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Abstract: Background
Previous work has shown differential predominance of certain  Mycobacterium
tuberculosis (M. tb)  lineages and sub-lineages among different human populations in
diverse geographic regions of Ethiopia. Nevertheless, how strain diversity is evolving
under the ongoing rapid socio-economic and environmental changes is poorly
understood. The present study investigated factors associated with  M. tb  lineage
predominance and rate of strain clustering within urban and peri-urban settings in
Ethiopia. 
Methods
Pulmonary Tuberculosis (PTB) and Cervical tuberculous lymphadenitis (TBLN) patients
who visited selected health facilities were recruited in the years of 2016 and 2017. A
total of 258  M. tb  isolates identified from 163 sputa and 95 fine-needle aspirates
(FNA) were characterized by spoligotyping and compared with international  M.tb
spoligotyping patterns registered at the SITVIT2 databases. The molecular data were
linked with clinical and demographic data of the patients for further statistical analysis.
Results
From a total of 258  M. tb  isolates, 84 distinct spoligotype patterns that included 58
known Shared International Type (SIT) patterns and 26 new or orphan patterns were
identified. The majority of strains belonged to two major  M. tb  lineages, L3 (35.7%)
and L4 (61.6%). The observed high percentage of isolates with shared patterns (n =
200/258) suggested a substantial rate of overall clustering (77.5%). After adjusting for
the effect of geographical variations, clustering rate was significantly lower among
individuals co-infected with HIV and other concomitant chronic disease. Compared to
L4, the adjusted odds ratio (AOR; 95% CI) indicated that infections with L3  M. tb
strains were more likely to be associated with TBLN [3.47 (1.45, 8.29)] and TB-HIV co-
infection [2.84 (1.61, 5.55)].
Conclusion
Despite the observed difference in strain diversity and geographical distribution of  M.
tb  lineages, compared to earlier studies in Ethiopia, the overall rate of strain clustering
suggests higher transmission and warrant more detailed investigations into the
molecular epidemiology of TB and related factors.
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Abstract  21 

Background  22 

Previous work has shown differential predominance of certain Mycobacterium tuberculosis (M. tb) lineages and 23 

sub-lineages among different human populations in diverse geographic regions of Ethiopia. Nevertheless, how 24 

strain diversity is evolving under the ongoing rapid socio-economic and environmental changes is poorly 25 

understood. The present study investigated factors associated with M. tb lineage predominance and rate of 26 

strain clustering within urban and peri-urban settings in Ethiopia.   27 

Methods 28 

Pulmonary Tuberculosis (PTB) and Cervical tuberculous lymphadenitis (TBLN) patients who visited selected 29 

health facilities were recruited in the years of 2016 and 2017. A total of 258 M. tb isolates identified from 163 30 

sputa and 95 fine-needle aspirates (FNA) were characterized by spoligotyping and compared with international 31 
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M.tb spoligotyping patterns registered at the SITVIT2 databases. The molecular data were linked with clinical 32 

and demographic data of the patients for further statistical analysis.  33 

Results 34 

From a total of 258 M. tb isolates, 84 distinct spoligotype patterns that included 58 known Shared International 35 

Type (SIT) patterns and 26 new or orphan patterns were identified. The majority of strains belonged to two 36 

major M. tb lineages, L3 (35.7%) and L4 (61.6%). The observed high percentage of isolates with shared patterns 37 

(n = 200/258) suggested a substantial rate of overall clustering (77.5%). After adjusting for the effect of 38 

geographical variations, clustering rate was significantly lower among individuals co-infected with HIV and other 39 

concomitant chronic disease. Compared to L4, the adjusted odds ratio and 95% confidence interval (AOR; 95% 40 

CI) indicated that infections with L3 M. tb strains were more likely to be associated with TBLN [3.47 (1.45, 8.29)] 41 

and TB-HIV co-infection [2.84 (1.61, 5.55)].  42 

Conclusion 43 

Despite the observed difference in strain diversity and geographical distribution of M. tb lineages, compared to 44 

earlier studies in Ethiopia, the overall rate of strain clustering suggests higher transmission and warrant more 45 

detailed investigations into the molecular epidemiology of TB and related factors.  46 

KEYWORDS:  47 

Epidemiology; Mycobacterium tuberculosis; spoligotyping; strain clustering; associated factors  48 

Introduction  49 

Tuberculosis (TB) is a chronic infectious disease caused by species of the Mycobacterium tuberculosis complex 50 

(MTBC).  Except for Mycobacterium tuberculosis (M. tb), which is the primary cause of human TB, other 51 

members of the MTBC are believed to have adapted to different animal hosts and therefore they may have 52 

reduced fitness to cause human infection [1, 2].  Beside environmental and socio-economic factors, the biology 53 

and epidemiology of human TB has likely been shaped by the historical interaction between MTBC members and 54 

its host [2, 3] .  The genetic variation between MTBC species contributes to the ambiguities concerning disease 55 

presentation, frequency of transmission and clinical progress [2, 4]. This is particularly true for M. tb, where the 56 

interaction of genotypic variation among different strains with human genetic polymorphism play a prominent 57 

role in the epidemiology of TB diseases [4-7]. The overall epidemiology of MTBC species is influenced by the 58 

environment, with its frequency and distribution being dependent on social, economic, and ecological causes [4, 59 

8]. Although, there are no well-established classical factors that are known to be strongly associated with 60 

disease phenotype, immunological studies have suggested that some M. tb strains and lineages are more 61 

virulent and/or more infectious than others [9]. It has been stated that some strains that belong to the modern 62 

MTBC Lineages are more capable of inducing higher inflammatory response than lineages of the same clade 63 

(Haarlem, high; Beijing, low) [10]. However, difference in pathogenicity and lineage specific rate of transmission  64 

are important only when considered together with the host genotype and geographical location [11]. 65 

Although, it is still challenging to investigate the influence of bacterial and host genotype on the development of 66 

different forms of TB in humans, disease phenotype seems to be associated with a bacterial genotype [2, 6]. 67 

According to other published reports, L4 seemed more likely to be associated with Pulmonary TB (PTB) while L2 68 

and L3 were linked with extra-pulmonary TB (EPTB) disease, such as TB meningitis and TB in cervical Lymph 69 
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Nodes (TBLN) [12-15]. Another comparative study showed that strains of the East African Indian (L3) and Euro-70 

American (L4) lineages were negatively associated with extra thoracic disease as compared to strains of the East 71 

Asian lineage (L2) [16]. These studies thereby suggest that species diversity and their interaction with host 72 

biology affects the pathophysiology and natural course of TB disease [2, 17]. For example, a study conducted in 73 

Tanzania has shown that chronic signs of TB disease, such as weight loss, have been more associated with L4 74 

strains than with Indo-Oceanic (L1) [18]. In addition to factors associated with human genetics such as ethnicity, 75 

biological and clinical determinants of an individual, such as HIV and body mass index, have shown significant 76 

difference on disease phenotype and rate of transmission across major M. tb Lineages  [16, 19-21].  77 

Different alternative molecular identification methods have been used to estimate rates of disease transmission, 78 

which is generally inferred by comparing genotypic clustering between patient isolates from a given 79 

epidemiological setting [10, 22]. In other words, successful transmission of particular genotypes has been 80 

reflected through an increase in the frequency and consistency of strain domination over time in defined 81 

populations [16, 23].However, despite recently developed advanced molecular diagnostic tools, both the nature 82 

of genotype variations and the characteristics of the host immune response to certain types of M. tb strains are 83 

largely unknown in many TB high burden settings [24, 25].  Particularly in countries like Ethiopia, where there is 84 

high prevalence and high transmission rate and a diversified population of bacterial species [26-29], molecular 85 

identification of the agents can be an important component of the knowledge base required to improve on 86 

previous achievements of the national TB control program. Taking all this into account, the present study 87 

investigated factors associated with M. tb lineage predominance and rate of strain clustering within the context 88 

of urban and peri-urban settings in Ethiopia.  89 

Materials and methods 90 

Study design and setting   91 

A multi-centre health facility based cross-sectional study was conducted in Ethiopia during 2016 and 2017.  As 92 

part of the Ethiopia Control of Bovine Tuberculosis Strategies (ETHICOBOTS) project, four hospitals, two private 93 

clinics, and fourteen health centers located in urban and peri-urban areas, were purposively selected from four 94 

different regions of Ethiopia.  Addis Ababa was the largest study site and constituted of Addis Ababa city and the 95 

surrounding special zone of Oromiya region while the remaining three study sites were located in the regional 96 

urban cities of Mekele in Tigray, Gondar in Amhara, and Hawassa in Southern Nations Nationalities, and Peoples’ 97 

region.  98 

Study population    99 

Recruitment of participants at selected health facilities was carried out according to the national guideline 100 

standard case definition criteria. All presumed TB cases were initially considered as potential source of the study 101 

population. Then those patients clinically diagnosed with PTB or TBLN were asked for informed consent and 102 

enrolled consecutively. Recruitment of PTB cases was done at all selected governmental health facilities. TBLN 103 

patients were enrolled from all four study sites; however they were only recruited from the Pathology Units of 104 

three governmental hospitals and two private clinics because of lack of diagnostic facilities and skilled 105 

professionals for fine-needle aspirate (FNA) cytology examination at governmental health centers. Included 106 

cases from both groups were those eligible for first-line Anti-TB treatment. Known MDR (multi drug resistant) TB 107 

cases and EPTB patients other than those with TBLN were excluded in this study. 108 
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Data collection  109 

Clinical and demographic information was collected from recruited TB cases using a pre-tested structured 110 

questionnaire. Following the routine care service, consented PTB and TBLN participants were requested to 111 

provide spot sputum and FNA samples, respectively. Care providers (nurses) working at directly observed 112 

therapy (DOT) centres collected sputum specimens using sterile containers. FNA specimens were collected from 113 

the selected hospitals and private clinics by experienced pathologists who performed FNA cytology examination 114 

as part of their routine diagnostic service.  According to the standard procedure, FNA collection was performed 115 

using a 21-gauge needle attached to a 10 ml syringe and specimens were collected into cryo-tubes with sterile 116 

phosphate buffer saline (PBS). Samples were kept at -20°C at remote study sites until transported on ice boxes 117 

to the Armauer Hansen Research Institute (AHRI) TB laboratory where the clinical samples were stored at -80°C 118 

until processed for mycobacterial culture. Clinical sample handling and laboratory procedures were performed 119 

according to a previously published protocol [27]. 120 

Mycobacterial Culturing  121 

Samples collected in the study were processed and cultured for mycobacteria using standard procedures 122 

established at the AHRI TB laboratory [27, 30]. Specimen samples were inoculated on Löwenstein-Jensen (LJ) 123 

medium slants supplemented with either glycerol or pyruvate and incubated at 37°C. The slopes were examined 124 

weekly for up to eight weeks for any visible growth. Bacterial colonies identified as Acid-Fast Bacilli by ZN 125 

staining [27] were saved as frozen stocks in 20% glycerol as well as heat-inactivated in 500µl distilled H2O at 126 

80°C for 60 min; the latter samples were used for subsequent molecular identification.  127 

