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Abstract

In the modern era of high and infinite dimensional data, classical statistical method-

ology is often rendered inefficient and ineffective when confronted with such big data

problems as arise in genomics, medical imaging, speech analysis, and many other

areas of research. Many problems manifest when the practitioner is required to take

into account the covariance structure of the data during his or her analysis, which

takes on the form of either a high dimensional low rank matrix or a finite dimensional

representation of an infinite dimensional operator acting on some underlying function

space. Thus, novel methodology is required to estimate, analyze, and make inferences

concerning such covariances.

In this manuscript, we propose using tools from the concentration of measure

literature–a theory that arose in the latter half of the 20th century from connections

between geometry, probability, and functional analysis–to construct rigorous descrip-

tive and inferential statistical methodology for covariance matrices and operators.

A variety of concentration inequalities are considered, which allow for the construc-

tion of nonasymptotic dimension-free confidence sets for the unknown matrices and

operators. Given such confidence sets a wide range of estimation and inferential

procedures can be and are subsequently developed.

For high dimensional data, we propose a method to search a concentration in-

equality based confidence set using a binary search algorithm for the estimation of

large sparse covariance matrices. Both sub-Gaussian and sub-exponential concen-

tration inequalities are considered and applied to both simulated data and to a set

of gene expression data from a study of small round blue-cell tumours. For infinite

dimensional data, which is also referred to as functional data, we use a celebrated

result, Talagrand’s concentration inequality, in the Banach space setting to construct

confidence sets for covariance operators. From these confidence sets, three different

inferential techniques emerge: the first is a k-sample test for equality of covariance

operator; the second is a functional data classifier, which makes its decisions based

on the covariance structure of the data; the third is a functional data clustering

algorithm, which incorporates the concentration inequality based confidence sets

into the framework of an expectation-maximization algorithm. These techniques are

applied to simulated data and to speech samples from a set of spoken phoneme data.
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Lastly, we take a closer look at a key tool used in the construction of concentration

based confidence sets: Rademacher symmetrization. The symmetrization inequality,

which arises in the probability in Banach spaces literature, is shown to be connected

with optimal transport theory and specifically the Wasserstein distance. This insight

is used to improve the symmetrization inequality resulting in tighter concentration

bounds to be used in the construction of nonasymptotic confidence sets. A variety of

other applications are considered including tests for data symmetry and tightening

inequalities in Banach spaces. An R package for inference on covariance operators is

briefly discussed in an appendix chapter.
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Preface

Naturally, only one who had always been

more or less studious, eccentric, and solitary

could have pursued this course.

The Case of Charles Dexter Ward

H.P. Lovecraft (1927)

My pathological distrust in asymptotic statistical methodology began long before

arriving at the University of Cambridge bus terminal in the autumn of 2013. When,

for example, a biologist desires to perform a goodness-of-fit test considering 10,000

possible gene expressions, even an optimistic sample size of 1000 subjects will yield all

classical methods erroneous due to such tests’ reliance on distributional convergence

theorems. In the current era of high and infinite dimensional data, we require a certain

amount of bravado and cleverness to, respectively, eschew the old methodologies

and fabricate novel techniques. It is, hence, not surprising that I discovered my

love of concentration inequalities–the so-called nonasymptotic theory of independence

(Boucheron et al., 2013)–upon commencing my studies at the University of Cambridge

in 2013. While there are many paradigms for high and infinite dimensional statistical

inference such as the much touted lasso regularization, the concentration inequality

based methodology developed in this manuscript can stand amongst all of them and

in some cases supersede them.

This area of my own doctoral research has been preceded by an extensive collection

of brilliant works, and thus it is an honour to add to such a compendium of knowledge

no matter how much or how little future significance my own results will garner.

But unlike much of the past research that lives inside the elegant ivory tower of

abstract theory, the results within this manuscript are keenly focused on applications

to real data problems even if only as a proof-of-concept at this early stage of the

methodology. While it is doubtful that I could even begin to compete with the over

forty years of collective works of statisticians, probabilists, and functional analysts

who have come before me, I do hope and believe that this manuscript will cleverly

collide such lofty abstraction with tangible application to problems of interest both

inside and outside of the realm of pure mathematics.
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The pages that follow consist of the totality of the research spanning the previous

four years of my life concerning the topic of covariance estimation in the high or

infinite dimensional setting through the application of concentration inequalities.

The problem of high dimensional data arises in Chapter 2. Intuitively, that chapter

concerns itself with locating the needles-in-the-haystack, which is to determine which

pairs of variables in a high dimensional vector are strongly correlated under the

sparsity assumption that most such pairs are not. The problem of infinite dimensional

data arises in Chapter 3. That chapter is chronologically the initial chapter of my

dissertation set into motion by the polar research topics of my doctoral advisers. It

is concerned with using concentration inequalities to construct confidence balls–the

infinite dimensional analogue of the ubiquitous confidence intervals–for estimators

of the covariance in such settings. Chapter 4 is the product of my inescapable

obsession with removing the coefficient of 2 from the symmetrization inequality, a

result I discovered for myself when pursuing the methodology of Chapter 3. From

the standpoint of pure mathematics, such coefficients are almost wholly ignored as

it is generally sufficient to know that a finite coefficient C exists no matter its true

value. However, for the sake of statistical methodology such pervasive powers of two

lead to overly wide bounds that should not and need not be.

Thus, I invite the reader to enter into this world of nonasymptotic statistics

with me. Hopefully, the structure of this dissertation is fine enough to successfully

promote the case for the use of such methodology for the estimation of and inference

on covariance matrices and operators.
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Chapter 1

Introduction

As we proceed further into the 21st century, descriptive and inferential statistical

problems concerning high and infinite dimensional data are quickly becoming of

paramount importance to almost all academic and non-academic sectors. Sophisti-

cated sound recording devices can provide high quality speech data. Medical imaging

technology can produce three dimensional data laden images of the human brain.

When studying the human genome, it may be of interest to test for correlation among

tens of thousands of genes. For such problems, we require novel statistical methods

that go beyond the classical methodology.

Classical statistics began to solidify as a discipline in the early 20th century

through the brilliant works of such visionaries as Sir Ronald Fisher, Karl and Egon

Pearson, Jerzy Neyman, and Sir Harold Jeffreys. The pioneering work of these

founding fathers of the field was often in conflict with one another (Berger, 2003).

However, most of their respective work is similar in the sense that much of it relies

on limit theorems with respect to the size of the data. This feature of classical

statistical theory arises in such forms as the law of large numbers, the central limit

theorem, and other distributional convergence results for frequentist inference as well

as in Berstein–von Mises theorems in the Bayesian context. In the modern setting

involving high dimensional parameter spaces–the so called p � n setting–such as

genomics where a researcher may be faced with data consisting of 10,000 genes tested

from a mere sample of 100 patients, such limit based statistical tests such as Pearson’s

chi-squared goodness of fit test are rendered obsolete. Thus, new methodology is

required to supplant classical statistical tests in the modern setting.

Progressing beyond the limit theorems, so much statistical methodology is reliant

on the covariance structure of the data. As this structure is generally unknown to

the researcher, it must be estimated from the data itself. In the finite dimensional

setting, the covariance matrix is ubiquitous. It appears in ordinary least squares

regression and other regression tests, linear and quadratic discriminant analysis,

principal components analysis, and many other areas of inferential and descriptive

4



CHAPTER 1. INTRODUCTION

statistics. Furthermore, the precision or inverse covariance matrix also plays a role in

such methods. A problem of critical importance is that standard empirical estimates

of the covariance matrix in the high dimensional data setting result in estimates

that are necessarily singular matrices making it at best a very poor substitute for

the unknown true covariance matrix and at worse completely unusable by being

non-invertible.

Such problems are only magnified in the functional or infinite dimensional data

setting where the covariance matrices are replaced by their infinite dimensional

counterparts, the covariance operators. These operators are necessarily trace-class

(Horváth and Kokoszka, 2012) and thus numerically unstable to invert even given

an excessively large sample size. In some sense, this specific feature of covariance

operators has spawned a completely separate subdiscipline of statistics concerned

with methodology for functional data (Ramsay and Silverman, 2005). Examples

of such functional data include the already mentioned speech samples and medical

images. There is also the Berkeley growth curve data set displayed in Figure 1.1,

which will be discussed in Chapter 3 as well as a set of weather data charting the

daily high temperatures and amount of precipitation for each day of an entire year

for multiple locations across Canada.

It is precisely these problems with covariance matrices and operators in the,

respectively, high and infinite dimensional settings that motivates the research

contained within this manuscript. In the following chapters, we specifically explore

how tools from the field of concentration of measure can be utilized to develop rigorous

statistical methodology to directly tackle these covariance structures (Ledoux, 2001;

Boucheron et al., 2013; Giné and Nickl, 2016). A more significant introduction

and overview of the concentration of measure tools is contained in Section 1.2. In

brief, these concentration inequalities are concerned with bounding the tail area of a

random variable as it moves away from some central reference point such as the mean

or median of its distribution. We will use these inequalities to construct confidence

sets for covariance matrices and operators. There are two key aspects to this theory

that make it extremely palatable for use in statistics: the resulting inequalities are

dimension free and non-asymptotic.

Standard asymptotic statistical methodology is impractical and in some cases

impossible to implement in these high and infinite dimensional settings. The concen-

tration inequalities that arise from this concentration of measure phenomenon hold

for all sample sizes, and in some cases, are proven to give sharp bounds on the tails

of the distribution. Thus, even if the bounds provided are not necessarily sharp, it is

reasonable to begin a statistical analysis with these slightly too wide concentration

inequality based confidence sets that can be adjusted post-hoc to the given data

rather than beginning from some asymptotic confidence set and applying a finite
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Figure 1.1: As an example of functional data, the Berkeley growth curve data set
tracks the heights of 39 male and 54 female children over the first 18 years of their
lives. The curves are plotted on the left; the empirical covariance operators are
displayed on the right.
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CHAPTER 1. INTRODUCTION

sample correction. As a proof-of-concept, we demonstrate in this manuscript making

use of diverse sets of simulated and real data that such non-asymptotic methodology

can be quite effect in practice.

So much applied mathematics including statistics, optimization, and numerical

analysis is beset by the curse of dimensionality. Whether you are trying to numerically

integrate a function or find its global minimum, high dimensionality will doom most

algorithms to failure. The concentration of measure phenomenon often results in

inequalities and bounds that are completely independent of the dimensionality of

the space where the data exists. While the property of being dimension free does

not guarantee statistical power, this property makes such approaches particularly

palatable to the functional or infinite dimensional data settings. Many approaches

to statistical problems in that setting rely on a preliminary dimension reduction step

where the infinite dimensional data is projected onto a finite dimensional basis. Our

approach provides the practitioner with the option of skipping such a dimension

reduction step and analyzing the data in its original function space.

Approaching statistical inference via analysis of the covariance structure of the

data, whether in the high dimensional matrix setting or infinite dimensional operator

setting, has resulted in incredibly useful methodology. There is a plethora of different

and diverse data sets that have been considered with such approaches. The work

of Panaretos et al. (2010) analyzes the three dimensional wrapping and twisting of

DNA microcircles. In the article of Fremdt et al. (2013), they consider the egg-laying

trajectories of Mediterranean fruit flies over the lifespans of the insects. Spoken

language data is analyzed in order to compare the pronunciation of numbers spoken

in five different Latin-based romance languages (Pigoli et al., 2014, 2015; Aston et al.,

to appear). In similar style, we analyze phoneme data consisting of five different

spoken sounds in Section 3.4 using our concentration methodology. A data set of

gene expressions for small round blue-cell tumours is looked at in Rothman et al.

(2009), Cai and Liu (2011), and in Section 2.4.3 of this manuscript. Bickel and Levina

(2008a) consider high dimensional climate data consisting of mean temperatures

from January 1850 to June 2006 taken at 2592 different recording stations over

planet Earth. Meanwhile, Bickel and Levina (2008b) apply their methodology to call

centre data. In the area of evolutionary biology, Cabassi et al. (2017) looks at curves

denoting how actively different test sets of mice run on their wheels over a timespan

of observation. A variety articles have also examined neuroimaging data collected

from fMRI scans or positron emission tomography using the covariance structure of

the data (Jiang et al., 2009, 2016; Zhu et al., 2014; Yu et al., 2016; Lila et al., 2017).

In this manuscript, Chapter 1 continues with a collection of definitions and

notation in Section 1.1. In that section, we will discuss the setting for this manuscript

and the mathematical spaces where the covariance matrices and operators will live.
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A variety of norms, metrics, and distributions will also be introduced for later use.

Section 1.2 provides a brief introduction to the concentration of measure phenomenon.

It contains a collection of preliminary results to set the stage as well as references for

further reading. Section 1.3 discusses some past research that was used as a starting

point for the work presented in the following chapters.

Chapter 2 considers the application of concentration inequalities for covariance

matrices in the setting of high dimensional data. Specifically, the goal of that chapter

is to develop a rigorous methodology for the estimation of large sparse covariance

matrices. The overall concentration inequality methodology is outlined in Section 2.2.

An exposition of specific concentration inequalities for a variety of distributions is

considered in the subsections of Section 2.3, which include examples of both sub-

Gaussian and sub-exponential concentration. Section 2.4 compares our methodology

to other methodologies on simulated multivariate Gaussian and multivariate Laplace

data and on the data set of gene expressions for small round blue-cell tumours. The

appendices of Chapter 2 contain proofs of the chapter’s results, the derivation of

Lipschitz constants for the functions used by our proposed methodology, and an

expository account of further background on the concentration inequalities utilized

by the methodology.

In Chapter 3, concentration inequalities applied to covariance operators in the

functional data setting are used to develop a collection of inferential tests. Section 3.2

carefully constructs confidence sets for covariance operators making use of Talagrand’s

concentration inequality (Talagrand, 1996a). Section 3.3 introduces three different

statistical applications for these confidence sets: a k-sample test for the equality of

covariance operators; a functional data classifier based on the covariance operator,

which can also be used to classify covariance operators directly; and an expectation-

maximization style clustering algorithm for functional data. Numerical experiments

for all of these methods on both simulated and phoneme data sets are detailed in

the subsections of Section 3.4. In the appendices of Chapter 3, the construction

of confidence sets using Talagrand’s concentration inequality for general Banach

space valued random variables is detailed in Appendix 3.A. The weak variance,

a key component to constructing these confidence sets for covariance operators,

is computed in Appendix 3.B for a collection of p-Schatten norms and for both

multivariate Gaussian and the heavier tailed multivariate t-distributed random

variables. Appendix 3.C provides some background material on tensor products of

Hilbert spaces and Banach spaces. It also specifically connects these abstract notions

with the finite dimensional case of data in Rn. Appendix 3.D briefly investigates the

consequences of applying our statistical tests to data with noise added and data from

heavy tailed distributions. As confidence sets based on concentration inequalities

are often larger than desired, Appendix 3.E proposes how the sizes of confidence

8



CHAPTER 1. INTRODUCTION

sets constructed via Talagrand’s concentration inequality can be improved with a

cross-validation procedure.

Chapter 4 revisits the symmetrization inequality used in Chapter 3 to propose

an improved version of this fundamental result. Section 4.3.2 states and proves the

improved Rademacher symmetrization inequality. As this inequality contains a term

dependent on the Wasserstein distance W2, Section 4.4 provides a bootstrap estimator

for the empirical estimate of this distance between two probability measures. It also

contains numerical simulations to demonstrate that this so-called improved inequality

is in fact an improvement on the original symmetrization result. Section 4.5 details a

diverse set of applications for this improved inequality from tests of data symmetry

and the construction of high dimensional confidence sets via a generalized bootstrap

procedure to better bounds for empirical processes and and sharper Nemirovski style

inequalities in Banach spaces. An expositional account of some standard results from

optimal transport theory are contained in the appendix of Chapter 4.

Appendix A contains a brief summary of the R code written to implement

the concentration-based methodology for inference on covariance operators from

Chapter 3. This R package, fdcov, is available on CRAN (Cabassi and Kashlak, 2016).

The included functions are explained in the first part of the appendix. Appendix A

ends with some short examples to test the library on real data.

Appendix B discusses three areas where concentration inequality based statistical

methodology for covariance operators may prove fruitful given further investigation.

The areas considered are longitudinal data, which falls into the category of functional

data with often sparse and irregular observations, and data living in a reproducing

kernel Hilbert space as the choice of kernel can affect the constructed confidence sets.

1.1 Definitions and notation

1.1.1 Covariance matrices

The covariance matrix is a fundamental statistical object, which is utilized by a high

percentage of descriptive and inferential techniques including regression, principal

components analysis, and both linear and quadratic discriminant analysis. Let

X ∈ Rd be a random variable such that Var (Xi) < ∞ for i = 1, . . . , d. The

covariance matrix of X, denoted Σ ∈ Rd×d, is the matrix with entries Σi,j =

E ((Xi − EXi)(Xj − EXj)). Such matrices have the nice properties of being both

symmetric and positive semi-definite.

There is an expansive literature on covariance matrix estimation from both the

frequentist and Bayesian perspectives as well as estimation taking into consideration

a variety of assumptions and settings for such estimation. We will discuss such

9



1.1. DEFINITIONS AND NOTATION

approaches and detail our own methodology for covariance matrix estimation in

Chapter 2 specifically in the case of large sparse covariance matrices, but the simplest

estimator and a good starting point for more complex estimation is the empirical

estimate.

Definition 1.1.1 (Empirical Covariance Matrix). Let X1, . . . , Xn ∈ Rd be indepen-

dent and identically distributed realizations of some random variable X ∈ Rd with

unknown covariance matrix Σ ∈ Rd×d. Then, the sample or empirical estimate for Σ

is

Σ̂ =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)
T

where X̄ = n−1
∑n

i=1Xi is the sample mean of the data.

The empirical covariance matrix may be flawed when used in certain estimation

settings. However, it does maintain some nice properties such as it being the

maximum likelihood estimate for the true Σ in the Gaussian setting. In this form, it

is a slightly biased estimator as

EΣ̂ =
1

n

n∑
i=1

E
(

(Xi − X̄)(Xi − X̄)
T
)

=
1

n

n∑
i=1

E
(

(Xi − EXi)(Xi − EXi)
T + (Xi − EXi)(EXi − X̄)

T
+

+ (EXi − X̄)(Xi − EXi)
T + (EXi − X̄)(EXi − X̄)

T
)

= Σ− E
(

(EX̄ − X̄)(EX̄ − X̄)
T
)

= (1− n−1)Σ,

but regardless, is generally used in practice as we will do in most sections of this

manuscript.

When working with covariance matrices and related estimators, we will occasion-

ally desire to find the square roots of such matrices. For a general square matrix

M ∈ Rd×d, a square root can be any matrix L ∈ Rd×d such that M = LLT. This is ob-

viously not unique as for any unitary R ∈ Rd×d, we have that (RL)RLT = LLT = M ,

and thus RL is also a square root of M . However, for a positive-definite symmetric

matrix, it is possible to find a unique positive-definite square root as is illustrated in

the below definition. In our setting, the covariance matrices and estimators of such

will always be positive semi-definite symmetric matrices. Hence, the definition can

be made more precise.

Definition 1.1.2 (Matrix Square Root). Let A ∈ Rd×d be a symmetric positive

semi-definite matrix with eigen-decomposition M = UDUT where U = (v1 v2 . . . vd)

10



CHAPTER 1. INTRODUCTION

is the orthonormal matrix of eigenvectors and D is the diagonal matrix of eigenvalues,

(λ1, . . . , λd). Then, M1/2 = UD1/2UT where D1/2 is the diagonal matrix with entries

(λ
1/2
1 , . . . , λ

1/2
d ).

1.1.2 Covariance operators

When considering functional data, the previous notion of a covariance matrix is

generalized to that of the covariance operator. Generally, we will consider functional

data to be in the Hilbert space L2(I) for I ⊂ R. Our estimated covariance operators

of interest are then operator valued random variables. Let

Op(L2) =
{
T : L2(I)→ L2(I)

∣∣ ∃M ≥ 0 s.t. ‖Tφ‖L2 ≤M‖φ‖L2 ∀φ ∈ L2(I)
}

denote the space of all bounded linear operators mapping L2 into L2. This is where

our covariance operators will live.

In order to construct a covariance operator from a sample of functional data, the

notion of tensor product is required. In the finite dimensional setting, it is sufficient

to use the transpose and the so-called outer product. Let f, g ∈ L2(I) and φ in the

dual space L2(I)∗ with inner product 〈f, φ〉 = φ(f). The tensor product, f ⊗ g, is

the rank one operator defined by (f ⊗ g)φ = 〈g, φ〉 f = φ(g)f .

Definition 1.1.3 (Covariance Operator). Let I ⊆ R, and let f be a random function

(variable) in L2(I) with E‖f‖2
L2 <∞ and with zero mean. The associated covariance

operator Σf ∈ Op(L2) is defined as Σf = Ef⊗2 = E (〈f, ·〉 f) .

Covariance operators can be treated as a generalization of covariance matrices.

Indeed, if I = {i1, . . . , im} has finite cardinality, then f = (f1, . . . , fm) is a random

vector in Rm and for some fixed vector v ∈ Rm, E (〈f, v〉 f) = E
(
ffT

)
v where

Σf = E
(
ffT

)
is the usual covariance matrix. Covariance operators are integral

operators with the kernel function cf(s, t) = cov(f(s), f(t)) ∈ L2(I × I). Such

operators are characterized by the result that for f ∈ L2(I), Σf is a covariance

operator if and only if it is trace-class, self-adjoint, and compact on L2(I) where the

symmetry follows immediately from the definition and the finite trace norm comes

from Parseval’s equality (Bosq, 2012, Theorem 1.7)(Horváth and Kokoszka, 2012,

Section 2.3).

In the applied statistics setting, such operators will necessarily have a finite

representation on a computer. It is possible to treat functional data and the

associated operators as vectors and matrices. However, standard computational

approaches to covariance matrices will fail in the functional data setting due to the

fact that the operators are trace class. Thus, the finite dimensional representation

will be nearly singular resulting in a litany of problems for most statistical settings
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ranging from numerical instability in the chosen methodology to complete failure

due to being unable to invert the matrix. This setting is distinctly different from the

high dimensional paradigm where it is often assumed that the very large but finite

dimensional covariance matrix is full rank with eigenvalues bounded away from zero,

but lacks sufficient data for standard estimation technique to succeed.

In Chapter 3, we will also require tensor powers of covariance operators denoted

as Σ⊗2 : Op(L2)→ Op(L2), which will necessitate the assumption that E‖f‖4
L2 <∞.

For a basis {ei}∞i=1 ∈ L2(I) with corresponding basis {ei⊗ ej}∞i,j=1 for Op(L2(I)), the

previous definition is extended to Σ⊗2 = 〈Σ, ·〉Σ where for Σ1,Σ2 ∈ Op(L2) with

Σ1 =
∑∞

i,j=1 λi,jei,j and Σ2 =
∑∞

i,j=1 γi,jei,j , then 〈Σ1,Σ2〉 =
∑∞

i,j λi,jγi,j . Specifically

for covariance operators, the tensor power takes on a similar integral operator form

with kernel cΣ(s, t, u, v) = cov (f(s), f(t)) cov (f(u), f(v)) . A further expository look

at tensor products and tensor powers of operators and Banach spaces can be found

in Appendix 3.C.

In the matrix setting, the standard notion of a matrix transpose will suffice. In

the operator setting, we require the definition of the adjoint operator. Given an

Hilbert space H with inner product 〈·, ·〉, the adjoint of a bounded linear operator

Σ : H → H, denoted as Σ∗, is the unique operator such that 〈Σf, g〉 = 〈f,Σ∗g〉
for f, g ∈ H. The existence of which is given by the Riesz representation theorem

(Rudin, 1987, chapter 2). For self-adjoint operators, such as the covariance operators

of interest, we have the simplification that Σ = Σ∗.

Similarly to the matrix setting, we are keenly interested in the estimation of

covariance operators. As a starting point, we will consider the sample or empirical

operator, which has the following form.

Definition 1.1.4 (Empirical Covariance Operator). Let f1, . . . , fn ∈ L2(I) be inde-

pendent and identically distributed realizations of some random function f ∈ L2(I)

with unknown covariance operator Σ ∈ Op(L2). Then, the sample or empirical

estimate for Σ is

Σ̂ =
1

n

n∑
i=1

(fi − f̄)⊗ (fi − f̄) =
1

n

n∑
i=1

(fi − f̄)⊗2 =
1

n

n∑
i=1

〈
(fi − f̄), ·

〉
(fi − f̄)

where f̄ = n−1
∑n

i=1 fi is the sample mean of the data.

As with the matrix setting, this estimator is slightly biased. However, such

estimates do have nice convergence properties. From Chapter 2 of Horváth and

Kokoszka (2012), we have that

Theorem 1.1.5 (Theorem 2.5 Horváth and Kokoszka (2012)). Let X,X1, . . . , Xn ∈
L2(I) with I ⊂ R be independent and identically distributed. Furthermore, let X
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have a finite fourth moment, which is E‖X‖4
L2 ≤ ∞. Then,

E‖Σ− Σ̂‖2
2 ≤ n−1E‖X‖4

L2

where ‖·‖2 is the Hilbert-Schmidt norm to be discussed in the following subsection.

1.1.3 Norms

When defining a space of covariance matrices, there are many matrix norms that

can be considered. In this manuscript, the main norms of interest are the p-Schatten

norms, which will be denoted ‖·‖p. Furthermore, many of the metrics that will be

investigated in the following chapters are those that correspond to the p-Schatten

norms. When p 6= 2, these are not Hilbert norms. The definition of the p-Schatten

norm involves taking the square root of a positive semi-definite symmetric matrix,

which was defined in Definition 1.1.2.

Definition 1.1.6 (p-Schatten norm for matrices). For an arbitrary matrix Σ ∈ Rk×l

and p ∈ (1,∞), the p-Schatten norm is

‖Σ‖pp = tr
(
(ΣTΣ)p/2

)
= ‖ν‖p`p =

min{k,l}∑
i=1

νpi

where ν = (ν1, . . . , νmin{k,l}) is the vector of singular values of Σ and where ‖·‖`p
is the standard `p norm in Rd. In the covariance matrix case where Σ ∈ Rd×d is

symmetric and positive-definite, ‖Σ‖pp = tr (Σp) = ‖λ‖p`p where λ is the vector of

eigenvalues of Σ.

When p =∞, we have the standard operator norm on Euclidean space

‖Σ‖∞ = sup
v∈Rd,‖v‖`2=1

‖Σv‖`2 = sup
v∈Rd,‖v‖`2=1

vTΣv.

In the covariance matrix setting, this coincides with the maximal eigenvalue of Σ.

Another family of norms that will be used is the collection of entrywise matrix

norms denoted ‖·‖`p . These are the `p norms of a given matrix treated as a vector

in Rkl. That is, ‖Σ‖p`p =
∑k

i=1

∑l
j=1 σ

p
i,j where σi,j is the ijth entry of Σ. Note

that ‖Σ‖2 = ‖Σ‖`2 , which is referred to as the Frobenius or Hilbert-Schmidt norm.

Besides the Hilbert-Schmidt and operator norms, the other main norm of interest in

this manuscript is the trace norm or p = 1 Schatten norm.

The p-Schatten norms in the matrix setting can be generalized to the operator

setting. Thus, we can define the class of p-Schatten operators mapping elements

from one Hilbert space to another.
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Definition 1.1.7 (p-Schatten norm for operators). Given two separable Hilbert spaces

H1 and H2, a bounded linear operator Σ : H1 → H2, and some p ∈ [1,∞), then

the p-Schatten norm is ‖Σ‖pp = tr
(
(Σ∗Σ)p/2

)
. For p =∞, the Schatten norm is the

operator norm: ‖Σ‖∞ = supf∈H1
(‖Σf‖H2

/‖f‖H1
). In the case that Σ is compact, self-

adjoint, and trace-class, then given the associated eigenvalues {λi}∞i=1, the p-Schatten

norm coincides with the standard `p norm of the eigenvalues:

‖Σ‖pp =

{
‖λ‖p`p =

∑∞
i=1|λi|

p, p ∈ [1,∞)

maxi∈N|λi|, p =∞

In the case that p ∈ (0, 1), the above defined “p-Schatten norms” become

quasinorms as the usual triangle inequality fails to hold. While it is possible that

they can produce interesting results in the context of statistical applications, they

will not be considered in this manuscript.

1.1.4 Metrics

The choice of metric on the space of covariance matrices or operators is of critical

importance to the resulting statistical power achieved by the specific implemented

procedures involving such metrics. The following metrics as well as others have been

previously investigated in for covariance matrices in Dryden et al. (2009) and for

covariance operators in Pigoli et al. (2014).

The main class of metrics considered are those branching from the p-Schatten

norms discussed in the previous section. Specifically, for two matrices or operators

S1 and S2, the p-Schatten metric is dp(S1, S2) = ‖S1 − S2‖p for p ∈ [1,∞]. The

resulting Banach space topology of such metrics allows for easy incorporation with

a variety of concentration inequalities including the bounded differences inequality

(Giné and Nickl, 2016, Section 3.3.4) and Talagrand’s inequality (Giné and Nickl,

2016, Section 3.3.3).

Both the square root metric and the more general Procrustes size and shape

distance have been shown to offer superior performance in statistical applications

when compared with a variety of other metrics (Dryden et al., 2009; Pigoli et al.,

2014; Cabassi et al., 2017). However, because these metrics do not correspond to a

norm, their incorporation with concentration inequalities will require further and

future research. The following definitions are given for real valued matrices, but can

be easily applied to bounded linear operators.

Definition 1.1.8 (Square Root Distance). For two symmetric positive-definite ma-

trices S1, S2 ∈ Rd×d,

dsqrt(S1, S2)2 =
∥∥∥S1/2

1 − S1/2
2

∥∥∥2

2
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where the matrix square root is defined above.

Definition 1.1.9 (Procrustes Distance). For two matrices S1, S2 ∈ Rd×d that each

have at least one square root,

dProc(S1, S2)2 = inf
R∈U(Rd×d)

‖L1 − L2R‖2
2

where Li is any matrix such that Si = LiLi
T and where the infimum is taken over

the set of d× d unitary matrices, U(Rd×d).

The Procrustes distance is a generalized form of the Square Root distance. Taking

the infimum over all unitary matrices or operators has the effect of transforming

L2 in a unitary fashion to align it as closely as possible with L1 with respect to the

Frobenius / Hilbert-Schmidt distance. This feature is why Procrustes is used heavily

in shape statistics and manifold valued data where one may want to first rotate

and shift some object onto another before computing the standard distance. Past

work has described the geodesics formed via the Procrustes distance as particularly

useful in a statistical context. We make use of such paths when searching for sparse

covariance matrix estimators in Section 2.2.2.

For two collections of vector, or equivalently two matrices in Rd×n, X = (X1, . . . , Xn)

and Y = (Y1, . . . , Yn) with Xi, Yi ∈ Rd for all i = 1, . . . , n, we can define the `p,q

distance as

dp,q(X,Y) =

(
n∑
i=1

‖Xi − Yi‖p`q

)1/p

. (1.1.1)

Such a metric is used in Chapter 2 when investigating Lipschitz functions on covari-

ance matrices.

1.1.5 Distributions

Throughout this work, we will make use of Rademacher random variables, which are

alternatively referred to in the literature as symmetric Bernoulli random variables or

random signs. Their definition is as follows.

Definition 1.1.10 (Rademacher Distribution). A random variable ε ∈ R has a

Rademacher distribution if P (ε = 1) = P (ε = −1) = 1/2.

In Chapter 4, we will require a slightly more generalized definition of the

Rademacher distribution allowing for asymmetric probability masses on the points

±1.

Definition 1.1.11 (Rademacher(p) Distribution). A random variable ε ∈ R has a

Rademacher(p) distribution if P (ε = 1) = p and conversely P (ε = −1) = 1− p for

some p ∈ [0, 1].
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The Rademacher distribution is widely applicable in both probabilistic and sta-

tistical contexts. It plays a major role in the probability in Banach spaces literature

(Ledoux and Talagrand, 1991). The distribution has been used in generalized boot-

strap methods (Arlot et al., 2010), for stochastic optimization procedures (Spall,

1992, 2005), and in the machine learning context in the form of Rademacher Com-

plexities (Koltchinskii, 2001, 2006; Bartlett et al., 2002; Bartlett and Mendelson,

2003; Kloft and Blanchard, 2011; Cortes et al., 2013). The technique of Rademacher

symmetrization used in conjunction with concentration inequalities is applied in

Chapter 3. This technique originates from past work including Lounici and Nickl

(2011); Kerkyacharian et al. (2012); Fan (2011).

We will also make use of empirical measures, denoted µn, with the standard

definition as well as the reflected empirical measure, denoted µ−n .

