
1

Sim-D: a SIMD accelerator
for hard real-time systems

Roy Spliet and Robert D. Mullins

Abstract—Emerging safety-critical systems require high-performance data-parallel architectures and, problematically, ones that can
guarantee tight and safe worst-case execution times. Given the complexity of existing architectures like GPUs, it is unlikely that
sufficiently accurate models and algorithms for timing analysis will emerge in the foreseeable future. This motivates our work on Sim-D,
a clean-slate approach to designing a real-time data-parallel architecture. Sim-D enforces a predictable execution model by isolating
compute- and access resources in hardware. The DRAM controller uninterruptedly transfers tiles of data, requested by entire
work-groups. This permits work-groups to be executed as a sequence of deterministic access- and compute phases, scheduling
phases from up to two work-groups in parallel. Evaluation using a cycle-accurate timing model shows that Sim-D can achieve
performance on par with an embedded-grade NVIDIA TK1 GPU under two conditions: applications refrain from using indirect DRAM
transfers into large buffers, and Sim-D’s scratchpads provide sufficient bandwidth. Sim-D’s design facilitates derivation of safe WCET
bounds that are tight within 12.7% on average, at an additional average performance penalty of ∼9.2% caused by scheduling
restrictions on phases.

Index Terms—Real-time and embedded systems, Parallel architectures

F

1 INTRODUCTION

Many emerging safety-critical systems require high-
performance data-parallel architectures and, problemati-
cally, ones that can facilitate the provision of hard real-time
(HRT) guarantees. Autonomous transport systems require
time-critical image processing, AI classification and decision
making algorithms [1], while interventional radiology uses
image processing algorithms to reconstruct high resolution
visualisations in real-time [2]. To pursue ambitious goals
in these and other fields, researchers and equipment man-
ufacturers are increasingly looking at applying massively
parallel accelerators in their safety-critical devices. Semicon-
ductor companies are keen to fill this gap in the market,
exemplified by NVIDIA’s Drive platform [3].

For such HRT systems, the holy grail of timing analysis
is the derivation of a safe and tight worst-case execution
time (WCET). WCET derivation is the problem of finding
the worst of all possible run-time variations for a given
workload. In this context, a safe WCET is a bound that
is guaranteed never to be exceeded, while tightness refers
to minimising the pessimism associated with the distance
between the derived WCET and the true execution time.

As a prerequisite to constructing the search space of run-
time variations we require an accurate model of the targeted
microarchitecture. Efforts that advance such models for
existing GPUs include the reverse-engineering of microar-
chitectural details, e.g. outstanding DRAM request handling
resources [4], instruction latency [5], kernel-instance and
work-group scheduling policies [6], [7] and process context
switching latency [8]. These insights have contributed to
WCET computation techniques that can be applied in soft
real-time systems [9], [10], but sadly have not resulted in a
closing timing model suitable for deriving safe WCETs.

A fundamental challenge in deriving a safe WCET lies
in the influence of variation in one subcomponent on the
latency of others. In an ideal world, the search space of

run-time variations is limited by e.g. a simple, monotonic
relationship between the local latency in each subcompo-
nent and the overall latency. Unfortunately, many through-
put optimisations in existing architectures frustrate such a
relationship. For example, with a commonplace request-
reordering DRAM controller, a DRAM request on the critical
execution path can be delayed by another request when
issued one cycle earlier. A shorter latency in one subcompo-
nent can thus lead to a longer overall latency. Without a clear
understanding of the relation between local and overall
latency, all possible run-time variations must be deemed a
WCET-candidate rather than just those that e.g. maximise
latency in each subcomponent, quickly growing the search
space to a size for which a full exploration is infeasible.

To tackle this problem, we believe that tailoring parallel
architectures towards HRT systems is not just desirable,
but required to achieve both good performance and safe,
tight bounds on the execution times of workloads. Design-
ing architectures specifically for HRT systems allows us to
eliminate the complexities and unknowns of off-the-shelf
hardware that impair accurate timing analysis. Given the
many recent success-stories of domain-specific architectures
(for e.g. machine learning and cryptocurrency mining), we
believe the time is right to fill this surprising gap in the
architecture design space.

To demonstrate the feasibility of a clean-slate approach,
we present Sim-D: the first (GPU-like) wide-SIMD architec-
ture to be specifically designed for HRT systems. Evaluation
using our cycle-accurate model shows that Sim-D’s perfor-
mance often resembles that of the embedded-grade NVIDIA
Tegra K1 GPU [11], while allowing algorithmic computation
of safe and tight WCETs for kernel-instances.

Similar to GPUs, Sim-D performs hardware strip-mining
to schedule the work for a compute kernel in entities called
work-groups. Inspired by the PRedictable Execution Model

2

(PREM) [12], Sim-D schedules the work for each work-
group as a sequence of uninterruptible access- and compute
phases, interleaving the phases of two work-groups at a
time. Owing to strict performance isolation between Sim-D’s
compute- and memory resources, the execution time of each
phase can be tightly bound through static analysis. Static
WCET derivation of a kernel-instance is done by analysing
the possible interleavings of these phases. Various phase
scheduling policies are enforced in hardware to reduce the
number of possible interleavings, at a performance penalty
of ∼9.2%. The result is a WCET analysis algorithm tailored
to the Sim-D architecture that derives a safe bound which is
measured to be tight within 12.7% on average.

We make the following contributions:
• An overview of the Sim-D processor pipeline and mem-

ory system (Section 3),
• A program model that permits reasoning about execu-

tion on Sim-D (Section 4),
• Two work-group scheduling policies, each permitting

the derivation of a WCET by computing that of a single
worst-case schedule of phases (Section 4),

• A novel WCET computation algorithm, combining con-
trol flow analysis with a simulation-based processor
behaviour analysis, that takes into account scheduling
of work-groups as sequences of phases (Section 5).

2 BACKGROUND

Many aspects of Sim-D’s design are inspired by existing
GPUs. We first introduce the terminology used in this work,
based on that of OpenCL [13] and CUDA [14], followed
by a brief introduction of WCET calculation practices and
timing-predictable DRAM transfers.

2.1 Execution model
To off-load data-parallel work to an accelerator, a program
must first upload a kernel, a binary non-interactive function.
Then, for each invocation of this kernel, the program up-
loads all required data and launches a kernel-instance.

A kernel-instance is parametrised with the required vector
size. This size, called the NDRange, is specified in up to
3 dimensions, and dictates how many work-items must be
launched. Each work-item is identified by a global ID, a
unique identifier in the NDRange space. Work-items are
grouped into work-groups. In GPUs, hardware is responsible
for strip-mining [15] and scheduling execution of the work-
groups required to span the entire NDRange.

GPUs divide work-groups into warps, groups of 32
(NVIDIA) or 64 (AMD) work-items. Each compute unit (CU)
in a GPU can issue multiple instructions per cycle from the
warps in a work-group. This plurality of active warps helps
to mask data movement latencies between the memory
hierarchy and the individual warps, maximising occupancy
of the available compute- and memory resources. All warps
in a work-group execute on the same CU, allowing data
sharing within each work-group through local memory.

2.2 Worst-case timing analysis
WCET analysis generally consists of three analysis passes:
control flow analysis (CFA), processor behaviour analysis

Table 1
Configuration and relevant timing properties of Micron [26] (1)

MT40A512M16JY-062E and (2) MT40A1G8SA-062E DDR4-3200AA.

Symbol (1) 2BG (2) 4BG Description
64-bit Effective bus width

nB 8 16 Banks / Rank
nBG 2 4 Bank groups / Rank
nR 65536 Rows / Bank
nC 1024 Columns / Row
nBW 16 Words/burst (8 beats, 64B)

Latency in cycles, tCK = 0.625ns
nRCD 22 Row-activate to CAS delay
nCAS 22 RD→ first burst distance
nCWD 16 WR→ first burst distance
nRP 22 Row Precharge delay
nBURST 4 Cycles per burst (for DDR: beats / 2)
nRAS 52 Row Activate Strobe
nRTP 12 Read-to-Precharge
nWR 24 Write Recovery
nRFC 560 Refresh cycle (act, pre) time
nREFI 12480 Refresh interval
nCCDS 4 Column R/W to CAS delay, diff. bg
nCCDL 8 Column R/W to CAS delay, same bg
nRRDS 9 4 Row-act. to Row-act. delay, diff. bg
nRRDL 11 8 Row-act. to Row-act. delay, same bg

(PBA) and bound calculation [16]. CFA is used to model the
possible execution paths of a program. PBA characterises
the execution cost of all parts of a program through mod-
elling pipelines [17] and memory systems (e.g. [18]), system
simulation [19] or a hybrid of the two. Bound calculation
finds the cost of the longest path through a program.

Sim-D’s bound calculation differs from prior work as a
consequence of its execution model, as we will explain in
detail in Section 5. CFA and simulation-based PBA is used
to determine the cost of the execution paths for a single
work-group. Sim-D’s bound calculation then extracts access-
and compute phases from the critical path, and calculates
the WCET of a kernel-instance by taking into account the
scheduling of these phases for each work-group.

2.3 Real-time DRAM transfers
The biggest challenge for HRT DRAM transfers is to achieve
predictable latencies with a minimal sacrifice of data bus
utilisation. Predictable latency is generally achieved using
closed-page DRAM policies [20], [21], [22]. These policies
eliminate timing interference effects between requests by
precharging all banks between any two DRAM requests.

DDR4 DRAM storage is organised in a hierarchy of bank
groups, banks, rows and columns. Data is transferred in
bursts spanning 8 consecutive columns [23] over 4 cycles.
The number of bits in each column is determined by the
data bus (DQ) width.

Akesson et al. [24] observe that for a closed-page DDR3
DRAM controller to achieve a net efficiency above 80%,
transfers must span 16 bursts. Krishnapillai et al. [25] note
a trend of increasing data bus widths and associated burst
sizes. Extrapolating these trends to a contemporary DDR4-
3200AA DRAM [26] system with a 64-bit data bus, a request
must exceed 4KiB to achieve 80% utilisation. Sim-D issues
requests of such size by issuing work-group-wide reads
and writes that convey a linear relationship between the
elements in a tile of data and the work-group’s work-items.

