions

f j(x) :=

8
<

:
A j cos(w jx), j odd,

B j sin(w jx), j even.
(A.18)

The constants A and B are chosen to ensure the eigenvalues are orthonormal kf jkL2
(�a,a)

= 1.
Therefore,

rZ a

�a
A2

j cos2(w jx)dx = 1

A2
j

2

Z a

�a
cos(2w jx)+1dx = 1

A2
j

2

"
1

2w j
sin(2w jx)+ x

#a

�a

= 1

A2
j

2

"
1

2w j
sin(2w ja)+a� 1

2w j
sin(�2w ja)+a

#
= 1

A j

 
1

2w j
sin(2w ja)+a

!
= 1

A j =
1p

a+ sin(2w ja)/2w j
, (A.19)

and
rZ a

�a
B2

j sin2(w jx)dx = 1

B2
j

2

Z a

�a
1� cos(2w jx)dx = 1

B2
j

2

"
x� 1

2w j
sin(2w jx)

#a

�a

= 1

B2
j

2

"
a� 1

2w j
sin(2w ja)+a+

1
2w j

sin(�2w ja)

#
= 1

B j

 
a� 1

2w j
sin(2w ja)

!
= 1

B j =
1p

a� sin(2w ja)/2w j
. (A.20)
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The eigenvalues can be found by rearranging equation (A.8)

w2
j =

2s2l�1 �l�2n j

n j

n jw2
j =

2s2l �n j

l 2

n j(w2
j l 2 +1) = 2s2l

n j =
2s2l

w2
j l 2 +1

. (A.21)

A.2 Domain two

The derivation of the eigenpairs for the second domain D2 = [0,a] begins the same as for the first
domain, but the boundary conditions differ. Equations (A.3) and (A.5) are now evaluated for x = 0,a:

n jf j(a) =
Z a

0
s2e

�(a�x0)
l f j(x0)dx0, (A.22a)

n jf j(0) =
Z a

0
s2e

x0
l f j(x0)dx0, (A.22b)

n jf 0
j(a) = �

Z a

0

s2

l
e

�(a�x0)
l f j(x0)dx0, (A.22c)

n jf 0
j(0) =

Z a

0

s2

l
e

x0
l f j(x0)dx0. (A.22d)

These boundary conditions can be written in a more convenient form by equating equations (A.22a)
and (A.22c), and equations (A.22b) and (A.22d),

f(a)+lf 0(a) = 0, (A.23a)

f(0)�lf 0(0) = 0. (A.23b)

These boundary conditions can be expanded by substituting the eigenvectors from equation (A.11)
into equation (A.23) . The first boundary condition remains the same as equation (A.13), but the
second boundary condition becomes:

A j cos(0)+B j sin(0)�l (�w jA j sin(0)+w jB j sin(0) = 0

A j = lw jB j, (A.24)
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where A j and B j are different constants to be found. Substituting (A.24) into (A.13) and ignoring the
trivial solution gives the equation for the roots

lw jB j(l�1 �w j tan(w ja))+B j(w j +l�1 tan(w + ja)) = 0,

w j �w2
j tan(w ja)+w j +l�1 tan(w ja) = 0

2w j + tan(w ja)(l�1 �w2
j l ) = 0

tan(w ja) =
2w jl

w2
j l 2 �1

,

where

w j =
1
a

tan�1

 
2w jl

w2
j l 2 �1

!
. (A.25)

An equation for the eigenvectors can be found by substituting equation (A.24) into equation (A.11)

f j = B j(lw j cos(w jx)+ sin(w jx)). (A.26)

Again B j can be found by assuming the eigenfunctions are orthonormal

rZ a

0
l 2w2

j B2
j cos2(w jx)+B2

j sin2(w jx)dx = 1

Z a

0

l 2w2
j B2

j

2
�
cos(2w jx)+1

�
+

B2
j

2
�
1� cos(2w jx)

�
dx = 1

B2
j

2

"
l 2w2

j

2w j
sin(2w jx)+(l 2w2

j +1)x� 1
2w j

sin(2w jx)

#a

0

= 1

B2
j

2

"
l 2w2

j

2w j
sin(2w ja)+(l 2w2

j +1)a� 1
2w j

sin(2w ja)

#
= 1

B2
j

2

"
l 2w2

j �1
2w j

sin(2w ja)+(l 2w2
j +1)a

#
= 1

B2
j =

4w j

(l 2w2
j �1)sin(2w ja)+2w ja(l 2w2

j +1)
. (A.27)

The eigenvalues can still be found by equation (A.21) but with the roots given by (A.25).



