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Abstract

There is widespread interest in the relationship between the neurobiological sys-
tems supporting human cognition and emerging computational systems capable of
emulating these capacities. Human speech comprehension, poorly understood as a
neurobiological process, is an important case in point. Automatic Speech Recognition
(ASR) systems with near-human levels of performance are now available, which
provide a computationally explicit solution for the recognition of words in continuous
speech. This research aims to bridge the gap between speech recognition processes in
humans and machines, using novel multivariate techniques to compare incremental
‘machine states’, generated as the ASR analysis progresses over time, to the incremen-
tal ‘brain states’, measured using combined electro- and magneto-encephalography
(EMEG), generated as the same inputs are heard by human listeners. This direct
comparison of dynamic human and machine internal states, as they respond to the
same incrementally delivered sensory input, revealed a significant correspondence be-
tween neural response patterns in human superior temporal cortex and the structural
properties of ASR-derived phonetic models. Spatially coherent patches in human
temporal cortex responded selectively to individual phonetic features defined on the
basis of machine-extracted regularities in the speech to lexicon mapping process.
These results demonstrate the feasibility of relating human and ASR solutions to
the problem of speech recognition, and suggest the potential for further studies
relating complex neural computations in human speech comprehension to the rapidly
evolving ASR systems that address the same problem domain.

Author Summary

The ability to understand spoken language is a defining human capacity. But despite
decades of research, there is still no well-specified account of how sound entering the ear
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is neurally interpreted as a sequence of meaningful words. At the same time, modern
computer-based Automatic Speech Recognition (ASR) systems are capable of near-
human levels of performance, especially where word-identification is concerned. In this
research we aim to bridge the gap between human and machine solutions to speech
recognition. We use a novel combination of neuroimaging and statistical methods to
relate human and machine internal states that are dynamically generated as spoken words
are heard by human listeners and analysed by ASR systems. We find that the stable
regularities discovered by the ASR process, linking speech input to phonetic labels, can be
significantly related to the regularities extracted in the human brain. Both systems may
have in common a representation of these regularities in terms of articulatory phonetic
features, consistent with an analysis process which recovers the articulatory gestures
that generated the speech. These results suggest a possible partnership between human-
and machine-based research which may deliver both a better understanding of how the
human brain provides such a robust solution to speech understanding, and generate
insights that enhance the performance of future ASR systems.

Introduction

A fundamental concern in the human sciences is to relate the study of the neurobio-
logical systems supporting complex human cognitive functions to the development of
computational systems capable of emulating or even surpassing these capacities. Spoken
language comprehension is a salient domain that depends on the capacity to recognise
fluent speech, decoding word identities and their meanings from a stream of rapidly
varying auditory input.

In humans, these capacities depend on a highly dynamic set of electrophysiological
processes in speech- and language-related brain areas. These processes extract salient
phonetic cues which are mapped onto abstract word identities as a basis for linguistic
interpretation. But the exact nature of these processes, their computational content, and
the organisation of the neural systems that support them, are far from being understood.
The rapid, parallel development of Automatic Speech Recognition (ASR) systems, with
near-human levels of performance, means that computationally specific solutions to the
speech recognition problem are now emerging, built primarily for the goal of optimising
accuracy, with little reference to potential neurobiological constraints.

In the research described here we ask whether the properties of such a machine solution,
in terms of the input-output relations it encodes, can be used to probe the properties of
the human solution, both to develop new insights into the properties of human speech
analysis and to suggest new constraints on the analysis strategies of future ASR systems.
We do not seek to invoke the specific properties of the computational architectures of
machine systems and of human systems, but rather to ask, in this initial study, whether
the regularities that successful ASR systems find between information in the speech
input and word-level phonetic labelling can be related to the regularities extracted by
the human system as it processes and identifies parallel sets of words.

A critical issue in doing so is to capture the incremental and temporally distributed nature
of the speech input and its interpretation, where partial cues to phonetic and lexical
interpretation build up gradually over periods of potentially hundreds of milliseconds
(in contrast to visual perception of static objects), so that processes at all levels of

2 Accepted, unpublished preprint.



Wingfield et al. Brains, Machines and Speech Recognition

description are continuously modified and overlaid as new sensory constraints emerge
over time. For this study, therefore, we need to define incremental ‘machine states’,
capturing the multi-level labelling assigned to a given speech input as the ASR analysis
progresses over time, and relate these to incremental ‘brain states’ generated by human
listeners as the same inputs are heard and perceived.

Multivariate methods for probing real-time brain states

The possibility of engaging on this enterprise depends on new methods for non-invasively
investigating the real-time electrophysiological activity of the human brain. We build
here on earlier work [1] which used a novel multivariate pattern analysis method, called
spatiotemporal searchlight representational similarity analysis (ssRSA, [2]), to decode
information about frequency preference and selectivity directly from the dynamic neural
activity of the brain as reconstructed in combined MEG and EEG (EMEG) source
space. This method is an extension of fMRI-based RSA [3, 4] to time-resolved imaging
modalities.

As laid out in [1], the key procedure underpinning ssRSA is the construction of similarity
structures that capture the dynamic spatiotemporal patterns of neural activation in
EMEG source space. These similarity structures are encoded in a representational
dissimilarity matrix (RDM), where each entry in the RDM denotes the computed
dissimilarity between the source-space neural responses to pairs of experimental conditions
(for example, pairs of different spoken words). These brain data RDMs capture the
pattern of brain activity at each point of interest in neural space and time, as sampled by
ssRSA searchlight parameters [2, 3, 5]. These brain-based dissimilarity matrices are then
related to parallel, theoretically defined similarity structures, known as model RDMs.
These RDMs express contrasting theoretical claims about the properties of the neural
responses at issue. In our previous study [1], focusing on frequency preferences and
selectivity in human auditory processing regions in temporal cortex, the model RDMs
encoded hypothesised similarities between stimulus pairs at each frequency band, as
derived from a computational model of auditory processing [6]. Critically, the ssRSA
technique made it possible to relate neural-level patterns of activation directly to abstract
functional theories about how auditory cortex is organised.