Definition 1.1.12 (Empirical Measure and Reflected Empirical Measure). For inde-

pendent and identically distributed random variables X1, . . . , Xn ∈ X , the empirical

measure is a random measure defined as

µn(A) :=
1

n

n∑
i=1

1Xi∈A

for some measurable set A ⊆ X . We will denote the empirical measure of the reflected

variables −X1, . . . ,−Xn by µ−n .

1.1.6 Lipschitz functions

As will be mentioned in the following section and in many other areas throughout

this manuscript, the concentration of measure phenomenon usually follows when

random variables are combined in a “smooth” way or a “nice” way. This imprecise

language usually can be read as referring to Lipschitz or locally Lipschitz functions.

The following definitions can be made more general. However, in our case, we will

always consider real valued functions either on a high dimensional Euclidean space

or on some Hilbert space. Derivations of explicit Lipschitz constants for functions of

interest on the space of covariance matrices can be found in Section 2.C.

Definition 1.1.13 (Lipschitz continuity). Given a metric space (X , d), then a

function f : X → R is Lipschitz continuous if there exists a constant K ≥ 0 such

that

|f(x)− f(y)| ≤ Kd(x, y)

for any x, y ∈ X . The infimum taken over all K ≥ 0 that make the above equation

valid is referred to as the Lipschitz constant and denoted K = ‖f‖Lip.
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Definition 1.1.14 (Local Lipschitz continuity). Given a metric space (X , d), then

a function f : X → R is locally Lipschitz continuous if for any x0 ∈ X there exists a

constant Kx0 ≥ 0 and a neighbourhood U of x0 such that for any x ∈ U ,

|f(x0)− f(x)| ≤ Kx0d(x0, x).

1.2 Overview of concentration inequalities

Concentration of measure and the vast collection of concentration inequalities traces

its history back to the works of Vitali Milman on Banach spaces and Paul Levy

in probability theory. The theory has had and continues to make a substantial

impact on a multitude of fields from pure analysis to probability and statistics. It

ties together ideas from functional and geometric analysis with stochastic analysis,

optimal transport, information theory, and many other diverse disciplines. Detailed

overviews of the theory can be found in a collection of textbooks and monographs

and the references therein (Ledoux and Talagrand, 1991; Steele, 1997; Ledoux, 2001;

Milman and Schechtman, 2009; Boucheron et al., 2013; Habib et al., 2013; Giné and

Nickl, 2016).

This so-called concentration of measure phenomenon can best be summed up by

the words of Michel Talagrand:

“A random variable that depends (in a ‘smooth’ way) on the influence

of many independent variables (but not too much on any of them) is

essentially constant.” (Talagrand, 1996b)

In this statement, the “smooth way” generally means a Lipschitz function combining

many independent random variables, and the phrase “essentially constant” generally

means that the probability of the random variable deviating from some central

point–e.g. its mean or median–is bounded by some sub-exponential or sub-Gaussian

decay.

Concentration is closely linked to the geometric notion of isoperimetry and how

measures concentrate in high dimensions. For example, a point selected uniformly at

random from inside the n-dimensional unit sphere will with high probability be close

to the surface. Similarly, a point selected uniformly at random from the surface of

the n-dimensional unit sphere will with high probability be near the equator–which

is paradoxically any equator! These examples motivate the results known as Lévy’s

inequalities (Levy, 1951).

Theorem 1.2.1 (Lévy’s Inequalities). For a random variable X in some metric mea-

sure space X with metric d(·, ·) and probability measure P (·), define the concentration
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function to be

α(r) = sup
A⊂X :P(A)≥1/2

P (d(X,A) ≥ r)

where d(X,A) = infa∈A d(X, a). Then for any 1-Lipschitz function f(·) with median

denoted by Mf(X), we have that

P (f(X) ≥ Mf(X) + r) ≤ α(r), and

P (f(X) ≤ Mf(X)− r) ≤ α(r).

Thus, controlling the concentration function α(·) allows for controlling nice

functions of random variables on a given space.

1.2.1 Examples

As a first example, we consider the sub-Gaussian concentration for bounded real-

valued random variables as it is stated in Hoeffding’s inequality (Hoeffding, 1963).

Theorem 1.2.2 (Hoeffding’s Inequality). Let X1, . . . , Xn ∈ R be independent random

variables such that Xi ∈ [ai, bi], and define Sn =
∑n

i=1Xi. Then,

P (Sn ≥ ESn + r) ≤ exp

(
−2r2∑n

i=1(bi − ai)2

)
.

This result is achieved by noting that for a bounded real-valued random variable

Xi ∈ [ai, bi], the worst possible variance is Var (Xi) ≤ (bi − ai)2/4. As the bound

on the right hand side is of the form exp(−Cr2) for some fixed constant C > 0, we

have sub-Gaussian style concentration inequality. This result is extended to the

martingale setting via the Azuma-Hoeffding inequality (Azuma, 1967). It is also

generalized by the bounded differences inequality (McDiarmid, 1989). We will briefly

consider the bounded differences inequality applied to the case of Banach space

valued random variables bounded in norm in Section 2.3.2

As noted, Hoeffding’s inequality assumes the worst–i.e. largest–possible variance.

In the case that an estimate of the variance is possible, we have alternative concen-

tration inequalities known as Bennett’s and Bernstein’s inequality (Bennett, 1962;

Bernstein, 1924).

Theorem 1.2.3 (Bennett’s Inequality). Let X1, . . . , Xn ∈ R be random variables

with zero mean and such that |Xi| ≤ c for i = 1, . . . , n for some fixed c > 0. Define

Sn =
∑n

i=1Xi and vn =
∑n

i=1 Var (Xi). Then, for any r > 0,

P (Sn ≥ r) ≤ exp
(
−vn
c2
h(cr/vn)

)
where h(u) = (1 + u) log(1 + u)− u.
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Theorem 1.2.4 (Bernstein’s Inequality). Given the same set up as Bennett’s in-

equality,

P (Sn ≥ r) ≤ exp

(
− r2

2(vn + cr/3)

)
In these concentration inequalities, we have the feature that for small values of

r > 0, the concentration takes on a sub-Gaussian form whereas for larger values

of r > 0, the concentration becomes sub-exponential. This type of concentration

is demonstrated in the case of self bounding functions (Boucheron et al., 2000). It

also occurs in the celebrated result known as Talagrand’s concentration inequality

(Talagrand, 1996a) and the various extensions and refinements of this result (Ledoux,

1997; Massart, 2000; Panchenko, 2001; Bousquet, 2003; Klein and Rio, 2005). We

will rely heavily on Talagrand’s inequality to develop the statistical methodology for

covariance operators in Chapter 3.

1.3 Connections to past research

One of the main goals of this manuscript, and most research in general, is to build

on, extend, and improve past work on such problems. The research contained within

this manuscript chronologically began with Chapter 3 building off of the past works

of Panaretos et al. (2010); Fremdt et al. (2013); Pigoli et al. (2014), which are

all concerned with performing a two sample test for the equality of the covariance

operators of each sample. More formally, given two sets of independent and identically

distributed functional observations X1, . . . , Xn ∈ L2[0, 1] and Y1, . . . , Ym ∈ L2[0, 1]

with unknown covariance operators ΣX and ΣY , respectively, we wish to test

H0 : ΣX = ΣY H1 : ΣX 6= ΣY . (1.3.1)

In Panaretos et al. (2010), the data is additionally considered to be observed

instances of a Gaussian process. They take advantage of functional principal compo-

nents and the Karhunen-Loève expansion to represent the data (Adler, 1990; Hall and

Hosseini-Nasab, 2006; Horváth and Kokoszka, 2012). Thus, given the set {φXj }∞j=1 of

the orthonormal eigenfunctions of the covariance operator ΣX with the corresponding

set of ordered eigenvalues {λXj }∞j=1 as well as a collection of univariate Zi,j
iid∼ N (0, 1)

for i = 1, . . . , n and j ≥ 1, then

Xi(t) =
∞∑
j=1

(λXj )1/2Zi,jφ
X
j (t), for t ∈ [0, 1].

In practice, the eigenfunctions of the empirical estimate of ΣX are used to construct

a finite dimensional representation of the Xi. From this expansion, they construct a
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test statistic for testing Hypothesis 1.3.1 making use of Parseval’s Theorem (Rudin,

1987, Theorem 4.18) and the properties of the Hilbert-Schmidt norm.

In short, let Σ̂XY be the pooled empirical covariance operator from combining

both sets of data with eigenfunctions {φ̂XYj }n+m
j=1 . Furthermore, let λ̂Xj and λ̂Yj be

the jth coefficient in the above expansion of the Xi and Yi, respectively, with respect

to the basis {φ̂XYj }n+m
j=1 Then, Theorem 1 of Panaretos et al. (2010) states that the

test statistic is

T (k) =
nm

2(n+m)

k∑
i,j=1

〈
(Σ̂X − Σ̂Y )φ̂XYj , φ̂XYj

〉2

×

×
((

n

n+m
λ̂Xi +

m

n+m
λ̂Yi

)(
n

n+m
λ̂Xj +

m

n+m
λ̂Yj

))−1

→ χ2 (k(k + 1)/2)

for some choice of k ≤ min{rank(Σ̂X), rank(Σ̂Y )} where the convergence is in distri-

bution as n+m→∞ with the asymptotics such that n/(n+m)→ c ∈ (0, 1).

In the work of Fremdt et al. (2013), they also project both samples of data

onto the eigenfunctions of the pooled empirical covariance operator. However,

they do not initially assume that the data arises from a Gaussian process. Their

Theorem 1 proposes another asymptotic test statistic converging in distribution to

χ2 (k(k + 1)/2). This test statistic is constructed by projecting the components of

the difference Σ̂X − Σ̂Y onto the basis φXYi φXYj for i, j = 1 . . . , k, transforming the

lower triangular k(k+1)/2 entries of that matrix into a vector ξ̂, and then estimating

the asymptotic covariance matrix of ξ̂ denoted as L̂. Then, the test statistic is

T = (nm/(n+m))ξ̂TL̂ξ̂.

Following these two works, Pigoli et al. (2014) approach the same hypothesis

test by further removing the asymptotics and the reliance on the Hilbert-Schmidt

topology. In their article, they consider a wide variety of metrics to use to compare

the two empirical covariance operators Σ̂X and Σ̂Y . As the alternative metrics do

not necessarily yield elegant test statistics with asymptotic distributions, the article

implements these metrics via an approximate permutation test. Their library of

metrics includes the Procrustes, Square-Root, and some based on the p-Schatten

norms. Such permutation tests were recently extended to k sample tests for k > 2

in Cabassi et al. (2017). Chapter 3 of this manuscript aims to improve upon this

methodology by using concentration inequalities to circumvent the computationally

costly permutation tests.

From the perspective of concentration inequalities, many of the ideas used in

Chapter 3 for constructing confidence sets in Banach spaces can be found in Lounici

and Nickl (2011) in the empirical process context. In that article, the statistical

deconvolution model, Y = X + ξ, is considered where Y1, . . . , Yn are observed real
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valued random variable, X1, . . . , Xn are unknown, ξ1, . . . , ξn are errors independent

of the Xi, and the goal is to recover the probability density of the Xi from the

noisy observed Yi. Lounici and Nickl (2011) demonstrate a lower bound on the

minimax sup-norm risk and show that a wavelet estimator achieves this bound. In

the process of constructing such a bound, they prove a Berstein-type inequality for

Rademacher processes branching from versions of the upper and lower deviation

versions of Talagrand’s inequality from Bousquet (2003) and Klein and Rio (2005),

respectively.

Specifically, from Proposition 5 of Lounici and Nickl (2011), let X,X1, . . . , Xn

are independent and identically distributed on a measure space (S,A), and let F be

a countable class of real-valued functions on S such that |f | ≤ 1/2 for all f ∈ F and

with some weak variance term σ2 ≥ supf∈F Ef 2(X). Consequently,

P

(∥∥∥∥∥ 1

n

n∑
i=1

(f(Xi)− Ef(X))

∥∥∥∥∥
F

≥

6

∥∥∥∥∥ 1

n

n∑
i=1

εif(Xi)

∥∥∥∥∥
F

+ 10

(
(r + log 2)σ2

n

)1/2

+ 22

(
r + log 2

n

))
≤ e−r

where ε1, . . . , εn are independent and identically distributed Rademacher random

variables and where ‖·‖F = supf∈F(·).
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Chapter 2

Concentration for covariance

matrices

2.1 Introduction

Covariance matrices and accurate estimators of such objects are of critical importance

in statistics. Various standard techniques including principal components analysis

and linear and quadratic discriminant analysis rely on an accurate estimate of

the covariance structure of the data. Applications can range from genetics and

medical imaging data to climate and other types of data. Furthermore, in the

era of high dimensional data, classical asymptotic estimators perform poorly in

applications (Stein, 1975; Johnstone, 2001). To see this, Figure 2.1 displays the rapidly

increasing expected distance between the empirical covariance estimator for the

identity matrix and the true identity matrix given a sample of n = 100 observations

from a multivariate Gaussian distribution and the multivariate t distribution with

three degrees of freedom. Thus, many alternative estimators for the covariance

matrix have been proposed working under the assumption of sparsity (Pourahmadi,

2011), which is, in a qualitative sense, the case when most of the off-diagonal entries

are zero. Beyond mere theoretical interest, the assumption of sparsity is widely

applicable to real data analysis as it is reasonable for the practitioner to believe that

many of the variable pairings to be studied will be uncorrelated. Thus, it is desirable

to tailor covariance estimation procedures given this assumption of sparsity.

Sparsity in the simplest sense implies some bound on the number of non-zero

entries in the columns of a covariance matrix. Thus, given a Σ ∈ Rd×d with entries

σi,j for i, j = 1, . . . , d, we have that there exists some constant c > 0 such that

maxj=1,...,d

∑d
i=1 1 [σi,j 6= 0] ≤ c. This can be generalized to “approximate sparsity”

as in Rothman et al. (2009) by maxj=1,...,d

∑d
i=1|σi,j|

q ≤ c for some q ∈ [0, 1).

Furthermore, Cai and Liu (2011) define a broader approximately sparse class by
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Figure 2.1: A plot of the expected distance from the empirical estimate of the
covariance matrix to the true covariance matrix in the Frobenius norm. Here, the
true covariance is the d dimensional identity matrix, and the empirical estimator
is constructed from a sample of n = 100 iid random draws from a multivariate
Gaussian distribution (top) and multivariate t-distribution with three degrees of
freedom (bottom).
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2.1. INTRODUCTION

bounding weighted column sums of Σ. In El-Karoui (2008), a similar notion referred

to as “β-sparsity” is defined, which stems from associating the covariance with

an adjacency matrix for a graph and controlling the number of closed walks of a

given length. Such classes of sparse covariance matrices allow for good theoretical

performance of estimators.

One class of estimators for large sparse covariance matrices are shrinkage es-

timators that follow a James-Stein approach by shrinking estimated eigenvalues,

eigenvectors, or the matrix itself towards some desired target (Haff, 1980; Dey and

Srinivasan, 1985; Daniels and Kass, 1999, 2001; Ledoit and Wolf, 2004; Hoff, 2009;

Johnstone and Lu, 2012). Another class of sparse estimators are those that regularize

the estimate with lasso-style penalties (Rothman, 2012; Bien and Tibshirani, 2011).

Yet another class consists of thresholding estimators, which declare the covariance

between two variables to be zero, if the estimated value is smaller than some threshold

(Bickel and Levina, 2008a,b; Rothman et al., 2009; Cai and Liu, 2011). Beyond these,

there are other methods such as banding and tapering, which apply only when the

variables are ordered or a notation of proximity exists–e.g. spatial, time series, or

longitudinal data. As we will not assume such an ordering and strive to construct

a methodology that is permutation invariant with respect to the variables, these

approaches will not be considered. Lastly, there has also been substantial work

into the estimation of the precision or inverse covariance matrix. While it is easily

possible that our approach can be adapted to this setting, it will not be considered

in this manuscript and will, hence, be reserved for future research.

In this chapter, we propose of novel approach to the estimation of sparse co-

variance matrices making use of concentration inequality based confidence sets.

Similar confidence sets will be constructed in Chapter 3 for covariance operators

in the functional data setting. This approach takes inspiration from the shrinkage,

thresholding, and penalization methods of sparse covariance estimation. In short,

consider a sample of real vector valued data X1, . . . , Xn ∈ Rd with zero mean and

unknown covariance matrix Σ0. Concentration inequalities are used to construct a

non-asymptotic confidence set for Σ0 about the empirical estimate of the unknown

covariance matrix, Σ̂emp = n−1
∑n

i=1(Xi − X̄)(Xi − X̄)
T

where X̄ = n−1
∑n

i=1Xi is

the sample mean. While, it has been noted–for example, see Cai and Liu (2011)–that

Σ̂emp may be a poor estimator when the dimension d is large and Σ0 is sparse, the

confidence set is still valid given a desired coverage of (1 − α). To construct a

better estimator, we propose to search this confidence set for an estimator Σ̂sp which

optimizes some sparsity criterion to be concretely defined later. This estimation

method adapts to the uncertainty of Σ̂emp in the high dimensional setting, d� n,

by widening the confidence set and thus allowing our sparse estimator to lie far away

from the empirical estimate. Furthermore, given some distributional assumptions, the
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CHAPTER 2. CONCENTRATION FOR COVARIANCE MATRICES

concentration inequalities provide us with non-asymptotic dimension-free confidence

sets allowing for very desirable convergence results.

Many established methods for sparse estimation make use of a regularization

or penalization term incorporated to enforce sparsity (Rothman, 2012; Bien and

Tibshirani, 2011). In some sense, our proposed method can be considered to be in

this class of estimators. However, we do not enforce sparsity via some lasso-style

penalization term, but enforce it through the choice of α. The larger our (1− α)-

confidence set is, the sparser our estimator is allowed to be. Thus, as with other

regularized estimators, the practitioner will have to make a choice of α to achieve

the desired level of sparsity or implement the cross-validation selection method for α,

which is described in Section 2.2.3. Furthermore, our estimation technique implements

a binary search procedure resulting in a highly efficient algorithm especially when

compared to the more laborious optimization required by lasso penalization.

In this chapter, the general estimation procedure is outlined in Section 2.2. Two

different search methods are proposed as well as a cross-validation technique for

tuning the method’s parameter. In Section 2.3, three different types of concentration

inequalities are considered for specifically log-concave measures, bounded random

variables, and sub-exponential distributions. Lastly, Section 2.4 details comprehen-

sive simulations comparing our concentration approach to sparse estimation with

standard techniques such as thresholding and penalization. Both extensive simulation

experiments and a real data set of gene expressions for small round blue cell tumours

are considered.

2.2 Sparse Estimation Procedure

Let X1, . . . , Xn ∈ Rd be a sample of n independent and identically distributed random

vectors with unknown d× d covariance matrix Σ0. Define the empirical estimate of

Σ0 to be Σ̂emp = n−1
∑n

i=1(Xi− X̄)(Xi − X̄)
T

where X̄ = n−1
∑n

i=1Xi is the sample

mean. The goal of the following procedure is to construct a sparse estimator, Σ̂sp,

for Σ0 by first constructing a confidence set for Σ0 about the estimator Σ̂emp and

then searching this set for the sparsest member. Two different search methods for

such a sparse member are outlined in Sections 2.2.1 and 2.2.2.

To construct such a confidence set about Σ̂emp, concentration inequalities are

employed. Specific inequalities are chosen based on data assumptions and are

discussed in subsequent Sections 2.3.1, 2.3.2, and 2.3.3. In general, the inequalities

all take a similar form. Let d(·, ·) be some metric measuring the distance between

two covariance matrices, and let ψ : R→ R be monotonically increasing. Then, the
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Assumption on Xi d(Σ̂sp,Σ0) rα

Log-Concave Measure
∥∥∥Σ̂sp − Σ0

∥∥∥1/2

p

√
(−2/c0n) logα

Bounded in norm
∥∥∥Σ̂sp − Σ0

∥∥∥
p

U
√

(−1/2n) logα

Sub-Exponential Measure
∥∥∥Σ̂sp − Σ0

∥∥∥1/2

p
max{−K logα/

√
n,
√
−K logα}

Table 2.1: Specific metrics d(·, ·) and deviation thresholds rα given specific assump-
tions on the data Xi discussed in subsequent sections.

general form of the concentration inequalities is

P
(
d(Σ0, Σ̂

emp) ≥ Ed(Σ0, Σ̂
emp) + r

)
≤ e−ψ(r),

which is a bound on the tail of the distribution of d(Σ0, Σ̂
emp) as it deviates above

its mean. Thus, to construct a (1− α)-confidence set, the variable r = rα is chosen

such that exp(−ψ(rα)) = α. This rα will be referred to as the deviation threshold.

Table 2.1 contains some explicit choices for the metric and deviation threshold given

specific assumptions on the Xi, which are used to drive the choice of concentration

inequality. These three cases are discussed separately in Section 2.3.

Now, let Σ̂sp be our sparse estimator for Σ0. We want these two to be close

in the sense of the above confidence set and therefore choose a Σ̂sp such that

d(Σ̂sp, Σ̂emp) ≤ rα. Consequently, we have that

P
(
d(Σ̂sp,Σ0 ) ≥ Ed(Σ̂emp,Σ0) + 2rα

)
≤ P

(
d(Σ̂sp, Σ̂emp) + d(Σ̂emp,Σ0) ≥ Ed(Σ̂emp,Σ0) + 2rα

)
≤ P

(
d(Σ̂emp,Σ0) ≥ Ed(Σ̂emp,Σ0) + rα

)
≤ exp(−ψ(rα)) = α

To actually identify such a Σ̂sp, we require some criterion to optimize over all

elements of the confidence set. Two such methods are proposed in the following

subsections. The zeroing method in Section 2.2.1 takes inspiration from thresholding

techniques for sparse covariance estimation (Bickel and Levina, 2008a; Rothman

et al., 2009; Cai and Liu, 2011). It begins with Σ̂emp and attempts to zero as many

entries as possible in the empirical estimate while still remaining in the confidence set,

which is similar to applying a hard thresholding estimator restricted to the confines

of the confidence set. The Procrustes method in Section 2.2.2 is more closely related

to the shrinkage estimators (Daniels and Kass, 1999, 2001; Hoff, 2009; Johnstone

and Lu, 2012). It chooses Σ̂sp to be a convex combination of Σ̂emp and some sparse
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target matrix using the Procrustes size and shape distance, which has been shown to

be a useful metric when one is concerned with inference in the space of covariance

matrices (Dryden et al., 2009).

2.2.1 Zeroing Method

Beginning with Σ̂emp, the goal of this method is to remove as many entries of Σ̂emp

as possible while respecting the restriction that d(Σ̂sp, Σ̂emp) ≤ rα. Here, the (i, j)

entry of Σ̂sp is denoted as σ̃i,j and the (i, j) entry of Σ̂sp
k is denoted as σ̃ki,j

0. Set Σ̂sp
0 = Σ̂emp. Choose an α and compute rα. Later it will be shown that

this method is fairly robust to the choice of α. The cross-validation technique

described below in Section 2.2.3 can be used to select a desirable α in practice.

We also observed in the Gaussian data experiments of Section 2.4.1 that

α ≈ 10−6 gave good performance.

1. While d(Σ̂sp
k , Σ̂

emp) ≤ rα and Σ̂sp
k has at least one non-zero off-diagonal entry.

(a) Choose the smallest non-zero off-diagonal entry in Σ̂sp
k and construct Σ̂sp

k+1

by setting it equal to zero. That is, determine (i, j) such that i < j and

0 < |σ̃ki,j| ≤ |σ̃ki′,j′ | for all i′ 6= i and j′ 6= j such that |σ̃ki′,j′ | > 0. If the

set of such pairs (i, j) has more than one element, then choose one pair

uniformly at random and continue.

(b) Construct Σ̂sp
k+1 with entries σ̃k+1

i,j = σ̃k+1
j,i = 0 and σ̃k+1

i′,j′ = σ̃ki′,j′ for all

other (i′, j′) 6= (i, j).

2. Denote Σ̂sp the final matrix resulting from this recursion. If Σ̂sp is not positive

semi-definite, then project it onto the space of positive semi-definite matrices

by mapping the negative eigenvalues to zero.

In the case that the metric d(·, ·) is a monotonically increasing function of the

Hilbert-Schmidt / Frobenius norm ‖Σ̂sp
k − Σ̂emp‖2, then the sequence d(Σ̂sp

k , Σ̂
emp)

will be increasing in k. This is true because the Frobenius norm is equivalent to

the `2 norm of the entries in the matrix, and as we run the algorithm, more entries

in the difference Σ̂sp
k − Σ̂emp will be non-zero. This property guarantees that the

above algorithm will find the sparsest Σ̂sp in the confidence set in the sense of having

the most zero entries. However, for an arbitrary metric, this sequence may not

necessarily be strictly increasing in k. Another commonly used norm, which will be

shown in Section 2.4 to give superior performance on simulated data, is the operator

norm ‖Σ̂sp
k − Σ̂emp‖∞, which does not yield a monotonically increasing sequence.

Though, this sequence is roughly increasing in the sense that it is lower bounded

by definition by the maximum `2 norm of the columns of Σ̂sp
k − Σ̂emp, which is an
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increasing sequence. Furthermore, it is upper bounded by the `1 norm of the columns

of Σ̂sp
k − Σ̂emp, which follows from the Gershgorin circle theorem (Iserles, 2009), and

which is also an increasing sequence. In practice, the operator norm in particular

gives superior performance in the numerical simulations of Section 2.4.

From a computational perspective, the above algorithm as stated requires an

unacceptable O(d2) eigenvalue decompositions as thus does not scale well as the

dimension of the matrix increases. To account for this, a binary search routine can be

incorporated resulting in a reduction to O(log2 d) eigenvalue decompositions. In short,

set zk = b(d2−d)/2kc to be the number of non-zero off-diagonal entries to set to zero

in step (1a). If the resulting Σ̂sp
k+1 from step (1b) is such that d(Σ̂sp

k+1, Σ̂
emp) ≤ rα,

then continue as normal and attempt to remove zk+1 more entries. Otherwise, if

d(Σ̂sp
k+1, Σ̂

emp) ≥ rα, set Σ̂sp
k+1 ← Σ̂sp

k , then continue again as normal with zk+1 as

before.

2.2.2 Procrustes Method

Past research into estimation and hypothesis testing for covariance matrices and

operators has highlighted the superior performance of the Procrustes size and shape

distance when compared with other metrics (Dryden et al., 2009; Pigoli et al., 2014;

Cabassi et al., 2017). The intuition behind this metric and why it is popular in the

context of shape analysis is that it allows for unitary transformations to best align

the two objects under scrutiny.

In the context of sparse estimation, the Procrustes distance is used to construct

Σ̂sp as a convex combination of Σ̂emp and some sparse target matrix Σtar that

presumably lies outside of the confidence set. Hence, this approach attempts to move

or shrink from the empirical estimator to the sparse target along a path determined

by the Procrustes metric. Specifically, set Lemp = (Σ̂emp)1/2 and Ltar = (Σtar)1/2, and

construct the estimator as a function of some γ ∈ [0, 1] to be

Σ̂sp(γ) =
(
Lemp + γ(LtarR− Lemp)

) (
Lemp + γ(LtarR− Lemp)

)T

where R = UV T and U and V are, respectively, the left and right matrices of

singular vectors for the matrix (Ltar)
T
Lemp (Pigoli et al., 2014, Section 3). The

argument γ ∈ [0, 1] is chosen to be as large as possible while it still holds that

d(Σ̂sp(γ), Σ̂emp) ≤ rα.

This method finds the estimator closest to Σtar with respect to the Procrustes

distance that is still in some confidence ball about Σ̂emp. In practice, a choice of Σtar

must be made based on some assumption regarding the nature of the true Σ0. In

the case of sparse estimation, either Id, the d× d identity matrix, or the diagonal

of Σ̂emp are reasonable choices for Σtar. In this way, the Procrustes method has a
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semi-Bayesian feel as we are compromising between the empirical estimate and some

prior chosen sparse target.

It is easily seen that this distance is an increasing function of γ for any p-

Schatten norm. Thus, our goal is to determine the maximal value of γ such that

dProc(Σ̂
sp(γ), Σ̂emp) ≤ rα. To compute this estimator in practice, a binary search

procedure similar to that for the above zeroing method can be implemented. Begin

with the initial values γ = δ = 0.5. If d(Σ̂sp(γ), Σ̂emp) ≤ rα, set γ ← γ + δ/2 and

δ ← δ/2. Otherwise set γ ← γ − δ/2 and δ ← δ/2. This will quickly converge on

the optimal choice of γ.

2.2.3 Cross-Validation

In practice, an optimal value of α ∈ (0, 1) must be chosen to enforce the proper

amount of sparsity. Beyond that, many of the concentration inequalities arrive with

finite but unknown coefficients that may only have loose upper bounds known. Hence,

we propose a cross-validation technique for tuning α, which takes its inspiration from

the similar technique proposed in the thresholding literature (Bickel and Levina,

2008a; Rothman et al., 2009; Cai and Liu, 2011).

Given n = 2m observations, we split the data randomly in half to get X1
1 , . . . , X

1
m

and X2
1 , . . . , X

2
m. Then, the two empirical estimators are constructed Σ̂emp

1 and

Σ̂emp
2 . The desired sparsifying procedure is applied to Σ̂emp

2 for a variety of α ∈ A
resulting in the collection of estimators {Σ̂sp

α }α∈A. The value of α chosen as α =

arg minα∈A d(Σ̂emp
1 , Σ̂sp

α ) for some metric d(·, ·). This process is repeated k times

resulting in the set {α1, . . . , αk}. Then, the cross-validated choice is the average of

the αi in the log domain, which is α = exp(k−1
∑k

i=1 logαi). The reason for the log,

as will be seen in the following sections, is that our deviation threshold rα is often a

function of logα stemming from the application of the concentration inequalities.

2.3 Estimation of sparse covariance

The following three subsections detail different assumptions on the data under

scrutiny and the specific concentration results that apply in these cases. We consider

sub-Gaussian concentration for both log-concave measures and bounded random

variables. We also consider sub-exponential concentration. However, this collection

is by no means exhaustive. Given the wide variety of concentration inequalities being

researched, our approach can be applied much more widely than to merely these

three settings.

29



2.3. ESTIMATION OF SPARSE COVARIANCE

2.3.1 Log-Concave Measures

In this section, the general methods from Section 2.2 are specialized for an independent

and identically distributed sample X1, . . . , Xn ∈ Rd whose common measure µ is

strongly log-concave. This property implies dimension-free sub-Gaussian concentration

and includes such common distributions as the multivariate Gaussian, Chi, and

Dirichlet distributions.

Definition 2.3.1 (Strongly log-concave measure). A measure µ on Rd is strongly

log-concave if there exists a c > 0 such that dµ = e−U(x)dx and Hess(U) − cId � 0

(i.e. the matrix is non-negative-definite) where Hess(U) is the d× d matrix of second

derivatives.

The corollary below follows from Corollary 2.B.4 and the other results contained

within Appendix 2.B.1. For a detailed exposition of how Gaussian concentration is

established for log-concave measures, see Chapter 5 of Ledoux (2001).

Corollary 2.3.2. Let X1, . . . , Xn ∈ Rd have measures µ1, . . . , µn, which are all

strongly log-concave with coefficients c1, . . . , cn, respectively. Let ν = µ1⊗ . . .⊗ µn be

the product measure on Rd×n. Then, for any 1-Lipschitz φ : (Rd)n → R and for any

r > 0,

Pν (φ(X1, . . . , Xn) ≥ Eφ(X1, . . . , Xn) + r) ≤ e−mini cir
2/2.

Example 2.3.3 (Multivariate Gaussian measure). For an arbitrary Gaussian mea-

sure on Rd with zero mean and covariance Σ, we have that U(x) = xTΣ−1x/2.

Thus, Hess(U) = Σ−1, and letting {λi}di=1 be the eigenvalues of Σ, any 0 < c ≤
mini=1,...,d λ

−1
i = (maxi λi)

−1 satisfies the above definition. Applying Corollary 2.3.2,

we have that for X1, . . . , Xn ∈ Rd independent and identically distributed multivariate

Gaussian random variables,

P (φ(X1, . . . , Xn) ≥ Eφ(X1, . . . , Xn) + r) ≤ e−r
2/2λ0

where λ0 = maxi=1,...,d λi.

Example 2.3.4 (Dirichlet Distribution). For X ∼ Dirichlet ((α1, . . . , αd)) with

αi > 1 for all i, the exponent U =
∑d

i=1(1 − αi) log xi and Hess(U) is a diagonal

matrix with entries (α1−1)/x2
1, . . . , (αd−1)/x2

d. Thus, the maximum c to ensure that

Hess(U)−cId � 0 for all values of xi ∈ (0, 1) with
∑d

i=1 xi = 1 is c = mini=1,...,d αi−1.

