
An Operational Semantics for True Concurrency in BDI Agent Systems

Lavindra de Silva
Department of Engineering

University of Cambridge, UK
Lavindra.deSilva@eng.cam.ac.uk

Abstract

Agent programming languages have proved useful for
formally modelling implemented systems such as PRS
and JACK, and for reasoning about their behaviour. Over
the past decades, many agent programming languages and
extensions have been developed. A key feature in some
of them is their support for the specification of ‘concur-
rent’ actions and programs. However, their notion of
concurrency is still limited, as it amounts to a nondeter-
ministic choice between (sequential) action interleavings.
Thus, the notion does not represent ‘true concurrency’,
which can more naturally exploit multi-core computers
and multi-robot manufacturing cells. This paper provides
a true concurrency operational semantics for a BDI agent
programming language, allowing actions to overlap in ex-
ecution. We prove key properties of the semantics, relat-
ing to true concurrency and to its link with interleaving.

1 Introduction

Agent programming languages have proved useful for
formally modelling implemented systems such as Jason
[3], PRS [17], and JACK [8], and for reasoning about
their behaviour. Over the past decades, many agent pro-
gramming languages and extensions have emerged, e.g.
[25, 19, 10, 28, 22, 26, 9, 12, 11]. A key feature in some of
them is their support for the specification of ‘concurrent’
actions and programs. However, while their notion of
concurrency is useful in some applications, it is still lim-
ited as it amounts to a nondeterministic choice between
(sequential) action interleavings. Thus, the notion does
not represent ‘true concurrency’, which can more natu-
rally exploit multi-core computers and multi-robot man-
ufacturing cells, e.g. a cell comprising two robot arms
that work on a part simultaneously. This paper provides
a true concurrency operational semantics for a BDI agent
programming language, allowing actions to overlap in ex-
ecution.

From the implemented BDI agent systems, there are
some that support some form of true concurrency, e.g.
SPARK [22], JAM [20], BDI4JADE [23], PRS, and
JACK.1 JACK gives four (programmer selectable) def-

1There are also implemented BDI systems that do not support true

initions for the success of a concurrent program: (1) it
immediately succeeds on the successful termination of a
branch; (2) it allows all branches to terminate but only
succeeds if at least one of them succeeds; (3) it succeeds
iff all branches terminate successfully, and immediately
fails on the failure of a branch; or (4) it allows all branches
to terminate but only succeeds if all branches succeed. We
follow this last definition.

There is also related work in concurrent distributed sys-
tems, particularly three strands of work that define be-
haviour in terms of transitions between configurations,
using a structural operational semantics [24]. In the first
strand [6, 7], every transition is labelled with a represen-
tation of its ‘proof’, i.e., information comprising the in-
ference rules that were used when deriving the transition.
This information enables the extraction of a transition la-
belled with a partially ordered multiset (pomset) of ac-
tions, representing the sequential and concurrent actions
performed. A similar transition is extracted in [14, 15],
but from information stored in configurations rather than
transition labels. In the third strand [4, 5], transitions are
labelled with ‘composite actions’, which represent pom-
sets. This avoids the need to extract a pomset-labelled
transition ‘a posteriori’ from a sequence of transitions, as
done above.

Our work was inspired by the last two strands: our tran-
sitions represent composite actions, which are stored in
configurations. However, unlike the above strands, we
account for concerns specific to agent programming lan-
guages, e.g. goal refinement, plan failure, and constructs
beyond actions. Our proposal, called Concurrent CAN
(CCAN), is based on the work in [27], which refines and
extends the CAN agent programming language [28]. We
discuss the syntax of CCAN (sec. 2) and its semantics
(secs. 3 and 4), and we prove key properties of CCAN, in
relation to true concurrency and to its link with interleav-
ing (sec. 5); e.g., we show that if a concurrent program’s
branches are interleaved as in CAN, Jason, etc., any re-
sulting behaviour can also be produced by the concurrent
program. We then conclude and discuss future work (sec.
6).

concurrency but support action interleaving, e.g. Jason.

1

2 CCAN Syntax

In this paper, we use a first-order language with a vocabu-
lary comprising mutually disjoint and infinite sets of vari-
able, function, predicate, event-goal, and action symbols.

Like [27], we define a CCAN agent by a plan-library
⇧, an action-library ⇤, and a belief base B. A belief base

is a set of ground atoms, and an action-library is a set of
action-rules representing actions the agent can perform.
An action, denoted by a, is of the form act(~t), where
act is an n-ary action symbol representing a function that
may affect the external environment, and ~t = t1, . . . , tn
is a list of (possibly ground) terms. An action-rule, as
in STRIPS, is of the form act(~v): �+;��, where
~v = v1, . . . , vn is a list of distinct variables; , the pre-

condition, is a formula; and �+ and ��, respectively the
add-list and delete-list, are each a set of atoms represent-
ing the action’s effects. Any variable occurring in ,�+,
or �� also occurs in ~v. For any action a that occurs in
⇧, there is exactly one action-rule a0 : �+;�� 2 ⇤
such that a = a0✓ for some substitution ✓; we define
pre(a,⇤) = ✓ and e↵ (a,⇤) = h�+✓,��✓i.

