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Abstract 

IgG antibodies cause inflammation and organ damage in autoimmune diseases such 

as systemic lupus erythematosus (SLE). We investigated the metabolic profile of 

macrophages isolated from inflamed tissues in immune complex (IC)-associated 

diseases, including SLE and rheumatoid arthritis, and following IgG Fcγ receptor 

cross-linking. We found that human and mouse macrophages undergo a switch to 

glycolysis in response to IgG IC stimulation, mirroring macrophage metabolic 

changes in inflamed tissue in vivo. This metabolic reprogramming was required to 

generate a number of pro-inflammatory mediators, including IL-1β, and was 

dependent on mTOR and hypoxia-inducible factor (HIF)1α. Inhibition of glycolysis, or 

genetic depletion of HIF1α, attenuated IgG IC-induced activation of macrophages in 

vitro, including primary human kidney macrophages. In vivo, glycolysis inhibition led 

to a reduction in kidney macrophage IL-1β and reduced neutrophil recruitment in a 

murine model of antibody-mediated nephritis. Together, our data reveal the 

molecular mechanisms underpinning FcγR-mediated metabolic reprogramming in 

macrophages and suggest a novel therapeutic strategy for autoantibody-induced 

inflammation, including lupus nephritis.  
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Significance statement 

IgG antibodies are a key component of adaptive humoral immunity but can cause 

organ damage if they bind self-antigen, as occurs in the autoimmune disease 

systemic lupus erythematosus (SLE).  Many of the pro-inflammatory effects of IgG 

are mediated by ligating Fc gamma receptors (FcγRs) expressed by tissue-resident 

leukocytes such as macrophages. One of the most serious complications of SLE is 

kidney inflammation – lupus nephritis. Here we show that IgG ligation of FcγRs on 

macrophages in the kidney leads to a change in their metabolism, resulting in a 

switch towards glycolysis. Administration of a glycolysis inhibitor attenuated IgG-

associated kidney macrophage activation, pro-inflammatory cytokine secretion and 

kidney inflammation. Therefore, manipulating macrophage metabolism may be a 

useful therapeutic strategy in lupus nephritis. 
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Introduction 

IgG antibodies play an important role in defence against infection, but can cause 

inflammation and organ damage in autoimmune diseases such as systemic lupus 

erythematosus (SLE) (1). Patients with SLE have circulating antibodies that bind to a 

variety of self-antigens, resulting in IgG immune complex (IC) deposition in skin, 

joints and kidneys causing organ damage by activating complement and local 

immune cells (2, 3). Current treatments for lupus and other autoantibody-mediated 

diseases do not adequately control disease activity and tissue damage, and are 

associated with significant side-effects (4), therefore the identification of new 

therapeutic targets is a major unmet clinical need. Fcγ receptors (FcγRs) bind IgG IC 

and are expressed by many immune cells, including tissue-resident macrophages (5, 

6). Polymorphisms in FCGR genes are associated with increased susceptibility to 

SLE and other autoimmune diseases (7-9), confirming their importance in disease 

pathogenesis. FcγRs may be activating (in humans FcγRIIA, IIIA, IIIB) or inhibitory 

(FcγRIIB), and the balance of these two inputs determines the activation threshold 

and the magnitude of the inflammatory response to IgG IC (1, 10). Macrophages are 

tissue-resident immune cells that can respond to local immune challenges and when 

stimulated by IgG IC, produce cytokines such as IL-6, TNFα and IL-1β, as well as 

inflammatory mediators including prostaglandins and reactive oxygen species (ROS) 

(6, 7, 10-12). Given their potent pro-inflammatory effects in tissues, macrophages 

are an obvious therapeutic target in antibody-mediated autoimmunity. Indeed, mice 

deficient in activating FcγRs (13) or with macrophage-specific over-expression of the 

inhibitory FcγRIIB show less severe autoantibody-induced nephritis (14). These data 

suggest that inhibition of FcγR-dependent macrophage activation may be a useful 
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treatment strategy in lupus and in other autoimmune diseases where antibodies play 

a pathogenic role. 

 

There has been a recent appreciation that immune cells undergo metabolic 

reprogramming in response to local pathogen-derived signals and cytokines.  

Indeed, these changes in cellular metabolism can profoundly influence the nature of 

the immune response produced (15, 16). For example, macrophages activated by 

the toll-like receptor (TLR)-4 ligand lipopolysaccharide (LPS), known as M(LPS) or 

M1 macrophages (17), undergo an increase in glycolysis but a reduction in Krebs 

cycle associated oxidative phosphorylation (OXPHOS) and have a pro-inflammatory 

phenotype (18, 19), whereas macrophages generated by IL-4 stimulation (M(IL-4) or 

M2 macrophages (17)) retain high OXPHOS and have anti-inflammatory properties 

(18, 19).  To date, there has been little consideration of how FcγR cross-linking by 

IgG IC affects metabolic processes in macrophages, and this information is 

important for our understanding of the pathogenesis of diseases characterised by 

antibody-mediated inflammation. Of note, although immune complex stimulation 

results in the production of pro-inflammatory cytokines by macrophages (11, 12), the 

signalling cascade downstream of FcγR is distinct from TLR signalling, involving 

SYK, PI3K and MAPK (1, 5). Indeed, the addition of IgG IC to LPS-stimulated 

macrophages can even attenuate inflammation (20). This raises the question of 

whether FcγR cross-linking on macrophages may have distinct and specific effects 

on macrophage metabolism.  

 

Here we show that tissue macrophages in IC-associated disease exhibit a glycolytic 

transcriptional signature, which is shared with macrophages following IgG IC 
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stimulation in vitro. In response to IgG IC stimulation macrophages upregulate 

glycolytic genes and undergo a switch to aerobic glycolysis. This metabolic 

reprogramming was required to generate a number of pro-inflammatory mediators 

and cytokines, suggesting that this pathway could be activated in antibody-mediated 

tissue inflammation in vivo, and potentially represents a useful therapeutic target. In 

keeping with this, inhibition of glycolysis attenuated IgG IC-induced IL-1β production 

by kidney macrophages in mice and humans, and reduced neutrophil recruitment 

and inflammation in nephrotoxic nephritis.  Together, our data reveal the cellular 

molecular mechanisms underpinning FcγR-mediated metabolic reprogramming in 

macrophages and that this switch occurs in kidney macrophages in vivo following 

IgG IC challenge. Inhibition of macrophage glycolysis ameliorated autoantibody-

induced inflammation, with therapeutic implications for conditions such as lupus 

nephritis. 