Molecular identification techniques  128 

All isolates were screened by Large Sequence Polymorphism (LSP) typing using conventional PCR for 129 

examination of Region of Difference 9 (RD9) according to protocols by Berg et al. (2009) [31]. Spoligotyping was 130 

performed according to Kamerbeek et al. (1997) [32], using a non-commercial biodyne-C-membrane produced 131 

by the Animal & Plant Health Agency (United Kingdom). 132 

Genotype analysis and comparison with global databases 133 

Spoligotype patterns were converted into binary and octal formats and compared with previously reported 134 

strains in the international SITVIT2 database [8] hosted by Institute Pasteur de la Guadeloupe. Here, 135 

spoligotypes shared by more than one strain were designated as shared types and were assigned a shared 136 

international type (SIT) number according to the SITVIT2 database, while patterns that were not recognized in 137 

the latest online version of the database were labelled as “New” if the pattern was identified for more than one 138 

strain and “Orphan” if the pattern was unique to only one strain. Further lineage classification for corresponding 139 

nomenclature was done using the ‘Run TB-Lineage’ online tool from linked databases (http://www.miru-140 

vntrplus.org/MIRU/index.faces  and http://tbinsight.cs.rpi.edu/run_tb_lineage.html). Here, major lineages were 141 

predicted using a conformal Bayesian network (CBN) analysis while knowledge based Bayesian network (KBBN) 142 

analysis was used to predict the corresponding sub-lineages.  143 

Data management and Statistical Analysis 144 

All genotype outputs from the computer assisted analyses were imported to SPSS and merged with clinical and 145 

demographic data.  The final clean dataset was   exported to STATA and R-software to perform further statistical 146 

analysis. Two of the main outcome variables, clustering rate and M. tb lineages, were categorized as binomial 147 

scale of measurement. In the first category, “clustered” referred to  two or more isolates sharing identical 148 

http://www.miru-vntrplus.org/MIRU/index.faces
http://www.miru-vntrplus.org/MIRU/index.faces
http://tbinsight.cs.rpi.edu/run_tb_lineage.html
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spoligotyping patterns while isolates that did not have shared patterns was defined as “unique”. Here, three 149 

different logistic regression analysis methods were performed to identify and compare factors associated with 150 

strain clustering. The first Bivariable analysis was performed to estimate a crude (unadjusted) odd ratio for each 151 

independent categorical variable while the second multivariable logistic regression analysis was used to 152 

estimate adjusted odd ratio (AOR with 95% CI) that better reflect the likelihood of included variable associated 153 

with rate of strain clustering. The third model (hierarchical logistic regression) was preferred to adjust for the 154 

effect of regional variations, the first level factor that often attributed with strain clustering, where host-related 155 

clinical factors and spoligotype-based M. tb lineage classification were considered as second level factors. 156 

Variables included in the second model were reconsidered and used to compare the corresponding adjusted 157 

estimates (AOR with 95% CI) generated from the third (Multi-level) model which was done using STATA software 158 

with the recommended (melogit) command. The multivariable logistic regression was used to determine the 159 

clinical characteristics or disease phenotypes associated with dominant M. tb lineage. In both cases, R-package 160 

Software commands were used to perform bivariable and multivariable logistic regression. Before running the 161 

multivariable logistic regression analysis, stepwise backward elimination technique was applied to select 162 

independent variables. Initially, all clinically relevant factor variables were included in the full model. Then using 163 

the specific statistical command (Step) under R-studio, the software program automatically generated all 164 

possible alternative models having lists of dependent and independent variables. Finally, according to the 165 

Likelihood Ratio-test and to minimize the effect of confounding variables, a relatively better fitted model with 166 

potential explanatory variables that has the lowest akaki information criteria (AIC) was selected.  Independent 167 

relationship of variables was decided based on different cut-off point for statistical significance level (: < 0.05; < 168 

0.01 and < 0.001) and interpretation of key findings was reported using the adjusted estimates (AOR with 95% 169 

CI).  170 

Ethical considerations   171 

This study was part of the ETHICOBOTS project, which obtained ethical clearance from the Federal Ministry of 172 

Science and Technology (Ref. No: 301/001/2015), the AHRI/ALERT Ethics Review Committee (Project Reg. No: 173 

PO46/14) and from University of Gondar Institutional Review Board (Review number: O/V/P/RCS/04/45/2016). 174 

Support letters were obtained from Regional State Health Bureaus and health facilities. Enrollment of study 175 

participants was done after written informed consent was secured and signed agreements were received from 176 

all participating health facilities. Detailed information about the risks and benefits of the study as well as 177 

confidentiality of the research data was a prerequisite for study participation.  178 

Results 179 

Characteristics of the study population  180 

This study examined a total of 258 TB patients (163 PTB and 95 TBLN cases) of which 145 (56.2%) were male and 181 

113 (43.8%) were female, with a mean age of 32.2 (±12.9) years.  Most of these TB cases were from Gondar, 182 

111/258 (43.0%), and Mekele, 61/258 (23.6%), in northern Ethiopia while the remaining patients, 44/258 183 

(17.1%) and 42/258 (16.3%), were from Addis Ababa and Hawassa in central and southern Ethiopia, respectively. 184 

Farmers (80/258, 31.0%) and students (40/258, 15.5%) were the two most common occupations in the study 185 

population. With regard to the medical history of the participants, 20/258 (7.8%) were co-infected with HIV and 186 

96/258 (37.2%) had at least one additional chronic concomitant disease (Table 1). 187 
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Table 1. Characteristics of the 258 study participants, 163 patients with pulmonary TB and 95 with cervical TB 188 

lymphadenitis, recruited at selected health facilities located in urban and peri-urban areas of Ethiopia in the 189 

years 2016/17. 190 

Patient characteristics PTB 
  n (%) 

TBLN 
  n (%) 

Total 
  n (%) 

P-value of  
Chi-square test 

Number of patients 163 (63.2%) 95 (37%) 258 (100%) - 

Age group      

< 35 years  105  (64.4)   61  (64.2)  166 (64.3) 0.298 

≥ 35 years   58  (35.6)   34  (35.8)  92 (35.7) 

Gender                              

Male  107  (65.6)   38   (40.0)   145 (56.2) 0.000 

Female   56  (34.4)   57   (60.0)   113 (43.8) 

Occupation                              

Farmer  46  (28.2)   34  (35.8)   80  (31.0)  
 
 
0.087 

Merchant  14   (8.6)   11  (11.6)   25  (9.7) 

Employee  24  (14.7)    9   (9.5)   33  (12.8) 

Student  24  (14.7)   16  (16.8)   40  (15.5) 

House wife  20  (12.3)   17  (17.9)   37 (14.3) 

Dairy worker   12   (7.4)    4   (4.2)   16  (6.2) 

Others  23  (14.1)    4   (4.2)   27 (10.5) 

Geographical location                              

Gondar 84  (51.5)   27  (28.4)    111 (43.0)  
0.000 Hawassa 34  (20.9)    8   (8.4)    42 (16.3) 

Mekele 40  (24.5)   21  (22.1)    61 (23.6) 

Addis Ababa  5   (3.1)   39  (41.1)    44 (17.1) 

HIV co-infection                              

No 145   (89)   93  (97.9)    238 (92.3) 0.010 

Yes  18   (11)    2   (2.1)    20 (7.8) 

Chronic concomitant disease                              

No  98  (60.1)   64  (67.4)   162 (62.8) 0.246 

Yes  65  (39.9)   31  (32.6)   96 (37.2) 

 191 

Genetic Diversity of Mycobacterium tuberculosis lineages 192 

All 258 isolates provided in the supplementary table (Table S1) were genotyped by LSP as M. tb while being 193 

intact for RD9. When the isolates were spoligotyped 84 different patterns were identified, of which 58 SIT 194 

patterns were already recognized in the SITVIT2 database (accounting for 231/258 (89.5%) of the isolates). 195 

Among these patterns, 32 M. tb isolates were singletons while 25 designated shared patterns, each with 2 to 40 196 

isolates, accounted for 85.7% (198/231) of all isolates with identified SIT patterns. The remaining twenty five 197 

unique orphan patterns and two isolates with a new shared spoligotype pattern (Table 3), which representing 27 198 

(10.5%) of the total isolates, were not yet recognized by the SITVIT2 database. As presented in Table 2, over half 199 

of the isolates 145/258 (56.2%) were represented by five of the dominant SIT patterns, including SIT25 (n = 40), 200 

SIT149 (n = 36), SIT53 (n = 32), SIT26 (n = 17), and SIT37 (n = 11).    201 

 202 

 203 
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Table 2. Spoligotype descriptions of all registered SIT patterns with two or more isolates identified from 198 clinical samples collected from 205 
pulmonary TB and cervical TB lymphadenitis patients recruited at selected health facilities in Ethiopia in the years of 2016/17. 206 

Spoligotype patterns of shared SIT strains Lineage classification Shared 
isolates SIT No Octal code Binary format (presence (black) or absence (white) of 43 spacers) KBBN CBN SNP-based 

Prediction* 
4 000000007760771  T1-RUS2 EA L4 2 (0.8) 

952 603777740003771  CAS1-Delhi EAI L3 3 (1.2) 

1729 700000004177771  AFRI AFRI L7 2 (0.8) 

21 703377400001771  CAS1-Kili EAI L3 5 (1.9) 

2359 703677740003171  CAS1-Delhi EAI L3 4 (1.6) 

2973 703701740003171  CAS1-Delhi EAI L3 2 (0.8) 

1199 703701740003171  CAS1-Delhi EAI L3 2 (0.8) 

25 703777740003171  CAS1-Delhi EAI L3 40 (15.5) 

26 703777740003771  CAS1-Delhi EAI L3 17 (6.6) 

1877 737377777760771  T EA L4 2 (0.8) 

33 776177607760771  LAM3 EA L4 3 (1.2) 

149 777000377760771  T3-ETH EA L4 36 (14.0) 

504 777737737760771  T3 EA L4 2 (0.8) 

726 777737747413771  EAI6-BGD1 IO L1 2 (0.8) 

35 777737777420771  H3-Ural-1 EA L4 2 (0.8) 

37 777737777760771  T3 EA L4 11 (4.3) 

1688 777777403760771  LAM EA L4 2 (0.8) 

41 777777404760771  Turkey EA L4 5 (1.9) 

121 777777775720771  H3 EA L4 4 (1.6) 

817 777777777420731  H3-Ural-1 EA L4 2 (0.8) 

777 777777777420771  H3-Ural-1 EA L4 2 (0.8) 

134 777777777720631  H3 EA L4 2 (0.8) 

52 777777777760731  T2 EA L4 5 (1.9) 

53 777777777760771  T EA L4 32 (12.4) 

54 777777777763771  Manu2 EA L4 9 (3.5) 

KBBN: knowledge based Bayesian network; CBN: conformal Bayesian network; SIT: shared international type; EA: Euro-American; EAI: East-African-Indian; IO: 207 
Indio-Oceanic. * Supported by SNP typing (Firdessa et al 2013) 208 
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Table 3. Descriptions of all orphan and new spoligotype patterns (n = 26) that were identified from 27 clinical samples collected from pulmonary 209 
TB and cervical TB lymphadenitis patients recruited at selected health facilities in Ethiopia in the years of 2016/17.  210 

No Spoligotype patterns of orphan or new strains Lineage classification based on #  of  
isolates Octal code Binary format (presence (black) or absence (white) of 43 spacers) KBBN CBN SNP-based 

prediction* 

1 000001777020771  T1-RUS2 EA L4 1 

2 037677560020771  H1 EA L4 1 

3 101774000000000  ZERO EA L4 1 

4 403000377760771  T1-RUS2 EA L4 1 

5 477777757000771  H4-Ural-2 EA L4 1 

6 503777740003171  CAS1-Delhi EAI L3 1 

7 511777400003171  CAS EAI L3 1 

8 555777437740171  T EA L4 1 

9 603777700003771  CAS1-Delhi EAI L3 1 

10 676777660760771  T EA L4 1 

11 703737740003571  CAS1-Delhi EAI L3 1 

12 703777700001171  CAS1-Delhi EAI L3 2 

13 703777740001171  CAS1-Delhi EAI L3 1 

14 703777740003171  CAS1-Delhi EAI L3 1 

15 703777740003771  CAS1-Delhi EAI L3 1 

16 703777747776771  Manu1 EA L4 1 

17 711777740003171  CAS1-Delhi EAI L3 1 

18 773777776000771  H3-Ural-1 EA L4 1 

19 776737737760771  T3 EA L4 1 

20 777000277760771  T3-ETH EA L4 1 

21 777001777760771  T3-ETH EA L4 1 

22 777737401760771  LAM5 EA L4 1 

23 777737777760000  X2 EA L4 1 

24 777777401760771  LAM EA L4 1 

25 777777777420571  H3-Ural-1 EA L4 1 

26 777777777600631  H3 EA L4 1 

KBBN: knowledge based Bayesian network; CBN: conformal Bayesian network; SIT: shared international type; EA: Euro-American; EAI: East-African-Indian; IO: 211 
Indio-Oceanic. * Supported by SNP typing (Firdessa et al 2013) 212 
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According to the CBN analysis, 97.3% of the total 258 isolates belonged to two major lineages, EA (61.6%) and 213 