The worst-case DRAM latency used in our WCET cal-
culation algorithm is the longest issue delay (LID) [22]: the

3

interval between issuing the first command for this request
and the first possible instant a command for the next request
can be issued. We express the LID in DRAM clock cycles as
a function of the DRAM timing parameters listed in Table 1.
For a comprehensive overview of their meaning, we refer
the reader to Jacob et al.’s “Memory Systems: Cache, DRAM,
Disk”. [23]

3 ARCHITECTURE

Sim-D aims to provide both high-performance data-parallel
processing, and the means to derive safe and tight bounds
on execution times. Three key features lie at the heart of
this: phase-wise work scheduling, performance isolation
between the compute, DRAM and scratchpad resources, and
large, work-group wide DRAM requests.

Inspired by PREM [12], Sim-D schedules each work-
group as a succession of compute- and access phases. Each
phase runs uninterruptibly on a single resource. Because
Sim-D’s resources do not interfere with each other, the
execution time of each phase can be determined statically.
Treating each access- and compute phase in a program as an
independent critical section reduces the problem of finding a
kernel’s WCET to finding the worst-case schedule of phases.

To maximise resource occupancy, Sim-D’s CU has two
active work-group slots to schedule phases from. This is
permitted because, like OpenCL and Cuda, we forbid de-
pendencies between work-groups that necessitate synchro-
nisation of the entire NDRange. The work-group scheduler is
responsible for strip-mining an NDRange into work-groups
of 1024 work-items each. This work-group size is chosen
such that in the common case a work-group will request
blocks of 4KiB of data from DRAM, equal to 16 bursts over
a 64-bit DQ. As explained in Section 2.3, this permits a DQ
occupation approaching 80%.

Work-groups are consumed by the CU’s instruction
scheduler, which proceeds to schedule its operations. Perfor-
mance isolation is achieved by separating instruction- from
data memory (Harvard architecture [27]), and by replicating
all storage resources for each slot. This isolation permits
interference-free overlapping of a DRAM/scratchpad trans-
fer from one work-group with a compute phase of another.
To schedule work in phases, Sim-D issues instructions from
the two active work-groups following a policy similar to
greedy-then-round-robin (GTRR) [10]: a work-group con-
tinues to occupy the compute resources until a DRAM or
scratchpad transfer is issued or an exit is encountered. The
resource is then yielded to the work-group in the other slot.

Finally, large work-group wide DRAM transfers help to
achieve high DQ utilisation at a predictable (worst-case)
request execution time. Whereas commodity GPUs perform
best-effort coalescing of DRAM requests at run-time, Sim-
D programs contain scalar DRAM and scratchpad request
instructions that transfer either a 1D/2D tile of data, or data
corresponding with a stream of offsets (indexes) for a whole
work-group. By explicitly conveying the relation between
memory locations and work-items in the instruction and
performing this memory request uninterruptibly for the
whole work-group, the memory controller can determin-
istically achieve high bank locality in a way that can be
statically analysed with little pessimism.

W
or

k
sc

he
d.

/H
os

tI
O

D
R

A
M

co
nt

r.

Compute unit (CU)

Instruction scheduling/fetch

SP SP SP SP
RCP/Trigo

SP SP SP SP
RCP/Trigo

SP SP SP SP
RCP/Trigo

SP SP SP SP
RCP/Trigo

SP SP SP SP
RCP/Trigo

SP SP SP SP
RCP/Trigo

SP SP SP SP
RCP/Trigo

SP SP SP SP
RCP/Trigo

. . .
SP SP SP SP

RCP/Trigo
SP SP SP SP

RCP/Trigo
SP SP SP SP

RCP/Trigo
SP SP SP SP

RCP/Trigo

ID
iv

Ld/St

Instruction memory

Scoreboard

BufToPhysXlat

BufToPhysXlat SP

Register file[0]

V
G

PR

SG
PR

PR

V
SP

/S
SP

Register file[1]

V
G

PR

SG
PR

PR

V
SP

/S
SP

stack[0]
Control

stack[1]
Control

Scratchpad[0] Scratchpad[1]

Fig. 1. High level overview of the Sim-D architecture.

To issue work-group wide DRAM request, Sim-D re-
quires to keep all 1024 work-items in a work-group in lock-
step. A drawback of this requirement is that for workloads
with many divergent branches, there may be an efficiency
loss compared to GPUs that schedule at the granularity
of (sub-)warps (e.g. [28]). For the workloads evaluated in
Section 6.1, we did not encounter significant negative per-
formance effects from this coarser scheduling granularity.

We currently omit modelling host↔device communica-
tion, including buffer up- and downloads, and leave study-
ing its performance implications as future work.

A high-level overview of the Sim-D architecture is given
in Figure 1. In the remainder of this section we explain the
architecture in greater detail.

3.1 Compute unit
Sim-D’s CU implements an in-order, single issue four-step
pipeline: fetch, decode, execute, write-back. The instruction
set supports a mix of scalar- and vector instructions. In this
paper, Sim-D is evaluated with a three-stage decode and
operand fetch step and a five-stage execute pipeline step,
thus totalling 10 pipeline stages.

Sim-D is configured with 128 single-precision arithmetic
units (SP-units), performing boolean, integer and floating-
point operations on 32-bit values. Justified by various
NVIDIA publications [29], [30], [31], pipelined floating-
point reciprocal, reciprocal square root and trigonometric
operations are modelled using four multipliers and various
look-up tables. We assume the SP-units’ multipliers can be
re-used, and thus model one RCP-unit for every four SP-
units. Scalar operations are performed on the first SP-unit.
One non-pipelined 8-cycle scalar Radix-16 integer divider is
included, modelled after Intel Core 2’s divider design [32].

Each register file consists of four types of registers:
vector-, scalar-, predicate-, and special purpose registers.
Special-purpose registers are further subdivided into vector
special purpose registers (e.g. global- and local ID, control
masks) and scalar special purpose registers (e.g. work-group
dimensions and offset within the NDRange).

The vector register file (VRF) can sustain three operand
fetches and one operand write-back per cycle. This matches
the bandwidth requirement of a vector multiply-addition
(MAD) operation. Guided by GPU design practices doc-
umented in the literature [33], [34], the VRF is modelled
as eight banks of two-port, 1R1W SRAM cells, one bank
for every group of 128 work-items (henceforth warp). Each

4

of the three instruction decode stages fetches one operand
for an instruction. By scheduling the warps for each vector
instruction in round-robin, no VRF bank conflicts occur.

Sim-D supports two forms of control flow: per-work-
item vector control flow, and work-group-wide scalar
(un)conditional branches. The former allows work-items
within a work-group to follow diverging code paths. Vec-
tor control flow is implemented using implicit predicated
execution [35] : control masks (CMASKs) in the special
purpose vector register file determine which work-items
are enabled. A dedicated control stack (CSTACK) contains
(PC,mask,type) 3-tuples that allow restoring control flow at
the end of an if- or else-block, a loop, or a function call.

A control stack pop (cpop) injection mechanism prevents
starvation that results from disabling all work-items. When
a vector control flow instruction causes the implicit control
mask to become all-0, the instruction decoder injects a cpop
operation into the pipeline to restore a control mask and PC
from the top of the CSTACK. This process is repeated until
at least one work-group is re-enabled.

3.2 DRAM controller

Sim-D’s DRAM controller implements a pipeline that dy-
namically translates a large request, issued by a work-group,
into a sequence of DRAM commands. To eliminate varia-
tions in latency caused by interference between successive
requests, it implements a closed-page policy on the bound-
ary of each large DRAM requests. Within a request, DRAM
bank locality is exploited in a statically analysable manner
through deterministic command scheduling policies.

The DRAM controller pipeline consists of four stages,
as shown in Figure 2. The front-end accepts large DRAM
requests, and translates each to a set of burst requests. The
command generator performs address translation on these
burst requests and determines which commands must be
sent to DRAM. Scheduling these commands under the con-
straints of DRAM timing is done by the command arbiter. For
read- and write commands, it creates a DQ reservation. In
the final stage, the DQ scheduler generates control signals
for the CU to synchronise DRAM data movement with the
register file or scratchpad.

Currently the DRAM controller supports one 64-bit
channel, consisting of one DRAM rank. Scaling Sim-D to the
performance of a higher-end GPU is left for future work.

Si
m

-D
m

em
or

y
co

nt
ro

lle
r

Pi
pe

lin
e

st
ag

es

Front-end
StrideSequencer

IndexIterator

Cmd Generator

Pe
r-

ba
nk

Cmd Arbiter

DQ sched

C
om

pu
te

un
it

DRAM
(Ramulator)

Requests

DQ

Cmd/AddrReg/SP
ctrl

Fig. 2. High-level architecture for Sim-D memory controller

start addr end addrwords period

period
0x0 0x10 0x20 0x30 0x40 0x50 0x60 0x70

Fig. 3. Example stride request

3.2.1 Front-end

The DRAM controller front-end accepts two types of DRAM
requests: 1D/2D tile requests and iterative indexed requests.
Such requests are processed by the stride sequencer and index
iterator subcomponents respectively.

The stride sequencer translates a 1D/2D tile request into a
sequence of burst requests, one per cycle. Figure 3 visualises
an example stride pattern, reading a 5 × 3 tile from a 7 × 7
buffer. Reading is performed with start address 0x8, a period
of 7, 5 words per period and a period count of 3. The
resulting end address is 8 + (2 ∗ 7 + 5) ∗ 4 = 84 = 0x54.
Since a DRAM burst must be aligned to a multiple of its size
(Sim-D: 64 bytes), this stride pattern translates to two burst
requests: one burst starting at address 0x0, and a second
request at address 0x40.

The stride sequencer generates these burst requests, one
per cycle. For each burst request, it generates a wordmask
that indicates which words from each burst (marked in
green) must be routed to registers. Additionally, the stride
sequencer computes the destination vector register lane or
scratchpad address for each word in each burst.

The index iterator supports requests for data that cannot
be expressed as such a linear relationship, for example
for data-dependent (indirect) loads and stores. It accepts
a stream of indexes as its input, and generates one burst
request for each word. No attempt is made to coalesce
burst requests as such logic has the potential of becoming
quite complex yet offers no obvious benefits to worst-case
performance for buffers exceeding 1024 bursts (64KiB).

3.2.2 Command scheduling

The remaining pipeline stages deterministically schedule
the commands to service these burst requests.