 

Results  

FcγR cross-linking induces a transcriptional glycolytic switch in macrophages 

To address the question of whether inflammation associated with autoantibody IC 

deposition in tissues results in changes in macrophage metabolism, we assessed 

the transcriptional profiles of macrophages obtained from inflamed tissues. In human 

synovial macrophages isolated from patients with RA (Fig. 1A), and in kidney F4/80+ 

macrophages from mice with NZB/W lupus nephritis (Fig. 1B, SI Appendix, Fig. 

S1A), we observed an enrichment of glycolysis pathway genes compared to control 

macrophages. Kidney macrophages may arise from yolk-sac precursors or may be 

monocyte-derived that are F4/80hiCD11bint and F4/80intCD11bhi respectively (21), 

and may differ in their functional characteristics (22). To determine if the metabolic 
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profile of both macrophage subsets was altered in IC-mediated inflammation, we 

performed single cell RNA sequencing (scRNAseq) on renal myeloid cells sorted 

from a second model of murine nephritis, MRL-lpr mice and from control MRL/MpJ 

mice. Several clusters of cells could be distinguished with two major groups evident, 

mononuclear phagocyte (MNP)1, with transcriptional similarity to yolk-sac derived 

F4/80hi macrophages and MNP2 that were transcriptionally similar to monocyte-

derived macrophages and included a monocyte cluster (Fig. 1C, D).  In non-

diseased MRL/MpJ kidney monocytes and macrophages, fatty acid metabolism 

genes were enriched (Fig. 1E). In contrast, in MRL-lpr mice, glycolysis and 

OXPHOS genes were increased in kidney MNPs, with glycolysis genes particularly 

enriched in monocyte-derived macrophages (Fig. 1E). Although informative of 

potential metabolic changes induced by IgG, macrophages isolated from inflamed 

tissues may be influenced by a variety of tissue- and disease-specific factors, 

including local cytokines and danger-associated molecular patterns, as well as the 

exact nature of the IgG immune complexes. Furthermore, transcriptional changes in 

metabolic pathway genes require validation to definitively confirm cellular metabolic 

adaptations. To better characterise the specific effect of isolated FcγR cross-linking 

by IgG IC on macrophage metabolism, we stimulated murine bone-marrow-derived 

macrophages (BMDM) with a model IgG IC (ovalbumin opsonised with IgG (Ova-IC)) 

(23, 24) and assessed gene expression (SI Appendix, Fig. S1B).  We observed a 

significant enrichment of glycolysis-associated genes following FcγR crosslinking 

(Fig. 1F, SI Appendix, Fig. S1B), including increased transcripts of key enzymes 

and transporters required for glycolysis, such as Hk2, Ldha, and Slc2a1 (Fig. 1G), 

which we confirmed using real time quantitative (q) PCR (Fig. 1H).  Similarly, in 

human monocytes stimulated with plate-coated IgG (c-IgG), we also observed an 
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enrichment of glycolysis-associated genes (SI Appendix, Fig. S1C).  In addition to 

an increase in glycolysis genes, we also observed reduced expression of genes 

associated with fatty acid metabolism in IgG IC disease-associated macrophages 

and in murine macrophages following FcγR crosslinking (Fig. 1A, B, E), specifically, 

fatty acid catabolism pathway genes (Fig. 1I). In vivo, inflamed NZB/W renal and RA 

synovial macrophages showed globally similar transcriptional changes to BMDM 

stimulated with IgG IC, with an increase in FcγR-inducible genes and a reduction in 

FcγR-suppressed genes in BMDMs, suggesting that FcγR signalling may underpin 

the macrophage metabolic phenotype in vivo (SI Appendix, Fig. S1D). Furthermore, 

we observed a positive correlation between the induction of glycolysis pathway 

genes and the expression of the in vitro BMDM-derived FcγR-associated gene 

signature in NZB/W renal macrophages (Fig. 1J), supporting the conclusion that 

these pathways are causally linked. Analysis of FcγR expression in renal 

macrophages from nephritic NZB/W mice demonstrated an increase in activating 

FcγR expression and reduction in FcγRIIB (SI Appendix, Fig. S1E), resulting in an 

increase in FcγR A:I ratio compared to pre-nephritic mice or mice in remission (SI 

Appendix, Fig. S1F). Therefore, inflamed tissue macrophages are primed for IgG 

ligation and exhibit an activated FcγR-associated transcriptional signature, including 

a switch to glycolysis. To ensure that this was not due to contamination of IgG IC 

with a toll-like receptor (TLR) ligand such as lipopolysaccharide (LPS), we assessed 

glycolysis-associated genes in TLR2/4-deficient BMDMs and observed a similar 

increase in HK2, Ldha, Aldoc and Gapdh expression post-FcγR cross-linking, that 

was absent with LPS stimulation (SI Appendix, Fig. S1G). Together these data 

suggest that FcγR cross-linking by autoantibody-containing IgG IC initiates metabolic 
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reprogramming in tissue macrophages towards glycolysis, with the potential to 

promote pro-inflammatory activity.  

 

FcγR cross-linking in macrophages results in a switch to aerobic glycolysis 

To obtain a more detailed metabolic profile of macrophages following FcγR cross-

linking and to validate our transcriptional analyses, we measured their extracellular 

acidification rate (ECAR) and oxygen consumption rate (OCR). We found an 

increase in ECAR and a decrease in OCR following IgG IC stimulation in both 

murine BMDM (Fig. 2A, B) and human monocyte-derived macrophages (Fig. 2C). 

Overall, the ECAR/OCR ratio was significantly increased following FcγR cross-

linking (Fig. 2B, C), demonstrating a switch to glycolysis. We also observed a similar 

metabolic switch in human monocyte-derived macrophages (MDMs) using an 

alternative model of IgG IC stimulation: IgG-anti-IgG Fab immune complexes (SI 

Appendix, Fig. S2A). To determine whether these observations are representative 

of tissue macrophages, we also performed ECAR and OCR measurements in 

murine peritoneal macrophages (SI Appendix, Fig. S2B). Following Ova-IC 

stimulation, we similarly observed a switch to glycolytic metabolism, with an increase 

in ECAR, a reduction in OCR, and elevated ECAR/OCR ratio (Fig. 2D, E). 