EAI (35.7%). On the basis of SNP-based genome-wide phylogeny analysis, these lineages are commonly known as 214 

L4 and L3, respectively [2]. The remaining 7/258 (2.7%) were represented by IO (L1) and AFRI (L7), each with 215 

three strains, and one with the typical Beijing (L2) spoligotype pattern (Fig 1; Table S1).  216 

Fig 1. Proportion of major Mycobacterium tuberculosis lineages circulating within peri-urban and urban areas 217 

in Ethiopia. ‘Others’ include L7 (AFRI), L2 (Beijing), and L1 (IO) 218 

The alternative KBBN classification showed a predominance of the CAS (34.9%) sub-lineage among strains 219 

defined as L3. T (15.9%), T3-ETH (15.1%) and Haarlem (10.9%) were the most common sub-lineages of L4. There 220 

was a significant difference in geographical distribution between strain types; all LAM families of L4 (LAM, LAM3 221 

and LAM5) were observed in the northern part of the country (Gondar and Mekele). Similarly, the CAS families 222 

(L3), which were highly dominant in the Gondar area, were rather rare around Hawassa. The Manu, Haarlem 223 

and T families (all of L4) accounted for the majority of strains identified in the Hawassa region (Fig 2).  224 

Fig 2. KBBN based classification of Mycobacterium tuberculosis sub-lineages circulating within peri-urban and 225 

urban areas in Ethiopia.    226 

Note: H1, H3, H3-Ural-1 and H4-Ural-2 were classified as ‘Haarlem’; ‘LAM’ include LAM3 and LAM5; Manu 227 
represent Manu1 and Manu2. ‘Others’ include the following types: T2, Turkey, T1-RUS2, AFRI (Ethiopian), 228 
Beijing, EAI4-VNM, and EAI6-BGD1. 229 

Factors associated with strain clustering and predominance    230 

The overall clustering rate aggregated from 26 (25 SIT and one new) shared patterns was 77.5% (200/258). Our 231 

multivariable analysis (Table 4) showed that as compared to Gondar, rate of clustering in Mekele and Hawassa 232 

was more than two and three fold higher, with adjusted OR (95% CI) of 2.71 (1.16, 6.34) and 3.56 (1.09, 11.63), 233 

respectively. However, an increased rate of M. tb transmission is generally inferred by comparing clustered 234 

genotyping patterns of clinical isolates from a given epidemiological setting [10]. By contrast, cases with isolates 235 

of a unique pattern could be considered to have resulted from reactivation of latent infection or were else 236 

presumably acquired outside of the study population [33]. Considering that hierarchical logistic regression 237 

analysis was performed to minimize the observed heterogeneity due to geographical location. After controlling 238 

for the effect of regional variations adjusted estimates generated from the final model showed that the rate of 239 

strain clustering was inversely associated with TB-HIV co-infection and comorbidity with other chronic illnesses. 240 

As shown in Table 4, TB-HIV co-infected individuals [0.16 (0.05, 0.47)] and those who had any other concomitant 241 

chronic disease [0.46 (0.23, 0.91)] were less likely to have clustered strains as compared to patients diagnosed 242 

with only TB disease.  243 

Table 4. Conventional and Hierarchical (Multi-level) logistic regression modeling methods were used to 244 

identify factors associated with strain clustering based on spoligotyping.  245 

Factor 

variables  

Proportion of cases 

n (%) 
Three logistic regression analyses    

Bivariable   Multivariable  Hierarchical  

Clustered  Unique COR (95% CI) AOR (95% CI) AOR (95% CI) 

Region 

Gondar        77 (38.3)  34 (59.6) Ref Ref  

 

Level-I factor 
Hawassa                  37 (18.4)   5 (8.8)  3.17 (1.14,8.79)*   3.56 (1.09,11.63)*  

Mekele                  51 (25.4)  10 (17.5)  2.19 (0.99,4.82)   2.71 (1.16,6.34)*   
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Addis Ababa             36 (17.9)   8 (14.0)  1.93 (0.81,4.59)   2.42 (0.84,7.01)   

Diagnosis 

PTB 127 (63.2)  36 (63.2) Ref Ref Ref 

TBLN  74 (36.8)  21 (36.8) 0.97 (0.53,1.79) 0.52 (0.24,1.15)   0.58 (0.27,1.23) 

HIV co-infection 

No 191 (95.0)   47 (82.5) Ref Ref Ref 

Yes   10 (5.0)   10 (17.5) 0.27 (0.11,0.71)** 0.16 (0.05,0.50)** 0.16 (0.05, 0.47)*** 

Co-morbidity of Chronic illness 

No 134 (66.7)  28 (49.1) Ref Ref Ref 

Yes   67 (33.3)  29 (50.9) 0.50 (0.27,0.91)*   0.50 (0.25,1.01)  0.46 (0.23,0.91)* 

Hemoptysis 

No 167 (83.1)  42 (75.0)  Ref Ref Ref 

Yes   34 (16.9)  14 (25.0)  0.61 (0.30,1.24)   0.50 (0.22,1.16)  0.55 (0.24, 1.25) 

TB lineage 

L3 (EAI)  76 (37.8)  16 (28.1) Ref Ref Ref 

L4 (EA) 121 (60.2)  38 (66.7) 0.69 (0.36,1.32)  0.42 (0.20,0.90)*     0.49 (0.23, 1.04) 

Others    4 (2.0)   3 (5.3) 0.28 (0.06,1.38)  0.25 (0.04,1.48)   0.25 (0.04, 1.44) 

EA, Euro-American; EAI, East Africa-India; The cut-off point for statistical significance () is represented by: < 0.05 = 246 

*; < 0.01 = **; < 0.001 = *** 247 

A second multivariable analysis was performed in relation to the clinical characteristics of the two most 248 

predominant lineages (L3 and L4). As shown in Table 5, in comparison to L4 strains of  M. tuberculosis, the odds 249 

for TBLN cases infected with L3 was three and half fold [3.47 (1.45, 8.29)] higher than PTB patients. Active TB 250 

disease due to L3 strains was significantly associated with HIV-TB co-infection [2.84 (1.61, 5.55)], but less likely 251 

to be associated with concomitant chronic disease [0.46 (0.25, 0.87)], as compared to L4.  252 

Table 5. Results of logistic regression analysis exploring associations between clinical characteristics and 253 
active TB disease caused by L3 versus L4, the two most dominant Mycobacterium tuberculosis lineages 254 
identified in the study.   255 

Clinical 

characteristics 

Proportion of Cases:  

n (%) 

Bivariable analysis Multivariable analysis 

Lineage 3 Lineage 4 COR (95% CI) P-value AOR (95% CI) P-value 

Region        

Addis Ababa 12 (13.0) 32 (20.1) Ref  Ref  

Gondar 54 (58.7) 53 (33.3) 2.77 (1.29,5.95) 0.009 5.24 (2.03,13.51) < 0.001 

Hawassa 1 (1.1) 41 (25.8) 0.07 (0.01,0.53) 0.010 0.11 (0.01,0.95) 0.044 

Mekele 25 (27.2) 33 (20.8) 2.02 (0.87,4.69) 0.102 4.28 (1.52,11.99) 0.006 

Gender       

Male 56 (60.9) 88 (55.3) Ref  Ref  

Female 36 (39.1) 71 (44.7) 0.79 (0.47,1.33) 0.371 0.91 (0.48,1.72) 0.781 

Diagnosis       

PTB 53 (57.6) 107 (67.3) Ref  Ref  

TBLN 39 (42.4) 52 (32.7) 1.5 (0.88,2.55) 0.134 3.47 (1.45,8.29) 0.005 

HIV co-infection       
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No 81 (88.0) 151 (95.0) Ref  Ref  

Yes 11(12.0) 8 (5.0) 2.93 (1.09,7.85) 0.033 2.84 (1.61,5.55) 0.027 

Comorbidity of Chronic illness     

No 62 (67.4) 95 (59.7) Ref  Ref  

Yes 30 (32.6) 64 (40.3) 0.73 (0.43,1.25) 0.252 0.46 (0.25,0.87) 0.016 

Taking prescribed Medication     

No 55 (59.8) 117 (73.6) Ref  Ref  

Yes 37 (40.2) 42 (26.4) 1.86 (1.08,3.21) 0.026 1.67 (0.83,3.36) 0.152 

Persistent Cough       

No 19 (20.7) 32 (20.1) Ref  Ref  

Yes 73 (79.3) 127 (79.9) 0.94 (0.49,1.78) 0.844 1.03 (0.41,2.61) 0.944 

Hemoptysis       

No 74 (80.4) 129 (81.6) Ref  Ref  

Yes 18 (19.6) 29 (18.4) 1.08 (0.56,2.08) 0.813 2.10 (0.90,4.87) 0.085 

Weight loss       

No 12 (13.0) 27 (17.0) Ref  Ref  

Yes 80 (87.0) 132 (83.0) 1.37 (0.66,2.86) 0.397 1.00 (0.41,2.47) 0.997 

 256 

Discussion 257 

Despite the observed difference in strain diversity and distribution of M. tb lineages across regions, high 258 

percentage of shared patterns suggested a substantial overall strain clustering rate around urban and peri-urban 259 

settings in Ethiopia. Altogether, a predominance of known SIT patterns resulted in an overall strain clustering 260 

rate of 77.5% in the current study, with a range of 69-88% across the study regions (Table 4). That was 261 

significantly higher as compared to earlier Ethiopian studies (2005–2018) reviewed by Mekonnen et al. (2019), 262 

with a pooled clustering rate (95% CI) of 0.41 (0.32 – 0.50) [34]. Understandably, at national level, some 263 

population groups have likely contributed more to such TB incidence rate than other groups. Particularly, the 264 

risk of TB transmission around urban areas is known to be higher than among sparsely populated societies and 265 

rural communities [24, 29]. Because of the simultaneously ongoing expansion of urbanization and emerging 266 

socio-economic conditions around urban areas in Ethiopia (increasing population size and density e.g. through 267 

expanding slums, congregation into condominiums, growing manufacturing and service sector), the pattern of 268 

TB transmission among those living and working in the urban and peri-urban areas is postulated to differ in 269 

strain diversity and clustering, compared to that of the general population [29], the majority (85%) of which are 270 

rural communities. Despite previous achievements in reducing national TB morbidity and mortality [35], 271 

summarized reports of data from the global burden of TB diseases in the last two decades have shown a 272 

declined rate in reducing the prevalence and mortality ratio in Ethiopia. Essentially, there has been a higher rate 273 

of new TB cases (incidence) in the last few years than what was expected from the previous trend [35, 36].  274 

Accordingly, a diverse range of strains of M. tb lineages, many previously not registered in spoligotyping 275 

databases, continue to circulate and maintain a high rate of transmission of TB in Ethiopia. Similarly, as would be 276 

expected, the observed diversified type of M. tb strain and lineage distribution in the current study closely 277 

matched with studies analyzed in the two most recent TB reviews that showed specific lineage predominance 278 
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across different geographical locations in Ethiopia [29, 34]. This means, the same two major lineages, L4 and L3 279 