Appendix B

PodS module description

This appendix describes the design and distribution of the podS library.

B.1 Statistics module

The MC and MLMC algorithms, derived in Sections 3.1 and 3.3, are implemented in the statistics
module. This module contains two similar classes MC and MLMC that compute the expectation and
variance of the QoI to user given tolerances for each method and a generic solver class.

The generic solver class determines what the user written solver code must adhere to. The generic
solver class contains the following public methods that must be implemented by the user:

• pods_solve to return the QoIs from one solve of the stochastic FE model using either the MC or
MLMC method. The method must have the following form

std::vector<double>
pods_solve(PodsMesh& pods_mesh, double seed, bool fine_mesh);

where pods_mesh contains the coarse and fine mesh for the current level, see Section B.3, seed
is a process dependent seed that is used to initialise the random field and fine_mesh determines
if the current solve should use the coarse or fine mesh.

• get_meshes to build the PodsMesh hierarchy, that includes the initial, coarse and fine meshes,
for the current level. This method must have the follow form

void get_meshes(MPI_Comm comm, PodsMesh& pods_mesh, int level);

where comm is the MPI communicator associated with the current solve, pods_mesh is an empty
PodsMesh struct that will hold the meshes and int is the current level.

• get_num_qoi to return the number of QoIs that are to be computed. It must have the following
form
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int get_num_qoi();

where there are no input arguments. This is used to size the QOIholder struct.

• get_solver_info to store information about the solver for use by the logger, see Section B.6, and
must have the following form

solver_info get_solver_info();

where there is no input arguments and the return type, solver_info, is a structure containing
information about the solver class for use in logging.

• get_min_num_cores_per_level to return the minimum number of cores that should be assigned
to one solve of the stochastic PDE for a given level. It must have the following form

std::vector<int> get_min_num_cores_per_level(int num_levels);

where num_levels is the current MLMC level. This is necessary to avoid running out of memory
when solving each level on different architectures. For example, on one computer six level
zero computations may fit in memory but only one level three computation, whereas, on an
alternative machine, 24 level three computations may fit easily. Carefully selecting the number
of cores is especially important on supercomputers where the memory is not necessarily shared
across nodes.

B.2 Uncertainty module

The uncertainty module contains classes that represent uncertainty in the PDE. This code is divided
into two: code that generates a probability space and code that represents a stochastic function.

B.2.1 Probability space

The ProbabilitySpace class is used to determine the type of random number generator that is sampled
to generate a stochastic function. This class can be instantiated by

ProbabilitySpace ProbabilitySpace(std::string type, double seed);

where type is the type of random number generator required and seed is the process dependent seed
used to initialise the random number generator for that sample. This class contains one method, gen-
erate_random_number_generator, that creates either a pre-seeded uniform or normal random number
generator for a given range, or mean and standard deviation, using the RandomNumberGenerator
class.
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B.2.2 Stochastic function

The uncertainty module also includes classes for representing stochastic functions in PDEs using point
masses, numerical KL expansions and analytical KL expansions, see Sections 2.5 and 2.6. However,
new classes can be implemented to represent other stochastic functions, using different methods. Any
new classes written would need to adhere to the StochasticFunction class. This StochasticFunction
class has one method, sample, that realises the stochastic function by sampling the probability space.

The instantiation of the methods for realising the random field included in podS are described
below:

• Point masses require a uniformly distributed probability space and can be instantiated by

PointSourceGenerator(ProbabilitySpace omega, MPI_Comm comm,
int num_ps, double mean, double scaling,
std::vector<double> mesh_dimensions);

where omega is the probability space, comm is the MPI communicator for the current solve,
num_ps is the number of point masses required, mean and scaling are the mean and maximum
scaling of the point masses and mesh_dimensions is a vector of the mesh dimensions to ensure
point masses are not added outside the domain.

• Numeric KL expansions require a normally distributed probability space and can be instantiated
by

TruncatedKL(std::shared_ptr<const dolfin::Mesh> mesh,
ProbabilitySpace& omega, double mu, double sigma,
std::vector<double> lambda, int truncation_number,
bool debug);

where mesh represents the domain with the desired fidelity, omega is the probability space,
mu and sigma are the mean and standard deviation of the stochastic field, lambda and trunca-
tion_number are the length scale and truncation point of the KL expansion, and debug is an
indicator used to log the eigenpairs.