We next performed global metabolomic profiling of IgG IC-stimulated murine 

macrophages (using Liquid chromatography–mass spectrometry) and compared 

these profiles to control or LPS-stimulated macrophages, the latter well-described to 

induce a switch to aerobic glycolysis. IgG-stimulated macrophages exhibited a 

unique metabolic profile compared with LPS-stimulated macrophages (Fig. 2F, SI 

Appendix, Fig. S2C), with specific increases in fumarate, inosine monophosphate 

(IMP), carbamoyl-aspartate (uriedosuccinic acid), and gamma-glutamylcysteine 
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relative to control or LPS-stimulated macrophages (SI Appendix, Fig. S2C, D). 

Notably, fumarate, IMP and carbamoyl-aspartate are intermediates in aspartate 

metabolism. Indeed, metabolite set enrichment analysis (MSEA) demonstrated an 

enrichment in aspartate, and phenylalanine and tyrosine metabolism pathways, as 

well as metabolites associated with the Warburg effect in IC stimulated macrophages 

(Fig. 2G), an MSEA profile that was distinct from that observed in LPS-stimulated 

macrophages (SI Appendix, Fig. S2E). In-keeping with the MSEA and seahorse 

analysis, we observed a reduction in glucose and an increase in glycolysis 

intermediates, particularly glyceraldehyde 3 phosphate, in IgG IC stimulated 

macrophages (Fig. 2H, SI Appendix, Fig. S2C). These data demonstrate that IgG 

IC induce a change in macrophage metabolism, including the induction of aerobic 

glycolysis, with a metabolic phenotype that is overlapping with, but distinct from, that 

observed with LPS stimulation. 

 

IgG immune complex-induced glycolysis is required for macrophage 

production of IL-1β, PGE2 and ROS  

FcγR crosslinking in BMDMs in vitro and tissue macrophages ex vivo induces the 

expression of several inflammatory cytokines and chemokines, including IL-1β, IL-6 

and TNFα (Fig. 3A, SI Appendix, Fig. S3A). To determine whether the observed 

glycolytic switch impacted macrophage function and their capacity to induce 

inflammation, we stimulated BMDM with IgG IC in the presence of 2-deoxy-D-

glucose (2DG), an inhibitor of glycolysis. 2DG significantly attenuated IgG IC-

induced IL-1β expression (Fig. 3B, SI Appendix, Fig. S3B) and PGE2 production 

(Fig. 3C), but had little impact on IL-6 and TNFα (Fig. 3D).  IgG IC-induced ROS 
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production was also inhibited by 2DG (Fig. 3E), while 2DG had no impact on FcγR-

mediated phagocytosis of fluorescent Ova-IC (SI Appendix, Fig. S3C). 

A single nucleotide polymorphism (SNP) in human FCGR2B (rs1050501) results in 

profound receptor dysfunction and is associated with increased susceptibility to 

lupus (7, 25). Similarly, Fcgr2b-/- mice are prone to inducible and spontaneous 

antibody-mediated autoimmune disease and have exaggerated cellular responses to 

IgG IC (1, 10). We therefore assessed whether inhibition of glycolysis with 2DG 

might negate the heightened inflammatory response associated with FcγRIIB 

deficiency. We found that IL-1β induction by Fcgr2b-/- BMDM stimulated with IgG IC 

were restored to WT levels by the addition of 2DG (Fig. 3F, SI Appendix, Fig. S3D), 

suggesting that it may potentially ameliorate macrophage-induced inflammation in 

lupus. Indeed, to confirm the relevance of these observations to SLE in humans, we 

stimulated human monocyte-derived macrophages with autoantibody-containing IC 

generated from the serum of patients with SLE (26). This caused a significant 

increase in IL1B and PTGS2 expression in macrophages that was attenuated by 

2DG (Fig. 3G).   

Given the alterations in aspartate metabolism (Fig. 2G), we also performed BMDM 

IgG IC stimulation in the presence of aminooxyacetate (AOAA), a broad-spectrum 

inhibitor of pyridoxal phosphate-dependent enzymes, including aspartate 

aminotransferase. Consistent with an important role of aspartate metabolism in 

FcγR-mediated inflammatory responses, we observed a reduction in Ova-IC-

dependent inflammatory cytokine production, including Il1b, Tnf, and Il6, in the 

presence of AOAA (Fig. 3H). 

  

FcγR-associated glycolytic switch dependent on mTOR and HIF1α  
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Next, we sought to elucidate the molecular pathways underpinning IgG IC-induced 

metabolic reprogramming in macrophages. HIF1α is a transcription factor that can 

regulate the switch to glycolysis in macrophages stimulated with LPS, and is 

essential for some aspects of the inflammatory response (27-29). We found that 

exposure of BMDM to IgG IC resulted in an increase in Hif1a transcripts, in the 

expression of several known HIF1α-target genes (Fig. 4A), as well as HIF1α protein 

(in both normoxic and hypoxic conditions) (Fig. 4B, SI Appendix, Fig. S4A) and in 

VEGFA (SI Appendix, Fig. S4B, C), a HIF1α-dependent gene that we have 

previously shown to be induced by IgG-FcγR signalling in subcapsular sinus 

macrophages in vivo (30).  Furthermore, the increase in ECAR observed following 

FcγR cross-linking was significantly attenuated in HIF1α-deficient macrophages (Fig. 

4C), demonstrating HIF1α-dependence. 

To determine the molecular pathway involved in HIF1α activation in this context, we 

targeted known kinases downstream of activating FcγRs (SI Appendix, Fig. S4D). 

Following crosslinking by immune complexes, tyrosine phosphorylation of 

intracellular ITAMs leads to the activation of SYK-family kinases and downstream 

targets, including PI3K and ERK (31-34). Small molecule inhibitors of SYK, PI3K, 

and ERK attenuated IgG IC-mediated HIF1α activation (as evidenced by VEGFA 

secretion (SI Appendix, Fig. S4E)) and the increase in ECAR in both murine (SI 

Appendix, Fig. S4F) and human macrophages (Fig. 4D), with ERK inhibition 

primarily impacting ECAR in human macrophages (Fig. 4D, SI Appendix, Fig. S4F). 