This example illustrates one of the necessary conditions for a probability density to

be log-concave. That is, the density must be unimodal as is the Dirichlet distribution

in the given case where the parameters αi > 1 for all i = 1 . . . , d.

To make use of Corollary 2.3.2, we must choose a suitable Lipschitz function

φ(·). Let X1, . . . , Xn, X ∈ Rd be independent and identically distributed random
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variables with covariance Σ0 and with a common strongly log-concave measure µ with

coefficient c > 0. Let λ1 ≥ . . . ≥ λn be the eigenvalues of Σ and Λ = (λ1, . . . , λn).

For some p ∈ [1,∞], let ‖·‖p be the p-Schatten norm defined in Section 1.1.3, which

in this case is ‖Σ‖p = ‖Λ‖`p . Note that ‖XXT‖p = ‖X‖2
`2 for any p ∈ [1,∞]. Define

the function φ to be

φ(X1, . . . , Xn) =

∥∥∥∥∥ 1

n

n∑
i=1

(Xi − EX)(Xi − EX)T

∥∥∥∥∥
1/2

p

.

For all p ∈ {1, 2,∞}, we have that φ is Lipschitz with coefficient ‖φ‖Lip = n−1/2

with respect to the Frobenius / Hilbert-Schmidt metric. That is, let the vectors

X1, . . . , Xn, Y1, . . . , Yn ∈ Rd, and denote X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn),

then, making use of the `p,q metric from Equation 1.1.1,

|φ(X)− φ(Y)| ≤ n−1/2d2,2(X,Y) =

(
1

n

n∑
i=1

‖Xi − Yi‖2
`2

)1/2

.

This is established in Proposition 2.C.5 for p ∈ {2,∞}. Proposition 2.C.2 establishes

that φ(·) is also Lipschitz with coefficient ‖φ‖Lip = n−1/2 for p = 1. From here,

the procedure outlined in Section 2.2 can be implemented with the given φ and

rα =
√

(−2/nc0) logα.

In many cases, including the two examples above, the constructed confidence

set is completely dimension-free. Thus, even mild assumptions on the relationship

between the sample size n and the dimension d, such as log d = o(n1/3) from the

adaptive soft thresholding estimator of Cai and Liu (2011), are not needed to prove

consistency in our setting. Furthermore, the concentration inequalities immediately

give us a fast rate of convergence as long as − logα = o(n) with a proof provided in

Appendix 2.A.

Proposition 2.3.5. Let X1, . . . , Xn ∈ Rd be independent and identically distributed

with common measure µ. Let µ be strictly log-concave with some fixed constant c0

from Definition 2.3.1. Then, for α ∈ (0, 1), p ∈ [1,∞], and rα =
√

(−2/nc0) logα,

sup
Σ̂sp:‖Σ̂sp−Σ̂emp‖

p
≤rα

P

(∥∥∥Σ̂sp − Σ0

∥∥∥
p
≥ O

(
n−1/2(1 + n−1/4

√
− logα)2

))
≤ α.

A second issue in the setting of sparse covariance recovery is that of support

recovery or “sparsistency” (Lam and Fan, 2009; Rothman et al., 2009). To recover the

support of a covariance matrix–that is, to determine which entries σi,j 6= 0–we will

require a class of sparse matrices similar to those from Bickel and Levina (2008a,b);
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Rothman et al. (2009); Cai and Liu (2011). Specifically, let

U(k, δ) =

{
Σ ∈ Rd×d : max

i=1,...,d

d∑
j=1

1 [σi,j 6= 0] ≤ k,

and if σi,j 6= 0, then |σi,j| ≥ δ > 0} .

In past work, a notation of “approximate sparsity” is considered where the first

condition in U(k, δ) is replaced with maxi=1,...,d

∑d
i=1|σi,j|

q < k for q ∈ [0, 1). However,

once we bound the non-zero entries away from zero by some fixed δ, such “approximate

sparsity” implies standard sparsity, which is when q = 0. It is worth emphasizing

that the above Proposition 2.3.5 does not require such a sparsity class, because our

estimator is forced to remain close enough to Σ̂emp to follow Σ̂emp’s convergence to

Σ0. As with the previous proposition, a proof of the following result is provided in

Appendix 2.A.

Proposition 2.3.6. Let X1, . . . , Xn ∈ Rd be independent and identically distributed

with common measure µ. Let µ be strictly log-concave with some fixed constant c0

from Definition 2.3.1. Furthermore, let Σ0 ∈ U(k, δ). Then, for Σ̂sp denoting the

concentration estimator using the zeroing method from Section 2.2.1 with the operator

norm,

lim
n→∞

P
(

supp(Σ̂sp) 6= supp(Σ0)
)

= 0

where supp(Σ) = {(i, j) : σi,j 6= 0}.

2.3.2 Bounded Random Variables

In this section, we consider random variables that are bounded in some norm.

Consider a Banach space (B, ‖·‖) and a collection of independent and identically

distributed random variables X1, . . . , Xn ∈ B such that, for some finite and fixed U ,

‖Xi‖ ≤ U for all i = 1, . . . , n. Given only this assumption, the bounded differences

inequality, detailed in Appendix 2.B.2 and in Section 3.3.4 of Giné and Nickl (2016),

can be applied in this specific setting. It provides sub-Gaussian concentration for

such random variables.

Corollary 2.3.7. Let X1, . . . , Xn ∈ Rd be iid with ‖Xi‖`2 ≤ U for i = 1, . . . , n.

Then, for any p ∈ [1,∞], ‖XiXi
T‖p ≤ U2, and

P

(∥∥∥Σ̂emp − Σ0

∥∥∥
p
≥ E

∥∥∥Σ̂emp − Σ0

∥∥∥
p

+ r

)
≤ e−2nr2/U2

.

Hence, for any collection of real valued random vectors bounded in Euclidean

norm, the bounded differences inequality can be applied to the empirical estimate
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for any of the p-Schatten norms. The deviation threshold is rα = U
√

(1/2n) logα.

However, unlike in the previous setting, the bounds may not necessarily be dimension

free.

Example 2.3.8 (Distributions on the Hypercube). For X1, . . . , Xn ∈ Rd with each

component |Xi,j| ≤ 1 for i = 1, . . . , n and j = 1, . . . , d such as for multivariate

uniform or Rademacher random variables, then U = d1/2. Consequently, the deviation

threshold rα = O(
√
d/n) is not dimension free. Hence, this example is not included

in the numerical experiments of Section 2.4 as it fails to give adequate performance

when d� n.

While this example fails to yield a useful concentration methodology, not all

distributions restricted to the hypercube are intractable. Specifically, Example 2.3.4

above considers the Dirichlet distribution, which is restricted to a subset of the

hypercube and for which useful concentration properties hold. It is reasonable to

believe that other more clever methods can be applied to the multivariate Rademacher

random variables or uniform random variables on the unit hypercube.

2.3.3 Sub-Exponential Distributions

Compared with the previously discussed measures that have sub-Gaussian concen-

tration, there exists a larger class of measures that have the weaker sub-exponential

concentration. Such measures can be specified as those that satisfy the Poincaré or

spectral gap inequality (Bobkov and Ledoux, 1997; Ledoux, 2001; Gozlan, 2010).

Corollary 2.3.9 (Ledoux (2001), Corollary 5.15). Let X, a random variable on Rd

with measure µ, satisfy the Poincaré inequality

Var (f(X)) ≤ C

∫
|∇f |2dµ

for some C > 0 and for all locally Lipschitz functions f . Then, for X1, . . . , Xn ∈ Rd

independent and identically distributed copies of X and for some Lipschitz function

φ : Rd×n → R,

P (φ(X1, . . . , Xn) ≥ Eφ(X1, . . . , Xn) + r) ≤ exp

(
− 1

K
min

{
r

b
,
r2

a2

})
where K > 0 is a constant depending only on C and

a2 ≥
n∑
i=1

|∇iφ|2, b ≥ max
i=1,...,n

|∇iφ|.

33



2.4. NUMERICAL SIMULATIONS

As in Section 2.3.1, φ is chosen to be

φ(X1, . . . , Xn) =

∥∥∥∥∥ 1

n

n∑
i=1

(Xi − EX)(Xi − EX)T

∥∥∥∥∥
1/2

p

,

which is Lipschitz with constant n−1/2. This results in values of a2 = 1 and b =

n−1/2 for the above coefficients. Hence, the deviation threshold in this setting is

rα = max{−K logα/
√
n,
√
−K logα}. While an optimal (or reasonable) value for

K may not be known, it makes little difference given the proposed cross-validation

procedure as the term −K logα will be tuned to determine the optimal size of the

constructed confidence set.

As the deviation threshold in this setting is bounded below by a constant
√
−K logα, we do not achieve the nice convergence results as in the log-concave

setting. However, the dimension-free concentration still allows for good performance

in simulation settings as will be seen in the follow section.

2.4 Numerical Simulations

As mentioned before, our proposed concentration confidence set based method has

a similar feel to regularized / penalized estimators as the larger the constructed

confidence set is, the sparser the returned estimator will be. Thus, we compare our

approach with the two following lasso style estimators. The first method is from

the R package spcov (Bien and Tibshirani, 2012) and uses a majorize-minimize

algorithm to determine

Σ̂MMA = arg min
Σ≥0

{
tr
(

Σ̂empΣ−1
)
− log det(Σ−1) + λ‖Σ‖`1

}
for some penalization λ > 0. The second method is from the R package PDSCE

(Rothman, 2013) and optimizes the similar

Σ̂PDS = arg min
Σ≥0

{
‖Σ− Σ̂emp‖2 − τ log det(Σ) + λ‖Σ‖`1

}
with τ, λ > 0. Here, the log det term is used to enforce positive-definiteness of the final

solution, and ‖·‖`1 is the lasso style penalty. The main concern with implementing

such methods is the speed of finding an optimal solution. The majorize-minimize

algorithm in its current instantiation in spcov requires a significant amount of time

to run. The algorithm used to compute the Σ̂PDS estimate is much faster.

We will also compare our method against universal thresholding of the empirical

covariance matrix (Bickel and Levina, 2008a; Rothman et al., 2009). Such estimators
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are constructed by applying a thresholding function, which satisfies some nice

properties, to the empirical covariance matrix. The two types of thresholding

considered in our numerical experiments will be Hard, which zeros any entries smaller

than some λ > 0, and Soft, which shrinks the entries by some λ > 0. In the below

definition of the soft thresholding estimator, the notation (·)+ is such that for x ∈ R,

(x)+ = max{x, 0}.

Σ̂Hard
λ = {σ̂i,j1 [σ̂i,j > λ]}i,j Σ̂Soft

λ = {sign(σ̂i,j)(|σ̂i,j| − λ)+}i,j

where σ̂i,j is the (i, j)th entry of the empirical covariance estimate and λ > 0 is some

thresholding parameter which is chosen in practice via cross-validation as we explain

for the sake of our own method in Section 2.2.3. Briefly, the data is split in half, two

empirical estimators are formed, one is thresholded while the other is not modified,

and λ is selected to minimize the distance between the one empirical estimate and

the other thresholded estimate.

There are four sparsity patterns that will be considered in the following simulation

studies. Table 2.3 takes the unknown covariance Σ0 to be the d× d identity matrix,

which is as sparse as possible. Table 2.4 chooses Σ0 to be a tri-diagonal matrix with

diagonal entries of 1 and off-diagonal entries of 0.25, which is a moving average.

Table 2.5 considers the autoregressive matrix with entries σi,j = ρ|i−j| where ρ = 0.25.

In this case, there are no zero entries in the true covariance matrix, but it can still be

considered approximately sparse as entries further from the diagonal quickly become

negligible. Table 2.6 gives Σ0 a random sparse pattern, which is σi,i = 1 for i =

1, . . . , d and σi,j = Bi,jUi,j where Bi,j ∼ Bernoulli (0.05) and Ui,j ∼ Uniform [0.3, 0.8]

for i 6= j.

A variety of estimators are considered in the following simulations. They are as

follows: Emp is merely the empirical estimate; Diag is the diagonal of the empirical

estimate with all other entries set to zero, which can be considered to be the most

extreme thresholding procedure. Tri is a tri-diagonal matrix formed from the

empirical estimate with all entries set to zero except for the diagonal and immediate

off-diagonal entries; CZ 2 is our concentration estimator using the zeroing method

with the Hilbert-Schmidt / Frobenius distance; CZ ∞ is our concentration estimator

using the zeroing method with the operator norm distance; CP 2 is our concentration

estimator using the Procrustes method with target matrix the diagonal of the

empirical estimate and with Hilbert-Schmidt / Frobenius distance; CP ∞ is our

concentration estimator using the Procrustes method with target matrix the diagonal

of the empirical estimate and with operator norm distance; CP Id is our concentration

estimator using the Procrustes method with target matrix the d× d identity matrix

and with operator norm distance; MMA, PDS, Hard, and Soft are the four alternative
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sparse estimators described immediately above.

To test the efficacy of these 12 estimators, their respective average distances to

the true covariance will be tabulated. The distances considered are Op, the operator

norm or maximal eigenvalue, HS, the Hilbert-Schmidt, Frobenius, or `2 distance, and

Supp being the percentage of correct support recovery, which is

Supp(Σ̂,Σ0) =
1

d2
|{(i, j) : σi,j = σ̂i,j = 0 or σi,j 6= 0 and σ̂i,j 6= 0}|.

This measure of success is excluded from the autoregressive setting whose support is

the entire matrix. This setting is still considered approximately sparse due to the

rapid decay in and the, hence, negligible effect of the individual covariances as they

move away from the diagonal.

The respective average compute times, Time, of constructing each estimator is

also considered in the tables. The slowest method tested by far was the MMA method,

which uses a majorize-minimize algorithm and was seen to be computationally

infeasible when d = 200. Our concentration methods generally took about one

to two minutes to run in the d = 200 setting. The vast majority of that time is

the cross-validation phase, which effectively multiplies the O(log d) runtime by a

large constant depending on the number of iterations performed. Choosing to use a

preselected choice of α perhaps chosen based on past cross-validation computations

will drastically speed up this algorithm. It is also very possible that with some

additional thought a more efficient implementation the cross-validation procedure is

possible.

2.4.1 Multivariate Gaussian Data

Let X1, . . . , Xn ∈ Rd be independent and identically distributed zero mean random

vectors with a strictly log-concave measure and covariance matrix Σ. By Corol-

lary 2.3.2, there exists a constant c0 > 0 such that P (φ(X) ≥ Eφ(X) + r) ≤ e−nr
2/2c0

where φ(X) = ‖Σ̂emp − Σ‖1/2
p where Σ̂emp = n−1

∑n
i=1(Xi − X̄)(Xi − X̄)

T
is the

empirical estimate of the covariance matrix. This results in the size 1− α confidence

set for Σ

C1−α =
{

Σ : ‖Σ̂emp − Σ‖1/2
p ≤ E‖Σ̂emp − Σ‖1/2

p +
√

(−2c0/n) logα
}

for α ∈ (0, 1). In the notation of Section 2.2, rα =
√

(−2c0/n) logα

In the multivariate Gaussian case, c0 is the maximal eigenvalue of the covariance

matrix Σ. We avoid the issue of estimating c0 in practice. This is because choosing

c0 to be the maximal eigenvalue of the empirical estimate Σ̂emp and then applying

cross-validation to choose an optimal value for the regularization parameter α negates
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the need for an accurate estimate of c0.

The top halves of Tables 2.3, 2.4, 2.5, and 2.6 chart the results of testing 11

estimators in four settings on multivariate Gaussian data. In short, the CZ ∞ method

often performed the best in the higher dimensional settings but was surpassed by

the PDS method in lower dimensions. For the diagonal and tri-diagonal settings, the

concentration approach using the zeroing method with operator norm distance gave

the best performance competing with hard/soft thresholding for support recovery

and competing with the PDS method for dominance in operator norm distance.

Once again, the CZ ∞ method performs best for the AR(1) matrices in the higher,

d = 100, 200, dimensional settings. For the random sparse matrices, the CZ ∞
method does not uniformly dominate the other methods. However, it still is quite

good at support recovery and in the Hilbert-Schmidt distance.

2.4.2 Multivariate Laplace Data

There are many possible ways to extend the univariate Laplace distribution, also

referred to as the double exponential distribution, onto Rd. For the following simula-

tion study, we choose the extension detailed in Eltoft et al. (2006). Considering the

univariate case, let Z ∼ N (0, σ2) and let V ∼ Exponential (1). Then, X =
√
V Z ∼

Laplace
(
σ/
√

2
)
, which has probability density f(x) =

√
2σ−1 exp(−

√
2|x|/σ) and

variance Var (X) = σ2. For the multivariate setting, now let Z ∈ Rd be multivariate

Gaussian with zero mean and covariance Σ0 and, once again, let V ∼ Exponential (1).

Then, we declare X =
√
V Z to have a multivariate Laplace distribution with zero

mean and covariance Σ0. Applying Corollary 2.3.9 results in the following concentra-

tion based confidence set,

C1−α =
{

Σ : ‖Σ̂emp − Σ‖1/2
p ≤ E‖Σ̂emp − Σ‖1/2

p +

+ max
{
−K logα/

√
n,
√
−K logα

}}
,

where the term −K logα is selected via the cross-validation technique detailed in

Section 2.2.3. As a starting point for cross-validation, the initial value of K is chosen

to be the maximal eigenvalue of the empirical estimator.

The bottom halves of Tables 2.3, 2.4, 2.5, and 2.6 consider the same simulation

experiments as in the previous section, but for multivariate Laplace rather than

Gaussian data. In summary, the concentration approach using Procrustes targeting

the identity matrix with operator norm distance, CP Id, generally gives the best

results with respect to operator norm distance for the diagonal, tri-diagonal, and

AR(1) matrix settings. Meanwhile, the zeroing method with operator norm distance,

CZ ∞, dominates all four settings in Hilbert-Schmidt distance and in support recovery.
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Albeit, the CZ ∞ method succeeds by often choosing the diagonal of the empirical

estimator as its choice, but this is because the small sample size and heavier tails

does not provide enough information to choose a better estimator.

2.4.3 Small Round Blue-Cell Tumour Data

Following the same analysis performed in Rothman et al. (2009) and subsequently

in Cai and Liu (2011), we will consider the data set resulting from the small round

blue-cell tumor (SRBCT) microarray experiment (Khan et al., 2001). The data set

consists of a training set of 64 vectors containing 2308 gene expressions. The data

contains four types of tumors denoted EWS, BL-NHL, NB, and RMS. As performed

in the two previous papers, the genes are ranked by their respective amount of

discriminative information according to their F -statistic

F =
1

k−1

∑k
m=1 nm(x̄m − x̄)2

1
n−k

∑k
m=1(nm − 1)σ̂2

m

where x̄ is the sample mean, k = 4 is the number of classes, n = 64 is the sample

size, nm is the sample size of class m, and likewise, x̄m and σ̂2
m are, respectively, the

sample mean and variance of class m. The top 40 and bottom 160 scoring genes

were selected to provide a mix of the most and least informative genes.

Table 2.2 reports the support recovery of six methods applied to this data set:

the empirical estimate; the zeroing estimate using the operator norm; the Procrustes

estimate; the PDS regularized estimate; and the hard and soft thresholded estimates.

The concentration techniques were implemented using the equations from the log-

concave setting. The sub-exponential methodology was also applied to this data set,

but resulted in an extremely sparse estimator similar to the results seen in the hard

thresholding case. Both the empirical and Procrustes estimates do not, in general,

contain zero entries. Hence, for the sake of this real data test, any covariance entries

less than 0.01 were rounded to zero. The support recovery is partitioned into two

sections, which are the informative 40× 40 block and the remaining uninformative

entries. Of the six methods, hard thresholding, as mentioned in Cai and Liu (2011),

over thresholds and sets most of the entries to zero. On the converse, the PDS

method keeps about 47.3% of the entries in the informative section and 16.5% of the

uninformative section. Both the zeroing method and soft thresholding fall in between

these extremes by maintaining a respectable amount of entries in the informative

section but removing most of the entries outside of that section. The resulting

covariance estimators from the six methods are displayed in Figure 2.2.
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non-zero (%) Empirical Zeroing Procrustes
Informative 98.1% 25.0% 96.8%
Uninformative 81.8% 2.3% 80.1%

PDS lasso Hard Thresh Soft Thresh
Informative 47.3% 4.5% 29.4%
Uninformative 15.6% 0.2% 3.1%

Table 2.2: The percentages of non-zero off-diagonal entries in the six respective
covariance estimates partitioned into two parts: the informative part is the 40× 40
block of the highest scoring genes; the uninformative part is the remaining matrix
entries.

Empirical Zeroing Procrustes

PDS lasso Hard Thresh Soft Thresh

Figure 2.2: Six different methods for covariance estimation applied to the SRBCT
data set. White entries are zeros in the covariance estimate while black entries
indicate non-zero covariance values.
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True Covariance Empirical Covariance

Concentration Zero Concentration Procrustes Hard Threshold

Soft Threshold Majorize−Minimize Positive Definite Sparse

Figure 2.3: The images of seven different covariance estimators with the true covari-
ance in the top left corner. The true covariance is the tri-diagonal matrix with ones
on the diagonal and 0.4 on the off-diagonals. These came from a sample of n = 75
multivariate Gaussian random vectors with dimension d = 25.
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Diagonal Matrix
Multivariate Gaussian Data

d = 25 d = 50
Op HS Supp Time Op HS Supp Time

Emp 2.37 (0.32) 4.73 (0.31) 4.0% - 3.95 (0.37) 9.35 (0.38) 2.0% -
Diag 0.61 (0.17) 1.30 (0.20) 100.% - 0.70 (0.17) 1.85 (0.21) 100.% -
Tri 0.80 (0.18) 1.83 (0.21) 92.3% - 0.91 (0.18) 2.61 (0.22) 96.1% -

CZ 2 0.93 (0.22) 1.62 (0.23) 99.5% 0.353 2.19 (0.25) 5.32 (0.53) 6.4% 1.27
CZ ∞ 0.90 (0.22) 1.56 (0.20) 99.7% 0.500 1.04 (0.22) 2.09 (0.20) 99.9% 2.28
CP 2 0.69 (0.16) 1.58 (0.19) 4.0% 0.288 1.03 (0.07) 4.35 (0.25) 2.0% 1.71
CP ∞ 0.84 (0.17) 1.82 (0.21) 4.0% 0.273 1.02 (0.06) 4.06 (0.21) 2.0% 1.34
MMA 1.79 (0.56) 4.04 (0.63) 9.5% 0.988 1.30 (0.09) 5.54 (0.09) 9.7% 2.70
PDS 0.69 (0.17) 1.51 (0.19) 89.7% 0.001 0.86 (0.17) 2.40 (0.20) 89.5% 0.01
Hard 1.01 (0.10) 2.23 (0.45) 99.4% 0.153 1.02 (0.09) 4.09 (0.44) 99.4% 0.42
Soft 0.85 (0.08) 2.46 (0.15) 97.1% 0.245 0.96 (0.05) 3.94 (0.16) 98.9% 0.77

d = 100 d = 200
Emp 6.57 (0.47) 18.60 (0.56) 1.0% - 11.54 (0.52) 37.22 (0.67) 0.5% -
Diag 0.78 (0.16) 2.61 (0.19) 100.% - 0.89 (0.16) 3.72 (0.20) 100.% -
Tri 1.01 (0.17) 3.71 (0.21) 98.0% - 1.11 (0.17) 5.24 (0.21) 99.0% -

CZ 2 4.67 (0.26) 13.29 (0.51) 1.0% 6.13 9.08 (0.30) 28.98 (0.69) 0.5% 32.1
CZ ∞ 0.78 (0.16) 2.61 (0.19) 100.% 9.22 0.96 (0.33) 3.83 (0.67) 98.0% 52.2
CP 2 2.05 (0.13) 9.21 (0.39) 1.0% 11.65 5.06 (0.12) 19.99 (0.60) 0.5% 91.2
CP ∞ 1.03 (0.08) 6.94 (0.30) 1.0% 8.32 1.04 (0.13) 10.58 (0.59) 0.5% 62.8
MMA 1.41 (0.07) 8.99 (0.07) 4.3% 16.35 - - - -
PDS 1.13 (0.15) 4.03 (0.18) 89.4% 0.02 1.56 (0.12) 7.22 (0.18) 89.3% 0.13
Hard 1.03 (0.11) 6.99 (0.35) 99.5% 1.47 1.03 (0.12) 11.26 (0.30) 99.7% 5.90
Soft 1.00 (0.01) 6.22 (0.14) 99.6% 2.91 1.00 (0.01) 9.77 (0.16) 99.9% 11.87

Multivariate Laplace Data
d = 25 d = 50

Op HS Supp Time Op HS Supp Time
Emp 4.04 (1.44) 6.48 (1.51) 4.0% - 7.77 (2.56) 13.04 (2.79) 2.0% -
Diag 0.94 (0.42) 1.94 (0.58) 100.% - 1.12 (0.50) 2.83 (0.73) 100.% -
Tri 1.24 (0.51) 2.64 (0.66) 92.3% - 1.47 (0.59) 3.80 (0.85) 96.1% -

CZ ∞ 1.43 (0.65) 2.32 (0.65) 99.7% 0.533 1.83 (0.73) 3.23 (0.81) 99.9% 2.47
CP ∞ 1.24 (0.53) 2.54 (0.79) 4.0% 0.232 1.38 (0.49) 4.71 (0.64) 2.0% 0.97
CP Id 0.56 (0.06) 1.61 (0.08) 4.0% 0.233 1.00 (0.01) 4.01 (0.27) 2.0% 0.97
MMA 3.92 (1.45) 6.34 (1.51) 4.4% 0.205 1.89 (0.43) 6.17 (0.41) 7.1% 3.03
PDS 1.43 (0.69) 2.65 (0.75) 77.2% 0.002 2.40 (1.14) 4.66 (1.24) 77.1% 0.01
Hard 1.53 (0.95) 4.02 (0.82) 97.8% 0.168 2.13 (1.63) 6.41 (1.20) 98.6% 0.44
Soft 1.05 (0.26) 3.69 (0.42) 97.7% 0.261 1.14 (0.51) 5.72 (0.50) 98.7% 0.81

d = 100 d = 200
Emp 13.59 (3.52) 25.02 (4.76) 1.0% - 28.56 (9.46) 51.23 (11.1) 0.5% -
Diag 1.22 (0.44) 3.89 (0.73) 100.% - 1.45 (5.69) 5.74 ( 1.39) 100.% -
Tri 1.52 (0.53) 5.24 (0.92) 98.0% - 1.84 (7.18) 7.68 ( 1.72) 99.0% -

CZ ∞ 1.22 (0.44) 3.89 (0.73) 100.% 9.65 1.45 (5.69) 5.74 ( 1.39) 100.% 53.0
CP ∞ 1.30 (0.36) 7.44 (0.44) 1.0% 5.50 1.43 (4.66) 11.27 ( 0.77) 0.5% 37.9
CP Id 1.00 (0.00) 6.99 (0.43) 1.0% 5.53 1.00 (0.00) 10.67 ( 0.28) 0.5% 37.9
MMA 2.00 (0.35) 9.28 (0.35) 3.5% 22.97 - - - -
PDS 3.62 (1.32) 8.03 (1.77) 76.9% 0.05 7.60 (3.90) 15.83 ( 4.48) 76.6% 3.7
Hard 2.49 (1.71) 9.36 (1.30) 99.3% 1.57 5.26 (5.46) 15.59 ( 5.52) 99.5% 6.4
Soft 1.10 (0.34) 8.70 (0.52) 99.3% 3.05 1.74 (2.24) 12.88 ( 1.35) 99.5% 12.5

Table 2.3: Listed are the distances from a variety of estimators to the true Σ0 = Id
with sample size n = 30, dimensions d = 25, 50, 100, 200, and considering both
multivariate Gaussian and Laplace data.