In the current research we use ssRSA to compute representations of the similarity structure
of the brain states generated incrementally as human listeners perceive and interpret
spoken words. These brain data RDMs can then be related to time-varying model RDMs
which capture the similarity structure of the machine states extracted during an ASR
analysis of the same sets of spoken words. Critically, since these comparisons were
conducted in terms of the abstract geometric configuration [7] of the mappings captured
in the data RDMs and the model RDMs, this allows us to compare the properties of
machine solutions and human solutions to the recognition problem without assuming
any correspondence between the specific format of the state information in the ASR
system, and the expression of information represented in the human system — or, indeed,
between the functional architectures of the two systems.
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Shared representational frameworks: Phones and features

The historically dominant approach to speech recognition, whether in human or machine
contexts, assumes that the mapping from speech input to linguistic interpretation is
mediated through stored form representations of the words in the language, and that
access to these representations is in terms of a phonetic labelling of the speech input
(though see [8]). This labelling is generated as the speech input is incrementally analysed
over time. This potentially provides the basis for a shared representational framework for
relating the content of machine solutions on the one hand to assumed human solutions
on the other. As the ASR system computes a probability distribution over a number
of discrete phonetic labels for the speech input, this can form the basis for RSA model
RDMs which in turn can be related to human brain data RDMs, where these are thought
to reflect the computation of similar types of regularity in the speech stream.

This leaves open, however, the question of what is the most appropriate form for this
shared representational framework. Here we proceed on the assumption that the human
solution is best captured in terms of articulatory phonetic features rather than in terms
of classic phonetic or phonemic labels. These features seek to capture the underlying
articulatory gestures by which the human speech output is generated, and represent a
neurobiologically plausible, ‘low-dimensional’ solution to the speech analysis problem.
Such feature sets have a long history in linguistics and in the speech sciences, while
substantial behavioural evidence supports their role in the incremental speech analysis
process (e.g., [9, 10]). In particular, feature-based accounts allow more natural treatment
of the partial acoustic-phonetic information that becomes available as overlapping
articulatory gestures incrementally generate the speech output. This is also a point that
has been long made by some ASR researchers (e.g. [11]).

There is also substantial evidence from neuroimaging studies that the neural substrates for
speech processing can be characterised in featural terms. Several studies by Obleser and
colleagues [12–14], for example, using both fMRI and MEG, show that neural responses
distributed across auditory cortices in superior temporal regions reliably differentiate
between phonetic features associated with both vowels and consonants (see also [15]).
Stronger claims for the role of articulatory features have come from studies in the “motor
theory” tradition, arguing that the perception of speech is directly structured by the
recovery of the articulatory gestures that generate the speech output being heard (e.g.,
[16–18]. Alternative views (e.g., [19]) suggest that while articulatory constraints may
modulate speech perceptual processes in temporal cortex, these processes do not directly
involve the neural mechanisms of speech production (for confirmatory evidence see [20]).

Most directly relevant, however, in the neurophysiological context and the anatomical
focus of the current project, is the recent research using electrocorticographic (ECoG)
techniques where intracranial electrodes are used to record directly from bilateral speech
processing areas in human superior temporal cortex [21]. This work shows that the
patterns of neural response to spoken sentences correspond well to an analysis in terms
of articulatory features. Taking individual ECoG electrode responses as feature vectors
for each phone, Mesgarani et al. [21] showed that the phones cluster together in a
manner well-described by a set of articulatory features. While this research is not able
to definitively pull apart phone-based from feature-based approaches, it supports the
viability of featural decomposition as a means of characterising earlier stages of speech
analysis in the human brain. In doing so, no commitment is made to a “motor theory”
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account of speech analysis.

Here we use a standard set of articulatory features, based on those used by Mesgarani
et al. [21], but adapted for British rather than American English [22, 23]. Most ASR
systems, in contrast, have chosen phones (the inventory of distinct speech sounds in a
given language) rather than features as their intermediate representational unit. This
means that, analogous to the procedure used by Mesgarani et al. [21], we can use the
ASR system to generate incremental streams of probabilistic phonetic labels, and then
assess these as evidence for the presence of the corresponding underlying articulatory
features. The hidden Markov model toolkit (HTK) Version 3.4 [24], the ASR system we
use here, is based on a successful GMM–HMM architecture (with word-level accuracy of
around 91.6%). It uses a Gaussian mixture model (GMM) to annotate each successive
10 ms frame of a recorded speech stream with the estimated likelihood of each phonetic
label and each triphone label, while a hidden Markov model (HMM) captures statistical
regularities in the language and its sequential structure. The triphones capture the
phonetic context of each frame, enabling the ASR system to take into account important
co-articulatory variation in the phonetic form of a given phone, and comprise a triplet
indicating the current phone, as well as a preceding and future phone. For example,
[p-I+n] is a [I] as pronounced with the preceding context of a [p] and the following
context of a [n]. As we describe below in Computing model RDMs from incremental
machine states, the triphone likelihoods generated at each 10 ms time-step (over a 60
ms time-window) for each speech stimulus can be used to generate RSA model RDMs
for each phone in the language. The resulting 40 phonetic model RDMs are then tested
against the corresponding brain data RDMs in a searchlight procedure across relevant
brain areas. The resulting distributions of phonetic model fits at each testing point are
then used to derive an account in terms of phonetic features.

Spatiotemporal foci of the analyses

The brain data used in this study come from simultaneously recorded EEG and MEG
(EMEG) measurements of the neural activity generated by each of 400 spoken words
heard by the listeners. Critically, we use these EMEG data, as in the earlier Su et al. [1]
study, to generate a ‘source space’ reconstruction that localises at the cortical surface
(specifically, the white matter/grey matter boundary) the electrophysiological activity
that gives rise to the EMEG measurements recorded at sensors external to the skull. The
combination of MEG and EEG delivers better source localisation than either of these
modalities alone [25], using well established minimum norm estimation (MNE) techniques
guided by neuroanatomical constraints from structural MR for each participant [26, 27].