The command generator translates burst requests into a
stream of activate, read/write and precharge commands. It
performs address translation following a scheme optimised
for DDR4 DRAM similar to Paired Bank-Group Interleav-
ing [36], where two adjacent bursts always access alternat-
ing bank groups except on the boundary of a bank-group
pair. These commands are enqueued into per-bank FIFOs.

The command arbiter monitors the top entries of each
of these FIFOs and deterministically schedules their com-
mands compliant with DRAM timing restrictions. To pick
which eligible command to schedule in a given cycle, it
adheres to six prioritisation rules, in order:

1) Read/write commands are issued as early as possible.
2) Read/write commands from the currently active bank-

pair are preferred. When this bank pair is precharged,
the next active bank pair is selected.

3) Read/write commands have priority over activate.
4) Activate commands have priority over precharge.
5) Row activate commands are prioritised according to

the number of read/write operations present in the

5

respective bank FIFOs targeting said row, tie-broken by
distance from the currently active bank pair.

6) Refresh operations are scheduled between two re-
quests.

When issuing a read or write command, the command
scheduler generates a reservation to schedule the data
movement between DRAM and the scratchpad or regis-
ter file. The DQ scheduler processes these reservations and
timely generates the control signals for the CU.

3.2.3 Snoopy indexed transfers
For HRT systems, indexed transfers are problematic. Re-
gardless of how indexed transfers are implemented in hard-
ware, there exists a worst case for which the relevant data
is stored so sparsely that for every word a burst read/write
request must be issued. With DDR4 DRAM, all words
could reside in the same bank group, spacing consecutive
bursts nCCDL cycles apart. Hence the worst-case data bus
utilisation for such large buffers will never exceed:

1
nBW

nBURST ∗ nCCDL

→ nBURST

nBW ∗ nCCDL
(1)

For a DDR4-3200AA configuration with two bank-
groups [26] this bounds worst-case bus utilisation to 4

16∗8 =
3.125%. Despite this low data bus utilisation, use-cases
might still necessitate indexed transfers.

When the size of the buffer or tile in which indexes reside
can be bound a priori, we can improve on this bound with
a novel technique called snoopy indexed transfers. A snoopy
indexed transfer works by streaming an entire buffer or tile
on the DRAM bus. For read operations, dedicated per-work-
item content-addressable memories (CAMs) detect on each
cycle whether the data currently present on the bus is for the
index requested by this work-item. If so, it snoops the word
from the bus into its corresponding data register. For write-
operations, when a CAM indicates that its index matches
one of the words written in a cycle, it signals a match to set
the corresponding DQ mask bits and writes the word from
its data register to the correct DQ lines.

From the DRAM controller’s perspective, a snoopy in-
dexed transfer is functionally and timing-wise equivalent
to a regular 1D or 2D tile request. To route the data to the
correct vector register lanes, each register file is extended
with an array of CAMs. By replicating these CAMs in both
register files, they can be re-used for scratchpad transfers.
Isolated experiments (not included for brevity) show that
snoopy indexed transfers can outperform iterative indexed
transfers for DRAM buffers or tiles of up to 1.1MiB for read
operations, and 1.37MiB for write-operations.

3.2.4 Mapped buffers
Sim-D uses mapped buffers to provide a memory protec-
tion mechanism that isolates data between different kernel-
instances, and to provide parameters to load/store instruc-
tions. We chose mapped buffers over paged memory as the
former can be queried in a single cycle, whereas the latency
of a page-walk is difficult to bound. To facilitate mapped
buffers, each SimdCluster contains two dedicated fixed-
size BufToPhysXlat units: one for DRAM buffers and one
for scratchpad buffers. Each BufToPhysXlat unit contains

a mapping from buffer IDs to their (physical address, x-
dimension, y-dimension) 3-tuples. The buffer dimensions
are used both to determine e.g. the period of a 2D stride
request, as well as to detect out-of-bounds accesses.

Upon launching a kernel-instance, the work scheduler
uploads all mappings to the two BufToPhysXlat units. These
mappings persist throughout kernel-instance execution.

3.3 Scratchpads
The CU is equipped with two SRAM-backed on-chip
scratchpads, one per active work-group. This permits a
DRAM↔scratchpad transfer to run in parallel with a
scratchpad↔register file transfer. In our simulation model,
the width of a scratchpad line and thus the width of the
scratchpad bus can be configured in powers of two between
4- and 32 data words (128-1024 bits).

Compared to DRAM, the operation of SRAM cells is rel-
atively simple: there are no row-buffers mandating lengthy
activate or precharge operations, and cells do not need a
periodical refresh. Consequentially, the control logic for the
scratchpads is simpler than that of the DRAM controller.
We have given each scratchpad a StrideSequencer front-
end similar to that of the DRAM controller. However, rather
than generating burst requests, it issues read/write requests
directly to a DQ scheduler. This DQ scheduler synchronises
SRAM control signals with those for the target register file.

Given the limited size of most scratchpad buffers, we
omit support for iterative indexed transfers between the
scratchpad and the register file. Indexed transfers must use
the snoopy method instead.

4 REAL-TIME WORK-GROUP SCHEDULING

In the previous section we explained how Sim-D schedules
work from work-groups in access- and compute phases.
Owing to performance isolation, the WCET of each phase
can be bound statically. Deriving the WCET of a kernel in-
stance is now a problem of finding the worst-case schedule
of phases onto the CU’s resources.

This section analyses this scheduling problem in greater
detail. After introducing a formal program model, we first
demonstrate that exhaustively testing all possible schedules
is intractable. We introduce two work-group scheduling
policies that reduce this search space to a single serialisation,
followed by a formal proof that for each serialisation we
only need to consider a single worst case schedule. We
conclude this section with an upper- and lower bound on
the possible efficacy of a work-group scheduling policy,
assuming that the bounds found for each phase are tight.

4.1 Program model
The formal foundation of Sim-D’s worst-case timing anal-
ysis relies on four abstractions: a system, a kernel-instance, a
serialisation and a schedule.

A system is described by a set of resources R,
each resource Ri represented by a (τi, Ii)-pair con-
taining the resource type τ ∈ {COMPUTE, DRAM,
SP}, and the instance number I. The Sim-D archi-
tecture is represented by the set of resources R =
{(COMPUTE, 1), (DRAM, 1), (SP, 1), (SP, 2)}.

6

Inspired by PREM [12], we model a work-group’s execu-
tion as a succession of phases. On Sim-D, each phase exclu-
sively reserves one resource. As every DRAM or scratchpad
request is issued by an instruction, a work-group must alter-
nate between compute and DRAM/scratchpad access phases.
The final phase is a DRAM store to write back results.

A kernel-instance K = (w, (Φ1, . . . ,Φn)) is modelled as
a sequence of n phases Φ and a number of work-groups
w. Each phase Φi is described as a (ρi, ci)-pair describing
the resource type ρi ∈ {COMPUTE, DRAM, SP} and the
phase’s WCET (cost) ci. Each work-group executes the se-
quence of phases Φ in order.

To reason about the problem of scheduling phases on
resources, two further abstractions are introduced: schedules
and serialisations.

A serialisation is a list that describes an order in which
the phases of every work-group in a kernel-instance K start
executing on their resource. In other words, it describes a
way in which the phases of work-groups in K interleave at
run-time. Formally, a serialisation S(K) = (ν1, ..., νm) is a
totally ordered set of phase instances νj = (φj , wj , rj , zj),
φj ∈ Φ the corresponding phase fromK ,wj the work-group
number, rj ∈ R the resource occupied by this phase instance
and zj ∈ {0, 1} the slot this phase instance occupies. In
an execution following S(K), each phase instance νj must
start before or at the same time as νj+1. If two phase
instances start at the same time, a consistent tie-breaking
rule (e.g. “lowest work-group number first”) determines the
order of phase instances in the serialisation. To honour the
dependencies between instructions, each work-group must
launch their phases in order (Φ1,Φ2, . . . ,Φn).

A schedule can be informally thought of as a (run-time)
instance of a serialisation with associated time information.
Formally, a schedule s(K) = (σ1, ..σn) is a totally ordered
set of resource reservations, each entry representing a 5-
tuple σi = (φi, wi, ri, zi, [t

start
i , tendi]) with φi ∈ Φ and wi

the phase and work-group for this reservation, ri ∈ R the
resource occupied by this reservation, zi its work-group slot,
and [tstarti , tendi] the interval during which this reservation
is active. In this work, all time is measured in discrete clock
cycles at the rate of the compute resource. A schedule is said
to run for the interval [1, tend], with tend defined as follows:

Definition 1. For a given schedule, tend is the last time-instant
that the corresponding kernel-instance runs.

tend = max({tendm | σm ∈ s(K)})

There is a one-to-many relationship between serialisa-
tions and schedules. From a schedule, its corresponding
serialisation is obtained by ordering the elements by start
time, and extracting the relevant program phase instances.

4.2 Scheduling policies
On every cycle or event, an on-line work-group scheduler
takes two binary decisions: whether or not to fetch the
next work-group from the queue, and whether or not to
enqueue the next program phase for execution. The result-
ing serialisations are therefore the permutation of a multiset
containing two elements, “work-group slot 0” and “work-
group slot 1”, each with a multiplicity equal to the number
of work-groups assigned to each slot multiplied by the

Table 2
Common symbols and definitions.

Symbol Description
Ri Resource
τi Type of resource Ri

Ii Resource instance of resource Ri

K Kernel-instance
w # Work-groups launched for kernel-instance K
Φj Program phase j for kernel-instance K
ρj Resource type required by program phase Φj

cj Worst-case execution time (cost) of program phase Φj

S(K) Serialisation of kernel-instance K
νm Program phase instance of serialisation S(K)
φm Program phase for m’th entry in S(K)
wm Work-group of m’th entry in S(K)
rm Resource occupied by m’th entry in S(K), rm ∈ R
zm Work-group slot for the m’th entry in S(K)
s(K) Schedule of kernel-instance K, sequence of reservations
σi Reservation i of schedule s(K)
φi Program phase for i’th entry in s(K), φi ∈ Φ
wi Work-group of i’th entry in s(K)
ri Resource occupied by i’th entry in s(K), ri ∈ R
zi Work-group slot for the i’th entry in s(K)
tstarti Start time of i’th entry in schedule s(K)
tend
i End time of i’th entry in schedule s(K)
tend End time of the last-finishing entry in schedule s(K)

number of program phases in the kernel-instance. Assuming
optimistically that work-groups are evenly distributed over
the two slots, the number of possible permutations p for a
kernel-instance K is determined by:

p =
(w ∗ |Φ|)!(⌈

w
2

⌉
∗ |Φ|

)
! ∗
(⌊

w
2

⌋
∗ |Φ|

)
!