(Fig 1), were predominant [29, 30, 34], as were the five most common SIT patterns (Table 2) [14, 29, 37, 38]. As 280 

shown in Figs 1 and 2, the observed significant difference in proportions of strain types across the four study 281 

sites, has also been noted from previous studies in Ethiopia [29, 34]. Those less prevalent M. tb lineages, which 282 

included the Ethiopian (L7), the Beijing (L2), and the IO (L1) lineages, were identified from samples collected at 283 

sites located in the northern regions (Gondar and Mekele). Strains of L7, which was first reported by Firdessa et 284 

al [14, 28, 37, 39] and that seem highly confined to Ethiopia, remain more prevalent in the north of the country. 285 

The two SIT patterns (SIT1729 and SIT910) that we identified in this region are the same as for those strains that 286 

were previously classified as L7 [8, 14].   287 

Taking into account the observed geographical difference, the current study investigated the contribution of 288 

bacterial genotype and host related factors associated with rate of strain clustering. While comparing clustered 289 

genotyping patterns of the two most predominant M. tb lineages, a relatively higher percentage of shared L3 290 

patterns were identified as compared to clustered patterns that belonged to L4. Despite limited discriminatory 291 

power of the spoligotyping method, an increased rate of M. tb transmission is generally inferred by comparing 292 

clustered genotyping patterns of clinical isolates from a given epidemiological setting [10]. In contrast, cases 293 

with isolates of a unique pattern could be considered to have resulted from reactivation of latent infection or 294 

were else presumably acquired from outside of the study population [2, 33, 40]. Indeed, diverse M. tb strains 295 

could be identified in the different regions [2, 5, 8]. In spite of the fact that the molecular epidemiology of TB 296 

has shown remarkable  difference across geographical locations, risk of transmission and TB disease progression 297 

is likely to depend on the interactions of various factors related to strain type and host immunity [8]. Bacterial 298 

genetic difference has been shown to have an impact on the extent of TB transmission; thus strains from TB 299 

lineages referred to as ‘modern’ lineages (L2-L4) are assumed to be more transmissible than other MTBC strains. 300 

[2, 34] It is interesting to note that after adjusting for the effect of regional variations, the likelihood of 301 

clustering was significantly lower among HIV co-infected patients and those who had any other concomitant 302 

chronic diseases. A higher risk of primary exposure or an increased rate of TB transmission in endemic settings 303 

has often been associated with the presence of more infectious PTB cases [41]. On the other hand, poor host 304 

immunity has been linked with endogenous reactivation of latent infection and could have greater contribution 305 

to the development of TBLN or disseminated TB [38]. However, as previously reported by others in several 306 

studies [14, 34, 37, 41], we also did not observe any difference in clustering rate with respect to site of infection. 307 

This might be because of limited power of the study that could not control for all possible effects of confounding 308 

factors. Although, the differences in strain virulence and immunogenicity have been investigated in 309 

experimental studies, whether this phenotypic variation plays a role in human disease remains unclear [3, 6].  310 

Therefore, it is believed that investigating the clinical epidemiology of dominant M. tb lineages among host 311 

populations would allow understanding of possible host-pathogen interaction. In this regard, one of the findings 312 

that emerged from this study is that clinical factors, which are often associated with host immunity, appeared to 313 

differ significantly between L3 and L4, the two most dominant lineages. According to the multivariate analysis 314 

(Table 5), the likelihood of detecting L3 among TBLN cases and HIV co-infected patients was significantly higher 315 

than for L4. However, a summary report  generated from the updated version of the international 316 

Mycobacterium tuberculosis spoligotyping global database has shown a higher rate of CAS (L3) infection among 317 

HIV co-infected cases than other widely prevalent sub-lineages [8]. The observed discrepancy might be due to 318 

the interaction effect of sub-lineages or the possibility of co-infection within the same host. Our analysis was 319 

performed based on major M. tb lineage classification. Although it is often associated with host immunity, 320 

Osório et al. (2018) stated that due to selective advantage of extrinsic factors, within-host bacterial diversity 321 
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seems to contribute to difference in disease progression [4]. For example, certain groups of L4 strains are found 322 

to be more virulent in terms of disease severity and to display higher rates of human-to-human transmission, 323 

but only at some specific geographical locations [2]. In favour of that, and as compared to L4, the current study 324 

identified significantly lower rate of L3 strains among TB cases diagnosed with other concomitant chronic 325 

illnesses (Table 5). Certainly, any immune-compromised condition and HIV interferes with bacterial virulence 326 

might lead to endogenous reactivation [20, 25, 41], suggesting that less virulent MTBC species could progress to 327 

active TB disease in immune-compromised patients. For example, TB patients infected with M. africanum were 328 

more likely to be older, HIV infected, and severely malnourished than those infected with M. tb [42]. Although 329 

the mechanisms are not yet clear, the influence of bacterial and host genotype on the development of different 330 

forms of TB in humans is well documented. In this regard, the findings observed in this study seem to agree with 331 

others that suggested a possible relationship between L3 and EPTB disease [12, 38]. Correspondingly, a 332 

significantly higher rate of PTB was often associated with L4, while more EPTB disease, such as TB meningitis and 333 

TBLN, was attributed to L3 [13, 15, 38].   334 

Generally,  because of a complex network related with many other proximal and distal determinants,  M. tb 335 

strain clustering or lineage specific effects on disease presentations may not always be fully explained by some 336 

particular risk factors and it is difficult to quantify the biological effect using numerical estimates [43]. As a result 337 

of that, most of the previously reported epidemiological studies in humans have come up with inconsistent 338 

findings [2]. It is known that heterogeneity is a defining feature of TB, which is certainly common in molecular 339 

studies [43]. However, although the need for additional clinical evidence is obvious, disease phenotypes can 340 

possibly be determined by genotype features of specific strains, suggesting that different M. tb lineages could be 341 

more frequently present in specific clinical phenotypes and disease presentations than in others [2].  342 

Limitation   343 

Spoligotyping has its limitations and may not truly detect ongoing changes (genetic differences) in a population 344 

and thereby not the best tool for investigation of transmission networks [22]. Alternative molecular diagnostic 345 

tools, such as MIRU-VNTR and especially whole genome sequencing, have shown to have better discriminatory 346 

power for investigating strain clustering and to confirm the ongoing rate of active TB disease transmission [14, 347 

22]. Similarly, the fairly small sample size, uneven representation of strains from the study sites, and further 348 

categorization into different levels of factor variables, have reduced the power of our statistical analysis. Hence, 349 

the numerical estimates may not truly imitate the biological interaction or effect modification on host-related 350 

factors and specific M. tb lineages. Not only systematic and measurement errors, but the current study also 351 

recognized  selection and recall bias where  selected isolates were subjected for spoligotyping based molecular 352 

analysis. However; we have tried to minimize some of the anticipated measurement errors and known 353 

confounding effects. For instance, alongside with internal quality control procedures for the identification of 354 

lineages, SITVIT patterns were compared with alternative lineage classifications generated from linked 355 

databases (KBBN and CBN) and further verified using SNP based predications. In addition, the multivariate 356 

analysis has considered and used to adjust the expected effect of regional variation on TB lineage predominance 357 

and related strain clustering.  358 

Conclusion and Recommendation 359 
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Despite differences in geographical variations, the overall clustering suggested higher transmission of TB disease 360 

among human populations living around urban settings in Ethiopia. This Spoligotyping-based investigation 361 

showed that the rate of strain clustering was relatively higher among patients infected with L3 strains of M. tb as 362 

compared to L4. Regarding host-related factors, strain clustering rate was inversely associated with patients 363 

diagnosed with TB-HIV co-infection and comorbidity with other chronic illnesses.  On the other hand, as 364 

compared to M. tb L4, active TB disease due to L3 strains was three times higher among TBLN patients and it 365 

was more likely to be associated with TB-HIV co-infection, while inversely associated with other concomitant 366 

chronic disease. 367 

 Altogether, the current findings add up to previous indications and contribute to evidence base on the 368 

continuous flux in the spectrum of TB infection and disease progression. Although it is difficult to be conclusive 369 

on a fixed categorical relationship between strain sub-lineages and disease type, as there is some other 370 

supportive evidence, disease phenotypes can possibly be determined by genotypic features of specific strains. 371 

Considering the complex pathogenesis of human TB disease and the interaction effect of other predisposing 372 

environmental factors, it seems that active infection due to specific M. tb lineages might be associated with 373 

specific clinical phenotypes and disease presentation.   374 

Generally; considering the ongoing shift and heterogeneity of TB disease, clinical and public health interventions 375 

should be alongside with molecular evidence for targeting high-risk groups based on location, social 376 

determinants, disease comorbidities and related bacterial strain predominance. However, as the dynamics of 377 

socioeconomic transformations exert pressure on how people live and interact, large scale studies using 378 

advanced molecular techniques, like whole genome sequencing, should further reveal the degree to which the 379 

genetic variation influences disease epidemiology and phenotype in different population groups over time.  380 
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Abstract  21 

Background  22 

Previous work has shown differential predominance of certain Mycobacterium tuberculosis (M. tb) lineages and 23 

sub-lineages among different human populations in diverse geographic regions of Ethiopia. Nevertheless, how 24 

strain diversity is evolving under the ongoing rapid socio-economic and environmental changes is poorly 25 

understood. The present study investigated factors associated with M. tb lineage predominance and rate of 26 

strain clustering within urban and peri-urban settings in Ethiopia.   27 

Methods 28 

Pulmonary Tuberculosis (PTB) and Cervical tuberculous lymphadenitis (TBLN) patients who visited selected 29 

health facilities were recruited in the years of 2016 and 2017. A total of 258 M. tb isolates identified from 163 30 

sputa and 95 fine-needle aspirates (FNA) were characterized by spoligotyping and compared with international 31 
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M.tb spoligotyping patterns registered at the SITVIT2 databases. The molecular data were linked with clinical 32 

and demographic data of the patients for further statistical analysis.  33 

Results 34 

From a total of 258 M. tb isolates, 84 distinct spoligotype patterns that included 58 known Shared International 35 

Type (SIT) patterns and 26 new or orphan patterns were identified. The majority of strains belonged to two 36 

major M. tb lineages, L3 (35.7%) and L4 (61.6%). The observed high percentage of isolates with shared patterns 37 

(n = 200/258) suggested a substantial rate of overall clustering (77.5%). After adjusting for the effect of 38 

geographical variations, clustering rate was significantly lower among individuals co-infected with HIV and other 39 

concomitant chronic disease. Compared to L4, the adjusted odds ratio and 95% confidence interval (AOR; 95% 40 

CI) indicated that infections with L3 M. tb strains were more likely to be associated with TBLN [3.47 (1.45, 8.29)] 41 

and TB-HIV co-infection [2.84 (1.61, 5.55)].  42 

Conclusion 43 

Despite the observed difference in strain diversity and geographical distribution of M. tb lineages, compared to 44 

earlier studies in Ethiopia, the overall rate of strain clustering suggests higher transmission and warrant more 45 

detailed investigations into the molecular epidemiology of TB and related factors.  46 

KEYWORDS:  47 

Epidemiology; Mycobacterium tuberculosis; spoligotyping; strain clustering; associated factors  48 

Introduction  49 

Tuberculosis (TB) is a chronic infectious disease caused by species of the Mycobacterium tuberculosis complex 50 