41



2.4. NUMERICAL SIMULATIONS

Tri-Diagonal Matrix
Multivariate Gaussian Data

d = 25 d = 50
Op HS Supp Time Op HS Supp Time

Emp 2.43 (0.36) 4.74 (0.34) 11.7% - 4.05 (0.41) 9.36 (0.44) 5.9% -
Diag 0.83 (0.13) 2.17 (0.12) 92.3% - 0.89 (0.13) 3.09 (0.12) 96.1% -
Tri 0.86 (0.21) 1.86 (0.24) 100.% - 0.96 (0.22) 2.64 (0.25) 100.% -

CZ 2 0.99 (0.20) 2.31 (0.16) 92.4% 0.346 2.12 (0.29) 5.31 (0.51) 12.7% 1.26
CZ ∞ 0.97 (0.20) 2.28 (0.14) 92.4% 0.492 1.11 (0.23) 3.21 (0.15) 96.1% 2.25
CP 2 0.84 (0.11) 2.15 (0.13) 11.7% 0.279 1.31 (0.04) 4.65 (0.19) 5.9% 1.67
CP ∞ 1.14 (0.16) 2.85 (0.17) 11.7% 0.276 1.30 (0.05) 4.79 (0.17) 5.9% 1.33
MMA 1.92 (0.61) 4.14 (0.66) 15.7% 0.953 1.34 (0.03) 5.56 (0.09) 13.2% 2.62
PDS 0.84 (0.13) 2.13 (0.14) 86.0% 0.001 0.98 (0.15) 3.23 (0.15) 87.6% 0.01
Hard 1.24 (0.13) 2.88 (0.35) 91.7% 0.151 1.39 (0.10) 4.86 (0.39) 95.5% 0.42
Soft 1.10 (0.07) 2.90 (0.15) 90.8% 0.241 1.22 (0.05) 4.56 (0.15) 95.3% 0.76

d = 100 d = 200
Emp 6.86 (0.55) 18.71 (0.57) 3.0% - 11.91 (0.59) 37.25 (0.68) 1.5% -
Diag 0.98 (0.14) 4.38 (0.12) 98.0% - 1.03 (0.15) 6.21 (0.11) 99.0% -
Tri 1.10 (0.20) 3.76 (0.25) 100.% - 1.22 (0.23) 5.31 (0.22) 100.% -

CZ 2 4.70 (0.28) 13.06 (0.54) 3.0% 6.19 9.14 (0.34) 28.59 (0.76) 1.5% 31.4
CZ ∞ 1.04 (0.25) 4.44 (0.26) 96.3% 9.25 1.27 (0.54) 6.58 (0.87) 88.8% 51.0
CP 2 1.92 (0.14) 9.20 (0.34) 3.0% 11.57 4.91 (0.14) 19.62 (0.67) 1.5% 88.5
CP ∞ 1.39 (0.02) 7.78 (0.31) 3.0% 8.35 1.43 (0.03) 11.74 (0.52) 1.5% 61.2
MMA 1.43 (0.02) 9.15 (0.06) 6.2% 17.21 - - - -
PDS 1.21 (0.16) 5.07 (0.18) 88.4% 0.02 1.61 (0.15) 8.40 (0.17) 88.8% 0.2
Hard 1.45 (0.07) 7.89 (0.33) 97.6% 1.50 1.49 (0.11) 12.27 (0.27) 98.7% 5.8
Soft 1.31 (0.03) 7.06 (0.13) 97.7% 2.94 1.38 (0.02) 10.88 (0.13) 98.9% 11.5

Multivariate Laplace Data
d = 25 d = 50

Op HS Supp Time Op HS Supp Time
Emp 4.14 (1.44) 6.52 (1.41) 11.7% - 7.63 (2.46) 12.84 (2.75) 5.9% -
Diag 1.11 (0.32) 2.62 (0.38) 92.3% - 1.28 (0.44) 3.76 (0.60) 96.1% -
Tri 1.32 (0.56) 2.67 (0.63) 100.% - 1.54 (0.67) 3.83 (0.92) 100.% -

CZ ∞ 1.53 (0.58) 2.88 (0.47) 92.3% 0.532 1.87 (0.74) 4.05 (0.69) 96.0% 2.72
CP ∞ 1.49 (0.46) 3.37 (0.60) 11.7% 0.233 1.59 (0.42) 5.33 (0.59) 5.9% 1.07
CP Id 0.92 (0.04) 2.68 (0.08) 11.7% 0.234 1.29 (0.04) 4.72 (0.19) 5.9% 1.07
MMA 4.09 (1.47) 6.47 (1.45) 11.8% 0.111 1.81 (0.38) 6.20 (0.37) 10.6% 3.36
PDS 1.53 (0.66) 3.03 (0.62) 74.9% 0.001 2.36 (1.10) 5.03 (1.11) 76.0% 0.01
Hard 1.85 (0.89) 4.40 (0.76) 90.3% 0.169 2.38 (1.49) 6.91 (1.11) 94.8% 0.50
Soft 1.38 (0.29) 4.02 (0.41) 90.6% 0.263 1.52 (0.41) 6.24 (0.45) 95.0% 0.87

d = 100 d = 200
Emp 14.50 (4.44) 25.21 (5.03) 3.0% - 30.34 (10.61) 52.5 (10.75) 1.5% -
Diag 1.40 (0.49) 5.32 (0.61) 98.0% - 1.68 ( 0.63) 7.7 ( 1.00) 99.0% -
Tri 1.74 (0.70) 5.43 (1.00) 100.% - 2.19 ( 0.93) 8.0 ( 1.69) 100.% -

CZ ∞ 1.40 (0.49) 5.32 (0.61) 98.0% 9.56 1.68 ( 0.63) 7.7 ( 1.00) 99.0% 52.0
CP ∞ 1.59 (0.34) 8.20 (0.47) 3.0% 5.46 1.69 ( 0.40) 12.4 ( 0.66) 1.5% 37.2
CP Id 1.39 (0.03) 7.79 (0.37) 3.0% 5.42 1.43 ( 0.01) 11.8 ( 0.26) 1.5% 36.9
MMA 1.99 (0.39) 9.49 (0.31) 5.4% 22.60 - - - -
PDS 4.04 (1.82) 8.79 (1.81) 76.1% 0.04 8.33 ( 4.88) 17.0 ( 4.73) 75.8% 3.6
Hard 3.19 (2.43) 10.42 (1.78) 97.2% 1.58 6.35 ( 6.97) 17.0 ( 6.38) 98.5% 6.1
Soft 1.66 (0.66) 9.41 (0.48) 97.3% 3.02 2.42 ( 3.16) 13.9 ( 2.10) 98.5% 12.0

Table 2.4: Listed are the distances from a variety of estimators to the tri-diagonal Σ0

with diagonal entries of 1 and off-diagonal entries of 0.25 with sample size n = 30,
dimensions d = 25, 50, 100, 200, and considering both multivariate Gaussian and
Laplace data.
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AR(1) Matrix
Multivariate Gaussian Data

d = 25 d = 50
Op HS Time Op HS Time

Emp 2.44 (0.38) 4.73 (0.35) - 4.08 (0.43) 9.37 (0.44) -
Diag 0.87 (0.11) 2.22 (0.13) - 0.92 (0.12) 3.16 (0.12) -
Tri 0.88 (0.22) 1.91 (0.24) - 0.99 (0.21) 2.73 (0.23) -

CZ 2 1.03 (0.21) 2.36 (0.17) 0.348 2.08 (0.29) 5.27 (0.52) 1.25
CZ ∞ 1.01 (0.21) 2.33 (0.16) 0.497 1.11 (0.22) 3.26 (0.14) 2.25
CP 2 0.88 (0.09) 2.18 (0.13) 0.279 1.37 (0.05) 4.70 (0.20) 1.67
CP ∞ 1.11 (0.16) 2.89 (0.18) 0.280 1.37 (0.05) 4.86 (0.17) 1.35
MMA 1.93 (0.59) 4.15 (0.66) 0.886 1.42 (0.03) 5.58 (0.09) 2.63
PDS 0.88 (0.12) 2.18 (0.14) 0.001 1.00 (0.13) 3.28 (0.15) 0.01
Hard 1.29 (0.14) 2.90 (0.35) 0.151 1.46 (0.08) 4.87 (0.37) 0.41
Soft 1.20 (0.06) 2.93 (0.15) 0.240 1.32 (0.05) 4.59 (0.15) 0.76

d = 100 d = 200
Emp 6.87 (0.46) 18.66 (0.52) - 11.89 (0.62) 37.3 (0.77) -
Diag 0.96 (0.11) 4.49 (0.13) - 1.03 (0.12) 6.4 (0.11) -
Tri 1.08 (0.21) 3.88 (0.24) - 1.20 (0.19) 5.5 (0.23) -

CZ 2 4.67 (0.27) 13.00 (0.52) 6.17 9.13 (0.36) 28.6 (0.73) 32.5
CZ ∞ 1.02 (0.21) 4.55 (0.28) 9.34 1.36 (0.60) 6.8 (0.98) 53.9
CP 2 1.88 (0.15) 9.14 (0.34) 11.72 4.90 (0.14) 19.6 (0.62) 96.2
CP ∞ 1.49 (0.04) 7.74 (0.30) 8.57 1.55 (0.02) 11.8 (0.51) 66.1
MMA 1.55 (0.01) 9.18 (0.06) 17.44 - - -
PDS 1.21 (0.14) 5.16 (0.17) 0.02 1.62 (0.14) 8.5 (0.18) 0.2
Hard 1.57 (0.05) 8.01 (0.32) 1.48 1.62 (0.05) 12.4 (0.25) 6.1
Soft 1.42 (0.03) 7.14 (0.12) 2.90 1.50 (0.03) 11.0 (0.13) 12.0

Multivariate Laplace Data
d = 25 d = 50

Op HS Time Op HS Time
Emp 4.16 (1.48) 6.57 (1.52) - 7.70 (2.34) 12.87 (2.56) -
Diag 1.18 (0.36) 2.70 (0.44) - 1.30 (0.39) 3.80 (0.48) -
Tri 1.35 (0.52) 2.74 (0.67) - 1.56 (0.59) 3.88 (0.78) -

CZ ∞ 1.59 (0.61) 2.96 (0.54) 0.570 1.88 (0.69) 4.08 (0.57) 2.49
CP ∞ 1.52 (0.48) 3.46 (0.68) 0.250 1.61 (0.36) 5.36 (0.51) 0.99
CP Id 0.95 (0.09) 2.72 (0.09) 0.250 1.35 (0.06) 4.75 (0.21) 0.98
MMA 4.07 (1.52) 6.47 (1.56) 0.168 1.84 (0.34) 6.22 (0.32) 3.09
PDS 1.56 (0.66) 3.09 (0.67) 0.002 2.37 (1.03) 5.07 (0.99) 0.01
Hard 1.92 (0.95) 4.46 (0.87) 0.182 2.38 (1.33) 6.88 (1.00) 0.45
Soft 1.50 (0.29) 4.06 (0.43) 0.282 1.61 (0.41) 6.26 (0.49) 0.81

d = 100 d = 200
Emp 14.52 (4.76) 25.50 (5.60) - 28.02 (7.60) 51.8 (9.24) -
Diag 1.40 (0.43) 5.46 (0.82) - 1.60 (0.47) 7.7 (0.89) -
Tri 1.75 (0.64) 5.60 (1.24) - 2.03 (0.68) 7.9 (1.46) -

CZ ∞ 1.40 (0.43) 5.46 (0.82) 9.57 1.60 (0.47) 7.7 (0.89) 55.2
CP ∞ 1.66 (0.33) 8.30 (0.55) 5.49 1.70 (0.24) 12.5 (0.69) 39.9
CP Id 1.50 (0.04) 7.80 (0.36) 5.50 1.56 (0.02) 11.9 (0.29) 40.2
MMA 2.00 (0.37) 9.54 (0.36) 22.80 - - -
PDS 4.04 (1.98) 8.90 (2.16) 0.06 7.22 (2.96) 16.3 (3.47) 3.9
Hard 3.31 (2.62) 10.56 (2.39) 1.59 4.87 (3.53) 15.8 (3.30) 6.5
Soft 1.78 (0.78) 9.37 (0.66) 3.03 1.90 (0.75) 13.6 (0.61) 12.6

Table 2.5: Listed are the distances from a variety of estimators to the true Σ0 whose
entries are σi,j = (0.25)|i−j| with sample size n = 30, dimensions d = 25, 50, 100, 200,
and considering both multivariate Gaussian and Laplace data. Unlike the other
tables, support recovery is not considered in this case.
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Random Sparse Matrix
Multivariate Gaussian Data

d = 25 d = 50
Op HS Supp Time Op HS Supp Time

Emp 5.12 (0.87) 9.62 (0.81) 15.2% - 12.05 (1.41) 27.04 (1.37) 13.7% -
Diag 2.46 (0.19) 5.73 (0.23) 88.8% - 4.36 (0.17) 11.61 (0.28) 88.3% -
Tri 2.55 (0.26) 6.16 (0.30) 82.4% - 4.31 (0.23) 12.50 (0.41) 85.4% -

CZ 2 2.56 (0.31) 5.86 (0.32) 89.1% 0.397 5.98 (0.84) 15.85 (1.29) 22.9% 1.34
CZ ∞ 2.55 (0.31) 5.83 (0.30) 89.0% 0.566 4.41 (0.29) 11.85 (0.36) 88.3% 2.40
CP 2 2.29 (0.24) 5.15 (0.27) 15.2% 0.314 4.81 (0.32) 13.97 (0.48) 13.7% 1.77
CP ∞ 3.26 (0.33) 7.50 (0.38) 15.2% 0.319 5.36 (0.20) 15.43 (0.47) 13.7% 1.46
MMA 5.12 (0.87) 9.62 (0.81) 15.2% 0.013 5.21 (0.30) 15.56 (0.22) 22.6% 3.27
PDS 2.21 (0.26) 5.08 (0.32) 85.3% 0.002 3.98 (0.28) 11.32 (0.38) 82.8% 0.01
Hard 2.91 (0.57) 6.35 (0.65) 89.4% 0.177 6.76 (1.29) 17.67 (1.57) 86.7% 0.44
Soft 3.01 (0.23) 6.53 (0.36) 88.4% 0.275 5.22 (0.25) 13.78 (0.48) 86.6% 0.80

d = 100 d = 200
Emp 24.7 (2.15) 64.6 (2.03) 10.0% - 60.7 (3.73) 185.6 (4.03) 10.1% -
Diag 5.9 (0.14) 19.9 (0.33) 91.0% - 11.7 (0.11) 41.1 (0.55) 90.4% -
Tri 6.0 (0.17) 21.6 (0.43) 89.4% - 11.7 (0.16) 44.9 (0.73) 89.6% -

CZ 2 16.0 (1.07) 44.5 (2.35) 10.0% 6.35 45.7 (2.09) 141.4 (3.92) 10.1% 31.3
CZ ∞ 6.1 (0.60) 20.4 (1.36) 85.7% 9.64 12.2 (1.51) 44.0 (5.67) 74.8% 51.6
CP 2 7.2 (0.34) 31.9 (1.27) 10.0% 12.35 23.6 (0.86) 96.6 (3.49) 10.1% 90.7
CP ∞ 7.6 (0.27) 29.5 (1.11) 10.0% 9.05 14.5 (0.34) 64.2 (2.54) 10.1% 63.1
MMA 7.8 (0.31) 31.9 (0.16) 12.4% 25.89 - - - -
PDS 5.6 (0.29) 21.1 (0.45) 83.6% 0.02 11.2 (0.32) 49.4 (0.90) 82.4% 0.2
Hard 14.7 (1.97) 45.3 (2.62) 85.1% 1.53 46.9 (3.65) 158.4 (4.87) 72.9% 5.7
Soft 6.8 (0.27) 24.4 (0.50) 85.1% 3.01 18.0 (2.17) 72.0 (2.54) 72.9% 11.7

Multivariate Laplace Data
d = 25 d = 50

Op HS Supp Time Op HS Supp Time
Emp 5.94 (2.34) 9.15 (2.25) 12.6% - 21.34 (7.09) 35.5 (8.07) 11.2% -
Diag 2.31 (0.56) 5.08 (0.59) 91.4% - 4.29 (0.93) 12.1 (1.57) 90.8% -
Tri 2.55 (0.67) 5.62 (0.77) 84.3% - 4.88 (1.22) 13.9 (2.03) 87.5% -

CZ ∞ 2.61 (0.93) 5.25 (0.79) 91.5% 0.503 5.48 (1.79) 12.8 (1.80) 90.8% 2.36
CP ∞ 2.88 (0.77) 6.49 (0.97) 12.6% 0.219 5.06 (0.99) 15.7 (1.66) 11.2% 0.92
CP Id 2.73 (0.13) 5.76 (0.16) 12.6% 0.218 5.50 (0.11) 17.6 (0.41) 11.2% 0.91
MMA 5.94 (2.34) 9.15 (2.25) 12.6% 0.013 4.79 (0.37) 16.0 (0.43) 16.8% 4.12
PDS 2.48 (1.01) 4.81 (0.97) 76.9% 0.001 6.68 (2.83) 14.8 (2.98) 73.8% 0.01
Hard 3.68 (1.88) 6.90 (1.71) 90.2% 0.155 15.48 (7.52) 27.7 (9.11) 82.6% 0.42
Soft 2.83 (0.76) 6.12 (0.72) 89.8% 0.243 7.19 (3.82) 16.9 (3.17) 82.2% 0.77

d = 100 d = 200
Emp 55.27 (17.7) 95.7 (20.3) 10.8% - 149.5 (40.2) 264.3 (44.9) 10.0% -
Diag 7.06 ( 0.8) 23.8 ( 2.3) 90.2% - 11.8 ( 1.3) 46.2 ( 3.6) 90.5% -
Tri 7.66 ( 1.4) 27.2 ( 3.8) 88.4% - 12.6 ( 1.9) 53.2 ( 5.1) 89.6% -

CZ ∞ 7.06 ( 0.8) 23.8 ( 2.3) 90.2% 9.16 11.8 ( 1.3) 46.2 ( 3.6) 90.5% 55.2
CP ∞ 8.40 ( 0.4) 33.2 ( 1.8) 10.8% 5.21 14.2 ( 0.8) 67.7 ( 3.3) 10.0% 39.3
CP Id 9.58 ( 0.1) 37.4 ( 0.9) 10.8% 5.16 15.7 ( 0.2) 73.8 ( 0.9) 10.0% 39.5
MMA 8.69 ( 0.4) 35.5 ( 0.4) 12.8% 38.27 - - - -
PDS 15.54 ( 7.8) 35.3 ( 7.8) 72.1% 0.08 39.3 (16.3) 87.1 (16.5) 71.8% 3.9
Hard 45.71 (18.9) 82.9 (23.0) 73.4% 1.49 136.1 (42.1) 247.0 (49.2) 61.8% 6.5
Soft 21.83 (13.3) 44.4 (13.2) 73.4% 2.93 76.5 (32.1) 138.7 (36.9) 61.8% 12.6

Table 2.6: Listed are the distances from a variety of estimators to the true Σ0 having a
diagonal of 1 and off-diagonal entries σi,j = Bi,jUi,j such that Bi,j ∼ Bernoulli (0.05)
and Ui,j ∼ Uniform [0.3, 0.8] with sample size n = 30, dimensions d = 25, 50, 100, 200,
and considering both multivariate Gaussian and Laplace data.
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2.5 Summary and Extensions

In this chapter, we were concerned with the recovery of an unknown sparse co-

variance matrix through the search of non-asymptotic confidence sets constructed

via concentration inequalities for a best estimator. This approach was shown to

give desirable convergence results in the case of log-concave measures as well as

numerical performance similar and often superior to past approaches both in the

log-concave and sub-exponential settings. While our focus was on sparsity, the

generic procedure of searching the confidence set with some criterion in mind can

be applied in much more generality. Given some assumed form or property of the

unknown true covariance matrix, a similar search procedure may be formulated to

recover such matrices.

Our method is similar to the penalization estimators such as lasso in the sense

that the parameter α can be tweaked to determine the amount of sparsity to

allow. However, unlike some of the complicated optimizations surrounding lasso

penalization, our estimator is fast to compute even in high dimensions where such

complicated optimization steps required by lasso penalties can be computationally

intractable. This was the case with the majorize-minimization algorithm, which

became intractably slow when d = 200. The majority of the compute time of our

method is delegated to choosing an optimal α via cross-validation. A more clever

implementation of this procedure, or merely reusing past values of α, will drastically

decrease the computation time.

As was mentioned in the introduction, the empirical covariance is known in

cases of sparsity and high dimensionality to be a poor estimator. We nevertheless

chose it as our starting point for the search procedure as its form, being a sum

of independent and identically distributed random variables, fits nicely into the

concentration paradigm. However, this does not imply that other starting points

should not be considered. Constructing concentration inequality based confidence

sets about more complicated estimators may not be straightforward. But, if some

such set can be constructed, then applying our search technique will most likely

result in even better estimates of the true covariance matrix.

Even with starting at the empirical covariance matrix, the zeroing method of

Section 2.2.1 was shown in the numerical simulations to have superior performance

in support recovery when compared with other methods. It is feasible to believe that

a hybrid method is possible where the zeroing method is used to recover the support

of Σ0 followed by some other technique for improving upon the non-zero entries.
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2.A. PROOFS

2.A Proofs

Proof of Proposition 2.3.5. From the derivation in Section 2.2, we have that

P

(∥∥∥Σ̂sp − Σ0

∥∥∥1/2

p
≥ E

∥∥∥Σ̂emp − Σ0

∥∥∥1/2

p
+ 2rα

)
≤ α

for any Σ̂sp such that ‖Σ̂sp − Σ̂emp‖ ≤ rα. Writing Z =
∥∥∥Σ̂emp − Σ0

∥∥∥
p

and squaring

and rearranging the terms gives,

P(Z ≥ EZ + 4rα(EZ)1/2 + 4r2
α)

= P
(
Z ≥ EZ

(
1 + 4rα(EZ)−1/2 + 4r2

α(EZ)−1
))

= P
(
Z ≥ EZ

(
1 + 2rα(EZ)−1/2

)2
)
≤ α

Given the standard convergence result for the empirical covariance matrix that

E‖Σ̂emp − Σ0‖p = O(n−1/2) and our definition of rα = O(n−1/2
√
− logα), we now

have that

P

(∥∥∥Σ̂sp − Σ0

∥∥∥
p
≥ O

(
n−1/2(1 + n−1/4

√
− logα)2

))
≤ α,

which holds for any Σ̂sp such that ‖Σ̂sp − Σ̂emp‖ ≤ rα.

Proof of Proposition 2.3.6. Let Σ̂? = {σ̂i,j1 [σi,j 6= 0]} be the result of a perfect

zeroing of the empirical covariance estimate. That is, Σ̂? has support identical to the

true Σ0 and non-zero entries that coincide with Σ̂emp. Furthermore, let Σ̃ be some

other overly-sparse covariance estimator resulting from zeroing entries in Σ̂emp, but

with more zeros than Σ0.

P
(

supp(Σ̂sp) 6= supp(Σ0)) =

= P
(
‖Σ̂? − Σ̂emp‖1/2

∞ ≥ rα or ‖Σ̃− Σ̂emp‖1/2
∞ ≤ rα

)
= P

(
‖Σ̂? − Σ̂emp‖1/2

∞ ≥ rα

)
+ P

(
‖Σ̃− Σ̂emp‖1/2

∞ ≤ rα

)
, (2.A.1)

which, assuming a large enough sample size n, are the two mutually exclusive events

that the estimator with correct support Σ̂? is not in the ball of radius rα and that a

sparser estimator Σ̃ is in the ball.

For the first term of Equation 2.A.1, we have

P

(∥∥∥Σ̂? − Σ̂emp
∥∥∥1/2

∞
≥ rα

)
≤ P

(
‖Σ̂? − Σ0‖1/2

∞ + ‖Σ̂emp − Σ0‖1/2
∞ ≥ rα

)
≤ P

(
‖Σ̂? − Σ0‖1/2

∞ ≥ rα/2
)

+ P
(
‖Σ̂emp − Σ0‖1/2

∞ ≥ rα/2
)

= (I) + (II)
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For (II), we have that E‖Σ̂emp − Σ0‖ = O(n−1/2). Let Z = ‖Σ̂emp − Σ0‖1/2
∞ for

simplicity of notation. Then, using the concentration result already established for

Lipschitz functions of log-concave measures,

(II) = P (Z ≥ rα/2)

= P (Z ≥ EZ + (rα/2− EZ))

≤ exp
(
−n(rα/2− EZ)2/2c0

)
[
exp

(
−n(−rαEZ + (EZ)2)/2c0

)] [
exp

(
−nr2

α/2c0

)]1/4 ≤ Cα1/4

for some positive C = o(1) as EZ = O(n−1/4) and rα = O(n−1/2) making the

expression in the first exponent −n(−rαEZ + (EZ)2)/2c0 = O(n1/4 − n1/2).

For (I), applying the Gershgorin circle theorem (Iserles, 2009) to the operator

norm gives

(I) ≤ P

((
max
i=1,...,d

∑d
j=1|σ̂i,j − σi,j|1 [σi,j 6= 0]

)1/2

≥ rα/2

)

≤ P

(
max

i,j=1,...,d
|σ̂i,j − σi,j|1/2|suppcol(Σ0)|1/2 ≥ rα/2

)
where suppcol(Σ) = maxj=1,...,d|{(i, j) : σi,j 6= 0}| is the maximal number of non-zero

entries in any given column. From Proposition 2.C.5, we have that ‖Σ̂emp−Σ0‖1/2
2 is

Lipschitz with constant n1/2. As the squared Frobenius norm is equal to the sum of

the squares of the entries of the matrix, we in turn have that the entries |σ̂i,j−σi,j|1/2

are also Lipschitz with constant n1/2. As the maximum of d2 Lipschitz functions is

still Lipschitz, we get similarly to case (II) that (I) ≤ Cαε for some ε > 0.

For the second term of Equation 2.A.1, let supp(Σ̃) ⊂ supp(Σ0). Then, there

exists a pair of indices (i0, j0) ∈ supp(Σ0) such that (i0, j0) /∈ supp(Σ̃).

P
(
‖Σ̃− Σ̂emp‖1/2

∞ ≤ rα

)
≤ P

(
max
i=1,...,d

d∑
j=1

σ̂2
i,j1 [σ̃i,j = 0] ≤ r4

α

)

≤ P

(
max
i=1,...,d

d∑
j=1

σ̂2
i,j1 [σi,j = 0] + σ̂2

i0,j0
≤ r4

α

)
≤ P

(
σ̂i0,j0 ≤ r2

α

)
We have that if σi,j 6= 0 then |σi,j| > δ > 0. Hence, σ̂i0,j0 = (σ̂i0,j0 − σi0,j0) + σi0,j0 ≥
op(n

−1/2) + δ. Meanwhile, rα = O(n−1/2). Thus, P (σ̂i0,j0 ≤ r2
α)→ 0 as n→∞.
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2.B Concentration Results

2.B.1 Concentration results for log-concave measures

Gaussian concentration for log-concave measures is established via the following theo-

rems. In short, Theorem 2.B.2 states that log-concave measures satisfy a logarithmic

Sobolev inequality, which bounds the entropy of the measure; see Definition 2.B.1.

Logarithmic Sobolev inequalities were first introduced in Gross (1975), and this

result is due to Bakry and Émery (1984). Following that, Theorem 2.B.3 links the

logarithmic Sobolev inequality with Gaussian concentration. Finally, Corollary 2.B.4

extends this Gaussian concentration to product measures whose individual compo-

nents satisfy logarithmic Sobolev inequalities in a dimension-free way due to the

subadditivity of the entropy.

Definition 2.B.1 (Entropy). For a probability measure µ on a measurable space

(Ω,F) and for any non-negative measurable function f on (Ω,F), the entropy is

Entµ (f) =

∫
f log fdµ−

(∫
fdµ

)
log

(∫
fdµ

)
.

Theorem 2.B.2 (Ledoux (2001), Theorem 5.2). Let µ be strongly log-concave on

Rd for some c > 0. Then, µ satisfies the logarithmic Sobolev inequality. That is, for

all locally Lipschitz f : Rd → R,

Entµ
(
f 2
)
≤ 2

c

∫
|∇f |2dµ.

Theorem 2.B.3 (Ledoux (2001), Theorem 5.3). If µ is a probability measure on

Rd such that Entµ (f 2) ≤ 2
c

∫
|∇f |2dµ, then µ has Gaussian concentration. That is,

Let X ∈ Rd be a random variable with law µ. Then, for all 1-Lipschitz functions

φ : Rd → R and for all r > 0,

P (φ(X) ≥ Eφ(X) + r) ≤ e−cr
2/2.

Corollary 2.B.4 (Ledoux (2001), Corollary 5.7). Let X1, . . . , Xn ∈ Rd have mea-

sures µ1, . . . , µn, which are all strongly log-concave with coefficients c1, . . . , cn. Let

ν = µ1 ⊗ . . .⊗ µn be the product measure on Rd×n. Then,

Entν
(
f 2
)
≤ 2

mini ci

∫
|∇f |2dν.
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2.B.2 Concentration results for bounded random variables

The following results can be found in more depth in Giné and Nickl (2016) Section

3.3.4 and specifically in Example 3.3.13 (a). Corollary 2.3.7 is effectively a more

general version of Hoeffding’s Inequality. To establish the corollary, we begin with

the definition of functions of bounded differences.

Definition 2.B.5 (Functions of Bounded Differences). A function f : Rd×n → R is

of bounded differences if

sup
xi,x′i,xj∈Rd,j 6=i

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci

Then, Gaussian concentration can be established for functions of bounded differ-

ences by the following theorem.

Theorem 2.B.6. Let X1, . . . , Xn ∈ Rd and Z = f(X1, . . . , Xn) where f has bounded

differences with c =
∑n

i=1 ci. Then, for all r > 0,

P (Z ≥ EZ + r) ≤ e−2r2/c2 .

2.B.3 Concentration results for sub-exponential measures

The following exposition can be found in more details in Section 5.3 of Ledoux

(2001). In order to achieve the sub-exponential concentration inequality utilized in

Section 2.3.3, the role of the logarithmic Sobolev inequality from the log-concave

measure setting is replaced with a modified logarithmic Sobolev inequality. That is, a

probability measure µ on the Borel sets of some metric space (X, d) is said to satisfy

such an inequality if there exists a real valued β(ρ) ≥ 0 such that for any f with

‖∇f‖∞ ≤ ρ and
∫

efdµ ≤ ∞ that

Entµ(ef ) ≤ β(ρ)

∫
|∇f |2efdµ

where Entµ(·) is the entropy of the measure µ from Definition 2.B.1.

Given a measure µ that satisfies a modified logarithmic Sobolev inequality, it

can be shown that this measure also has sub-exponential concentration as in the

conclusion of Corollary 2.3.9. The final link comes from Theorem 5.14 from Ledoux

(2001), which states that if a measure µ on the Borel sets of some metric space

satisfies the Poincaré inequality for some fixed C > 0,

Var (f) ≤ C

∫
|∇f |2dµ
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then it also satisfies the modified logarithmic Sobolev inequality for any function f

such that ‖∇f‖∞ ≤ ρ ≤ 2/
√
C with

β(ρ) =
C

2

(
2 + ρ

√
C

2− ρ
√
C

)2

e
√

5Cρ.

2.C Derivations of Lipschitz constants

The following lemmas and propositions establish that specific functions used in the

construction of confidence sets are, in fact, Lipschitz functions. This allows such

functions to be used in the context of the concentration inequalities of the previous

section.

Lemma 2.C.1. Let A and B be two d×d real valued symmetric non-negative-definite

matrices. Then,

‖A+B‖1 = ‖A‖1 + ‖B‖1

where ‖·‖1 is the trace class norm.

Proof. By definition, ‖A‖1 = tr
(
(A∗A)1/2

)
. If A is symmetric and non-negative-

definite, then (A∗A)1/2 = A. Hence, if A and B are symmetric and positive-definite,

then so is A+B. Indeed, if A = AT and B = BT then A+B = AT +BT = (A+B)T.

Also, if for all x ∈ Rd we have xTAx ≥ 0 and xTBx ≥ 0, then xT(A + B)x =

xTAx+ xTBx ≥ 0. Therefore,

‖A+B‖1 = tr (A+B) = tr (A) + tr (B) = ‖A‖1 + ‖B‖1.

Proposition 2.C.2 (Lipschitz for p = 1). Assume that X1, . . . , Xn ∈ Rd and that

EXi = 0 for i = 1, . . . , n. The function φ : Rd×n → R defined as

φ(X1, . . . , Xn) =

∥∥∥∥∥ 1

n

n∑
i=1

XXT

∥∥∥∥∥
1/2

1

is Lipschitz with constant n−1/2 with respect to the Euclidean metric d(2,2)(X,Y) =(∑n
i=1‖Xi − Yi‖2

`2

)1/2
.

Proof. Let X1, . . . , Xn, Y1, . . . , Yn ∈ Rd with EXi = EYi = 0 for all i and denote
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X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). Making use of Lemma 2.C.1, we have

n(φ(X)− φ(Y))2 =

∥∥∥∥∥
n∑
i=1

XiXi
T

∥∥∥∥∥
1

+

∥∥∥∥∥
n∑
i=1

YiYi
T

∥∥∥∥∥
1

− 2

∥∥∥∥∥
n∑
i=1

XiXi
T

∥∥∥∥∥
1/2

1

∥∥∥∥∥
n∑
i=1

YiYi
T

∥∥∥∥∥
1/2

1

=
n∑
i=1

(
‖Xi‖2

`2 + ‖Yi‖2
`2

)
− 2

[(
n∑
i=1

‖Xi‖2
`2

)(
n∑
i=1

‖Yi‖2
`2

)]1/2

=
n∑
i=1

(
‖Xi‖2

`2 + ‖Yi‖2
`2

)
− 2

[
n∑

i,j=1

‖Xi‖2
`2‖Yj‖

2
`2

]1/2

=
n∑
i=1

(
‖Xi‖2

`2 + ‖Yi‖2
`2

)
−

− 2

[∑
i<j

(
‖Xi‖2

`2‖Yj‖
2
`2 + ‖Xj‖2

`2‖Yi‖
2
`2

)
+

n∑
i=1

‖Xi‖2
`2‖Yi‖

2
`2

]1/2

≤
n∑
i=1

(
‖Xi‖2

`2 + ‖Yi‖2
`2

)
−

− 2

[
2
∑
i<j

(‖Xi‖`2‖Yj‖`2‖Xj‖`2‖Yi‖`2) +
n∑
i=1

‖Xi‖2
`2‖Yi‖

2
`2

]1/2

≤
n∑
i=1

(
‖Xi‖2

`2 + ‖Yi‖2
`2

)
− 2

n∑
i=1

‖Xi‖`2‖Yi‖`2

≤
n∑
i=1

(‖Xi‖`2 − ‖Yi‖`2)
2

≤
n∑
i=1

‖Xi − Yi‖2
`2

The inequality above arises due to the fact that (‖Xi‖`2‖Yj‖`2 − ‖Xj‖`2‖Yi‖`2)
2 ≥ 0,

and thus ‖Xi‖2
`2‖Yj‖

2
`2 + ‖Xj‖2

`2‖Yi‖
2
`2 ≥ 2‖Xi‖`2‖Yj‖`2‖Xj‖`2‖Yi‖`2

The next two lemmas are used to prove the Lipschitz constant for the p-Schatten

norms with p = 2 and p = ∞, respectively. The first lemma is reminiscent of the

Cauchy-Schwarz inequality in the setting of the 2-Schatten norm.

Lemma 2.C.3. Let X1, . . . , Xn, Y1, . . . , Yn ∈ Rd. Then, for the Frobenius norm,∥∥∥∥∥
n∑
i=1

XiYi
T

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑
i=1

XiXi
T

∥∥∥∥∥
1/2

2

∥∥∥∥∥
n∑
i=1

YiYi
T

∥∥∥∥∥
1/2

2

.

Proof. For any matrix M ∈ Rd×d, we have that ‖M‖2
2 = tr

(
MMT

)
. Hence, starting

from the left hand side of the desired inequality and applying the Cauchy-Schwarz
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inequality gives us∥∥∥∥∥
n∑
i=1

XiYi
T

∥∥∥∥∥
2

= tr

(
n∑

i,j=1

XiYi
TYjXj

T

)1/2

=

(
n∑

i,j=1

〈Xi, Xj〉 〈Yi, Yj〉

)1/2

≤

( n∑
i,j=1

〈Xi, Xj〉2
)1/2( n∑

i,j=1

〈Yi, Yj〉2
)1/2

1/2

≤

tr

(
n∑

i,j=1

XiXi
TXjXj

T

)1/2

tr

(
n∑

i,j=1

YiYi
TYjYj

T

)1/2
1/2

≤

∥∥∥∥∥
n∑
i=1

XiXi
T

∥∥∥∥∥
1/2

2

∥∥∥∥∥
n∑
i=1

YiYi
T

∥∥∥∥∥
1/2

2

Lemma 2.C.4. Let X1, . . . , Xn, Y1, . . . , Yn ∈ Rd. Then, for the operator norm,∥∥∥∥∥
n∑
i=1

XiYi
T

∥∥∥∥∥
∞

≤

∥∥∥∥∥
n∑
i=1

XiXi
T

∥∥∥∥∥
1/2

∞

∥∥∥∥∥
n∑
i=1

YiYi
T

∥∥∥∥∥
1/2

∞

.

