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Abstract

This thesis is devoted to the study of topological effects in quantum field theories, with a
particular focus on phenomenological applications. We begin by deriving a general clas-
sification of topological terms appearing in a non-linear sigma model based on maps from
an arbitrary worldvolume manifold to a homogeneous space 𝐺/𝐻 (where 𝐺 is an arbitrary
Lie group and 𝐻 ⊂ 𝐺). Such models are ubiquitous in phenomenology; in three or more
dimensions they cover all cases in which only some subgroup 𝐻 of a dynamical symmetry
group 𝐺 is linearly realized in vacuo. The classification is based on the observation that, for
topological terms, the maps from the worldvolume to 𝐺/𝐻 may be replaced by singular ho-
mology cycles on 𝐺/𝐻 . We find that such terms come in one of two types, which we refer to
as ‘Aharonov-Bohm’ (AB) and ‘Wess-Zumino’ (WZ) terms. We derive a new condition for
their 𝐺-invariance, which we call the ‘Manton condition’, which is necessary and sufficient
when the Lie group 𝐺 is connected.

Armed with this classification of topological terms, we then apply it to Composite Higgs
models based on a variety of coset spaces 𝐺/𝐻 and discuss their phenomenology. For ex-
ample, we point out the existence of an AB term in the minimal Composite Higgs model
based on 𝑆𝑂(5)/𝑆𝑂(4), whose phenomenological effects arise only at the non-perturbative
level, and lead to 𝑃 and 𝐶𝑃 violation in the Higgs sector. Consideration of the Manton
condition leads us to discover a rather subtle anomaly in a non-minimal model based on
𝑆𝑂(5) × 𝑈(1)/𝑆𝑂(4) (a model which does, however, feature an AB term not previously no-
ticed in the literature). A particularly rich topological structure, with six distinct terms of
various types, is uncovered for the model based on 𝑆𝑂(6)/𝑆𝑂(4), which features two Higgs
doublets and one singlet. Perhaps most importantly for phenomenology, measuring the co-
efficients of WZ terms that appear in any of these Composite Higgs models can allow one
to probe the gauge group of the underlying microscopic theory.

As a further application of our results, we analyse quantum mechanics models featur-
ing such topological terms. In this context, a topological term couples the particle to a
background magnetic field. The usual methods for formulating and solving the quantum
mechanics of a particle moving in a magnetic field respect neither locality nor any global
symmetries which happen to be present. We show how both locality and symmetry can be
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made manifest, by passing to an otherwise redundant description on a principal bundle over
the original configuration space, and by promoting the original symmetry group to a central
extension thereof. We then demonstrate how harmonic analysis on the extended symmetry
group can be used to solve the Schrödinger equation.

To conclude our study of topological terms in sigma models, we show that the classi-
fication we have proposed may be rigorously justified (and generalised) using differential
cohomology theory. In doing so, we introduce the notion of the ‘𝐺-invariant differential
characters’ of a manifold 𝑀 . Within this language, the Manton condition follows from the
homotopy formula for differential characters, and we show that it remains necessary and suf-
ficient under weaker conditions than connectedness of 𝐺. We prove that the abelian group of
𝐺-invariant differential characters sits inside various exact sequences and commutative dia-
grams, which thus provide us with some powerful algebraic tools for classifying topological
terms in quantum field theories.

In the remainder of the thesis we depart from the topic of sigma models and turn to
gauge theories. We analyse anomalies (which may be understood as arising from topological
effects) in both the Standard Model (SM) and theories Beyond the Standard Model (BSM).
This analysis consists of two parts, in which we consider ‘local’ and ‘global’ anomalies in
a gauge symmetry 𝐺; the former depend only on the Lie algebra of 𝐺, while the latter are
sensitive also to its global structure, i.e. its topology.

We first chart the space of anomaly-free extensions of the SM by a flavour-dependent
𝑈(1) gauge symmetry, using arithmetic techniques from Diophantine analysis to cancel all
possible local anomalies. We then develop some of these anomaly-free theories into phe-
nomenological models featuring a heavy 𝑍′ gauge boson, that can account for a collection
of recent measurements involving 𝑏 → 𝑠𝜇𝜇 transitions which are discrepant with SM pre-
dictions. We discuss how these models might also explain coarse features of the fermion
mass problem, such as the heaviness of the third family.

We then turn to global anomalies, which we analyse using the Dai-Freed theorem. Our
principal tool here is to compute the bordism groups of the classifying spaces of various Lie
groups, preserving particular spin structures, using the Atiyah-Hirzebruch spectral sequence.
We show that there are no global anomalies (beyond the Witten anomaly associated with the
electroweak factor) in four different ‘versions’ of the SM, in which the gauge group is taken
to be 𝐺SM/Γ, with 𝐺SM = 𝑆𝑈(3) × 𝑆𝑈(2) × 𝑈(1) and Γ ∈ {0, ℤ2, ℤ3, ℤ6}. We also show
that there are no new global anomalies in 𝑈(1)𝑚 extensions of the SM, which feature multiple
𝑍′ bosons, or in the Pati-Salam model.
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Chapter 1

Introduction

This thesis will tell two stories. Each of these is a largely self-contained tale, containing
its own cast of characters, and their plots (and side-plots) are for the most part decoupled.
Nonetheless, the two are connected by the fact that they concern topological effects in quan-
tum field theories. Moreover, both are focussed on applications of these topological effects
in particle physics phenomenology.

The first of these two stories (Chapters 2 through 5) is about topological terms in sigma
models in various numbers of spacetime dimensions: their classification [1]; their invariance
under global symmetries and the subtleties of associated anomalies [1]; their physical effects
in a variety of phenomenological examples, such as Composite Higgs models [2, 3]; and
finally how we might understand these ideas using more sophisticated mathematical tools of
differential cohomology theory.

The second story is rooted in a study of anomaly cancellation in gauge theories (Chapters
6 and 7). Our particular concern here is the Standard Model (SM) of particle physics, and
related theories Beyond the Standard Model (BSM). We examine anomaly cancellation in
extensions of the SM by a flavour-dependent 𝑈(1) gauge symmetry [6], and report on a
number of model-building attempts inspired by this analysis [4, 5, 8]. We then consider so-
called ‘global anomalies’ in the SM and in a wide range of BSM theories, which we shall
attack using bordism theory.

Ideas and methods from algebraic topology, applied in the context of quantum field the-
ory, link these two stories together. Thus, we begin this thesis with a discussion of why
concepts from topology find a natural home in quantum theory.



2 Introduction

1.1 Topology in quantum theory
In the words of the late Sir Michael Atiyah, it “should not be too surprising” that topology
should have a lot to say about quantum theory, since “both quantum theory and topology are
characterized by discrete phenomena emerging from a continuous background” [9]. In the
decades following 1982,1 the connections between topology and quantum field theory have
been found to be deep and substantive. A few of these connections we shall soon review.
But in the spirit of Atiyah’s remark, before we turn to more modern ideas, one can argue that
topology leaves its mark on quantum theory in its most basic settings; as basic, say, as the
quantum mechanics of a free point-like particle.

Topology in quantum mechanics
While the classical mechanics of a point particle is described by equations of motion which
are essentially local, an undergraduate learns that its quantum mechanics is described by a
probability distribution which is inherently delocalised over space. If the particle lives on a
manifold 𝑀 , there must exist a corresponding “wavefunction” determining that probability
distribution, which we can think of for now as a square-integrable ℂ-valued function de-
fined on all of 𝑀 . So it already seems plausible that the quantum theory ought to notice the
global structure of 𝑀 - whether it is compact, whether it is connected, whether it is simply-
connected, whether it has a boundary, and so on - in a way that the classical theory perhaps
doesn’t. As an explicit example which could hardly be simpler, the (continuous) spectrum of
a free particle on ℝ is very different to the (discrete) spectrum of a free particle constrained to
a finite interval (a 1-dimensional ‘box’) or to a circle, despite the classical equations of mo-
tion (�̈� = 0) coinciding everywhere locally. The distinctions here are basic yet fundamental
ones, topologically-speaking, between compact and non-compact manifolds, and between
manifolds with boundary and those without.

In fact these distinctions are not as simplistic as they might sound. The notion of bound-
aries, in particular, shall play a central role in this thesis. An important consideration for us
will be whether manifolds without boundary are themselves boundaries, or not. This topo-
logical question is analysed algebraically using homology theory, which takes centre stage
in Chapter 2. In that Chapter, and later in Chapter 5, we shall see many instances of the
subtle interplay between elementary topological properties such as compactness and con-

1Witten’s ground-breaking paper ‘Supersymmetry andMorse theory’ [10] of 1982 was arguably something
of a watershed moment, which alerted many major mathematicians in geometry and topology to the usefulness
of quantum field theory as a serious tool in mathematics.
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nectedness, especially once we introduce the additional structure of a Lie group action on
manifolds.

Let us continue with our toy quantummechanics model of a particle moving on a smooth
manifold 𝑀 . A kinetic term in the action gives rise to dynamics for the particle, and this
kinetic term is constructed from a Riemannian metric on 𝑀 . However, we can define con-
tributions to the action which do not require local geometric structure on 𝑀 (in the form of
a Riemannian metric). If such a term is nevertheless invariant under changing coordinates
on the particle worldline then it provides a well-defined physical contribution to the action,
and we call it a ‘topological term in the action’. This thesis is devoted in part to studying
such topological terms, not just in quantum mechanics but in a more general quantum field
theory setting. Including such terms can provide a direct probe of the topology of 𝑀 , in the
sense of ‘measuring’ topological invariants, and their physical effects might (or might not)
be exclusive to the quantum theory.

For our first example of a topological term, consider a particle constrained to move on a
circle, 𝑀 = 𝑆1, described by worldlines 𝛾 ∶ 𝑆1 → 𝑆1,2 with dynamics that are invariant
under translations around the target space circle (corresponding to the transitive action of the
group 𝑈(1) on the circle).3 Now suppose that a solenoid pierces the centre of the circle. The
dynamics remains translationally-invariant, and the solenoid couples to the particle via the
magnetic vector potential 1-form 𝐴 = 𝑏

2𝜋 𝑑𝜃, where 𝜃 ∼ 𝜃 + 2𝜋 is a coordinate on the target
space circle, and 𝑏 ∈ ℝ (for now). We may write the topological term in the action as

´
𝛾∗𝐴,

the integral of the pullback of 𝐴 over the particle’s worldline. For a worldline that wraps the
(target space) circle 𝑛 times, this topological term in the action evaluates to

´
𝛾∗𝐴 = 𝑏𝑛

and corresponds to the Aharonov-Bohm phase acquired by the wavefunction of the particle
during its evolution. This topological term measures the winding number (or degree) of the
map 𝛾 . This quantity is a topological invariant of that map, meaning it is invariant under
continuous invertible deformations or homeomorphisms of the target space circle.4

In the presence of a kinetic term
´ 𝑑𝑡

2
̇𝜃2 in the action, the spectrum of the hamiltonian

is given by 𝐸𝑘 (𝑏) = 1
2 (𝑘 − 𝑏

2𝜋 )
2, with quantised momenta 𝑘 ∈ ℤ. It is only because 𝑘

is quantised that this spectrum depends on the value of 𝑏 at all, with 𝑏 ≠ 0 effecting a
2Wewill take particle worldlines (andmore generallyworldvolumeswhenwe pass to the field theory setting)

to be closed smooth manifolds, that is compact and without boundary. The justification for this shall be given
in due course, in §2.2. In the case of quantum mechanics, this means the worldline is diffeomorphic to a circle.

3This set-up also describes the motion of a rigid body in a plane, since 𝑆1 ≅ 𝑆𝑂(2) can be thought of as the
configuration space of a rigid body in two dimensions. In this case the topological term which we describe can
be thought of as assigning anyonic character to the rigid body, in that the wavefunction acquires an arbitrary
phase under a complete rotation.

4The winding number is in fact a homotopy invariant, which is even stronger than being a topological (i.e.
homeomorphism) invariant.
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continuous shift in all the eigenvalues (see Fig. 1.1).5 A particularly important point is
that the degeneracy of the vacuum of the quantum theory depends on the value of 𝑏; when
𝑏 = (2𝑛 + 1)/2, 𝑛 ∈ ℤ, there are two degenerate minima of the function 𝐸𝑘∈ℤ, while for any
other value of 𝑏 the vacuum is unique. The values 𝑏 ∈ ℤ are special here for another reason;
only for these values of the topological term is the theory invariant under time reversal, i.e.
under reversing the orientation of the worldline.

Upon taking the classical limit, the momenta is free to take continuous values 𝑘 ∈ ℝ,
and so the parameter 𝑏 becomes unphysical. This reflects the familiar fact that classical
electrodynamics only depends on 𝐴 through the electromagnetic field strength 𝐹 = 𝑑𝐴,
which vanishes here because the vector potential is a closed 1-form (which means it is locally
a total derivative in the lagrangian). This example thus concretely illustrates the somewhat
vague idea we expressed above, that the quantum mechanics of a particle ought to ‘notice’
the topology of the manifold on which it lives, when the classical theory might not.6 The fact
that the closed 1-form 𝐴 is not furthermore exact means it can give a non-zero action phase
when evaluated over wordlines corresponding to cycles in non-trivial homology classes, and
therefore can affect the quantum theory.

In Chapter 2, we shall come to call the 𝑝-dimensional generalisation of this kind of topo-
logical term, in which the lagrangian is a closed but not exact 𝑝-form, as an Aharonov-Bohm
(AB) term in the action phase, in reference to this simplest example of such a topological
term.

This example of a topological term in quantum mechanics on the circle, while strikingly
simple, is in fact a perfect analogy for the famous ‘theta-term’ appearing in the renormal-
isable lagrangian of four-dimensional quantum chromodynamics (QCD),7 which furnishes
our first example of a topological term in a field theory setting - and one of great phenomeno-
logical importance in particle physics.8 The topological term in the action can be written

5Importantly, shifting 𝑏 → 𝑏 + 𝑚 for any integer 𝑚 doesn’t change the spectrum; this is of course expected,
because the Aharonov-Bohm phase exp(2𝜋𝑖𝑏𝑛) is invariant under 𝑏 → 𝑏 + 𝑚 for any value of the winding
number 𝑛 ∈ ℤ. Thus, the couplings 𝑏 and 𝑏 + 𝑚 describe the same physics, and so 𝑏 is really valued in
ℝ/ℤ ≅ 𝑈(1).

6As mentioned above, the compactness of 𝑆1 is already noticed by the quantum theory before we include
the topological term, via the discreteness of its spectrum (when contrasted to the case where 𝑀 = ℝ). Com-
pactness is of course another topological invariant (but note not a homotopy invariant) which again is not
noticed by the classical equations of motion; as discussed above, the quantisation of allowed wavenumbers
occurs because quantummechanics requires a wavefunction that is well-defined on the circle. By including the
topological term in the action, we measure an additional piece of topological information, namely the winding
number of the map 𝛾 ∶ 𝑆1 → 𝑆1.

7This theta term violates charge-parity (henceforth denoted by 𝐶𝑃 ), which would otherwise be a discrete
ℤ2 symmetry of QCD.

8As a result, the name ‘theta terms’ is often used in the literature to refer to the general class of topological
terms which we call AB terms throughout this work.
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(a) 𝜃 = 0
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(b) 𝜃 = 𝜋

Fig. 1.1 Spectrum of a particle moving on 𝑆1 at 𝜃 = 0 (left) and 𝜃 = 𝜋 (right), with the
energy eigenvalues labelled by orange dots. Notice that while at 𝜃 = 0 (and indeed at all
other values of 𝜃 ≠ 𝜋) there is a unique vacuum state, at 𝜃 = 𝜋 there are two-degenerate
minima. There is an analogous story concerning the topological ‘theta term’ of real-world
QCD.

as 𝑆 = 𝜃
16𝜋2

´
Tr 𝐺 ∧ 𝐺, where 𝐺 is the QCD field strength 2-form for the 𝑆𝑈(3)𝑐 gauge

fields, the trace is over colours, and the integral is over four-dimensional spacetime. In strict
analogy with the quantum mechanics example above, the integrand is a closed but not exact
4-form, meaning it is (locally) a total derivative which does not affect the classical equa-
tions of motion. Indeed, even in the quantum theory, it has no effects within perturbation
theory. The 𝑈(1)-valued coefficient 𝜃 is analogous to the 𝑈(1)-valued parameter we called
𝑏 in our quantum mechanical analogue, and the topological term in the action written above
computes the Pontryagin number of the gauge field configuration multiplied by 𝜃,9 which is
a topological invariant much like the winding number in our toy example. The fact that the
numerical value of the coefficient 𝜃 ≲ 10−10 is so small is the famous ‘strong 𝐶𝑃 problem’
of QCD.10

Continuing the analogy between real-world QCD and quantum mechanics on the circle,
the theta term plays an important role, analogous to that of the coupling constant 𝑏 discussed
above, in determining the vacuum structure of QCD [15, 16]. In QCD, the result is the
same as for the quantum mechanical prototype: at 𝜃 = 0, there is a trivial, non-degenerate
vacuum state, while at 𝜃 = 𝜋, this is shown not to be the case. However, unlike in the
quantum mechanical case where the spectrum could be trivially computed, in QCD the ar-

9A physicist might be more familiar with the name ‘instanton number’ for this topological invariant.
10This bound on 𝜃 comes principally from the experimental measurement of the (𝐶𝑃 -violating) electric

dipole moment of the neutron [11]. For recent computations of the bound on 𝜃, see e.g. Refs. [12–14].
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gument which leads to the same conclusion is very far from being trivial. After all, QCD is a
strongly-coupled confining theory at low energies, and so the effective potential is certainly
not exactly calculable. Rather, the existence of a non-trivial vacuum at 𝜃 = 𝜋 follows from
the discovery of a discrete mixed anomaly between time reversal and a ℤ3 ‘higher-form’
centre symmetry [17, 18].11 We shall postpone any detailed discussion of anomalies, which
are themselves ultimately topological effects, to §1.3.

Given the two examples of topological terms we have discussed so far, the reader might
be forgiven for thinking that the physical effects of topological terms are exclusive to the
quantum theory. This is not true in general. For a straightforward counterexample, con-
sider again a point particle on smooth manifold 𝑀 , with trajectory 𝛾 ∶ 𝑆1 → 𝑀 , and
couple that particle to a background magnetic field with non-vanishing field strength. This
magnetic coupling is included in the lagrangian (at least locally, i.e. on an open set 𝑈𝛼 of
𝑀) by a topological term of the form 𝑆 =

´
𝛾∗𝐴𝛼 (in the special case that Im 𝛾 ⊂ 𝑈𝛼,

on which there is a locally-defined 1-form 𝐴𝛼), where the (globally-defined) field strength
𝐹 = 𝑑𝐴𝛼 is no longer vanishing as it was in the AB example above. As this notation indi-
cates, and as we shall see in detail in Chapter 2, there may not in fact exist a globally-defined
lagrangian ‘𝐴’ for such a topological term, but only a collection of locally-defined lagrangian
1-forms {𝐴𝛼}.12 A topological term of this kind, or rather its generalisation in the context
of 𝑝-dimensional quantum field theories, shall be called a ‘Wess-Zumino’ (WZ) term in the
sequel, for reasons that shall soon be made clear. Together, the spaces of AB terms and WZ
terms shall form our classification of topological terms in sigma models in Chapter 2.