(MTBC).  Except for Mycobacterium tuberculosis (M. tb), which is the primary cause of human TB, other 51 

members of the MTBC are believed to have adapted to different animal hosts and therefore they may have 52 

reduced fitness to cause human infection [1, 2].  Beside environmental and socio-economic factors, the biology 53 

and epidemiology of human TB has likely been shaped by the historical interaction between MTBC members and 54 

its host [2, 3] .  The genetic variation between MTBC species contributes to the ambiguities concerning disease 55 

presentation, frequency of transmission and clinical progress [2, 4]. This is particularly true for M. tb, where the 56 

interaction of genotypic variation among different strains with human genetic polymorphism play a prominent 57 

role in the epidemiology of TB diseases [4-7]. As described by Comas et al. (2009), tThe overall epidemiology of 58 

MTBC species is influenced by the environment, with its frequency and distribution being dependent on social, 59 

economic, and ecological causes [4, 8]. Although, there are no well-established classical factors that are known 60 

to be strongly associated with disease phenotype, immunological studies have suggested that some M. tb strains 61 

and lineages are more virulent and/or more infectious than others [9]. It has been stated that some strains that 62 

belong to the modern MTBC Lineages are more capable of inducing higher inflammatory response than lineages 63 

of the same clade (Haarlem, high; Beijing, low) [10]. However, difference in pathogenicity and lineage specific 64 

rate of transmission  are important only when considered together with the host genotype and geographical 65 

location Similarly, as compared to M. africanum, infection due to Beijing strains has been shown to have a 66 

higher rate of progression to active TB [11]. 67 

Although, it is still challenging to investigate the influence of bacterial and host genotype on the development of 68 

different forms of TB in humans, Coscolla et al. (2014) described that a disease phenotype seems to be 69 
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associated with a bacterial genotype [2, 6]. According to other published reports, L4 seemed more likely to be 70 

associated with Pulmonary TB (PTB) while L2 and L3 were linked with extra-pulmonary TB (EPTB) disease, such 71 

as TB meningitis and TB in cervical Lymph Nodes (TBLN) [12-15]. Another comparative study showed that strains 72 

of the East African Indian (L3) and Euro-American (L4) lineages were negatively associated with extra thoracic 73 

disease as compared to strains of the East Asian lineage (L2) [16]. These studies thereby suggest that species 74 

diversity and their interaction with host biology affects the pathophysiology and natural course of TB disease [2, 75 

17]. For example, a study conducted in Tanzania has shown that chronic signs of TB disease, such as weight loss, 76 

have been more associated with L4 strains than with Indo-Oceanic (L1) [18]. In addition to factors associated 77 

with human genetics such as ethnicity, biological and clinical determinants of an individual, such as age HIV and 78 

sexbody mass index, have shown significant difference on disease phenotype and rate of transmission across 79 

major M. tb Lineages  [16, 19-21].  80 

Different alternative molecular identification methods have been used to estimate rates of disease transmission, 81 

which is generally inferred by comparing genotypic clustering between patient isolates from a given 82 

epidemiological setting [10, 22]. In other words, successful transmission of particular genotypes has been 83 

reflected through an increase in the frequency and consistency of strain domination over time in defined 84 

populations [16, 23].However, despite recently developed advanced molecular diagnostic tools, both the nature 85 

of genotype variations and the characteristics of the host immune response to certain types of M. tb strains are 86 

largely unknown in many TB high burden settings [24, 25].  Particularly in countries like Ethiopia, where there is 87 

high prevalence and high transmission rate and a diversified population of bacterial species [26-29], molecular 88 

identification of the agents can be an important component of the knowledge base required to improve on 89 

previous achievements of the national TB control program. Taking all this into account, the present study 90 

investigated factors associated with M. tb lineage predominance and rate of strain clustering within the context 91 

of urban and peri-urban settings in Ethiopia.  92 

Materials and methods 93 

Study design and setting   94 

A multi-centre health facility based cross-sectional study was conducted in Ethiopia during 2016 and 2017.  As 95 

part of the Ethiopia Control of Bovine Tuberculosis Strategies (ETHICOBOTS) project, four hospitals, two private 96 

clinics, and fourteen health centers located in urban and peri-urban areas, were purposively selected from four 97 

different regions of Ethiopia.  Addis Ababa was the largest study site and constituted of Addis Ababa city and the 98 

surrounding special zone of Oromiya region while the remaining three study sites were located in the regional 99 

urban cities of Mekele in Tigray, Gondar in Amhara, and Hawassa in Southern Nations Nationalities, and Peoples’ 100 

region.  101 

Study population    102 

Recruitment of participants at selected health facilities was carried out according to the national guideline 103 

standard case definition criteria. All presumed TB cases were initially considered as potential source of the study 104 

population. Then those patients clinically diagnosed with PTB or TBLN were asked for informed consent and 105 

enrolled consecutively. Recruitment of PTB cases was done at all selected governmental health facilities. TBLN 106 

patients were enrolled from all four study sites; however they were only recruited from the Pathology Units of 107 

three governmental hospitals and two private clinics because of lack of diagnostic facilities and skilled 108 

professionals for fine-needle aspirate (FNA) cytology examination at governmental health centers. Included 109 
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cases from both groups were those eligible for first-line Anti-TB treatment. Known MDR (multi drug resistant) TB 110 

cases and EPTB patients other than those with TBLN were excluded in this study. 111 

Data collection  112 

Clinical and demographic information was collected from recruited TB cases using a pre-tested structured 113 

questionnaire. Following the routine care service, consented PTB and TBLN participants were requested to 114 

provide spot sputum and FNA samples, respectively. Care providers (nurses) working at directly observed 115 

therapy (DOT) centres collected sputum specimens using sterile containers. FNA specimens were collected from 116 

the selected hospitals and private clinics by experienced pathologists who performed FNA cytology examination 117 

as part of their routine diagnostic service.  According to the standard procedure, FNA collection was performed 118 

using a 21-gauge needle attached to a 10 ml syringe and specimens were collected into cryo-tubes with sterile 119 

phosphate buffer saline (PBS). Samples were kept at -20°C at remote study sites until transported on ice boxes 120 

to the Armauer Hansen Research Institute (AHRI) TB laboratory where the clinical samples were stored at -80°C 121 

until processed for mycobacterial culture. Clinical sample handling and laboratory procedures were performed 122 

according to a previously published protocol [27]. 123 

Mycobacterial Culturing  124 

Samples collected in the study were processed and cultured for mycobacteria using standard procedures 125 

established at the AHRI TB laboratory [27, 30]. Specimen samples were inoculated on Löwenstein-Jensen (LJ) 126 

medium slants supplemented with either glycerol or pyruvate and incubated at 37°C. The slopes were examined 127 

weekly for up to eight weeks for any visible growth. Bacterial colonies identified as Acid-Fast Bacilli by ZN 128 

staining [27] were saved as frozen stocks in 20% glycerol as well as heat-inactivated in 500µl distilled H2O at 129 

80°C for 60 min; the latter samples were used for subsequent molecular identification.  130 

Molecular identification techniques  131 

All isolates were screened by Large Sequence Polymorphism (LSP) typing using conventional PCR for 132 

examination of Region of Difference 9 (RD9) according to protocols by Berg et al. (2009) [31]. Spoligotyping was 133 

performed according to Kamerbeek et al. (1997) [32], using a non-commercial biodyne-C-membrane produced 134 

by the Animal & Plant Health Agency (United Kingdom). 135 

Genotype analysis and comparison with global databases 136 

Spoligotype patterns were converted into binary and octal formats and compared with previously reported 137 

strains in the international SITVIT2 database [8] hosted by Institute Pasteur de la Guadeloupe. Here, 138 

spoligotypes shared by more than one strain were designated as shared types and were assigned a shared 139 

international type (SIT) number according to the SITVIT2 database, while patterns that were not recognized in 140 

the latest online version of the database were labelled as “New” if the pattern was identified for more than one 141 

strain and “Orphan” if the pattern was unique to only one strain. Further lineage classification for corresponding 142 

nomenclature was done using the ‘Run TB-Lineage’ online tool from linked databases (http://www.miru-143 

vntrplus.org/MIRU/index.faces  and http://tbinsight.cs.rpi.edu/run_tb_lineage.html). Here, major lineages were 144 

predicted using a conformal Bayesian network (CBN) analysis while knowledge based Bayesian network (KBBN) 145 

analysis was used to predict the corresponding sub-lineages.  146 

http://www.miru-vntrplus.org/MIRU/index.faces
http://www.miru-vntrplus.org/MIRU/index.faces
http://tbinsight.cs.rpi.edu/run_tb_lineage.html


5 | P a g e  
 

Data management and Statistical Analysis 147 

All genotype outputs from the computer assisted analyses were imported to SPSS and merged with clinical and 148 

demographic data.  The final clean dataset was   exported to STATA and R-software to perform further statistical 149 

analysis. Two of the main outcome variables, clustering rate and M. tb lineages, were categorized as binomial 150 

scale of measurement. In the first category, “clustered” referred to  two or more isolates sharing identical 151 

spoligotyping patterns while isolates that did not have shared patterns was defined as “unique”. Here, three 152 

different logistic regression analysis methods were performed to identify and compare factors associated with 153 

strain clustering. The first Bivariable analysis was performed to estimate a crude (unadjusted) odd ratio for each 154 

independent categorical variable while the second multivariable logistic regression analysis was used to 155 

estimate adjusted odd ratio (AOR with 95% CI) that better reflect the likelihood of included variable associated 156 

with rate of strain clustering. The third model (hierarchical logistic regression) was preferred to adjust for the 157 

effect of regional variations, the first level factor that often attributed with strain clustering, where host-related 158 

clinical factors and spoligotype-based M. tb lineage classification were considered as second level factors. 159 

Variables included in the second model were reconsidered and used to compare the corresponding adjusted 160 

estimates (AOR with 95% CI) generated from the third (Multi-level) model which was done using STATA software 161 

with the recommended (melogit) command. The multivariable logistic regression was used to determine the 162 

clinical characteristics or disease phenotypes associated with dominant M. tb lineage. In both cases, R-package 163 

Software commands were used to perform bivariable and multivariable logistic regression. Before running the 164 

multivariable logistic regression analysis, stepwise backward elimination technique was applied to select 165 

independent variables. Initially, all clinically relevant factor variables were included in the full model. Then using 166 

the specific statistical command (Step) under R-studio, the software program automatically generated all 167 

possible alternative models having lists of dependent and independent variables. Finally, according to the 168 

Likelihood Ratio-test and to minimize the effect of confounding variables, a relatively better fitted model with 169 

potential explanatory variables that has the lowest akaki information criteria (AIC) was selected.  Independent 170 

relationship of variables was decided based on different cut-off point for statistical significance level (: < 0.05; < 171 

0.01 and < 0.001) and interpretation of key findings was reported using the adjusted estimates (AOR with 95% 172 

CI).  173 

Ethical considerations   174 

This study was part of the ETHICOBOTS project, which obtained ethical clearance from the Federal Ministry of 175 

Science and Technology (Ref. No: 301/001/2015), the AHRI/ALERT Ethics Review Committee (Project Reg. No: 176 

PO46/14) and from University of Gondar Institutional Review Board (Review number: O/V/P/RCS/04/45/2016). 177 

Support letters were obtained from Regional State Health Bureaus and health facilities. Enrollment of study 178 

participants was done after written informed consent was secured and signed agreements were received from 179 

all participating health facilities. Detailed information about the risks and benefits of the study as well as 180 

confidentiality of the research data was a prerequisite for study participation.  181 

Results 182 

Characteristics of the study population  183 

This study examined a total of 258 TB patients (163 PTB and 95 TBLN cases) of which 145 (56.2%) were male and 184 

113 (43.8%) were female, with a mean age of 32.2 (±12.9) years.  Most of these TB cases were from Gondar, 185 

111/258 (43.0%), and Mekele, 61/258 (23.6%), in northern Ethiopia while the remaining patients, 44/258 186 
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(17.1%) and 42/258 (16.3%), were from Addis Ababa and Hawassa in central and southern Ethiopia, respectively. 187 