These source space representations allow us to track, with millisecond temporal resolution
and potentially sub-centimetre spatial resolution, the real-time spatiotemporal patterns
of electrophysiological activity generated by the brain as it performs complex operations
such as speech interpretation. This means that we can focus our explorations of this
neural activity on those regions of cortex which are known to play a key role in supporting
the operations of interest rather than, for example, working with the pattern of MEG
data measured in ‘sensor space’ (e.g. as in [28], where sources are not localised). In the
current exploration, therefore, of the potential relationship between the incremental brain
states derived from the source-localised EMEG data and the incremental machine states
derived from ASR responses to the same 400 spoken words, we restrict the scope of these
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analyses to the spatiotemporal locations in the brain data where such a relationship is
most likely to be found.

In terms of spatial locations, as demonstrated in recent ECoG studies, (e.g. [21, 29]),
as well as in a host of neuroimaging experiments using fMRI techniques, the superior
temporal cortices bilaterally, including Heschl’s gyrus, are the key areas supporting
acoustic-phonetic analysis and the earlier stages of speech interpretation (e.g. [30, 31]).
Accordingly, we restrict the analyses reported here to a speech area mask covering superior
temporal cortex (STC) bilaterally.

The second critical dimension concerns the timing of the processing lag (in milliseconds)
between the arrival of information in the speech input and the acoustic-phonetic neural
interpretation of this information in superior temporal cortex. This lag reflects both
neural transmission time (from cochlea to cortex), and the processing time necessary
to compute the phonetic distinctions reflected in the human cortical response. Neither
of these sources of delay apply to the representations computed by the ASR system.
This means that a compensatory lag must be introduced into the matching between the
ASR-based model RDMs for a given time-window of speech input and the data RDMs
representing the human listeners’ cortical response to this same stretch of input.

Evidence for the timing of such a lag has become available from recent research relating
speech input to higher-order cortical interpretation. In a study using EMEG word data
similar to the speech materials used here, Thwaites et al. [32] found that the cortical
computation of the fundamental frequency function F0 was most strongly expressed
in EMEG brain responses in bilateral STC at a lag of 90 ms. Related evidence from
ECoG studies looking at phonetic discriminability in neural responses to speech suggest
similar delays. Mesgarani et al. ([21], Fig S4A) show a lag of around 125 ms for neural
discrimination of phonetic categories relative to the acoustic information in the speech
signal, while Chang et al. ([29], Fig 2a) find a similar peak at around 110 ms. Accordingly
in our analyses here we use a fixed lag of 100 ms, so that each time-window of ASR-
derived model RDM data is centred over the time-window of brain data RDMs recorded
(from locations in STC) 100 ms later. In later studies we hope to be able to test at a
wider range of lags.

Overview

Our primary goals in this project are to investigate the basic technical and conceptual
feasibility of relating dynamic brain states to dynamic machine states, in the incremental
processing environment imposed by the speech input, and to determine whether sub-
stantive correspondences can indeed be found between human and ASR solutions to the
speech recognition problems. In so doing, we will ask whether a potential account of
these commonalities in terms of articulatory phonetic features proves to be viable. In the
following sections of the paper we describe the sets of procedures and analyses required
to achieve these goals.

In Materials and methods we describe the EMEG experimental setup, and provide an
overview of the RSA approach in the EMEG context. We cover the RSA method for
computing the ASR phone model RDMs from the incremental output of HTK and
report a novel subsidiary analysis, conducted to evaluate the applicability of a specific
articulatory feature set to the resulting 40 phone-specific dynamic model RDMs. We then
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turn to the procedures for computing data RDMs from incremental brain states, source
reconstruction and the RSA searchlight process. We lay out the core multivariate RSA
process of (a) fitting the machine model RDMs to the brain data RDMs, conducted in
superior temporal cortex at the chosen 100 ms lag, and (b) converting these phone model
data to an account in terms of articulatory features. In Results we present the outcome
of the RSA analyses that relate computational models of speech analysis extracted from
ASR machine states to the neural speech analysis processes non-invasively detectable in
human superior temporal cortex.

Materials and methods

Representational similarity analysis for EMEG

RSA was originally developed for fMRI [5], but one of its strengths is its agnosticism
toward modality. In particular, RSA has more recently been applied to EEG and MEG
data [1, 33]. Methodological considerations for EMEG are detailed in Su et al.’s work
[2], but we will give a brief overview here.

RSA involves the comparison of the similarity (or dissimilarity) structures found in the
responses of neural systems to differing experimental conditions, and the modelling of
those similarity structures by categorical or computational models. A basic component
of the RSA analysis strategy is the construction of representational dissimilarity matrices
(RDMs) based on the pairwise dissimilarity of all items or conditions entered into the
analysis process [1, 5]. Typically, the data RDM or set of data RDMs is computed from a
neuroimaging data source, and the model RDM(s) from a specified model of the stimuli.
A generic description of this process is provided here and illustrated schematically in Fig
1, while the specific choices and parameters used in this analysis are explained later.

For EMEG data, field strength is measured at each of the sensor sites in the MEG helmet
and at the EEG scalp electrodes as the participant is presented with an experimental
trial, such as an auditory stimulus (Fig 1a–b). The dissimilarities between the responses
to each pair of stimuli are computed using some distance measure, often Pearson’s
correlation distance between the vectors of measured response. These distances are
entered into the data RDM (Fig 1c). Data RDMs are computed for each subject of the
experiment, and may be averaged between subjects [5].

The model RDM is an analogous matrix of predicted dissimilarities between experimental
conditions (Fig 1d). It may be produced in several ways, such as a pairwise comparison
of model variables for each stimuli, or by directly modelling the dissimilarity values
themselves.