A plan-library ⇧ is a set of plan-rules of the form
ev(~t): Pb, where ev(~t), denoted by e, is an event-

goal and ev is an n-ary event-goal symbol; , the context

condition, is a formula; and Pb, the plan-body is a ‘stan-
dard operating procedure’ for achieving e when holds
in B. Formally, a plan-body is a formula in the language
defined by the grammar Pb ::=

a | +b | �b | ?� | !e | P 1
b ;P 2

b | P 1
b “|”P 2

b | P 1
b k P 2

b

where +b is a belief addition, which adds the atom
b to B; �b is a belief removal, which removes b from
B; ?� is a test condition, which tests whether formula
� holds in B; !e is an event-goal program, which states
that e needs to be achieved; and P 1

b ;P 2
b is a sequential

program, which states that P 1
b must be executed before

P 2
b . Finally, P 1

b |P 2
b is an interleaved program, which al-

lows the resulting actions to be interleaved (but not over-
lapped);2 and P 1

b k P 2
b is a (truly) concurrent program,

which allows the resulting actions to be interleaved and/or
overlapped, as described in [1]. In the sequel, we use the
terms ‘concurrency’ and ‘concurrent’ only when referring
to the latter type of program or its execution.

We impose two constraints relating to concurrency.
First, we limit how a concurrent program P 1

b k P 2
b

is interleaved with another program: no other (non-
concurrent) step is executed during P 1

b k P 2
b ; for exam-

ple, executing interleaved program (a1 k a2) | a3 will
result in action a3 happening either before or after both
a1 and a2. Second, no two branches of a concurrent pro-
gram are ‘related’. Two branches are related if (i) a vari-
able appearing in one branch can be bound by the other,

2The exact schedule that emerges from the resulting actions will
be based on runtime choices.

or (ii) the same atom can be both asserted by one branch
and checked or asserted by the other.

To formalise the assumption that the branches of a
concurrent program are unrelated, we define some aux-
iliary notions. Let ⇧ and ⇤ be a plan- and an action-
library, respectively. First, given any expression E, we
use ATS(E) to denote the set of atoms occurring in E.
Second, given an event-goal e, we use REL(e,⇧) = { ✓ :
Pb✓ | e0 : Pb 2 ⇧, ✓ = mgu(e, e0)} to denote the
relevant plan-rules for e, i.e., rules with ‘heads’ e0 that
match e via a most general unifier (mgu). Third, given a
plan-body Pb, we recursively define the set of atoms that
are possibly checked by Pb as follows: CHK(Pb,⇧,⇤) =
8
>>>><

>>>>:

; if Pb 2 {+b,�b},
ATS(�) if Pb = ?�,
ATS(pre(a,⇤)) if Pb = a,S
 :P 0

b2REL(e,⇧) ATS() [CHK(P 0
b,⇧,⇤) if Pb = !e,

CHK(P 1
b ,⇧,⇤) [CHK(P 2

b ,⇧,⇤) if Pb 2 {P 1
b | P 2

b ,
P 1
b k P 2

b , P
1
b ;P

2
b }.

Similarly, we define the set of atoms that are possibly as-

serted by Pb as follows: ASS(Pb,⇧,⇤) =
8
>>>><

>>>>:

{b} if Pb 2 {+b,�b},
; if Pb = ?�,
ATS(e↵ (a,⇤)) if Pb = a,S
 :P 0

b2REL(e,⇧) ASS(P 0
b,⇧,⇤) if Pb = !e,

ASS(P 1
b ,⇧,⇤) [ASS(P 2

b ,⇧,⇤) if Pb 2 {P 1
b | P 2

b ,
P 1
b k P 2

b , P
1
b ;P

2
b }.

Finally, for any concurrent program P 1
b k . . . k Pn

b oc-
curring in ⇧, we assume that for any i, j 2 [1, n], with
i 6= j, there does not exist a (i) variable that occurs in
both P i

b and P j
b , and (ii) unifier for any pair of atoms

{l, l0}, where l 2 CHK(P i
b ,⇧,⇤) [ASS(P i

b ,⇧,⇤) and
l0 2 ASS(P j

b ,⇧,⇤).3

3 Single-Intention CCAN Semantics

We define an agent configuration as a tuple
[⇧ ,⇤,B,A,�], where ⇧ is a plan-library; ⇤ is an
action-library; B is a belief base; and A is an action

history representing the sequential and concurrent actions
executed so far. Formally, an action history is a formula
in the language defined by the grammar

A ::= a | A1 ;A2 | A1 k A2

where A1 k A2 is an abstract representation for all the as-
sociated ‘schedules’, each comprising interleaved and/or
overlapping actions. Finally, � is a set of programs, or
‘intentions’, each of which is the current evolution in the
execution of a plan-body that is being pursued in order to
achieve a top-level event-goal. As it is usual with small-
step operational semantics of programming languages,
the syntax of plan-bodies has to be extended with new
constructs to represent these current evolutions. Formally,

3We refer the reader to [13] for insights into algorithms for check-
ing these conditions.

2

� = REL(e) 6= ;

[B,A, !e]
ONE�! [B,A, e : L�M]

Ev
 : P 2 � B |= ✓

[B,A, e : L�M] ONE�! [B,A,P✓ B e : L� \ { : P}M]
Sel

[B,A,P1]
ONE�! [B0,A0,P 0

1]

[B,A,P1 ;P2]
ONE�! [B0,A0,P 0

1 ;P2]
Seq1

FIN(P1)

[B,A,P1 ;P2]
ONE�! [B,A,P2]

Seq2

[B,A,P1]
ONE�! [B0,A0,P 0

1]

[B,A,P1 | P2]
ONE�! [B0,A0,P 0

1 | P2]
|1

[B,A,P2]
ONE�! [B0,A0,P 0

2]

[B,A,P1 | P2]
ONE�! [B0,A0,P1 | P 0

2]
|2

[B,A,P1]
ONE�! [B0,A0,P 0

1]

[B,A,P1 B P2]
ONE�! [B0,A0,P 0

1 B P2]
Bstep

[B,A,P1] 6 ONE�! ¬FIN(P1) [B,A,P2]
ONE�! [B,A,P 0

2]

[B,A,P1 B P2]
ONE�! [B,A,P 0

2]
Bfail

B |= �

[B,A, ?�]
X�! [B,A, ⌘]

Test
a0 : �+;�� 2 ⇤ a0✓ = a B |= ✓

[B,A, a]
X�! [(B \ ��✓) [�+✓,A ; a, ⌘]

Act

[B,A,P1]
ALL�! [B1 ,A1 ,P

0
1] [B,A,P2]

ALL�! [B2 ,A2 ,P
0
2]

[B,A,P1 k P2]
X�! [MERGE(B1 ,B2 ,B), APPEND(A1 ,A2 ,A),P 0

1 , P 0
2]
k

[B,A,P1]
ONE�! [B1 ,A1 ,P

0
1] [B1 ,A1 ,P

0
1 ;P2]

ALL�! [B2 ,A2 ,P3] [B2 ,A2 ,P3] 6 ALL�!