• Analytic KL expansions require a uniformly distributed probability space and can be initialised
similar to numeric KL expansions, but initial guesses of the roots of the transcendental equations
are required, see Section 2.6.2,

TruncatedKLAnalytic(std::shared_ptr<const dolfin::Mesh> mesh,
ProbabilitySpace& omega, double mu, double sigma,
int truncation_number, std::vector<NRInfo> nr_info,
bool debug);
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The vector of NRInfo structs includes information about length scales and roots of the transcen-
dental equations for each dimension of the problem.

It may be more realistic to implement an exponential stochastic field for some applications, such as
modelling the permeability in porous media. These stochastic functions can be instantiated using the
same arguments as the above distributions. The mean and standard deviation are therefore describing
the underlying normal distribution, not the log-normal distribution.

• Numeric exponential truncated KL expansion

ExponentialTruncatedKL(std::shared_ptr<const dolfin::Mesh> mesh,
ProbabilitySpace& omega, double mu, double sigma,
std::vector<double> lambda, int truncation_number,
bool debug)

• Analytic exponential truncated KL expansion

ExponentialTruncatedKLAnalytic(
std::shared_ptr<const dolfin::Mesh> mesh,
ProbabilitySpace& omega,
double mu, double sigma, int truncation_number,
std::vector<NRInfo> nr_info, bool debug)

B.3 Mesh module

The mesh module includes the PodsMesh class that is used to generate a mesh hierarchy in the
solver_class. The methods in this class set and recover the level zero, coarse and fine meshes for a
given level.

Currently, two methods from the MeshGenerator class can be used to generate this hierarchy:
create_mesh and read_mesh. It is important that the right communicator is given to the mesh so that
multiple independent problem solves can be run in parallel.

B.3.1 Create mesh

The create_mesh method uses refinement to create a PodsMesh. Each time the FEniCS [4] refine tool
is invoked, each element in the mesh is divided into two. This increases the number of elements in the
mesh by 2n, where n is the number of dimensions in the mesh. This method can be implemented for a
given level as follows:

PodsMesh::create_meshes(PodsMesh& pods_mesh,
std::shared_ptr<Mesh> initial_mesh, MPI_Comm comm, int level);

where pods_mesh is the empty PodsMesh, mesh is the level zero mesh that will be refined, comm is
the MPI communicator and the level determines which PodsMesh to generate.
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B.3.2 Read mesh

The read_mesh method generates a PodsMesh hierarchy by reading meshes from a .xdmf file. This is
particularly useful if the mesh is large and refining it multiple times is computationally expensive.
This method can be implemented as follows

PodsMesh::read_meshes(PodsMesh& pods_mesh,
std::vector<std::string> meshes, MPI_Comm comm, int level);

where instead of passing an initial mesh to the constructor, a vector of mesh file paths is required that
orders the meshes from coarsest to finest.

B.4 Scheduling module

The individual samples, from the MC and MLMC routine method, are arranged into batches with
other samples of the same level using the scheduling module. These batches are then scheduled to
ensure that the MC or MLMC simulations are run in the optimal time for each computer architecture.

The number of samples in each batch depends on the user-defined minimum number of cores for
each level. Initially each sample is assigned the minimum number of cores and any extra ones are
split equally between the samples. This means that the number of parallel samples may be different
for each level. It is important that each sample in a batch takes approximately the same time, since the
model is computed from the batch timings not the individual sample timings. If more than one core is
used for each sample, the cost parameter is approximated using Amdahl’s law [5]. This is a formula
that is often used in parallel computing to predict theoretical speed ups when using multiple cores to
compute one problem.

B.5 Pod module

The pod module controls the multiple concurrent samples from within the MC and MLMC routine
method. This module comprises of two classes: ParallelJob and ParallelController. The ParallelJob
class represents an individual sample of the QoI and ensures that the correct communicator is given to
the solver_class. The ParallelController class controls the concurrent samples and splits the global
MPI communicator into individual local ones for each sample within a batch. The estimations of the
quantities of interest on each core are broadcast to all the other core so that the same final expectation
and variance are obtained on each core.

B.6 Log module

The log module provides a logging functionality to the podS library and saves the simulation results to
a .csv file, if a file path is provided to the MC or MLMC class instantiation. It is based on the FEniCS
project logger [4] and provides debug and log messages at different levels of priority.
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The PodsLogManager controls a singleton PodsLogger class, which prints messages to the
standard output. A message can be printed to the standard output using:

pods::pods_log(int log_level, std::string msg,
const std::vector<MPI_Comm>& comms )

where log_level is the priority of the method, msg is the message to print and comms is a vector of the
process numbers to display the message on. If no process numbers are given, the message is printed
on all processes.