Proof. Using the definition of the operator norm and the Cauchy-Schwarz inequality,

we have that∥∥∥∥∥
n∑
i=1

XiYi
T

∥∥∥∥∥
∞

= sup
v∈Rd, ‖v‖`2=1

n∑
i=1

〈Xi, v〉 〈Yi, v〉

≤

(
sup

v∈Rd, ‖v‖`2=1

n∑
i=1

〈Xi, v〉2 sup
u∈Rd, ‖u‖`2=1

n∑
i=1

〈Yi, u〉2
)1/2

=

∥∥∥∥∥
n∑
i=1

XiXi
T

∥∥∥∥∥
1/2

∞

∥∥∥∥∥
n∑
i=1

YiYi
T

∥∥∥∥∥
1/2

∞

.

Proposition 2.C.5 (Lipschitz for p = 2 or p =∞). Assume that X1, . . . , Xn ∈ Rd

and that EXi = 0 for i = 1, . . . , n. Let p ∈ [2,∞]. The function φ : Rd×n → R
defined as

φ(X1, . . . , Xn) =

∥∥∥∥∥ 1

n

n∑
i=1

XiXi
T

∥∥∥∥∥
1/2

p
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is Lipschitz with constant n−1/2 with respect to the Euclidean metric d(2,2)(X,Y) =(∑n
i=1‖Xi − Yi‖2

`2

)1/2
.

Proof. To establish that φ is Lipschitz with the desired constant, we proceed by

bounding the Gâteaux derivative. Let p ∈ {2,∞}. It is conjectured in the paragraph

below that this proof can be expanded to all values of p ∈ [1,∞] if a little more thought

is put into the supporting lemmas. For h ∈ R and any X1 . . . , Xn, Y1, . . . , Yn ∈ Rd

such that ‖
∑n

i=1XiXi
T‖p 6= 0 and ‖

∑n
i=1 YiYi

T‖p 6= 0,

√
ndφ(X1, . . . , Xn;Y1, . . . , Yn) =

= lim
h→0


∥∥∥∑n

i=1(Xi + hYi)(Xi + hYi)
T
∥∥∥
p
−
∥∥∑n

i=1XiXi
T
∥∥
p

2
∥∥∑n

i=1XiXi
T
∥∥1/2

p

(∑n
i=1‖hYi‖

2
`2

)1/2


≤ lim

h→0

∥∥∑n
i=1

(
hYiXi

T + hXiYi
T + h2YiYi

T
)∥∥

p

2
∥∥∑n

i=1XiXi
T
∥∥1/2

p

(∑n
i=1‖hYi‖

2
`2

)1/2


≤

∥∥∑n
i=1

(
YiXi

T +XiYi
T
)∥∥

p

2
∥∥∑n

i=1XiXi
T
∥∥1/2

p

(∑n
i=1‖Yi‖

2
`2

)1/2

≤

∥∥∑n
i=1XiYi

T
∥∥
p∥∥∑n

i=1XiXi
T
∥∥1/2

p

∥∥∑n
i=1 YiYi

T
∥∥1/2

p

where we used the facts that, for M ∈ Rd×d, ‖M‖p = ‖MT‖p, that
∑n

i=1‖Yi‖
2
`2 =∑n

i=1‖YiY T
i ‖p ≥ ‖

∑n
i=1 YiY

T
i ‖p, and that∥∥∥∥∥

n∑
i=1

(
YiXi

T +XiYi
T
)∥∥∥∥∥

p

≤ 2

∥∥∥∥∥
n∑
i=1

XiYi
T

∥∥∥∥∥
p

.

Applying Lemma 2.C.3 in the p = 2 case and Lemma 2.C.4 in the p =∞ case shows

that
√
ndφ(·) ≤ 1 for all Xi with

∥∥∑n
i=1 XiXi

T
∥∥

2
6= 0. With application of the Mean

Value Theorem, we have the desired Lipschitz constant.

In the case that
∥∥∑n

i=1XiXi
T
∥∥
p

= 0, we also achieve the same Lipschitz constant.

Since, XiXi
T is positive-definite, the norm can only be zero if all Xi = (0, . . . , 0)T.

Hence, for any Y1, . . . , Yn ∈ Rd,

√
n|φ(X1, . . . , Xn)− φ(Y1, . . . , Yn)| =

=

∥∥∥∥∥
n∑
i=1

YiYi
T

∥∥∥∥∥
1/2

p

≤

(
n∑
i=1

‖Yi‖2
`2

)1/2

=

(
n∑
i=1

‖Xi − Yi‖2
`2

)1/2

.
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It is conjectured that the function φ(·) is 1-Lipschitz for all p ∈ [1,∞], which

follows immediately if Lemmas 2.C.3 and 2.C.4 can be expanded to similar results

for all p ∈ [1,∞].

Conjecture 2.C.6. Let X1, . . . , Xn, Y1, . . . , Yn ∈ Rd. Then, for any p ∈ [1,∞],∥∥∥∥∥
n∑
i=1

XiYi
T

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
i=1

XiXi
T

∥∥∥∥∥
1/2

p

∥∥∥∥∥
n∑
i=1

YiYi
T

∥∥∥∥∥
1/2

p

.
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Chapter 3

Concentration for covariance

operators

3.1 Introduction

Functional data spans many realms of applications from medical imaging (Jiang

et al., 2016) to speech and linguistics (Pigoli et al., 2014, 2015) to the intricate

movements of DNA molecules (Panaretos et al., 2010). General inference techniques

for functional data are one area of analysis that has received much attention in recent

years from the construction of confidence sets to other topics such as k-sample tests,

classification, and clustering of functional data. Most testing methodology treats

the data as continuous L2 valued functions and subsequently reduces the problem

to a finite dimensional one through expansion in some orthogonal basis such as the

often utilized Karhunen-Loève expansion (Horváth and Kokoszka, 2012). However,

inference making use of non-Hilbert norms has not been addressed adequately.

In this chapter, we propose a novel methodology for performing fully functional

inference through the application of concentration inequalities. This is furthermore

a single methodology applicable to a wide variety of inference problems; for general

concentration of measure results, see Ledoux and Talagrand (1991); Steele (1997);

Ledoux (2001); Milman and Schechtman (2009); Boucheron et al. (2013); Habib et al.

(2013); Giné and Nickl (2016). Special emphasis is given to inference on covariance

operators, which offers a fruitful way to analyze functional data.

Imagine multiple samples of speech data collected from multiple speakers. Each

speaker will have his or her own sample covariance operator taking into account the

unique variations of his or her speech and language. An exploratory researcher may

want to find natural clusters amidst the speakers perhaps corresponding to gender,

language, or regional accent. Meanwhile, a linguist studying the similarities between

languages may want to test for the equality of such covariances. A computer scientist
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may need to implement an algorithm that when given speech data quickly identifies

what language is being spoken and furthermore parses the sound clip and identifies

each individual phoneme in order to process the speech into text. Our proposed

method has the versatility to yield statistical tests that answer all of these questions

as well as others.

Past methods for analyzing covariance operators (Panaretos et al., 2010; Fremdt

et al., 2013) rely on the Hilbert-Schmidt setting for their inference. However, the

recent work of Pigoli et al. (2014) argues that the use of the Hilbert-Schmidt metric

ignores the geometry of the covariance operators and that more statistical power

can be gained by using alternative metrics. The main drawback of their research is

their reliance on permutation based tests, which are computationally intensive and,

in some instances, incapable of achieving decent accuracy in a sensible amount of

time. Even more, in the age of big data, p-values less than 1/1000 may be desired

which are computationally impossible with this method; see Figure 3.1. Hence,

we approach such inference for covariance operators by using a non-asymptotic

dimension free concentration of measure approach, which can incorporate metrics

based on arbitrary norms. This allows us to work in the full generality of Banach

spaces where we can choose those norms which provide the most statistical power to

our inference. This has previously been used in nonparametric statistics and machine

learning, sometimes under the name of Rademacher complexities (Koltchinskii, 2001,

2006; Bartlett et al., 2002; Bartlett and Mendelson, 2003; Giné and Nickl, 2010b;

Arlot et al., 2010; Lounici and Nickl, 2011; Kerkyacharian et al., 2012; Fan, 2011).

These concentration inequalities provide a natural way to construct non-asymptotic

confidence regions and, subsequently, statistical tests. Our single approach can

classify as well as k-nearest neighbours, cluster as well as k-means, and can test for

equality of covariance among multiple samples as well as the permutation test from

Pigoli et al. (2014) and Cabassi et al. (2017). These methods are currently available

in the R package fdcov (Cabassi and Kashlak, 2016).

In this chapter, Section 3.2 details how Talagrand’s concentration inequality in

the Banach space setting can be used to construct a confidence set similar to as was

done for covariance matrices in the previous chapter. Section 3.3 introduces three

different inferential techniques that stem from these concentration based confidence

sets. They include a k sample test for equality of covariance, a covariance operator

classifier, and an expectation-maximization style clustering algorithm for covariance

operators. Section 3.4 takes the three mentioned methodologies and applies them to

both simulated and phoneme data. In the appendices of this chapter, Appendix 3.A

approaches the construction of the confidence set from Section 3.2 in more generality.

Appendix 3.B details the weak variance calculations in a number of different settings.

Appendix 3.C provides an exposition of how to think about tensor products in
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Figure 3.1: Plotted are the run times against the accuracy of the permutation test for
testing for equality of covariance given five samples of 30 curves each. The procedure
requires over 50 minutes of computation time to get a standard deviation of around
1% for the estimated p-value. Adjacent to each point is the number of times slower
the permutation test is when compared to the concentration test. The average run
times were clocked on an Intel(R) Core(TM) i3-3217U CPU @ 1.80GHz.

the Hilbert space, Banach space, and finite dimensional settings. Appendix 3.D

briefly investigates the consequences of applying our statistical tests to data with

noise added and data from heavy tailed distributions. As confidence sets based on

concentration inequalities are often larger than desired, Appendix 3.E proposes how

the sizes of confidence sets constructed via Talagrand’s concentration inequality can

be improved with a cross-validation procedure.

3.2 Confidence sets for covariance operators

To construct a confidence set for covariance operators, we let our functional data

fi ∈ L2(I) and f⊗2
i = fi⊗fi ∈ Op(L2), where Op(L2) is the Hilbert space of bounded

linear operators mapping L2 to L2, such that (fi ⊗ fi)φ = 〈fi, φ〉 fi for some φ ∈ L2.

The following construction of our confidence set is based on Talagrand’s concentration

inequality (Talagrand, 1996a) with explicit constants, which can be thought of as a

more general version of Bernstein’s inequality (Bernstein, 1924)(Boucheron et al.,

2013, Chapter 2). This inequality is typically stated for empirical processes (Giné and

Nickl, 2016, Theorem 3.3.9 and 3.3.10 ), but applies to random variables with values

in a separable Banach space (B, ‖·‖B) as well by simple duality arguments (Giné and

Nickl, 2016, Example 2.1.6). More details on this construction in the general Banach
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space setting can be found in Appendix 3.A. For some desired p-Schatten norm, ‖·‖p,
with p ∈ [1,∞) and with conjugate q = p/(p− 1), we require the following terms,

which correspond to the distance between the empirical covariance estimate and the

true covariance operator and a weak variance term for this random variable:

Z =

∥∥∥∥∥ 1

n

n∑
i=1

(fi − f̄)⊗ (fi − f̄)− E (fi ⊗ fi)

∥∥∥∥∥
p

=
∥∥∥Σ̂− Σ

∥∥∥
p

σ2 =
1

n

n∑
i=1

sup
‖Π‖q≤1

E
〈
f⊗2
i − Ef⊗2

i ,Π
〉2
.

In the above equation, the supremum is to be taken over a countably dense subset

of the unit ball of Π ∈ Op(L2). For some U ≥ ‖f⊗2
i ‖

2
L2 and vn = 2UEZ + nσ2, the

initial level (1− α) confidence set constructed is

Cn,1−α =
{

Σ : Z ≤ EZ +
√
−2vn log(2α)/n− U log(2α)/(3n)

}
.

To make this confidence set usable on real data, Rademacher random variables,

ε1, . . . , εn, defined in Section 1.1.5 are incorporated. The Rademacher average defined

as Rn = n−1
∑n

i=1 εi((fi − f̄)⊗2 − Σ̂), will be used as a proxy for the unknown

EZ where the εi for i = 1, . . . , n are independent and identically distributed and

furthermore independent of the fi. This usage is justified by the symmetrization

inequality also detailed in Appendix 3.A and further discussed in Chapter 4. Note

that Rn is also in Op(L2), because for any φ ∈ L2(I) and for some M ∈ R,

‖Rnφ‖L2 =

∥∥∥∥∥
(

1

n

n∑
i=1

εi((fi − f̄)⊗2 − Σ̂)

)
φ

∥∥∥∥∥
L2

≤

≤ 1

n

n∑
i=1

|εi|
∥∥∥((fi − f̄)⊗2 − Σ̂

)
φ
∥∥∥
L2
≤M‖φ‖L2

since ((fi − f̄)⊗2 − Σ̂) is a bounded linear operator and |εi| = 1.

Next we look at the bound U . In the case that there exists a fixed c ∈ R
with ‖fi‖L2 ≤ c for all i corresponding to a physical bound on the energy of fi,

‖f⊗2
i ‖p = ‖fi‖2

L2 ≤ c2 = U . It will be determined in Appendix 3.B that U ≥ σ

in this case. It may be possible to select U via a cross-validation procedure. In

general, setting U = σ gives good experimental results when fi is Gaussian as will

be discussed in later sections. This results in vn ≈ σ2/n. For any p ∈ [1,∞) and

α ∈ [0, 1/2], the proposed (1− α)-confidence set for covariance operators is

Cn,1−α =

{
Σ : ‖Σ̂− Σ‖p ≤ ‖Rn‖p + σ

√
−2 log(2α)

n
− σ log(2α)

3n

}
. (3.2.1)
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Figure 3.2: The empirical confidence level of the set from Equation 3.2.1 for five
different operators given a sample size of 35 curves. The black line is where the
desired and empirical levels are equal. The desired level ranges from α = 1% to
α = 10%. 10,000 replications were used to produce these curves. Most lines lie below
the black line indicating that the sets are slightly too large.

where σ depends on the distribution on the functional data. As a rule of thumb for

the choice of σ2, as shown in Appendix 3.B, is to note that σ2 ≤ ‖E(f⊗4)− Σ⊗2‖p
and to estimate this bound empirically by σ̂2. For example, when the fi are from a

Gaussian process σ̂ ≤ 21/2‖Σ‖p as explained in detail in Appendix 3.B.3. In practice,

‖Σ‖p is replaced with the consistent estimator ‖Σ̂‖p, which follows from the central

limit theorem for Banach space valued random variables.

Constructing confidence sets in this way will lead to sets that are too large. That

is, our (1− α)−confidence set may have a converge greater than the desired 1− α.

While the level increases more quickly than desired, it does not increase too quickly

to be useful as will be discussed in the applications of Section 3.3. Figure 3.2 displays

the empirical coverage for five different operators. Specifically, for the five operators

derived from the phoneme data sets of Section 3.4.1, 35 curves were generated as

random realizations of a zero mean Gaussian process with given covariance. Then, the

confidence set was constructed, and it was tested whether or not the true covariance

operator lied within this set. This was repeated 10,000 to produce the estimates in

Figure 3.2.
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3.3 Applications

3.3.1 k sample comparison

Testing for the equality of means among multiple sets of data is a common task in data

analysis. In the functional setting, there has been recent work on performing such a

test on covariance operators in order to test whether or not k sets of curves have

similar variation. Panaretos et al. (2010) propose such a method for a two sample test

on covariance operators given data from Gaussian processes and apply this method

to analyze the bending and twisting of DNA microcircles. Similarly, Fremdt et al.

(2013) propose a non-parametric two sample test on covariance operators and apply

their method to analyze egg-laying curves for fruit flies. Both of these approaches

make use of the Karhunen-Loève expansion and, hence, the underlying Hilbert space

geometry. Pigoli et al. (2014) take a comparative look at a variety of metrics to rank

their statistical power when used in a two sample permutation test and apply their

method to the analysis of samples of spoken words in five romance languages. This

permutation test is extended in Cabassi et al. (2017) and applied to exercise curves

of mice running on wheels.

Following from the results of Pigoli et al. (2014), our method uses the p-Schatten

norms with the concentration inequality based confidence sets of the previous section

to compare covariance operators. In the two sample setting, we are able to achieve

similar statistical power to that of the permutation test after proper tuning of the

coefficients in the inequalities. Furthermore, the analytic nature of the concentration

approach leads to a significant reduction in computing time, which offers an even

more significant savings for larger values of k as was already displayed in Figure 3.1.

Details on permutation tests for comparing covariance operators when k > 2 can be

found in Cabassi et al. (2017).

From the confidence set constructed in the previous section, we can devise a

test for comparing the empirical covariance operators generated from k samples of

functional data. Let the k samples be f
(1)
1 , . . . , f

(1)
n1 , . . . , f

(k)
1 , . . . , f

(k)
nk where for each

sample i and all elements j = 1, . . . , ni, f
(i)
j has common covariance Σ(i). Our goal is

to design a test for the following two hypotheses:

H0 : Σ(1) = . . . = Σ(k) H1 : ∃ i, j s.t. Σ(i) 6= Σ(j).

To achieve this, a pooled estimate of the weak variance is computed as a weighted

average of each sample’s individual weak variance in similar style to that of a

standard t-test (Casella and Berger, 2002, Chapter 8). Let the total data size be

N = n1+. . .+nk and σ2
i be the weak variance for sample i, then the pooled variance is

defined as σ2
pool = N−1

∑k
i=1 niσ

2
i . Given Gaussian data and the p-Schatten norm, for
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example, this reduces to σ2
pool = 2N−1

∑k
i=1 ni‖Σ(i)‖2

p. In practice, σ2
pool is estimated

from the data for the following confidence regions in order to have those regions only

depend on the data.

Taking inspiration from the standard method for analysis of variance (Casella

and Berger, 2002, Chapter 11), let Σ̂(i) be the empirical estimate of the covariance

operator for the ith sample, and let Σ̂ be the estimate of the covariance operator for

the total data set. Making use of the confidence sets for covariance operators from

Section 3.2 gives the rejection region

R =

f :
k∑
i=1

∥∥∥Σ̂(i) − Σ̂
∥∥∥
p
>

k∑
i=1

∥∥∥∥∥
ni∑
j=1

εi,j

(
f

(i)
j

⊗2
− Σ̂

)∥∥∥∥∥
p

+

+

√√√√ k∑
i=1

σ2
pool

ni
(−2 log 2α) +

(
k∑
i=1

σpool

ni

)
log 2α

3

 ,

which under the null hypothesis will have size no greater than the desired α.

The size of the test induced by this rejection region is significantly less than the

target size α due to the use of multiple concentration inequalities. Hence, tuning

the inequalities is required to yield a useful test. Many experiments were run on

simulated data sets generated as samples from a Gaussian process with randomly

generated covariance operators whose eigenvalues were chosen to decay at a variety

of rates. In this setting, the coefficients of 1− k−1/2 for the Rademacher term and

(k + 2)/(k + 3) for the deviation term were determined experimentally to improve

the size of the confidence region in the Gaussian process data setting:

R =

f :
k∑
i=1

∥∥∥Σ̂(i) − Σ̂
∥∥∥
p
>

(
1− 1√

k

) k∑
i=1

∥∥∥∥∥
ni∑
j=1

εi,j

(
f

(i)
j

⊗2
− Σ̂

)∥∥∥∥∥
p

+

+

(
k + 2

k + 3

)
√√√√ k∑

i=1

σ2
pool

ni
(−2 log 2α) +

(
k∑
i=1

σpool

ni

)
log 2α

3

 . (3.3.1)

The goal of these tweaked coefficients is to achieve to correct empirical size for

the rejection region. The values were determined through extensive simulation of

Gaussian process data for a variety of operators, sample sizes n, and categories k.

Ultimately, they should be used as a heuristic or a starting place for fine tuning

this method to a specific problem of interest. It may also be possible to fabricate

a data driven choice for tuning via cross-validation, which is briefly considered in

Appendix 3.E
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3.3.2 Classification of operators

Classification of functional data has been an area of heavy research over the last

two decades. James and Hastie (2001) extend linear discriminant analysis to func-

tional data and consider classifying a subject’s ethnicity given spinal bone density

measurements. Hall et al. (2001) and Glendinning and Herbert (2003) classify with

principal components for radar signal discrimination and classifying gray level images,

respectively. Ferraty and Vieu (2003) implement kernel estimators for classifying

the phoneme data that we will consider later in this chapter. General linear models

for functional data are discussed by Müller and Stadtmüller (2005) with respect to

the longevity and reproduction of medflys. Delaigle and Hall (2012) analyze the

asymptotic properties of the centroid based classifier with application to the protein

content of wheat, Australian rainfall data, and the phoneme data set. Wavelet based

classification is detailed by Berlinet et al. (2008) looking at the phoneme data and

Chang et al. (2014) looking at positron emission tomography images.

One application of our method beyond classification of functional data is the

classification of covariance operators. In the setting of speech analysis, consider

multiple speakers and multiple samples of speech from each speaker. The speech

samples can be combined into a single sample covariance operator for each speaker.

Then, our method can be employed, for example, to classify the covariance operators

by speaker gender or speaker language. Evidence that this is a fruitful approach

can be found in the analysis of Pigoli et al. (2014, 2015) where a variety of metrics

are compared for their efficacy when performing inference on covariance operators.

These articles detail the discrepancy between sample covariance operators produced

by speakers of different romance languages.

Given k possible labels and n samples of labeled data (Yi, fi) with label Yi ∈
{1, . . . , k} and observation fi ∈ L2(I), our goal is to determine the probability that

a newly observed g ∈ L2(I) belongs to label Y = j for j = 1, . . . , k. Given such a

g, the standard Bayes classifier chooses the label y = arg maxj P (Y = j | g) where

P (Y = j | g) = P (g |Y = j) P (Y = j)/P (g).

Beginning with a training set of n samples with nj samples of label j, the

sample mean of each category is computed: f̄j = n−1
j

∑
i:Yi=j

fi. The probability

P (g |Y = j) above is replaced with P
(
‖f̄j − g‖L2 > E‖f̄j − Ef̄j‖L2 + r

)
with the

goal of making a decision based on how much more f̄j differs from g than f̄j differs

from its expectation Ef̄j . Similar techniques to those in Section 3.2 are subsequently

used. Define the Rademacher sum, Rj , and the empirical weak variance, σ̂2
j , for label
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j to be, respectively,

Rj =
1

nj

∑
i:Yi=j

εi(fi − f̄j), σ̂2
j =

∥∥∥∥∥ 1

nj

∑
i:Yi=j

f⊗2
i − f̄⊗2

j

∥∥∥∥∥
p

where εi are independent and identically distributed Rademacher random variables.

The tail bound for the above probability is then

P
(
‖f̄j − g‖L2 − ‖Rj‖L2 > r

)
< exp

(
−njr2

4‖Rj‖L2U + 2σ̂2
j + 2rU/3

)
, (3.3.2)

where U is an upper bound on ‖fi‖L2 . However, this can be approximated by the

Gaussian tail exp
(
−njr2/2σ2

j

)
. In the simulations of Section 3.4.3, this approxi-

mation actually achieves a better correct classification rate on both Gaussian and

t-distributed data. This specifically works on t-distributed data despite the heavier

tails as the estimate in Equation 3.3.3 below is merely concerned with comparing

the tail bounds rather than their specific values. Consequently, the tail for every

category is underestimated in the t case, but the ratio remains valid for comparison

purposes.

Assuming uniform priors on the labels, the estimate for the probability expression

in the Bayes classifier is achieved by replacing the r on the right hand side of

Equation 3.3.2 with the observed ‖f̄j − g‖L2 − ‖Rj‖L2 . The result is

P (Y = j | g) ≈ φj(g)∑k
l=1 φl(g)

, and

φj(g) = exp

[
−nj

2

(
‖f̄j − g‖L2 − ‖Rj‖L2

σ̂j

)2
]
.

(3.3.3)

This can be extended to the case where an unlabeled observation is a collection

of curves g1, . . . , gm by replacing ‖f̄j − g‖L2 in the above expression with ‖Σ̄j − Σ̂g‖p
where Σ̄j is the sample covariance of the fi with label j and Σ̂g is the sample

covariance of the gi. The Rademacher and weak variance terms would also be

updated accordingly. The result is a classifier that incorporates the covariance

structure of the data into the decision and classifies the covariances.

3.3.3 Clustering of operator mixtures

Closely related to the problem of classification is the problem of clustering, which

we will approach by combining the concentration inequality based classification

framework of the previous section with an expectation-maximization style algorithm.

Given a sample of functional data, we want to assign one of a finite collection of labels
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to each curve. For example, in speech processing, one may want to cluster sound

clips based on the language of the speaker, or, to be discussed in Section 3.4.4, one

may want to separate unlabeled phoneme curves into clusters of similar phonemes.

There have been many recently proposed methods for clustering functional data.

Many approaches begin by constructing a low dimensional representation of the data

in some basis such as modelling the data with a B-spline basis followed by clustering

the spline representations with k-means as in Abraham et al. (2003) who apply their

method to studying acidification in the process of cheese making. A similar approach

makes use of the eigenfunctions of the covariance operator instead of B-splines and

is shown to work on online auction data (Peng and Müller, 2008). In contrast, we

will attempt to cluster functions or operators directly via a concentration of measure

approach similar to the previously described classification procedure.

Consider the same setting to the previous section of multiple observations from

multiple categories. However, now the category labels are missing. This is a functional

mixture model where each observed functional datum is a stochastic process with

one of k possible covariance operators. In the experiments of Section 3.4, the data

will be simulated from a Gaussian process. The goal is to correctly separate the

data into k sets. To achieve this, an expectation-maximization style algorithm is

implemented making use of the concentration inequality based confidence sets.

Let the observed operator data be S1, . . . , Sn ∈ Op(L2) where each Si =

cov(f
(i)
1 , . . . , f

(i)
mi) is a rank mi operator produced from mi functional observations.

Let the latent label variables be Y1, . . . , Yn ∈ {1, . . . , k}. Assuming no prior

knowledge on the proportions of data in each category, the algorithm is initial-

ized with the Jeffreys prior for the Dirichlet distribution by randomly generating

ρ
(0)
i,· = (ρ

(0)
i,1 , . . . , ρ

(0)
i,n) ∼ Dirichlet (1/2, . . . , 1/2) , the initial probability vector that

ρ
(0)
i,j = P (Yi = j | fi).

Assuming t iterations of the algorithm have completed, we have a label prob-

ability vector ρ
(t)
i,· for each of the n observations. Given this collection of vec-

tors, the expected proportions of each category can be estimated as τ
(t+1)
j =

n−1
∑n

i=1 E (1Yi=j) = n−1
∑n

i=1 ρ
(t)
i,j . Similarly, a weighted sum of the data, Σ̂

(t+1)
j , and

a weighted Rademacher sum, R
(t+1)
j , can be used to update the estimated covariance

operators for each label j:

Σ̂
(t+1)
j =

∑n
i=1 ρ

(t)
i,jSi∑n

i=1 ρ
(t)
i,j

, R
(t+1)
j =

∑n
i=1 ρ

(t)
i,jεi

(
Si − Σ̂

(t+1)
j

)
∑n

i=1 ρ
(t)
i,j

.

Lastly, a pooled weak variance is required, which is used in place of each individual

category weak variance. Otherwise, in practice, the single category with largest

variance captures all of the data points. By defining the pooled covariance operator
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as Σ̂
(t+1)
pool =

∑k
j=1 τ

(t+1)
j Σ̂

(t+1)
j , then the pooled weak variance in the Gaussian case,

for example, is estimated by 2‖Σ̂(t+1)
pool ‖p.

As a result, the label probability vectors ρ
(t)
i,· can be updated given the t + 1st

collection of estimated covariance operators, Rademacher sums, and the pooled

covariance operator. From the previous section, Equation 3.3.3 can be used to

determine ρ
(t+1)
i,j = P

(
Yi = j

∣∣∣Si, Σ̂(t+1)
1 , . . . , Σ̂

(t+1)
k

)
, the probability that observation

i belongs to the jth category. This process can be iterated until a local optimum is

reached. This iterative process has been seen to rapidly converge in practice.

3.4 Numerical experiments

3.4.1 Simulated and phoneme data

To test each of the above three applications, experiments were first run on simulated

data. These data sets were generated as zero mean observations from Gaussian or

t-distributed processes with randomly selected covariance operators. These were

selected by choosing a specific decay rate for the eigenvalues in a diagonal operator

D, by generating a random orthonormal basis U , and then combining them as

Σ = UDUT. The random orthonormal basis was generated by first randomly

generating a matrix A with independent and identically distributed standard normal

entries and then by recovering the eigenvectors of the symmetric matrix AAT to

construct U .

Secondly, the phoneme data to be tested (Ferraty and Vieu, 2003; Hastie et al.,

1995) is a collection of 400 log-periodograms for each of five different phonemes: /A/

as in the vowel of “dark”; /O/ as in the first vowel of “water”; /d/ as in the plosive

of “dark”; /i/ as in the vowel of “she”; /S/ as in the fricative of “she”. Each curve

contains the first 150 frequencies from a 32 ms sound clip sampled at a rate of 16-kHz.

A periodogram measures the density of frequencies in a signal often referred to as

the spectral density. A plot of ten of each such curves and the associated covariance

operators is displayed in Figure 3.3.

3.4.2 k sample comparison

The above confidence set in Equation 3.3.1 comparing k samples can be used to refute

the null hypothesis that all covariance operators are equal. A two sample permutation

test was performed in Pigoli et al. (2014). Given two samples of functional data,

f
(1)
1 , . . . , f

(1)
n and f

(2)
1 , . . . , f

(2)
m with associated covariance operators Σ(1) and Σ(2),
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Figure 3.3: Plots of ten log-periodogram curves for each of the five phonemes (left).
The sample covariance operators for each of the five phonemes produced from all
400 curves (right). The letters in brackets refer to where the sound is produced by
the individual phonemes.
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Figure 3.4: A power analysis for testing whether or not operator Σ(1) = Σ(γ)

comparing the permutation method (short dashed lines) with the concentration
approach (long dashed lines). The size α = 0.05 in the top plot, and α = 0.01 in
the bottom. The eigenvalues of the operators decay at a rate O(k−4). The red
circle, green triangle, and blue plus lines respectively correspond to the trace class,
Hilbert-Schmidt, and operator norms.
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Figure 3.5: A power analysis for testing whether or not operator Σ(1) = Σ(γ)

comparing the permutation method (short dashed lines) with the concentration
approach (long dashed lines). The size α = 0.05 in the top plot, and α = 0.01 in
the bottom. The eigenvalues of the operators decay at a rate O(k−2). The red
circle, green triangle, and blue plus lines respectively correspond to the trace class,
Hilbert-Schmidt, and operator norms.
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respectively, the desired hypotheses to test are

H0 : Σ(1) = Σ(2) H1 : Σ(1) 6= Σ(2).

When using a permutation test, the labels are randomly reassigned M times, and

each time, the distance between the two new covariance operators is computed. Once

aggregated over all possible permutations of the data, this procedure will return the

exact significance level of the observations with respect to the data set. In practice,

choosing a sufficiently large value for M will suffice.

A power analysis was performed between the permutation method and our

proposed concentration approach using Equation 3.3.1. Given two different operators

Σ(1) and Σ(2) and γ ≥ 0, an interpolation between the two operators is constructed

as Σ(γ) = ΠΠ∗ with

Π = (Σ(1))1/2 + γ
(
S(Σ(2))1/2 − (Σ(1))1/2

)
where S is an operator minimizing the Procrustes distance from Definition 1.1.9

between Σ(1) and Σ(2). The Procrustes distance in the operator setting is

dProc(Σ
(1),Σ(2))2 = inf

S∈U(L2(I))
‖R(1) −R(2)S‖2

2

where Σ(i) = (R(i))(R(i))∗ and U (L2(I)) is the space of unitary operators on L2(I)

(Pigoli et al., 2014).

Monte Carlo simulations were run in order to estimate the power of each test.

Two operators Σ(1) and Σ(2) with similar eigenvalue decay were compared with a

sample size n = 50 and γ ∈ {0, .1, .2, .3, .4, .5}. For each γ, 5000 samples of size n

were generated for Σ(1) and Σ(γ). Equation 3.3.1 and the permutation method (Pigoli

et al., 2014) were both implemented to estimate the empirical power.

Figures 3.4 and 3.5 display the results for operators whose eigenvalues decay at a

quartic rate, λk = O(k−4), and quadratic rate, λk = O(k−2), respectively. The short

dashed lines indicate the power of the permutation test, and the long dashed lines

indicate the power of our concentration approach. The colors red, green, and blue

and the points circle, triangle, and plus correspond to the three p-Schatten norms for

p = 1, 2,∞ being the trace, Hilbert-Schmidt, and operator, respectively. Definitions

of and details concerning these norms can be found in Section 1.1.3.