[B,A,P1 ;P2]
ALL�! [B2 ,A2 ,P3]

Seqk1

FIN(P1) [B,A,P2]
ALL�! [B1 ,A1 ,P3]

[B,A,P1 ;P2]
ALL�! [B1 ,A1 ,P3]

Seqk2
[B,A,P1]

ONE�! [B1 ,A1 ,P
0
1] [B1 ,A1 ,P

0
1 ;P2] 6 ALL�!

[B,A,P1 ;P2]
ALL�! [B1 ,A1 ,P

0
1 ;P2]

Seqk3

P 2 {!e, P1 | P2} [B,A,P ; ?>] ALL�! [B0,A0,P 0]

[B,A,P]
ALL�! [B0,A0,P 0]

Rewritek

Figure 1: CCAN derivation rules for configurations with single intentions.

a program is a formula in the language defined by the
grammar P ::=

a | +b | �b | ?� | !e | P1 ;P2 | P1“|”P2 | P1 k P2 |
⌘ | e : L{ 1 : P1, . . . , n : Pn}M | P1 . P2 | P1 , P2

where ⌘ (or ‘nil’) indicates that a program has fin-
ished, i.e., successfully terminated; P1 , P2 indicates
that a concurrent program has terminated (not necessar-
ily successfully); e : L{ 1 : P1, . . . , n : Pn}M repre-
sents the set of plan-rules that are relevant for achieving
event-goal e; and ‘failure handling’ program P .P 0, with
P 0 = e : L{ 1 : P1, . . . , n : Pn}M, executes program P
in order to achieve event-goal e, and if P fails, an alter-
native program (plan-body) Pi is tried if it is applicable.
Note that a program is more general than those generated
by our semantics.

Like [27], we define a transition relation on configura-
tions in terms of a set of derivation rules [24]; we omit the
elements ⇧ and ⇤ from configurations in our transitions
as those elements do not change between transitions. A
derivation rule has an antecedent and a conclusion: the
latter is a single transition, and the former is either empty
or a conjunction of auxiliary conditions and/or transitions
representing ‘internal’ execution steps. In this paper we
only use labelled transitions. A transition C

ONE�! C 0

indicates that doing one execution step on configuration
C, which may involve multiple internal execution steps,
yields configuration C 0. A transition C

ALL�! C 0 indicates
that C 0 is a result of doing all possible internal execution
steps from C. Intuitively, ONE-type transitions model be-
haviour in the context of standard execution, and ALL-

type ones model behaviour in the context of concurrent
execution.

We first give our semantics for single-intention config-
urations of the form [⇧ ,⇤,B,A,P], where P is a pro-
gram. In sec. 3.1 we give derivation rules for standard
programs, and in sec. 3.2 we give rules that relate to con-
current programs.

3.1 Derivation Rules for Standard Programs

Fig. 1 (top half) shows the derivation rules for standard
CCAN programs, including interleaved programs.

Rule Ev creates the set � of relevant plan-rules for a
given event-goal program !e. Rule Sel selects an appli-
cable plan-rule for an event-goal e from its relevant plan-
rules �, and schedules the corresponding plan-body for
execution.

Rules Seq1 and Seq2 give semantics for sequential ex-
ecution: Seq1 executes one step on a sequential program
P1;P2 by executing a step on its first program P1, and
Seq2 removes P1 if it has finished (as we define in sec.
3.2), e.g., if P1 = ⌘. Rules |1 and |2 give semantics
for interleaved execution: given an interleaved program
P1 | P2, one step is executed either on P1 (using rule |1)
or on P2 (using |2).

Rules Bstep and Bfail give semantics for executing a
previously selected plan-body and for failure handling,
respectively: rule Bstep executes one step on a program
P1 . P2 by executing a step on P1, provided it has nei-
ther failed nor finished, and rule Bfail removes P1 if it

3

has failed, and executes a step on program P2 = e : L�M.
A program has failed if it has not finished (as in the sec-
ond condition in the antecedent of Bfail) but it is ‘stuck’
(as in the first condition in the antecedent of Bfail), i.e.,
it is not possible to execute a step on the program (e.g.,
an event-goal program !e when there are no relevant plan-
rules for e). Given a configuration C, we use C ONE�! as an
abbreviation for 9C 0, C

ONE�! C 0 (and use C
ALL�!, C 6ONE�!,

and C 6ALL�! similarly).
Finally, rule Test executes one step on a test program

?� if condition � holds in the belief base, and rule Act
gives semantics for actions. This rule’s antecedent checks
whether the relevant action-rule of a given action a is ap-
plicable, and the conclusion applies the action’s effects to
the belief base, and appends a to action history A. When
the transition label X occurs in a derivation rule, the as-
sociated transition represents both transition types (ONE
and ALL).

3.2 Derivation Rules for Concurrent Programs

Fig. 1 (bottom half) shows the derivation rules that re-
late to concurrent programs. The main rule k executes
one step on a program P1 k P2, which amounts to inde-
pendently doing all possible internal execution steps on
each branch P1 and P2. The rule applies when at least
one step is possible on each branch, and in the context of
both standard and concurrent execution (which enables
‘nested’ concurrency).