We show in Chapter 4 that a globally-defined lagrangian for such a term can nevertheless
be built out of the local data {𝐴𝛼}, if one passes to an otherwise redundant description of
particle dynamics not on 𝑀 , but on a 𝑈(1)-principal bundle 𝑃 over 𝑀 , with connection 𝐴
and curvature 𝐹 = 𝑑𝐴. From that perspective, the topological term in the action phase is
equal to the holonomy of the connection. We remark that the holonomy is not in general a
topological invariant of 𝑀 . Thus, as well as showing that topological terms can certainly
appear in the classical equations ofmotion, this example further shows that not all topological
terms in the action necessarily compute topological invariants of the target space 𝑀 (as was
the case for the AB term); but it is nevertheless clear that the holonomy is a topological term
in the sense that it does not require the structure of a metric on 𝑀 .

11The notion of a ‘higher-form symmetry’ shall not feature again in this thesis; we refer the curious reader
to Ref. [19] which introduces the idea.

12In fact we require some additional structure to define such a topological term, in the form of a collection of
functions (called transition functions) defined on the intersections of the open sets on 𝑀 . With this structure,
one can construct a well-defined action for such a topological term even on trajectories which traverse multiple
open sets, by using the transition functions to switch between the locally-valid descriptions.
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We have seen so far through a selection of examples how ordinary point-particle quantum
mechanics ‘notices’ many topological properties of the manifold on which it moves, such as
compactness, and moreover how topological terms can be added to the action which might
‘measure’ other topological properties such as the degree of a map, or the holonomy of a
connection. An especially spectacular instance of this phenomenon, which is several leaps
beyond everything we have discussed thus far, occurs when one adds supersymmetry into the
mix. Witten showed in 1982 [10] that the quantum mechanics of a supersymmetric particle
on a Riemannian manifold 𝑀 , for which the hamiltonian is a modified Hodge-Laplacian, can
be used to derive a set of remarkable constraints on the (non-degenerate)13 critical points of
functions on 𝑀 called theMorse inequalities [23]. These constraints involve topological in-
variants called the ‘Betti numbers’ of 𝑀 .14 Moreover, considering supersymmetric quantum
mechanics led Witten to propose a generalisation of the Morse inequalities, thus arriving at
new results in mathematics. Witten subsequently applied results from Morse theory in his
analysis of supersymmetry breaking in the quantum field theory context [24].

This pioneering work of Witten has been followed by a proliferation of ideas in a similar
vein, which relate quantum mechanics to topological properties of the target space, partic-
ularly in the context of supersymmetry, a review of which would be a digression from the
subject of this (definitively non-supersymmetric) thesis. To offer just one more example be-
fore we continue, quantum mechanics has very recently been studied on a class of manifolds
called hyperKähler cones, equipped with a large superconformal symmetry whose Lie super-
algebra is 𝔬𝔰𝔭(4∗|4). A topological index has been defined for this theory [25] which from
the physical perspective performs a specific (graded) counting of BPS states in the theory. It
is shown that this index computes equivariant Euler characters of the hyperKähler cone [26],
thus providing an example of how new topological invariants continue to be computed using
quantum mechanics.

Topology in quantum field theory
Having discussed the many-faceted role of topology in quantum mechanics, we are set up to
generalise this discussion to a quantum field theory setting, in which our degrees of freedom
are now maps out of some spacetime of a fixed dimension 𝑝. When we pass to field theory,
the connections with topology become (not surprisingly) far richer, with the consequence

13Various generalisations of the original Morse inequalities have been developed which relax this assump-
tion of non-degeneracy in different ways, such as the generalisation to ‘Morse-Bott functions’ [20, 21]. A
generalisation of Morse theory with especially weak assumptions on the ‘isolatedness’ of the critical points
has been recently proposed in Ref. [22].

14As one example of the strength of the Morse inequalities in mathematics, Morse theory has been used to
completely classify all closed 2-manifolds up to diffeomorphism.
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that many topologists have become well-versed in quantum field theory in recent decades.
Part of the reason for the intrigue in quantum field theory, on the part of the mathematicians,
is that the quantum field theories which physicists usually discuss are not even definedmath-
ematically. Despite this, insight from field theory has nonetheless produced a flurry of new
mathematical conjectures, and even ‘physical proofs’ of some mathematical results. In this
Section, we will discuss some of these connections and highlight some of the most important
discoveries; but we do not attempt anything like a comprehensive survey of the subject.

The dynamical degrees of freedom in a quantum field theory can usually be regarded as
maps 𝜙(𝑥) from spacetime Σ𝑝 into some field space.15 The space of such maps, which we
may denote by 𝒞 , is typically infinite dimensional. An observable in a quantum field theory
is usually defined to be the result of computing a ratio of two path integrals over 𝒞 , such as
the correlation function

⟨∏
𝑖

𝒪𝑖(𝑥𝑖)⟩
=
´

𝐷𝜙 ∏𝑖 𝒪𝑖(𝑥𝑖) 𝑒2𝜋𝑖𝑆(𝜙)´
𝐷𝜙 𝑒2𝜋𝑖𝑆(𝜙)

≡ 𝑍𝒪
𝑍 . (1.1)

The integrand consists of insertions of ‘local operators’ denoted by ∏𝑖 𝒪𝑖(𝑥𝑖), which will
typically be polynomials of the classical fields 𝜙, weighted by an action phase. This action
phase, which specifies the dynamics of the field theory, is a map from 𝒞 into 𝑈(1), viz.

𝜙 ↦ 𝑒2𝜋𝑖𝑆(𝜙). (1.2)

We stress that it is the action phase that appears as the integrand in the path integral, and is
therefore physical. The action 𝑆(𝜙), which is a real lift of the action phase, is only physical
modulo an integer. The problem with a definition such as (1.1) is an analytic one; there is no
guarantee that an appropriate measure (which we represented with the symbol ‘𝐷𝜙’) exists
on the infinite-dimensional space of maps 𝒞 , with which to rigorously define the integrals
in (1.1).

This approach to defining a quantum field theory (QFT) is the traditional one, in which
a classical theory (whose equations of motion are saddle points 𝛿𝑆(𝜙) = 0 of the classical
action) is ‘quantised’ by trying to make sense of path integrals such as (1.1). The oldest and
most familiar crutch for turning the ill-defined integrals of (1.1) into physical predictions

15This is a somewhat naïve definition of a ‘field’. More formally, a field is a simplicial sheaf on the category
of smooth 𝑝-manifolds - see e.g. Ref. [27]. This definition includes ordinary scalar fields, connections, spinor
fields, metrics, as well as non-dynamical (or ‘topological’) fields such as a spin structure on spacetime. Since
the definition of some of these fields depends on others, and since fields will typically be equipped with equiv-
alence relations under internal ‘symmetries’, the technical structure that best describes field space is arguably
something called a higher stack [27].
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goes by the name of perturbation theory, in which one tries to expand (1.1) using an infinite-
dimensional generalisation of the saddle-point expansion. But conceptually, this approach
suffers from a serious pathology; the resulting perturbative series is an asymptotic series
with zero radius of convergence, a fact that was first appreciated by Dyson in the context
of quantum electrodynamics (QED) [28]. This means that one cannot necessarily make
successively more precise predictions by going to higher orders in perturbation theory. This
failure to converge partly reflects the fact that the perturbative expansion of the path integral
is known to miss certain ‘non-perturbative’ effects, such as contributions from instantons.
Indeed, many of the topological terms we will discuss in this thesis fall into this category of
‘non-perturbative physics’, such as the theta term in QCD that we have already mentioned.
We will show in §3.1, for example, that there is a similar non-perturbative topological term
appearing in the minimal Composite Higgs model (MCHM).

One might attempt to place QFT on a rigorous footing by dispensing with the classical
theory altogether, and instead trying to formulate QFT only in terms of correlation functions
and amplitudes that satisfy a particular set of axioms - and thereby evade problems that are
inherent in defining path integrals. Famously, a set of such axioms was found for conformal
field theories in two dimensions by Segal [29]. However, no such axiomatic definition has
yet been found that describes generic QFTs, which is broad enough to incorporate (say)
phenomenologically important theories like the Standard Model of particle physics, which
therefore remain ill-defined mathematically.

Topological quantum field theories (TQFTs) provide another class of QFTs that are ‘sim-
ple enough’ to be amenable to axiomatisation. From the traditional path integral perspective,
a TQFT is one in which all correlation functions of the theory turn out to be independent of
a metric on Σ𝑝. Following Segal’s axiomatisation of conformal field theory, a similar set of
axioms for defining TQFTs was proposed by Atiyah [9] (and also Witten [30]). Both these
definitions are formulated in the language of category theory, the formalities of which we
shall largely avoid in our discussion. Instead, we shall summarise the essence of Atiyah’s
categorical definition somewhat crudely, focusing rather on its physical content, and without
any pretense of rigour.

A 𝑝-dimensional QFT is a functor (call it𝑍) that assignsℂ-numbers to closed 𝑝-manifolds
Σ𝑝, called the partition function 𝑍(Σ𝑝), and assigns a complex normed vector space of
states16 to any (𝑝−1)-dimensional slice 𝑉 𝑝−1 throughΣ𝑝. Given two such (𝑝−1)-dimensional
slices, call them 𝑉 𝑝−1

in and 𝑉 𝑝−1
out , there will be a unitary evolution operator between the asso-

ciated Hilbert spaces, i.e. that maps ℋin ∶= 𝑍(𝑉 𝑝−1
in ) → 𝑍(𝑉 𝑝−1

out ) =∶ ℋout. In general this
unitary evolution map will depend on the geometry of the 𝑝-dimensional region of space-

16Technically, the space of states is a Hilbert space.
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time ‘in between’ the two slices 𝑉 𝑝−1
in and 𝑉 𝑝−1

out , call it 𝑈 𝑝, which is called a bordism.17 In
a TQFT, however, this evolution operator (which is assigned by the functor 𝑍 to each 𝑝-
bordism) is independent of the geometry of the bordism 𝑈 𝑝, depending only on its topology.
As a consequence, if two spatial slices are connected by a (topologically) trivial bordism,
then they share the same Hilbert space. This means the hamiltonian of a TQFT acts triv-
ially.

The language of bordism also provides a natural definition of locality in TQFT (and in
QFT more generally), which is enshrined in Atiyah’s axioms. There are two parts to this
definition. Firstly, consider the case that spacetime Σ𝑝 is a disjoint union of 𝑝-manifolds,
which we denote Σ𝑝 = Σ𝑝

1 ⊔ Σ𝑝
2. For physics to be “local” then requires that dynamics on

either component is not influenced by the other. This implies both that the partition function
factorises over these disconnected components, i.e.

𝑍(Σ𝑝
1 ⊔ Σ𝑝

2) = 𝑍(Σ𝑝
1) ⋅ 𝑍(Σ𝑝

2), (1.3)

and moreover that the Hilbert space associated with both the incoming and outgoing bound-
aries should be the tensor product vector spaces, viz. ℋin = 𝑍(𝑉1,in)⊗𝑍(𝑉2,in) and similarly
for ℋout.

Secondly, there is a notion of ‘gluing’ (and thus also ‘cutting’) of bordisms, which is sim-
ply the composition law in the bordism category, as follows. Again consider a 𝑝-dimensional
bordism 𝑈 𝑝 such that 𝜕𝑈 𝑝 = (−𝑉 𝑝−1

in ) ⊔ 𝑉 𝑝−1
out , and also a second bordism 𝑈 𝑝

∗ with boundary
𝜕𝑈 𝑝

∗ = (−𝑉 𝑝−1
out )⊔𝑉 𝑝−1

outer. Then one may compose or ‘glue’ together the two bordisms 𝑈 𝑝 and
𝑈 𝑝

∗ along their shared boundary 𝑉 𝑝−1
out (with opposite orientations), to make a third bordism,

which we denote (following Atiyah) by

𝑈 𝑝 ∪𝑉 𝑝−1
out

𝑈 𝑝
∗ , with boundary (−𝑉 𝑝−1

in ) ⊔ 𝑉 𝑝−1
outer. (1.4)

Locality is then taken to imply that the functor 𝑍, which assigns linear transformations
between vector spaces to bordisms, is ‘multiplicative’ over this gluing operation on bor-
disms, meaning the ‘in’ and ‘out’ Hilbert spaces associated with the ‘composite bordism’
𝑈 𝑝 ∪𝑉 𝑝−1

out
𝑈 𝑝

∗ are simply 𝑍(𝑉 𝑝−1
in ) and 𝑍(𝑉 𝑝−1

outer). The Hilbert space associated to the slice
𝑉 𝑝−1
out on which the gluing occurs is traced over. To translate back into more familiar physi-
17More precisely, an oriented 𝑝-dimensional manifold 𝑈 𝑝 is a bordism from one (𝑝−1)-dimensional manifold

𝑉 𝑝−1
in to another, 𝑉 𝑝−1

out , if its boundary is the disjoint union of𝑉 𝑝−1
in and𝑉 𝑝−1

out , with the orientation of𝑈 𝑝 agreeing
with that of 𝑉 𝑝−1

out , but disagreeing with that of 𝑉 𝑝−1
in . In other words, we have that 𝜕𝑈 𝑝 = (−𝑉 𝑝−1

in ) ⊔ 𝑉 𝑝−1
out ,

where the minus sign denotes orientation reversal. This is sometimes known as a ‘cobordism’ in the literature.
While a familiarity with (co)bordism is not especially important to the current discussion, the notion shall play
an important role in our discussion of anomalies later on.
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cal language, this means that evolving the Hilbert space from 𝑉 𝑝−1
in to 𝑉 𝑝−1

outer is equivalent to
evolving from 𝑉 𝑝−1

in to 𝑉 𝑝−1
out , inserting and tracing over a complete basis of states at 𝑉 𝑝−1

out ,
and then evolving from 𝑉 𝑝−1

out to 𝑉 𝑝−1
outer.

A functor with these properties, which we have described only roughly, is a TQFT, de-
fined rigorously byAtiyah [9]. To recap, a 𝑝-dimensional TQFT assigns ℂ-numbers to closed
spacetime 𝑝-manifolds Σ𝑝, which a physicist would call the partition function of the theory
evaluated on Σ𝑝, as well as ℂ-valued vector spaces of states (or Hilbert spaces) to (𝑝 − 1)-
dimensional ‘spatial slices’ through Σ𝑝. Furthermore, the TQFT associates a unitary evo-
lution operator between Hilbert spaces associated with two different slices, which satisfies
a precise notion of ‘locality’ in terms of cutting and gluing of bordisms, and which more-
over depends only on the topology of the bordism that ‘interpolates’ between the two spatial
slices. This means the evolution is trivial if the bordism is simply a cylinder (and hence the
‘hamiltonian’ is zero), but there may nonetheless be a non-trivial evolution between Hilbert
spaces if the associated slices are connected by a bordism with non-trivial topology. The
result of Atiyah’s rigorous definition of a TQFT is an object that is rather ‘natural’ (to use
Atiyah’s word) in algebraic topology.

The structure of a TQFT furnishes a ‘bare bones’ model for a QFT, with familiar phys-
ical properties such as locality being axiomatised in terms of the bordism category. Even
though the topological property renders a TQFT essentially trivial from the point of view of
dynamics (in that the hamiltonian vanishes), it turns out that the structure of a TQFT is rich
enough to bestow remarkable insights into various mathematical problems in topology and
geometry.

Perhaps the best example of this is Witten’s groundbreaking paper on the Jones polyno-
mial from 1989 [31]. The Jones polynomial is a certain invariant of a link in 𝑆3 that plays an
important role in their classification [32], where a link is an embedding of a disjoint union
of circles.18 The Jones polynomial for a particular link may be computed (for example) us-
ing ‘linear skein theory’ [33], which involves taking various two dimensional ‘slices’ of the
link, and finally proving the answer is independent of how the link was sliced. However,
mathematicians at the time could not formulate an intrinsically three-dimensional definition
or construction of the Jones polynomial. On the other side of the coin, physicists noticed the
repeated appearance of these link invariants in two-dimensional QFTs (for example, in con-
nection with statistical mechanics [34], with the Yang-Baxter equation for two-dimensional
integrable systems [35], and with ‘conformal blocks’ in two-dimensional conformal field
theory [36]). Witten would resolve both mysteries in one paper [31], by providing a three-
dimensional definition of the Jones polynomial, in the form of a TQFT.

18The word knot is usually used in this context to refer to a link with a single component.
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Witten considered pure 𝑆𝑈(2) gauge theory on an oriented three dimensional spacetime
Σ3, with the action given by the Chern-Simons term

𝑆CS[𝐴] = 𝑘
8𝜋2

ˆ
Σ3

Tr(𝐴 ∧ 𝑑𝐴 + 2
3𝐴 ∧ 𝐴 ∧ 𝐴) , 𝑘 ∈ ℤ, (1.5)

where 𝐴 denotes the connection on a principal 𝑆𝑈(2)-bundle over Σ3. The observables are
defined to be products of Wilson lines 𝑊𝑅(𝛾), where 𝑊𝑅(𝛾) is the holonomy of the con-
nection 𝐴 evaluated over a loop 𝛾 in Σ3, and traced over in a particular representation 𝑅 of
𝑆𝑈(2). Clearly, neither the lagrangian nor the observables require any choice of metric on
Σ3, and so the theory is topological. Moreover, the insertion of multiple Wilson lines pro-
vides a set of non-intersecting loops {𝛾𝑖} in 𝑆3, which defines a general link 𝐿. Remarkably,
Witten was able to prove that the expectation value of a product of such Wilson lines, which
is ‘defined’ by a path integral

ˆ
𝐷𝐴 ∏

𝑖
𝑊𝑅𝑖(𝛾𝑖) 𝑒2𝜋𝑖𝑆CS[𝐴], (1.6)

can be used to compute the Jones polynomial for the link 𝐿, where the integral is over con-
nections 𝐴 modulo gauge transformations.19 As well as providing an intrinsically three-
dimensional definition of the Jones polynomial (albeit one that requires a path integral which
is not even rigorously defined), this definition is straightforwardly generalised to links not
only on 𝑆3, but on any oriented three-manifold. In this way, Witten was able to use Chern-
Simons theory to define new topological invariants that generalised those defined by knot
theorists.

The connection with two-dimensional conformal blocks may then be appreciated using
the bordism perspective of TQFT that we developed above. In essence, the TQFT assigns
(in this case) a vector space of states 𝑍(𝑉 2) to arbitrary two-dimensional slices 𝑉 2 through
three-dimensional spacetime, and these vector spaces are identified with conformal blocks
in a two-dimensional theory on 𝑉 2.

