FANCM promotes class I interfering crossovers and suppresses class II
non-interfering crossovers in wheat meiosis non-interfering crossovers in wheat meiosis

Desjardins et al.

Supplementary Figure 1. Reduced seed set in fancm null mutants. Counts of total seed per plant with mean values \pm SD. The number of plants sampled for each line is shown in brackets. $*=p<0.05$ (Mann-Whitney U Test). Exact p-values are as follows: 1 vs $2(p=0.03)$ and 3 vs $4(p=0.013)$. Source data are provided as a Source Data file.

Supplementary Figure 2. Reduced pollen viability in Ttfancm_1 null mutant. Alexander staining of fresh pollen grains. Representative pollen grains are shown from replicates, wild type $(n=2042)$ and Ttfancm_l $(n=1994)$. Scale bar $=200 \mu \mathrm{~m}$.

Supplementary Figure 3. FANCM promotes formation of obligate chiasma. DAPI-stained meiotic chromosome spreads at metaphase I. Representative micrographs are shown from replicates, WT Kronos $(n=60)$, Ttfancm-Al_m1 $(n=64)$, Ttfancm-Al_m2 $(n=60)$, TtfancmB1 $(n=44)$, Ttfancm_1 $(n=104)$, Ttfancm_2 $(n=30)$, Ttmsh5 $(n=194)$, Ttmsh5 Ttfancm_1 ($n=86$), WT Cadenza $(n=76)$, Tafancm $(n=81)$, BSMV: $\operatorname{msc} 4 D(n=50)$, BSMV: TaFANCM$i(n=33)$ and BSMV: TaFANCM-ii $(n=43)$. Scale bars $=10 \mu \mathrm{~m}$.

Supplementary Figure 4. Univalents and mis-segregation observed in Ttfancm_1, resulting in unbalanced gametes. a-I Meiotic atlas of DAPI-stained chromosome spreads. Representative micrographs are shown from replicates, $\mathbf{a}(n=10), \mathbf{b}(n=10), \mathbf{c}(n=10)$, $\mathbf{d}(n$ $=60), \mathbf{e}(n=40), \mathbf{f}(n=10), \mathbf{g}(n=10), \mathbf{h}(n=10), \mathbf{i}(n=10), \mathbf{j}(n=60), \mathbf{k}(n=40)$, and $\mathbf{l}(n=$ 10). \mathbf{a} and \mathbf{g} Leptotene. \mathbf{b} and \mathbf{h} Zygotene. \mathbf{c} and \mathbf{i} Pachytene. \mathbf{d} and \mathbf{j} Metaphase I. \mathbf{e} and \mathbf{k} Dyad. \mathbf{f} and \mathbf{I} Tetrad. Scale bars $=10 \mu \mathrm{~m}$.

Supplementary Figure 5. Chiasmata number reduced in chromosomes 1B and 6B in Ttfancm_2. a Fluorescence in situ hybridization (FISH) of pTa794-1 (5S), pTa71-1 (45S) and $\mathrm{pSc} 119.2-2$ probes on meiotic metaphase I chromosome spreads. Representative micrographs are shown from replicates, WT Kronos $(n=45)$ and Ttfancm_2 $(n=40)$. Scale bars $=10 \mu \mathrm{~m}$. b Hybridization signal patterns of chromosomes 1B and 6B. c Mean \pm SD chiasmata frequency per chromosome. The number of meiocytes sampled for each line is shown in brackets. **= $p<0.01 .^{* * *}=p<0.001$ (Mann-Whitney U Test). Exact p-values are as follows: 1 vs 2 ($p=$ $0.002), 3$ vs $4\left(p=3.34 \times 10^{-4}\right)$. Source data are provided as a Source Data file.