The conclusion of the rule does two things. First, it
merges the independent and ‘local’ updates to (copies
of) belief base B by branches P1 and P2. We define
MERGE(B1,B2,B) = (B[B+

1 [B
+
2)\(B

�
1 [B

�
2), where

for both i 2 [1, 2], B+
i = Bi \ B and B�

i = B \ Bi. Sec-
ond, the conclusion combines the action histories (if any)
yielded by the two branches to form a new history, which
is appended to A. This notion of combining and append-
ing is defined as follows. Let A,A1, and A2 be as in rule
k. For both i 2 [1, 2], let Ai = A ;A0

i for some A0
i, or let

Ai = A, i.e., no actions were yielded by the correspond-
ing branch. Then, APPEND(A1,A2,A) is defined as (i)

A ; (A0
1 k A0

2) if A1,A2 6= A, (ii) A2 if A1 = A, and
(iii) A1 if A2 = A.

Rules Seqk1, Seq
k
2 and Seqk3 give semantics for sequen-

tial execution in the context of concurrency. Rule Seqk1
applies when at least two execution steps are possible on
a given sequential program P1;P2. The antecedent exe-
cutes one step on P1, and then recursively performs all
possible execution steps on the remainder P 0

1;P2. Rule
Seqk3 applies when a given sequential program P1;P2

(possibly a remainder) can terminate in one step. Rule
Seqk2 is analogous to Seq2, and applies when P1 has fin-
ished and at least one step is possible on P2. Formally,
given the set of all programs Pall, function FIN : Pall 7!
{>,?} indicates whether a given program P 2 Pall has

finished. The function is defined as follows:

FIN(P) =

8
><

>:

FIN(P1) ^ FIN(P2) if P 2 {P1 , P2, P1 | P2},
FIN(P1) if P = P1 B P2,
> if P = ⌘,
? otherwise.

Proposition 1. If FIN(P) holds for some program P , then

for any belief base B and action history A, there is no

B0,A0
and P 0

such that [B,A,P]
ONE�! [B0,A0,P 0].

Proof. The case P 2 {⌘, P1 , P2} (for some P1 and P2)
is trivial as no rules can be applied to P . If P = P1 BP2,
we show that neither rule Bstep nor Bfail applies to P .
Since FIN(P) holds, so does FIN(P1). Thus Bfail cannot
be applied to P . Similarly, Bstep cannot be applied if
P1 2 {⌘, P 1

1 , P 2
1 }. If P1 = P 1

1 B P 2
1 , i.e., construct B

is ‘nested’ in P , the proposition follows because FIN(P 1
1)

holds, and B can only be nested to a finite depth in P .
The cases where P1 and P are interleaved programs are
proved similarly.

Finally, given an event-goal or interleaved program,
rule Rewritek ‘rewrites’ it to make it the first program
of a simple sequence, which is executed as above. This
avoids the need for rules to handle programs P1 | P2 and
!e (and evolutions such as P B P ’) in the context of con-
currency.

3.3 An Example

We will now illustrate some of the derivation rules in
fig. 1 with an example. Consider a manufacturing fa-
cility with a robotic station that engraves the surfaces of
wooden spheres. The station comprises a camera, a fix-
ture that holds and rotates a sphere while other operations
are being performed on it, and a robotic arm with a built-
in circular tool changing rack comprising 6 tools (e.g. for
milling and drilling).

The fixture can perform action rX(N) (resp. rZ(M)),
which rotates a wooden sphere, if it is currently in the fix-
ture, N (resp. M) times on the x-axis (resp. z-axis); each
complete rotation takes 5 seconds and starts instantly.
Both actions have precondition in, which is a proposition
that holds only if a sphere is sensed in the fixture. In our
scenario, M = N = 2; the extra rotation on each axis
leaves sufficient time for a concurrent preparatory (tool
changing) action to complete. The camera performs ac-
tion r(N), which records, for N seconds, a video of all
the actions that are being performed on the sphere in the
fixture; we use N = 25.

The capabilities of the robot are as follows. Event-
goal e, if it uses plan-rule e : in ^ ¬at c ;m(20), first
prepares to engrave the sphere by changing the current
tool to the milling tool, and then mills the sphere. Event-
goal e uses rule e : in ^ at m(20) if in holds and the
milling tool was used last, i.e., proposition at holds. Ac-
tion c above rotates the tool rack until the milling tool is

4

Figure 2: Equation 1 (first row) shows one execution step on concurrent program r k !e k (rX | rZ), which involves one step
on r, and all the possible steps on both !e (eqs. 2-4 in rows 2-4) and (rX | rZ) (eq. 5 in row 4). Action parameters are omitted,
as are obvious antecedents, and obvious belief bases and action histories in configurations. The action histories above are: (i)

A4 = A1; r, (ii) A2 = A1; c, (iii) A3 = A2;m, (iv) A5 = A1; rZ, (v) A6 = A5; rX , (vi) A7 = A1;
�
(c ;m) k (rZ ; rX)

�
, and

(vii) A8 = A1;
�
r k (c ;m) k (rZ ; rX)

�
.

reached; it takes a second to rotate to the next tool on
the rack (and thus at most 5 seconds). Action m(N),
with precondition in, mills for N seconds, which includes
starting high speed rotation for the milling tool, moving
it into the sphere, moving it out, and ending tool rotation,
each of which takes negligible time.4

The derivation rule in the top row (eq. 1) of fig. 2
depicts one execution step on the concurrent program
r(25) k !e k (rX(2) | rZ(2)), which specifies that
while the sphere is being engraved, it should be (simul-
taneously) rotated on the x-axis and the z-axis (which can
be performed in either order), and that all these activities
should be recorded. The program is executed using rule
k, whose antecedent prescribes the concurrent execution
of two programs, each using a step of type ALL. One
such step is performed on action r(25), and the other on
concurrent ‘subprogram’ !e k (rX(2) | rZ(2)) by re-
cursively applying rule k, whose antecedent, in turn, pre-
scribes the concurrent execution of event-goal program !e
(eq. 2) and interleaved program rX(2) | rZ(2) (eq. 5).