There are similarly impressive stories to this three-dimensional ‘Jones-Witten’ one in-
volving different topological invariants, and in different numbers of dimensions. To give
an especially important example, in four dimensions there are the Donaldson invariants,
which are constructed using a topological Yang-Mills theory, that play a crucial role in clas-
sifying four-manifolds [37, 30].20 Other topological invariants that can be computed using

19The functorial properties of 𝑍, which recall also assigns linear transformations to bordisms, encodes Wit-
ten’s path integrals with the appropriate gluing properties to realise the linear skein relations obeyed by the
Jones polynomial.

20For a readable introduction to the subject often called ‘Donaldson-Witten theory’, see Ref. [38].
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TQFT include Casson invariants [39] and Floer homology [40]. More recently, Kapustin
and Witten constructed a four-dimensional TQFT, by ‘twisting’ an 𝒩 = 4 supersymmetric
Yang-Mills theory, which provides a physical realisation of the geometric Langlands corre-
spondence [41]. All of these examples, which we shall not discuss further, serve to illustrate
the powerful impact that QFT, and specifically TQFT, has had on modern mathematics.
The structure of TQFT has provided algebraic topologists with an adventurous new set of
‘organising principles’, as well as methods, for classifying and computing topological and
geometric invariants.

Topology and phenomenology
In this thesis, we will always have at least one eye firmly fixed on phenomenological appli-
cations of topological aspects of QFT. Thus, invariably, we will be concerned with more
‘dirty’ QFTs which are not topological, and so do not have any clean axiomatic definition of
the kinds proposed by Segal [29] and Atiyah [9].

Even in the context of a non-topological QFT, one can often compute unambiguous infor-
mation associated with a ‘topological sector’ of the theory. We have already mentioned the
topological theta term of QCD as an especially important example. Recall that the coefficient
of this term plays a crucial role in determining the vacuum structure of QCD, as has been
recently elucidated using the (essentially topological) tool of anomaly matching [17, 18], de-
spite QCD being strongly coupled at low energies (and so perturbation theory being wholly
useless). Typically, topological information encoded in a field theory will be robust against
the difficulties that are in inherent in renormalisation, even when the theory is not topologi-
cal.

An excellent example of this idea, which shall be directly relevant to this thesis, is given
by anomaly matching in QCD. At high energies,21 QCD is described by the quark model
with three light quarks 𝑞 = (𝑢, 𝑑, 𝑠) which we shall take to be massless. The quantum theory
possesses a flavour symmetry

𝐺 = 𝑆𝑈(3)𝐿 × 𝑆𝑈(3)𝑅 × 𝑈(1)𝐵, (1.7)

where 𝑆𝑈(3)𝐿/𝑅 acts on the left-/right-handed components of 𝑞, and baryon number 𝑈(1)𝐵
rotates both 𝑞𝐿 and 𝑞𝑅 by the same global phase. Of course, the classical lagrangian pos-
sesses a larger 𝑈(3)𝐿 × 𝑈(3)𝑅 flavour symmetry, but the axial current 𝑗𝜇

𝐴 = ̄𝑞𝛾𝜇𝛾5𝑞 is
21Of course, such a description is valid only below the mass of the charm quark. Thus, the three-flavour

quark model is valid at scales Λ in the range ΛQCD ≪ Λ ≪ 𝑚𝑐 .
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anomalous in the quantum theory, satisfying an anomalous conservation law of the form
(1.20).22

Furthermore, once electromagnetism is turned on, which corresponds to gauging a par-
ticular 𝑈(1) subgroup of 𝐺, there is also a non-abelian anomaly in the flavour-octet axial
current 𝑗𝜇𝑎

𝐴 = ̄𝑞𝛾𝜇𝛾5(𝜆𝑎/2)𝑞, where 𝜆𝑎 is a Gell-Mannmatrix (with 𝑎 = 1, … 8). The formula
for the non-abelian anomaly involves a trace over both flavours and colours, resulting in an
anomalous conservation law23

𝜕𝜇𝑗𝜇𝑎
𝐴 = − 𝑛𝑐𝑒2

16𝜋2 𝜖𝛼𝛽𝜇𝜈𝐹𝛼𝛽𝐹𝜇𝜈 ⋅ Tr [
𝜆𝑎

2 𝑄2
] , (1.8)

where 𝑛𝑐 is the number of colours in QCD, 𝐹𝜇𝜈 is the (abelian) field strength for electro-
magnetism, and 𝑄 = diag(2/3, −1/3, −1/3) is the matrix of electric charges of the quarks. In
this formula the trace is only over flavours, with the trace over colours having already been
carried out to produce the overall factor of 𝑛𝑐 . In particular, (1.8) implies that

𝜕𝜇𝑗𝜇3
𝐴 = − 𝑛𝑐𝑒2

96𝜋2 𝜖𝛼𝛽𝜇𝜈𝐹𝛼𝛽𝐹𝜇𝜈 , (1.9)

which shall be especially relevant to the low energy phenomenology of QCD, to which we
now turn.

When QCD flows to low energies it becomes strongly coupled, and there is a phase
transition in which a non-zero quark condensate ⟨ ̄𝑞𝐿𝑞𝑅⟩ forms, spontaneously breaking 𝐺
down to the subgroup

𝐻 = 𝑆𝑈(3)diag × 𝑈(1)𝐵, (1.10)

where 𝑆𝑈(3)diag is the diagonal subgroup of 𝑆𝑈(3)𝐿 × 𝑆𝑈(3)𝑅. This gives rise to pseudo
Nambu Goldstone bosons (pNGBs) that live on the eight-dimensional coset space 𝐺/𝐻 =
(𝑆𝑈(3)𝐿 × 𝑆𝑈(3)𝑅 × 𝑈(1)𝐵)/(𝑆𝑈(3)diag × 𝑈(1)𝐵) ≅ 𝑆𝑈(3). These eight pNGBs are the
pions 𝜋𝑎(𝑥), which can be packaged into a field 𝑔(𝑥) = exp (𝑖𝜋𝑎(𝑥)𝜆𝑎/𝑓𝜋) ∈ 𝑆𝑈(3), where
𝑓𝜋 is the pion decay constant. The pions are the appropriate degrees of freedom of QCD
at low energies, and their dynamics are described by the chiral lagrangian [42]. The chiral
lagrangian is invariant under the action of the group 𝐺, where the chiral transformations act

22We assume at this stage that the reader is familiar with the notion of anomalies and anomalous conservation
laws. Nonetheless, we shall turn to discuss anomalies in some detail in §1.3, where we shall focus on explaining
their topological origin.

23Note that in the quark model, which describes QCD at short distances, the variation in the effective ac-
tion under axial transformations comes entirely from the variation in the path integral measure, appropriately
regularised, for integrating over the quarks. The classical action for QCD is strictly invariant under axial
transformations.
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by
𝑆𝑈(3)𝐿 × 𝑆𝑈(3)𝑅 ∶ 𝑆𝑈(3) → 𝑆𝑈(3); 𝑔 ↦ 𝐿†𝑔𝑅, (1.11)

for 𝐿 ∈ 𝑆𝑈(3)𝐿 and 𝑅 ∈ 𝑆𝑈(3)𝑅. This group action induces a non-linear action on the
pion fields 𝜋𝑎(𝑥).

As we shall discuss in §1.3, the coefficient of an anomalous conservation law such as
(1.16), which note is equal to an integer (in some units), is not renormalised under RG flow
from high to low energies. Consequently, the anomaly (1.8) must be reproduced by a term
in the chiral lagrangian,24 and the coefficient must match that of (1.8) precisely. This is an
example of ’t Hooft anomaly matching [43].

That term turns out to be a topological term in the chiral lagrangian, in the sense that it
can bewritten downwithout requiring ametric on spacetime, and is called theWess-Zumino-
Witten (WZW) term [44, 45]. It is constructed out of the sigma model fields 𝑔(𝑥) ∈ 𝑆𝑈(3)
from the 𝑆𝑈(3)𝐿 × 𝑆𝑈(3)𝑅-invariant closed 5-form,

𝜔 = −𝑖 𝑘
240𝜋2Tr [(𝑔−1𝑑𝑔)5], 𝑘 ∈ ℤ. (1.12)

While the action is not the integral of any local lagrangian over the four-dimensional space-
time Σ4, it can nonetheless be written (following Witten [45]) by integrating the 5-form 𝜔
over a 5-ball 𝐵 whose boundary is Σ4, i.e.

𝑆WZW =
ˆ

𝐵
𝜔. (1.13)

Because 𝜋4(𝑆𝑈(3)) = 0, such a ball 𝐵 is guaranteed to exist (if one assumes that spacetime
Σ4 is homeomorphic to 𝑆4). Moreover, the quantisation of its coefficient 𝑘 then guaran-
tees the action formed in this way (which we shall often refer to in the sequel as ‘Witten’s
construction’) is in fact independent of the choice of the ball 𝐵, and thus well-defined on Σ4.

How does thisWZW term reproduce the anomaly in 𝑗𝜇𝑎
𝐴 given by (1.16)? To see thismost

simply, one should first expand (1.13) in the pion fields, using 𝑔(𝑥) = exp (𝑖𝜋𝑎(𝑥)𝜆𝑎/𝑓𝜋).
The leading order term, which features five pion fields, is a total derivative, yielding a piece in
the action that can be written (by Stokes’ theorem) as an ordinary four-dimensional integral
of the form

𝑆WZW ⊃ 2𝑘
15𝜋2𝑓 2

𝜋

ˆ
Σ4

Tr (𝜋 𝑑𝜋 ∧ 𝑑𝜋 ∧ 𝑑𝜋 ∧ 𝑑𝜋) , (1.14)

24Because the long distance physics is described by a theory of bosons, rather than fermions (as in the short
distance quark model), the anomaly cannot arise from the path integral measure; rather, there must be a term
in the action itself which is not invariant under axial transformations. Moreover, that term had better be a
topological term if its coefficient is not to be renormalised, as is necessary for anomaly matching.
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where 𝜋(𝑥) = 𝜋𝑎(𝑥)𝜆𝑎/2. After gauging the 𝑈(1) subgroup of the non-anomalous 𝑆𝑈(3)diag
symmetry that corresponds to electromagnetism, Witten then showed that this action con-
tains a piece [45]

𝑆gauged WZW ⊃ 𝑘𝑒2

96𝜋2𝑓𝜋

ˆ
Σ4

𝜋0𝜖𝛼𝛽𝜇𝜈𝐹𝛼𝛽𝐹𝜇𝜈 , (1.15)

where we have identified 𝜋3 ≡ 𝜋0 to be the lightest neutral pion.
By expanding (1.11) to first order around the identity transformation, one can deduce that

the non-abelian axial transformation (for which 𝑅 = −𝐿 = 𝑒𝑖𝛼𝑎𝜆2/2 with parameters 𝛼𝑎 ≪ 1)
acts as a shift symmetry on the pion fields, viz. 𝜋𝑎(𝑥) → 𝜋𝑎(𝑥)+𝑓𝜋𝛼𝑎. Thus, choosing 𝑎 = 3
to pick out the shift from the neutral 𝜋0, we can compute the Noether current 𝑗𝜇3

𝐴 from the
variation of (1.15), and show that it satisfies

𝜕𝜇𝑗𝜇3
𝐴 = − 𝑘𝑒2

96𝜋2 𝜖𝛼𝛽𝜇𝜈𝐹𝛼𝛽𝐹𝜇𝜈 . (1.16)

Thus, we find that the variation of the WZW term reproduces at low energies precisely the
non-abelian anomaly (1.9) that was identified in the high energy quark model, provided 𝑘 =
𝑛𝑐 = 3.

The term (1.15) that comes from expanding the topological WZW term in the chiral
lagrangian facilitates the axial current decay 𝜋0 → 𝛾𝛾 , and in fact gives the leading contri-
bution to this process. Thus, the coefficient 𝑘 of the WZW term could in fact be measured
independently of our knowledge of the underlying quark model, by measuring the branching
ratio for 𝜋0 → 𝛾𝛾 (which intriguingly, must therefore be quantised in integer units). This
measurement does indeed tell us that the integer-quantised coefficient of the WZW term is
𝑘 = 3. Thus, the topological term allows physicists to ‘measure’ the number of colours in
the underlying 𝑆𝑈(𝑛𝑐) gauge theory by measuring the rate of pion decay.

The robustness of the anomaly coefficient, which is topological, and correspondingly
of the coefficient of the topological WZW term, makes it an unambiguous probe of certain
well-defined properties of the quantum field theory, in this case the number of colours. This
story is indicative of the information that is typically contained in the topological sector,
even in non-topological QFTs. It moreover gives a textbook example of the importance of
the topological sector in phenomenology.

The WZW term performs a second crucial role in pion physics: it is the leading order
term in the chiral lagrangian that violates the discrete ℤ2 symmetry (−1)𝑁𝐵 which counts
the number of pions modulo two. It therefore provides the dominant contribution to certain
pion scattering processes which violate this discrete symmetry, for example 2 → 3 decays
such as 𝐾+𝐾− → 𝜋0𝜋+𝜋−.
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Before we zoom in on the specific problems that we shall tackle in the rest of this thesis,
we pause to acknowledge a very important topological aspect of phenomenology that shall
play only a very minor role in the sequel. This is the idea of topological solitons. A soliton
is usually defined to be a static, localised, stable, and finite-energy solution to the classical
equations of motion of a field theory. Often a soliton is stable because of topological reasons,
in which case one may call it a topological soliton. For example, in pure 𝑆𝑈(𝑁) Yang-Mills
theory on ℝ4, any finite action field configuration must die off at infinity, and so defines a
map from 𝑆3 into 𝑆𝑈(𝑁). Such maps fall into distinct homotopy classes (or ‘topological
sectors’), classified by an integer 𝑘 ∈ 𝜋4(𝑆𝑈(𝑁)) ≅ ℤ.25 It would take an infinite amount
of energy to transform a field configuration in one homotopy class to one in a different class,
and so the minimum energy solution within each topological sector must be stable. Such
topologically non-trivial saddle points of the Yang-Mills action may be shown (by saturating
the Bogomoln’yi bound [46, 47]) to be (anti-)self dual, and are known as instantons (see
also Refs. [48, 49]). Solitons will only feature at one point in this thesis, when we consider
the phenomenology of AB terms in Composite Higgs models in §3.1.1. For a thorough
introduction to topological solitons, we recommend the reader consult Ref. [50].

A related idea is that of the sphaleron [51]. A sphaleron is, like a soliton, a static, finite-
energy solution of the field equations. But, unlike a soliton, a sphaleron is unstable, corre-
sponding to a saddle-point (rather than a minimum) of the effective action. Sphalerons are
especially important to phenomenological particle physics because they occur in the Stan-
dard Model (whereas stable solitons do not), in particular in the electroweak theory [51].
Phenomenologically, sphaleron-induced processes would leave dazzling signatures in col-
lider experiments if they were energetically accessible [52, 53], featuring violation of baryon
and lepton number, for which there is so far no direct evidence. In some sense the experimen-
tal verification of the SM is not complete until evidence of the sphaleron is seen in collider
experiments, and such an event would furnish a spectacular example of the importance of
topological effects in particle physics phenomenology.

1.2 Topological terms in sigma models
The chiral lagrangian described above is an example of a sigma model on a homogeneous
space. In general, a sigma model on a homogeneous space is a quantum field theory whose
configuration space 𝒞 is the space of maps from a 𝑝-dimensional worldvolume manifold
Σ𝑝 into a homogeneous space 𝐺/𝐻 , and whose dynamics is described by an action phase
exp 2𝜋𝑖𝑆(𝜙) which we shall require is invariant under the action of the Lie group 𝐺, in-

25The integer 𝑘 is in fact the first Pontryagin number, which we have encountered already in this Introduction.
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duced by the transitive action of 𝐺 on 𝐺/𝐻 . Ordinary scalar field theory can of course be
regarded as a sigma model, where the target space is simply ℝ or ℂ, say. Such a theory is a
particularly straightforward example of a sigma model, in which the target space is a linear
space. In this thesis we shall be more interested in sigma models with target spaces that are
not linear spaces. For example in the case of the chiral lagrangian, 𝐺/𝐻 ≅ 𝑆𝑈(3), which is
topologically a 3-sphere fibred over a 5-sphere. These theories inherit interesting geometric
and topological structure from their target space, which makes them ideal places to look for
topological effects.

Such sigma models are moreover ubiquitous in physics. As examples, in 𝑝 = 1 we find
many exactly-solvable models in quantum mechanics [54] (e.g. particles moving in uniform
magnetic fields and rigid bodies), while 𝑝 ≥ 3 covers all cases in which only some subgroup
𝐻 of a dynamical symmetry group 𝐺 is linearly realized in vacuo, leading to the appearance
of Goldstone bosons in the low-energy effective theory. These find applications in particle
physics (e.g. the chiral lagrangian [42] that we have already discussed, as well as in Com-
posite Higgs models [55]), condensed matter physics (e.g. fluids [56] and superfluids [57]),
and even cosmology (e.g. galileons [58]). In between, in 𝑝 = 2, we find many interesting
examples of conformal field theories and string theories. In short, such sigma models are
everywhere.

In Chapter 2 of this thesis we provide a more-or-less rigorous classification of topo-
logical terms appearing in sigma models on homogeneous spaces 𝐺/𝐻 . These topological
terms, which recall do not require the structure of a metric on spacetime, are missed by the
well-known algorithm for constructing 𝐺-invariant effective actions due to Callan, Cole-
man, Wess, and Zumino [59], which requires a metric on the worldvolume and a 𝐺-invariant
metric on 𝐺/𝐻 . Nonetheless, topological terms occur in all of the examples of sigma mod-
els given in the previous paragraph (cf., e.g., [60–63]). They are thus, arguably, almost as
ubiquitous as sigma models themselves, and their classification is an important component
in understanding phenomenology in all of these examples.

In order to achieve the goal of classifying such terms, we shall need to make some as-
sumptions. These assumptions, in a nutshell, are (i) that the degrees of freedom of the theory
(i.e. the maps 𝜙) can be replaced by 𝑝-cycles on 𝐺/𝐻 , and (ii) that the action is obtained by
integrating (possibly only locally-defined) differential forms on 𝐺/𝐻 over chains. The first
assumption allows us to use the power of de Rham’s theorem in the classification. The sec-
ond assumption guarantees that the action phase for the topological term necessarily satisfies
the cutting and gluing properties required by Atiyah’s axiomatic definition of locality, as can
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be deduced using straightforward properties of integration of differential forms.26 These as-
sumptions (which we shall make precise in §2.2) are strong ones, but they nevertheless lead
to a classification which includes many of the known topological terms that appear in sigma
models. The terms that result are topological in the precise sense that the only additional
structure required to define them is that of an orientation on the worldvolume.

We shall now summarise the results of our classification of such topological terms. Ul-
timately, as we anticipated above in our quantum mechanical prologue, we will find that the
possible terms come in one of two types, which we call Aharonov-Bohm (AB) terms and
Wess-Zumino (WZ) terms, whose names hark back to prototypical examples.