Because the rows and columns of the data RDM and model RDM are both indexed by the
experimental conditions, they can be directly compared (Fig 1e). This comparison often
takes the form of a correlation of their upper-triangular vectors, yielding a correlation
value describing how well the dissimilarities expressed in the model RDM explain the
dissimilarities in the data RDM. A rank correlation such as Spearman’s may be used
rather than a linear correlation such as Pearson’s, so that a strictly linear relationship
between modelled and actual dissimilarities is not predicted.
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Figure 1: Representational similarity analysis. (a) A set of experimental conditions or
stimuli are presented to participants. In this example, recordings of English words are presented
aurally. (b) For each experimental condition, EMEG data is collected from participants’
regions of interest for a specified epoch. (c) Dissimilarities between each pair of responses
are computed and stored in a representational dissimilarity matrix. Potential dissimilarity
measures include Pearson’s correlation distance or Euclidean distance between response
vectors. Rows and columns of the matrix are indexed by the condition labels, making the
matrix symmetric with diagonal entries all 0 by definition. In this example there are four
conditions in total, and the responses to the condition pair (bulb, tribe) is compared, with
the value stored in the indicated matrix entry, and its diagonally-symmetric counterpart.
(d) A model of the experimental conditions or stimuli is used to compute a model RDM.
The model RDM can be computed in several ways, e.g. by comparing representations of the
stimuli under the model; or by modelling the dissimilarities directly. (e) Data and model
RDMs are statistically compared, e.g. by computing Spearman’s rank correlation of their
upper-triangular vectors.
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Computing model RDMs from incremental machine states

For this study, model RDMs were computed based on dissimilarities between modelled
representations of stimuli, rather than directly modelling the dissimilarities themselves.
The models were constrained to the set of English words for which we had suitable EMEG
brain data. These were 400 English verbs and nouns (e.g., talk, claim) some of which
had past tense inflections (e.g., arrived, jumped). These materials (also used in [1]) were
prepared for another experiment [34], and we assume (a) that their linguistic properties
were independent of the basic acoustic-phonetic parameters being examined here and
(b) that they provide a reasonable preliminary sample of naturally occurring phonetic
variants in human speech. The stimulus words were recorded onto a DAT recorder in a
sound-attenuated room by a female native speaker of British English, digitized at 16-bit
with a sampling rate of 22 kHz, and stored as separate files using Adobe Audition (Adobe
Inc., San Jose, CA). They averaged 593 ms in length, with the shortest word being 270
ms in length. To keep the speech samples and analyses fully aligned we restricted all the
analyses to the first 270 ms of each word.

A hidden Markov model (HMM) based automatic speech recognition (ASR) system with
Gaussian mixture model (GMM) observation density function was built using HTK [24].
The acoustic training corpus used to build the ASR system was the 15 hours Wall Street
Journal corpus with British accents recorded at Cambridge University (WSJ-CAM0).
There are overall 44 phones defined in the corpus, which can result in a maximum number
of 85,184 triphone units. Following a well-established strategy [24], each HMM used 3
hidden states to model a single triphone unit. To have sufficient data for a more reliable
estimate of all HMM model parameters and to model the triphone units that did not
occur in the training set, the standard decision tree based tying approach was adopted
to cluster the hidden states with the same centre phone unit according to phonetic
knowledge and a maximum log-likelihood criterion [35].

After building the ASR system, the 400 recorded stimulus words were recognized with
the GMM–HMM models, with a modified version of the HTK recognizer that output
the triphone likelihoods that it generated as it processed the stimuli (in addition to the
target word identities). We used this information about HMM states to compute model
RDMs for each of 40 British English phones in a procedure illustrated schematically in
Fig 2. In order to account for the differences in recording characteristics and speaking
styles between the training data used to build the ASR models and the stimulus words, a
speaker adaptation method based on maximum a posteriori (MAP) criterion was used to
adapt the mean values of the GMMs [36] and this resulted in a word accuracy of 91.6%.

For performance reasons, the recorded stimuli were encoded into mel-frequency cepstral
coefficients (MFCCs) [37] and represented each frame as a vector comprising 12 MFCCs
plus the energy, together with their first and second derivatives, to give overall a 39-
dimensional real acoustic feature vector per frame [24]. Mel-frequency spectrogram
transforms are similar to neurophysiologically motivated frequency transforms, such as
Gammatone filterbank cochleagrams [6, 37, 38]. For each 10 ms frame, the GMM-based
HMMs compute estimated log likelihoods that this frame was generated by particular
hidden state sequence. A sketch of this process is shown in Fig 2a where the GMM–HMM
triphone log likelihoods are used to compute model RDMs for each of our phones.

Specifically, for each phone φ present in the stimulus words, and since triphones correspond
to contextual variations in pronunciation of phones, we grouped triphone log likelihood
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Figure 2: Mapping from GMM–HMM triphone log likelihoods to phone model RDMs.
(a) Each 10 ms frame of audio is transformed into MFCC vectors. From these, a GMM
estimates triphone log likelihoods, which are used in the phonetic HMMs. (b) We used the
log likelihood estimates for each triphone variation of each phone, concatenated over a 60
ms sliding window, to model dissimilarities between input words. Dissimilarities modelled by
correlation distances between triphone likelihood vectors were collected as entries in phonetic
model RDMs. (c) These phone-specific model RDMs were computed through time for each
sliding window position, yielding 40 time-varying model RDMs.
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estimates by their triphone’s central phone, further concatenating the six 10 ms frames
falling within each 60 ms sliding window. For each sliding window position and each
phone φ, this gave us a vector of triphone log likelihood values with length equal to six
times number of triphones containing φ in the central position. We used these values
to build incremental RDMs modelling the information relevant to the representation
or recognition of each phone φ, treating the vector of triphone log likelihood values as
the φ model’s representation of the word for that 60 ms interval of time. We defined
the distance between word pairs as the correlation distance (1 − Pearson’s correlation)
between the triphone log likelihood vectors (Fig 2b), repeating this procedure at each
10 ms time-step up to the end of the 270 ms epoch to which these analyses were restricted.
These procedures were repeated for each of 40 phones which were most commonly found
in our 400 stimulus words, yielding 40 collections of phone model RDMs (Fig 2c), each
indexed by the 21 positions of the sliding window, totalling 840 400 × 400-sized model
RDM frames overall.

We describe these time-indexed collections of model RDMs as dynamic RDMs (dRDMs).
We use the whole time-course of a dRDM to model the corresponding time-course of
dRDMs computed from brain data.

Mapping phones to features

The use of phone labels in ASR systems corresponds to the usual target of converting
speech to text, as well as the standard phonetic characterisation of speech sounds.
However, phones themselves can be characterised by articulatory phonetic features,
which correspond to the place and manner of articulation with which the phones are
spoken. Given the evidence from earlier research discussed earlier, a plausible candidate
for the low-dimensional speech analysis solution adopted by the human system is a
featural analysis of this type. A standard set of phonefeature correspondences, as used
here, is summarised in Fig 3. By orienting the analysis in terms of features, we also
reduce the dimensionality of our models, and simplify the interpretation by not requiring
that very similar phones (e.g. [I] and [i]) be distinctly represented. This is especially
relevant given that the GMM component of the ASR system, which produces triphone
likelihoods, is not subject to any top-down processes which could guide identification of
specific phones in a context wider than its input window. This also alleviates significant
problems that emerged with the GLM mapping method we used when this was conducted
on a strictly phonetic rather than featural basis (see Fitting model dRDMs to data
dRDMs).