Since both PI3K and ERK can increase mammalian target of rapamycin (mTOR) 

activity by inhibiting TSC1/2 (SI Appendix, Fig. S4D), and mTOR mediates HIF1α-

induction in β-glycan treated macrophages (35), we hypothesised that FcγR-

mediated HIF1α activation might require mTOR. Consistent with this, mTOR 
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inhibitors attenuated the increase in VEGFA and ECAR observed following the 

addition of IgG IC to murine (Fig. 4E) and human macrophages (SI Appendix, Fig. 

S4G). Together these data indicate that FcγR-induced glycolysis proceeds via an 

mTOR-HIF1α-dependent pathway.  

To confirm the involvement of HIF1α in macrophage production of glycolysis-

dependent inflammatory mediators following FcγR cross-linking, we stimulated 

HIF1α-deficient macrophages with IgG IC and observed a reduction in IL-1β 

expression, PGE2, and ROS production compared with control macrophages (Fig. 

4F, G, SI Appendix, Fig. S4H). However, in contrast to 2DG treatment, there was 

also an attenuation of IL-6 and TNFα in Hif1a-/- macrophages (Fig. 4H), suggesting 

that the HIF1α-mediated increase in these cytokines is independent of its effects on 

glycolysis. 

 

Inhibiting macrophage glycolysis reduces immune complex-associated 

neutrophil recruitment in vivo. 

IL-1β is a pro-inflammatory cytokine with multiple functions in innate and adaptive 

immunity. One of its key effects is to augment inflammation by promoting neutrophil 

recruitment (36). We therefore investigated the effect of the IgG IC-mediated 

glycolytic switch in macrophages on IL-1β production and neutrophil recruitment in 

vivo. Firstly, we used, the peritoneal cavity as a model system, as described 

previously (37, 38) (SI Appendix, Fig. S5A). IgG-IC administered intraperitoneally 

were phagocytosed by peritoneal macrophages (SI Appendix, Fig. S5B). Although 

2DG administration had no effect on peritoneal macrophage phagocytosis of IgG-IC 

(SI Appendix, Fig. S5B), it significantly decreased the magnitude of IgG IC-

associated neutrophil recruitment (SI Appendix, Fig. S5C). To extend these 
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observations to a tissue context more relevant to SLE, we assessed whether a 

glycolytic switch might occur in kidney-resident macrophages in response to 

circulating IgG IC (Fig. 5A). To do this, we treated mice with 2DG prior to 

intravenous injection of Ova-IgG immune complexes or free Ova. In mice treated 

with 2DG, we observed a reduction in IgG-IC-induced expression of Il1b and Ptgs2, 

as well as Tnf and Il6 in kidney tissue (Fig. 5B), demonstrating that 2DG is effective 

in suppressing IgG-induced inflammatory gene expression within the kidney. To 

investigate immune cell responses to circulating IgG-IC, we profiled kidney 

leukocytes by flow cytometry (SI Appendix, Fig. S5D). As noted previously, kidney 

macrophages can be broadly subdivided into two major populations – F4/80hi yolk 

sac-derived macrophages (mononuclear phagocyte 1 (MNP1)) and CD11bhi F4/80int 

monocyte-derived macrophages (MNP2) (SI Appendix, Fig. S5D). Following 

intravenous administration of IgG IC, there was an increase in monocyte-derived 

MNP2 in the kidney that was independent of glycolysis (Fig. 5C).  Immune complex 

uptake was observed in both kidney macrophage populations, particularly MNP2 (SI 

Appendix, Fig. S5E) and 2DG treatment had no effect on immune complex 

phagocytosis (SI Appendix, Fig. S5E).  Despite the variation in IgG-IC phagocytosis 

between kidney MNP populations, potentially due to differences in accessibility to 

intravenous IC or subsequent processing of internalised cargo (39), analysis of 

intracellular pro-IL-1β expression in kidney macrophage subsets demonstrated an 

increase in pro-IL-1β in response to circulating IgG-IC, which was inhibited by pre-

treatment with 2DG (Fig. 5D, E).  Consistent with the decrease in macrophage IL-1β, 

2DG also attenuated IgG-IC induced neutrophil recruitment to the kidney (Fig. 5F, SI 

Appendix, Fig. S5F).  In summary, targeting glycolysis is effective in suppressing 

pro-IL-1β expression by kidney macrophages and neutrophil recruitment in vivo, 
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demonstrating the potential utility of this strategy to reduce antibody-mediated 

inflammation.  

 

Macrophage glycolytic switch as a therapeutic target in immune complex-

mediated nephritis 

Renal involvement occurs in more than half of patient with SLE and is one of the 

most serious clinical manifestations of disease (3). In murine lupus nephritis, there 

was an increase in Ighg1 expression within NZB/W kidney tissue, consistent with 

previous reports of local autoantibody production (40) (Fig. 6A), and a positive 

correlation between Ighg1 transcripts and the expression of a number of nephritis-

associated inflammatory mediators (SI Appendix, Fig. S6A, B), including IL-1β (Fig. 

6B), emphasising the potential importance of glycolysis-associated IL-1β production 

in mediating autoantibody-associated inflammation in the kidney. To explore this 

further, we administered intravenous IgG IC to MRL/MpJ control mice. This 

increased renal Hif1a and Il1b transcripts to levels observed in diseased MRL-lpr 

kidneys (Fig. 6C). There was a significant positive correlation between Hk2 and 

Hif1a and Il1b transcripts in MRL-lpr kidneys with lupus nephritis (Fig. 6D), 

implicating HIF1α-induced glycolysis in the induction of autoantibody-mediated 

inflammation in vivo. Of note, IL-1β has previously been identified in glomerular 

macrophages in diseased MRL-lpr mice (41) and our data reveal a potential 

molecular mechanism underpinning this observation.  