(2)

Given bothw and |Φ| can run into hundreds, considering
all possible serialisations is intractable. Such exhaustive
evaluation seems unnecessary, as even the simplest greedy
policy that schedules work as early as possible will preclude
the vast majority of these serialisations. However, estab-
lishing criteria for filtering out impossible schedules and
schedules that are strictly worse than others is problematic
given that the run time of phases varies between executions.

To overcome this tractability problem, we propose two
on-line scheduling policies: scratchpad as compute and scratch-
pad as access. Both policies build on the observation that
when a system is modelled as exactly two resources, a
greedy scheduler only schedules program phases according
to a single serialisation. This serialisation is one where the
two active work-groups swap resources every time they
both finish their current program phase.

To permit work-groups to conditionally exit before exe-
cuting all of its phases, both policies schedule work-groups
in pairs. When a work-group exits, its slot remains empty
until the other slot starts its final phase. Consequently, early
exit does not alter the order of the remaining program phase
instances in the serialisation. Retaining this order causes a
safe bound derived from a serialisation without early exit
to be safe under early exit, for which we sketch a proof in
Section 4.4.

The resource utilisation diagrams in Figure 4 demon-
strates the effects of pair-wise work-group scheduling. The
black line shows how allowing immediate release of a new
work-group in slot 0 once its previous work-group has
finished causes a delay on the final DRAM request for

7

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) 2 work-groups (x1000 cycles)

WG0

WG1

Idle
Exec
DRAM
SP
Blocked

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(b) 4 work-groups (x1000 cycles)

WG0

WG1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(c) 4 work-groups, pairwise (x1000 cycles)

WG0

WG1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(d) scratchpad as compute (x1000 cycles)

WG0

WG1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(e) scratchpad as access (x1000 cycles)

WG0

WG1

Launch WG2+3

Launch WG2+3

Fig. 4. Occupation graphs for CNN convolution.

work-group 1. Under unconstrained execution (b), at the
line the work-groups in the two slots have drifted apart
by several phases with no sign of reconvergence later on.
Under pairwise work-group scheduling (c), the start of the
second work-group for slot 0 is delayed. As a result, the final
write request of the first work-group in slot 1 is no longer
blocked by a work-group that is launched later, restoring
the execution schedule of the first two work-groups to that
of diagram (a). The cost of this resynchronisation is the idle
time between the final DRAM write request of work-group
0 and that of work-group 1, indicated by the white region
between cycle 11000 and 12000.

Diagrams (d) and (e) show the cost of enforcing scratch-
pad access as compute or DRAM access respectively. Evi-
dently there is a cost attached to policies that limit the scope
for parallel occupation of resources, which we will quantify
for a set of 15 benchmarks in Section 6.

4.3 Worst-case minimal valid schedule
In this section we prove that for each serialisation, WCET
analysis only needs to consider one schedule: the worst-case
minimal valid schedule. We first give a definition of valid and
minimal in the context of a schedule derived from a specific
serialisation, after which we prove that the worst-case valid
minimal schedule is the one where the execution time of
each program phase is maximised.

Definition 2. A valid schedule s(K) for a kernel-instance K
is a schedule for which a valid serialisation S(K) exists, and
additionally no resource is allocated to more than one reservation
at any point in time.

A minimal valid schedule derived from a serialisation is a
valid schedule that schedules each program phase as early
as possible, provided the requested resource is available,
the serialisation’s order is honoured and for each work-
group its program phases do not overlap. Before presenting
a formal definition of a minimal valid schedule, we first
provide three auxiliary functions:

Definition 3. RRes(s, ρ) is a function that for a given schedule
s returns the end time of the last resource reservation σi ∈ s for
which ri = ρ, or 1 if no such reservation exists.

RRes(s, ρ) = max({tendi | ∀σi ∈ s : ri = ρ} ∪ {1}) (3)

Definition 4. WEnd(s, ζ) is a function that for a given sched-
ule s returns the end time of the last resource reservation σi ∈ s
for which zi = ζ , or 1 if no such reservation exists.

WEnd(s, ζ) = max({tendi | ∀σi ∈ s : zi = ζ} ∪ {1}) (4)

Definition 5. Pre(s,m) is a function that returns the sub-
schedule (prefix) of schedule s containing all elements up to but
excluding element m:

Pre(s,m) = (σi ∈ s : i < m) (5)

Using these three functions, the minimal valid schedule
is defined as follows:

Definition 6. A minimal valid schedule s(K) with respect to
a serialisation S(K) is a valid schedule for which ∀σm ∈ s(K)
the following holds:

tstart1 = 1 (6)

tstartm>1 = max

 tstartm−1 ,
RRes(Pre(s(K),m), rm) + 1,
WEnd(Pre(s(K),m), zm) + 1

 (7)

tstartm < tendm ≤ tstartm + cm (8)

Phases in a minimal valid schedule are required to finish
within ci cycles from start, but no other bounds are placed
on the execution time of a phase. Hence a serialisation can
result in many different minimal valid schedules. The next
theorem introduces the worst-case minimal valid schedule
derived from a serialisation S(K), being the one that max-
imises the execution time for every element.

Theorem 1. The worst-case minimal valid schedule s(K) for a
given serialisation S(K) is one where each phase executes for its
worst case execution time.

∀σi ∈ s(K) : tendi = tstarti + ci (9)

Proof: By induction. Let s(K) and s′(K) be minimal
valid schedules derived from S(K), s(K) being a worst-
case minimal valid schedule and s′(K) being a minimal valid
schedule where at least one program phase executes for a
shorter amount of time. We prove t

′end ≤ tend by proving
two invariants: ∀i ∈ [1 : |s(K)|] : t

′start
i ≤ tstarti and

∀i ∈ [1 : |s(K)|] : t
′end
i ≤ tendi .

Let d be the index of the first resource reservation in both
s(K) and s′(K) such that tendd 6= t

′end
d and Pre(s(K), d) =

Pre(s′(K), d). If d = 1, the first element in s(K) and s′(K)
already differ in execution time. Trivially, ∀i ∈ [1 : d) :
t
′start
d ≤ tstartd and t

′end
d ≤ tendd by definition of d.

Consider d the base case for the induction argument.
Consider two cases. If d = 1, t

′start
d = tstartd = 1 per

Equation 6. For d > 1, Equation 7 consists of three compo-
nents. The first component is equal for both scheduler as per
the start-time invariant. The second and third component
are equal as, by definition, Pre(s(K), d) = Pre(s′(K), d).
Because all three components are equal for both schedules
we conclude that tstartd = t

′start
d . The first invariant holds.

Since tstartd = t
′start
d , the definitions given by Equa-

tions 8 and 9 guarantee that t
′end
d ≤ tendd . Hence the second

invariant holds.
For the induction case d + 1, the start-time invariant

guarantees that t
′start
d ≤ tstartd . For the second and third

8

component of the maximum in Equation 7, the end-time
invariant guarantees that:

RRes(Pre(s′(K),d+ 1), rd+1) ≤
RRes(Pre(s(K), d+ 1), rd+1) , and

WEnd(Pre(s′(K),d+ 1), zd+1) ≤
WEnd(Pre(s(K), d+ 1), zd+1)

Since all three components of the maximum in Equation 7
must be smaller or equal for s′(K), the maximum must be
smaller or equal too.

For the second invariant, recall from Equation 9 that
tendd+1 = tstartd+1 + cd+1. Substituting this into Equation 8 gives
t
′end
d+1 ≤ t

′start
d+1 + cd+1 ≤ tstartd+1 + cd+1 = tendd+1, proving the

second invariant holds too.
This concludes the induction argument demonstrating

that both invariants hold for all elements in the schedules.
From Definition 1 it now follows that:

t
′end= max({t

′end
i : ∀σi ∈ s′(K)})

≤ max({tendi : ∀σi ∈ s(K)}) = tendi

This theorem reduces the problem of finding the worst-
case schedule to one of finding the worst-case serialisation,
as each serialisation only has a single worst-case minimal
valid schedule to consider.

4.4 Work-group early exit

Some kernels may require whole work-groups to exit early,
thus skipping their remaining program phases. Within a
limited scope, this can be facilitated under pair-wise work-
group scheduling. We provide the following theorem and a
basic sketch of its proof, but omit the full proof for brevity.

Theorem 2. Removing a program phase from a serialisation does
not increase the run-time of its worst-case minimal valid schedule.

The proof follows the same inductive nature as that of
Theorem 1. Given two serialisations, the second a copy
of the first with one element removed, we can construct
the two worst-case minimum valid schedules one program
phase instance at a time according to Equations 6, 7 and 9.
For equivalent reservations in both schedules, the reserva-
tion from the second schedule must have both a start- and
end-time earlier or at the same time as the reservation in the
first schedule, proving that the latter schedule must have an
end time earlier or at the same time as the former.

4.5 Bounds

Assuming the WCET bounds on phases are tight, there
are limits to how well (or poorly) a work-group scheduler
can perform. We next introduce upper and lower bounds
that help put the performance of the scheduling policies in
perspective. An upper bound is given by serial execution of
the program, formally:

Definition 7. For any work-group scheduler, the WCET of a
given kernel-instance K running on Sim-D is upper bounded by:

WCETU (K) = w ∗
|Φ|∑
i=1

ci (10)

A lower bound on the WCET is obtained by taking the
maximum of the sum of costs on each resource. Formally:

Definition 8. For any work-group scheduler, the WCET of a
given kernel-instance K running on Sim-D is lower bounded by:

WCETL1(K) = w ∗max

 C(K,COMPUTE),
C(K,DRAM),
C(K, SP)

 (11)

with

C(K, r) =

|Φ|∑
i=1

{
ci if r = ρi
0 otherwise (12)

Note that this bound is not tight as it does not take into
account any constraints on schedules that result from data
dependencies between phases. Serialisation is expected to
occur as compute phases cannot start until their data is
loaded or stored in full. As a result, for a kernel-instance
K no minimal valid schedule might exist with an execution
time not exceeding WCETLB1(K).