Since the choice of articulatory features rather than, for example, a more perceptually
based feature set, is still open to discussion, and before committing ourselves to a re-
analysis of the phone-based RDM data in these specific featural terms, we first evaluated
the degree to which the chosen articulatory feature set was able to explain the second-
order similarity structure of the set of phone model RDMs — i.e., the arrangement
of each of the model RDMs in the same pairwise comparison space, described by the
correlational structure of the model RDMs themselves [4, 5].

To conduct this novel analysis, we computed the pairwise Spearman correlation distances
between the 79,800-length upper-triangular vectors of each pair of model RDMs at
each timeframe, resulting in a 40 × 40-sized second-order model similarity matrix (Fig
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Figure 3: The mapping between articulatory features and phonetic labels. Columns
describe phones and rows describe features, with a filled-in cell indicating that a phone
exhibits a given feature. The features are grouped into descriptive categories, from top to
bottom: Broad phonetic categories, place-of-articulation features for consonants, manner-of-
articulation features for consonants, vowel frontness, vowel closeness, and vowel roundedness.

4). The degree to which articulatory features explained the between-model similarity
structure was evaluated by computing both Davies–Bouldin indices for the classification
of models by each phonetic feature (Fig 5a), and η2 values representing the dissimilarity
variance explained by the presence of each feature (Fig 5b). The Davies–Bouldin index
is a standard way to evaluate the clustering of points in a high-dimensional space [39].
However, Davies–Bouldin index values cannot be judged in isolation, but only compared
between different clusterings applied to the same data. An alternative is η2, values of
which can be compared against fixed benchmarks [40].

We found that the arrangement of the phone models given by their similarity structure
could be described in terms of the phonetic features possessed by the phones. As an
example, we visualise this using a multidimensional scaling (MDS) plot [41] computed
from the data at one particular timepoint. In this visualisation, each phone model is
represented as a point in the plane (Fig 5c). The phone models appear to fall into two
distinct classes, which are almost perfectly described by the presence of the sonorant
feature. The relative distances between the models in the MDS plot are distorted from
their true values by compression into the two dimensions of the plane, so that such
a figure is useful for illustrative purposes only. However in this case the distortion is
minimal (distance–dissimilarity correlation of 0.94). The majority of the articulatory
features give large η2 values, and their Davies–Bouldin indices are mostly comparable,
showing that each feature contributes to the explanation of the models’ arrangement,
and that no particular feature dominates the others (although sonorance and vowel
place/position features tended to explain better than consonant manner features).
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Figure 4: Second-order similarity structure of phone models. Entries in the matrix are
Spearman’s rank correlations between model RDMs. The second-order similarity structure
of the phone models for a representative time window centred over 90 ms after word onset,
given by a correlation matrix between phone model RDMs.
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Figure 5: Similarities between model RDMs and phonetic features. (a) Davies–
Bouldin indices for each feature. Error bars indicate one standard deviation of values over the
epoch. (b) η2 values for each feature assignment. Rule-of-thumb guides for small, medium
and large effect sizes are indicated by horizontal lines. Error bars indicate one standard
deviation of values over the epoch. (c) The arrangement of phone models plotted using
MDS (distance–dissimilarity correlation 0.94). Points are labelled according to the presence
or absence of the sonorant feature. Models with the sonorant feature are represented with
red circles, and models without the sonorant feature are represented with green triangles.
The MDS arrangement of points as displayed was independent of the feature labelling.
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From this, it can be seen that the HTK GMM–HMM-derived model RDMs’ configuration
are well explained by all phonetic features we used, providing statistically robust validation
for the feature set adopted here.

Computing data dRDMs from incremental brain states

The second critical component of the RSA procedure is the computation of data RDMs
(in this case brain data RDMs), whose similarity to the representational geometry of the
model RDMs can then be determined. As the basis for these computations we used the
existing EMEG source space data already collected for the 400 words entered into the
GMM–HMM analysis described in Computing model RDMs from incremental machine
states. Sixteen right-handed native speakers of British English (six males, mean age 25
years, age range 19–35, self-reported normal hearing) were used from the original study.
Recordings of 400 English words, as spoken by a female native British English speaker,
were presented binaurally to participants. Each word was repeated once. The study was
approved by the Peterborough and Fenland Ethical Committee (UK). For further details
on data collection, see [34] and [1].

Source reconstruction

We estimated the location of cortical sources using the anatomically constrained minimum
norm estimate (MNE) [26], again with identical parameters to those used in [1, 34]. MR
structural images for each participant were obtained using a GRAPPA 3D MPRAGE
sequence (TR = 2250 ms; TE = 2.99 ms; flip-angle = 9 deg; acceleration factor = 2) on a
3 T Trio (Siemens, Erlangen, Germany) with 1 mm isotropic voxels. From the MRI data,
a representation of each participant’s cerebral cortex was constructed using FreeSurfer
software (http://surfer.nmr.mgh.harvard.edu/). The forward model was calculated
with a three-layer Boundary Element Model (BEM) using the outer surface of the scalp
as well as the outer and inner surfaces of the skull identified in the anatomical MRI. This
combination of MRI, MEG, and EEG data provides better source localization than MEG
or EEG alone. The constructed cortical surface was decimated to yield approximately
12,000 vertices that were used as the locations of the dipoles. This was further restricted
to the bilateral superior temporal mask as discussed previously. After applying the
bilateral STC mask, 661 vertices remained in the left hemisphere and 613 in the right.
To perform group analysis, the cortical surfaces of individual subjects were inflated and
aligned using a spherical morphing technique implemented by MNE [27]. Sensitivity
to neural sources was improved by calculating a noise covariance matrix based on the
100 ms pre-stimulus period. The activations at each location of the cortical surface were
estimated over 1 ms windows.