To test whether inhibition of the macrophage glycolytic switch might represent a 

useful strategy to reduce kidney macrophage activation in nephritis, we treated mice 

with 2DG and then challenged them with nephrotoxic serum. Inhibition of glycolysis 

reduced serum urea levels (Fig. 6E), as well as leukocyte and neutrophil recruitment 
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(Fig. 6F-G). Finally, we sought to confirm our findings in primary human kidney 

macrophages using fresh kidney samples obtained from organ donors that had 

consented for research (22).  As observed in monocyte-derived macrophages, 

treatment with 2DG decreased IL1B production following IC challenge (Fig. 6H), 

confirming the potential efficacy of this approach as a therapeutic strategy to reduce 

autoantibody-mediated inflammation in human kidneys. 

 

Discussion 

It has been recently appreciated that macrophage stimulation with pathogen-derived 

danger signals and cytokines can lead to changes in metabolism that profoundly 

impacts function (15), with LPS-stimulated M1 macrophages undergo an increase in 

glycolysis and a reduction in Krebs cycle associated OXPHOS, and IL-4-stimulated 

M2 macrophages retaining high OXPHOS (18, 19). To date, the question of whether 

and how FcγR cross-linking by IgG IC might impact macrophage metabolism has 

been explored to only a limited extent (42). Our study confirmed a previous 

description that the metabolomics changes in IgG IC-stimulated macrophages are 

distinct from those observed in LPS-treated macrophages (42).  However, we have 

gone on to show that like TLR4 stimulation, IgG immune complexes trigger a switch 

away from OXPHOS towards glycolysis, with important functional effects.  Notably, 

our transcriptomic analyses of macrophages isolated from IgG IC disease-

associated tissues consistently showed an increase in glycolysis genes, but variable 

effects on OXPHOS genes, with a reduction in synovial macrophages in RA but an 

increase in kidney macrophages in lupus nephritis.  Such differences are likely to 

reflect variability in organ-specific and disease-specific local stimuli, including 

cytokines, DAMPs, and nature of IgG (isotype, and glycosylation). By studying 
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macrophages in isolation following stimulation with only IgG IC, we confirmed the 

specific effects of FcγR cross-linking on macrophage metabolism, resulting in an 

increase in glycolysis and aspartate metabolism and a decrease in OXPHOS and 

fatty acid catabolism (Fig. 6I). 

Our experiments demonstrated that IgG IC-induced IL-1β production was HIF1α and 

glycolysis-dependent. IL-1β is a potent pro-inflammatory cytokine that has previously 

been identified in glomerular macrophages in diseased MRL-lpr mice (41) as well as 

Fcgr2b-/- mice (43), while elevated renal IL-1 family cytokine responses are common 

to several models of nephritis (Fig. S6A). Indeed, IL-1R1- or IL-1β-deficient mice are 

protected from anti-GBM IgG-mediated nephritis (44). Furthermore, it is noteworthy 

that Fcgr2b-/- mice develop fatal glomerulonephritis that is dependent on IL-17 

signalling (45), while renal Th17 cells are also observed in ANCA-associated 

glomerulonephritis in humans (46). Therefore, strategies aimed at suppressing IL-1β 

induction and downstream type 17 immune cell responses may show therapeutic 

potential in autoantibody-mediated renal inflammation. 

Our data reveal the molecular mechanisms underpinning these observations and 

identify a pathway amenable to therapeutic intervention (Fig. 6I). Tissue 

macrophages differentiate in vivo and have significant transcriptional, phenotypic 

and functional differences from monocyte- or bone marrow-derived macrophages 

and MNPs generated in vitro (47, 48). In our study, we utilised monocyte- and bone 

marrow-derived macrophages, but confirmed our findings in peritoneal macrophages 

and kidney-resident macrophages. Indeed, our use of primary human kidney 

macrophages, assayed ex vivo, provides evidence that the anti-inflammatory effects 

of inhibiting macrophage glycolytic switch will be translatable to human nephritis.  

Of note, a number of HIF1α inhibitors have been developed for clinical applications, 
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mainly for the treatment of cancers as malignant cells frequently upregulate 

HIF1α (49). These drugs target HIF1α gene expression, protein stability, protein 

degradation and DNA binding (50), and could be re-purposed for the treatment of 

autoimmune inflammation. One caveat when considering this strategy is that many 

cells express HIF1α, leading to an unfavourable side-effect profile. However, 

protocols to target HIF1α inhibitors to tissue macrophages, for example, by 

conjugating to IgG so that they are taken up by phagocytic cells expressing FcγRs or 

by placing them in nanoparticles that localise to the kidneys (51) may overcome this 

limitation. Here we focused on acute models of nephritis, but future studies will be 

required to investigate the effect of longer term HIF1α or glycolysis inhibition in 

chronic models of nephritis, such as in NZB/W mice, to determine the potential of 

these therapies for treating patients with lupus nephritis. 

 

IgG antibodies are thought to drive inflammation in a number of autoimmune 

diseases beyond SLE, including rheumatoid arthritis, small vessel vasculitis, 

Sjogrens syndrome and systemic sclerosis (52-57). Our study raises the possibility 

that tissue-resident macrophages in joints, salivary glands and skin may also be 

amenable to metabolic manipulation, as we have identified in kidney macrophages.  

In conclusion, our data reveal that IgG stimulation of macrophages can profoundly 

alter cell metabolism via HIF1α and glycolysis induction. This metabolic switch 

occurred in kidney macrophages during antibody-mediated nephritis, and glycolysis 

inhibition attenuated tissue inflammation, highlighting its potential as a therapeutic 

strategy in lupus nephritis.  
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Figure 1. FcγR cross-linking induces a glycolytic transcriptional switch in 

macrophages. (A, B) Gene set enrichment analysis (GSEA) of selected Hallmarks 

metabolic pathways in synovial macrophages from RA patients (A) and renal 

macrophages from NZB/W mice (B). Data derived from GEO: GSE10500 and 

GSE27045, respectively. (C) UMAP plot of 3353 single MNPs and associated cluster 

identities. (D) AUCell was used to test for enrichment of F4/80hi or F4/80lo gene 

signature (21), presented as a heatmap showing the row-scaled mean enrichment 

score. Increasing colour gradient indicates strength of enrichment (white to blue). (E) 