A second non-tight lower bound is one where two work-
groups execute in parallel with zero blocking, formally:

Definition 9. For any work-group scheduler, the WCET of a
given kernel-instance K running on Sim-D is lower bounded by:

WCETL2(K) =
⌈w

2

⌉
∗
|Φ|∑
i=1

ci (13)

In the remainder of this work, the lower bound is re-
ported as the maximum of these two:

Definition 10. For any work-group scheduler, the WCET of a
given kernel-instance K running on Sim-D is lower bounded by:

WCETL(K) = max(WCETL1(K),WCETL2(K)) (14)

5 WCET COMPUTATION

This section presents an algorithm to determine a safe
WCET of a kernel-instance running on Sim-D. This al-
gorithm combines path-based CFA with simulation-based
PBA. The main contribution of this algorithm is its bound
calculation: from the critical path through kernel code, the
algorithm extracts the list of access- and compute phases that
each work-group will execute. A safe WCET is derived from
this sequence by computing the cost of the worst-case minimal
valid schedule. As explained in Section 4.2, this schedule
is composed trivially for both the scratchpad as access and
scratchpad as compute scheduling policies.

Sim-D’s WCET analysis tool performs the following 8
steps, explained in detail in the remainder of this section:

1) Parse the kernel source,
2) Perform CFA to construct a control flow graph

(CFG) [37] whose nodes consist of basic blocks (BBs)
- linear sequences of instructions - and the edges repre-
sent the possible transitions between these blocks.

3) Perform PBA to compute/simulate bounds for DRAM
and scratchpad requests, for the execution time of each
BB and for the cost of BB→BB transitions,

4) Transform the CFG into a weighted directed acyclic
graph (DAG), unrolling loops using programmer-
annotated iteration bounds,

9

5) Find the critical path through the DAG,
6) Transform the critical path into a list of access- and

compute phases in accordance with the chosen work-
group scheduling policy,

7) Compute the WCET of the phase list,
8) Inflate the WCET with the DRAM refresh cost.

5.1 Parsing the program
The first step is to parse the assembly program into a list of
BBs. BBs terminate with an instruction that performs control
flow, issues a DRAM or scratchpad request or that could
cause the instruction decoder to inject a cpop operation
into the pipeline. The latter two BB terminators aid both
with accounting for the cost of pipeline warm-up after each
request, as well as with the construction of the DAG in step
four and the program phase listing in step six.

5.2 Control flow analysis
Control flow analysis (CFA) transforms the list of BBs into a
CFG. Sim-D’s CFA differs from common practice as it must
analyse branch targets reached by injected cpop operations.

To implement branch target analysis of injected cpops,
each edge is annotated with the state of the control stack
at the end of executing its source’s BB. Each entry of the
annotated stack state is a (branch target, entry type)-pair. To
ensure that the number of edges is bound and known a
priori, the CFA pass currently enforces the constraint that
all incoming edges for a BB must have an equal stack state.

We assume that any CMASK write may lead to unrolling
the entire CSTACK. When such an instruction terminates a
BB, an edge is created for each entry in the stack state found
on the BB’s incoming edges. If the BB contains CSTACK
push operations, these are included as potential branch tar-
gets. Each generated edge is annotated with the number of
CSTACK entries that must be popped to reach this branch.

The CSTACK constraint on incoming edges of a BB limits
the legal control flow constructions. Specifically it limits
code sharing through function calls, and forbids recursive
calling and loops where the stack grows on each iteration.
The latter two are common limitations in real-time systems
as such loops and recursive calls prohibit analysis of the
worst-case control flow [38]. Code sharing, although desir-
able for code maintainability, is not functionally required.
Since a program’s binary size is generally not a constraint,
developers can in-line shared subroutines instead. There
may be scope for relaxing this restriction in the future.

5.3 Worst-case performance simulation
Step three annotates the CFG with worst-case execution
times of both compute and DRAM/scratchpad accesses.

The LID of a strided DRAM request is determined
using exhaustive simulation of a request for all possible
alignments. The region covered by a transfer is known a
priori, and the number of words taken from this region
is statically upper bound. For most DRAM requests, these
parameters can be derived statically from the instruction
and the buffer mapping. For requests that compute values
from the custom stride special purpose registers, developers
may need to annotate these registers with upper bounds.

From analysing such simulations for 1D tiled transfer,
we derived the following equations for the LID (in DRAM
clock cycles) of read- and write requests of b bursts:

tIDR(b) =max

(
AC(b) + nRTP + nRP,
min(b− 1, 3) ∗ nRRDS + nRAS + nRP

)
tIDW (b) =AC(b) + nCWD + nBURST + nWR + nRP

(15)

With the activation+read/write delay defined as:

AC(b) =

(b-1)*nRRDS+nRCD iff b ≤ 4

2*nRRDS+nRCD+(b-
4)*nCCDL+nCCDS

iff b ∈ [5, 6]

3*nRRDS+nRCD+nCCDL+nCCDS iff b ∈ [7, 8]

nRRDS+nRCD+2*nCCDL+(b-
4)*nCCDS

iff b odd

2*nRRDS+nRCD+nCCDL+(b-
5)*nCCDS

otherwise

For indexed-iterative transfers, the following equations
define the LID for b bursts in a buffer of s words covering
rows(s) rows:

tIIIDR(b, s) =

{
IIAC(b,s) + nRTP + nRP iff rows(s) ≤ nB

b * (nRAS+nRP) otherwise

tIIIDW (b, s) =

IIAC(b,s) + nCWD + nBURST
+ nWR + nRP

iff rows(s) ≤ nB

b∗(nRCD+nCWD+nBURST
+nWR+nRP)

otherwise

(16)
with

IIAC(b, s) =

nRCD + (b-1)*nCCDL iff rows(s) = 1

nRCD + nRRDS + (b-2) * nCCDL iff 1 < rows(s) ≤ nBG

nRCD + nRRDL + nRRDS - 1 +
(b-3) * nCCDL

nBG < rows(s) ≤ nB

The LID of a scratchpad request is determined by count-
ing one cycle for every line read/written in the worst-case
alignment, plus one cycle for its front-end overhead.

The WCET of a BB’s instruction execution is determined
by simulating the timing of the Sim-D pipeline twice: once
with a cold pipeline and once with a warm pipeline. For
the warm-pipeline case, the entire kernel is simulated in
linear order as if all branches are not taken. The absence
of a branch predictor in Sim-D ensures that any other entry
into a BB is with a cold pipeline.

The compute time simulation accounts for all pipeline
behaviour, specifically:
• The expansion of vector instructions into many sub-

vector instructions: 8 for single-precision operations,
and 32 for operations occupying the RCP-units,

• Pipeline stalls due to read-after-write (RAW) hazards,
• Issue delays caused by the non-pipelined scalar integer

divider, both to enforce instruction commit ordering
and to keep a minimal distance between two issued
integer divide/modulo operations.

For both the cold- and the warm pipeline simulation,
the cost of each BB is computed by counting the number
of cycles between it’s first instructions’ write-back and the
write-back of the following BB’s first instruction. The cost of
a cold run is the base cost of a BB’s execution. The difference
between the cost for a warm and a cold run determines
the penalties incurred by pipeline effects between a BB
and the next. These penalties are stored as weights on the
BB’s outgoing “fall-through” edge. Branch-taken edges have
their weight set to the cost of a pipeline flush. The edges
for injected cpops have their weight set to the cost of cpop

10

BB:0 BB:1 BB:2

Fig. 5. Example control flow graph fraction

execution, multiplied by the number of CSTACK entries
between the top of the CSTACK and the entry represented
by the edge. For the latter two types of edges, if the des-
tination BB starts with a scalar integer division or modulo
instruction, the pipeline penalty includes the (three) extra
cycles required to reach the write-back stage.

To justify why the two simulation paths produce safe
WCET bounds even in the light of pipeline effects that
propagate beyond two BBs, consider the CFG in Figure 5.

The cost for transitioning from BB:1 to BB:2 is given by
the warm-pipeline overhead as simulated along the straight-
line path BB:0→BB:1→BB:2. However, entry of BB:2 could
also occur through the alternative [. . .]BB:2→BB:1→BB:2
path. Theoretically the pipeline state on the transition from
BB:1 to BB:2 could differ between these two paths. However,
pipeline effects that cross BB boundaries are the result of
temporarily reserved resources like registers or functional
units. The alternative path must enter BB:1 with no resource
reservations. From this it follows that the cost of executing
BB:1 plus the transition to BB:2 must be smaller than the
bounds derived from the straight-line warm-pipeline path.
From this observation we conclude that the two simulations
(warm-pipeline branch never taken, and cold-pipeline) are
sufficient to produce safe bounds on execution time.

5.4 Construct a DAG
The fourth step transforms the CFG into a weighted DAG by
eliminating cycles from the CFG. Cycles in the CFG are the
result of for- and while-loops in the program. To eliminate
these cycles from the CFG, each loop is transformed into a
DAG containing one node for each execution of a BB, similar
to loop unrolling. A simple annotation-based scheme is used
to provide mandatory bounds on loop iterations.

Loops are processed in depth-first order according to
their nesting depth. After transforming a loop, the resulting
DAG is cached in a map indexed by its entry BB, potentially
overwriting an inner loop’s cache entry. If, during the trans-
formation of a loop or the main program, an edge is added
to the DAG that points to a BB present in the loop-DAG
cache, the cached DAG is appended to the parent’s DAG.

Caching and in-lining partial DAGs for loops imposes
the following limitations:
• Each loop has a single entry point and exit target,
• Loops must be properly nested,
• An inner loop’s iteration bound annotation may not

depend on outer scopes.
Multiple jump instructions with the same loop (re-)entry

target are analysed as if they are multiple nested loops. Early
breaking out of a loop is correctly analysed as long as each
exit branch is annotated with its “taken” bound.

The resulting DAG has the cost for a DRAM or scratch-
pad request stored as weights associated with each node. All
compute costs are represented as the weights on the edges of
the DAG. Weights for these edges are computed by adding
the CFG node’s (cold-pipeline) compute cost to the weight
of each of the CFG node’s outgoing edges.