Supplementary Figure 6. Class I crossover recombination protein HEI10 is unaffected in the Ttfancm_1 null mutant at early prophase I. a-e Co-immunofluorescence of HEI10 (white) and ASY1 (red) on meiotic prophase I chromosome spreads. Representative micrographs are shown from replicates, $\mathbf{a}(n=7), \mathbf{b}(n=7), \mathbf{c}(n=9)$ and $\mathbf{d}(n=7)$. Leptotene (\mathbf{a} and \mathbf{c}) and Zygotene (\mathbf{b} and \mathbf{d}). Scale bars $=10 \mu \mathrm{~m}$. e Counts of HEI10 foci per cell with mean values \pm SD. The number of cells sampled for each line is shown in brackets. n.s. $=p>$ 0.05 (Mann-Whitney U Test). Exact p-values are as follows: 1 vs $2(p=1), 3$ vs $4(p=1)$. Source data are provided as a Source Data file.

Supplementary Figure 7. Early recombination protein RAD51 is unaffected in the Ttfancm_1 null mutant at leptotene. a Co-immunofluorescence of RAD51 (red) and ASY1 (blue) on meiotic chromosome spreads at leptotene. Representative micrographs are shown from replicates, WT Kronos ($n=5$) and Ttfancm_l $(n=5)$. Scale bars $=10 \mu \mathrm{~m}$. b Counts of RAD51 foci per cell with mean values \pm SD. The number of cells sampled for each line is shown in brackets. n.s. $=p>0.05$ (Mann-Whitney U Test). Exact p-value is $p=0.403$. Source data are provided as a Source Data file.

Supplementary Figure 8. Class I crossover recombination protein MSH5 is unaffected in the Ttfancm_1 null mutant at mid-zygotene. a Co-immunofluorescence of MSH5 (green), ZYP1 (blue) and ASY1 (red) on meiotic chromosome spreads at mid-zygotene. Representative micrographs are shown from replicates, WT Kronos ($n=5$) and Ttfancm_l $(n=5)$. Scale bars $=10 \mu \mathrm{~m}$. \mathbf{b} Counts of MSH5 foci per cell with mean values \pm SD. The number of cells sampled for each line is shown in brackets. n.s. $=p>0.05$ (Mann-Whitney U Test). Exact p-values is $p=0.066$. Source data are provided as a Source Data file.

Supplementary Figure 9. Axis formation and synapsis are unaffected in the Ttfancm_1 null mutant. Co-immunofluorescence of ASY1 (green) and ZYP1 (red) on meiotic prophase I chromosome spreads. Representative micrographs are shown from replicates: for WT Kronos G2 $(n=5$), leptotene ($n=53$), early-zygotene ($n=18$), mid-zygotene ($n=6$), late-zygotene (n =9), pachytene ($n=11$); for Ttfancm_l G2 $(n=5)$, leptotene $(n=20)$, early-zygotene ($n=17$), mid-zygotene $(n=21)$, late-zygotene $(n=3)$, pachytene $(n=16)$. Scale bars $=10 \mu \mathrm{~m}$.

Supplementary Figure 10. Spearman's rank-order correlation coefficients (r_{s}) for the indicated parameter pairs computed within each genetic marker interval. Correlation coefficients are indicated by cell colour. P-values for r_{s} correlation coefficients were standardised to represent those based on pairwise values across 100 marker intervals and are indicated within each cell. Included data sets are differential CO rate (fancm $\mathrm{cM} / \mathrm{Mb}$ minus wild type $\mathrm{cM} / \mathrm{Mb}$; "Diff_cMMb"), wild type CO rate derived from a Chinese Spring x Renan genetic map ("IWGSC_cMMb"), ASY1, DMC1, H3K4me3, H3K9me2 and H3K27me1 ChIPseq, H3K4me1 and H3K27ac ChIP-seq, H3K27me3 and H3K36me3 ChIP-seq, CENH3 ChIPseq, whole-genome bisulfite sequencing-derived DNA methylation (mCG, mCHH and mCHG proportions), and the distance between the midpoint of each marker interval and the midpoint of previously defined centromeric coordinates ("Dist_to_CEN").