GSEA of select Hallmarks metabolic pathways in renal MNP subsets from C in 

nephritic MRL-lpr and control MRL/MpJ mice.  (F) GSEA for Hallmarks glycolysis 

pathway in BMDMs stimulated with Ova-IC for 14 h. (G) Heatmap of selected 

glycolysis genes from BMDMs shown in F.  (H) qPCR analysis of selected glycolysis 

genes in murine BMDMs stimulated with Ova or Ova-IC from 6 h.  (I) Fatty acid 

catabolism (GO: 0009062) and fatty acid biosynthesis (GO: 0006633) gene 

enrichment in BMDMs in F.  (J) Correlation analysis of single sample (ss) GSEA 

scores for Hallmarks glycolysis pathway versus top 200 IC-induced BMDM genes in 

renal macrophages from B. Mean ± s.e.m. are shown for triplicate measurements 

and are representative of three independent experiments. P values were calculated 

using the two-tailed Student’s t test (H), nonparametric Mann-Whitney U test (J), and 

Spearman’s correlation (J). * P < 0.05; ** P < 0.01, *** P < 0.001; **** P < 0.0001. 
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Figure 2. FcγR cross-linking in macrophages results in a switch to aerobic 

glycolysis. (A) ECAR and OCR in murine BMDM stimulated with Ova or Ova-IC for 

12 h were measured with a glycolysis stress test kit. (B, C) Quantification of ECAR, 
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OCR, and ECAR/OCR ratio in Ova or Ova-IC treated murine BMDM (B) and human 

MDMs (C) in the presence of glucose. Mean ± s.e.m. are shown and data are 

representative of three independent experiments. (D, E) ECAR and OCR traces (D), 

and ECAR, OCR, and ECAR/OCR measurements in the presence of glucose (E) for 

murine peritoneal macrophages stimulated as in A. Mean ± s.e.m. are shown and 

data are representative of two independent experiments. N = 6-10 per group. (F) 

Heatmap of differential metabolites in BMDMs stimulated with Ova (control), Ova-IC 

(immune complex), or LPS for 6 h. (G) Metabolite set enrichment analysis (MSEA) of 

differential metabolites in Ova-IC versus control macrophages. (H) Peak areas 

determined by mass spectrometry for glycolysis pathway metabolites altered by IgG 

IC stimulation in BMDMs stimulated as in F. P values were calculated using a two-

way ANOVA (A, D), two-tailed Student’s t test (B, C, E, H), and MSEA (G). * P < 

0.05; ** P < 0.01, *** P < 0.001; **** P < 0.0001. 
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Figure 3. IgG-induced glycolysis is required for macrophage production of 

inflammatory mediators. (A) Transcriptomic analysis of differentially expressed (P 

value < 0.05) cytokines and chemokines in BMDMs stimulated with Ova or Ova-IC 

for 4 h or 14 h. (B-D) Quantification of Il1b mRNA expression (B), PGE2 production 

(C), and IL-6 and TNFα production (D) by murine BMDMs stimulated with Ova/Ova-
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IC or unstimulated ± 2DG for 6 h. Mean ± s.e.m. are shown from triplicate 

measurements and representative of three independent experiments. (E) 

Measurement of ROS production in murine BMDM stimulated as in B-D for 2h. Total 

production of ROS in each group was quantified by calculating the Area Under the 

Curve (AUC) (right). Mean ± s.e.m. are shown from triplicate measurements and are 

representative of three independent experiments. (F) Quantification of Il1b mRNA 

production by BMDMs from WT or Fcgr2b-/- mice stimulated as in B-D. Mean ± 

s.e.m. are shown from triplicate measurements and are representative of three 

independent experiments. (G) qPCR of IL1B and PTGS2 mRNA in human MDM 

treated with IgG-IC generated by incubating serum IgG from SLE patients or healthy 

controls with RNA/Sm antigen with or without the presence of 2DG for 6 h. Data are 

normalized to unstimulated controls (Media) and HPRT1. (H) Quantification of 

cytokine expression in BMDMs stimulated with Ova/Ova-IC ± AOAA for 6 h. Mean ± 

s.e.m. are shown from 4 measurements and are representative of two independent 

experiments. P values were calculated using the two-tailed Student’s t-test. * P < 

0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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Figure 4. HIF1α activation modulates IC-induced glycolysis switch in 

macrophages. (A) Heatmap showing transcriptomic analysis of Hif1a and HIF1α 

targets genes in murine BMDM stimulated with Ova-IC or in controls (RPMI) for 14 h. 

(B) Western blot of HIF1α protein relative to β-actin in murine BMDM ± Ova-IC 

stimulation under normoxic or hypoxic conditions. (C) HIF1α-deficient (Hif1afl/fl 

Lyz2Cre) and control (Hif1afl/fl) BMDM were stimulated with Ova or Ova-IC for 12 h. 

ECAR was measured before and after the addition of glucose. (D) ECAR was 
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measured in control (Media), IgG or IgG-Fab IC-stimulated human MDM with the 

presence of small molecule inhibitors. Macrophages were pre-treated with SYK 

inhibitor (left), ERK inhibitor (middle) or PI3K inhibitor (right) for 1 h and stimulated 

with IC (IgG-Fab) for 20 h. (E) Quantification of VEGFA in supernatants (left) and 

ECAR (right) from murine BMDM stimulated with Ova, Ova-IC or control (media) with 

or without the presence of mTOR inhibitors for 6 h. (F) Quantification of Il1b mRNA 

and PGE2 from HIF1α-deficient (Hif1afl/fl Lyz2Cre) and control (Hif1afl/fl) BMDM 

stimulated with Ova, Ova-IC or control (media) for 6 h. (G) Measurement of ROS 

production in BMDMs stimulated as in F for 2 h (left). Total production of ROS in 

each group was quantified by calculating the Area Under the Curve (AUC) (right). (H) 

Quantification of IL-6 and TNFα from HIF1α-deficient (Hif1afl/fl Lyz2Cre) and control 

(Hif1afl/fl) BMDM stimulated as in F.  All graphs show mean ± s.e.m. from triplicate 

measurements and are representative of three independent experiments. ND = not 

detected. P values were calculated using a two-way ANOVA (C) or the two-tailed 

Student’s t-test (D-H). * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 
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Figure 5. Inhibiting macrophage glycolysis reduces renal IL-1β and neutrophil 

recruitment in vivo. (A) Experiment design of the kidney-IgG IC model. (B) qPCR of 

Il1b, Tnf, Il6 and Ptgs2 mRNA in whole kidney tissue of mice treated with Ova, Ova-

IC or Ova-IC + 2DG. Data are normalized to Ova controls and Hprt. (C) MNP1 and 

MNP2 gating and quantification in kidneys from mice treated as in A. N = 6 per 

group. Means ± s.e.m. indicated. (D, E) Intracellular pro-IL-1β staining (D) and 

quantification (E) by flow cytometry for kidney MNP1 and MNP2 populations from 

mice treated as in A. N = 6 per group. Medians are indicated. (F) Quantification of 

CD11b+ Ly6C/Ghi neutrophils in mouse kidneys following Ova or Ova-IC injection 

with or without the pre-treatment of 2DG (N = 6 per group). Medians are indicated. 