Farmers (80/258, 31.0%) and students (40/258, 15.5%) were the two most common occupations in the study 188 

population. With regard to the medical history of the participants, 20/258 (7.8%) were co-infected with HIV and 189 

96/258 (37.2%) had at least one additional chronic concomitant disease (Table 1). 190 

Table 1. Characteristics of the 258 study participants, 163 patients with pulmonary TB and 95 with cervical TB 191 

lymphadenitis, recruited at selected health facilities located in urban and peri-urban areas of Ethiopia in the 192 

years 2016/17. 193 

Patient characteristics PTB 
  n (%) 

TBLN 
  n (%) 

Total 
  n (%) 

P-value of  
Chi-square test 

Number of patients 163 (63.2%) 95 (37%) 258 (100%) - 

Age group      

< 35 years  105  (64.4)   61  (64.2)  166 (64.3) 0.298 

≥ 35 years   58  (35.6)   34  (35.8)  92 (35.7) 

Gender                              

Male  107  (65.6)   38   (40.0)   145 (56.2) 0.000 

Female   56  (34.4)   57   (60.0)   113 (43.8) 

Occupation                              

Farmer  46  (28.2)   34  (35.8)   80  (31.0)  
 
 
0.087 

Merchant  14   (8.6)   11  (11.6)   25  (9.7) 

Employee  24  (14.7)    9   (9.5)   33  (12.8) 

Student  24  (14.7)   16  (16.8)   40  (15.5) 

House wife  20  (12.3)   17  (17.9)   37 (14.3) 

Dairy worker   12   (7.4)    4   (4.2)   16  (6.2) 

Others  23  (14.1)    4   (4.2)   27 (10.5) 

Geographical location                              

Gondar 84  (51.5)   27  (28.4)    111 (43.0)  
0.000 Hawassa 34  (20.9)    8   (8.4)    42 (16.3) 

Mekele 40  (24.5)   21  (22.1)    61 (23.6) 

Addis Ababa  5   (3.1)   39  (41.1)    44 (17.1) 

HIV co-infection                              

No 145   (89)   93  (97.9)    238 (92.3) 0.010 

Yes  18   (11)    2   (2.1)    20 (7.8) 

Chronic concomitant disease                              

No  98  (60.1)   64  (67.4)   162 (62.8) 0.246 

Yes  65  (39.9)   31  (32.6)   96 (37.2) 

 194 

Genetic Diversity of Mycobacterium tuberculosis lineages 195 

All 258 isolates provided in the supplementary table (Table S1) were genotyped by LSP as M. tb while being 196 

intact for RD9. When the isolates were spoligotyped 84 different patterns were identified, of which 58 SIT 197 

patterns were already recognized in the SITVIT2 database (accounting for 231/258 (89.5%) of the isolates). 198 

Among these patterns, 32 M. tb isolates were singletons while 25 designated shared patterns, each with 2 to 40 199 

isolates, accounted for 85.7% (198/231) of all isolates with identified SIT patterns. The remaining twenty five 200 

unique orphan patterns and two isolates with a new shared spoligotype pattern (Table 3), which representing 27 201 

(10.5%) of the total isolates, were not yet recognized by the SITVIT2 database. As presented in Table 2, over half 202 
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of the isolates 145/258 (56.2%) were represented by five of the dominant SIT patterns, including SIT25 (n = 40), 203 

SIT149 (n = 36), SIT53 (n = 32), SIT26 (n = 17), and SIT37 (n = 11).    204 

 205 

 206 

 207 
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Table 2. Spoligotype descriptions of all registered SIT patterns with two or more isolates identified from 198 clinical samples collected from 208 
pulmonary TB and cervical TB lymphadenitis patients recruited at selected health facilities in Ethiopia in the years of 2016/17. 209 

Spoligotype patterns of shared SIT strains Lineage classification Shared 
isolates SIT No Octal code Binary format (presence (black) or absence (white) of 43 spacers) KBBN CBN SNP-based 

Prediction* 
4 000000007760771  T1-RUS2 EA L4 2 (0.8) 

952 603777740003771  CAS1-Delhi EAI L3 3 (1.2) 

1729 700000004177771  AFRI AFRI L7 2 (0.8) 

21 703377400001771  CAS1-Kili EAI L3 5 (1.9) 

2359 703677740003171  CAS1-Delhi EAI L3 4 (1.6) 

2973 703701740003171  CAS1-Delhi EAI L3 2 (0.8) 

1199 703701740003171  CAS1-Delhi EAI L3 2 (0.8) 

25 703777740003171  CAS1-Delhi EAI L3 40 (15.5) 

26 703777740003771  CAS1-Delhi EAI L3 17 (6.6) 

1877 737377777760771  T EA L4 2 (0.8) 

33 776177607760771  LAM3 EA L4 3 (1.2) 

149 777000377760771  T3-ETH EA L4 36 (14.0) 

504 777737737760771  T3 EA L4 2 (0.8) 

726 777737747413771  EAI6-BGD1 IO L1 2 (0.8) 

35 777737777420771  H3-Ural-1 EA L4 2 (0.8) 

37 777737777760771  T3 EA L4 11 (4.3) 

1688 777777403760771  LAM EA L4 2 (0.8) 

41 777777404760771  Turkey EA L4 5 (1.9) 

121 777777775720771  H3 EA L4 4 (1.6) 

817 777777777420731  H3-Ural-1 EA L4 2 (0.8) 

777 777777777420771  H3-Ural-1 EA L4 2 (0.8) 

134 777777777720631  H3 EA L4 2 (0.8) 

52 777777777760731  T2 EA L4 5 (1.9) 

53 777777777760771  T EA L4 32 (12.4) 

54 777777777763771  Manu2 EA L4 9 (3.5) 

KBBN: knowledge based Bayesian network; CBN: conformal Bayesian network; SIT: shared international type; EA: Euro-American; EAI: East-African-Indian; IO: 210 
Indio-Oceanic. * Supported by SNP typing (Firdessa et al 2013) 211 
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Table 3. Descriptions of all orphan and new spoligotype patterns (n = 26) that were identified from 27 clinical samples collected from pulmonary 212 
TB and cervical TB lymphadenitis patients recruited at selected health facilities in Ethiopia in the years of 2016/17.  213 

No Spoligotype patterns of orphan or new strains Lineage classification based on #  of  
isolates Octal code Binary format (presence (black) or absence (white) of 43 spacers) KBBN CBN SNP-based 

prediction* 

1 000001777020771  T1-RUS2 EA L4 1 

2 037677560020771  H1 EA L4 1 

3 101774000000000  ZERO EA L4 1 

4 403000377760771  T1-RUS2 EA L4 1 

5 477777757000771  H4-Ural-2 EA L4 1 

6 503777740003171  CAS1-Delhi EAI L3 1 

7 511777400003171  CAS EAI L3 1 

8 555777437740171  T EA L4 1 

9 603777700003771  CAS1-Delhi EAI L3 1 

10 676777660760771  T EA L4 1 

11 703737740003571  CAS1-Delhi EAI L3 1 

12 703777700001171  CAS1-Delhi EAI L3 2 

13 703777740001171  CAS1-Delhi EAI L3 1 

14 703777740003171  CAS1-Delhi EAI L3 1 

15 703777740003771  CAS1-Delhi EAI L3 1 

16 703777747776771  Manu1 EA L4 1 

17 711777740003171  CAS1-Delhi EAI L3 1 

18 773777776000771  H3-Ural-1 EA L4 1 

19 776737737760771  T3 EA L4 1 

20 777000277760771  T3-ETH EA L4 1 

21 777001777760771  T3-ETH EA L4 1 

22 777737401760771  LAM5 EA L4 1 

23 777737777760000  X2 EA L4 1 

24 777777401760771  LAM EA L4 1 

25 777777777420571  H3-Ural-1 EA L4 1 

26 777777777600631  H3 EA L4 1 

KBBN: knowledge based Bayesian network; CBN: conformal Bayesian network; SIT: shared international type; EA: Euro-American; EAI: East-African-Indian; IO: 214 
Indio-Oceanic. * Supported by SNP typing (Firdessa et al 2013) 215 
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According to the CBN analysis, 97.3% of the total 258 isolates belonged to two major lineages, EA (61.6%) and 216 

EAI (35.7%). On the basis of SNP-based genome-wide phylogeny analysis, these lineages are commonly known as 217 

L4 and L3, respectively [2]. The remaining 7/258 (2.7%) were represented by IO (L1) and AFRI (L7), each with 218 

three strains, and one with the typical Beijing (L2) spoligotype pattern (Fig 1; Table S1).  219 

Fig 1. Proportion of major Mycobacterium tuberculosis lineages circulating within peri-urban and urban areas 220 

in Ethiopia. ‘Others’ include L7 (AFRI), L2 (Beijing), and L1 (IO) 221 

The alternative KBBN classification showed a predominance of the CAS (34.9%) sub-lineage among strains 222 

defined as L3. T (15.9%), T3-ETH (15.1%) and Haarlem (10.9%) were the most common sub-lineages of L4. There 223 

was a significant difference in geographical distribution between strain types; all LAM families of L4 (LAM, LAM3 224 

and LAM5) were observed in the northern part of the country (Gondar and Mekele). Similarly, the CAS families 225 

(L3), which were highly dominant in the Gondar area, were rather rare around Hawassa. The Manu, Haarlem 226 

and T families (all of L4) accounted for the majority of strains identified in the Hawassa region (Fig 2).  227 

Fig 2. KBBN based classification of Mycobacterium tuberculosis sub-lineages circulating within peri-urban and 228 

urban areas in Ethiopia.    229 

Note: H1, H3, H3-Ural-1 and H4-Ural-2 were classified as ‘Haarlem’; ‘LAM’ include LAM3 and LAM5; Manu 230 
represent Manu1 and Manu2. ‘Others’ include the following types: T2, Turkey, T1-RUS2, AFRI (Ethiopian), 231 
Beijing, EAI4-VNM, and EAI6-BGD1. 232 

Factors associated with strain clustering and predominance    233 

The overall clustering rate aggregated from 26 (25 SIT and one new) shared patterns was 77.5% (200/258). Our 234 

multivariable analysis (Table 4) showed that as compared to Gondar, rate of clustering in Mekele and Hawassa 235 

was more than two and three fold higher, with adjusted OR (95% CI) of 2.71 (1.16, 6.34) and 3.56 (1.09, 11.63), 236 

respectively. However, an increased rate of M. tb transmission is generally inferred by comparing clustered 237 

genotyping patterns of clinical isolates from a given epidemiological setting [10]. By contrast, cases with isolates 238 

of a unique pattern could be considered to have resulted from reactivation of latent infection or were else 239 

presumably acquired outside of the study population [33]. Considering that hierarchical logistic regression 240 

analysis was performed to minimize the observed heterogeneity due to geographical location. After controlling 241 

for the effect of regional variations adjusted estimates generated from the final model showed that the rate of 242 

strain clustering was inversely associated with TB-HIV co-infection and comorbidity with other chronic illnesses. 243 

As shown in Table 4, TB-HIV co-infected individuals [0.16 (0.05, 0.47)] and those who had any other concomitant 244 

chronic disease [0.46 (0.23, 0.91)] were less likely to have clustered strains as compared to patients diagnosed 245 

with only TB disease.  246 

Table 4. Conventional and Hierarchical (Multi-level) logistic regression modeling methods were used to 247 

identify factors associated with strain clustering based on spoligotyping.  248 

Factor 

variables  

Proportion of cases 

n (%) 
Three logistic regression analyses    

Bivariable   Multivariable  Hierarchical  

Clustered  Unique COR (95% CI) AOR (95% CI) AOR (95% CI) 