5.5 Critical path analysis

Given a DAG, its critical path is found using a dynamic
programming algorithm that determines the longest path
for successively larger sub-graphs. By adding nodes from
the DAG to this sub-graph in topological order, no node
needs to be processed more than once. For a DAGD = (v, e)
with no unconnected nodes, the resulting algorithm is of
O(|e|) time complexity.

This critical path algorithm requires that all DRAM and
SP requests are present on the critical path. Violation of
this requirement could cause the work-group scheduler to
schedule program phases following different serialisations
than the one assumed by the WCET computation in Sec-
tion 5.7 with potential worse run-times. As an implication,
conditional DRAM or scratchpad requests are only permit-
ted in two cases: either when the condition can be described
with a branch annotation, or when a work-group exits early.

5.6 Access/compute phase lists

In this step, this list of phases Φ = {(ρ1, c1)..(ρi, ci)} is
extracted from the critical path. To this end, the critical path
is traversed from source to sink, aggregating the weight of
each edge in an accumulator until a node with an associated
DRAM or scratchpad transfer is encountered. Depending on
the scheduling strategy (scratchpad as access or scratchpad as
compute) this access cost must now be accounted for.

For both strategies, if the node has an associated DRAM
request, two phases are added to the list: a compute phase
whose cost is the compute cost gathered in the accumulator,
followed by an access phase with its cost equal to the DRAM
request WCET. Subsequently, the accumulator is reset to 0
and the algorithm continues path traversal.

If the encountered node is a scratchpad access, depend-
ing on the scheduling strategy chosen there are two ways to
proceed. For the scratchpad as access policy, two phases are
created similarly to the DRAM request case. For the scratch-
pad as compute scheduling policy, the scratchpad access cost
is added to the compute-time accumulator and traversal of
the critical path continues without creating two new entries.

5.7 WCET computation

From a phase list, the WCET is extracted by constructing
the worst-case serialisation. Under the constraints of both
scheduling policies, this is the serialisation under which two
work-groups alternate between resources.

Since the phases of a work-group always alternate be-
tween access and execute, the cost for executing all n
phases for a pair of work-groups is determined by c2wg =
max(cn, c1)+

∑n−1
i=1 max(ci, ci+1). If a work-group contains

an odd number of work-groups, one work-group will exe-
cute serially without interleaving. The cost of such execution
is defined as c1wg =

∑n
i=1 ci.

The WCET is found by multiplying c2wg with the num-
ber of work-group pairs in a program. If an odd number
of work-groups was launched, c1wg is added to the total.
For an even number of work-groups, the calculated total is
adjusted for the tails of the schedule by adding min(c1, cn).
Finally, the program upload time must be added, which is
calculated from the size of the program using Equations 15.

11

Formally, for a program binary spanning b bursts of data in
DRAM the WCET (cost) c of a program is given by:

cedge =

{
min(c1, cn) iff w is even
c1wg otherwise (17)

c =
⌊w

2

⌋
∗ c2wg + cedge + tIDR(b) (18)

Additionally, the phase list constructed for the scratchpad
as access scheduling policy is used to calculate WCETU (K)
(Equation 10) and WCETL(K) (Equation 14).

5.8 DRAM refresh inflation
Finally, following an approach proposed by Park et al. [39],
the derived WCET or bound is inflated by the cost of DRAM
refresh. Assuming the ratio between the DRAM clock and
Sim-D’s compute clock is rCK , inflation is performed using
the following equation:

cinflated = c+

⌈
c ∗ rCK

nREFI − nRFC

⌉
∗ nRFC
rCK

(19)

Inflation of WCET equates to a case where refresh occurs
in a “stop the world” fashion as soon as required, halting
both compute and DRAM. This is a pessimistic model of ac-
counting for refresh cost as Sim-D’s actual refresh behaviour
differs in two ways:

1) Compute/scratchpads continue to run during refresh,
2) Refresh is deferred until after the active DRAM request.

Point 2 is covered safely by this inflation method despite
assuming a refresh penalty of nRFC, thus without intro-
ducing a precharge-activate cycle required to preemptively
execute the refresh. In most cases the DDR4 standard per-
mits safe deferral of refresh until a request finishes and all
banks are precharged; preemptive refresh is only required
when a request takes longer than 8 ∗ (nREFI − nRFC)
cycles, e.g. a snoopy indexed request into a very large buffer.
In these cases, the indexed iterative method has a better
worst case and should thus be used instead.

Point 1 implies that inflation introduces a pessimism,
specifically for compute- or scratchpad I/O bound kernels.
The total cost of refresh inflation assuming DDR4-3200AA
DRAM [26] is ∼4.5%, which is also an upper bound on this
pessimism.

Table 3
Summary of hardware configurations.

NVIDIA GeForce
Parameter Sim-D GT710 GTX780

Compute
Clock 1GHz 1GHz 992MHz
Compute units 1 1 12
Work-items/WG 1024 ≤ 1024 ≤ 1024
SP/RCP-units 128/32 192/321 2304/3841

DRAM
Configuration DDR4-1866M, DDR3, 1866MHz GDDR5, 6.4GHz

DDR4-3200AA [26]
Bus width 64 bits (DDR) 64-bits (DDR) 384-bits (DDR)
Throughput 14.4, 23.8 GiB/s 14.4 GiB/s 288.4 GiB/s

Scratchpads
Clock DRAM clock unknown
Bus width 128, 256, 512, 1024 b 2048 bits/CU [40]

4, 8, 16, 32 words 64 words/CU
Capacity 64KiB/WG 16KiB/CU (+L1)

1 “SFUs”, special function units, described by Oberman et al [31].

 0

 1

 2

 3

 4

cn
n_

co
nv

ol
ut

io
n

cn
n_

m
ax

po
ol

cn
n_

re
lu ff

t

kf
us

io
n_

de
pt

h2
ve

rte
x

kf
us

io
n_

ha
lf.
..

kf
us

io
n_

tra
ck

kf
us

io
n_

ve
rte

x2
no

rm
al

m
riq

_c
om

pu
te

Phi
M

ag

m
riq

_c
om

pu
te

Q
sp

m
v

sr
ad

2

sr
ad

_r
ed

uc
e

sr
ad

st
en

ci
l

5
.2

5
.2

5
.2

5
.2

7
.9

8
.1

S
p

e
e

d
-u

p

DDR4-1866M, 2BG, SP4
DDR4-1866M, 2BG, SP8
DDR4-1866M, 2BG, SP16
DDR4-1866M, 2BG, SP32
DDR4-3200AA, 2BG, SP32
DDR4-3200AA, 4BG, SP32

Fig. 6. Average performance of Sim-D, normalised to GeForce GT710.

6 EVALUATION

In the previous sections we introduced both the Sim-D archi-
tecture and a WCET computation algorithm. Together they
form the first full-stack solution for data-parallel compute
in a way that permits calculating safe and tight WCETs for
kernel-instances. We next evaluate the efficacy of Sim-D.

To this end, we gathered average- and worst-case per-
formance numbers for 15 kernels. We ported 12 kernels
from OpenCL to Sim-D’s ISA, which were selected from
Rodinia [41], Parboil [42] and KinectFusion [43] for their
relevance to safety-critical systems. We additionally devel-
oped 3 convolutional neural network kernels, based on
work by colleague Daniel Bates (personal communication,
8 September 2016), to OpenCL and Sim-D1.

Execution times were measured using Sim-D’s single-
threaded cycle accurate performance model2. This sim-
ulation model is written in SystemC [44], and interacts
with Ramulator [45] to enforce correct DDR4 timing. All
benchmarks were run on a mid-range desktop computer
from 2013 (Intel Core i5-4670, 3.4GHz). The cycle accurate
simulator ran at a rate exceeding 45K cycles per second,
thus requiring several hours to finish the simulation of all
benchmarks for a single Sim-D configuration on one core.
WCET computation, including exhaustive DRAM simula-
tion for each access phase, took ∼1 minute per kernel.

6.1 Average-case performance
We first compare Sim-D under two DRAM configurations
with the NVIDIA GeForce GT710 and NVIDIA GeForce
GTX780 graphics cards. Parameters of these devices are
given in Table 3. As shown, Sim-D’s configuration roughly
resembles NVIDIA’s GeForce GT710, which in turn is repre-
sentative of the embedded NVIDIA Tegra K1 GPU [11].

Figure 6 shows the measured performance of Sim-D,
normalised to the performance of GeForce GT710. This
figure shows mixed results. Provided sufficient scratchpad
bandwidth, Sim-D is able to match or slightly outperform
NVIDIA’s low-end GPU for 8 benchmarks: CNN, FFT, KFu-
sion’s halfsample and vertex2normal kernels, SRAD reduce
and the compute-bound MRI-Q computeQ. This is also true
for MRI-Q computePhiMag, but with a run time of less than
2000 cycles, we have little trust in the significance of this
observation. Such short kernels might exacerbate NVIDIA’s

1https://github.com/RSpliet/CLaxon
2https://github.com/RSpliet/Sim-D

https://github.com/RSpliet/CLaxon
https://github.com/RSpliet/Sim-D

12

Table 4
Average case performance vs. NVIDIA GeForce GTX780.

Benchmark Sim-D GeForce GTX780
cycles cycles speed-up

CNN Convolution 18342388 5901185 ×3.11
CNN Maxpool 368726 78122 ×4.72
CNN RELU 3413172 903232 ×3.78
FFT 216062 20106 ×10.75
KFusion depth2vertex 350894 40212 ×8.73
KFusion halfSample[...] 102770 19008 ×5.41
KFusion track 7015098 256715 ×27.33
KFusion vertex2normal 522664 137421 ×3.80
MRI-Q computePhiMag 1291 5091 ×0.25
MRI-Q computeQ 71988180 7669264 ×9.39
SPMV 1438668 38622 ×37.25
SRAD2 1653467 34357 ×48.13
SRAD reduce 286514 58928 ×4.73
SRAD 1745937 47182 ×37.00
Stencil 510227 46040 ×11.08

fixed-cost overheads caused by the OpenCL run-time (e.g.
command submission through the PCIe bus). These over-
heads are not included in Sim-D’s reported run times.