The AB terms will be classified by the group 𝐻𝑝(𝐺/𝐻, 𝑈(1)), the 𝑝th singular coho-
mology of 𝐺/𝐻 valued in 𝑈(1). Throughout Chapter 2 we shall only consider AB terms
corresponding to the free part of 𝐻𝑝(𝐺/𝐻, 𝑈(1)) for simplicity, which is then a quotient of
the 𝑝th de Rham cohomology by the integral classes (defined as those cohomology classes
for which the integral of any representative 𝑝-form over any 𝑝-cycle is an integer).27 The
need to take this quotient accounts for the fact that, as mentioned above, the action itself is
only physical modulo an integer. This action for a given AB term is obtained straightfor-
wardly by integrating any 𝑝-form in the given de Rham cohomology class on 𝑝-cycles. At
least when 𝐺 is connected, 𝐺-invariance of the action is then automatic.

In subsequent Chapters (4 and 5) we shall consider the effects of the torsion part of
𝐻𝑝(𝐺/𝐻, 𝑈(1)). For example in §4.1.2, we discuss a particularly interesting torsion term,
appearing in the case 𝑝 = 1 and 𝐺/𝐻 = 𝐺/1 = 𝑆𝑂(3).28

TheWZ terms will be classified by a certain subspace of the closed, integral (𝑝+1)-forms
on 𝐺/𝐻 . Writing down the action is not so straightforward in this case, as we hinted at above
in the quantum mechanical setting. In a general sigma model of dimension 𝑝, a WZ term
requires us to integrate locally-defined forms of degree 𝑝, 𝑝 − 1, … , 0 (which are constructed
from the original (𝑝 + 1)-form, call it 𝜔, via Čech cohomology) over 𝑝, 𝑝 − 1, … , 0-chains
(which are constructed from the original 𝑝-cycle by subdividing and taking boundaries).

The need to take a subspace of the integral (𝑝 + 1)-forms arises from the requirement
that the action be 𝐺-invariant. Expressed at the level of the globally-defined (𝑝 + 1)-form 𝜔,
this requirement turns out to be rather subtle, and is one of the main results of this thesis: at
least when 𝐺 is connected, we will show that 𝐺-invariance requires that the closed 𝑝-forms
𝜄𝑋𝜔 be exact, for all vector fields 𝑋 ∈ 𝔤 that generate the 𝐺 action on 𝐺/𝐻 . In other words,

26It is important, however, to point out that our somewhat simplistic assumption (ii) is stronger than Atiyah’s
locality axioms. Indeed, we shall relax this requirement in Chapter 5 in favour of Atiyah’s more refined notion
of locality, and thus recast our classification more rigorously.

27Likewise, a closed 𝑝-form is ‘integral’ if its integral over any 𝑝-cycle is an integer.
28This torsion term in the action phase, corresponding to 𝐻1(𝑆𝑂(3), 𝑈(1)) = Tor𝐻1(𝑆𝑂(3), ℤ) = ℤ2, shall

have the physical effect of endowing the rigid body with either bosonic or fermionic statistics.
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there exist globally-defined (𝑝 − 1)-forms 𝑓𝑋 such that

𝜄𝑋𝜔 = 𝑑𝑓𝑋 , ∀𝑋 ∈ 𝔤. (1.17)

This requirement, which we call the Manton condition (for reasons that we will explain in
§2.1), is stronger than that which one might naïvely have guessed, namely that the (𝑝 + 1)-
form be 𝐺-invariant. We shall re-derive and generalise the Manton condition in Chapter 5
using the homotopy formula for differential characters, where we will show that it is nec-
essary and sufficient for 𝐺-invariance of a topological term under weaker conditions on 𝐺
than its connectedness.

If the Manton condition fails for a 𝐺-invariant integral (𝑝 + 1)-form 𝜔, then there is an
anomaly in the sigma model in the presence of the WZ term, in the sense that the classical
theory is 𝐺-invariant while the quantum theory is not. This is because invariance of the
classical equations of motion only requires the 𝐺-invariance of 𝜔. This is a rather pecu-
liar type of anomaly, which can arise in a purely bosonic quantum field theory if there are
homologically non-trivial 𝑝-cycles in the target space.

These WZ terms are so called because they include, as a special case, the WZW term
(1.13) that arises in the chiral lagrangian. In order to motivate the need for the formalism we
shall develop, and to orient the reader, we shall first re-examine Witten’s construction of the
WZW term action more closely.

Recall thatWitten’s construction, as we outlined above, is based on homotopy arguments,
which, in the case of a general 𝑝-dimensional sigma model on 𝐺/𝐻 , would run as follows.
If the 𝑝th homotopy group of 𝐺/𝐻 vanishes, then any worldvolume homeomorphic to a 𝑝-
sphere is the boundary of a (𝑝 + 1)-ball in 𝐺/𝐻 . Then, one can write a topological action
as the integral of the closed, integral, globally-defined (𝑝 + 1)-form 𝜔 over this ball, as in
(1.13). Requiring the (𝑝 + 1)-form to be closed and furthermore integral guarantees that the
resulting action phase is independent of the choice of ball (since any two balls bounding the
same worldvolume taken with opposite orientation define a cycle, such that the difference
in the action is an integer). Finally, requiring 𝐺-invariance of the (𝑝 + 1)-form guarantees
invariance of the action, without any need to worry about the more subtle Manton condition
we described above.

Given the elegance of this construction, and the simplicity of the resulting condition
for 𝐺-invariance, the reader might wonder why one should bother to instead use our more
cumbersome construction of a WZ term (in terms of locally-defined forms).

Witten’s approach has, in our opinion, two limitations. The first of these is that, because
of the use of homotopy arguments, it is valid only for worldvolumes that are homeomor-
phic to 𝑆𝑝. But, it is clear that we might want to consider worldvolumes of other topology.
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As Witten himself noted [64], the dynamics of the chiral lagrangian in the background of
a skyrmion requires us to define the theory on 𝑆𝑝−1 × 𝑆1. Similarly, in condensed matter,
we might wish to employ periodic boundary conditions, giving rise to a toroidal topology;
in cosmology, we might wish to consider a Universe of non-spherical topology. In fact, if
one believes in quantum gravity, one can make a compelling argument that a physical theory
should be defined on worldvolumes of arbitrary topology (subject to the requirement that
they admit the necessary structures, such as spin, that are present in nature).29 To accom-
modate this, we switch from homotopy to homology, in order to provide a construction of
topological terms that is valid on worldvolumes of arbitrary topology (subject only to the
requirement that they admit an orientation, such that we can integrate differential forms).

The second limitation of Witten’s approach is that (in the homotopy language of Witten)
it works only if themap from the 𝑝-dimensional worldvolume to the target is homotopic to the
constant map. If not, one cannot define a (𝑝 + 1)-ball on which to integrate the (𝑝 + 1)-form.
It does not work, for example, for worldlines homeomorphic to 𝑆1 on the torus, as we shall
see in §2.1. Switching to homology already allows a significant generalisation of Witten’s
approach, in that it allows us to consider 𝑝-cycles that are the boundary of an arbitrary (𝑝+1)-
chain. Thus, we are free to consider a worldvolume which is not bounded by a ball, but rather
by somemore general (𝑝+1)-manifold with boundary. Even then, the homological version of
Witten’s construction only goes through when the 𝑝th singular homology of 𝐺/𝐻 vanishes,
such that every 𝑝-cycle is a boundary. But switching to homology and allowing locally-
defined forms will allow us to construct and classify topological terms that can be defined
on all cycles even when 𝐺/𝐻 has non-vanishing 𝑝th singular homology. This is the goal of
the constructions we set out in §2.4.1. In the general case, we will thence prove (in §2.4.2)
that 𝐺-invariance of WZ terms requires the full Manton condition.

In the special case of our classification where the homological version of Witten’s con-
struction goes through, namely when the 𝑝th homology of 𝐺/𝐻 vanishes, there are signifi-
cant simplications: in this case, our classification shows that not only are there no AB terms,
but also the Manton condition reduces to requiring 𝐺-invariance of the form. Moreover, we
show in §2.4.1 that theWZ term defined in terms of local forms is, in this special case, indeed
equal to that prescribed byWitten’s construction. In this case, the space of topological terms
is classified straightforwardly by the space of closed, integral, 𝐺-invariant (𝑝 + 1)-forms on
𝐺/𝐻 .

In Chapter 3 we then apply this classification of topological terms to a class of four-
dimensional sigma models of phenomenological interest, called Composite Higgs models
(CHMs), in which the Higgs boson arises as a pNGB associated with spontaneously broken

29Such generic arguments shall be crucial to our discussion of global anomalies in Chapter 7.



22 Introduction

global symmetries in some underlying microscopic theory. The mass of a pNGB Composite
Higgs would naturally reside somewhere below the energy scale associated with this sym-
metry breaking, and can therefore offer a plausible explanation of why the Higgs mass is
below the TeV scale, resolving the electroweak hierarchy problem. We use algebraic tech-
niques to compute the spaces of AB and WZ terms in these sigma models, and thus uncover
a wealth of topological terms in various CHMs based on different cosets 𝐺/𝐻 . In particular,
we consider the cosets 𝑆𝑂(5)/𝑆𝑂(4), 𝑆𝑂(6)/𝑆𝑂(5), 𝑆𝑂(5) × 𝑈(1)/𝑆𝑂(4), 𝑆𝑂(6)/𝑆𝑂(4),
𝑆𝑂(6)/𝑆𝑂(4) × 𝑆𝑂(2), and 𝑆𝑈(5)/𝑆𝑂(5).

Following the analogywith the chiral lagrangian, topological terms (especially of theWZ
type) can play a very important role in understanding the phenomenology of these CHMs,
primarily because measuring the (possibly integer-quantised) coefficient of a WZ term can
probe the number of colours, say, in an underlying microscopic theory of fermions, by ’t
Hooft anomaly matching. We shall discuss this notion in more detail in the introductory
remarks to Chapter 3.

To follow the analogy with the pion lagrangian further, topological terms also tend to
violate certain discrete symmetries in CHMs, just as we saw the WZW term of the chiral
lagrangian violates (−1)𝑁𝐵 , i.e. pion number modulo 2. As an important example of this,
we will explain (in a group-theoretic way) why the AB term that appears in the MCHM
violates both parity (𝑃 ) and charge-parity (𝐶𝑃 ).

In Chapter 4, we apply the ideas of AB and WZ terms to a rather different class of the-
ories, in which 𝑝 = 1. Thus, we analyse the quantum mechanics of a point particle on a
manifold 𝑀 , with dynamics invariant under the action of a Lie group 𝐺 on 𝑀 , in the pres-
ence of topological terms. In this context, the topological terms have a familiar physical
interpretation, in that they couple the particle to a background magnetic field, whose curva-
ture 𝜔 is a globally-defined, integral 2-form on 𝑀 . The topological term in the action can be
patched together locally, following our general formalism established in Chapter 2. We are
thence able to exploit two mathematical structures associated to the topological terms that
are peculiar to the case 𝑝 = 1.

Firstly, the topological term defines a 𝑈(1)-principal bundle 𝑃 over 𝑀 , with connection
𝐴. The topological term in the action phase is then nothing but the holonomy of 𝐴. We
thence show that an equivalent theory may be defined with a globally-defined lagrangian,
but on 𝑃 rather than on 𝑀 , thereby making locality of the theory manifest at the lagrangian
level. Secondly, while the topological term is in general not invariant under the action of
the symmetry group 𝐺 (but rather the lagrangian shifts by a total derivative), the topological
term may be used to define a central extension �̃� of 𝐺 by 𝑈(1), such that the lagrangian is
strictly invariant under the action of �̃�. Having made the symmetry of the problem manifest
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in this way, we then show how the Schrödinger equation can in many cases be solved by
decomposing the wavefunction into unitary irreducible representations not of the original
group 𝐺, but of the central extension �̃�.

In Chapter 5 we point out that topological terms are more generally regarded as differ-
ential characters of the target space 𝑀 , an observation that goes back (in some guise) to
Dijkgraaf-Witten [65]. We there introduce the relevant mathematics of differential charac-
ters, and more generally differential cohomology theories, which may be unfamiliar to the
reader. We shall then go on to define the group of 𝐺-invariant differential characters of a
manifold 𝑀 , with which we are able to rigorously justify (as well as generalise) the classi-
fication of topological terms that we derive in Chapter 2.

1.3 Anomalies as a topological phenomenon
The second part of this thesis, comprised of Chapters 6 and 7, concerns a rather different
topological aspect of quantum field theory. The idea here will not be to study topological
contributions to the action phase that defines a theory, as is our concern in Chapters 2 through
5, but rather to study anomalies in gauge theories, which are possible inconsistencies in the
theory that arise due to fundamentally topological reasons. Our primary phenomenological
applications in these Chapters will be to the Standard Model (SM), and certain beyond the
Standard Model (BSM) theories.

The word ‘anomaly’ has been used in various ways throughout the development of quan-
tum field theory, being traditionally used to describe an obstruction that prevents a classical
symmetry being elevated to a symmetry of the quantum theory. If the symmetry in question
is a gauge symmetry, such an anomaly would render the quantum field theory inconsistent,
by spoiling such fundamental properties as unitarity. The notion of anomalies has been gen-
eralised somewhat in recent years, to describe any obstruction to the partition function of a
QFT being a well-defined function of the ‘data’ defining the theory; this might include the
background metric (of an arbitrary spacetime manifold), background fields, a spin structure,
a principal gauge bundle over spacetime, and so on. Quite generally, these obstructions will
be topological (or at least contain a topological component).

The local anomalies of ABJ
To understand the topological origin of anomalies, it is helpful to start from the more tradi-
tional understanding of an anomalous symmetry. Indeed, we shall go back to the very begin-
ning, and discuss the anomalous axial current in four-dimensional quantum electrodynamics
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(QED), with 𝑈(1) gauge field 𝐴𝜇 and a single massless fermion 𝜓 with unit charge. The
fermionic part of the action is

´
Σ4 𝑑4𝑥 �̄�𝑖 /𝐷𝜓 , where /𝐷 = (𝜕𝜇 + 𝐴𝜇)𝛾𝜇. In 1969, Adler [66]

and Bell-Jackiw [67] showed by computing a one-loop ‘triangle’ Feynman diagram (with
one axial current external leg and two vector current legs) that, even though the axial current
𝑗𝜇

𝐴 = �̄�𝛾𝜇𝛾5𝜓 associated to the axial transformation

𝜓 → 𝑒𝑖𝛼𝛾5𝜓 (1.18)

is conserved classically, viz. 𝜕𝜇𝑗𝜇
𝐴 = 0 on the equations of motion, at leading order in pertur-

bation theory one finds that 𝜕𝜇𝑗𝜇
𝐴 = −𝜖𝛼𝛽𝜇𝜈𝐹𝛼𝛽𝐹𝜇𝜈/16𝜋2. More succinctly, in the geometric

language of differential forms,

𝑑 ⋆ 𝑗𝐴 = − 1
16𝜋2 𝐹 ∧ 𝐹 . (1.19)

In other words, coupling the fermion to a 𝑈(1) gauge field presents an obstruction to the
axial current being conserved in the quantum theory, and we say that the axial symmetry of
classical QED is anomalous.30 This is straightforwardly generalised to the case of a non-
abelian background gauge field, with some gauge group 𝐺, in which case

𝑑 ⋆ 𝑗𝐴 = − 1
16𝜋2 tr 𝐹 ∧ 𝐹 = − 1

4𝜋2 𝑑 tr(𝐴𝑑𝐴 + 2
3𝐴 ∧ 𝐴 ∧ 𝐴) , (1.20)

where the trace is over group indices.
We note in passing that this is not the same thing as the ‘non-abelian anomaly’, a moniker

used to refer to the anomalous conservation law satisfied by a current 𝑗𝑎 in a non-singlet rep-
resentation of a symmetry group. It was this non-abelian kind of anomaly that featured above
in our discussion of the WZ term and ’t Hooft anomaly matching in QCD. To give a more
elementary example, consider a gauge theory with gauge group 𝐺, with a basis {𝑡𝑎} of Lie
algebra generators, coupled to a (say) right-handed chiral fermion in the fundamental repre-
sentation of 𝐺. There is a classically conserved non-abelian chiral current 𝑗𝑎 = �̄�𝛾𝜇𝑡𝑎𝑃𝑅𝜓 ,
where 𝑃𝑅 = 1

2(1 + 𝛾5) is the right-handed projection operator. In the quantum theory, it
satisfies the anomalous conservation law 𝐷 ⋆ 𝑗𝑎 = 𝑑 tr (𝑡𝑎 (𝐴𝑑𝐴 + 1

2𝐴 ∧ 𝐴 ∧ 𝐴)) /(24𝜋2).
This non-abelian anomaly is superficially similar to (1.20), but its derivation (which we shall
not review here) is more subtle [68]. We shall, as is conventional, refer to both these types
of anomaly as ‘ABJ’ anomalies (after Adler, Bell, and Jackiw).

30One important phenomenological consequence of this same axial current anomaly, but in the context of
QCD with three massless quarks (as we discussed above), is that after chiral symmetry breaking there is no
‘ninth’ pNGB associated with the ‘breaking’ of 𝑈(1)𝐴 - simply because it was not a symmetry of the (quantum)
theory in the first place.
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Once (1.19) or (1.20) is integrated over spacetime, the result is proportional to an inte-
ger.31 Furthermore, Adler-Bardeen showed [69] that this result, even though computed with
one-loop Feynman diagrams only, is in fact exact to all orders in perturbation theory. The
fact that the ABJ anomaly in the axial current 𝑗𝐴 computes an integer, and is not renormalised
beyond one-loop, is a strong hint that the phenomenon is fundamentally topological.32 How-
ever, the topological character of the anomaly is not immediately clear from the perturbative
arguments employed by Adler, Bardeen, Bell and Jackiw in Refs. [66, 67, 69].

While Adler-Bardeen derived their non-renormalisation theorem using perturbation the-
ory, the path-integral method of Fujikawa [70] leads one to the same result for the chiral
anomaly (and its non-renormalisation beyond one-loop) by following a route that is closer to
the topological essence of the anomaly. Fujikawa considered the effective action 𝑊 [𝐴] for
QED, defined (as a function of the background gauge field 𝐴) by the functional integral over
fermions 𝑒−𝑊 [𝐴] =

´
𝒟𝜓𝒟 �̄�𝑒−

´
Σ4 𝑑4𝑥 �̄�𝑖 /𝐷𝜓 . While the action itself is invariant under axial

transformations (1.18), it is impossible to define a properly-regularized path integral measure
(𝒟𝜓𝒟 �̄�) that is invariant under (1.18). By expanding 𝜓 and �̄� in eigenmodes of the Dirac
operator 𝑖 /𝐷 and regularizing with a high-momentum cut-off scale 𝑀 , Fujikawa computed
the variation in (𝒟𝜓𝒟 �̄�) and thence recovered the exact result (1.19) of Adler-Bell-Jackiw
(after taking the cut-off 𝑀 to infinity).