B.7 Distribution

There are two methods for obtaining the seven, previously discussed, modules that form the podS
library. One option is to clone the source code from the public Bitbucket repository [122]. Installation
instructions are provided in the README file or an install script install_pods.sh can be run. The podS
library has the following dependencies: FEniCS [4], PETSc [10], SLEPc [127] and MPI, which need
to be installed prior to podS. Alternatively, a Docker container including the podS library, PETSc,
SLEPc and MPI has been released and is hosted at quay.io [123]. A new build of the library is
triggered when the master branch of the source library is updated.

quay.io


Appendix C

Convergence rates for eigenvalue
problems

In this appendix, the convergence rates of the FE models presented in Section 4.1 are checked against
theoretical predictions, with and without point masses added to the formulations. This is because,
as suggested in Section 2.5, the regularity of the FE formulation is reduced by using Dirac delta
functions and this can cause sub-optimal convergence rates.

As explained in Section 2.3, if the eigenvalues are computed from a smooth FE model using
piecewise polynomials of degree p, the convergence rate of the error should be [14]

|l k �l k
h | = O(h2p), (C.1)

where l k is the exact kth eigenvalue and l k
h is the approximate kth eigenvalue. Since there is no known

exact solution of l k for each example, it is approximated using a fine representation of the mesh.
To ensure a deterministic system is used to investigate the convergence rates of the FE formulations

with point masses, the same 30 point masses are added for all the different fidelities considered. The
maximum magnitude of a point mass used in this investigation is 10% of the total mass of the
unperturbed structure.

C.1 Wave equation

The convergence rates of the error in the first non zero eigenvalue of the wave equation in (4.2) are
shown in Figure C.1a for linear and quadratic elements. As expected, when no point masses are added,
the convergence rate of the p = 1 elements is two and the p = 2 elements is four. However, when
point masses are added, the convergence rate become sub-optimal for both order elements and tends
towards one.

The reduction in convergence rate in Figure C.1b is similar to the reduction in convergence rates
for the Poisson equation, with a singular forcing term, that is presented in Section 2.5. When point
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Figure C.1: Convergence rates of the error in the first non zero eigenvalue of the wave equation for
p = 1,2. In Fig (a) no point masses have been added, but in Fig (b) 30 point masses have been added.

masses are used to add uncertainty to the problem, the mass matrices includes singularities. This
means the regularity of the formulation is reduced and the convergence rates are sub-optimal.

C.2 Kirchhoff–Love plate

The convergence rate of the error in the first eigenvalue of the Kirchhoff–Love plate equation in (4.7)
are shown in Figure C.2. Again as expected, when no point masses are added, the convergence rate of
the error in the first eigenvalue of the Kirchhoff–Love plate with p = 1 elements is two and with p = 2
elements is four. However, when point masses are added, the convergence rates of the error drop to
approximately two for both order elements. This is different to the change in order of convergence for
the wave equation because the Kirchhoff–Love plate equation is a fourth order equation, so u 2 H2(D).
In contrast, the wave equation is a second order equation so u 2 H1(D).

C.3 Three dimensional elastodynamics

The convergence rate of the error in the first eigenvalue of the three dimensional elastodynamics
problem in equation (4.10) is shown in Figure C.3a. Again as expected, the convergence rate of the
p = 1 element is two. However, the convergence rate is only 3.4 for the p = 2 element. This is most
likely because the mesh cell size was too large to observe optimal convergence. Finer meshes could
not be used due to computer memory limitations. In addition, the exact solution l k used is not exact
but only an approximation, which may worsen the convergence rate.

As observed in Figure C.3b, the convergence rates fall when point masses are added. Since the
elastodynamics equation is second order, the convergence rates should tend to one when point masses
are added.
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Figure C.2: Convergence rates of the error in the first non zero eigenvalue of the Kirchhoff–Love
plate equation for p = 1,2. In Fig (a) no point masses have been added but in Fig (b) 30 point masses
have been added.
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Figure C.3: Convergence rates of the error in the first non zero eigenvalue of the elastodynamics
equation for p = 1,2. In Fig (a) no point masses have been added but in Fig (b) 30 point masses have
been added.





Appendix D

Derivation of kinetic energy density of
the Kirchhoff–Love plate

The damped Kirchhoff–Love plate equation can be written as

∂ 2ũ
∂ t2 +b ∂ ũ

∂ t
+

K
2ar

—4ũ =
f

2ar
in D, (D.1)

where 2a is the plate thickness, r is the density, K is the constant bending stiffness, f is a body force
and b � 0 is a constant coefficient.