In the remaining six cases, Sim-D achieves at most 82% of
the GT710’s performance, with less than 10% for the SPMV
benchmark. The four worst performing kernels (SRAD,
SRAD2, SPMV and KFusion track) are DRAM I/O-bound as
a consequence of Sim-D’s absence of transparent caches. For
example, SRAD and SRAD2 rely on indexed transfers that
load arbitrary data points from a DRAM buffer of ∼898KiB.
Because there is no scope to bound the region a work-
group’s indices can refer to, neither indexed transfer method
performs well. NVIDIA’s cache hierarchy drastically speeds
up such DRAM accesses in the average case. Unfortunately,
existing solutions using transparent caches are out of scope
for Sim-D as they are not able to improve the worst case.

Finally, the results show that the architecture still benefits
from higher DRAM throughput. The performance of DRAM
I/O-bound benchmarks (e.g. CNN RELU, KFusion track,
stencil) scales nearly linearly with the theoretical band-
width provided by the DRAM technology. Furthermore,
four bank-group DRAM chips consistently outperform two
bank-group configurations.

Table 4 shows that, compared to Sim-D, the high-end
NVIDIA GTX780 achieves 14.36× better performance . With
over 10× more DRAM bandwidth and 18× as many SP-
units, this is an unsurprising result. Scaling Sim-D to such
high-end specifications is an open problem that poses two
main challenges for future research: increasing the DRAM
bus width without sacrificing data bus utilisation, and
adapting the WCET derivation algorithm to account for
parallel SimdClusters. We expect that a solution to the latter
challenge can provide a foundation for research towards
temporal- and spatial multitasking methods for HRT data-
parallel accelerators.

6.2 Scheduling policies
To understand the run-time overheads of the scratchpad as
access and scratchpad as compute scheduling policies, and the
fraction of this overhead attributable to the pairwise work-
groups scheduling constraint, Figure 7 demonstrates the run
time of benchmarks under all three constraints. Execution
times are normalised to the unconstrained scheduling case.

In line with expectations, this figure shows that kernels
without scratchpad buffers (i.e. SRAD2 and MRI-Q com-

putePhiMag) are unaffected by the proposed constraints.
These benchmarks use only two resources and never exit
early, hence even the unconstrained scheduler will always
schedule them following a single serialisation.

Performance of the other benchmarks drops by 5.9%
on average and 17.5% in the worst case under pairwise
work-group scheduling. This penalty reflects the cost of
synchronising work-groups that drift apart as a result of
executing alternating compute and scratchpad phases in
parallel with a single DRAM request, as shown in Figure 4.

The average penalty for treating scratchpad requests of
these kernels as either access or compute is 14.1% and 12.8%
respectively, with a worst-case observed penalty of 36.5%.
This cost reflects the reduced scope for parallel resource oc-
cupation plus the cost of pair-wise work-group scheduling.

Interestingly the KFusion depth2vertex kernel benefits
from the scratchpad as compute policy, performing 6.1% better
than under unconstrained scheduling. This improvement is
entirely caused by more favourable scheduling decisions.

We observe that neither work-group scheduling policy is
a universally superior choice. For the KFusion, SPMV and
stencil benchmarks the scratchpad as compute policy delivers
better performance, whereas the CNN convolution, CNN
maxpool and SRAD reduce benchmarks perform better
under the scratchpad as access policy. When comparing for
each benchmark their performance under unconstrained
scheduling to that of the best-performing constrained sched-
uler, the measured performance degradation is 10.7% on
average, or 9.2% when including the two unaffected kernels.

6.3 Worst-case execution time

Concluding, we evaluate the WCET of the benchmarks
under both scheduling policies along two metrics: tightness
of the produced bounds with respect to simulated execution,
and performance under worst case conditions with respect
to the lower- and upper bounds on WCET from Section 4.5.

Figure 8 visualises the simulated execution time of 11
benchmarks under both scheduling policies, alongside the
calculated WCETs and bounds. The ranges depicted in
red represent the (non-tight) lower- and upper bounds on
WCET. The remaining four benchmarks are outliers that we
summarised in Table 5. The data for columns labelled “avg”
is obtained using the cycle-accurate simulation model, while
the columns labelled “wcet” contain the WCET of a kernel
as determined by the algorithm described in Section 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

cn
n_

co
nv

ol
ut

io
n

cn
n_

m
ax

po
ol

cn
n_

re
lu ff

t

kf
us

io
n_

de
pt

h2
ve

rte
x

kf
us

io
n_

ha
lf.
..

kf
us

io
n_

tra
ck

kf
us

io
n_

ve
rte

x2
no

rm
al

m
riq

_c
om

pu
te

Phi
M

ag

m
riq

_c
om

pu
te

Q
sp

m
v

sr
ad

2

sr
ad

_r
ed

uc
e

sr
ad

st
en

ci
l

S
p

e
e

d
-u

p
 (

n
o

rm
a

lis
e

d
 t
o

 u
n

re
s
tr

ic
te

d
)

Pairwise WGs Scratchpad as compute Scratchpad as access

Fig. 7. Scheduling policy impact on avg. case performance.

13

Table 5
Run-time vs. WCET of outliers under various scheduling constraints, in compute cycles.

Benchmark Unconstr. WCETL WCETU SP as access SP as compute
avg avg wcet % diff avg wcet % diff

KFusion track 7015098 91111265 92146915 7249308 91744883 1165.6 7042173 91488533 1202.8
MRI-Q computePhiMag 1291 1669 1777 1291 1687 30.6 1291 1687 30.6
SRAD2 1653467 11814286 11890837 1653467 11814605 618.8 1653467 11814605 618.8
SRAD 1745937 23199814 23413990 1737462 23252862 1238.3 1725240 23238710 1247.0

Three of the outliers (KFusion track, SRAD and SRAD2)
show a large discrepancy between the measured execution
time and calculated WCET. This is caused by their reliance
on indexed read requests from large buffers. Section 3.2.1
explained that such transfers have an upper bound on their
LID of 3.125%, which may not reflect average case perfor-
mance. Unfortunately we see little room for improvement
for these cases unless more details about the indexes into
these buffers is known a priori. The last outlier (MRI-Q
computePhiMag) is an extremely short-running kernel that
is required in preparation for the computeQ kernel. Its data
is displayed for completeness, but bears little significance.

Ignoring the outliers, we observe that the WCET deriva-
tion algorithm produces a bound which is on average tight
within 12.7% and 11.8% under the scratchpad as access and
scratchpad as compute policies respectively. This discrepancy
represents the combined pessimism of assuming the longest
execution path for every work-group, assuming the worst-
case memory transfer properties (alignment, size, indices),
and assuming maximum blocking from DRAM refresh. Bar
two exceptions, MRI-Q ComputeQ and SPMV, the distance
between the lower- and upper bounds indicate that there is
much potential for improving kernel run times by occupy-
ing compute- and access resources in parallel. As the figure
shows, the most effective scheduling policy for a benchmark
generally achieves half of that potential.

In line with the findings from Section 6.2, this graph
shows that neither scheduling policy is universally better
than the other. There appears to be an (unproven) corre-
lation between which scheduling policy produces the best
WCET and which policy performs better during run-time.

7 CONCLUSION

To substantiate our claim that custom architectures are
essential for applying data-parallel architectures in safety-
critical systems, we studied Sim-D: a wide-SIMD architec-

CNN m
axpool

FFT

KFusion depth2ve
rte

x

KFusion halfS
ample...

KFusion ve
rte

x2norm
al SPMV

SRAD re
duce Stencil

0.0 M 0.2 M 0.4 M 0.6 M 0.8 M 1.0 M 1.2 M 1.4 M 1.6 M

WCET range
Unconstrained (measured)
Scratchpad as access (WCET)
Scratchpad as access (measured)
Scratchpad as compute (WCET)
Scratchpad as compute (measured)

CNN R
ELU

3.0 M 3.4 M 3.8 M 4.2 M 4.6 M 5.0 M

CNN convolutio
n

MRI-Q
 computeQ

20.0 M 30.0 M 40.0 M 50.0 M 60.0 M 70.0 M 80.0 M

Cycles

Fig. 8. Performance of scheduling constraints.

ture designed for HRT systems. Sim-D schedules the work
for each work-group as a sequence of uninterruptible access-
and compute phases, interleaving the phases of two work-
groups. By providing performance isolation between the
memory- and compute resources, the execution time of each
phase can be tightly bounded through static analysis. Sim-
D’s DRAM controller and scratchpad front-ends process
requests that transfer either 1D- or 2D blocks of data or
the data corresponding with a set of buffer off-sets. By
explicitly conveying the relation between work-group and
data element, worst-case DRAM request efficiency can be
analysed statically with relatively little pessimism.

Sim-D can often achieve performance on-par with an
embedded-grade NVIDIA GPU under two conditions: Sim-
D must provision sufficient scratchpad bandwidth, and ap-
plications must avoid indexed transfers from large buffers.

We presented a tailored WCET calculation algorithm
capable of deriving safe bounds. Its key novelty is the
consideration of work-group scheduling effects in the fi-
nal bound calculation. This algorithm is paired with two
hardware work-group scheduling policies that deterministi-
cally reduce run-time variance. We show that these policies
degrade performance on average by 9.2%, but permit the
calculation of WCETs that are tight within 12.7% on average
for benchmarks that avoid inefficient indexed transfers.

With the presented study on Sim-D, we hope to provide
a stepping stone for research in data-parallel architectures
for HRT systems. Indeed, we see many opportunities for
applying more advanced architectural- and algorithmic con-
cepts from throughput-oriented architectures and identify-
ing their merit in a HRT environment. Specifically, we expect
that Sim-D can be further improved through advancements
in its DRAM controller, work-group (phase) scheduling
policies and general pipeline optimisations proposed in
existing GPU literature. Moreover, we see value in applying
and refining our architectural blueprint to domain-specific
architectures, where practicable and bounded performance
is an often undervalued aspect of a system’s safety and
security properties.

REFERENCES

[1] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An Open Approach to Autonomous Vehicles,” Micro,
IEEE, vol. 35, no. 6, pp. 60–68, Nov 2015.

[2] A. Eklund, P. Dufort, D. Forsberg, and S. LaConte, “Medical image
processing on the GPU – Past, present and future,” Medical Image
Analysis, vol. 17, no. 8, pp. 1073 – 1094, 2013.