In most cases, the concentration approach is able to achieve the same power to

reject the null as does the permutation test. The notable exception is for the trace

norm when the eigenvalues decay slowly, which is the lower plot in Figure 3.5. The

added benefit to the concentration approach is the speed with which it executes.

Across all of the Monte Carlo simulations, our concentration approach ran on average
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140.7 times faster than the permutation method based on running the method with

500 permutations. This was computed by tracking the amount of computation

time each method spent while producing the plots in Figures 3.4 and 3.5, which

corresponds to 6 values of γ, 2 values of α, 3 different norms, and 5000 replications

each resulting in 180,000 function calls for both the permutation and concentration

methods. Unlike the other norms, the Hilbert-Schmidt norm can be calculated

without explicit computation of the eigenvalues and hence results in faster compute

times for all statistical methods considered. For each evaluation of the permutation

test, 500 permutations of the data were generated, which corresponds to 500 random

draws and 500 eigenvalue computations. More accuracy would require even more

permutations. In comparison, our concentration approach requires only 3k eigenvalue

computations and no random draws and hence is only dependent on the number of

samples regardless of n, the data size, or α, the test size.

The proposed k-sample test was also used to compare samples of log-periodogram

curves from the spoken phonemes /A/ and /O/ . As one can imagine, these vowels

can be hard to distinguish both by statistics and by the human ear–see Section 3.4.4

for further evidence of this–as in certain regions of the English speaking world, such

as in Canada, the vowels in “dark” and “water” are identical (Bickis, 2016). For

k ∈ {2, 3, 4, 5, 6}, k − 1 disjoint sets of 40 /A/ curves and one set of 40 /O/ curves

were randomly sampled from the data set. This was replicated 500 times, and each

time Equation 3.3.1 was used to decide whether or not the k covariance operators

were equivalent at the α = 0.05 level. The resulting estimated statistical power for

each k is

k 2 3 4 5 6

Power 0.00 0.018 0.228 0.656 0.936

In the null setting, the above experiment was rerun except that every disjoint set of

curves came from the /A/ set. The resulting experimentally computed test sizes are

k 2 3 4 5 6

Size 0.00 0.00 0.00 0.004 0.072

3.4.3 Binary and trinary classification

Our concentration of measure (CoM) method is implemented on covariance operators

making use of the trace norm ‖·‖tr where for a covariance operator Σ with eigenvalues

{λi}∞i=1, ‖Σ‖tr =
∑n

i=1|λi|. The trace norm was chosen based on the analysis of the

preceding section as well as that of Pigoli et al. (2014) where it achieved the best

performance when compared with the other p-Schatten norms. The CoM approach to

classification of operators is tested in a variety of simulations against other standard
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approaches to functional classification. The methods used for comparison are k-

nearest neighbours (Ferraty and Vieu, 2006), classification using kernel estimators

(Ferraty and Vieu, 2003), general linear model (Müller and Stadtmüller, 2005), and

regression trees (Breiman et al., 1984).

The first simulation asks each method to classify observed zero mean Gaussian

process data or zero mean t-process data with 4 degrees of freedom. The two

covariance operators in question, Σ1 and Σ2, are the sample covariances of the male

and of the females of the Berkeley growth curve data (Ramsay and Silverman, 2005).

In particular, n collections of k curves were generated from each of Σ1 and Σ2 as a

training set, and m collections of k curves were generated as a test set. The CoM

method was trained on the set of n sample covariances and used to classify each

of the m test covariances. The remaining classification methods were trained and

tested in two separate ways: By treating each sample covariance as a function and

classifying as usual, and by training on all n× k observations and testing each of the

m collections by classifying each constituent curve individually and taking a majority

vote with ties settled by a uniform random draw.

For group sizes k = 1, 2, 4, 8, 16, one hundred simulations were run with n = 100

sets of k training curves. To compare the accuracy of each approach m = 100 sets of

k testing curves were generated for each operator. The accuracy of each method is

tabulated in Table 3.1.

The concentration method performed well against the alternatives. Its perfor-

mance was on par with the kernel method applied to each covariance operator as

a function. Our method was only consistently outperformed by the kernel method

implementing the majority vote approach, but still displays competitive performance

when taking the standard deviations listed in brackets into consideration. However,

the two operators in question have very similar weak variances. The next simulation

demonstrates how the concentration method adapts naturally when the variances of

each label significantly differ.

Continuing from the previous simulation, a third operator is constructed from

Σ1 and Σ2 by averaging these two and then scaling up the non-principal eigenvalues

by a factor of 5. This, in some intuitive sense, creates a third operator between

the first two, but with higher variance. The simulation is carried out precisely as

before, but incorporating all three operators. In this setting, our concentration

approach demonstrates the best performance in the Gaussian setting and still

maintains respectable performance in the t-distributed setting when taking the

standard deviations into account. The results are listed in Table 3.2.

These five methods tested on simulated data were also tested against phoneme

data. Across 50 iterations, each set of 400 curves was partitioned at random into an

100 curve training set and a 300 curve testing set. The five classifiers were trained
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Gaussian
k 1 2 4 8 16

CoM 62 (5) 62 (5) 76 (8) 87 (6) 96 (3)
KNN 52 (4) 44 (4) 57 (4) 76 (4) 91 (2)
KNN′ · 47 (3) 59 (4) 74 (3) 89 (2)
Kernel 65 (4) 64 (5) 75 (3) 87 (3) 96 (2)
Kernel′ · 70 (4) 82 (2) 92 (2) 99 (1)
GLM 51 (4) 62 (4) 74 (4) 86 (2) 94 (2)
GLM′ · 50 (4) 50 (3) 50 (4) 50 (4)
Tree 57 (4) 54 (4) 59 (3) 66 (4) 75 (3)
Tree′ · 55 (4) 59 (4) 60 (5) 60 (9)

t-distributed
k 1 2 4 8 16

CoM 59 (5) 62 (5) 75 (7) 86 (6) 95 (4)
KNN 42 (4) 45 (4) 58 (4) 76 (3) 92 (2)
KNN′ · 45 (4) 58 (4) 72 (3) 89 (3)
Kernel 65 (4) 64 (5) 75 (4) 87 (2) 96 (2)
Kernel′ · 68 (4) 80 (3) 92 (2) 99 (1)
GLM 50 (3) 62 (3) 74 (4) 86 (3) 94 (2)
GLM′ · 50 (3) 50 (3) 51 (4) 50 (3)
Tree 54 (4) 54 (4) 59 (3) 67 (3) 75 (3)
Tree′ · 54 (4) 57 (4) 59 (5) 57 (6)

Table 3.1: A comparison of the performances of five classification methods including
our concentration of measure approach (CoM), k-nearest-neighbours (KNN), kernel
method (Kernel), generalized linear model (GLM), and regression trees (Tree), on
a binary classification problem. The first entry for each method corresponds to
classifying the covariance operators as functions. The prime entry corresponds to
classifying curves with a majority vote. The estimated percent of correct classification
is listed in the table with the sample standard deviation in brackets. The top block
comes from Gaussian process data, and the bottom comes from t-process data with
4 degrees of freedom. The highest percentage of each column is marked in bold.
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Gaussian
k 1 2 4 8 16

CoM 51 (4) 55 (4) 75 (5) 89 (5) 97 (3)
KNN 50 (3) 52 (3) 61 (3) 75 (3) 90 (2)
KNN′ · 55 (3) 68 (3) 80 (2) 90 (2)
Kernel 54 (3) 52 (3) 64 (3) 77 (3) 92 (2)
Kernel′ · 58 (3) 69 (2) 81 (3) 92 (2)
GLM 36 (4) 41 (4) 49 (4) 57 (3) 65 (3)
GLM′ · 35 (4) 36 (4) 36 (5) 35 (5)
Tree 44 (3) 44 (3) 45 (3) 50 (3) 55 (3)
Tree′ · 46 (3) 51 (4) 51 (7) 47 (7)

t-distributed
k 1 2 4 8 16

CoM 46 (5) 50 (6) 63 (5) 75 (8) 85 (7)
KNN 46 (3) 49 (3) 57 (3) 67 (3) 78 (2)
KNN′ · 50 (3) 64 (3) 77 (2) 87 (2)
Kernel 50 (3) 48 (3) 57 (3) 68 (3) 80 (2)
Kernel′ · 53 (3) 66 (3) 77 (2) 85 (2)
GLM 35 (3) 41 (4) 46 (4) 53 (3) 58 (4)
GLM′ · 35 (3) 36 (4) 36 (4) 36 (6)
Tree 42 (3) 44 (3) 45 (3) 46 (3) 49 (3)
Tree′ · 43 (3) 47 (4) 48 (6) 46 (8)

Table 3.2: A comparison of the performances of five classification methods including
our concentration of measure approach (CoM), k-nearest-neighbours (KNN), kernel
method (Kernel), generalized linear model (GLM), and regression trees (Tree), but,
differing Table 3.1, with three potential classes from which to choose. The estimated
percent of correct classification is listed in the table with the sample standard
deviation in brackets. The top block comes from Gaussian process data, and the
bottom block comes from t-process data with 4 degrees of freedom. The highest
percentage of each column is marked in bold.
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/A/ /O/ /d/ /i/ /S/
CoM 76.9 76.8 96.6 98.5 99.4
KNN 72.4 79.1 98.5 97.4 100.
Kernel 72.0 80.5 98.4 97.2 99.9
GLM 79.0 72.3 98.2 95.9 99.2
Tree 70.8 69.4 95.6 87.8 92.6

Table 3.3: Percentage of correct classification of the five phonemes against the
five methods: our concentration of measure approach (CoM); k-nearest-neighbours
(KNN); kernel method (Kernel); generalized linear model (GLM); and regression
trees (Tree). The highest percentage of each column is marked in bold.

and run on each of the 300× 5 curves individually. For our concentration of measure

approach, the rank one operator associated to each individual curve was compared

with the covariance operator formed from the 100× 5 training curves. The results

are detailed in Table 3.3. Our concentration of measure approach only uniformly

outperforms the regression tree classifier, but has comparable performance to the

other three methods, and none of the competing methods uniformly outperforms

ours.

3.4.4 The expectation-maximization algorithm in practice

The experiments described and depicted below make use of the trace norm only. It was

determined through experimentation that the expectation-maximization algorithm

we propose in Section 3.3.3 does not perform well under the topology of either the

Hilbert-Schmidt or operator norms as they give more emphasis to the principal

eigenvalue at the expense of the others. The usual behavior under these norms is for

all estimates to converge to the average of all of the data points. This is in contrast

to the better performance of the algorithm making use of the trace norm, which

is somewhat more uniform in its treatment of the eigenstructure. Hence, we only

consider the trace norm in this section.

As a first test case, this algorithm was run given three target covariance operators,

which were constructed by taking three randomly generated orthonormal bases Ui for

i = 1, 2, 3 and a diagonal operator D of eigenvalues decaying at a rate λk = O(k−4)

and multiplying Σi = UiDUi
T. Let the three target covariance operators be denoted as

Σa, Σb, and Σc. For each of these operators, 500 rank four data points were generated

from a zero mean Gaussian process. From the data, the algorithm initializes three

estimates Σ̂
(t)
1 , Σ̂

(t)
2 , and Σ̂

(t)
3 , which attempt to locate the three target operators as

the method iterates. After 15 iterations, the original 1500 data points were perfectly

separated into three groups. To make the problem harder, a second test case was run

identical to the first except that the observed operators are all of rank one. Here the

algorithm had a harder time separating the data. The inaccuracy in the rank one
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Concentration
Rank 4 Operators Rank 1 Operators

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3
Label a 500 0 0 318 0 182
Label b 0 500 0 0 335 165
Label c 0 0 500 295 0 205

k-means
Label a 261 0 239 219 0 281
Label b 0 290 210 0 179 321
Label c 0 0 500 211 0 289

Table 3.4: Clustering of simulated operators. The concentration approach performs
better than k-means as it takes better account of the covariance structure present in
each cluster.

setting is equivalent to the poor performance of classification of rank one operators

detailed in Tables 3.1 and 3.2.

The resulting clusters from both tests as well as a comparison with the k-means

method are in Table 3.4. The k-means algorithm was run with 50 iterations and 10

random starts. It still performed much worse than the concentration based method in

the rank 4 setting. This is because the concentration approach focuses its clustering

heavily on the covariance structure of the data whereas k-means does not. The

concentration method arguably did better in the rank 1 case as well specifically in

the cluster 2 column which more thoroughly captured the label b data.

For the phoneme data, all 400 sample curves from each of the five phoneme sets

were clustered individually as curves. The algorithm was run for 20 iterations and

told to partition the data into five clusters. The results are in Table 3.5. Clusters A

and B captured almost all of the vowels /A/ and /O/ , which, recalling their definition

in Section 3.4.1, are quite similar in sound. Clusters C, D, and E contain the majority

of /d/ , /i/ , and /S/ curves, respectively. Very similar results were achieved by

the tried and true k-means clustering algorithm running with 50 iterations and

10 random starts. The proposed concentration based expectation-maximization

algorithm is hence an effective method for the unsupervised clustering of phonemes,

which is shown in the tables to perform as well if not better than the trusted k-means

algorithm.

3.A Confidence sets for the mean in Banach spaces

The goal of this section is to construct a non-asymptotic confidence region in the

general Banach space setting. This is specialized in Section 3.2 to our case of interest,

covariance operators, when the Xi below are replaced with f⊗2
i . The construction of

our confidence set begins with Bousquet’s upper deviation version of Talagrand’s
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Concentration k-means
Cluster A B C D E A B C D E
/A/ 281 119 0 0 0 281 119 0 0 0
/O/ 125 273 1 1 0 126 272 1 1 0
/d/ 0 0 384 15 1 0 2 386 10 2
/i/ 1 0 1 393 5 1 3 2 381 13
/S/ 0 0 0 3 397 0 0 0 2 398

Table 3.5: Clustering 2000 phoneme curves into 5 clusters. Similar results achieved
by both the concentration and k-means methods.

inequality (Bousquet, 2003). This inequality is typically stated for empirical processes

(Giné and Nickl, 2016, Theorem 3.3.9 and 3.3.10 ), but applies to random variables

with values in a separable Banach space (B, ‖·‖B) as well by simple duality arguments

(Giné and Nickl, 2016, Example 2.1.6).

Let X1, . . . , Xn ∈ (B, ‖·‖B) be zero mean independent and identically distributed

Banach space valued random variables with ‖Xi‖B ≤ U for all i = 1, . . . , n where U

is some positive constant. Furthermore, let 〈·, ·〉 : B ×B∗ → R such that for X ∈ B
and φ ∈ B∗ then 〈X,φ〉 = φ(X). Define

Z = sup
‖φ‖B∗≤1

n∑
i=1

〈Xi, φ〉 =

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
B

, σ2 =
1

n

n∑
i=1

sup
‖φ‖B∗≤1

E〈Xi, φ〉2,

where the supremum is taken over a countably dense subset of the unit ball of B∗. Fur-

thermore, define v = 2UEZ+nσ2. Then, P (Z > EZ + r) ≤ exp{−r2/(2v + 2rU/3)}.
Rewriting Z as n‖X̄ − EX̄‖B results in

P
(
‖X̄ − EX̄‖B > E‖X̄ − EX̄‖B + r

)
< exp

(
−n2r2

2v + 2nrU/3

)
where ‖Xi‖B < U and v = 2nUE‖X̄ − EX̄‖B + nσ2.

The above tail bound incorporates the unknown E
∥∥X̄ − EX̄

∥∥
B

. Consequently,

a symmetrization technique is used: This term is replaced by the norm of the

Rademacher average Rn = n−1
∑n

i=1 εi(Xi − X̄) where the εi are independent and

identically distributed Rademacher random variables also independent of the Xi. This

substitution is justified by invoking the symmetrization inequality–see (Ledoux and

Talagrand, 1991, Chapter 4), (Giné and Nickl, 2016, Theorem 3.1.21), and Chapter 4

of this manuscript and the references therein. The standard symmetrization inequality

is

EZ = E

∥∥∥∥∥ 1

n

n∑
i=1

(Xi − EX̄)

∥∥∥∥∥
B

≤ 2E

∥∥∥∥∥ 1

n

n∑
i=1

εi(Xi − X̄)

∥∥∥∥∥
B

= 2E‖Rn‖B.

If the data are symmetric about their mean, which is when Xi−EXi and EXi−Xi

are equidistributed, the coefficient of 2 is unnecessary and can be dropped. This is

76



CHAPTER 3. CONCENTRATION FOR COVARIANCE OPERATORS

Trace Hilbert-Schmidt Operator
EZ E‖Rn‖ EZ E‖Rn‖ EZ E‖Rn‖

/A/ 618.3 554.8 112.4 119.5 76.5 81.1
/O/ 591.3 525.2 108.7 112.2 70.9 74.2
/d/ 506.8 450.7 105.6 115.0 83.3 92.1
/i/ 610.4 545.9 107.6 111.2 63.5 72.3
/S/ 419.3 363.1 67.4 71.1 40.1 43.0

Table 3.6: A comparison of the left and right hand sides of the symmetrization
inequality and, hence, a justification for safely dropping the coefficient of 2 in the
construction of confidence sets. These numbers were computed for a sample size of
n = 60 from the phoneme data set. The computation was repeated 100 times and
averaged to approximate the following expectations.

because Xi − EXi and ε(Xi − EXi) are also equidistributed. In practice, the data

may not be symmetric. However, averaging even a moderately sized data set has

a smoothing and symmetrizing effect on the sample mean. Assuming the data is

not highly skewed, the coefficient of 2 can be safely dropped in practice to tighten

the confidence set. In fact, considering the phoneme data from Section 3.4.1 in this

setting results in the values displayed in Table 3.6, which shows that in the trace

norm setting, the Rademacher average is much greater than half the size of EZ, and

that in the Hilbert-Schmidt and operator norm settings, the Rademacher average is

actually marginally less than EZ. A deeper look at symmetrization can be found in

Chapter 4.

This symmetrization result allows us to replace the original expectation with

the expectation of the Rademacher average. Furthermore, Talagrand’s inequality

also applies to Rn. This fact is highlighted in Lounici and Nickl (2011) and used

to construct global risk bounds for wavelet convolution estimators. Hence, the

Rademacher average concentrates strongly about its expectation, which justifies

dropping the expectation. In practice, one can use the intermediary Eε‖Rn‖B =

E (‖Rn‖B|X1, . . . , Xn), which can be approximated for reasonable sized data sets via

Monte Carlo simulations of the εi. However, this is not strictly necessary, and for

large data sets, a single random draw of εi will suffice–see Lounici and Nickl (2011)

and (Giné and Nickl, 2016, Section 3.4.2).

The resulting concentration inequality based (1− α)-confidence set is

Cn,1−α =
{
X : ‖X − X̄‖B ≤ ‖Rn‖B+

+

√
2

n
log(2α) (σ2 + 2U‖Rn‖B) +

U log(2α)

3n

}
. (3.A.1)

To make use of these results in practice, the weak variance σ2 must be estimated for

the data and furthermore a reasonable choice of U must be made. A main contribution
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of this present chapter is to propose such theoretically motivated but practically

useful non-asymptotic choices for these constants that work for the functional data

applications we are investigating.

3.B Calculation of the weak variance

3.B.1 The weak variance for p ∈ [1,∞)

To calculate the weak variance σ2, define f⊗n = f ⊗ . . . ⊗ f to be the n-fold

tensor product of f with itself and extend the definition of the bilinear form 〈·, ·〉 :

(L2)⊗4 × {(L2)⊗4}∗ → R such that 〈f⊗4, φ⊗4〉 = 〈f⊗2, φ⊗2〉2 = 〈f, φ〉4 = φ(f)4. For

operators Π ∈ {(L2)⊗2}∗ and Ξ ∈ {(L2)⊗4}∗, the weak variance is

σ2 =
1

n

n∑
i=1

sup
‖Π‖q≤1

E
(〈
f⊗2
i − Ef⊗2

i ,Π
〉2
)

≤ 1

n

n∑
i=1

sup
‖Ξ‖q≤1

〈
Ef⊗4

i −
{

Ef⊗2
}⊗2

,Ξ
〉
≤ ‖Ef⊗4 − Σ⊗2‖p

where the inequality stems from the fact that the supremum is being taken over

a larger set. However, in the Hilbert space setting, the dual of the tensor product

space does coincide with the tensor product of the dual space, and thus the above

inequality can be replaced with an equality if the Hilbert-Schmidt norm or 2-

Schatten norm is used. More information on tensor products of Banach and Hilbert

spaces can be found below in Section 3.C. Given a bound ‖fi‖2
L2 ≤ c2 = U , then

σ2 ≤ ‖Ef⊗4 − Σ⊗2‖p ≤ ‖Ef⊗4‖p ≤ E‖f‖4
L2 ≤ c4 = U2. Thus, the optimistic choice

of U = σ2 is used in practice.

3.B.2 The weak variance for p =∞

Let E be a countable dense subset of the unit ball of L2(I). In the case p =∞, we

cannot use duality, but can still write Z and σ2 as suprema over the countable set
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and achieve the same results as above.

Z =
1

n
sup
e∈E

n∑
i=1

〈{
f⊗2
i − Ef⊗2

i

}
e, e
〉

= sup
e∈E

〈
(Σ̂− Σ)e, e

〉
= ‖Σ̂− Σ‖∞,

σ2 =
1

n

n∑
i=1

sup
e1∈E

E
(〈

(f⊗2
i − Σ)e1, e1

〉2
)

≤ 1

n

n∑
i=1

sup
e1,e2∈E

E
(〈
f⊗2
i − Σ, e1 ⊗ e2

〉2
)

≤ 1

n

n∑
i=1

sup
e1,e2∈E

〈{
Ef⊗4

i − Σ⊗2
}

(e1 ⊗ e2), e1 ⊗ e2

〉
= ‖Ef⊗4

i − Σ⊗2‖∞.

As before, if ‖f⊗2
i ‖∞ = ‖fi‖2

L2 ≤ c2 = U , then σ2 ≤ U2. Thus, the optimistic choice

of U = σ2 is again used in practice.

3.B.3 The weak variance for Gaussian data

Similarly to the bounded case, we estimate ‖Ef⊗4−Σ⊗2‖p for Gaussian data. Consider

f from a Gaussian process with zero mean and covariance Σ and define fs = f(s)

for notational convenience. Strictly speaking these variables are not norm bounded,

but similar to concentration results for Gaussian random variables in Rd (Giné and

Nickl, 2016, Theorem 3.1.9), we found below that our methods still work well. The

integral kernel can be written as (Isserlis, 1918)

E (fsftfufv) = E (fsft) E (fufv) + E (fsfu) E (ftfv) + E (fsfv) E (ftfu)

= cf (s, t)cf (u, v) + cf (s, u)cf (t, v) + cf (s, v)cf (t, u).

Hence, we have that E (fsftfufv)−Σs,tΣu,v = Σs,uΣt,v+Σs,vΣt,u, and we also have that

the operator Ef⊗4 − Σ⊗2, which can be thought of as an Hilbert-Schmidt operator

on the space Op(L2), can be represented by the integral kernel cf(s, u)cf(t, v) +

cf (s, v)cf (t, u). These two terms are merely relabeled versions of Σ⊗2. Consequently,

using the subadditivity of the norm, ‖Ef⊗4 −Σ⊗2‖p ≤ ‖Σ⊗2‖p + ‖Σ⊗2‖p = 2‖Σ⊗2‖p.
For example, for the Hilbert-Schmidt norm,

‖Ef⊗4 − Σ⊗2‖2
HS =

∫∫∫∫
{cf (s, u)cf (t, v) + cf (s, v)cf (t, u)}2 dsdtdudv

= 2‖Σ‖4
HS + 2

∫∫∫∫
cf (s, u)cf (s, v)cf (t, v)cf (t, u)dsdtdudv ≤ 4‖Σ‖4

HS.

Lemma 5.1 of Horváth and Kokoszka (2012) gives an explicit form of a covariance

operator of Σ in terms of the eigenfunctions of Σ for Gaussian data in the Hilbert-

Schmidt setting.
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Given {λi}∞i=1, the eigenvalues of Σ, the spectrum of Σ⊗2 is {λiλj}∞i,j=1. Hence, for

any of the p-Schatten norms, ‖Σ⊗ Σ‖p = ‖Σ‖2
p. Note that in the above calculations,

the weak variance depends on the unknown Σ. In practice, this can be replaced by

the empirical estimate Σ̂, which is a consistent estimator.

3.B.4 The weak variance for t-distributed data

In the case of t-distributed functional data with ν > 4 degrees of freedom–required

for the existence of finite fourth moments–and covariance Σ, the required fourth

mixed moments can be rewritten as

E (fsftfufv) = E
(
ZsZtZuZv/

√
(V/ν)4

)
for Gaussian process Zs = Z(s) with covariance Π =

(
ν−2
ν

)
Σ and independent

univariate chi-squared random variable V ∼ χ2 (ν). Now,

ν2EV −2 = ν2

∫ ∞
0

1

2ν/2Γ(ν/2)
xν/2−1−2e−x/2dx

=
ν2

(ν − 2)(ν − 4)

∫ ∞
0

1

2
ν
2
−2Γ(ν

2
− 2)

x
ν
2
−3e−x/2dx

Hence, using the results for Gaussian data from the previous section,

Ef⊗4 =

(
ν − 2

ν − 4

)
(E (fsft) E (fufv) + E (fsfu) E (ftfv) + E (fsfv) E (ftfu))

The resulting weak variance given ν > 4 is

‖Ef⊗4 − Σ⊗2‖ ≤
(

2ν

ν − 4

)
‖Σ⊗2‖,

However, this weak variance is quite large for small values of ν, which leads to

unnecessarily large confidence sets. Using the weak variance from the Gaussian case

leads to good performance in practice as the above t-distribution weak variance is

proportional to the Gaussian 2‖Σ⊗‖.

3.C Tensor products of Banach spaces

For the weak variance calculations of Section 3.B, we must extend the definition of

the norm and bilinear form for a given Banach space B to the n-fold tensor product

space B⊗n = B ⊗ . . .⊗B. For a detailed introduction to tensor products of Banach

spaces, see Ryan (2013). We begin with the more straight forward Hilbert space

setting as functional data is generally considered to be L2.
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Let H be a separable Hilbert space with inner product 〈·, ·〉 : H ×H → R and let

Op(H) be the space of bounded linear operators mapping H into H. Furthermore, let

the tensor product ⊗ : H ×H → Op(H) be a bilinear map such that for f, g, h ∈ H,

f ⊗ g is a rank one operator such that (f ⊗ g)h = 〈h, g〉 f . Given an orthonormal

basis for H, {ei}∞i=1, consider the space of finite rank operators

Ψ =

{
m,n∑
i,j=1

λi,j(ei ⊗ ej)

∣∣∣∣∣ ei ∈ H, and 〈ei, ej〉 = δij

}
⊆ Op(H)

where δi,j is the Kronecker delta function. Rewriting (ei ⊗ ej) as ei,j for notational

convenience, the inner product on H can be extended to the finite rank tensor

product space Ψ in order to have {ei,j}∞i,j=1 be an orthonormal set. Specifically,

define

〈ei,j, ek,l〉Ψ = 〈ei, ek〉H 〈ej, el〉H = δi,kδj,l.

Thus, for u, v ∈ Ψ and λi,j, γi,j ∈ R with u =
∑m,n

i,j=1 λi,jei,j and similarly v =∑m,n
i,j=1 γi,jei,j, the inner product is

〈u, v〉Ψ =

m,n∑
i,j=1

λi,jγi,j.

One can check that the symmetry, linearity, and positive-definiteness of 〈·, ·〉Ψ follow

from those properties for 〈·, ·〉H and the bilinearity of ⊗. Finally, the associated

norm,

‖u‖Ψ = 〈u, u〉Ψ =

m,n∑
i,j=1

λ2
i,j = ‖u‖HS,

is thus equivalent to the Hilbert-Schmidt norm. Defining H ⊗H = Ψ, the closure of

Ψ with respect to this norm, we have that the tensor product space that is naturally

isometrically isomorphic to the space of Hilbert-Schmidt operators from H to H

defined as

HS(H) =

{
T : H → H

∣∣∣∣∣ ‖T‖HS =
∑
i∈I

‖Tei‖2
H <∞

}
.

Using the above inner product, we have for f, g ∈ H, 〈f⊗2, g⊗2〉H⊗H = 〈f, g〉2H , and

thus immediately that 〈
f⊗2k , g⊗2k

〉
H⊗2k

= 〈f, g〉2
k

H

where H⊗2k can be thought of as the space of Hilbert-Schmidt operators on H⊗2k−1
,

which is HS
(
H⊗2k−1

)
.

Next, we consider a more general setting. Let B be a separable Banach space with
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dual space B∗ of linear functionals on B and with bilinear form 〈·, ·〉 : B ×B∗ → R
defined by 〈f, φ〉 = φ(f) for f ∈ B and φ ∈ B∗. The tensor product ⊗ : B × B →
Op(B∗, B) is a bilinear map taking (f, g)→ 〈g, ·〉 f . There are many different norms

that can be extended to the tensor product space from the norms of the constituent

Banach spaces. The norm chosen for the tensor product space B ⊗B for the sake of

this chapter’s proposed methodology is the projective norm defined as

‖u‖ = inf

{
n∑
i=1

‖fi‖‖gi‖

∣∣∣∣∣ fi, gi ∈ B for i = 1, . . . , n such that u =
n∑
i=1

fi ⊗ gi

}
,

which has the property that for f, g ∈ B, ‖f ⊗ g‖ = ‖f‖‖g‖ (See Ryan (2013)

Proposition 2.1). Taking the completion under this norm gives the projective tensor

product space denoted B ⊗B. For the dual space,

B∗ ⊗B∗ ⊆ (B ⊗B)∗ ,

and for φ ∈ B∗, the linear functional φ⊗ φ on B ⊗B is the unique linear functional

such that

〈φ⊗ φ, f ⊗ f〉 = φ⊗ φ(f ⊗ f) = φ(f)2

for f ∈ B.

3.C.1 Tensors and covariance matrices in Rn

In this section, we calculate the weak variance from Section 3.B in the Euclidean

setting. First, the tensor product, often referred to in this context as the outer

product, of two vectors u ∈ Rn and v ∈ Rm is the (n×m)-matrix

u⊗ v = uvT ∈ Rn×m.

For m = n, the inner product is 〈u, v〉 = uTv ∈ R.

In the matrix setting, let A ∈ Rn×m and B ∈ Rk×l be the matrix representation

of linear maps, respectively, from Rm to Rn and from Rl to Rk. Here, the tensor

product of linear maps can be represented as the Kronecker product

A⊗B =


a1,1B a1,2B . . . a1,mB

a2,1B a2,2B . . . a2,mB
...

...
. . .

...

an,1B an,2B . . . an,mB

 ∈ Rml×nk.

For n = k and m = l, the associated inner product is sum of the entries of the
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Hadamard product of A and B,

〈A,B〉 =

n,m∑
i,j=1

ai,jbi,j.

Hence, the induced norm ‖A‖2 = 〈A,A〉 =
∑
a2
i,j is the Frobenius norm, which is

the finite dimensional analogue of the Hilbert-Schmidt norm.

Now, let X ∈ Rn be a real valued random vector with zero mean and finite fourth

moments. The covariance matrix of X = (X1, . . . , Xn) is defined to be

Σ = covX = EXXT.

The four-fold tensor product is

X⊗4 = XXT ⊗XXT,

which is the n2 × n2 matrix with entries of the form XiXjXkXl. For v ∈ Rn, the

weak variance is

σ2 = sup
‖vvT‖≤1

E
〈
XXT − Σ, vvT

〉2

= sup
‖vvT‖≤1

E

(
n∑

i,j=1

(XiXj − Σi,j)vivj

)2

= sup
‖vvT‖≤1

E
n∑

i,j,k,l=1

(XiXj − Σi,j)(XkXl − Σk,l)vivjvkvl

= sup
‖vvT‖≤1

E
n∑

i,j,k,l=1

(XiXjXkXl − Σi,jΣk,l) vivjvkvl

= sup
‖vvT⊗vvT‖≤1

〈
EX⊗4 − Σ⊗2, v⊗4

〉
= ‖EX⊗4 − Σ⊗2‖

with the penultimate equality due to the fact that for vectors v

‖vvT ⊗ vvT‖2 =
n∑

i,j,k,l=1

v2
i v

2
j v

2
kv

2
l =

(
n∑

i,j=1

v2
i v

2
j

)2

= ‖vvT‖4.

Therefore, taking the supremum over v such that ‖vvT‖ ≤ 1 is equivalent to taking

the supremum for ‖vvT ⊗ vvT‖ ≤ 1.