Spatiotemporal searchlight RSA

The source-reconstructed representation of the electrophysiological activity of the brain
was computed for participants’ responses to each of the target set of 400 words, and this
was used to compute word-by-word RDMs in the following way: In ssRSA, we calculate
RDMs from the EMEG data contained within a regular spatiotemporal searchlight patch
of radius 20 mm and a 60 ms fixed-width sliding temporal window (see schematic diagram
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Figure 6: ssRSA for EMEG data. (a) Each stimulus’s evoked EMEG response is captured
within a fixed time window and regular searchlight patch, which moves continuously in space
inside the searchlight mask. (b) The dissimilarity between a pair of conditions is taken to be
the correlation distance (1 − Pearson’s correlation) between the vectors of activation within
the spatiotemporal searchlight. (c) The modelled dissimilarities between pairs of conditions
are collated into a model RDM (see Fig 2). (d) Model RDMs are compared to the data
RDM, with the resulting statistic mapped back into the central vertex of the searchlight.
This is repeated for each spatiotemporal position of the searchlight.

in Fig 6). This patch is moved to centre on each vertex in the source mesh, while the
sliding window is moved throughout the epoch in fixed time-steps of 10 ms. From
within each searchlight patch, we extracted the response pattern from each subject’s
EMEG data from vertices within the patch and for time-points within the sliding window
(Fig 6a). For each position of the sliding window, we computed a word-by-word RDM
from these response patterns using the Pearson’s correlation distance measure of the
resulting vectors (Fig 6b). We collected these into word-by-word dRDMs over the epoch.
These dRDMs were averaged across subjects, resulting in one data RDM frame for each
within-mask vertex and each sliding window position. This is repeated for the responses
from each pair of experimental stimuli to produce a total set of 26,754 data RDMs, each
associated with a specific vertex at a specific time-point.
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Fitting model dRDMs to data dRDMs

To complete the RSA analysis process, each brain data RDM was compared to the 40
ASR-derived phone model RDMs computed for the relevant matching time-window,
taking into account the 100 ms processing time-lag selected for these analyses (note that
this displaces the neural analysis epoch to run from 100 to 370 ms from acoustic onset).
Following the method of [1], multiple model RDMs can simultaneously be tested against
data RDMs in the spatiotemporal searchlight using a generalized linear model (GLM).
For a given data RDM D and corresponding 40 model RDMs M[a], . . . ,M[z] for each
phone, the GLM optimises coefficients β1, β[a], . . . , β[z] so as to minimise the sum-squared
error E in the equation

D = β1M1 + β[a]M[a] + · · · + β[z]M[z] + E (1)

The βφ coefficients then describe the contribution of each phone model Mφ to explaining
the data, with β1 the coefficient for constant predictor M1 (Fig 7a). As the searchlight
moved throughout time, we chose corresponding frames from the model dRDMs to use
as predictors.

In the second stage of the analysis procedure we convert phone model coefficients in
each searchlight location GLM into their corresponding feature values (see Figs 7b and
7c). To do so we define the fit of a feature f at each spatiotemporal location to be the
weighted sum

fitf =
∑
φ

χf (φ) · βφ (2)

where χf (φ) is 1 when phone φ has feature f and 0 otherwise (rows of feature matrix
in Fig 3). Using this definition, we converted the phone coefficients βφ into fitf values
describing the degree to which each feature f contributes to explaining the data (Fig
7b). These fitf values can be mapped back into the centre of the searchlight patch
from where the data RDM was calculated giving a spatiotemporal map of fit for each
feature f (Fig 6d; Fig 7c). As well as being theoretically motivated (see Mapping phones
to features), the aggregation of βφ values over features was also preferred for practical
reasons. HTK GMM–HMM models tended to assign similar log likelihoods to acoustically
similar phones (e.g. [e] and [e@]), and as such the βφ coefficients found in the GLM were
affected by the presence of similar ‘competitor’ phones. Other phones which have no
similar competitors (e.g. [k]) did not suffer from this. This source of systematic failure of
the GLM analysis process meant that we were not able to compute successful incremental
interpretations of the RSA model fitting process in phone-based terms. In contrast, by
aggregating the βφ coefficients according to features, we were able to link together the
contributions of phone models with similar model dRDMs (Fig 5), and thereby provide
a potentially more accurate account of the acoustic-phonetic information present in the
signal. This advantage of a feature-based approach is consistent with suggestions in
the behavioural and ASR literatures [10, 11, 42], pointing to the flexibility of such an
approach in allowing partial acoustic-phonetic cues to be identified and exploited as
they become incrementally available — contrasting with decisions about phone or speech
sound identity, which may only become secure (if at all) when all of the relevant acoustic
input as become available.
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Figure 7: Relating brain data dRDMs to phone model dRDMs and converting to
feature fits. (a) At each vertex and time point, all phone model RDMs are computed (Fig
6) and fitted against the data RDM in a GLM, yielding coefficients βφ. (b) The rows of
the phone-feature matrix of Fig 3 describe for each feature f the phones φ exhibiting f ,
providing a labelling function χf . The example given here is for the feature sonorant, the
top row of the feature matrix in Fig 3. (c) The coefficients βφ were aggregated by sum over
each feature f to produce a map of fit for each feature, which was mapped back to the
central location of the spatiotemporal searchlight.
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Statistical mapping

We computed statistical maps using a permutation method. Under the null hypothesis
H0, there is no difference in the phonetic information between each word which would
be represented in the brain responses, and thus we may randomly permute the condition
labels for each of the words in our data RDMs, and would expect no difference in any fit
of any model [1, 4, 43].

A null distribution of βφ values was therefore simulated by randomly permuting the
rows and columns of the data RDM [4], and re-computing the βφ coefficients, and
fitf value. These were collected into separate null distributions of feature fits for each
feature f , pooling the values over the vertices within the searchlight mask. Separate null
distributions were pooled for each feature as different numbers of phones contribute to
each feature. This provides a permutation-derived simulated null distributions of more
than 10,000 samples for each feature.

By taking a certain quantile (e.g. 0.95) for each of these null fitf distributions, we obtain
a confidence threshold θf for each feature f . We use θf to threshold each fitf -map. For
the purposes of providing a summary of the whole time epoch, we averaged the βφ values
over the 100–370 ms epoch before fitting features in both the individual maps and the
calculation of the θf thresholds.