[3] “NVIDIA Tegra X1 - NVIDIA’s New Mobile Superchip,” 2015,
retr. Mach 2020, http://international.download.nvidia.com/pdf/
tegra/Tegra-X1-whitepaper-v1.0.pdf.

[4] A. Lashgar, E. Salehi, and A. Baniasadi, “A case study in reverse
engineering gpgpus: Outstanding memory handling resources,”
ACM SIGARCH Comp. Arch. News, vol. 43, no. 4, pp. 15–21, 2016.

http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf

14

[5] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU microarchitecture through mi-
crobenchmarking,” in IEEE Int Symp on Perf. Analysis of Systems &
Software, 2010, pp. 235–246.

[6] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed,”
in Proc. 38th Real-Time Systems Symp., Dec 2017, pp. 104–115.

[7] J. Bakita, N. Otterness, J. Anderson, and F. Smith, “Scaling Up: The
Validation of Empirically Derived Scheduling Rules on NVIDIA
GPUs,” OSPERT 2018, p. 49, 2018.

[8] R. Spliet and R. Mullins, “The case for limited-preemptive
scheduling in GPUs for real-time systems,” in ECRTS, Operating
Systems Platforms for Embedded Real-Time applications, Jul 2018.

[9] A. Betts and A. Donaldson, “Estimating the WCET of GPU-
Accelerated Applications Using Hybrid Analysis,” in 25th Euromi-
cro Conf. on Real-Time Systems, July 2013, pp. 193–202.

[10] Y. Huangfu and W. Zhang, “Static WCET Analysis of GPUs with
Predictable Warp Scheduling,” in 20th IEEE Int. Symp. on Real-Time
Distributed Computing, May 2017, pp. 101–108.

[11] NVIDIA Corp., Tegra K1 Technical Reference Manual, Sep. 2016, retr.
Feb. 2017, https://developer.nvidia.com/embedded/downloads.

[12] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo,
and R. Kegley, “A Predictable Execution Model for COTS-Based
Embedded Systems,” in IEEE Real-Time and Embedded Tech. and
Appl. Symp., April 2011, pp. 269–279.

[13] Khronos, The OpenCL specification 2.2, jul. 2019.
[14] NVIDIA corp., nVidia Cuda C Programming guide, apr. 2012.
[15] M. Weiss, “Strip Mining on SIMD Architectures,” in Proc. 5th Int.

Conf. on Supercomputing, 1991, p. 234–243.
[16] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,

D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström,
“The Worst-case Execution-time Problem - Overview of Methods
and Survey of Tools,” ACM Trans. Embed. Comput. Syst., vol. 7,
no. 3, pp. 36:1–36:53, May 2008.

[17] S.-S. Lim, Y. Bae, G. Jang, B.-D. Rhee, S. Min, C. Park, H. Shin,
K. Park, M. S.-M., and C. Kim, “An accurate worst case timing
analysis for RISC processors,” IEEE Trans. Softw. Eng., vol. 21, no. 7,
pp. 593–604, July 1995.

[18] R. Bourgade, C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat,
“Accurate analysis of memory latencies for WCET estimation,” in
16th Int. Conf. on Real-Time and Network Syst., Oct 2008.

[19] J. Engblom and A. Ermedahl, “Pipeline timing analysis using a
trace-driven simulator,” in Proc. 6th Int. Conf. on Real-Time Comput-
ing Systems and Applications, Dec 1999, pp. 88–95.

[20] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: A Pre-
dictable SDRAM Memory Controller,” in Proc. 5th IEEE/ACM Int.
Conf. on Hardware/Software Codesign and System Synthesis, 2007, pp.
251–256.

[21] M. Paolieri, E. Quinones, F. J. Cazorla, and M. Valero, “An An-
alyzable Memory Controller for Hard Real-Time CMPs,” IEEE
Embedded Systems Letters, vol. 1, no. 4, pp. 86–90, Dec 2009.

[22] M. Paolieri, E. Quiñones, and F. Cazorla, “Timing Effects of
DDR Memory Systems in Hard Real-time Multicore Architectures:
Issues and Solutions,” ACM Trans. Embedded Computing Systems,
vol. 12, no. 1s, pp. 64:1–64:26, Mar. 2013.

[23] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk.
Elsevier Science, 2010.

[24] B. Akesson, W. H. Jr., and K. Goossens, “Classification and Analy-
sis of Predictable Memory Patterns,” in IEEE Int. Conf. on Embedded
and Real-Time Comp. Syst. and Appl., Aug 2010, pp. 367–376.

[25] Y. Krishnapillai, Z. P. Wu, and R. Pellizzoni, “A Rank-Switching,
Open-Row DRAM Controller for Time-Predictable Systems,” in
26th Euromicro Conf. on Real-Time Systems, July 2014, pp. 27–38.

[26] Micron Tech. Inc., “8Gb: x4, x8, x16 DDR4 SDRAM datasheet,”
2017, retr. June 2018, https://www.micron.com/-/media/client/
global/documents/products/data-sheet/dram/ddr4/8gb ddr4
sdram.pdf.

[27] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 6th ed. Morgan Kaufmann Publishers Inc., 2019.

[28] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt, “Improving GPU Performance via Large
Warps and Two-level Warp Scheduling,” in 44th IEEE/ACM Int.
Symp. on Microarchit., 2011, pp. 308–317.

[29] N. Foskett, R. J. P. Jr., and S. Treichler, “Method and system
for performing pipelined reciprocal and reciprocal square root
operations,” Oct 2006, US Patent 7,117,238.

[30] J. Piñeiro, S. F. Oberman, J. Muller, and J. D. Bruguera, “High-
speed function approximation using a minimax quadratic inter-
polator,” IEEE Trans. on Comput., vol. 54, no. 3, pp. 304–318, March
2005.

[31] S. F. Oberman and M. Y. Siu, “A high-performance area-efficient
multifunction interpolator,” in 17th IEEE Symp. on Comput. Arith-
metic, June 2005, pp. 272–279.

[32] J. Coke, N. Cooray, E. Gamsaragan, P. Smith, K. Yoon, J. Abel,
and A. Valles, “Improvements in the Intel Core2 Penryn Processor
Family Architecture and Microarchitecture,” Intel Corporation,
Tech. Rep., 2008.

[33] M. Gebhart, D. Johnson, D. Tarjan, S. Keckler, W. Dally, E. Lind-
holm, and K. Skadron, “Energy-efficient Mechanisms for Manag-
ing Thread Context in Throughput Processors,” SIGARCH Comput.
Archit. News, vol. 39, no. 3, pp. 235–246, Jun. 2011.

[34] J. Lindholm, M. Siu, S. S. Moy, S. Liu, and J. Nickolls, “Simulating
multiported memories using lower port count memories,” Mar
2008, US Patent 7,339,592.

[35] B. Coon, J. Lindholm, and S. Tzvetkov, “Structured programming
control flow using a disable mask in a SIMD architecture,” Nov
2009, US Patent 7,617,384.

[36] S. Goossens, K. Chandrasekar, B. Akesson, and K. Goossens,
“Power/Performance Trade-Offs in Real-Time SDRAM Command
Scheduling,” IEEE Trans. on Comput., vol. 65, no. 6, pp. 1882–1895,
Jun, 2016.

[37] C. Healy and D. Whaley, “Tighter timing predictions by automatic
detection and exploitation of value-dependent constraints,” in
IEEE Real-Time Tech. and Appl. Symp., June 1999, pp. 79–88.

[38] P. Puschner and C. Koza, “Calculating the maximum execution
time of real-time programs,” Real-Time Systems, vol. 1, no. 2, pp.
159–176, 1989.

[39] C. Park and A. C. Shaw, “Experiments with a program timing
tool based on source-level timing schema,” in Proc. 11th Real-Time
Systems Symp., Dec 1990, pp. 72–81.

[40] NVIDIA corp., “NVIDIA’s Next Generation CUDA Compute Ar-
chitecture: Kepler GK110/GK210,” 2014.

[41] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous com-
puting,” in IEEE Int. Symp. on Workload Characterization, Oct. 2009,
pp. 44 –54.

[42] “Parboil benchmark suite,” 2010, http://impact.crhc.illinois.edu/
Parboil/parboil.aspx.

[43] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,”
in IEEE Int. Symp. on Mixed and Augmented Reality, Oct 2011, pp.
127–136.

[44] “IEEE Standard for Standard SystemC Language Reference Man-
ual,” IEEE Std 1666-2011, pp. 1–638, Jan 2012.

[45] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 45–
49, Jan 2016.

Roy Spliet received his BSc degree in Com-
puter Science, and his MSc degree in Com-
puter Engineering from the Technical University
of Delft, the Netherlands. He has been approved
for a PhD degree at the University of Cambridge,
United Kingdom, and is a senior research engi-
neer at Imagination Technologies. His research
interests span (massively-parallel) architectures
and hard real-time systems.

Robert D. Mullins received the B.Eng degree
in Computer Science and Electronics and M.Sc.
and Ph.D. degrees in Computer Science from
the University of Edinburgh. He is a Reader in
the Department of Computer Science and Tech-
nology at the University of Cambridge. His cur-
rent research is focused in the area of computer
architecture, hardware accelerators and open-
source chip design. Robert is a co-founder of the
Raspberry Pi Foundation and lowRISC CIC.

https://developer.nvidia.com/embedded/downloads
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
http://impact.crhc.illinois.edu/Parboil/parboil.aspx
http://impact.crhc.illinois.edu/Parboil/parboil.aspx

	Introduction
	Background
	Execution model
	Worst-case timing analysis
	Real-time DRAM transfers

	Architecture
	Compute unit
	DRAM controller
	Front-end
	Command scheduling
	Snoopy indexed transfers
	Mapped buffers

	Scratchpads

	Real-time work-group scheduling
	Program model
	Scheduling policies
	Worst-case minimal valid schedule
	Work-group early exit
	Bounds

	WCET computation
	Parsing the program
	Control flow analysis
	Worst-case performance simulation
	Construct a DAG
	Critical path analysis
	Access/compute phase lists
	WCET computation
	DRAM refresh inflation

	Evaluation
	Average-case performance
	Scheduling policies
	Worst-case execution time

	Conclusion
	References
	Biographies
	Roy Spliet
	Robert D. Mullins