In the case that X is multivariate Gaussian, EXiXjXkXl = Σi,jΣk,l + Σi,kΣj,l +

83



3.D. HEAVY TAILS AND NOISY MEASUREMENTS

Σi,lΣj,k, and hence

‖EX⊗4 − Σ⊗2‖ = ‖{Σi,kΣj,l}+ {Σi,lΣj,k}‖ ≤ 2‖Σ⊗2‖ = 2‖Σ‖2

where {Σi,kΣj,l} is the tensor product Σ⊗2 with relabeled indices.

3.D Heavy Tails and Noisy Measurements

As often in practice functional data comes from noisy measurements, consider data

of the form Yi = Xi + ξi where Xi is a mean zero Gaussian process with covariance

operator Σ and ξi is Gaussian white noise with covariance c2I for some c2 > 0.

Figure 3.6 repeats the previous power analysis for the two sample test but in the

moderately noisy settings. The results demonstrate that the proposed concentration

inequality based methodology is robust when moderate amounts of noise are added

to the simulated data.

Secondly, heavier tailed data–specifically t-distributed data with 6 degrees of

freedom–can also be handled by this method. Figure 3.7 repeats the earlier two

sample power analysis but with the heavier tailed distribution in place of the Gaussian.

Once again, the methodology performs well in this setting after being properly tuned

to account for the heavier tails of the t-distribution. With respect to such tuning,

the coefficient of (k + 2)/(k + 3) in Equation 3.3.1 was replaced with simply 1 in

order to achieve the correct empirical size. In general, given arbitrary data, one can

simulate null data and adjust the tuning parameters to match the desired empirical

size of the test.

Lastly, the empirical coverage of the concentration based confidence set is still

comparable to the desired coverage in the heavy tailed case. Consider t-distributed

data with six degrees of freedom; Nine operators were randomly generated and data

was simulated from each. Figure 3.8 recreates the simulated confidence sets from

Figure 3.2, but with the t-distributed data. To achieve these empirical converges,

the Gaussian weak variance, previously calculated to be σ2 = 2‖Σ‖2
p, is scaled by a

factor of ν/(ν − 4) where ν is the degrees of freedom. The confidence sets are all

slightly larger than desired. However, they are not too large for practical use.

3.E Tuning confidence sets with cross-validation

As noted in the previous sections and immediately visible in Figure 3.8, the concen-

tration based confidence sets for covariance operators are usually too conservative

in the sense that Cn,1−α, our (1 − α) confidence set constructed from a sample of

size n, actually has a larger coverage that desired–i.e. P (Σ ∈ Cn,1−α) > 1− α. This
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Figure 3.6: Similar to Figures 3.4 and 3.5 except white noise with variance c2 = 100
is added to each functional data observation. In the top plot, the eigenvalues of Σ
decay as O(k−4) as in Figure 3.4; in the bottom plot, the eigenvalues of Σ decay as
O(k−2) as in Figure 3.5.
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Figure 3.7: A repetition of the experiments from Figures 3.4 and 3.5 but with data
simulated from a multivariate t-distribution with 6 degrees of freedom. In the top
plot, the eigenvalues of Σ decay as O(k−4) as in Figure 3.4; in the bottom plot, the
eigenvalues of Σ decay as O(k−2) as in Figure 3.5.
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Figure 3.8: The empirical confidence level of the set from Equation 3.2.1 for nine
different operators given a sample size of 35 curves generated from a t-distributed
process with 6 degrees of freedom. The black line is where the desired and empirical
levels are equal. The desired level ranges from α = 1% to α = 10%. 10,000
replications were used to produce these curves.

fact similarly effects the power of the k sample test for equality of covariance from

Section 3.3.1 where coefficients are manually tweaked in order to achieve the desired

empirical size of the test. Those tweaks were arrived at through simulations specifi-

cally with Gaussian process data. In this appendix, we propose a cross-validation

approach to formalize such tweaking by offering a data driven tuning of the radius

of the confidence sets.

We begin with the confidence set from Equation 3.2.1 with the addition of a

tuning parameter κ > 0 attached to the deviation term:

Cn,1−α,κ =

{
Σ : ‖Σ̂− Σ‖p ≤ ‖Rn‖p + κ

(
σ

√
−2 log(2α)

n
− σ log(2α)

3n

)}
. (3.E.1)

The goal is to scale the deviation term by this tuning parameter κ such that

P (Σ ∈ Cn,1−α,κ) ≈ 1− α. In general, κ will depend not only on the distribution of

the underlying functional data, but also on the desired coverage of the confidence set

of 1− α.

To determine a suitable κ > 0 from the data, we propose the following cross-

validation procedure in line with the classic bootstrap technique (Efron, 1979). Let

the sample of n functional data observations be {f1, . . . , fn}. First, the Rademacher
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average ‖Rn‖p and the deviation term Dn = σ(−2 log(2α)/n)1/2−σ log(2α)/(3n) are

computed as usual from the entire data set. Let M be the total number of times to

repeat the simulation. For each m = 1, . . . ,M , draw two random samples of points

from the empirical measure µn = n−1
∑n

i=1 δfi where δfi is the Dirac measure and

construct the two covariance estimates Σ
(m)
1 and Σ

(m)
2 from these two samples. Then,

the following term is computed for m = 1, . . . ,M ,

Zm = ‖Σ̂(m)
1 − Σ̂

(m)
2 ‖p.

Given the collection of {Zm}Mm=1, the 1−α quantile of the set can be found. This

is the number such that

Z1−α = min {z > 0 : |{m : Zm < z}|/M ≥ 1− α} .

From here, the tuning parameter κ is computed to be κ = (Z1−α − ‖Rn‖p)/Dn to

scale the deviation term in the original confidence set of Equation 3.E.1.

This cross-validation procedure was tested via simulations of both Gaussian

and t-distributed processes. The results of which are displayed in Figure 3.9. The

simulations were run in similar style to those that produced Figures 3.2 and 3.8.

Over 10,000 replications and five different covariance operators from the five different

sets of phoneme data, 60 curves were randomly generated from either a Gaussian

process or a t-distributed process. This was performed for desired confidence levels

of α ∈ [0.01, 0.1].

The main effect that the cross-validation procedure has is to tighten the confidence

sets, which, when constructed straight from Equation 3.2.1, are generally too large.

For the Gaussian simulated data, the confidence sets constructed for two of the five

test operators were over tightened, while the other three were close to the desired

size. For the t-distributed data, the proposed cross-validation procedure uniformly

over-tightens all of the confidence sets to the point that the coverage is too small.

This is in contrast to the results of the previous section detailed in Figure 3.8 where

it is shown that the pre-tuned confidence sets for t-distributed data are all slightly

too large. Thus, with a little more thought, a better tuning method can be developed.

Ultimately, these preliminary simulations show that cross-validation is an potentially

effective way to implement a data driven tuning procedure to optimize the coverage

of the concentration based confidence sets.
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Figure 3.9: The empirical confidence level of the set from Equation 3.2.1 making use
of the cross-validation parameter tuning method for five different operators given a
sample size of 60 curves. The black line is where the desired and empirical levels
are equal. The desired level ranges from α = 1% to α = 10%. 10,000 replications
were used to produce these curves. The top plot represents Gaussian data and the
bottom represents t-distributed data with 6 degrees of freedom.
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Chapter 4

Improved Rademacher

symmetrization

4.1 Introduction

The symmetrization inequality is a ubiquitous result in the probability in Banach

spaces literature and in the concentration of measure literature. Dating back at least

to Paul Lévy, it is found in the classic text of Ledoux and Talagrand (1991), Section

6.1, and the more recent Boucheron et al. (2013), Section 11.3. Giné and Zinn (1984)

use symmetrization in the context of empirical process theory, which is followed by a

collection of more recent appearances (Panchenko, 2003; Koltchinskii, 2006; Giné

and Nickl, 2010a; Arlot et al., 2010; Lounici and Nickl, 2011; Kerkyacharian et al.,

2012; Fan, 2011).

Recalling that ε, a Rademacher random variable or sometimes referred to as a

symmetric Bernoulli random variable or a random sign, is such that P (ε = 1) =

P (ε = −1) = 1/2, then the symmetrization inequality is as follows.

Proposition 4.1.1. Let (B, ‖·‖) be a Banach space, and let X1, . . . , Xn ∈ B be

independent random variables with measure µ. Let ε1, . . . , εn be independent and

identically distributed Rademacher random variables, then

E

∥∥∥∥∥ 1

n

n∑
i=1

(Xi − EXi)

∥∥∥∥∥ ≤ 2E

∥∥∥∥∥ 1

n

n∑
i=1

εi(Xi − EXi)

∥∥∥∥∥.
This can be readily proved via Jensen’s Inequality and the insight that if Z is a

symmetric random variable, that is Z
d
= −Z, then Z

d
= εZ.

Proof. Let X ′1, . . . , X
′
n be independent copies of X1, . . . , Xn such that Xi and X ′i are
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equal in distribution for all i = 1, . . . , n. Then,

E

∥∥∥∥∥ 1

n

n∑
i=1

(Xi − EXi)

∥∥∥∥∥ ≤ E

∥∥∥∥∥ 1

n

n∑
i=1

(Xi −X ′i)

∥∥∥∥∥ =

= E

∥∥∥∥∥ 1

n

n∑
i=1

εi(Xi −X ′i)

∥∥∥∥∥ ≤ 2E

∥∥∥∥∥ 1

n

n∑
i=1

εi(Xi − EXi)

∥∥∥∥∥.
The first inequality comes from Jensen’s inequality and the convexity of the norm.

The equality results from the fact that Xi −X ′i is a symmetric random variable for

all i = 1, . . . , n. The second inequality is just the result of the subadditivity of the

norm and the fact that EXi = EX ′i.

Remark 4.1.2. As the main tool of the previous proof is Jensen’s inequality, the

result can be generalized with the addition of any convex function F : R+ → R+ to

the following:

EF

(∥∥∥∥∥ 1

n

n∑
i=1

(Xi − EXi)

∥∥∥∥∥
)
≤ EF

(
2

∥∥∥∥∥ 1

n

n∑
i=1

εiXi − EXi

∥∥∥∥∥
)
.

The most notable oversight of this result is that it does not incorporate any

measure of the symmetry of the data. Specifically, in the extreme case that the Xi

are symmetric about their mean, then the coefficient of 2 can be dropped and the

inequality becomes an equality. Taking note of this fact, Arlot et al. (2010) state

that

“it can be shown that this factor of 2 is unavoidable in general for

a fixed n when the symmetry assumption is not satisfied, although it is

unnecessary when n goes to infinity.” (Arlot et al., 2010)

They furthermore

“conjecture that an inequality holds under an assumption less restric-

tive than symmetry (e.g., concerning an appropriate measure of skewness

of the distribution ).” (Arlot et al., 2010)

Hence, in response to this conjecture, we propose an improved symmetrization

inequality making use of Wasserstein distance and Hilbert space geometry in order

to account for the symmetry, or lack thereof, of the distribution of the Xi under

analysis. The main contribution of this chapter is that for some Hilbert space H

and X1, . . . , Xn ∈ H independent and identically distributed random variables with

common measure µ, there is for a fixed explicit constant C(µ) depending only on

the symmetry of the underlying measure µ of the Xi, which quantifies the symmetry
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of µ, such that

E

∥∥∥∥∥ 1

n

n∑
i=1

(Xi − EXi)

∥∥∥∥∥ ≤ E

∥∥∥∥∥ 1

n

n∑
i=1

εi(Xi − EXi)

∥∥∥∥∥+
C(µ)

n1/2
.

This result is detailed and proved in Section 4.3.2. Furthermore, an empirical

bound, Cn(µ), on the constant C can be calculated as is done in Section 4.4. Such

an empirical bound can be further used as a data driven measure of the symmetry

of the given sample. In the case that the distribution of the Xi is symmetric, the

true C(µ) = 0 and our data driven estimate Cn(X) = O(n−δ) for some δ ∈ (0, 0.5)

implying a fast rate of convergence to the desired zero for the additive term above:

n−1/2Cn(µ) = o(n−1/2). Applications of this result to testing the symmetry of a

data set, constructing nonasymptotic high dimensional confidence sets, bounding

the variance of an empirical process, and improving coefficients in probabilistic

inequalities in the Banach space setting are given in Section 4.5.

4.2 Empirical estimate of the Rademacher sum

Before discussing the main results detailed and proved in Section 4.3, we take a

closer look at Rademacher sums to motivate the research in the following sections.

These sums arise in the theoretical setting of proving various bounds and inequalities

for random variables in Banach spaces. Examples can be found in the many results

in the monographs Ledoux and Talagrand (1991) and Boucheron et al. (2013).

Alternatively, these sums are used in the applied setting as an analogue for the

unknown expectation E‖
∑n

i=1Xi −EXi‖, which arises when constructing confidence

sets using concentration inequalities for such settings as wavelet estimators (Lounici

and Nickl, 2011), kernel density estimators (Fan, 2011), and for the covariance

operators from Chapter 3 of this manuscript.

In this section, we will consider the practical issue of computing the norm of

the Rademacher sum Rn =
∑n

i=1 εi(Xi − X̄) with sample mean X̄ = n−1
∑n

i=1 Xi to

directly estimate the expected value of the norm of the sum Sn =
∑n

i=1Xi − EXi.

The Rademacher sum falls into a category of generalized bootstrap techniques.

Mainly,

‖Rn‖ =

∥∥∥∥∥
n∑
i=1

εi(Xi − X̄)

∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i∈I

(Xi − X̄)−
∑
j /∈I

(Xj − X̄)

∥∥∥∥∥∥
for some random subset I ⊆ {1, . . . , n} with cardinality such that P (|I| = k) =(
n
k

)
2−n. Thus, given some observed X1, . . . , Xn, the total expectation E‖Rn‖ can

be approximated by the conditional expectation Eε‖Rn‖ = E (‖Rn‖|X1, . . . , Xn).
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This conditional expectation can in turn be approximated by randomly drawing

M sets of {ε(m)
1 , . . . , ε

(m)
n }, computing for each m = 1, . . . ,M the Rademacher

sum ‖R(m)
n ‖ = ‖

∑n
i=1 ε

(m)
i (Xi − X̄)‖, and averaging over the M sums to get that

Eε‖Rn‖ ≈M−1
∑M

m=1‖R
(m)
n ‖. However, before continuing, we consider alternative

bootstrap techniques to demonstrate the superiority of the Rademacher sum and

why the symmetrization inequality matters.

The term E‖Sn‖ cannot be estimated directly, but instead approached via some

bootstrap technique. Beyond the Rademacher sum, two other bootstrap estimators

for E‖Sn‖ will be considered. Given a sample of size n, X1, . . . , Xn, the first method

is to randomly split the data in half using the first half to estimate EXi and the

second half to estimate ESn, which is equivalent to restricting the Rademacher sum

bootstrap to index sets I ⊂ {1, . . . , n} of cardinality n/2. Namely, for such sets, we

have

Ŝhalf
n =

(
n

n/2

)−1 ∑
I:|I|=n/2

∥∥∥∥∥∥
∑
i∈I

Xi −
2

n

∑
j∈{1,...,n}\I

Xj

∥∥∥∥∥∥,
which can, of course, be approximated by selecting a reasonable number M of such

sets I1, . . . , IM .

The second approach is a leave-one-out estimate similar to the jackknife estimator

(Efron and Stein, 1981). Once again, given a sample of size n, X1, . . . , Xn, this method

is equivalent to the Rademacher sum bootstrap but restricting the cardinality of the

set to |I| = n− 1. This results in

ŜLOO
n =

1

n

n∑
i=1

∥∥∥∥∥Xi −
1

n− 1

n∑
j 6=i,j=1

Xj

∥∥∥∥∥.
Each of these bootstrap methods are in some sense comparable to each other

with respect to accuracy and variance of the estimate for E‖Sn‖. However, the

symmetrization inequality allows for us to explicitly bound E‖Sn‖ by the Rademacher

sum. Indeed, using the original symmetrization inequality, it is reasonable to bound

E

∥∥∥∥∥
n∑
i=1

(Xi − EXi)

∥∥∥∥∥ ≤ 2E‖Rn‖ ≈ 2Eε‖Rn‖ ≈
2

M

M∑
m=1

‖R(m)
n ‖.

In contrast, the goal of this chapter is to theoretically derive and explicitly compute

a small correction term Cn(µ) to update this bound to the tighter

E

∥∥∥∥∥
n∑
i=1

(Xi − EXi)

∥∥∥∥∥ ≤ 1

M

M∑
m=1

‖R(m)
n ‖+

Cn(µ)√
2n

.

This is powerful in the construction of non-asymptotic confidence sets for high
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dimensional data where one desires to achieve a minimum coverage, say 1 − α,

for such confidence sets as performed in both Arlot et al. (2010) and Chapter 3.

Using one of these alternative bootstrap methods does not guarantee such coverage.

However, using the Rademacher sum with either the coefficient of 2 or with our

correction term proposed in the subsequent section, will, in fact, result in a confidence

set with no less than the desired coverage.

4.3 Symmetrization

4.3.1 Overview of Wasserstein spaces

We first require the standard notions of Wasserstein distance and Wasserstein space

as stated below. These are defined on Polish spaces, which are complete separable

metric spaces. For a thorough introduction to such topics, see Villani (2008).

Definition 4.3.1 (Wasserstein Distance). Let (X , d) be a Polish space and p ∈ [1,∞).

For two probability measures µ and ν on X , the Wasserstein p distance is

Wp(µ, ν) = inf
γ∈Π(µ,ν)

(∫
X×X

d(x, y)pdγ(x, y)

)1/p

where the infimum is taken over all measures γ on X × X with marginals µ and ν.

An equivalent and useful formulation of Wasserstein distance is

Wp(µ, ν) = inf
(X,Y )

(E d(X, Y )p)1/p

where the infimum is taken over all possible joint distributions of X and Y with

marginals µ and ν, respectively.

Definition 4.3.2 (Wasserstein Space). Let P (X ) be the space of probability measures

on X . The Wasserstein space is

Pp(X ) :=

{
µ ∈ P (X )

∣∣∣∣ ∫
X
d(x0, x)pµ(dx) <∞

}
for any arbitrary choice of x0. This is the space of measures with finite pth moment.

Convergence in Wasserstein space is characterized by weak convergence of measure

and convergence in pth moment. From Theorem 6.8 of Villani (2008), convergence

in Wasserstein distance is equivalent to weak convergence in Pp(X ). Hence, for a

sequence of measures µn,

Wp(µn, µ)→ 0 if and only if µn
d−→ µ and

∫
X
xpdµn(x)→

∫
X
xpdµ(x).
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4.3.2 Symmetrization result

In the following lemma, we bound the expectation on the left by the sum of a

“symmetric” term and an “asymmetric” term.

Lemma 4.3.3. Let H be an Hilbert space, and let X1, . . . , Xn ∈ H be independent

and identically distributed random variables with common law µ. Define µ− to be

the law of −X. Furthermore, let ε1, . . . , εn be independent and identically distributed

Rademacher random variables also independent of the Xi. Then, for any 1-Lipschitz

function ψ,

Eψ

(
n∑
i=1

(Xi − EXi)

)
≤ Eψ

(
n∑
i=1

εi(Xi − EXi)

)
+

√
n

2
W2(µ, µ−)

where W2 is the Wasserstein 2 distance.

Proof. For a Polish space X , let Π(µ, ν) be the space of all product measures on

X ×X with marginals µ and ν. For δ ∈ (0, 1), let Πδ(µ, ν) be the space of all product

measures with marginals µ and νδ = δµ+ (1− δ)ν. For γ ∈ Π(µ, ν) and η ∈ Π(µ, µ),

the measure δη + (1− δ)γ ∈ Πδ(µ, ν). Hence,

W p
p (µ, νδ) = inf

γδ∈Π(µ,νδ)

∫
X×X

d(x, y)pdγδ(x, y)

≤ inf
η∈Π(µ,µ), γ∈Π(µ,ν)

∫
X×X

d(x, y)pd(δη + (1− δ)γ)(x, y)

= inf
γ∈Π(µ,ν)

(1− δ)
∫
X×X

d(x, y)pdγ(x, y)

= (1− δ)W p
p (µ, ν).

The inequality on the second lines above arises from taking the infimum over a more

restrictive set. The law of εX is 1
2
(µ + µ−). Hence, for our purposes, the above

implies that

W2

(
µ,
µ+ µ−

2

)
≤ 1√

2
W2(µ, µ−).

Define µ∗n to be the law of
∑n

i=1(Xi−EXi) and µ̃∗n to be the law of
∑n

i=1 εi(Xi−
EXi). Then,

Eψ

(
n∑
i=1

(Xi − EXi)

)
− Eψ

(
n∑
i=1

εi(Xi − EXi)

)
≤
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≤ sup
‖φ‖Lip≤1

{
Eφ

(
n∑
i=1

(Xi − EXi)

)
− Eφ

(
n∑
i=1

εi(Xi − EXi)

)}
≤ W1 (µ∗n, µ̃∗n)

≤ W2 (µ∗n, µ̃∗n)

≤
√
nW2

(
µ,
µ+ µ

2

−)
≤
√
n

2
W2(µ, µ−)

where the second, third, and fourth inequality come respectively from Lemmas 4.A.1,

4.A.2, and 4.A.3 in the appendix. Rearranging the terms gives the desired result.

This lemma leads immediately to the following theorem. The intuition behind

this theorem is that averaging a collection of random variables has an inherent

smoothing and symmetrizing effect following from the central limit theorem. Thus,

as the sample size n increases, the difference between the expectations of the true

average and the Rademacher average become negligible. Of course, we have following

from such theorems that, given a finite second moment for the probability measure µ,

that
∣∣Eψ ( 1

n

∑n
i=1(Xi − EXi)

)
− Eψ

(
1
n

∑n
i=1 εi(Xi − EXi)

)∣∣ = O(n−1/2). However,

in the next theorem, we explicitly quantify this error and use it for finite sample

empirical estimation in the following sections. This behaviour was shown in the

simulations detailed in Table 3.6 of the previous chapter.

Theorem 4.3.4. Using the setting of Lemma 4.3.3 with either of the following two

conditions that

1. ψ is additionally positive homogeneous (e.g. a norm), or

2. the metric d is positive homogeneous in the sense that for a ∈ R, d(ax, ay) =

|a|d(x, y),

then ∣∣∣∣∣Eψ
(

1

n

n∑
i=1

(Xi − EXi)

)
− Eψ

(
1

n

n∑
i=1

εi(Xi − EXi)

)∣∣∣∣∣ ≤ 1√
2n
W2(µ, µ−)

Proof. Running the proof of Lemma 4.3.3 after swapping
∑n

i=1(Xi − EXi) and∑n
i=1 εi(Xi − EXi) gives the lower deviation

Eψ

(
n∑
i=1

(Xi − EXi)

)
≥ Eψ

(
n∑
i=1

εi(Xi − EXi)

)
−
√
n

2
W2(µ, µ−).

Under condition 1, the result is immediate.
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Under condition 2, let µ be the law of (Xi − EXi) as before. Then, redefining

µ∗n to be the law of
∑n

i=1
1
n
(Xi−EXi) and µ̃∗n to be the law of

∑n
i=1

1
n
εi(Xi−EXi)

results in

W2(µ∗n, µ̃∗n) ≤
√
n inf

(X,Y )

(
E d(X/n, Y/n)2

)1/2

=
1√
2n
W2(µ, µ−)

where the infimum is taken over all joint distributions of X and Y with marginals µ

and µ+µ−

2
, respectively. The desired result follows.

4.4 Empirical estimate of W2(µ, µ
−)

In order to explicitly make use of the above results, an empirical estimate of W2(µ, µ−)

is required. We first establish the following bound.

Proposition 4.4.1. Let X1, . . . , Xn be iid with law µ and let Y1, . . . , Yn be iid with law

ν. Furthermore, let µn and νn be the empirical distributions of µ and ν, respectively.

Then,

W p
p (µ, ν) ≤ EW p

p (µn, νn).

Proof. The following infima are taken over all possible joint distributions of the

random variables in question given fixed marginal distributions. Let X and Y

be random variables of law µ and ν, respectively. Also, let Sn be the group of

permutations on n elements.

W p
p (µ, ν) = inf

(X,Y )
Ed(X, Y )p

= inf
(X1,...,Xn,Y1,...,Yn)

E

{
1

n

n∑
i=1

d(Xi, Yi)
p

}

≤ E min
ρ∈Sn

{
1

n

n∑
i=1

d(Xi, Yρ(i))
p

}
= EW p

p (µn, νn)

where the above inequality arises by replacing the infimum over all possible joint

distributions of the Xi and Yi with a specific joint distribution.

The following subsections establish that it is reasonable to replace W2(µ, µ−) with

a data driven estimate of EW2(µn, µ
−
n ) in Lemma 4.3.3 and Theorem 4.3.4. Rates of

convergence of W2(µn, µ
−
n ) are presented, and a bootstrap estimator for EW2(µn, µ

−
n )

is proposed and tested numerically.
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4.4.1 Rate of convergence of empirical estimate

As Wp(·, ·) is a metric, the triangle inequality and the fact that Wp(µ, µn) =

Wp(µ
−
n , µ

−) implies that

Wp(µ, µ
−) ≤ Wp(µ, µn) +Wp(µn, µ

−
n ) +Wp(µ

−
n , µ

−)

≤ 2Wp(µ, µn) +Wp(µn, µ
−
n ),

and therefore,

|Wp(µ, µ
−)−Wp(µn, µ

−
n )| ≤ 2Wp(µ, µn).

By Lemma 4.A.4, Wp(µ, µn) → 0 with probability one making the discrepancy

negligible for large data sets. However, it is also possible to get a hard upper bound

on this term; specifically, the recent work of Fournier and Guillin (2015) proposes

explicit moment bounds on Wp(µ, µn). Their result can be used to demonstrate the

speed with which our empirical measure of asymmetry, W2(µn, µ
−
n ), converges to

zero when µ is symmetric.

In the case that µ is symmetric, W2(µ, µ−) = 0, the ideal correction term is equal

to zero. This implies that our empirical bound

W2(µn, µ
−
n ) =

∣∣W2(µ, µ−)−W2(µn, µ
−
n )
∣∣ ≤ 2W2(µ, µn).

Therefore, the moment bound from Theorem 1 of Fournier and Guillin (2015) implies

that W2(µn, µ
−
n ) = O(n−δ) where δ ∈ (0, 0.5] depending on the specific moment used

and the dimensionality of the measure. Thus, the empirical bound on the correction

term in our improved inequality, W2(µn, µ
−
n )/
√
n, achieves a faster convergence rate

in the symmetric case than the general rate of n−1/2.

The tightness of the bounds proposed in Fournier and Guillin (2015) was tested

experimentally. While the moment bounds are certainly of theoretical interest,

implementing these bounds resulted in an inequality less sharp than the original

symmetrization inequality. However, the bootstrap procedure detailed in the fol-

lowing section does produce a practically useful estimate of the expected empirical

Wasserstein distance.

4.4.2 Bootstrap estimator

We propose a bootstrap procedure to estimate the expected Wasserstein distance

between the empirical measure and its reflection, EW2(µn, µ
−
n ). Given observations

x1, . . . , xn, let µ̂n be the empirical measure of the data. Then, for some specified m,

two sets Y1, . . . , Ym and Z1, . . . , Zm can be sampled as independent draws from µ̂n.

The goal is to move a mass of 1/m from each of the Yi to each of the negated −Zi
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in an optimal fashion. Hence, the m×m matrix of pairwise distances is constructed

with entries Ai,j = d(Yi,−Zj), which can be accomplished in O(m2) time. From

here, the problem reduces to a linear assignment problem, a specific instantiation of

a Minimum-cost flow problem from linear programming (Ahuja et al., 1993). That is,

given a complete bipartite graph with vertices L ∪R such that |L| = |R| = m and

with weighted edges, we wish to construct a perfect matching minimizing the total

sum of the edge weights. Here, the weights are the pairwise distances Ai,j . This linear

program can be efficiently solved in O(m3) time via the Hungarian algorithm (Kuhn,

1955). For more on linear programs in the probabilistic setting, see Steele (1997).

This estimated distance can be averaged over multiple bootstrapped samples.

Though, in general, only a few replications are necessary to achieve a stable estimate

as the bootstrap estimator has a very small variance. Indeed, to see this, consider

the bounded difference inequality detailed in Section 3.2 of Boucheron et al. (2013)

and in Section 3.3.4 of Giné and Nickl (2016), which is a direct corollary of the Efron-

Stein-Steele inequality (Efron and Stein, 1981; Steele, 1986; Rhee and Talagrand,

1986).

Definition 4.4.2 (A function of bounded differences). For X some measurable space

and a real valued function f : X n → R, f is said to have the bounded differences

property if for all i = 1, . . . , n,

sup
x1,...,xn,x′i

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci.

Proposition 4.4.3 (Corollary 3.2 of Boucheron et al. (2013)). If f has the bounded

differences property with constants c1, . . . , cn, then Var (f(X1, . . . , Xn)) ≤ 1
4

∑n
i=1 c

2
i .

In our setting, Yi and Zi for i = 1, . . . ,m are independent random variables with

law µ̂n. The function f(Y1, . . . , Ym, Z1, . . . , Zm) is the value of the optimal matching

from the {Yi} to the {−Zi}. This f is, in fact, a function of bounded differences.

This is because modifying a single argument will at most change the optimal value

by c = m−1(maxi,j=1,...,n{d(xi,−xj)} −mini,j=1,...,n{d(xi,−xj)}) = C/m. Thus, from

the bounded differences theorem,

Var (f(Y1, . . . , Ym, Z1, . . . , Zm)) ≤ C2n

4m2
.

Therefore, if m is chosen to be of order n, as in the numerical experiments below,

then the variance of the bootstrap estimate decays at rate of O(n−1).

The proposed bootstrap procedure was experimentally tested on both high

dimensional Rademacher and Gaussian data as will be seen in Section 4.4.3. For

each replication, the observed data was randomly split in half. That is, given a
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random permutation ρ ∈ Sn, the symmetric group on n elements, the Hungarian

algorithm was run to calculate the cost of an optimal perfect matching between

{Xρ(1), . . . , Xρ(n
2

)} and {−Xρ(n
2

+1), . . . ,−Xρ(n)}.

4.4.3 Numerical experiments

From Proposition 4.4.1, there is an obvious positive bias in our new symmetrization

inequality when using the Wasserstein distance between the empirical measures,

W2(µn, µ
−
n ), in lieu of the Wasserstein distance between the unknown underlying

measures, W2(µ, µ−). This is specifically troublesome when µ is symmetric or nearly

symmetric. That is, if W2(µ, µ
−) = 0, then barring trivial cases, the distance

between the empirical measures will be positive with positive probability. However,

as stated in Lemma 4.A.4, W2(µn, µ
−
n )→ 0 with probability one, which will still make

this approach superior to the standard symmetrization inequality. In the following

subsections, we will compare the magnitude of the expected symmetrized sum and

the asymmetric correction term, which are, respectively,

Rn = n−1/2E

∥∥∥∥∥
n∑
i=1

εi(Xi − EXi)

∥∥∥∥∥ and Cn = W2(µn, µ
−
n )/
√

2.

The goal is to demonstrate through numerical simulations that the latter is smaller

than the former and thus that newly proposed Rn + Cn is a sharper upper bound

than the original 2Rn for n−1/2E‖
∑n

i=1(Xi − EXi)‖.

Rademacher data

For a dimension k and a sample size n = {2, 4, 8, . . . , 256}, the data for this first

numerical test was generated from a multivariate symmetric Rademacher distribution.

That is, for a size n iid sample from this distribution, X1, . . . , Xn, let Xi,j be

the jth entry of the ith random variable with Xi,1, . . . , Xi,k iid Rademacher(1/2)

random variables. Across 10,000 replications, random samples were drawn and

used to estimate the expected Rademacher average, Rn, and the expected empirical

Wasserstein distance, Cn, under the `1-norm. The dimensions considered were

k = {2, 20, 200}. The results are displayed on the left column of Figure 4.1. As the

sample size n increases with respect to k, we get closer to an asymptotic state and

the bound based on the empirical Wasserstein distance becomes more attractive.

Gaussian data

For a dimension k and a sample size n = {2, 4, 8, . . . , 256}, the data for this second

numerical test was generated from a multivariate Gaussian mixture distribution.
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Specifically, 1
2
N (−1, Ik) + 1

2
N (1, Ik) , which is a symmetric distribution. Over

10,000 replications, random samples were drawn and used to estimate the expected

Rademacher average, Rn, and the expected empirical Wasserstein distance, Cn,

under the `2-norm. The dimensions considered were k = {2, 20, 200}. The results are

displayed on the right column of Figure 4.1. Similarly to the multivariate Rademacher

setting, as the sample size n increases, the bound based on the empirical Wasserstein

distance becomes sharper than the original symmetrization bound.