Region 

Gondar        77 (38.3)  34 (59.6) Ref Ref  

 

Level-I factor 
Hawassa                  37 (18.4)   5 (8.8)  3.17 (1.14,8.79)*   3.56 (1.09,11.63)*  

Mekele                  51 (25.4)  10 (17.5)  2.19 (0.99,4.82)   2.71 (1.16,6.34)*   
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Addis Ababa             36 (17.9)   8 (14.0)  1.93 (0.81,4.59)   2.42 (0.84,7.01)   

Diagnosis 

PTB 127 (63.2)  36 (63.2) Ref Ref Ref 

TBLN  74 (36.8)  21 (36.8) 0.97 (0.53,1.79) 0.52 (0.24,1.15)   0.58 (0.27,1.23) 

HIV co-infection 

No 191 (95.0)   47 (82.5) Ref Ref Ref 

Yes   10 (5.0)   10 (17.5) 0.27 (0.11,0.71)** 0.16 (0.05,0.50)** 0.16 (0.05, 0.47)*** 

Co-morbidity of Chronic illness 

No 134 (66.7)  28 (49.1) Ref Ref Ref 

Yes   67 (33.3)  29 (50.9) 0.50 (0.27,0.91)*   0.50 (0.25,1.01)  0.46 (0.23,0.91)* 

Hemoptysis 

No 167 (83.1)  42 (75.0)  Ref Ref Ref 

Yes   34 (16.9)  14 (25.0)  0.61 (0.30,1.24)   0.50 (0.22,1.16)  0.55 (0.24, 1.25) 

TB lineage 

L3 (EAI)  76 (37.8)  16 (28.1) Ref Ref Ref 

L4 (EA) 121 (60.2)  38 (66.7) 0.69 (0.36,1.32)  0.42 (0.20,0.90)*     0.49 (0.23, 1.04) 

Others    4 (2.0)   3 (5.3) 0.28 (0.06,1.38)  0.25 (0.04,1.48)   0.25 (0.04, 1.44) 

EA, Euro-American; EAI, East Africa-India; The cut-off point for statistical significance () is represented by: < 0.05 = 249 

*; < 0.01 = **; < 0.001 = *** 250 

A second multivariable analysis was performed in relation to the clinical characteristics of the two most 251 

predominant lineages (L3 and L4). As shown in Table 5, in comparison to L4 strains of  M. tuberculosis, the odds 252 

for TBLN cases infected with L3 was three and half fold [3.47 (1.45, 8.29)] higher than PTB patients. Active TB 253 

disease due to L3 strains was significantly associated with HIV-TB co-infection [2.84 (1.61, 5.55)], but less likely 254 

to be associated with concomitant chronic disease [0.46 (0.25, 0.87)], as compared to L4.  255 

Table 5. Results of logistic regression analysis exploring associations between clinical characteristics and 256 
active TB disease caused by L3 versus L4, the two most dominant Mycobacterium tuberculosis lineages 257 
identified in the study.   258 

Clinical 

characteristics 

Proportion of Cases:  

n (%) 

Bivariable analysis Multivariable analysis 

Lineage 3 Lineage 4 COR (95% CI) P-value AOR (95% CI) P-value 

Region        

Addis Ababa 12 (13.0) 32 (20.1) Ref  Ref  

Gondar 54 (58.7) 53 (33.3) 2.77 (1.29,5.95) 0.009 5.24 (2.03,13.51) < 0.001 

Hawassa 1 (1.1) 41 (25.8) 0.07 (0.01,0.53) 0.010 0.11 (0.01,0.95) 0.044 

Mekele 25 (27.2) 33 (20.8) 2.02 (0.87,4.69) 0.102 4.28 (1.52,11.99) 0.006 

Gender       

Male 56 (60.9) 88 (55.3) Ref  Ref  

Female 36 (39.1) 71 (44.7) 0.79 (0.47,1.33) 0.371 0.91 (0.48,1.72) 0.781 

Diagnosis       

PTB 53 (57.6) 107 (67.3) Ref  Ref  

TBLN 39 (42.4) 52 (32.7) 1.5 (0.88,2.55) 0.134 3.47 (1.45,8.29) 0.005 

HIV co-infection       
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No 81 (88.0) 151 (95.0) Ref  Ref  

Yes 11(12.0) 8 (5.0) 2.93 (1.09,7.85) 0.033 2.84 (1.61,5.55) 0.027 

Comorbidity of Chronic illness     

No 62 (67.4) 95 (59.7) Ref  Ref  

Yes 30 (32.6) 64 (40.3) 0.73 (0.43,1.25) 0.252 0.46 (0.25,0.87) 0.016 

Taking prescribed Medication     

No 55 (59.8) 117 (73.6) Ref  Ref  

Yes 37 (40.2) 42 (26.4) 1.86 (1.08,3.21) 0.026 1.67 (0.83,3.36) 0.152 

Persistent Cough       

No 19 (20.7) 32 (20.1) Ref  Ref  

Yes 73 (79.3) 127 (79.9) 0.94 (0.49,1.78) 0.844 1.03 (0.41,2.61) 0.944 

Hemoptysis       

No 74 (80.4) 129 (81.6) Ref  Ref  

Yes 18 (19.6) 29 (18.4) 1.08 (0.56,2.08) 0.813 2.10 (0.90,4.87) 0.085 

Weight loss       

No 12 (13.0) 27 (17.0) Ref  Ref  

Yes 80 (87.0) 132 (83.0) 1.37 (0.66,2.86) 0.397 1.00 (0.41,2.47) 0.997 

 259 

Discussion 260 

Despite the observed difference in strain diversity and distribution of M. tb lineages across regions, high 261 

percentage of shared patterns suggested a substantial overall strain clustering rate around urban and peri-urban 262 

settings in Ethiopia. Altogether, a predominance of known SIT patterns resulted in an overall strain clustering 263 

rate of 77.5% in the current study, with a range of 69-88% across the study regions (Table 4). That was 264 

significantly higher as compared to earlier Ethiopian studies (2005–2018) reviewed by Mekonnen et al. (2019), 265 

with a pooled clustering rate (95% CI) of 0.41 (0.32 – 0.50) [34]. Understandably, at national level, some 266 

population groups have likely contributed more to such TB incidence rate than other groups. Particularly, the 267 

risk of TB transmission around urban areas is known to be higher than among sparsely populated societies and 268 

rural communities [24, 29]. Because of the simultaneously ongoing expansion of urbanization and emerging 269 

socio-economic conditions around urban areas in Ethiopia (increasing population size and density e.g. through 270 

expanding slums, congregation into condominiums, growing manufacturing and service sector), the pattern of 271 

TB transmission among those living and working in the urban and peri-urban areas is postulated to differ in 272 

strain diversity and clustering, compared to that of the general population [29], the majority (85%) of which are 273 

rural communities. Despite previous achievements in reducing national TB morbidity and mortality [35], 274 

summarized reports of data from the global burden of TB diseases in the last two decades have shown a 275 

declined rate in reducing the prevalence and mortality ratio in Ethiopia. Essentially, there has been a higher rate 276 

of new TB cases (incidence) in the last few years than what was expected from the previous trend [35, 36].  277 

Accordingly, a diverse range of strains of M. tb lineages, many previously not registered in spoligotyping 278 

databases, continue to circulate and maintain a high rate of transmission of TB in Ethiopia. Similarly, as would be 279 

expected, the observed diversified type of M. tb strain and lineage distribution in the current study closely 280 

matched with studies analyzed in the two most recent TB reviews that showed specific lineage predominance 281 
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across different geographical locations in Ethiopia [29, 34]. This means, the same two major lineages, L4 and L3 282 

(Fig 1), were predominant [29, 30, 34], as were the five most common SIT patterns (Table 2) [14, 29, 37, 38]. As 283 

shown in Figs 1 and 2, the observed significant difference in proportions of strain types across the four study 284 

sites, has also been noted from previous studies in Ethiopia [29, 34]. Those less prevalent M. tb lineages, which 285 

included the Ethiopian (L7), the Beijing (L2), and the IO (L1) lineages, were identified from samples collected at 286 

sites located in the northern regions (Gondar and Mekele). Strains of L7, which was first reported by Firdessa et 287 

al [14, 28, 37, 39] and that seem highly confined to Ethiopia, remain more prevalent in the north of the country. 288 

The two SIT patterns (SIT1729 and SIT910) that we identified in this region are the same as for those strains that 289 

were previously classified as L7 [8, 14].   290 

Taking into account the observed geographical difference, the current study investigated the contribution of 291 

bacterial genotype and host related factors associated with rate of strain clustering. While comparing clustered 292 

genotyping patterns of the two most predominant M. tb lineages, a relatively higher percentage of shared L3 293 

patterns were identified as compared to clustered patterns that belonged to L4. Despite limited discriminatory 294 

power of the spoligotyping method, an increased rate of M. tb transmission is generally inferred by comparing 295 

clustered genotyping patterns of clinical isolates from a given epidemiological setting [10]. In contrast, cases 296 

with isolates of a unique pattern could be considered to have resulted from reactivation of latent infection or 297 

were else presumably acquired from outside of the study population [2, 33, 40]. Indeed, diverse M. tb strains 298 

could be identified in the different regions [2, 5, 8]. In spite of the fact that the molecular epidemiology of TB 299 

has shown remarkable  difference across geographical locations, risk of transmission and TB disease progression 300 

is likely to depend on the interactions of various factors related to strain type and host immunity [8]. Bacterial 301 

genetic difference has been shown to have an impact on the extent of TB transmission; thus strains from TB 302 

lineages referred to as ‘modern’ lineages (L2-L4) are assumed to be more transmissible than other MTBC strains. 303 

[2, 34] It is interesting to note that after adjusting for the effect of regional variations, the likelihood of 304 

clustering was significantly lower among HIV co-infected patients and those who had any other concomitant 305 

chronic diseases. A higher risk of primary exposure or an increased rate of TB transmission in endemic settings 306 

has often been associated with the presence of more infectious PTB cases [41]. On the other hand, poor host 307 

immunity has been linked with endogenous reactivation of latent infection and could have greater contribution 308 

to the development of TBLN or disseminated TB [38]. However, as previously reported by others in several 309 

studies [14, 34, 37, 41], we also did not observe any difference in clustering rate with respect to site of infection. 310 

This might be because of limited power of the study that could not control for all possible effects of confounding 311 

factors. Although, the differences in strain virulence and immunogenicity have been investigated in 312 

experimental studies, whether this phenotypic variation plays a role in human disease remains unclear [3, 6].  313 

Therefore, it is believed that investigating the clinical epidemiology of dominant M. tb lineages among host 314 

populations would allow understanding of possible host-pathogen interaction. In this regard, one of the findings 315 

that emerged from this study is that clinical factors, which are often associated with host immunity, appeared to 316 

differ significantly between L3 and L4, the two most dominant lineages. According to the multivariate analysis 317 

(Table 5), the likelihood of detecting L3 among TBLN cases and HIV co-infected patients was significantly higher 318 

than for L4. However, a summary report  generated from the updated version of the international 319 

Mycobacterium tuberculosis spoligotyping global database has shown a higher rate of CAS (L3) infection among 320 

HIV co-infected cases than other widely prevalent sub-lineages [8]. The observed discrepancy might be due to 321 

the interaction effect of sub-lineages or the possibility of co-infection within the same host. Our analysis was 322 

performed based on major M. tb lineage classification. Although it is often associated with host immunity, 323 