Executing the top-level concurrent program yields ac-
tion history r(25) k (c ;m(20)) k (rZ(2) ; rX(2)),
which (i) abstractly represents all the associated action

4For a given axis of rotation, we assume there will be no differ-
ence in the engraving on the sphere whether milling is performed for
exactly one rotation of the sphere or for longer (e.g. milling starts
before the rotation, or ends after).

schedules (e.g. where the branches are interleaved, and
where r(25), c, and rZ(2) start together and overlap),5

and (ii) corresponds to the ‘terminated branches’ of the
concurrent program.

4 Multiple-Intention CCAN Semantics

We now give our semantics for configurations with multi-
ple intentions, i.e., agent configurations, which are of the
form [⇧ ,⇤,B,A,�], where � is a set of programs.

A transition between agent configurations is either of
type CCAN, EVENT, or INT, and the transition relation on
agent configurations is defined by the derivation rules in
fig. 3. Rule Accan is the main rule, which represents
the CCAN deliberation cycle. The CCAN-type step in the
conclusion of the rule involves two internal steps. In the
first internal step, an intention is either (i) removed (us-
ing rule Arem) if it has failed or finished, (ii) progressed
(using rule Aint) by one step, or (iii) progressed by mul-
tiple steps, in which case a concurrent program will have
been executed. In the second internal step, newly ob-
served event-goals from the (external) environment are
processed (using rule Aev), by creating an intention for

5Since, in systems such as PRS and JACK, branches (‘threads’)
typically start execution at roughly the same point in time, we assume
the same when writing concurrent branches in CCAN.

5

[B,A,�]
INT
=) [B0,A0,� 0] [B0,A0,� 0]

EVENT
=) [B0,A0,� 00]

[B,A,�]
CCAN
=) [B0,A0,� 00]

Accan

P 2 � [B,A,P]
ONE�! [B0,A0,P 0]

[B,A,�]
INT
=) [B0,A0, (� \ {P}) [{P 0}]

Aint

P 2 � [B,A,P] 6 ONE�!

[B,A,�]
INT
=) [B,A,� \ {P}]

Arem
e1, . . . , en

[B,A,�]
EVENT
=) [B,A,� [{!e1 , . . . , !en}]

Aev

Figure 3: CCAN derivation rules for configurations with multiple intentions.

each such event-goal.

5 Properties of CCAN

We now show that our concurrency semantics has three
key properties: a concurrent program does not terminate
‘prematurely’ (before all the branches terminate), as en-
sured by JACK’s fourth definition (sec. 1); the semantics
is sound and complete in terms of the action histories that
are produced; and if the concurrent program’s branches
are interleaved, any resulting action history corresponds
to a valid action schedule for the concurrent program, i.e.,
the history is an ordering of a pomset yielded by the con-
current program. We use action histories because we are
interested in exploring behavioural equivalence—we thus
abstract from things such as belief bases, and ‘unobserv-
able steps’ such as the creation of a relevant plan set (rule
Ev in fig. 1).

We first define the notion of an execution trace, which
is a sequence of configurations obtained by performing
ONE type execution steps. In the sequel, we assume that
all +b and �b programs occurring in the plan-library
⇧ have been replaced by equivalent actions, and given
a configuration C = [B,A,P], we define CB = B,
CA = A, and CP = P .

Definition 1. An execution trace of a configuration C =
[B,A,P] is a finite sequence of configurations C1 ·. . .·Cn

such that C = C1, n > 1, and Ci
ONE�! Ci+1 for all

i 2 [1, n � 1]; the trace is said to have terminated if

Cn 6
ONE�!.

The first theorem states that after one execution step
on a concurrent program (which yields a terminated con-
current program P 0

1 , . . . , P 0
n), each branch will have

performed all the possible (internal) execution steps and
terminated.

Theorem 1. Let B be a belief base, A an action his-

tory, and Pk = P1 k . . . k Pn a concurrent pro-

gram s.t. Pi 6= P 1
i k P 2

i (for any P 1
i , P

2
i and i 2

[1, n]).6 If [B,A,Pk]
ONE�! [B0,A0,P 0

1 , . . . , P 0
n], then

[B0,A0,P 0
i] 6

ONE�! for i 2 [1, n].

Proof Sketch. Consider any Pi above. From the assump-
tion of the theorem and derivation rule k, it follows that
[B,A,Pi]

ALL�! [B00,A00,P 0
i], where B00 and A00 corre-

spond to P 0
i and form part of respectively B0 and A0.

6Any concurrent program can be represented in this ‘full’ form.

If Pi 2 {?�, a}, only rule Test or Act can apply, which
guarantee that [B00,A00,P 0

i] 6
ONE�!. If Pi 2 {!e, P | P 0}

(for some P and P 0), it is rewritten as a sequential pro-
gram. Thus, the final case is where Pi is a sequence,
or evolves into one. Consider the former (the latter is
analogous). Since rule Seqk2 cannot apply to configura-
tion [B,A,Pi] (because Pi is a plan-body and thus un-
finished), either rule Seqk1 or Seqk3 must have been ap-
plied to [B,A,Pi], both of whose antecedents ensure that
[B00,A00,P 0

i] 6
ALL�! holds. Finally, we prove by contradic-

tion that [B00,A00,P 0
i] 6

ONE�! also holds.
Let us assume instead that [B00,A00,P 0

i]
ONE�!. Con-

sider the case where P 0
i = P 1

i ;P
2
i is a sequence such

that P 1
i is not a sequence and ¬FIN(P 1

i) holds. Since
[B00,A00,P1

i]
ONE�! is entailed by our assumption, either

the antecedent of rule Seqk1 or Seqk3 must hold w.r.t. P 0
i .