Results

RSA evaluation of ASR models in neural source space

Fig 8a shows each of the thresholded feature maps in ensemble. Where a feature
showed significant fit for any vertex, the most conservative possible standard p-threshold
(p < 0.05, 0.01 or 0.001) was chosen for which the cluster remained. This gave the
fullest picture of the results. The maps are somewhat different between hemispheres,
though clusters appear over bilateral Heschl’s gyri, particularly concentrated in primary
auditory regions such as A1. Both hemispheres show a wide regions of fit, parcellated into
partially overlapping patches for different features. Most of the features we tested showed
significant fit. The exceptions were the features affricate, fricative and approximant, for
which no vertices within the searchlight mask showed significant fit.

Features describing broad phonetic category distinctions (sonorant, voiced and obstruent)
all showed greater fit within the right hemisphere. Feature fits in the left hemisphere
tended to be more focussed than in the right and more significant (indicated by asterisks
on the figure). Features which showed fits in both hemispheres were those providing
finer within-category distinctions, such as central and nasal. To visualise this further,
we fixed a threshold at p < 0.01 for both hemispheres and all feature maps (see Fig
8b). This left intact some broad category matches in right STG, and suggested a greater
coverage in left STG, STS and HG for within-category feature distinctions — place and
manner of articulation features for consonants, and closeness, frontness and roundedness
dimensions for vowels.
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Figure 8: Maps of fit for each feature. (a) Thresholded maps of fit for each feature for
which at least one vertex showed significant fit between 100 ms and 370 ms. We report
p < 0.05 using *, p < 0.01 using **, and p < 0.001 using ***. Light and dark greys represent
gyri and sulci respectively. The miniature figures show the location of the larger diagrams.
Anatomical landmarks are superior temporal gyrus (STG), superior temporal sulcus (STS)
and Heschl’s gyrus (HG). The dotted white lines indicate the outline of HG. (b) With a fixed
threshold of p < 0.01 for both hemispheres, only broad-category features remain on the right,
and within-category distinctive features are dominant on the left
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Discussion

Interpretation of results

In this study we have used a functional model of machine speech recognition to investigate
early representations of speech in human superior temporal cortex (STC). By using RSA,
we have been able to directly compare representations of speech in the machine system
with representations found in EMEG activations measured from human participants. We
mapped the space of phones used by the ASR to a smaller space of articulatory features,
after verifying that these features acceptably describe the similarity structure of the
ASR representations. We tested feature fits systematically throughout the STC regions
of each of our participants, using a spatiotemporal searchlight technique, and looked at
vertices showing consistent fit across our participants. A vertex shown to be significant
in our results (Fig 8) indicates the location of spatially local patterns of activation for
each of our stimulus words which is explained by information relevant to a particular
feature, as modelled by the ASR system’s representation. We found distributed patches
of sensitivity to each articulatory feature throughout bilateral STC. The distribution
exhibited some left–right asymmetry, with broad category features (e.g. sonorant) fitting
best in the left hemisphere, and more fine-grained within-category features fitting better
on the right. Overall, fit in the left hemisphere was more significant.

These results confirm the feasibility of combining ssRSA with source space EMEG to
relate dynamic brain states to dynamic machine states in the incremental speech input
environment. In doing so, we see significant correspondences between human and ASR
solutions to the speech recognition problems, captured here in terms of a low-dimensional
representational framework related to articulatory phonetic features. We discuss below
the empirical status of these findings, followed by a more general analysis of the meaning
of potential brain-machine correspondences in the speech recognition environment.

Phonetic feature sensitivity in human temporal cortex

The critical result in this study is that phonetic model RDMs, extracted from the ASR
labelling of the phonetic content of incremental 60 ms speech input time windows, could
be significantly related to brain data RDMs capturing the human neural response in
superior temporal cortex to the same incremental time windows. These relationships
took the form of spatially coherent patches in STC whose responses showed significant
fit to a variety of different articulatory phonetic features. Is there independent empirical
evidence that bears on the credibility of this finding of distributed patches of featural
sensitivity in STC?

The overall result — supporting an account of localised acoustic phonetic processing in
STG in terms of features — is compatible with many strands of evidence favouring such an
approach to the neural representation of speech in human temporal cortex. Most directly,
it is consistent with the Mesgarani et al. [21] results, showing that ECoG electrode
responses in STC can be well characterised in terms of specific phonetic features, as well
as with more recent ECoG studies [44] showing local feature-oriented processes operating
in the broader context of a global posterior-anterior distinction between electrodes with
“onset”-selective response profiles and those responding preferentially to “sustained” non-
transient inputs. Given the isomorphism, however, between featural and non-featural
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phonetic representations, it is important to be clear that neither the ECoG results nor
our own EMEG/ASR analyses can by themselves exclude accounts of neural coding
in STC based on a classic phone-based approach. Equally, it should be clear that the
current results, while consistent with a featural decomposition of ASR representations of
regularities in the speech-to-phone mapping in STC, cannot exclude a variety of other
accounts, including those built entirely from acoustically defined regularities.

The second salient aspect of the results is the computational geography that they reveal,
with different cortical patches showing a preference for specific features, and where
these patches are scattered in partially overlapping fashion in auditory cortex and in
surrounding posterior STG and STS. Although there is currently no neurocomputationally
or neuroanatomically explicit account of how STC supports acoustic-phonetic analysis,
the geography of these results is broadly consistent with existing data from other
neuroimaging studies. The regions of superior temporal and Heschl’s gyri which showed
significant fit for at least one phonetic feature in our results are consistent with areas
which have shown speech selectivity in other studies [12–15, 21, 45, 46]. In addition, the
spatial locations of these featural patches overlap with regions found to have frequency-
selective responses to both high and low frequencies, and both wide and narrow frequency
tuning curves [1, 46–49]. Turning to more specific studies of the neural representations
of phonological features during speech perception, the Arsenault and Buchsbaum fMRI
study [50] shows bilateral regions of superior temporal cortex supporting discrimination
between articulatory feature categories. Closest to our current results, the fMRI study
by Correia et al. [51], using a searchlight MVPA technique, not only showed that brain
responses to syllables differing in their voicing, place or manner of articulation could be
distinguished in STC, but also that they have somewhat patchy areas of distribution.
Finally, the older study by Obleser et al. [14], using MVPA techniques on an fMRI data
set, provides similar evidence for a distribution of vowel and consonant feature-sensitive
patches across human STC.