Fujikawa’s argument is equivalent to a heat-kernel derivation of the Atiyah-Singer index
theorem [71] from algebraic topology.33 Atiyah-Singer define the index of the Dirac operator
𝑖 /𝐷 to be the number 𝜈+ of zero-eigenmodes of 𝑖 /𝐷 with positive chirality (i.e. with eigenvalue
+1 under 𝛾5) minus the number 𝜈− of zero-eigenmodes with negative chirality (i.e. with
eigenvalue −1 under 𝛾5), viz.

ind(𝑖 /𝐷) = 𝜈+ − 𝜈−, (1.21)

which was proven by Atiyah-Singer to equal the Pontryagin number, i.e. the integral of
the right-hand-side of (1.19).34 The reason that Fujikawa’s method for deriving the axial
anomaly computes the Atiyah-Singer index defined by (1.21) is that only the zero-modes (of
𝑖 /𝐷) appearing in the mode expansions of 𝜓 (�̄�) can give non-zero matrix elements of 𝛾5,
and the eigenvalues (±1) under 𝛾5 mean that the positive and negative chirality zero modes

31The result is in fact a topological invariant we have already seen (in the context of the 𝜃-term of QCD, and
then again in the context of instantons) called the Pontryagin number of the gauge field configuration.

32The reader might here like to recall Aityah’s quote with which we began §1.1, that topological phenomena
are “characterized by discrete phenomena emerging from a continuous background” [9].

33Indeed, the connection to the Atiyah-Singer index theorem and the topological character of the axial
anomaly was appreciated before Fujikawa, going back to Refs. [72–74].

34More correctly, ind(𝑖 /𝐷) =
´

Σ4 ch2(𝐹 ), the integral of the second Chern character of the (say) 𝑆𝑈(𝑁)-
bundle over spacetime Σ4.
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are counted with opposite signs by the index.35 The index is quite clearly an integer by
definition, and so the Atiyah-Singer index theorem tells us why the integral of 𝐹 ∧ 𝐹 that
appears in the axial anomaly is proportional to an integer. From the physics perspective,
this integer is the instanton number of the gauge field configuration. A similar topological
meaning was given for the non-abelian ABJ anomaly (in which the axial current appears in
non-gauge singlet representations) by Alvarez-Gaumé and Ginsparg in Ref. [76].36

If a symmetry is to be gauged, then any anomaly had better cancel. The abelian and
non-abelian anomalies of ABJ type that we have described, which may be understood in
terms of index theorems for the Dirac operator, receive (integer-quantised) contributions
from any chiral fermions that couple to the gauge field (where these contributions come
with different signs for left- and right-handed fermions). It is therefore possible for the chiral
fermion content to be such that all the anomaly coefficients cancel, resulting in a consistently-
defined chiral gauge theory. This is the case in the SM, for which the gauge group is (locally-
isomorphic to) 𝑆𝑈(3) × 𝑆𝑈(2) × 𝑈(1).

Everything we have discussed so far was for the case of flat spacetime. For a given chiral
gauge theory, there is also the possibility of gravitational anomalies when we try to define
chiral fermions on an arbitrary (curved) spacetime, as well as mixed gauge-gravitational
anomalies. The SM also contrives to be free of these anomalies and so can be consistently
coupled to gravity.37 These gravitational anomalies have essentially the same topological
origin as the ABJ type anomalies we have discussed so far. To wit, one defines fermions
on an arbitrary spacetime (which we shall continue to call Σ4, and restrict our discussion
to four spacetime dimensions) by modifying the Dirac operator 𝑖 /𝐷 by a (metric-dependent)

35Witten offers a complementary (and more general) explanation of the fact that only massless fermions
can contribute to anomalies in classical symmetries [75], which goes as follows. If a fermion has a mass term
in the lagrangian, then whatever symmetries that mass term respects will also be respected by a Pauli-Villars
regulator field, and so the theory can be renormalised in a way that preserves the symmetries of the massive
fermion. Indeed, it is sufficient that a fermion be “gappable”, i.e. admit a mass term in the lagrangian, for
it to not contribute to anomalies. If no such mass term can be written down given certain symmetries 𝐾 of
a fermion lagrangian, then no such Pauli-Villars regulator exists, and there may be an anomaly in 𝐾 . This
argument moreover makes it clear that anomalies can only arise from chiral fermions, since a Dirac mass term
can always be written down for a vector-like fermion.

36Indeed, the precise relation between the ‘abelian’ anomaly that we have described and the more sub-
tle ‘non-abelian anomaly’ is itself an interesting topological story, in which the non-abelian anomaly in 2𝑛
spacetime dimensions is related to the abelian anomaly in 2𝑛 + 2 dimensions by the ‘descent’ procedure of
Wess-Zumino [44, 77]. We shall not discuss this here.

37There are in fact no purely gravitational anomalies in any four dimensional chiral gauge theory, so in the
case of the SM it is only the mixed gauge-gravity anomalies that must (and do) vanish.
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contribution from the spin connection 𝜔𝜇𝑎𝑏,38 viz.

𝑖 /𝐷 = 𝑖𝛾𝜇 (𝜕𝜇 + 𝐴𝜇 + 𝜔𝜇𝑎𝑏𝑆𝑎𝑏) . (1.22)

Here, 𝑆𝑎𝑏 = 1
4[𝛾𝑎, 𝛾𝑏] are the generators of the group Spin(4), where {𝛾𝑎} denote the gamma-

matrices in flat spacetime (i.e. satisfying {𝛾𝑎, 𝛾𝑏} = 2𝜂𝑎𝑏 where 𝜂𝑎𝑏 is the Minkowski met-
ric), and 𝛾𝜇 = 𝑒𝜇

𝑎 𝛾𝑎 (where 𝑒𝜇
𝑎 is the vielbein) satisfy {𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈 . Either by using simi-

lar perturbative arguments to Adler-Bell-Jackiw for the Dirac operator (1.22), or by a more
sophisticated (and manifestly topological) approach using the Atiyah-Singer index theorem
applied to curved spacetimes, one may deduce a similar formula for gravitational anomalies,
and for mixed gauge-gravitational anomalies.39

Anomaly-free extensions of the SM
In Chapter 6, we study anomaly cancellation in a family of extensions of the SM, in which an
additional 𝑈(1)𝐹 gauge symmetry is postulated, which (in general) couples differently to SM
fermions in different families.40 Such BSM theories have been discussed in the context of
dark matter phenomenology, the fermion mass problem, and recent intriguing measurements
of the decays of rare 𝐵-mesons, which are discrepant with their SM predictions; we shall
discuss these phenomenological uses of such SM×𝑈(1)𝐹 theories more in Chapter 6.

The coefficients for each potential anomaly (there are six of them) in a SM×𝑈(1)𝐹 theory
receive integer-quantised contributions from each chiral fermion in the theory, proportional
to the (rational) charge of that fermion. Thus, the requirement that all these six anomaly
coefficients vanish places polynomial constraints (up to cubic order) on the rational 𝑈(1)𝐹
charges of all the SM chiral fermions. By rescaling the gauge coupling 𝑔𝑋 , these charges can
be taken to be integers. Thus, anomaly cancellation reduces to solving a non-linear set of
equations over the integers. In Chapter §6.1, we therefore bring to bear elementary methods
from Diophantine analysis to investigate the solutions to the anomaly cancellation equations
in as much detail as possible. We shall find, for example, that in the case of only two families
of SM fermions, the complete space of anomaly-free 𝑈(1)𝐹 charge assignments is given by
a four-integer-family of solutions, which we parametrise explicitly. To complement this, we

38The spin connection is an object used to parallel transport spinors, somewhat analogous to the use of the
Christoffel symbol in parallel transporting vectors.

39For a comprehensive account of gravitational and mixed gauge-gravitational anomalies, see e.g. Chapter
11 of Ref. [78]. The Atiyah-Singer index theorem relevant to these anomalies involves the so-called ‘Dirac
genus’, often written ̂𝐴(𝑅), which depends on the Riemann tensor 𝑅. If we take spacetime to be a four-sphere,
for example, then the Dirac genus is trivial, and we are reduced to the ordinary expression for the ABJ anomaly.

40Here, the subscript 𝐹 is used to denote that the gauge symmetry 𝑈(1)𝐹 couples differently to the different
families (or flavours) of SM fermion.
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also investigate the solution space (in the full three-family case) using a numerical scan, gen-
erating an ‘anomaly-free atlas’ of solutions, and discuss the results of this scan qualitatively.

One key message we draw from this analysis is that anomaly cancellation does indeed
provide a very stringent constraint on the fermion spectrum of BSM theories; for example, if
we consider assigning the SM fermions 𝑈(1)𝐹 charges of magnitude ≤ 6 (in integer units),
then only about one in a billion charge assignments contrives to be anomaly-free. Since these
chiral anomalies are ultimately topological features (that are understood most elegantly in
terms of index theorems), one can say that topological aspects of the underlying gauge theory
provide a very important constraint on model-building when we go beyond the SM. In §6.2,
we then pick two of these anomaly-free solutions, and use them to build phenomenological
models to explain the rare𝐵-meson decay data, whichwe suggest can simultaneously explain
some coarse features of the fermion mass problem.

Global anomalies
The presence of an ABJ anomaly means the quantum theory is not invariant under chiral
transformations of the form (1.18) (in the abelian case), meaning it is not even invariant
under infinitesimal 𝑈(1)𝐴 transformations. In 1982, Witten discovered that even if local41

anomalies of the ABJ type vanish, there may still be an anomaly in an 𝑆𝑈(2) gauge sym-
metry, with the anomaly occurring when there is an odd number of 𝑆𝑈(2) doublets of (say
left-handed) Weyl fermions. This type of anomaly cannot be seen at the level of the Lie al-
gebra of 𝑆𝑈(2), but rather is a consequence of the topology of 𝑆𝑈(2) itself [79].42 Since the
gauge fields are Lie algebra valued, it is not surprising either that this type of anomaly cannot
be seen at all by computing Feynman diagrams involving gauge fields (such as the one-loop
triangle diagrams of ABJ). Rather, they are an entirely non-perturbative phenomenon.

How does this ‘Witten anomaly’ arise in an 𝑆𝑈(2) gauge theory? Witten considers a
Euclideanised four-dimensional spacetime that is homeomorphic to a sphere, Σ4 ≅ 𝑆4, i.e.
with the point at infinity compactified. The fact that 𝜋4(𝑆𝑈(2)) = ℤ2 means that there exist
non-trivial maps 𝑈(𝑥) ∶ Σ4 → 𝑆𝑈(2) which cannot be deformed to the identity. For every
gauge field configuration𝐴 there is a gauge-equivalent configuration obtained by conjugation
with 𝑈(𝑥), viz. 𝐴𝑈 = 𝑈 −1𝐴𝑈 − 𝑖𝑈 −1𝑑𝑈 . The fermionic path integral, for a single Weyl

41By ‘local’, we here mean that such an anomaly in a symmetry group 𝐺 only depends on 𝐺 through its Lie
algebra, in other words its local group structure near the identity.

42For example, such an anomaly does not afflict an 𝑆𝑂(3) gauge theory, despite 𝑆𝑂(3) ≅ 𝑆𝑈(2)/ℤ2 and
𝑆𝑈(2) sharing the same Lie algebra.
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doublet, gives the functional determinant
ˆ

(𝒟𝜓𝒟 �̄�)Weyl𝑒−
´

Σ4≅𝑆4 𝑑4𝑥 �̄�𝑖 /𝐷𝜓 = (det(𝑖 /𝐷))1/2 . (1.23)

It is the square-root that is the source of the trouble, because it turns out that (det(𝑖 /𝐷))1/2

changes sign under 𝐴 → 𝐴𝑈 . This crucial step in the argument was demonstrated by Witten
using the Atiyah-Singer index theorem, modulo 2, for a Dirac operator on a five-dimensional
extension of spacetime isomorphic to a cylinder [0, 1] × 𝑆4, where 𝜏 ∈ [0, 1] parametrises
an adiabatic variation 𝐴𝜏 of the gauge field such that 𝐴0 = 𝐴 and 𝐴1 = 𝐴𝑈 . Since 𝐴0 and
𝐴1 are gauge-equivalent, the ends of the five-dimensional cylinder are in fact identified to
form a torus, known as the mapping torus. The fact that the partition function flips sign
under 𝐴 → 𝐴𝑈 means that when one subsequently performs the functional integral over
gauge fields (including possible insertions of gauge-invariant local operators), one obtains
precisely zero. The vanishing of the path integral means no such theory exists, because one
cannot normalise correlation functions.

If there are 𝑛 left-handed Weyl fermion doublets, the integral over fermions now gives a
factor (det(𝑖 /𝐷))𝑛/2, so the inconsistency only afflicts theories with odd 𝑛. More generally, if
we include 𝑛𝐿 (𝑛𝑅) left-handed (right-handed) fermion 𝑆𝑈(2) doublets, then the theory is
anomaly-free if and only if

𝑛𝐿 − 𝑛𝑅 = 0 mod 2. (1.24)

The SM is reassuringly free of this global anomaly.43

Thus, naïvely, it would seem that there are ‘two types’ of anomalous conservation laws for
gauge symmetries. There are ‘local anomalies’ of the ABJ type, which we have understood
from the point of view of a topological ‘index theorem’ due to Atiyah-Singer, and there are
‘global anomalies’ of the Witten type, which are manifestly topological, apparently arising
from a homotopy-based condition. In fact, one can understand both types of anomaly as
arising from the same topological origin, via a more sophisticated notion of anomalies which
we shall now describe.

A modern viewpoint on anomalies
Both types of anomaly arise from subtleties in defining the Dirac operator which acts on
chiral fermions. To see how both the ‘local’ (ABJ) and ‘global’ (Witten) anomalies can be
subsumed within a unified argument, it is helpful to review some basic facts about chiral

43A similar ℤ2-valued ‘global anomaly’ afflicts any 𝑆𝑝(𝑁) gauge theory because 𝜋4(𝑆𝑝(𝑁)) = ℤ2. Note
that this family of Lie groups includes 𝑆𝑈(2), thanks to the isomorphism 𝑆𝑈(2) ≅ 𝑆𝑝(1).
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fermions, for which we largely follow Witten’s discussion in Ref. [75]. Other helpful refer-
ences for this discussion are Refs. [80, 81] (written with physicists in mind), and the original
mathematical paper by Dai-Freed on which much of the discussion rests [82].

The heart of the trouble in both kinds of anomaly lies in performing the functional inte-
gration over fermions. The partition function 𝑍𝜓 [𝐴], considered as a function of the back-
ground gauge field and also any other background fields or data (such as a metric on space-
time), is formally given by

𝑍𝜓 [𝐴] ≡
ˆ

𝒟𝜓𝒟 �̄�𝑒−
´

Σ4 𝑑4𝑥 �̄�𝑖 /𝐷𝜓 = det 𝑖 /𝐷, (1.25)

the determinant of the (hermitian) Dirac operator,44 assumed to be appropriately regularized.
The partition function 𝑍𝜓 [𝐴] of a well-defined quantum field theory is a kosher function on
the space of background data. For the case of coupling to background gauge fields, 𝑍𝜓 [𝐴]
must be a well-defined function on the space of connections on principal 𝐺-bundles modulo
gauge transformations; in particular, 𝑍𝜓 must be constant on gauge equivalent field config-
urations 𝐴 and 𝐴𝑔, viz. 𝑍𝜓 [𝐴] = 𝑍𝜓 [𝐴𝑔]. If this is not the case, 𝐺-invariance is anomalous,
and since it is a gauge symmetry, the theory is not well-defined.

This viewpoint sets the method due to Fujikawa for deriving the ABJ type anomaly, and
also Witten’s argument for deriving the global 𝑆𝑈(2) anomaly, in a more general context.
In the ABJ case, Fujikawa’s computation of the regularized partition function shows that
𝑍𝜓 [𝐴] ≠ 𝑍𝜓 [𝐴𝑔] even for a gauge transformation 𝐴 → 𝐴𝑔 with 𝑔 infinitesimally close to
the identity; for the global anomaly, Witten shows that 𝑍𝜓 [𝐴] = −𝑍𝜓 [𝐴𝑈 ] where the group
element 𝑈(𝑥) corresponds to a gauge transformation in the non-trivial class of 𝜋4(𝑆𝑈(2)).

Another way of saying this is that the partition function of a well-defined quantum field
theory should be a map from the space of background data to complex numbers ℂ. The
‘partition function’ of an anomalous theory is not such a function, but rather is only a section
of a non-trivial ℂ-bundle over the same space of background data, called the ‘determinant
line bundle’. In fact, the anomalies of a theory can be completely captured by a 𝑈(1)-bundle
(rather than a ℂ-bundle), as we next explain.

As we have noted previously, only massless chiral fermions can contribute to anomalies,
because for any gapped (or indeed gappable) fermion one can regulate the partition function
using a Pauli-Villars regulator. As a corollary of this argument, it follows that the modulus
|𝑍𝜓 | cannot suffer from anomalies. To see why, note that for any set of chiral fermions 𝜓 ,
one can define a conjugate set �̃� that transforms as the complex conjugate of 𝜓 under all

44More generally, it is the Pfaffian of the Dirac operator, but we shall essentially ignore this subtlety for the
purpose of this discussion.
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symmetries, and with an action that is the complex conjugate of the action for 𝜓 . Thus, the
functional integration over �̃� yields precisely �̄�𝜓 , the complex conjugate of (1.25). Hence,
for the combined system, the partition functon is 𝑍𝜓 �̄�𝜓 = |𝑍𝜓 |2. But given the complex
conjugate set of fermions one can always write down mass terms for the set of fermions 𝜓 ,
meaning that |𝑍𝜓 |2, and thus |𝑍𝜓 |, cannot suffer from any anomalies. Hence, the anomaly
must come purely from the phase of the complex number 𝑍𝜓 . In the language employed
above, this phase defines, in the case of an anomalous theory, a section of a 𝑈(1)-bundle
over the space of background data for the theory.

With this realisation, one might first try to define the fermionic partition function to
be equal to its modulus, and so construct an anomaly-free theory by fiat. But this is in fact
deeply problematic. Themodulus |𝑍𝜓 | on its own is not a smooth function of the background
fields (denoted ‘𝐴’, which we understand to include the metric), just as |𝑤| is not a smooth
function of the real and imaginary parts of a complex number 𝑤. The partition function
must depend smoothly on the background field and metric, otherwise correlation functions
involving the stress-energy tensor and/or currents coupled to the gauge field would not be
well-defined (since they are functional derivatives of the partition function with respect to
these background fields). Rather, one cannot evade anomalies in such a way, and one must
instead consider carefully when 𝑍𝜓 is well-defined, and when it is not.

To understand properly how both the local and global anomalies emerge from these con-
siderations then requires a rather technical set of mathematical results [82], which have re-
cently entered the physics literature, where it is usually referred to as the Dai-Freed theorem
(even though it is really a collection of theorems). We shall not present any proof of this the-
orem, nor even present the theorem in its technical detail. Rather, we here simply paraphrase
some of its implications that are important to our discussion.