This contradicts the fact that [B00,A00,P 0
i] 6

ALL�!. The cases
where FIN(P 1

i) holds or P 0
i is not a sequence also lead to

contradictions. ⇤
The theorem can be straightforwardly extended to

show that, due to the definition of ‘FIN’ (sec. 3.2), the
concurrent program Pk succeeds, i.e., yields a terminated
(concurrent) program that has finished, iff each branch Pi

has succeeded.
Theorem 2 concerns soundness and completeness for

the derivation rules that relate to concurrent programs.
Soundness is due to the fact that any action history
yielded by a branch of a concurrent program can also be
yielded when the branch is executed separately from the
program (perhaps using only rules in the top half of fig.
1). Conversely, completeness is due to the fact that any
action history yielded by a non-concurrent program upon
its termination can also be yielded when the latter is a
branch of a concurrent program.

Theorem 2. Let B,A and Pk = P1 k . . . k Pn

be as above. There exists a transition [B,A,Pk]
ONE�!

[B0,A ;A0,P 0
k], with A0 = A1 k . . . k An, iff there exists

a terminated execution trace C1 = [B,A,Pi] · . . . ·Cm =
[B00,A ;A0

i ,P
0
i] for each i 2 [1, n], such that A0

i = Ai.
7

Proof Sketch. We discuss one direction of the proof: con-
sider an execution trace C1 · . . . ·Cm as above. The proof
is involved, requiring induction on the length of the trace
and the structure of each Ci. The main part is the induc-
tive case, which takes any pair of configurations Cj and

7We omit the trivial corollary where some Ai are ‘empty’.

6

Cj+1 (for j 2 [1,m � 1]), and the corresponding action
history A00 (if Cj+1|A = Cj |A;A00), and shows that A00

can also be yielded by an ALL-type transition from Cj .
Let us consider the two main cases. In the first, Cj |P =

P 1
j ;P

2
j (for some P 1

j and P 2
j), and P 1

j is not a sequen-
tial program and ¬FIN(P 1

j) holds. Since the transition
Cj

ONE�! Cj+1 must have used rule Seq1, it follows that
transition [Cj |B,Cj |A,P1

j]
ONE�! [Cj+1 |B,Cj+1 |A,P1 0

j]

is possible, with Cj+1|P = P 10
j ;P 2

j . Thus, the first con-

dition in the antecedents of both Seqk1 and Seqk3 holds.
The interesting subcase is where ¬FIN(P 10

j). Now if
Cj+1 6

ONE�! (i.e., j + 1 = m), it follows that the second
condition also holds in the antecedent of Seqk3 . Thus, A00

can be yielded by applying the rule to Cj . If Cj+1
ONE�!,

the second condition holds in the antecedent of Seqk1 , and
consequently also the third. Thus, A00 can be yielded by
applying the rule to Cj .

The second main case is where Cj |P = !e (the case
where Cj |P = P 1

j | P 2
j is analogous). Then, transition

Cj
ONE�! Cj+1 must have used rule Ev, and Cj+1|P = e :

L�M. This transition can be simulated by applying rule
Rewritek to Cj : the rule’s antecedent holds because we
showed above that either Seqk1 or Seqk3 must be applicable
to configurations such as [Cj |B,Cj |A, !e ; ?>]. ⇤

The third theorem links concurrency and interleaving,
and is based on the standard notions of a pomset and a
linear extension of one. We first give some auxiliary defi-
nitions to represent action histories produced by a concur-
rent program in terms of pomsets, which enables compar-
ing their linear extensions with the action histories that are
produced when the program’s branches are interleaved.

Definition 2. An action pomset (or simply a pomset) is a

4-tuple ⇢ = hV ,A,�, f i, where the ‘vertices’ V is a fi-

nite set of natural numbers, A is a finite set of actions, the

‘ordering relation’ � is an irreflexive, a transitive, and

an asymmetric binary relation on V , and the ‘labelling

function’ f is a surjection from V to A. A sequence of

actions a1; . . . ; an is a linear extension of a pomset ⇢, de-

noted a1; . . . ; an 2 LIN(⇢), iff there exists a permutation

v1·. . .·vn of the vertices of ⇢ such that (vi, vj) 2� implies

i < j, and ak = f(vk) for all k 2 [1, n].8

Next, we define how a pomset is built from a given
action history, by the recursive application of sequen-
tial and/or parallel composition operators. Let ⇢1 =
hV1 ,A1 ,�1 , f1 i and ⇢2 = hV2 ,A2 ,�2 , f2 i be pom-
sets, and let r (a ‘renaming’) be a bijection from V2 to
a set V3 such that V3 \ V1 = ; and V3 \ V2 = ;.
Let hV3 ,A3 ,�3 , f3 i be the pomset obtained from ⇢2 by
renaming it using r, i.e., replacing each occurrence in
⇢2 of each vertex v 2 V2 with r(v). Then, we define
⇢1 �⇤ ⇢2 as the pomset hV ,A,�, f i, where V = V1[V3,

8We treat relations and functions as sets of ordered pairs.

A = A1 [A3, f = f1 [f3, and �=�1 [�3

[V1 ⇥ V3; similarly, we define ⇢1 [⇤ ⇢2 as the pomset
hV ,A,�1 [�3 , f i. Finally, given an action history A,
we define the corresponding pomset as

P(A) =

(
P(A1) �⇤ P(A2) if A = A1;A2,
P(A1) [⇤ P(A2) if A = A1 k A2,
h{1}, {a}, ;, {(1 , a)}i if A = a.