Osório et al. (2018) stated that due to selective advantage of extrinsic factors, within-host bacterial diversity 324 
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seems to contribute to difference in disease progression [4]. For example, certain groups of L4 strains are found 325 

to be more virulent in terms of disease severity and to display higher rates of human-to-human transmission, 326 

but only at some specific geographical locations [2]. In favour of that, and as compared to L4, the current study 327 

identified significantly lower rate of L3 strains among TB cases diagnosed with other concomitant chronic 328 

illnesses (Table 5). Certainly, any immune-compromised condition and HIV interferes with bacterial virulence 329 

might lead to endogenous reactivation [20, 25, 41], suggesting that less virulent MTBC species could progress to 330 

active TB disease in immune-compromised patients. For example, TB patients infected with M. africanum were 331 

more likely to be older, HIV infected, and severely malnourished than those infected with M. tb [42]. Although 332 

the mechanisms are not yet clear, the influence of bacterial and host genotype on the development of different 333 

forms of TB in humans is well documented. In this regard, the findings observed in this study seem to agree with 334 

others that suggested a possible relationship between L3 and EPTB disease [12, 38]. Correspondingly, a 335 

significantly higher rate of PTB was often associated with L4, while more EPTB disease, such as TB meningitis and 336 

TBLN, was attributed to L3 [13, 15, 38].   337 

Generally,  because of a complex network related with many other proximal and distal determinants,  M. tb 338 

strain clustering or lineage specific effects on disease presentations may not always be fully explained by some 339 

particular risk factors and it is difficult to quantify the biological effect using numerical estimates [43]. As a result 340 

of that, most of the previously reported epidemiological studies in humans have come up with inconsistent 341 

findings [2]. It is known that heterogeneity is a defining feature of TB, which is certainly common in molecular 342 

studies [43]. However, although the need for additional clinical evidence is obvious, disease phenotypes can 343 

possibly be determined by genotype features of specific strains, suggesting that different M. tb lineages could be 344 

more frequently present in specific clinical phenotypes and disease presentations than in others [2].  345 

Limitation   346 

Spoligotyping has its limitations and may not truly detect ongoing changes (genetic differences) in a population 347 

and thereby not the best tool for investigation of transmission networks [22]. Alternative molecular diagnostic 348 

tools, such as MIRU-VNTR and especially whole genome sequencing, have shown to have better discriminatory 349 

power for investigating strain clustering and to confirm the ongoing rate of active TB disease transmission [14, 350 

22]. Similarly, the fairly small sample size, uneven representation of strains from the study sites, and further 351 

categorization into different levels of factor variables, have reduced the power of our statistical analysis. Hence, 352 

the numerical estimates may not truly imitate the biological interaction or effect modification on host-related 353 

factors and specific M. tb lineages. Not only systematic and measurement errors, but the current study also 354 

recognized  selection and recall bias where  selected isolates were subjected for spoligotyping based molecular 355 

analysis. However; we have tried to minimize some of the anticipated measurement errors and known 356 

confounding effects. For instance, alongside with internal quality control procedures for the identification of 357 

lineages, SITVIT patterns were compared with alternative lineage classifications generated from linked 358 

databases (KBBN and CBN) and further verified using SNP based predications. In addition, the multivariate 359 

analysis has considered and used to adjust the expected effect of regional variation on TB lineage predominance 360 

and related strain clustering.  361 

Conclusion and Recommendation 362 
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Despite differences in geographical variations, the overall clustering suggested higher transmission of TB disease 363 

among human populations living around urban settings in Ethiopia. This Spoligotyping-based investigation 364 

showed that the rate of strain clustering was relatively higher among patients infected with L3 strains of M. tb as 365 

compared to L4. Regarding host-related factors, strain clustering rate was inversely associated with patients 366 

diagnosed with TB-HIV co-infection and comorbidity with other chronic illnesses.  On the other hand, as 367 

compared to M. tb L4, active TB disease due to L3 strains was three times higher among TBLN patients and it 368 

was more likely to be associated with TB-HIV co-infection, while inversely associated with other concomitant 369 

chronic disease. 370 

 Altogether, the current findings add up to previous indications and contribute to evidence base on the 371 

continuous flux in the spectrum of TB infection and disease progression. Although it is difficult to be conclusive 372 

on a fixed categorical relationship between strain sub-lineages and disease type, as there is some other 373 

supportive evidence, disease phenotypes can possibly be determined by genotypic features of specific strains. 374 

Considering the complex pathogenesis of human TB disease and the interaction effect of other predisposing 375 

environmental factors, it seems that active infection due to specific M. tb lineages might be associated with 376 

specific clinical phenotypes and disease presentation.  Altogether, the current findings add up to previous 377 

indications and contribute to evidence base on the continuous flux in the spectrum of TB infection and disease 378 

progression.  379 

Generally; considering the ongoing shift and heterogeneity of TB disease, clinical and public health interventions 380 

should be alongside with molecular evidence for targeting high-risk groups based on location, social 381 

determinants, disease comorbidities and related bacterial strain predominance. However, as the dynamics of 382 

socioeconomic transformations exert pressure on how people live and furtherinteract,  large scale studies using 383 

advanced molecular techniques, like whole genome sequencing, could should further reveal the degree to which 384 

this the genetic variation influences disease epidemiology and phenotype in different population groups over 385 

time, as the dynamics of socioeconomic transformations exert pressure on how people live and interact.  386 
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Addis Ababa, May 25, 2021 

I. Author’s response to comments and points raised by the academic editor.   

The revised version of our manuscript meets PLOS ONE's style requirements, that including:  

 File naming; syntax and definition of first coming abbreviation were corrected   

 The size of the titled and the abstract reduced as per the required word limit.  

 We provide detail ethical statements including approvable number, but genotype 

analysis and comparison with global databases (SITVIT2) It is free Online database which 

did not required approval letter.  

 We modified Table 1 as per the comments and also formatted  other Tables  

 In the correct version,  we provided PACE corrected figures    

 In the analysis section, the role of hierarchical (multi-level) logistic regression model had 
further explained and all necessary software codes, including major steps for model 
fitting criteria had provided  

 The respective the dataset will be provided while our manuscript is accepted for 
publication.   

 We made the required revision on the conclusion and recommendation section in 

accordance with comments from the academic editor. Now the clinical and public health 

implication and the general recommendation has presented in separate paragraphs.    

 List of the ETHICOBOTS consortium group authors has been already mentioned in the 

acknowledgments section of the manuscript and with some correction from previous 

version.  

 There was no any intention to cite a retracted article that was done unknowingly due to 

technical problems while importing articles from databases. Now excluded those papers 

and older articles except Kamerbeek, J. et al. (1997) and Berg et al. (2009). This is 

because we would like to acknowledge the one who develop the original protocol used 

for the current study.  

II. Comments and respective response to Reviewer #1:  

1. At end of the title there is a punctuation (.) which have to delete 

 Corrected  

2. In the abstract authors time to time used abbreviation (PTB, TBLN, SITVIT2, SIT) which is 

difficult to understand by the general reader. Thus, an elaboration should include. 

 Corrected and all abbreviation were defined in first place 

3. In the Methods of the abstract authors mentioned that they have collected the sample from 

four different regions in Ethiopia were recruited in the year 2016 and 2017. But why they have 

publishing this result after 3 years. Need an explanation for that because within this time period 

lineage of microorganism may change. In addition, it is prescribed to mention the exclusion and 

inclusion criteria of TB patient’s recruitment. 

Response to Reviewers



 The participant recruitment and filed data collection for the particular work-package 

was completed in the year 2016 and 2017. However, as it is part of the consortium 

project that integrated with other work-packages, the overall project activities takes 

more time. Particularly, specimen (Sputum and FNA), preparation and processing that 

include culturing and molecular typing demand more time. This is mainly because of the 

fact that most of laboratory inputs (reagents and equipment) were not available in 

domestic market. Thus, purchasing and material shipments from international market is 

also required extra time.  We believed that once the data collection period has stated, 

ongoing change in lineage epidemiology may not affect plausibility of the current study.  

  Because of the word limit in the abstract section, further descriptions of the study 

population that include exclusion and inclusion criteria of patient recruitment had 

mentioned in the methodology section  in  the main manuscript body.  

4. From the title its clear that authors wanted to find out epidemiology and factors associated 

with strain clustering and lineage predominance but in the introduction they failed to good use 

of literature review. They should clearly include what are the possible factors that can be 

associate and with brief introduction of underlying mechanism. For example, they found that L3 

M. tuberculosis strains were more likely to be associated with TBLN and TB-HIV co-infection, 

but what is the possible mechanism of this association and co-infection. Why M. tuberculosis 

(bacteria) have association with HIV (virus). 

 Following the comment of the reviewer, additional literatures were added in the 

introduction section. Nevertheless, as it is a population based epidemiological study, 

detailed explanation for biological interaction of specific lineages and disease 

phenotype is beyond the scope of the study.  Indeed, although, it is still difficult to have 

clear understanding on the possible mechanism of influence of bacterial and host 

genotype on the development of different forms of TB in humans, we tried to highlight 

and support with findings reported from basic (biomedical) research.  

5. For ethical consideration, need to add reference no. of the ethical clearance 

 Corrected! The ethical clearance reference numbers obtained from three different 

institutes are inserted.     

6. In the result section, if (optional) the sequencing data of all strains in different geographic 

region of Ethiopia is available, a phylogenetic tree can represent the closeness of the strains 

and also better understanding of lineage. 

 Unfortunately, this study was done based on Spoligotyping identification techniques and 

was limited to perform advanced molecular sequencing technologies- That is clearly 

mentioned as one of the study limitation.   

6. In the discussion, authors need elaborate on what are the underlying factors that contributed 

to prevail more TB in the urban than rural area. 



 In the first paragraph of the discussion section, we mentioned the main underlying 

factors that contributed to prevail more TB in the urban than rural area 

7. In the discussion (Line 275-276), author mentioned unique pattern considered to have 

resulted from reactivation of latent infection. But what about adaptation of those strains with 

environment and genetical changes (mutation/polymorphisms)? 

 Further explanation has done according to the comment.       

III. Comments and respective response to Reviewer #2:  

It is my pleasure to review such a well written manuscript. The data were rigorously analyzed. It 

involved a great deal of work and dedication to complete this work and it is clearly visible. 

However, I would like to ask one question to the authors and that would be on sample size 

calculation. I could not find any clear description on how the investigators arrived at the sample 

size used in this analysis. The purposive selection of sites coupled with lack of information on 

sample size calculation makes it difficult to accept the results of such rigorous analysis and also 

puts the question of generalizability forward. Are these analyses generalizable to the whole 

community or the regions? We do not know and this information is vital to the analysis. I am 

sure the authors will be able to answer the question. If it is an exploratory study and the sample 

size calculation was not done rigorously. I would request the authors to include this information 

in the limitations section explicitly to make the readers aware of the fact. I congratulate the 

authors for their hard work and look forward to see their response. Thanks! 

 Thank you for the comments, we totally agreed with all the points raised.  

As mentioned in the methodology section, it is a multi-Centre health facility based cross-

sectional study where four regional cities including Addis Ababa (the capital city of 

Ethiopia)   were purposively selected as part of the consortium (ETHICOBOTS) project. 

The main aim of this project was primarily targeted to estimate prevalence of Zoonotic 

TB among people working and living around those urban and peri-urban areas. Given 

that we had calculated a sample size and recruited larger numbers of study participants   

from selected health facilities.  

However, as there was low rate of culture positive samples, which is the first 

requirement to perform Spoligotyping based molecular investigation, the current 

manuscript was done from few selected samples.   

Indeed, we acknowledge the comments and already stated in the limitation section as 

“the fairly small sample size, uneven representation of strains from the study sites, 

and further categorization into different levels of factor variables, has reduced the 

power of our statistical analysis.”  Not only this, there is detailed explanation on the 

study limitation that we forwarded a message to readers  that the numerical estimates 

may not truly imitate the situation for the general population and need to cautions in 

the interpretation of findings.  Indeed, as much as possible we tried to minimize most of 

those methodological limitation (anticipated bias) using advanced statistical methods.   