The generalised eigenvalue problem can be found by the method of separation of variables applied
to the homogeneous system ( f = 0). If u(xxx, t) = T (t)X(xxx), equation (D.1) can be re-written as

X

 
∂ 2T
∂ t2 +b ∂T

∂ t

!
+

K
2ar

T —4X = 0. (D.2)

Rearranging equation (D.2) yields

1
T

 
∂ 2T
∂ t2 +b ∂T

∂ t

!
= � 1

X
K

2ar
—4X . (D.3)

Since the left-hand side of equation (D.3) is a function of t only, and the right-hand side is a function
of x only, then for some l

∂ 2T
∂ t2 +b ∂T

∂ t
= �lT, (D.4a)

—4X =
2arl

K
X . (D.4b)

Equation (D.4b) is an eigenvalue problem with solutions (ln,fn) for n = 1,2, ...,• where ln is
the nth eigenvalue and fn is the nth eigenfunction. These eigenfunctions are orthonormal with respect
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to the density Z

D

2ar
K

fmfn dx = dm,n. (D.5)

and form the basis of a Hilbert space, so can be used for Fourier expansions. The displacement of the
plate, ũ, can therefore be expanded in the Fourier basis for n = 1,2, ...,•

ũ(xxx, t) =
•

Â
n=1

un =
•

Â
n=1

an(t)fn(xxx), (D.6)

where an is the nth unknown time dependent coefficient and fn is the nth eigenfunction. Letting
F = f /2ar , the Fourier expansion of the forcing for n = 1,2, ...,• is

F(xxx, t) =
•

Â
n=1

Fn(t)fn(xxx). (D.7)

where Fn is the nth time dependent coefficient. Using the expansions in (D.6) and (D.7), the Kirchhoff–
Love plate equation (D.1) can be written as

•

Â
n=1

 
fn

∂ 2an

∂ t2 +bfn
∂an

∂ t
+

K
2ra

an—4fn

!
=

•

Â
n=1

Fnfn. (D.8)

Substituting in equation (D.4b)

•

Â
n=1

fn
∂ 2an

∂ t2 +bfn
∂an

∂ t
+anlnfn =

•

Â
n=1

Fnfn. (D.9)

Equation (D.9) can be further simplified by multiplying the equation by 2arfm/K and integrating
over the domain

Z

D

•

Â
n=1

2ar
K

 
fn

∂ 2an

∂ t2 +bfn
∂an

∂ t
+anlnfn

!
fm =

Z

D

•

Â
n=1

2ar
K

Fnfnfm m = 1,2, ...,•. (D.10)

Using the orthogonality property in equation (D.5) yields an independent system of equations

∂ 2an

∂ t2 +b ∂an

∂ t
+anln = Fn. (D.11)

Now the inhomogeneous system is considered with time harmonic forcing of frequency, z , at a
point, x0,

f = d (xxx� xxx0)eiz t . (D.12)

where i =
p

�1 and d is a Dirac delta function. Therefore,

F =
1

2ar
d (xxx� xxx0)eiz t . (D.13)
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The projection of F in equation (D.13) onto the space of eigenfunctions is

Fn :=
Z

D

1
2ar

2ar
K

d (xxx� xxx0)eiz tfn dD =
1
K

eiz tfn(xxx0). (D.14)

Assuming the solution to equation (D.11) has the form

an = sneiz t ;
∂an

∂ t
= iz sneiz t ;

∂ 2an

∂ t2 = �z 2sneiz t , (D.15)

where sn is the nth transfer function, the equation (D.11) can be re-written as

�z 2sneiz t +b iz sneiz t +lnsneiz t =
1
K

eiz tfn(xxx0). (D.16)

Simplifying equation (D.16),

sn

⇣
�z 2 +b iz +ln

⌘
=

1
K

fn(xxx0), (D.17)

and rearranging equation (D.17),

sn =
fn(xxx0)

K
�
ln �z 2 +b iz

� . (D.18)

Equation (D.18) is more commonly written as

sn =
fn(xxx0)

K
�
z 2

n �z 2 +h iz zn
� , (D.19)

where ln = z 2
n and h = b/zn.

The time averaged kinetic energy density of a two dimensional system is given by

E =
z 2

4R

Z

D
r |sn|2 dx, (D.20)

where R is the area of the plate [78]. Substituting equation (D.19) into equation (D.20),

E =
z 2

4R

Z

D
r f 2

n (xxx0)

K2
�
(z 2

n �z 2)2 +(hz zn)2
� dx, (D.21)

and using the orthogonality property from equation (D.5),

E =
1

4R(2aK)

f 2
n (xxx0)�

(z 2
n �z 2)2 +(hz zn)2

� . (D.22)
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