Essentially, Dai-Freed show that a putative ‘partition function’ 𝑍𝜓 (that is smooth on
the space of background fields) can always be defined when the four-dimensional spacetime
Σ4 is the boundary of a five-manifold 𝑋 in one dimension higher, viz. Σ4 = 𝜕𝑋, to which
the theory (and thus the structures needed to define the chiral fermions and gauge fields)
must be extended. The five-manifold 𝑋 must approach a ‘cylinder’, i.e. (−𝜏0, 0] × Σ4 near
the boundary Σ4, where the local coordinate 𝜏 ∈ (−𝜏0, 0] parametrises the fifth dimension.
Moreover, the Dirac operator is extended from Σ4 to 𝑋, to define a five-dimensional Dirac
operator which we denote by 𝑖 /𝐷𝑋 , which near the boundary (Σ4) takes the form 𝑖 /𝐷𝑋 =
𝑖𝛾5(𝜕𝜏 + 𝑖 /𝐷), where 𝑖 /𝐷 is the original Dirac operator on Σ4.45 Schematically, the Dai-Freed

45In addition, special boundary conditions must be chosen to ensure that the operator 𝑖 /𝐷𝑋 is hermitian
throughout 𝑋. These are often referred to as ‘(generalised) APS boundary conditions’, and we will not discuss
them further in this thesis, but rather refer the reader to e.g. Refs. [75, 80], in addition to the original papers of
Atiyah-Patodi-Singer [83–85].
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definition of the putative partition function is then

𝑍𝜓 = |𝑍𝜓 | exp(−2𝜋𝑖
ˆ

𝑋
𝐼0

𝑝+1(𝐹 )) exp (−2𝜋𝑖𝜂𝑋) , (1.26)

where we have split the phase into two distinct contributions, which we shall define and com-
ment on shortly. Importantly, Dai-Freed showed that this construction varies smoothly with
the background data. As we have discussed, the contributions to the phase may not necessar-
ily be gauge-invariant, and indeed the point is that one cannot always define an anomaly-free
partition function. Rather, through (1.26) Dai-Freed provide us with the appropriate ob-
ject (a smooth section of the determinant line bundle) with which to analyse anomalies in a
suitably general setting.

The two contributions to the phase correspond precisely to the two types of anomaly we
have until now discussed separately, i.e. the ‘local’ and ‘global’ types. The first contribution
to the phase as written in (1.26), which is the integral over the extended manifold 𝑋 of an
‘anomaly polynomial’ 𝐼0

𝑝+1(𝐹 ) in the field strength tensor 𝐹 for the background field, is not
necessarily invariant even under infinitesimal gauge transformations. Rather, its variation
reproduces precisely the original ABJ formula for the cancellation of local anomalies.

In the case where the local anomalies vanish the Dai-Freed theorem then tells us that
any residual global anomalies must be captured precisely by the second contribution to the
phase in (1.26). This contribution is the exponentiated 𝜂-invariant associated to the five-
dimensional Dirac operator 𝑖 /𝐷𝑋 , which is defined as the following sum over the eigenvalues
𝜆 of 𝑖 /𝐷𝑋 ,

𝜂𝑋 = 1
2 (∑

𝜆≠0
sign(𝜆) + Dimker(𝑖 /𝐷𝑋)

)
, (1.27)

which must of course be regularized.46 The 𝜂-invariant is a topological invariant of 𝑋,
originally introduced by Atiyah-Patodi-Singer (APS) in their generalisation of the Atiyah-
Singer index theorem to manifolds with boundary [83–85].

In Chapter 7, we shall see how this Dai-Freed theorem leads us to a method for identi-
fying a very wide class of potential global anomalies using the idea of bordism. Firstly, one
can consider the action of gauge transformations on the putative fermionic partition func-
tion 𝑍𝜓 [𝐴] (defined on some fixed spacetime Σ) by essentially attaching a cylinder, call it
Δ𝑋 = [0, 1] × Σ4, to the five-manifold 𝑋 (which itself is needed to define a suitably smooth
partition function, by the Dai-Freed theorem). We extend the gauge fields to Δ𝑋 in such a

46For example, in the original APS index theorem the sum over eignevalues was regularized by replacing
∑𝜆≠0 sign(𝜆) with lim𝑠→0 ∑𝜆≠0 sign(𝜆)|𝜆|−𝑠, which converges for large Re 𝑠, from which one can analytically
continue to 𝑠 = 0 without encountering any poles.
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way that 𝐴0 = 𝐴 and 𝐴1 = 𝐴𝑔 are gauge-equivalent, meaning the partition function (1.26)
evaluated with and without the cylinder attached computes 𝑍𝜓 [𝐴] and 𝑍𝜓 [𝐴𝑔] respectively.
One then computes that the difference between these partition functions is given by the expo-
nentiated 𝜂-invariant evaluated on the cylinder with its ends glued together to make a torus.
The 𝜂-invariant must therefore vanish on this torus, or else 𝑍𝜓 [𝐴] ≠ 𝑍𝜓 [𝐴𝑔] and there is
an anomaly. This is essentially equivalent to Witten’s ‘mapping torus’ argument that we
reviewed above, in which spacetime was assumed to be homeomorphic to 𝑆4.

But the Dai-Freed theorem allows one to probe a much broader class of anomalies than
that detected by the mapping torus construction. To see how, we first observe that the Dai-
Freed prescription (1.26) for the partition function might appear problematic, in that it seems
to require a choice of five-manifold 𝑋 whose boundary is Σ4. Indeed, any dependence of
(1.26) on the choice 𝑋 would imply ambiguities and/or inconsistencies with locality in the
four-dimensional theory. It is these inconsistencies that we can interpret more broadly as
‘anomalies’ in the theory.

It turns out that the putative partition function (1.26) is independent of the choice of
five-manifold 𝑋 if and only if

exp (−2𝜋𝑖𝜂�̄�) = exp(2𝜋𝑖
ˆ

�̄�
𝐼0

𝑝+1(𝐹 )) , (1.28)

for all closed five-manifolds �̄� [80, 86]. Thus, in the absence of local anomalies, i.e. when
𝐼0

𝑝+1(𝐹 ) = 0, the partition function describes an intrinsically four-dimensional theory when

exp (−2𝜋𝑖𝜂�̄�) = 1 (1.29)

for all closed five-manifolds �̄�. Moreover, exp (−2𝜋𝑖𝜂�̄�) = 1 guarantees any global anoma-
lies vanish, because, in the absence of local anomalies, 𝑍𝜓 [𝐴] and 𝑍𝜓 [𝐴𝑔] will always differ
by the exponentiated 𝜂-invariant evaluated on some closed five-manifold. Witten’s mapping
torus argument is equivalent to insisting that exp (−2𝜋𝑖𝜂�̄�) = 1 only on the subset of such
five-manifolds that are homeomorphic to a ‘torus’, i.e. to 𝑆1 × 𝑆4. Thus, the requirement
(1.29) is a vast generalisation of the mapping torus argument, that guarantees consistency
of the theory on arbitrary four-manifolds Σ4, not just those homeormorphic to 𝑆4. Finally,
(1.29) is satisfied when a certain bordism group vanishes, which we shall specify precisely
in Chapter 7.

The main thrust of Chapter 7 is then to apply this Dai-Freed inspired condition to study
global anomaly cancellation in the SM (and a number of subtle variants of the SM), as well
as many BSM theories for which local anomalies cancel, by using bordism theory. The
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general strategy will be to compute a particular bordism group of the classifying space of
the gauge group (where the bordisms are assumed to be equipped also with a form of spin
structure), which can be used to detect possible global anomalies. To compute this group,
we shall introduce the machinery of the Atiyah-Hirzebruch spectral sequence, an important
tool in algebraic topology. We report a wide variety of new computations, and discuss their
interpretation in terms of global anomaly cancellation.

In summary, a ‘modern view’ of anomalies, as we have espoused it in the preceding
paragraphs, is that the partition function of an anomalous theory in 𝑝 spacetime dimensions
is not a function on the space of background data, but rather only a section (of the so-called
‘determinant line bundle’). Moreover, we have seen that the potentially anomalous phase of
the partition function (that results from taking the functional determinant of a Dirac operator)
may be written down by following a rather technical prescription due to Dai-Freed [82], as
summarised by (1.26). This prescription can be used to motivate a very general bordism-
based condition for the cancellation of global anomalies.

These ideas about anomalies have led, in recent years, to the realisation that any field
theory anomaly is in fact itself a quantum field theory [27], albeit in 𝑝 + 1 dimensions rather
than 𝑝. This is sometimes called the anomaly theory, and denoted 𝛼. For instance, it is not
difficult to see that the anomaly inherits the property of locality, interpreted along the lines of
Atiyah’s axioms for TQFT, from the parent field theory. We shall conclude this Introduction
by trying to convey the spirit of these very recent ideas, which are largely due to Freed,
without going into any details or technicalities.

The anomalous theory we started from is described by the notion of a relative quantum
field theory [87], between the trivial QFT and the anomaly theory [27, 88]. Moreover, the
anomaly theory 𝛼 is, in general, not just a vanilla quantum field theory, but has rather special
properties. Firstly, it is an extended field theory.47 In many cases, Freed suggests that the
anomaly theory is furthermore invertible.48 Finally, in a number of examples considered
by Freed and Teleman in Refs. [87, 27], the anomaly theory is a topological quantum field
theory. For example, the anomaly theory for the two-dimensional Wess-Zumino-Witten
conformal field theory is precisely the three-dimensional Chern-Simons theory, which is a
TQFT.

47Whereas an ordinary QFT has values on manifolds of dimensions 𝑝 and 𝑝 − 1 as we have seen (valued in
ℂ and complex vector spaces respectively), an extended field theory has values on manifolds (with corners) of
dimensions 𝑝 + 1, 𝑝, and 𝑝 − 1.

48The invertibility of the (𝑝 + 1)-dimensional anomaly theory 𝛼 means two things. Firstly, 𝛼 must assign a
one-dimensional Hilbert space to every 𝑝-dimensional slice through the extended (𝑝+1)-dimensionalmanifolds
on which the anomaly theory is defined. Secondly, 𝛼 assigns a non-zero ℂ-number (partition function) to every
such (𝑝 + 1)-manifold. However, Monnier showed that the anomaly theory is not always invertible [88]; an
important counter example is provided by the six-dimensional 𝒩 = (2, 0) superconformal field theory.
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Thus, it appears to be true that in many instances, there is a precise correspondence
between anomalies and topological terms in one dimension higher, which can be understood
formally using the notion of relative quantum field theory. We began this Introduction by
saying that this thesis will tell two self-contained stories; one concerning topological terms
in certain quantum field theories, and the other concerning anomalies in different quantum
field theories. In fact, it seems to be the case that these stories concern, in a quite precise
sense, two halves of the same whole.





Chapter 2

Classification of topological terms in
sigma models on homogeneous spaces

Our goal in this Chapter, which is based on Ref. [1], is to provide a more-or-less rigorous
classification of topological terms appearing in 𝑝-dimensional sigma models on homoge-
neous spaces 𝐺/𝐻 , as we have set out and summarised in the Introduction. The upshot will
be that we find two types of topological term, which we call AB and WZ terms; we shall
show how to construct these topological terms in the general case (subject to the assumptions
which we shall set out carefully in §2.2), and identify the abelian groups which classify both
types of term.

The outline of this Chapter is as follows. In §2.1, we seek to familiarise the reader with
AB and WZ terms through a series of (mostly well-known) examples of both types of term
from quantummechanics, in other words where 𝑝 = 1. These examples shall, taken together,
draw out all the important features of our classification, which we have already summarised
in §1.2 of the Introduction. Later in this thesis, in Chapter 4, we shall return to topological
terms in quantum mechanics in much more detail, where we discuss the implications that
the topological terms have for solving the Schrödinger equation (SE).

In §2.2, we discuss the technical assumptions required for our classification to hold, along
with their physical justification. In §§2.3 and 2.4 we derive the classification of AB and WZ
terms, and describe a number of quantum field theory examples relevant for phenomenology.
In §2.5, we discuss how one may compute the space of topological terms for a given 𝐺/𝐻 ,
and compare our results with earlier partial classifications [89, 65].
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2.1 An invitation: examples from quantum mechanics
A quantum-mechanical example of an AB term has already been given in the first few pages
of our Introduction, in which the target space is taken to be 𝐺/𝐻 = ℝ/ℤ ≅ 𝑆1, a circle. As
we discussed there in some detail, the AB term is the integral of a closed 1-form 𝐴 = 𝑏

2𝜋 𝑑𝜃
over a 1-cycle; if that cycle winds 𝑛 times around the target space circle, then the AB term
evaluates to the winding number 𝑛 multiplied by the parameter 𝑏, which is 𝑈(1)-valued
because the action phase is invariant under shifts of 𝑏 by an integer. Thus, the topological
terms for quantum mechanics on 𝑆1 are in one-to-one correspondence with 𝑈(1). The same
result is obtained in our homological classification, which says that AB terms in this theory
are classified by the cohomology group

𝐻1(𝑆1, 𝑈(1)) ≅ 𝐻1(𝑆1, ℝ)
𝐻1(𝑆1, ℤ)

= ℝ
ℤ ≅ 𝑈(1).

Moreover, since all 2-forms vanish on 𝑆1, we find that there are no WZ terms in this exam-
ple.1

The prototypical (although, as we shall see, not the simplest) example of a WZ term
in quantum mechanics arises for a particle moving on 𝑆2 in the presence of a magnetic
monopole at the centre of the sphere. The physics is rotationally-invariant, so we take 𝐺/𝐻 =
𝑆𝑂(3)/𝑆𝑂(2) ≅ 𝑆2. The electromagnetic field strength is a closed 2-form proportional to the
area form on 𝑆2 and may be given, in spherical polar coordinates, by 𝐹 = 𝐵

4𝜋 sin 𝜃𝑑𝜃 ∧ 𝑑𝜙.
This is the globally-defined form of degree 𝑝+1 = 2 that appears in our classification. Since
𝐹 is not exact, we cannot write it as the exterior derivative of a globally-defined 1-form 𝐴.
At best, we can write it in terms of 1-forms 𝐴𝑁 = 𝐵

4𝜋 (1 − cos 𝜃)𝑑𝜙 and 𝐴𝑆 = 𝐵
4𝜋 (−1 −

cos 𝜃)𝑑𝜙, which are singular on 𝑆2, but locally well-defined on an open cover consisting
of sets 𝑈𝑁 and 𝑈𝑆 , excluding the South and North poles respectively. Dirac obtained his
famous quantisation condition 𝐵 ∈ ℤ (which is equivalent to requiring that 𝐹 be an integral
form) by requiring that 𝐴𝑁 − 𝐴𝑆 = 𝐵

2𝜋 𝑑𝜙 be a well-defined gauge transformation on 𝑈𝑁 ∩
𝑈𝑆 ≅ 𝑆1 × ℝ. To write the action for a worldline that traverses multiple open sets, requires,
as noted by Wu & Yang [90], contributions not just from integrating the different 1-forms
on segments of the worldline where they are well-defined, but also requires contributions
from evaluating 0-forms (corresponding to Dirac’s gauge transformations) at points where
we switch between 1-forms.

1A variant of this example, in which we replace ℝ/ℤ ≅ 𝑆𝑂(2) ≅ 𝑆1 by 𝑂(2)/𝑂(1) ≅ 𝑆1 illustrates the
subtleties that can occur when 𝐺 is disconnected. Invariance under 𝑂(2) restricts 2𝑏 ∈ ℤ, such that the space
of AB terms is reduced to ℤ2.
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This prototypical example is indicative of the general story for WZ terms. In generalis-
ing, we adapt ideas of Alvarez [91] to a rigorous homological context. Thus, we use a good
cover on 𝑆2, namely an open cover (containing at least 4 open sets) in which not only the
sets themselves, but also their (finite) intersections, are contractible. Rather than integrate
on a worldline, we integrate on a 1-cycle which has been sufficiently subdivided that its con-
stituent chains are contained in individual open sets. As we will see, the twin requirements
of adding contributions from 0-forms and the quantisation condition arise explicitly from
the desire that the action phase be invariant under diffeomorphisms of the worldvolume that
preserve orientation, meaning that the definition of the topological term requires only the
structure of an orientation on the worldvolume.

The example of the Dirac monopole has two special features which do not generalise to
arbitrary 𝑝 and arbitrary 𝐺/𝐻 . The first of these is that the coefficient of a WZ term does not
have to take integer values, in general, even though the (𝑝 + 1)-form must be integral. For a
counterexample, consider what is arguably the simplest example of a WZ term, which arises
for a particle moving in a plane. We thus take 𝐺 = ℝ2 and 𝐻 the trivial subgroup, with
dynamics that is invariant under translations. A uniform magnetic field perpendicular to the
plane corresponds to a closed, translationally-invariant 2-form 𝐹 = 𝐵𝑑𝑥 ∧ 𝑑𝑦, with 𝐵 ∈ ℝ.
This form is exact, since we can write it as 𝑑𝐴, with 𝐴 = 𝐵𝑥𝑑𝑦. As a result, its integral over
any (𝑝 + 1)-cycle is zero by Stokes’ theorem and so it is an integral form for all 𝐵 ∈ ℝ.2

This topological term, when added to the canonical kinetic term for a particle on the plane,
yields the Landau levels in quantum mechanics,3 a story we shall revisit in Chapter 4.

The second feature of the Dirac monopole example which does not generalise is as
follows. The action (or rather the action phase, which is the physical object) must be 𝐺-
invariant. For 𝐺/𝐻 = 𝑆𝑂(3)/𝑆𝑂(2) it turns out that 𝑆𝑂(3)-invariance of the 2-form 𝐹 is
enough to guarantee invariance of the action phase. But in general this is a necessary but
not sufficient condition; the loophole arises because the action phase for WZ terms cannot,
in the general case where there are non-trivial 𝑝-cycles, be expressed directly in terms of
the (𝑝 + 1)-form appearing in the classification, but rather is expressed in terms of derived,
locally-defined 𝑝, 𝑝 − 1, … 0-forms. The upshot is that we need the stronger condition (1.17)
that we gave in the Introduction.

As ever, a simple example, namely quantum mechanics on the torus, serves to illustrate
the point. To this end, let us modify our previous 𝐺 = ℝ2 example, now setting 𝐻 = ℤ2,

2For an even more trivial example, note that an AB term, which can be thought of as a WZ term with
vanishing (𝑝 + 1)-form, will never have a quantised coefficient.

3This example also makes it clear that even exact (𝑝 + 1)-forms can lead to topological terms with phys-
ical effects and so the classification of WZ terms for general 𝐺/𝐻 should involve closed forms rather than
cohomology classes, as is oft assumed elsewhere.
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such that 𝐺/𝐻 ≅ 𝑇 2. Explicitly, at the level of coordinates, we identify 𝑥 ∼ 𝑥 + 1 and 𝑦 ∼
𝑦+1. By analogy with the ℝ2 example, one might think that there exists an ℝ2-invariant WZ
term corresponding to the closed, translationally invariant 2-form 𝐹 = 𝐵𝑑𝑥 ∧ 𝑑𝑦, provided
we choose 𝐵 ∈ ℤ so that the integral of 𝐹 over a fundamental cycle on the torus 𝑇 2 is an
integer.