4.5 Applications

In the following subsections, a collection of applications of the improved symmetriza-

tion inequality are detailed to demonstrate the usefulness of this result. Such

applications range from those of theoretical interest to those of practical application

to statistical testing. These include a test for data symmetry, the construction

of nonasymptotic high dimensional confidence sets, bounding the variance of an

empirical process, and Nemirovski’s inequality for Banach space valued random

variables.

4.5.1 Permutation test for data symmetry

In the previous sections, we proposed the Wasserstein distance W2(µ, µ−) to quantify

the symmetry of a measure µ. Now, given n independent and identically distributed

observations X1, . . . , Xn with common measure µ, we propose a procedure to test

for whether or not µ is symmetric. Unlike other tests for data symmetry which may

be restricted to finite dimensional Euclidean space, this testing procedure applies

to general Hilbert space valued random variables. Thus, it is applicable to many

diverse settings such as, notably, functional data analysis.

The bootstrap approach from Section 4.4 for estimating the empirical Wasserstein

distance is applied, and a permutation test is applied to the bootstrapped sample.

Note that while the Wasserstein-2 metric is specifically used in our improved sym-

metrization inequality, for this test, any Wasserstein-p metric can be utilized as is

done in the numerical simulations below.

The bootstrap-permutation test proceeds as follows:

0. Choose a number r of bootstrap replications to perform.

1. For each bootstrap replication, permute the data by some uniformly randomly

drawn ρ ∈ Sn, the symmetric group on n elements.

2. Use the Hungarian algorithm to compute the optimal assignment cost, ω0,

between the data sets {Xρ(1), . . . , Xρ(n/2)} and {−Xρ(n/2+1), . . . ,−Xρ(n)}.
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Figure 4.1: For multivariate Rademacher (left) and Gaussian mixture (right) data, the
average n−1/2E‖

∑n
i=1(Xi − EXi)‖ (red dashed lines), twice the Rademacher average

2Rn = 2n−1/2E‖
∑n

i=1 εi(Xi − EXi)‖ (black dotted lines), and the bound using the
scaled empirical Wasserstein distance, Rn +W2(µn, µ

−
n )/
√

2 (blue solid lines) were
estimated over 10,000 replications. The dimension of the data is k = {2, 20, 200}.
For the Rademacher setting, the `1-norm was used. For the Gaussian setting, the
`2-norm was used. As the sample size increases, the Wasserstein term converges to
zero thus sharpening the upper bound.
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3. Denote this new half-negated data set Y where Yi = Xρ(i) for i ≤ n/2 and

Yi = −Xρ(i) for i > n/2.

4. Draw m random permutations ρ1, . . . , ρm ∈ Sn. For each ρi, compute ωi, the op-

timal assignment cost between {Yρi(1), . . . , Yρi(n/2)} and {Yρi(n/2+1), . . . , Yρi(n)}.

5. Return the p-value, pj = #{ωi > ω0}/m.

6. Average the r p-values to get an overall p-value, p = r−1
∑r

j=1 pj.

Note that for very large data sets, it may be computationally impractical to find a

perfect matching between two sets of n/2 nodes as performing this test as stated has

a computational complexity of order O(mn3). In that case, randomly draw n′ < n

elements from the data set in step 1, draw a ρ ∈ Sn′ , and proceed as before but with

the smaller sample size.

This permutation test was applied to simulated multivariate Rademacher(p)

data in R5. For sample sizes n = 10 and n = 100, let X1, . . . , Xn be independent

and identically distributed multivariate Rademacher(p) random variables defined in

Definition 1.1.11 where each Xi is comprised of a vector of independent univariate

Rademacher(p) random variables. For values of p ∈ [0.5, 0.8], the power of this test

was experimentally computed over 1000 simulations. The results are displayed in

Figure 4.2. For the `1 and `2 metrics and Wasserstein distances W1 and W2, the

performances of the permutation test were comparable except for the (`2,W2) case,

which performed poorer in both the large and small sample size settings. For the

large sample size, n = 100, Mardia’s test for multivariate skewness (Mardia, 1970,

1974) was included, which uses the result that

6

n

n∑
i=1

n∑
j=1

[
(Xi − X̄)

T
Σ̂−1(Xj − X̄)

]3 d−→ χ2 (k(k + 1)(k + 2)/6)

where Σ̂ is the empirical covariance matrix of the data. However, this is shown to

be less powerful than the proposed permutation test. Furthermore, as this test is

asymptotic in design, it gave erroneous results in the n = 10 case and was thus

excluded from the figure.

4.5.2 High dimensional confidence sets

A method for constructing nonasymptotic confidence regions for high dimensional

data using a generalized bootstrap procedure was proposed in the article of Arlot

et al. (2010). Beginning with a sample of independent and identically distributed

Y1, . . . , Yn ∈ RK and the assumptions that the Yi are symmetric about their mean–

that is, Yi−µ
d
= µ−Yi for all i–and are bounded in Lp-norm–that is, ‖Yi−µ‖p ≤M
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Figure 4.2: For data in R5, the `1 and `2 metrics, and the Wasserstein distances W1

and W2, the experimentally computed power of the permutation test is plotted for
Rademacher(p) data as p, the probability of 1, increases thus skewing the distribution.
The sample size is n = 100 on the left plot and is n = 10 on the right plot. The
n = 100 case includes an asymptotic test for skewness. This test fails in the
nonasymptotic n = 10 case and thus is not included.
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almost surely for all i and some M > 0–they prove, among many other results, that

for some fixed α ∈ (0, 1), the following holds with probability 1− α:

φ
(
Ȳ − µ

)
≤
(

n

n− 1

)
Eεφ

(
1

n

n∑
i=1

εi(Yi − Ȳ )

)
+

2M√
n

√
log(1/α)

where φ : RK → R is a function that is subadditive, positive homogeneous, and

bounded by Lp-norm. By substituting our Theorem 4.3.4 for their Proposition 2.4

allows us to drop the symmetry condition and achieve a more general (1 − α)

confidence region.

Proposition 4.5.1. For a fixed α ∈ (0, 1) and p ∈ [1,∞], let φ : Rk → R be

subadditive, positive homogeneous, and bounded in Lp−norm. Then, for some M > 0,

the following holds with probability at least 1− α.

φ
(
Ȳ − µ

)
≤ Eεφ

(
1

n

n∑
i=1

εi(Yi − Ȳ )

)
+

+ (2n)−1/2
(

2
√

2M
√

log(1/α) +W2(µ, µ−)
)
.

4.5.3 Bounds on empirical processes

Symmetrization arises when bounding the variance of an empirical process. In

Boucheron et al. (2013), the following result is stated as Theorem 11.8 and is subse-

quently proved using the original symmetrization inequality resulting in suboptimal

coefficients.

Theorem 4.5.2 (Boucheron et al. (2013), Theorem 11.8). For i ∈ {1, . . . , n} and

s ∈ T , a countable index set, let Xi = (Xi,s)s∈T be a collection of real valued random

variables. Furthermore, let X1, . . . , Xn be independent. Assume EXi,s = 0 and

|Xi,s| ≤ 1 for all i = 1, . . . , n and for all s ∈ T . Defining Z = sups∈T
∑n

i=1Xi,s, then

Var (Z) ≤ 8EZ + 2σ2

where σ2 = sups∈T
∑n

i=1 EX2
i,s.

The given proof uses the symmetrization inequality twice as well as the contraction

inequality–see Ledoux and Talagrand (1991) Theorem 4.4, and Boucheron et al. (2013)

Theorem 11.6–to establish the bounds

E sup
s∈T

n∑
i=1

X2
i,s ≤ σ2 + 2E sup

s∈T

n∑
i=1

εiX
2
i,s and E sup

s∈T

n∑
i=1

εiX
2
i,s ≤ 4EZ.
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Making use of the improved symmetrization inequality cuts the coefficient of EZ by

a factor of 4 to the tighter

Var (Z) ≤ 2EZ + 2σ2 +O(
√
n).

Beyond this textbook example of bounding the variance of an empirical process,

symmetrization arguments are used to construct confidence sets for empirical pro-

cesses in Giné and Nickl (2010a); Lounici and Nickl (2011); Kerkyacharian et al.

(2012); Fan (2011). The coefficients in all of their results can be similarly improved

using the improved symmetrization inequality.

4.5.4 Type, cotype, and Nemirovski’s inequality

In the probability in Banach spaces setting, let Xi ∈ (B, ‖·‖) for i = 1, . . . , n

be a collection of independent zero mean Banach space valued random variables.

A collection of results referred to as Nemirovski inequalities (Nemirovski, 2000;

Dümbgen et al., 2010) are concerned with whether or not there exists a constant K

depending only on the norm such that

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
2

≤ K
n∑
i=1

‖Xi‖2.

For example, in the Hilbert space setting, orthogonality allows for K = 1 and the

inequality can be replaced by an equality.

One such result requires the notion of type and cotype. A Banach space (B, ‖·‖)
is said to be of Rademacher type p for 1 ≤ p < ∞ (respectively, of Rademacher

cotype q for 1 ≤ q < ∞) if there exists a constant Tp (respectively, Cq) such that

for all finite non-random sequences (xi) ∈ B and (εi), a sequence of independent

Rademacher random variables,

E

∥∥∥∥∥∑
i

εixi

∥∥∥∥∥
p

≤ T pp
∑
i

‖xi‖p,

(
respectively,

∑
i

‖xi‖q ≤ C−qq E

∥∥∥∥∥∑
i

εixi

∥∥∥∥∥
q)

.

These definitions and the original symmetrization inequality lead to the following

proposition.

Proposition 4.5.3 (Ledoux and Talagrand (1991) Proposition 9.11, Dümbgen et al.

(2010) Proposition 3.1). Let Xi ∈ B for i = 1, . . . , n and Sn = n−1
∑n

i=1Xi. If

(B, ‖·‖) is of type p ≥ 1 with constant Tp (respectively, of cotype q ≥ 1 with constant
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Cq), then

E‖Sn‖p ≤ (2Tp)
pn−p

n∑
i=1

E‖Xi‖p

E‖Sn‖q ≥ (2Cq)
−qn−q

n∑
i=1

E‖Xi‖q.

The proposition can be refined by applying our improved symmetrization inequal-

ity along with the Rademacher type p condition if the Xi are additionally norm

bounded. If the Xi have a common law µ, let W2 = W2(µ, µ−) be the Wasserstein

distance between µ and its reflection.

Proposition 4.5.4. Under the setting of Proposition 4.5.3, additionally assume that

‖Xi‖ ≤ 1 for i = 1, . . . , n. Then,

E‖Sn‖p ≤ T pp n
−p

n∑
i=1

E‖Xi‖p +
pW2√

2n

E‖Sn‖q ≥ C−qq n−q
n∑
i=1

E‖Xi‖q −
qW2√

2n
.

Proof. In the context of Theorem 4.3.4, set ψ(·) = ‖·‖p. Given the bound ‖Xi‖ ≤ 1,

we have that ‖ψ‖Lip = p. Scale by p, and the first result follows.

Note that for identically distributed Xi ∈ B, the order of the original bound for

a type p Banach space is O(n1−p) while the Wasserstein correction term is O(n−1/2).

This correction will give an obvious benefit for spaces of type p < 3/2. However, even

for spaces of type 2, the new bound can be tighter specifically in the high dimensional

setting when d � n. Indeed, consider `∞(Rd), which is discussed in particular in

Section 3.2 of Dümbgen et al. (2010) where it is shown to be of type 2 with constant

Tp =
√

2 log(2d). For independent and identically distributed Xi ∈ `∞(Rd), the

bounds to compare are

8 log(2d)

n
E‖Xi‖2

∞ and
2 log(2d)

n
E‖Xi‖2

∞ +

√
2

n
W2(µ, µ−).

Figure 4.3 displays such a comparison for n = 10, d ∈ {5, 25, 50}, and iid Xi,j +

α/(1 + α) ∼ Beta (α, 1) for i = 1, . . . , n and j = 1, . . . , d. Hence, the Xi are Beta

random variables that are shifted to have zero mean. W2(µ, µ−) is approximated by

EW2(µ5, µ
−
5 ), which is computed via the bootstrap procedure outlined in Section 4.4.

The new bound can be seen to have better performance than the old one specifically

in the cases of d = 25 and d = 50 when α is not too large.

107



4.5. APPLICATIONS

1 2 3 4

0.0

0.1

0.2

0.3

alpha

bo
un

ds

Old Bound
New Bound

Dimension 5

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

alpha

bo
un

ds

Old Bound
New Bound

Dimension 25

1 2 3 4

0.0

0.5

1.0

1.5

2.0

alpha

bo
un

ds

Old Bound
New Bound

Dimension 50

Figure 4.3: A comparison of the old bound from Proposition 4.5.3, the red dashed
line, and the new bound from Proposition 4.5.4, the blue dotted line, for a sample
n = 10, and Xi ∈ `∞(Rd) for dimensions d ∈ {5, 25, 50}. Each Xi = (Xi,1, . . . , Xi,d)

where each Xi,j + α/(1 + α)
iid∼ Beta (α, 1). The solid black line indicates the left

hand side in the two propositions of E‖Sn‖2
∞.
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A Nemirovski variant with weak variance

As one further example of improved symmetrization, a variation of Nemirovski’s

inequality found in Section 13.5 of Boucheron et al. (2013) is proved via a similar

symmetrization argument for the `p norm with p ≥ 1. Let X1, . . . , Xn ∈ Rd be

independent zero mean random variables. Let Bq = {x ∈ Rd : ‖x‖q ≤ 1}, and define

the weak variance Σ2
p = n−2E supt∈Bq

∑n
i=1 〈t,Xi〉2. The resulting inequality is

E‖Sn‖2
p ≤ 578dΣ2

p.

Replacing the old symmetrization inequality with the improved version reduces the

coefficient of 578 roughly by a factor of 4 resulting in

E‖Sn‖2
p ≤ 146dΣ2

p +O(n−1/2).

4.6 Discussion

The symmetrization inequality is a fundamental result for probability in Banach

spaces, concentration inequalities, and many other related areas. However, not

accounting for the amount of asymmetry in the given random variables has led to

pervasive powers of two throughout derivative results. Our improved symmetrization

inequality incorporates such a quantification of asymmetry through use of the

Wasserstein distance. Besides being theoretically sound, it is shown in simulations

to provide a tightness superior to that of the original result. Going beyond the

inequality itself, this Wasserstein distance offers a novel and powerful way to analyze

the symmetry of random variables or lack thereof. It can and should be applied to

countless other results that were not considered in this current work.

4.A Past results used

Lemma 4.A.1 ( Kantorovich-Rubinstein Duality, see Villani (2008) ). Under the

setting of Definition 4.3.1,

W1(µ, ν) = sup
‖φ‖Lip≤1

{∫
X
φdµ−

∫
X
φdν

}
.

Lemma 4.A.2. Under the setting of Definition 4.3.1, for p < q,

Wp(µ, ν) ≤ Wq(µ, ν).

Proof. Jensen or Hölder’s Inequality
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Lemma 4.A.3 ( Convolution property of W2, see Bickel and Freedman (1981) ).

For Hilbert space valued random variables Xi with law µi and Yi with law νi for

i = 1, . . . , n, define µ∗n to be the law of
∑n

i=1Xi and similarly for ν∗n. Then,

W 2
2 (µ∗n, ν∗n) ≤

n∑
i=1

W 2
2 (µi, νi).

Lemma 4.A.4 ( Convergence of Empirical Measure, see Bickel and Freedman (1981)

). Let X1, . . . , Xn be independent and identically distributed Banach space valued

random variables with common law µ. Let µn be the empirical distribution of the Xi.

Then,

Wp(µn, µ)→ 0, as n→∞.
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Appendix A

R package: fdcov

A.1 Code overview

The statistical techniques outlined in Chapter 3 for inference on covariance operators

are available in fdcov, an R package uploaded to CRAN (R Core Team, 2016).

Beyond the methodology of Chapter 3, this package also contains a routine for

performing a k sample test for equality of covariance via a permutation test (Cabassi

et al., 2017). It is planned to eventually contain the two sample tests from Panaretos

et al. (2010) and Fremdt et al. (2013) as well. In this chapter, we briefly outline the

functionality of this software package.

The function ksample.com applies the k sample test for equality of covariance

operator from Section 3.3.1. This function is complimented by ksample.perm, which

answers the same statistical question but with a permutation test. The arguments

are

ksample.com(dat, grp, p, alpha, scl1, scl2)

where dat is an n ×m matrix of data with one entry per row, grp is the n long

vector of group labels, p refers to the choice of p-Schatten norm, alpha is the desired

empirical size of the test, and scl1 and scl2 are the scale factors for tweaking the

coefficients as described in Section 3.3.1. Future updates aim to include a cross-

validation procedure for selecting a data driven choice for scl1 and scl2 such as

the procedure described in Appendix 3.E.

The function classif.com trains a covariance operator classifier using the method

from Section 3.3.2. The arguments are

classif.com(datGrp, dat)

where datGrp is the n long vector of group labels and dat is the n×m matrix of

data with one entry per row. The classifier can be used for prediction via the generic
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S3 function

predict(object, dat, SOFT, ...)

where object is the classifier, dat is the data matrix to be classified with one entry

per row, SOFT is a Boolean flag to tell the routine to either return hard or soft

classification. In this context, hard classification makes the program return a class

label while soft classification makes the program return a probability vector with

entries P (dat[i,] ∈ class[j]).

The function cluster.com applies the expectation-maximization algorithm from

Section 3.3.3 to a set of functional data observations to cluster them based on their

covariances. The arguments are

cluster.com( dat, labl, grpCnt, iter,

SOFT, PRINTLK, LOADING, IGNORESTOP )

where dat is the n×m data matrix with one entry per row, labl is optional and

used to group curves together in order to cluster operators that are not all rank one,

grpCnt sets the number of groups into which to partition the data, iter tells the

program the maximum number of iterations to run, SOFT is a Boolean flag to tell the

program whether or not to return category probabilities, PRINTLK is a Boolean flag

to tell the program whether or not to print the likelihoods used by the EM algorithm,

LOADING is a Boolean flag to tell the program whether or not to print a loading bar

while running, and IGNORESTOP is a Boolean flag to tell the program whether or not

to ignore early stopping conditions.

A.2 Examples

A.2.1 k sample test

# Load in phoneme data

l ibrary ( f d s )

# Setup data arrays

dat1 = rbind ( t ( aa$y ) [ 1 : 2 0 , ] , t ( sh$y ) [ 1 : 2 0 , ] ) ;

dat2 = rbind ( t ( aa$y ) [ 1 : 2 0 , ] , t ( ao$y ) [ 1 : 2 0 , ] ) ;

dat3 = rbind ( dat1 , t ( ao$y ) [ 1 : 2 0 , ] ) ;

# Setup group l a b e l s

grp1 = gl ( 2 , 2 0 ) ;

grp2 = gl ( 2 , 2 0 ) ;

grp3 = gl ( 3 , 2 0 ) ;
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# Compare two d i s i m i l a r phonemes ( shou ld re turn TRUE)

ksample . com( dat1 , grp1 ) ;

# Compare two s i m i l a r phonemes ( shou ld re turn FALSE)

ksample . com( dat2 , grp2 ) ;

# Compare t h r e e phonemes ( shou ld re turn TRUE)

ksample . com( dat3 , grp3 ) ;

A.2.2 Classifying operators

l ibrary ( f d s ) ;

# Setup t r a i n i n g data

dat1 = rbind (

t ( aa$y [ , 1 : 1 0 0 ] ) , t ( ao$y [ , 1 : 1 0 0 ] ) ,

t ( dc l$y [ , 1 : 1 0 0 ] ) , t ( i y$y [ , 1 : 1 0 0 ] ) ,

t ( sh$y [ , 1 : 1 0 0 ] )

) ;

# Setup t e s t i n g data

dat2 = rbind (

t ( aa$y [ , 1 0 1 : 4 0 0 ] ) , t ( ao$y [ , 1 0 1 : 4 0 0 ] ) ,

t ( dc l$y [ , 1 0 1 : 4 0 0 ] ) , t ( i y$y [ , 1 0 1 : 4 0 0 ] ) ,

t ( sh$y [ , 1 0 1 : 4 0 0 ] )

) ;

datgrp = gl ( 5 , 1 0 0 ) ;

clCom = c l a s s i f . com( datgrp , dat1 ) ;

grp = predict ( clCom , dat2 , LOADING=TRUE ) ;

acc = c (

sum( grp [1:300]==1 ) , sum( grp [301:600]==2 ) ,

sum( grp [601:900]==3 ) , sum( grp [901:1200]==4 ) ,

sum( grp [1201:1500]==5 )

)/300 ;

print ( rbind ( gl ( 5 , 1 ) , s ign i f ( acc , 3 ) ) ) ;

A.2.3 Clustering operators

# Load phoneme data

l ibrary ( f d s ) ;

# Setup data to be c l u s t e r e d

dat = rbind (

t ( aa$y [ , 1 : 2 0 ] ) , t ( i y$y [ , 1 : 2 0 ] ) ,

t ( sh$y [ , 1 : 2 0 ] )
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) ;

# C l u s t e r data i n t o t h r e e groups

c l s t = c l u s t e r . com( dat , grpCnt =3);

matrix ( c l s t , 3 , 2 0 , byrow=TRUE) ;

# c l u s t e r groups o f curves

dat = rbind (

t ( aa$y [ , 1 : 4 0 ] ) , t ( i y$y [ , 1 : 4 0 ] ) ,

t ( sh$y [ , 1 : 4 0 ] )

) ;

lab = gl ( 3 0 , 4 ) ;

# C l u s t e r data i n t o t h r e e groups

c l s t = c l u s t e r . com( dat , l a b l=lab , grpCnt =3);

matrix ( c l s t , 3 , 1 0 , byrow=TRUE) ;
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Appendix B

Future Considerations

No single manuscript can contain a complete compendium of all information, ex-

tensions, and applications of a single topic. In this appendix, we briefly discuss

some of the topics, which have yet to be fully considered under the auspices of the

non-asymptotic concentration inequality based statistical methodology promoted by

the previous chapters.

The methodology of this manuscript is keenly focused around the construction of

dimension-free non-asymptotic confidence sets for a wide range of statistical objects.

It is in this paradigm of high or infinite dimensions that so much of modern data

lies. In this manuscript, we briefly considered some real data sets as a proof of

concept for our proposed methodology. In Chapter 2, we considered high dimensional

genomics data. In Chapter 3, we considered infinite dimensional phoneme data. In

this appendix chapter, we briefly discuss two areas of data analysis that could be

enhanced with the introduction of similar concentration inequality based methodology

to that of the rest of this manuscript. The areas to be considered are longitudinal

data and data living in a reproducing kernel Hilbert space.

B.1 Longitudinal data

An area of data analysis that is closely related to functional data analysis is that of

longitudinal data. In this setting, a collection of subjects are observed at specific

instances over a long timespan such as a pharmaceutical trial where patients are

examined by doctors at regular intervals. However, such studies are rife with

potential problems including long time spans between observations, missing data,

and irregular time intervals for subject observations. As a results, much recent

research has gone into the study of the analysis of such data from the functional data

perspective (Müller, 2005; Yao et al., 2005; Hall et al., 2008; Serban et al., 2013).

Furthermore, the estimation of the covariance operator and related inference is often

of interest in longitudinal data analysis. Thus, such testing can be considered with
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the concentration inequality based methodology promoted in this manuscript.

In the ideal case where the data is observed at regular intervals and is not missing,

we can use the methodology developed in Chapter 2 for the estimation of large sparse

covariance matrices. The assumption of sparsity is reasonable in this setting as it

can usually be assumed that observations further apart in time will be less correlated

than those observed in quick temporal succession. Furthermore, the time information

can be incorporated into an estimator as meta-information similar to the techniques

of tapering and banding in covariance matrix estimation (Wu and Pourahmadi, 2003;

Furrer and Bengtsson, 2007; Bickel and Levina, 2008b).

Once the incorporation of sparse irregular observations is added to the framework,

further sophistication is required. Thus, longitudinal analysis is often considered from

the functional data perspective. The addition of irregular and missing observations

leads to more theoretical and practical problems that must be addressed.

A particularly challenging problem of interest is the estimation of the covariance

structure of longitudinal data when the responses are binary valued (Avery et al.,

2014). While many standard techniques fail in this setting, it is reasonable to attempt

a concentration based estimation framework. Specifically, most of the concentration

inequalities available require some absolute bound on the data under observation.

Hence, binary valued longitudinal data falls nicely into this paradigm.

B.2 Reproducing Kernel Hilbert Spaces

Much recent research has demonstrated that statistical inference in the infinite

dimensional setting can be extremely fruitful when working within the confines and

framework of a Reproducing Kernel Hilbert Space, or an RKHS for short (Hofmann

et al., 2008; Yuan and Cai, 2010; Cai and Yuan, 2010, 2012; Blanchard and Mücke,

2016; Qu et al., 2016). An introduction to RKHS’s for statistics with Gaussian

processes is detailed in Section 2.6 of Giné and Nickl (2016). In line with such

past research, we briefly investigated the consequences of constructing concentration

inequality based confidence sets in similar style to those from Chapter 3. Specifically,

we considered the implications of estimating the weak variance, a key component

to such confidence sets, in the RKHS framework. Those calculations are briefly

described below.

Let H(K) be an Hilbert space of functions on a domain T where T = [0, 1] for

simplicity of exposition. The reproducing kernel K is a symmetric bivariate function

K : T × T → R such that for every t ∈ T and every f ∈ H(K), K(·, t) ∈ H(K) and

f(t) = 〈f,K(·, t)〉H(K). Equivalently, the RKHS H(K) can be defined as the Hilbert

space in which the evaluation functional Lt : f → f(t) is continuous (i.e. is a bounded

linear functional). Then, Lt(f) = 〈f,K(·, t)〉 = f(t). The kernel K is symmetric
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and positive-definite. Conversely, any symmetric and positive-definite K will be the

kernel for a specific RKHS H(K). This results is known as the Moore-Aronszajn

theorem (Aronszajn, 1950).

Assume that K is square integrable, and let {ϕi}∞i=1 be an orthonormal basis for

L2(T ). Then, from Mercer’s Theorem (Mercer, 1909),

K(s, t) =
∞∑
i=1

λiϕi(s)ϕi(t)

where λ1 ≥ λ2 ≥ . . . are the eigenvalues of K. For f, g ∈ H(K), write f(t) =∑n
i=1 fiϕi(t) and g(t) =

∑n
i=1 giϕi(t). Then, define 〈f, g〉H(K) :=

∑∞
i=1 λ

−1
i figi.

The tensor product space H(K) ⊗ H(K) = H(K ⊗K) is an RKHS with ker-

nel K ⊗ K : T 4 → R such that K ⊗ K((s, t), (u, v)) = K(s, u)K(t, v). Fur-

thermore, the collection {ϕiϕj}∞i,j=1 is an orthonormal basis for L2(T × T ). For

f, g ∈ H(K), then f ⊗ g(s, t) = f(s)g(t) and ‖f ⊗ g‖H(K⊗K) = ‖f‖H(K)‖g‖H(K). For

f1, . . . , fn, g1, . . . , gn ∈ H(K),∥∥∥∥∥
n∑
i=1

fi ⊗ gi

∥∥∥∥∥
2

H(K⊗K)

=
n∑

i,j=1

〈fi, gi〉H(K) 〈fj, gj〉H(K) .

For an operator A ∈ H(K ⊗K), write A =
∑n

i,j=1 ai,jϕiϕj, then ‖A‖2
H(K⊗K) =∑n

i,j=1 λ
−1
i λ−1

j a2
i,j.

Note that if K is such that λi = 1 for all i, then the norm ‖·‖H(K⊗K) coincides

with the usual Hilbert-Schmidt norm, which is also the Frobenius norm in the finite

dimensional setting. Furthermore, let Λ be the diagonal operator with the same

eigenvalues as K. Then, ‖A‖2
H(K⊗K) = ‖Λ−1/2AΛ−1/2‖2

HS.

Now let f ∈ H(K) be a random function such that f(t) =
∑∞

i=1Xiϕi(t) where the

Xi are real valued random variables. Then, the mean µ = Ef(t) =
∑∞

i=1(EXi)ϕi(t) ∈
H(K). Furthermore, letting ci,j = cov (Xi, Xj), the covariance operator is

C(s, t) = E
(
(f − µ)⊗2

)
=

∞∑
i,j=1

ci,jϕi(s)ϕj(t) ∈ H(K ⊗K).

Next, we compute the weak variance as in the subsections of Appendix 3.B but for

functional data in an RKHS. Given f1, . . . , fn, f ∈ H(K) independent and identically

distributed zero mean random functions, define the empirical covariance operator to

be Ĉ = n−1
∑n

i=1 f
⊗2
i . The size of a concentration based confidence set is strongly

related to the magnitude of the weak variance

σ2 =
1

n

n∑
i=1

sup‖A‖H(K⊗K)≤1E
〈
f⊗2
i − Ef⊗2, A

〉2

H(K⊗K)
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where the supremum is taken over a countable dense subset of the unit ball of

H(K ⊗K). Thus, continuing similarly to the computations of Chapter 3,

σ2 =
1

n

n∑
i=1

sup‖A‖H(K⊗K)≤1E
〈
f⊗2
i − Ef⊗2, A

〉2

H(K⊗K)

=
1

n

n∑
i=1

sup‖A‖H(K⊗K)≤1

〈
Ef⊗4

i − C⊗2, A⊗2
〉
H(K⊗4)

≤ 1

n

n∑
i=1

sup‖Π‖H(K⊗4)≤1

〈
Ef⊗4

i − C⊗2,Π
〉
H(K⊗4)

=
∥∥Ef⊗4 − C⊗2

∥∥
H(K⊗4)

=

∥∥∥∥∥
∞∑

i,j,k,l=1

[E (XiXjXkXl)− E (XiXj) E (XkXl)]ϕiϕjϕkϕl

∥∥∥∥∥
H(K⊗4)

=

(
∞∑

i,j,k,l=1

[E (XiXjXkXl)− E (XiXj) E (XkXl)]
2 λ−1

i λ−1
j λ−1

k λ−1
l

)1/2

In the Gaussian process setting of Appendix 3.B.3, we have from Isserlis (1918)

that E (XiXjXkXl) = E (XiXj) E (XkXl)+E (XiXk) E (XjXl)+E (XiXl) E (XjXl) =

ci,jck,l + ci,kcj,l + ci,lcj,k. Hence,

σ2 ≤

(
∞∑

i,j,k,l=1

[ci,kcj,l + ci,lcj,k]
2 λ−1

i λ−1
j λ−1

k λ−1
l

)1/2

=

(
∞∑

i,j,k,l=1

[
c2
i,kc

2
j,l + c2

i,lc
2
j,k + 2ci,kcj,lci,lcj,k

]
λ−1
i λ−1

j λ−1
k λ−1

l

)1/2

=

2

(
∞∑

i,j=1

c2
i,jλ
−1
i λ−1

j

)2

+ 2
∞∑

i,j=1

λ−1
i λ−1

j

(
∞∑
k=1

ci,kcj,kλ
−1
k

)2
1/2

=
(

2
∥∥Λ−1/2CΛ−1/2

∥∥4

HS
+ 2
∥∥(Λ−1/2CΛ−1/2)2

∥∥2

HS

)1/2

=
(

2‖C‖4
H(K⊗K) + 2

∥∥CΛ−1C
∥∥2

H(K⊗K)

)1/2

This choice of the reproducing kernel directly effects our bound on the weak variance

of the data. It is noteworthy that in the case that the kernel is the identity operator,

that the above bound reduces to our original bound from Appendix 3.B.3.
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estimation. Machine Learning, 48(1-3):85–113, 2002.

George Bennett. Probability inequalities for the sum of independent random variables.

Journal of the American Statistical Association, 57(297):33–45, 1962.

James O Berger. Could Fisher, Jeffreys and Neyman have agreed on testing?

Statistical Science, 18(1):1–32, 2003.

Alain Berlinet, Gérard Biau, and Laurent Rouviere. Functional supervised classifica-

tion with wavelets. In Annales de l’ISUP, volume 52, 2008.

Sergei Bernstein. On a modification of Chebyshev’s inequality and of the error

formula of Laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

Peter J Bickel and David A Freedman. Some asymptotic theory for the bootstrap.

The Annals of Statistics, pages 1196–1217, 1981.

Peter J Bickel and Elizaveta Levina. Covariance regularization by thresholding. The

Annals of Statistics, pages 2577–2604, 2008a.

Peter J Bickel and Elizaveta Levina. Regularized estimation of large covariance

matrices. The Annals of Statistics, pages 199–227, 2008b.
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