While these resemblances between studies are not sufficient to validate the specific feature-
sensitive regions found in the present study, they do suggest that the computational
geography that our results indicate is compatible with current independent findings of
regions in STC sensitive to specific featural dimensions of the speech input. They are
also compatible with evidence from other domains that the style of computation found
for complex species-specific processes can have similar patch-like properties. Research
by Grimaldi et al. [52], for example, reveals a network of different face patches in the
macaque (as well as in humans), which are densely interconnected in both feedforward
and feedback directions to constitute a highly specialised processing network. Given the
evolutionary significance of human speech recognition, similar networks may underpin the
even more specialised and species-specific process of recovering the articulatory gestures
underlying a given speech input.

Relating machine states to brain states: vision and speech

On the assumption that there is empirical support for the outcomes reported here,
we now turn to the question of what it might mean to find correspondences between
machine-based solutions to a complex mapping and the ‘natural’ neural solutions found
in the brains of humans or other species. It is important to distinguish here between the
visual and the speech domains. There is a sizeable and rapidly growing body of work
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which relates computational models in the domains of visual object classification and
visual scene analysis to the properties of the corresponding neural processes in humans
and other primates (e.g. [28, 53–56]). This is not the case for the speech domain.

The work on vision differs from speech and language research in several major respects.
The first is that the neural processing machinery that supports visual perceptual process-
ing is essentially the same, in its major respects, in humans and in other primates. There
is extensive evidence (e.g. [53, 57–60]) for similarities both in the basic architecture of
the system — the primate dorsal and ventral visual processing streams — and in the
computational properties of the analyses carried out, based on a complex multi-level
hierarchical cortical organisation. This means that, unlike speech comprehension, there
are detailed models of the sequence of processes that map from early visual cortex to
higher-order perceptual and conceptual representations in more anterior brain regions.

Second, and closely related to the first, there is a strong tradition of computational
implementations of models of visual perceptual processing that reflect the theories of
hierarchical cortical organisation proposed for different aspects of these processes, and
where these design assumptions (such as localised convolution and pooling) are also
reflected in machine vision implementations. These relationships have been greatly
strengthened by the recent emergence of deep neural network (DNN) systems as the
machine learning systems of choice, and where several studies suggest parallels between
the representations computed in the successive layers of such DNNs and the successive
levels hypothesized for the human system [53, 56]. Importantly, this means that the
internal structures of machine vision systems are potentially informative and relevant to
our understanding of the neurocomputational architecture of the natural system (and
vice versa), and not just whether they generate equivalent outputs (for example in object
classification tasks).

None of these factors currently hold true for speech comprehension, either by humans
or by machines. While the human auditory processing system does have close parallels
with the general primate system [31], no non-human primate supports anything like
the human system of speech communication, where intricately modulated sequences of
speech sounds, uttered by members of the same species, map onto tens of thousands of
learned linguistic elements (words and morphemes), each with its own combination of
acoustic-phonetic identifiers. There is simply no primate model of how these mappings are
achieved (cf. [61]). No doubt partly because of this, but also reflecting the complexities
of the real-time analyses the human brain carries out on an incremental and dynamically
varying sensory input, there are no computationally explicit neurocognitive models of
how humans solve the spoken word-recognition problem.

Consistent with this, and following design strategies long established in the speech
engineering domain (cf. [62]), ASR systems have been driven (with considerable success)
solely by computational engineering considerations, such as statistical learning efficiency,
with little or no reference to the properties of the human system. It was not a goal in the
design and implementation of such systems that they should correspond to the supposed
architecture of the human system, nor have there been any compelling demonstrations
that performance would benefit if such considerations were taken into account. This
holds true not only for the kind of GMM–HMM architecture used here, but also for the
DNN-based systems that have recently emerged [63, 64].

In the current research, therefore, the focus has been (as noted earlier) on the input-
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output relations exhibited by the two types of system — human superior temporal cortex
and automatic speech recogniser — with ssRSA allowing us to abstract away from the
very different implementational characteristics of the systems in question. Strikingly, as
documented in this paper, we have been able to show that the regularities that successful
ASR systems encode in the mapping between speech input and word-level phonetic
labelling can indeed be related to the regularities extracted by the human system as it
processes and identifies parallel sets of words. What are implications of this result?

Implications and conclusions

The finding of significant machine-brain correspondences suggests, first, that there are
underlying commonalities in the solutions of human and machine systems to the speech
recognition problem. In particular, the combination of ssRSA and EMEG data sets, as
implemented here, suggests that the analysis of the potential relationship between such
systems can be informed and guided by direct inspection and comparison of dynamic
machine states and dynamic EMEG-derived brain states, adding a novel empirical
dimension to such comparisons.

Second, the finding that the commonalities between human and machine systems can
be characterised in terms of a biologically plausible low-dimensional analysis, based on
articulatory phonetic features, argues for an increased focus on the neurobiological and
computational substrate for such an analysis strategy. In ASR research, the development
of systems based around the extraction of articulatory features has a long history (e.g.,
[11]) and some recent exemplars (e.g., [65]), but is not central to most current work. It
would significantly strengthen future investigations of potential links between proposed
human feature-based analysis processes and the representational strategies in machine
recognition systems if ASR systems trained to extract featural representations could
be tested against human brain data in the same way as the phone-based system tested
here. In the human domain, the evidence for specific phonetic feature representations
in superior temporal cortex raises several further questions about the nature of the
fine-grained neural representations within these patches, and how these might relate to
the neural reconstruction of underlying featural representations.

Third, and finally, the successful matching of the correlational structure of input-output
solutions in human and machine systems may help to motivate the development of
more biologically informed approaches to ASR. Such approaches are now commonplace,
for example, in machine vision systems as discussed previously, and may prove equally
valuable in future ASR systems. This will prove an equally positive development for the
study of the human system, which stills lacks explicit neurocomputational “end-to-end”
models of the process of understanding speech.
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