But, in this example, translation invariance of the 2-form is not enough to guarantee a
translationally invariant action. To see the problem, consider a cycle representing a worldline
that wraps the 𝑦-direction once at some constant 𝑥 = 𝑥0, on which we may try to use the
locally-well-defined vector potential 𝐴 = 𝐵𝑥𝑑𝑦. But integrating this 1-form over the cycle
yields action phase 𝑒2𝜋𝑖𝐵𝑥0 , which is not invariant under (all) translations in the 𝑥-direction.
In fact, there is no choice of local 1-forms that yield a translationally-invariant action for all
cycles.

The absence of aWZ term in this example is confirmed by our classification, because the
stronger (necessary and sufficient) condition (1.17) for 𝐺-invariance is violated: the interior
product of the 2-form with the vector field 𝑎𝑥𝜕𝑥 + 𝑎𝑦𝜕𝑦 induced on 𝑇 2 by the action of the
Lie algebra is a closed, but not exact form. Indeed, 𝜄𝑎𝑥𝜕𝑥+𝑎𝑦𝜕𝑦(𝐵𝑑𝑥 ∧ 𝑑𝑦) = 𝑎𝑥𝐵𝑑𝑦 − 𝑎𝑦𝐵𝑑𝑥
(where 𝜄 denotes the interior product), which is not exact on 𝑇 2 unless 𝑎𝑥 = 𝑎𝑦 = 0.

The curious fact that quantum mechanics on the torus does not admit a translationally
invariant magnetic field was noticed long ago by Manton [92, 93]; we thus call the general-
isation of the condition for 𝐺-invariance of the action phase (which we derive in §2.4.2) to
arbitrary 𝑝 and 𝐺/𝐻 theManton condition.4 As we shall see in §2.4.4, the Manton condition
even has consequences at the level of classical physics.

2.2 Formalism
A classification of topological terms requires a concrete mathematical starting point, which
we now describe, and seek to justify. We assert, on very general physical grounds, that we
may equip both the worldvolume and the target space with a smooth structure and insist that
the maps between them be smooth. Indeed, our experimental apparatus may only be set up,
and measurements may only be performed, with finite precision; the mathematical descrip-
tion of what happens on scales beyond this precision is metaphysics rather than physics, and
we are free to choose it to be as smooth as we like, without loss of generality.

4We note that, according to our classification, quantummechanics on the torus does admit topological terms
in the form of AB terms (which vanished on ℝ2), given by integrating any linear combination of the closed
forms 𝑑𝑥 and 𝑑𝑦 over cycles.
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We may also assume, without loss of generality, that Σ𝑝 is connected. Indeed, discon-
nected components of Σ𝑝 may be considered as completely decoupled and so to compare
actions on them is to stray once more into the realm of metaphysics.

We also assume, now with loss of generality, that Σ𝑝 is orientable and we choose an
orientation on it. Doing so allows us, for example, to integrate differential 𝑝-forms on Σ𝑝,
to obtain objects that are invariant under the group, 𝒪 , of orientation-preserving diffeomor-
phisms of Σ𝑝. Thus, such objects require only the existence of an orientation structure on
the worldvolume. We define, correspondingly, a topological term as one that requires only
this structure and so is invariant under 𝒪 .

In fact, we will not define our topological terms by integrating 𝑝-forms on Σ𝑝. The reason
is that we wish to bring to bear the power of de Rham’s theorem, which requires us to inte-
grate not on manifolds, but on smooth singular chains.5 To enable us to do so, we make one
further assumption on Σ𝑝, which is that it is closed (i.e. compact without boundary). This
assumption requires some physical justification. Whilst worldvolumes that are not closed are
certainly physically reasonable, one finds in many examples that it suffices to work on closed
worldvolumes. In the path-integral approach to quantum mechanics (for which 𝑝 = 1), for
example, one computes the action phase for all worldlines beginning at some initial point in
the target and ending at some final point. But what is physical is not the action phase, but
rather the relative difference in the action phase between any two worldlines. So we can for-
mulate things equivalently by fixing one worldline and appending it to all other worldlines
(with its orientation reversed and smoothing out the endpoints), making closed worldlines
that are all orientation-preserving diffeomorphic to 𝑆1.

Similarly, when we move to quantum field theory (𝑝 > 1), we often find that the bound-
ary conditions associated to a given physical situation allow us to assume closure. Consider,
for example, a Euclidean quantum field theory living on the usual ℝ𝑝, which is certainly
not compact. Nevertheless, the requirement that the non-topological part of the action be
finite typically forces the quantum fields living on it to tend to a common value ‘at infinity’,
so that we can consider the corresponding worldvolume to be a sphere, 𝑆𝑝, with orienta-
tion. Alternatively, we may wish to consider quantum dynamics in the background of some
topologically stable object such as a soliton, in which case the Euclidean theory may be con-
sidered as a product of spheres. As another example, in doing condensed matter physics we

5We recall that a smooth singular 𝑝-simplex on 𝐺/𝐻 is a map from the standard simplex Δ𝑝 ⊂ ℝ𝑝 to 𝐺/𝐻
that extends to a smooth map in a neighbourhood of Δ𝑝. A 𝑝-chain (we drop the qualifier ‘smooth singular’
henceforth) is an element of the free Abelian group on (equivalently a formal finite sum of) such simplices and
one defines a boundary operator 𝜕 on chains that lowers 𝑝 by one and is such that 𝜕2 = 0. A 𝑝-cycle is a chain
without boundary and a 𝑝-boundary is a cycle that bounds some (𝑝 + 1)-chain.
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might wish (e.g. in studying crystals) to employ periodic boundary conditions in space, in
which case the worldvolume may be taken to be an oriented torus, 𝑇 𝑝.

The upshot of all these assumptions on the worldvolume is that it defines a fundamental
class, [Σ𝑝], as follows. The (connected) worldvolume Σ𝑝 has 𝑝th homology isomorphic to
ℤ and [Σ𝑝] is defined to be a generator thereof. Now, the fundamental class is 𝒪-invariant
and so provides us with a natural object on which to try to define an action (phase) for a
topological term.

There exists a natural way to define such an action: take a 𝑝-form on Σ𝑝 and integrate
it on any fundamental 𝑝-cycle (that is, a 𝑝-cycle in the fundamental class). The 𝑝-form,
being a top-degree form, is necessarily closed, and so, by Stokes’ theorem, our definition is
independent of the choice of cycle, resulting in an action that is well-defined on [Σ𝑝].

Moreover, there is a natural source of suitable forms: we take any 𝑝-form on 𝐺/𝐻 (which
need not be closed) and pull it back to Σ𝑝 via the map 𝜙 ∶ Σ𝑝 → 𝐺/𝐻 that defines the
field configuration in the quantum field theory. We can, completely equivalently, define the
action by instead integrating the original form on 𝐺/𝐻 on the cycle on 𝐺/𝐻 that is obtained
by pushing-forward a cycle in [Σ𝑝] to a cycle in 𝐺/𝐻 , where the push-forward is defined by
taking the maps 𝜎 ∶ Δ𝑝 → Σ𝑝 defining the constituent simplices of the cycle in [Σ𝑝] and
composing with the map 𝜙.

We thus arrive at a formulation of the dynamics in terms of 𝑝-cycles and 𝑝-forms on
𝐺/𝐻 . We now wish to modify this in 2 ways. The first way amounts to a restriction on
the possible dynamics: we insist that the action be defined on all cycles in 𝐺/𝐻 , not just
on the subset that can be obtained via the push-forward map. We insist on this restriction
because it allows us to use de Rham’s theorem. In particular, we shall make frequent use of
the following results:

A differential 𝑝-form has vanishing integral over every
⎧
⎪
⎨
⎪
⎩

𝑝-chain
𝑝-cycle
𝑝-boundary

⎫
⎪
⎬
⎪
⎭

iff. it
⎧
⎪
⎨
⎪
⎩

vanishes.
is exact.
is closed.

⎫
⎪
⎬
⎪
⎭

(2.1)

The second modification amounts not to a restriction, but rather to a generalisation of
the dynamics. To wit, we allow the 𝑝-forms on 𝐺/𝐻 to be only locally well-defined. That
is, a ‘form’ may consist of distinct pieces, each of which is defined only on a single set, 𝑈𝛼
say, of an open cover. In doing so, we must revise our definition of the action, since the
definition we just gave cannot be used for cycles in 𝐺/𝐻 that intersect multiple open sets.
A way forward is found by using the subdivision operator (a standard object in algebraic
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topology [94]) to replace the original cycle by a new cycle whose constituent simplices are
contained in single sets in the cover. One may then try to define an action by integrating
the locally-defined forms on the simplices where they are well-defined, but this leads to an
ambiguity in the following way: suppose that subdivision results in a simplex contained in
a double intersection 𝑈𝛼 ∩ 𝑈𝛽 of sets. Then there exists a choice of locally-defined 𝑝-forms
which we could integrate on the simplex.

To remove this ambiguity requires a modification of the action, which we shall discuss
in detail in §2.4. We end up with an action written in terms of integrals of locally-defined
𝑝, 𝑝 − 1, 𝑝 − 2, … , 0-forms on chains of corresponding degree, in such a way that the action
is well-defined on every cycle in 𝐺/𝐻 . Moreover, as we show in §2.4, the definition leads
to a well-defined action on [Σ𝑝], ergo an 𝒪-invariant of the worldvolume.

Our further assumptions regarding the target space 𝐺/𝐻 are few. The group 𝐺 may
be an arbitrary Lie group and 𝐻 any closed subgroup thereof.6 Neither 𝐺 nor 𝐻 need
be compact or connected, in general, and we will see that there exist plenty of interesting
physical examples where these conditions do not hold.7 Nevertheless, since we have argued
that the worldvolume may be taken to be connected and the map Σ𝑝 → 𝐺/𝐻 to be smooth,
we may freely take 𝐺/𝐻 to be connected, if we wish.8

In what follows, we will derive a straightforward condition (the Manton condition) for
invariance of topological terms under the subgroup of 𝐺 consisting of elements that are
continuously connected to the identity. The extra conditions that must be imposed for ele-
ments of 𝐺 that are disconnected from the identity are somewhat subtle for both AB andWZ
terms. We will therefore assume throughout the Chapter that 𝐺 is connected, and postpone
our discussion of the case of disconnected 𝐺 to §2.5.1.

We now discuss the two types of terms arising in our classification, beginning with the
rather simpler AB terms.

2.3 Aharonov-Bohm terms and their classification
Since we are defining our action on 𝑝-cycles, it makes sense to begin by considering inte-
grating 𝑝-forms, albeit only locally-defined ones. It will be helpful to divide our analysis

6It is then a theorem that 𝐺/𝐻 admits the structure of a smooth manifold with a smooth transitive action of
𝐺.

7There are also interesting physical examples where 𝐺 is modelled on an infinite-dimensional manifold
and so is not, strictly speaking, a Lie group. A prototype is given by a perfect fluid, which may be described,
both classically [95] and quantum mechanically [56], as a sigma model in which 𝐺 contains the group of
volume-preserving diffeomorphisms of the manifold on which the fluid flows.

8Lest there be any confusion, we remark that neither 𝐺 nor 𝐻 need be connected, even when 𝐺/𝐻 is, cf.
𝑂(𝑛 + 1)/𝑂(𝑛) ≅ 𝑆𝑛 or 𝑆𝑂(𝑛 + 1)/𝑂(𝑛) ≅ ℝ𝑃 𝑛.
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into two cases, namely in which the local 𝑝-forms are, or are not, closed. The closed case
corresponds to the AB terms, which we discuss in this Section; the other case corresponds
to the WZ terms, which we discuss in §2.4.

For the AB terms, we shall take the closed 𝑝-form to be not just locally, but globally-
defined. It turns out that this assumption can be made without loss of generality if one
neglects torsion terms in the singular 𝑝th homology of the target space (or indeed if the
torsion vanishes).9 We remark that one may incorporate torsion terms into a homological
classification of topological action terms through locally-defined AB terms. If one includes
this torsion piece, the full space of AB terms is the group

𝐻𝑝(𝐺/𝐻, 𝑈(1)), (2.2)

the 𝑝th singular cohomology of 𝐺/𝐻 valued in 𝑈(1); we refer the reader to Chapter 5 where
this shall be discussed further.

Let 𝐴 be a closed, globally-defined 𝑝-form on 𝐺/𝐻 . Define a topological action, eval-
uated on a generic worldvolume Σ𝑝, by its integral over a 𝑝-cycle 𝑧 in 𝐺/𝐻 which is the
push-forward of a cycle in [Σ𝑝]:

𝑆[𝑧] =
ˆ

𝑧
𝐴. (2.3)

This integral vanishes for any exact form by (2.1), and so only depends on the de Rham
cohomology class of 𝐴. Since any two fundamental cycles differ by a boundary, and any
𝑝-boundary in the source pushes forward to a 𝑝-boundary in the target, then by (2.1) every
fundamental cycle yields the same action (2.3), because 𝐴 is closed. Hence, (2.3) is well-
defined on the fundamental class [Σ𝑝], and is therefore 𝒪-invariant.

The action for AB terms has three other special properties, none of which will hold for
WZ terms. The first is that, by the Poincaré lemma, an AB term is locally exact; like a
total derivative in the lagrangian, it therefore gives no contribution to the classical equations
of motion, such that its effects are purely quantum-mechanical. The second is that it gives
no contribution to perturbative Feynman diagrams (for 𝑝 > 2). The third property is that
the AB terms only yield non-trivial action phases when 𝐺/𝐻 admits 𝑝-cycles that are not
𝑝-boundaries, i.e. when the 𝑝th homology is non-vanishing.

Having identified the source of AB terms, namely closed, global 𝑝-forms, we now con-
sider their classification.

9The proof of this claim is technical and requires the formalism of §2.4; we invite the interested reader to
consult Appendix A of Ref. [1].
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2.3.1 Classification
Generally, we shall need to check three things when we classify the possible topological
terms, which we refer to as consistency, invariance, and injectivity. In more detail, the no-
tions are as follows:

• consistency: we have prescribed that the action must be defined on every 𝑝-cycle in
𝐺/𝐻 . If we are constructing an action from differential forms that are only locally-
defined on open sets, we must ensure there are no ambiguities where sets overlap.
Moreover we must check that the action is well-defined on the fundamental class after
we pull back to the source;

• invariance: the action must be 𝐺-invariant;

• injectivity: naïvely, every coupling 𝑔 that appears in an action is just a real number
(though consistency may force it to be an integer). But if two different numbers lead
to the same value of 𝑒2𝜋𝑖𝑆 on all possible cycles, then the physics will be the same. So
we need to check that the space of couplings injects to the space of action phases.

We have defined an AB term as the integral of a globally-defined 𝑝-form over any cycle
in 𝐺/𝐻 , and so there are no ambiguities pertaining to the integration of local forms. We
have shown above that such an integral is well-defined on [Σ𝑝], and therefore 𝒪-invariant.
The integral (2.3) thus defines a consistent topological action. Moreover, an AB term is
invariant under 𝐺, if (as we are assuming for the present purposes) 𝐺 is connected. To see
this, consider an infinitesimal 𝐺 transformation, generated by vector field 𝑋 on 𝐺/𝐻 . The
action (2.3) varies by

𝛿𝑋𝑆[𝑧] =
ˆ

𝑧
𝐿𝑋𝐴 =

ˆ
𝑧

𝑑𝜄𝑋𝐴 =
ˆ

𝜕𝑧
𝜄𝑋𝐴 =

ˆ
0

𝜄𝑋𝐴 = 0, (2.4)

where 𝐿𝑋 is the Lie derivative. In the second equality, we applied Cartan’s homotopy for-
mula, 𝐿𝑋 = 𝑑𝜄𝑋 + 𝜄𝑋𝑑, together with 𝑑𝐴 = 0, and in the third equality we applied Stokes’
theorem. Finally, 𝜕𝑧 = 0 because 𝑧 is a cycle.

The vector fields 𝑋 define, via their integral curves, an action of the subgroup of 𝐺 given
by the image of the exponential map, exp ∶ 𝔤 → 𝐺. So (2.4) implies invariance under the
action of exp(𝔤) ⊂ 𝐺. Unfortunately, the exponential map is not surjective in general, even
when 𝐺 is connected. It is, however, a theorem that any element 𝑔 of a connected group 𝐺
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can be written as a product of a finite number of elements in exp(𝔤). Hence, an AB term is
invariant under the action of the connected group 𝐺, for any closed 𝑝-form 𝐴.10

It remains to check injectivity. To do so, note that if (and only if) two 𝑝-forms 𝐴 and 𝐵
differ by a form that is integral, i.e. such that

´
𝑧(𝐴 − 𝐵) ∈ ℤ for any 𝑝-cycle 𝑧, then the

corresponding action phases exp(2𝜋𝑖
´

𝑧 𝐴) and exp(2𝜋𝑖
´

𝑧 𝐵) will agree on all 𝑝-cycles. We
saw this explicitly in the example of quantum mechanics on 𝑆1 in §2.1. Thus, we must take
the quotient

𝐻𝑝
𝑑𝑅(𝑀, ℝ)/𝐻𝑝

𝑑𝑅(𝑀, ℤ), (2.5)

of the real de Rham cohomology with respect to its subgroup of integral classes to define
the space of physically inequivalent AB terms. This is the free part of the group (2.2).

We remark that the set of inequivalent AB terms thus obtained has the structure of an
Abelian Lie group. This is no accident, in that it accords with one’s physical expectation that
two topological actions can be added (in either order) to make a third action which is also
topological, &c., and also that small enough changes in the values of the couplings should
be physically indetectable. The same structure will be present on the set of WZ terms, and
we will have occasion to exploit it in what follows.

We now give three more examples of AB terms in field theory, namely the ℂ𝑃 𝑁 model
and a model exhibiting 𝑇 -duality in 𝑝 = 2, and the minimal Composite Higgs model in
𝑝 = 4, the last of which is discussed in detail in §3.1.

2.3.2 Examples
The two-dimensional ℂ𝑃 𝑁 model

Consider a 𝑝-dimensional sigma model on complex projective space, ℂ𝑃 𝑁 , which may be
realised as a homogeneous space with 𝐺/𝐻 = 𝑈(𝑁 + 1)/(𝑈(𝑁) × 𝑈(1)). Its 𝑝th homol-
ogy (with integer coefficients) is given by ℤ for 𝑝 even between 0 and 2𝑁 , and vanishes
otherwise. The corresponding real cohomology groups are equal to ℝ or 0.