Data are representative of three independent experiments. P values were calculated 

using the nonparametric Mann-Whitney U test (B, E, F). * P < 0.05, ** P < 0.01, *** P 

< 0.001, **** P < 0.0001. 
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Figure 6. Inhibition of IC-induced glycolytic switch reduces autoantibody-

mediated renal inflammation in vivo. (A) Ighg1 expression in whole kidney tissue 

from NZB/W kidneys versus controls. Means are indicated. Data derived from GEO: 

GSE27045. (B) Correlation of Il1b with Ighg1 mRNA levels in renal tissue from 

NZB/W mice shown in A. (C) qPCR of Hk2, Hif1a and Il1b mRNA in renal tissue of 

MRL/MpJ and MRL-lpr mice and MRL/MpJ mice injected with Ova-IC. Data are 
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normalized to gene expression in MRL/MpJ mice and Hprt. Means are indicated. (D) 

Correlation of glycolysis-associated genes and Il1b mRNA in renal tissue pooled 

from MRL/MpJ and MRL-lpr mice. (E) Serum urea levels in mice 24 h after i.v. 

injection of nephrotoxic serum (anti-GBM) with or without pre-treatment with 2DG. N 

= 6-7 per group. Medians indicated. (F) Representative kidney confocal images of 

mice treated as in E. (G) Quantification of neutrophils in kidneys of mice treated as in 

G. N = 4-10 per group. Medians indicated. (H) qPCR of human kidney cells 

stimulated with Ova-IC ± 2DG for 12 h. Data are normalized to Ova control and 

HPRT1. (I) Graphical summary of IgG IC-induced metabolic reprogramming in 

kidney macrophages. For in vivo experiments (C-G), medians are indicated and 

each point represents a single kidney. For human kidney stimulations, mean ± s.e.m. 

are indicated from triplicate measurements. Data are representative of two or three 

independent experiment. P values were calculated using limma with multiple 

comparisons correction using the BH procedure (A), linear regression analysis (B), 

nonparametric Mann-Whitney U test (C, E, G), or the two-tailed Student t test (H). * 

P < 0.05; ** P < 0.01; *** P < 0.0001; **** P < 0.0001. 
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Methods  

Mice.  

Wild-type C57BL/6 mice were obtained from the Jackson Laboratories. Hif1afl/fl and 

Lyz2Cre mice on a C57BL/6 background were obtained from the Jackson 

Laboratories and crossed to generate Hif1αfl/flLyz2Cre mice. Fcgr2b-/- mice on a 

C57BL/6 background were kindly provided by J. Ravetch (Rockefeller University) 

and S. Bolland (National Institute of Allergy and Infectious Diseases, National 

Institutes of Health). Tlr2/4-/- mice were a gift from P. Tourlomousis (University of 

Cambridge). MRL/MpJ (00486) and MRL-lpr (00485) mice were obtained from the 

Jackson Laboratories. In all experiments, both male and female mice were used. For 

all in vivo experiments, 6-12-week old mice were used. In the UK, mice were 

maintained in specific pathogen-free conditions at a Home Office-approved facility. 

All procedures were conducted in accordance with the United Kingdom Animals 

(Scientific Procedures) Act of 1986. In the USA, all animal study protocols were 

approved by the Animal Care and Use Committee (ACUC) of the National Institute of 

Arthritis and Musculoskeletal and Skin Diseases, were listed on animal study 

protocol AO14-01-01 and in agreement with ARAC guidelines. 3.18.1. 

Immune complexes.  

For ovalbumin immune complexes, endotoxin-free ovalbumin (321000, Hyglos 

GmbH) was opsonised with a polyclonal rabbit anti-ovalbumin antibody (C6534, 

Sigma) (1:140) (w/w) at 37 ºC for 1 h. For in vitro phagocytosis assays, Alexa Fluor 

647-conjucated ovalbumin was used (O34784, Thermo Fisher). For IgG immune 

complexes, human IgG (5172-9017, AbD Serotec) / mouse IgG (ab36355, AbCam) 

was opsonized with monoclonal human anti-human IgG antibody (HCA059, AbD 

Serotec) / goat F(ab’)2 anti-mouse IgG-(Fab’)2 antibody (ab98754, Abcam) (1:200) 
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(w/w) at 37 ºC for 1h. For in vivo experiments, 0.33 g/kg Alexa Fluor 647-conjugated 

ovalbumin (O34784, Thermo Fisher) was opsonized with 3.2 g/kg polyclonal rabbit 

anti-ovalbumin antibody (Sigma-Aldrich) at 37ºC for 1 h before injection. Details of 

systemic lupus erythematosus immune complexes are provided in the SI appendix. 

Macrophage in vitro stimulation.  

Details of the generation/isolation and culture of human MDMs, murine BMDMs, and 

murine peritoneal macrophages are provided in the SI appendix. For extracellular 

flux analysis, macrophages were pre-treated with ERK inhibitor (U0126, Sigma, 10 

μM), PI3K inhibitor (Wortmannin, 9951, Cell Signalling Technology, 1 μM), SYK 

inhibitor (Syk inhibitor IV (BAY61-3606), 1796-1,5, BioVision, 2 μM), mTOR inhibitor 

(Rapamycin, Cell Signalling Technology, 10 nM; Torin1, 14379, Cell Signalling 

Technology, 1 μM), AMPK activator (Metformin, 13118, Cayman Chemical, 3 mM) 

for 1 h before the addition of IC. Cell culture supernatants were removed and cells 

were washed using PBS before analysis. For cytokine production assay, BMDMs 

were treated with either antigens or corresponding IC (60 μg/ml) for 6 h. Cell culture 

supernatants were harvested and frozen at -20ºC until used. For glycolysis inhibition, 

macrophages were pre-treated with 2-Deoxy-D-glycose (5 mM, D8375, Sigma) for 

45 min before adding the antigens or IC for 15 min to 6 h. For aspartate 

aminotransferase inhibition, BMDMs were treated with 5 mM aminooxyacetate 

(C13408, Sigma) prior to stimulation with Ova/Ova-IC for 6h. For microarray, 2×106 

cells per well BMDMs were stimulated with either Ova (1 μg/ml) or Ova-IC (60 μg/ml) 

for 4 h or 14 h, supernatant removed and cells lysed in the plate for RNA extraction.  