Proposition 2. If A is an action history, P(A) is a pom-

set.

Proof. Let a be any action. First, if action history A = a,
then P(A) is the ‘atomic’ pomset comprising the single
action ‘a’, the empty ordering relation, and the single ver-
tex ‘1’ labelled with the action. Second, each incremental
application of either �⇤ or [⇤ to two (initially ‘atomic’)
pomsets ⇢1 and ⇢2 will also yield a pomset because (i)

the vertices in ⇢2 will be renamed to V3 (guaranteeing
that the resulting labelling function is a surjection), and
(ii) the entire cross product of V1 and V3 is added to the
resulting ordering relation in the definition of ⇢1 �⇤ ⇢2,
ensuring transitivity.

Finally, Theorem 3 states that if the branches of a con-
current program are executed as part of an interleaved
program, any linear extension of (the pomset of) a result-
ing action history will also be a linear extension of some
action history that is yielded by the concurrent program.
We need to use linear extensions of the former action
history (as opposed to using the history directly) to ac-
count for concurrent programs that might emerge within
the branches as they evolve.

Theorem 3. Let B,A and Pk = P1 k . . . k
Pn be as above, and suppose [B,A,Pk]

ONE�!. Let

[B,A,P1 | . . . | Pn] · . . . · [B0,A ;A|,P
0] be a termi-

nated execution trace. Then, there exists a transition

[B,A,Pk]
ONE�! [B0,A ;Ak,P

0
k] such that LIN(P(A|)) ✓

LIN(P(Ak)).

Proof Sketch. Consider the case n = 2, i.e., Pk = P1 k
P2, and let T be the above trace. Let A0 2 LIN(P(A|))
be a linear extension corresponding to T . Consider the
subcase where the first x actions in A0 are yielded by P1,
and the next y (but not y + 1) by P2, with x, y > 0. Now
consider the prefix of T that yields the first x actions.
The prefix is also an execution trace from [B,A,P1] if
we remove program P2 from the prefix, i.e., we replace
program C|P = P 0

1 | P2 in each configuration C in the
prefix by P 0

1.
Suppose the prefix ends with C1 = [B1 ,A1 ,P 0

1 | P2].
Consider the trace T 0 that starts from C1 in T , executes
only P2, and ends immediately on yielding the next y ac-
tions. Suppose T 0 ends with C2 = [B2 ,A2 ,P 0

1 | P 0
2].

While belief bases B and B1 may differ, we can show
that T 0 can be simulated by a trace from [B,A,P2] that
ends with a configuration C s.t. C|P = P 0

2. This fol-
lows from our assumption in sec. 2 that P1 and P2 are

7

unrelated. A similar reasoning can be applied to the next
actions yielded by P 0

1 and P 0
2, by the resulting P 00

1 and P 00
2 ,

and so on, until we build terminated execution traces for
[B,A,P1] and [B,A,P2]. Using the traces, we can show
that the antecedent of rule k holds for [B,A,Pk], from
which the theorem also follows. ⇤

The converse of the theorem does not hold due to our
constraint in sec. 2 that no other (non-concurrent) step
can be executed while a concurrent program is being exe-
cuted. For example, take concurrent program P = ((a1 k
a2) ; a3) k a4, which also represents its action history
A. While the sequence a1; a4; a2; a3 is a linear exten-
sion of the pomset of A, the sequence cannot be produced
by the interleaved program corresponding to P , namely,
((a1 k a2) ; a3) | a4.

6 Discussion

We provide a BDI agent programming language support-
ing (true) concurrency. This differs from past work on
similar languages, which interpret concurrency as inter-
leaving. We support ‘nested’ concurrency, and a limited
form of nesting between concurrency and interleaving.
We prove key properties of the semantics in relation to
concurrency, e.g. soundness and completeness w.r.t. ac-
tion histories. Our results can be extended to develop fur-
ther notions, e.g. what it means for a program to be ‘more
concurrent’ than another.

Concurrency enables branches to be executed on sepa-
rate processors or machines, yielding smaller makespans
than would otherwise be possible. Concurrency also en-
ables particular desirable action schedules (or expressing
an aspect of ‘user intent’ [16, 21]) that would not be pos-
sible by interleaving actions, e.g. the schedule in which
the recording action r(25) spans over both the rotate ac-
tions rX(2) and rZ(2).

There are many interesting avenues to explore in fu-
ture work. In particular, we could formalise other ap-
proaches to concurrency, such as the more sophisticated
approach of immediately aborting execution of the re-
maining branches upon the failure of one branch in a con-
current program [18]. The semantics that we have pre-
sented is a crucial step toward formalising such alterna-
tive approaches, which would then enable formal compar-
ison. We could also explore how to relax our constraint
on how a concurrent program can be interleaved; enable
interaction between concurrent branches, e.g. to commu-
nicate the binding assigned to a variable that is shared
between multiple branches; add concurrency to other sys-
tems, e.g. AgentSpeak; model check concurrent (user
supplied) JACK plans (cf. [2]); and explore what concur-
rency means in the presence of advanced agent constructs,
e.g. the declarative goal (e.g. [19, 28]) and planning (e.g.
[27]) constructs.

References

[1] James F. Allen. Maintaining knowledge about
temporal intervals. Communications of the ACM,
26(11):832–843, 1983.

[2] Rafael H Bordini, Michael Fisher, Carmen Par-
davila, and Michael Wooldridge. Model Checking
AgentSpeak. In Proc. of the International Conf. on

Autonomous Agents and Multiagent Systems (AA-

MAS), pages 409–416, 2003.

[3] Rafael H. Bordini and Jomi F. Hübner. Semantics
for the Jason variant of AgentSpeak:(plan failure
and some internal actions). In Proc. of the Euro-

pean Conf. on Artificial Intelligence (ECAI), pages
635–640, 2010.