Extracellular flux analysis.  

Macrophages were seeded in an XF96 microplate (Seahorse, Agilent Technology) at 

75,000 cells per well. Cells were stimulated as described above for 20 h and 
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washed/incubated with the Assay Medium (XF Base Medium (102353, Seahorse, 

Agilent Technology), sodium pyruvate (Gibco, 2mM) and L-glutamine (Gibco, 2mM)) 

in a non-CO2 incubator at 37ºC for 1 h. Oxygen consumption rate and extracellular 

acidification rate were assessed with an XF96 Extracellular Flux Analyser (Seahorse, 

Agilent Tech.). Glucose (Fisher Chemical, 10mM), oligomycin (Sigma, 1 μM) and 

2DG (Sigma, 100mM) were injected to the plate sequentially. Data was analysed 

using the XF Wave Software (Version 2.3). 

In vivo kidney macrophage stimulation.  

Wild type C57BL/6 mice were first injected with 2DG (0.25 g/kg) or PBS (control) 

intraperitoneally. After 1 h, Alexa Fluor 647-conjugated immune complexes were 

injected via tail vein at a dose of 500 ng/g. FITC conjugated anti-mouse CD45 

monoclonal antibody (clone 30-F11, eBioscience) (75 μg/kg) were injected to mice 

intravenously after 2 hours, immediately before mice were sacrificed. Kidneys were 

collected and the visceral fat and kidney capsule removed. Kidneys were finely 

minced and digested in RPMI-1640 medium containing 10 mM HEPES, 32.5 μg/ml 

Liberase TM (Roche) and 0.1 mg/ml DNase I (Roche) for 25 min at room 

temperature. Tissue pieces were mechanically dissociated through a 70 μm cell 

strainer, washed with PBS containing 2 % FBS, and red blood cell lysis performed 

using distilled H2O containing 0.83 % (w/v) NH4Cl, 0.1 % (w/v) NaHCO3, 100 mM 

EDTA. Single cell suspensions were subjected to a 44 % (v/v) Percoll (Sigma 

Aldrich) gradient and washed thoroughly in ice-cold PBS prior to downstream 

analysis. A piece of tissue from each sample was also collected and stored in 

RNAlater™ stabilization solution (AM7020, Thermo Fisher) for the qPCR. Details of 

in vivo peritoneal macrophage stimulation is provided in the SI appendix. 

Induction of lupus nephritis.  
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The anti-glomerular basement membrane (GBM) model (37, 38) was used to induce 

lupus nephritis in vivo. 50 μl of sheep anti-rat GBM serum (PTX-001S, Probetex) 

was injected intravenously to wild-type C57BL/6 mice via the tail vein. The 

proteinuria level was monitored using Multistix 10 SG Reagent Strips (Siemens, 

03536597). Mice were sacrificed after 24 h and kidneys were collected, processed 

and analysed by qPCR and flow cytometry as described above. For glycolysis 

inhibition, mice were pre-treated with 2DG (0.25 g/kg) as described above three 

times (-6 h, -3h, -1 h) before the administration of anti-GBM.  

Human kidney derived macrophages in vitro stimulation.  

Cortex samples from human kidney were sliced into approximately 30 mm3 pieces 

and digested for 30 min at 37ºC, with agitation, in a digestion solution containing 25 

μg/ml Liberase TM (Roche) and 50 μg/ml DNase (Sigma) in RPMI1640. Following 

incubation, samples were transferred to a gentle MACS C Tube (Miltenyi Biotech) 

and processed using a gentleMACS dissociator (Miltenyi Biotech) on program spleen 

4 and subsequently lung 2. The resulting suspension was passed through a 70 μm 

cell strainer (Falcon) and washed with PBS before leukocyte enrichment using a 

Percoll (Sigma) density gradient. Cells were counted using a haemocytometer with 

trypan blue. 5 x 105 cells/well were stimulated with Ova or Ova-IC with or without the 

presence of 2DG (5 mM/ml) for 12 h. Cells were then lysed and processed for RNA 

extraction and qPCR. 

Flow cytometry.  

Single cell kidney and peritoneal suspensions were blocked with 0.5 % heat-

inactivated mouse serum followed by extracellular staining for 1 h at 4 ºC with a 

combination of antibodies listed in SI appendix. Viability staining was performed with 

Zombie UV Fixable Viability Kit (Biolegend) for 20 min at room temperature. For 
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intracellular cytokine staining, cells were fixed and permeabilized using the 

Cytofix/Cytoperm kit (BD Bioscience) as per the manufacturer’s instruction. Staining 

was carried out for 1 h at room temperature using pro-IL-1β (NJTEN3, eBioscience) 

at a 1:200 dilution. Cell counting was performed using 123count eBeads 

(eBioscience). Flow cytometry data collection was performed on an LSR Fortessa 

flow cytometer (BD Biosciences) and data was analysed using FlowJo software 

(Treestar, V10.2).  

Human study approval.  

Human kidney donated for transplantation, but deemed unsuitable for implantation, 

were used for in vitro stimulation experiments. All analysis of human material was 

performed in the UK. Ethical approval was granted by the local ethics committee 

(REC12/EE/0446) and the study was also approved by NHS Blood and Transplant. 

Serum from lupus patients was collected in the US. Written informed consent was 

obtained from the healthy volunteers and from SLE patients. The enrolment of 

patients was approved by the National Institutes of Health – Institutional Review 

Board (94-AR-0066). 

Data availability. 

The microarray data reported in this paper have been deposited in the Gene 

Expression Omnibus (GEO) database, under the accession code GSE112081. 

Extended methods. 

Additional methodological details are provided in the SI appendix. 

 

 