[4] Gérard Boudol and Ilaria Castellani. On the seman-
tics of concurrency: Partial orders and transition
systems. In Proc. of the International Joint Conf.

on Theory and Practice of Software Development

(TAPSOFT), pages 123–137, 1987.

[5] Gérard Boudol and Ilaria Castellani. Concur-
rency and atomicity. Theoretical Computer Science,
59(1):25–84, 1988.

[6] Gérard Boudol and Ilaria Castellani. A non-
interleaving semantics for CCS based on proved
transitions. Fundamenta Informaticae, XI:433–453,
1988.

[7] Gérard Boudol and Ilaria Castellani. Permutation of
transitions: An event structure semantics for CCS
and SCCS. In Linear Time, Branching Time and

Partial Order in Logics and Models for Concur-

rency, pages 411–427. Springer Berlin Heidelberg,
1989.

[8] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lu-
cas. Jack intelligent agents - components for intel-
ligent agents in Java. Technical report, Agent Ori-
ented Software, 1999.

[9] Ahmed Chawki Chaouche, A El Fallah
Seghrouchni, Jean-Michel Ilié, and Djamel-
Eddine Saı̈douni. A dynamical plan revising for
ambient systems. Procedia Computer Science,
32:37–44, 2014.

[10] Mehdi Dastani. 2APL: A practical agent program-
ming language. Autonomous Agents and Multi-

Agent Systems (JAAMAS), 16(3):214–248, 2008.

[11] Giuseppe de Giacomo, Yves Lespérance, and Hec-
tor J. Levesque. ConGolog, a concurrent program-
ming language based on the situation calculus. Ar-

tificial Intelligence, 121(1-2):109–169, 2000.

8

[12] Lavindra de Silva, Felipe Meneguzzi, and Brian Lo-
gan. An operational semantics for a fragment of
PRS. In Proc. of the International Joint Conf. on Ar-

tificial Intelligence, (IJCAI), pages 195–202, 2018.

[13] Lavindra de Silva, Sebastian Sardina, and Lin
Padgham. Summary information for reasoning
about hierarchical plans. In Proc. of the European

Conf. on Artificial Intelligence (ECAI), pages 1300–
1308, 2016.

[14] Pierpaolo Degano, Rocco De Nicola, and Ugo Mon-
tanari. Partial ordering derivations for CCS. In Fun-

damentals of Computation Theory, pages 520–533.
Springer Berlin Heidelberg, 1985.

[15] Pierpaolo Degano, Rocco De Nicola, and Ugo Mon-
tanari. A partial ordering semantics for CCS. Theo-

retical Computer Science, 75(3):223 – 262, 1990.

[16] Maria Fox. Natural hierarchical planning using op-
erator decomposition. In Proc. of the European

Conf. on Planning (ECP), pages 195–207, 1997.

[17] Michael P. Georgeff and Francois Felix Ingrand.
Decision-making in an embedded reasoning system.
In Proc. of the International Joint Conf. on Artificial

Intelligence (IJCAI), pages 972–978, 1989.

[18] James Harland, David N Morley, John Thangara-
jah, and Neil Yorke-Smith. Aborting, suspending,
and resuming goals and plans in BDI agents. Au-

tonomous Agents and Multi-Agent Systems (JAA-

MAS), 31(2):288–331, 2015.

[19] Koen V Hindriks, Frank S de Boer, Wiebe van der
Hoek, and John-Jules Ch Meyer. Agent program-
ming with declarative goals. In Proc. of Intelli-

gent Agents VII. Agent Theories Architectures and

Languages, Seventh International Workshop, pages
228–243. Springer-Verlag, 2001.

[20] M. J. Huber. JAM: a BDI-theoretic mobile agent
architecture. In Proc. of the Annual Conf. on Au-

tonomous Agents, pages 236–243, 1999.

[21] Subbarao Kambhampati, Amol Mali, and Biplav
Srivastava. Hybrid planning for partially hierarchi-
cal domains. In Proc. of the National Conf. on Arti-

ficial Intelligence (AAAI), pages 882–888, 1998.

[22] D. Morley and K. Myers. The SPARK agent frame-
work. In Proc. of the International Joint Conf. on

Autonomous Agents and Multiagent Systems (AA-

MAS), pages 714–721, 2004.

[23] Ingrid Nunes, CJPD Lucena, and Michael Luck.
BDI4JADE: a BDI layer on top of JADE. In Proc. of

the Workshop on Programming Multiagent Systems,
pages 88–103, 2011.

[24] G. D. Plotkin. A structural approach to operational
semantics. Technical Report DAIMI FN-19, Uni-
versity of Aarhus, Denmark, 1981.

[25] Anand S. Rao. AgentSpeak(L): BDI agents speak
out in a logical computable language. In Proc. of

the European Workshop on Modelling Autonomous

Agents in a Multi-Agent World, pages 42–55.
Springer-Verlag, 1996.

[26] Sebastian Sardina, Lavindra de Silva, and Lin
Padgham. Hierarchical planning in BDI agent pro-
gramming languages: A formal approach. In Proc.

of the International Conf. on Autonomous Agents

and Multiagent Systems (AAMAS), pages 1001–
1008, 2006.

[27] Sebastian Sardina and Lin Padgham. A BDI
agent programming language with failure handling,
declarative goals, and planning. Autonomous Agents

and Multi-Agent Systems (JAAMAS), 23(1):18–70,
2011.

[28] Michael Winikoff, Lin Padgham, James Harland,
and John Thangarajah. Declarative & procedural
goals in intelligent agent systems. In Proc. of the In-

ternational Conf. on Principles of Knowledge Rep-

resentation and Reasoning (KR), pages 470–481,
2002.

9