The model with 𝑝 = 2 is well studied in physics, particularly at large 𝑁 , where various
simplifications occur [96, 97]. Recall that ℂ𝑃 𝑁 may be parametrised by 𝑁 + 1 projective
coordinates, that is, a set of complex numbers 𝑧𝑖 ∈ ℂ, 𝑖 = 1, … , 𝑁 + 1, together with
the constraint ∑ 𝑧∗

𝑖 𝑧𝑖 = 1 and the 𝑈(1) equivalence 𝑧𝑖 ∼ 𝑒𝑖𝛼𝑧𝑖. The second de Rham
cohomology 𝐻2

𝑑𝑅(ℂ𝑃 𝑁 , ℝ) = ℝ has a single generator, which we can take to be the Kähler
form, 𝑖

2𝑑𝑧𝑖∧𝑑 ̄𝑧𝑖 in our coordinates. Hence, there is an AB term for any choice of 𝑁 , obtained
10For a slicker proof, one may simply note that the action of the connected component of 𝐺 takes cycles into

homologous cycles; it then follows immediately that the AB term is invariant, because the integral of a closed
form over a cycle depends only on the homology class of the cycle.
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by integrating a 2-form proportional to the Kähler form over 2-cycles in ℂ𝑃 𝑁 . Taking the
quotient by the subgroup of forms that are integral, the space of topological terms is given
by ℝ/ℤ ≅ 𝑈(1).

This term is often called a ‘theta term’ in the literature, because it is a close analogue
of the theta term in QCD. Indeed, the constraint ∑ 𝑧∗

𝑖 𝑧𝑖 = 1 and the equivalence relation
𝑧𝑖 → 𝑒𝑖𝛼𝑧𝑖 can be enforced in field theory via a lagrange multiplier 𝜆(𝑥) and a 𝑈(1) gauge
field 𝐴(𝑥), respectively. If one just has the quadratic kinetic term plus the theta term in the
lagrangian, one can integrate out the 𝑧𝑖 in the (Gaussian) path integral to obtain a theory
involving only the fields 𝐴(𝑥) and 𝜆(𝑥). If one then takes the large 𝑁 limit11 of the resulting
effective lagrangian the theory reduces to that of a dynamical gauge field with the usual theta
term of electromagnetism in 𝑝 = 2, studied by Schwinger and others as a two-dimensional
model for real-world QCD [98].

𝑇 -duality on the torus

Suppose that 𝑝 = 2 and that 𝐺/𝐻 = (ℝ/ℤ)2 ≅ 𝑇 2. Since 𝐻2
𝑑𝑅(𝑇 2, ℝ) = ℝ, our classifi-

cation indicates that there is an AB term given by the integral of a form proportional to the
translationally-invariant volume form on 𝐺/𝐻 . This will result in a non-trivial action phase
only when the worldvolume has itself the topology of a 2-torus, so let us suppose that this is
the case. We thus have a model with maps from a worldsheet 𝑇 2 to a target 𝑇 2 with a topo-
logical AB term with values in ℝ/ℤ. Adding the usual two-derivative kinetic term results in
a model exhibiting 𝑇 -duality, in which the topological term plays a key role, pairing up with
the geometric area of the torus to make a complex parameter which gets interchanged under
𝑇 -duality with the complex structure parameter of the torus.

The four-dimensional minimal Composite Higgs model

For a final example, consider the minimal Composite Higgs model (MCHM) [99] in 𝑝 = 4,
for which 𝐺/𝐻 = 𝑆𝑂(5)/𝑆𝑂(4) ≅ 𝑆4. Since 𝐻4

𝑑𝑅(𝑆4, ℝ) = ℝ, and 𝐻4
𝑑𝑅(𝑆4, ℤ) = ℤ, there

is an AB term given by the integral of a 4-form proportional to the volume form on 𝑆4. The
space of inequivalent topological action phases is thus, yet again, ℝ/ℤ = 𝑈(1). We discuss
the physics associated with this AB term in detail, alongside a host of other Composite Higgs
examples, in Chapter 3.

11ℂ𝑃 ∞ plays a special role in mathematics too: it is the Eilenberg-Maclane space 𝐾(ℤ, 2). For example,
𝐾(ℤ, 2) is the classifying space of the group 𝑈(1), a fact that shall be important to us in Chapter 7.
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2.4 Wess-Zumino terms and their classification
Now we turn to topological terms corresponding to 𝑝-forms on 𝐺/𝐻 that are not closed,
which we call WZ terms. We begin by remarking that one cannot capture all such terms
by requiring the 𝑝-form 𝐴 to be globally-defined. Nevertheless, even if 𝐴 is only locally-
defined, consistency demands that 𝑑𝐴 (which is now non-zero) is globally-defined. Perhaps
the easiest way to see this is to take the classical limit. One finds that 𝑑𝐴 appears directly
in the classical equations of motion, and so should be well defined everywhere on 𝐺/𝐻 for
the classical limit to exist. Thus, a useful starting point for constructing a WZ term is a
globally-defined (𝑝 + 1)-form 𝜔 on 𝐺/𝐻 . Such a form is necessarily closed since, at least
locally, 𝜔 = 𝑑𝐴.

To see the kind of restrictions we will have to place on 𝜔, it is helpful to first consider the
special case when 𝐴 is itself globally-defined, and then return later to the general case. If 𝐴
is globally-defined, then 𝜔 is exact, and we can define an 𝒪-invariant, and thus topological,
action simply by integrating 𝐴 over 𝑝-cycles.12 In this case, the 𝑝-form 𝐴 can be regarded as
a lagrangian for the theory, but we shall see that when 𝐴 is only locally-defined, there is no
well-defined notion of the lagrangian. To be 𝐺-invariant, we must require

´
𝑧(𝐿∗

𝑔 − 1)𝐴 = 0
for all 𝑝-cycles 𝑧, where 𝐿∗

𝑔 denotes the pull-back along the (left, say) action of a group
element 𝑔 ∈ 𝐺 on 𝑀 . By (2.1), this is true iff. (𝐿∗

𝑔 − 1)𝐴 is exact, ∀𝑔 ∈ 𝐺. In other words,
the ‘lagrangian’ 𝐴 may be ‘quasi-invariant’, in the sense that it shifts by a total derivative
under the symmetry.13 It follows that the (𝑝 + 1)-form 𝜔 is strictly invariant, (𝐿∗

𝑔 − 1)𝜔 =
0, because the exterior derivative commutes with pullback. As we mentioned in §2.1, the
Landau problem on ℝ2 is an example of this special case.

Now let’s go back to the general case, where 𝐴 need only be locally-defined. In other
words, we suppose that 𝜔 is not exact. We choose an open cover {𝑈𝛼} of our target space,
such that 𝐴 is well defined on each open set, taking value 𝐴𝛼 on 𝑈𝛼. Given such a collection
{𝐴𝛼} of local 𝑝-forms, it is no longer obvious, a priori, how to write down an action phase
𝑒2𝜋𝑖𝑆[𝑧] for each 𝑝-cycle 𝑧 in 𝐺/𝐻 , which is consistent, let alone 𝐺-invariant. If it is the
case that the worlvolume cycle 𝑧 is in fact a boundary, 𝑧 = 𝜕𝑏, then one can follow Witten’s
construction and integrate a 𝐺-invariant (𝑝 + 1)-form 𝜔 directly over the (𝑝 + 1)-chain 𝑏 to
obtain a manifestly 𝐺-invariant action [45]. If not, we must deal with local forms directly
(and there is certainly no well-defined notion of a lagrangian). We do so, following Wu &

12Note that, unlike for the Dirac monopole example, there is no quantisation condition on the coefficient of
𝜔 in this case, because exactness implies that its integral is zero over any (𝑝 + 1)-cycle (so 𝜔 is automatically
an integral form).

13We note that, in general, it is meaningless in general to try to define a WZ term, as others have done,
as a term in the lagrangian that shifts by a total derivative under the action of 𝐺; in general, as we have just
remarked, there is no lagrangian!
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Yang [90] and Alvarez [91], by writing a topological action phase in terms of contributions
on the open sets in our cover, and on finite intersections thereof.

We shall again need to make sure that the action phase so defined satisfies our triumvirate
of criteria, namely consistency, invariance, and injectivity. For WZ terms, consistency leads
to the quantisation condition (specifically, the requirement that 𝜔 be an integral (𝑝 + 1)-
form), as we explain using tools borrowed fromČech cohomology and sheaf theory in §2.4.1;
invariance leads to the Manton condition, which we derive in §2.4.2; injectivity follows
straightforwardly, as we show in §2.4.3. Together, these restrictions define the appropriate
subspace of closed (𝑝 + 1)-forms that are, as claimed in the Introduction, in one-to-one
correspondence with 𝐺-invariant WZ terms on 𝐺/𝐻 .

2.4.1 Consistency and the quantisation condition
We now describe (in a very simplistic way; for more details, see [100]) the elements of Čech
cohomology and sheaf theory that we need.

We assign, to each open set 𝑈 ⊂ 𝐺/𝐻 , an abelian group ℱ (𝑈); we will, according to
our needs, variously take ℱ (𝑈) to be the smooth 𝑞-forms, Λ𝑞(𝑈), on 𝑈 , or constant maps
𝑈 → ℝ, or constant maps 𝑈 → ℤ.14 Every smooth manifold (and thus every 𝐺/𝐻) admits
a good cover, 𝒰 = {𝑈𝛼}, namely an open cover satisfying the additional property that the
open sets 𝑈𝛼, and all finite intersections (where we define 𝑈𝛼0 ∩𝑈𝛼1 ∩⋯∩𝑈𝛼𝑝 ∶= 𝑈𝛼0𝛼1…𝛼𝑝)
thereof, are contractible. For example, ℝ𝑛 has a good cover with 1 open set, 𝑆1 has a good
cover with 3 open sets, and 𝑆2 has a good cover with 4 open sets.15 The utility of a good
cover is that we can use the Poincaré lemma on the open sets and their finite intersections.
Given a good cover 𝒰 we define a Čech 𝑝-cochain on 𝒰 with values in ℱ to be an element
of the group

̌𝐶𝑝(𝒰, ℱ ) = ∑𝛼0<𝛼1<⋯<𝛼𝑝

ℱ (𝑈𝛼0𝛼1…𝛼𝑝). (2.6)

Thus 𝜔 ∈ ̌𝐶𝑝(𝒰, ℱ ) may be characterized by the set of values {𝜔𝛼0𝛼1…𝛼𝑝 ∈ ℱ (𝑈𝛼0𝛼1…𝛼𝑝)}
that it takes on the (𝑝+1)-fold intersections.16 TheČech coboundary operator 𝛿𝑝 ∶ ̌𝐶𝑝(𝒰, ℱ ) →

14The objects ℱ thus defined are, in fact, examples of presheaves, but we will sidestep the technicalities
here.

15Note that the open cover of 𝑆2 considered in §2.1 with just two open sets, 𝑈𝑁 = 𝑆2\{𝑆} and 𝑈𝑆 =
𝑆2\{𝑁}, is not a good cover because the intersection of these two sets is clearly not contractible; rather, a good
cover can be formed by projecting the four faces of a tetrahedron onto the sphere, and enlarging them slightly
such that they intersect.

16Hereafter, we will allow the indices specifying the components of a Čech cochain to be in any order (not
just ascending), subject to the condition that 𝜔𝛼0𝛼1…𝛼𝑝

is antisymmetric on all pairs of indices.



50 Classification of topological terms in sigma models on homogeneous spaces

̌𝐶𝑝+1(𝒰, ℱ ) is defined via its action on 𝜔𝛼0𝛼1…𝛼𝑝 by

(𝛿𝜔)𝛼0𝛼1…𝛼𝑝+1 =
𝑝+1

∑
𝑖=0

(−1)𝑖𝜔𝛼0… ̂𝛼𝑖…𝛼𝑝+1 , (2.7)

where a ̂ denotes omission of the index, whence one may check that 𝛿𝑝 ∘ 𝛿𝑝−1 = 0. We
define the 𝑝th Čech cohomology of 𝐺/𝐻 with values in ℱ , �̌�(𝐺/𝐻, ℱ ) to be the usual
cohomology of the complex ̌𝐶(𝒰, ℱ ), viz. ker 𝛿𝑝/im 𝛿𝑝−1.

As our notation suggests, the cohomology �̌�(𝐺/𝐻, ℱ ) turns out to be independent of
the choice of good cover 𝒰 . In fact, when we choose ℱ (𝑈) to be the constant real-valued
functions on 𝑈 , we find that the cohomology that results is isomorphic to the usual de Rham
cohomology.

To see the relevance of this mathematical formalism to our physical problem, let us return
again to our starting point: we consider a globally-defined, closed (but not necessarily exact),
(𝑝 + 1)-form on 𝐺/𝐻 , which we denote by 𝜔. The idea is that 𝜔, provided that it satisfies
some additional criteria, can be used to define a topological term. To see how the term
comes about, we first note that 𝜔 defines an element of ̌𝐶0(𝒰, Λ𝑝+1) by restricting 𝜔 to
each of the 𝑈𝛼: 𝜔𝛼 ∶= 𝜔|𝛼. Using the Poincaré lemma, we may then construct an element
{𝐴𝑝

𝛼} ∈ ̌𝐶0(𝒰, Λ𝑝) via
𝑑𝐴𝑝

𝛼 = 𝜔𝛼, on 𝑈𝛼. (2.8)

Since 𝜔 is globally-defined, we must have that 𝜔𝛼 = 𝜔𝛽 on 𝑈𝛼𝛽 . Hence 𝑑(𝐴𝑝
𝛼 − 𝐴𝑝

𝛽) = 0
and, again by the Poincaré lemma, we may construct an element {𝐴𝑝−1

𝛼𝛽 } ∈ ̌𝐶1(𝒰, Λ𝑝−1) via

𝐴𝑝
𝛼 − 𝐴𝑝

𝛽 = 𝑑𝐴𝑝−1
𝛼𝛽 , on 𝑈𝛼𝛽 . (2.9)

This set of conditions on double intersections can be expressed concisely using the Čech
coboundary operator, as

𝛿 {𝐴𝑝
𝛼} = {𝑑𝐴𝑝−1

𝛼𝛽 } . (2.10)

We note, moreover, that the Čech 0-cochain {𝜔𝛼} = {𝑑𝐴𝑝
𝛼} is in fact a Čech cocycle:

𝛿{𝜔𝛼} = {𝜔𝛼 − 𝜔𝛽} = 0, because 𝜔 is globally-defined.
Now let us use this formalism to construct a consistent topological action phase for any

𝑝-cycle 𝑧 in 𝐺/𝐻 . In order to integrate the 𝑝-forms {𝐴𝑝
𝛼} which are locally-defined on the

open sets in 𝒰 = {𝑈𝛼}, the chains on which we are to integrate must be contained within
these open sets; such chains are referred to as 𝒰-small. Thus, we first apply the subdivision
operator, Sd, as many times, 𝑛 say, as is necessary (we refer the reader to, e.g., [94] for
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details of the construction). The original cycle 𝑧 we started with is mapped to a homologous
cycle Sd𝑛𝑧, which is a formal sum of a set of 𝒰-small 𝑝-chains, which we denote {𝑐𝑝,𝛼},
where Im 𝑐𝑝,𝛼 ⊂ 𝑈𝛼 and such that Sd𝑛𝑧 = ∑𝛼 𝑐𝑝,𝛼, on which we can now integrate the local
𝑝-forms {𝐴𝑝

𝛼}.
Having done so, one might naïvely try to define the action to be 𝑆 = ∑𝛼

´
𝑐𝑝,𝛼

𝐴𝑝
𝛼. This

is not a good definition, however, because there is an ambiguity whenever a particular 𝑝-
simplex is contained not just in an open set 𝑈𝛼, but rather in the intersection of two open
sets, say 𝑈𝛼𝛽 . The naïve action is ambiguous because we could choose to integrate 𝐴𝑝

𝛼 or 𝐴𝑝
𝛽

on this simplex. To fix this problem, we shall need to add pieces to the action corresponding
to integrals over (𝑝 − 1)-chains of the (𝑝 − 1)-forms 𝐴𝑝−1

𝛼𝛽 defined in (2.9) to compensate
for the ambiguity. However, such a fix introduces further ambiguities to fix up. Rather than
fixing up the ambiguities one by one, we shall now cut to the chase and explain from the top
down how to construct an action phase from local forms which is ambiguity-free.

It turns out that to construct such an action, one needs not just the local forms {𝐴𝑝
𝛼}

and {𝐴𝑝−1
𝛼𝛽 } that we have so far constructed, but rather a whole tower of locally-defined

forms of degree 𝑝, 𝑝 − 1, … , 0. We have already constructed, using the Poincaré lemma,
an element {𝐴𝑝

𝛼} ∈ ̌𝐶0(𝒰, Λ𝑝) and an element {𝐴𝑝−1
𝛼𝛽 } ∈ ̌𝐶1(𝒰, Λ𝑝−1), which satisfy

{𝑑𝐴𝑝
𝛼} = {𝜔𝛼} and {𝑑𝐴𝑝−1

𝛼𝛽 } = 𝛿{𝐴𝑝
𝛼}. We proceed in a similar way to construct ele-

ments {𝐴𝑝−𝑞
𝛼0𝛼1…𝛼𝑞 } ∈ ̌𝐶𝑞(𝒰, Λ𝑝−𝑞) (that is, in words, a set of (𝑝 − 𝑞)-forms defined locally

on (𝑞 + 1)-fold intersections of the open sets in our good cover) for each 0 ≤ 𝑞 ≤ 𝑝, which
satisfies

{𝑑𝐴𝑝−𝑞
𝛼0…𝛼𝑞−1𝛼𝑞 } = 𝛿{𝐴𝑝−𝑞+1

𝛼0…𝛼𝑞−1}. (2.11)

Using this equation, we can construct each {𝐴𝑝−𝑞} from {𝐴𝑝−𝑞+1} (where we shall some-
times suppress the indices for clarity) by first applying the Čech coboundary operator, and
then using the Poincaré lemma to “undo” the exterior derivative 𝑑. Thus, starting from
the local 𝑝-forms {𝐴𝑝

𝛼}, we construct a whole tower of locally-defined forms of degree
𝑝, 𝑝 − 1, … , 0.

The Čech cochains thus defined are also cochains in the de Rham complex (restricted
to open sets and appropriate intersections thereof). In this sense, they sit inside a double
cochain complex acted upon by both the exterior derivative 𝑑 and the Čech coboundary
operator 𝛿. We can illustrate the consistency relations (2.11) conveniently by gathering the
double cochains we have constructed into a tic-tac-toe table (see [100] for details), whose
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(𝑞, 𝑟)th entry is an element in ̌𝐶𝑟(𝒰, Λ𝑞):

Λ𝑝+2 0
Λ𝑝+1 𝜔 {𝜔𝛼} 0
Λ𝑝 {𝐴𝑝

𝛼} 𝛿{𝐴𝑝
𝛼} = {𝑑𝐴𝑝−1

𝛼𝛽 }
Λ𝑝−1 ⋮ ⋮ {𝐴𝑝−1

𝛼𝛽 }
⋮ ⋮ ⋮ ⋮

Λ1 {𝐴1
𝛼0...𝛼𝑝−1} 𝛿{𝐴1

𝛼0...𝛼𝑝−1} 0
Λ0 … {𝐴0

𝛼0...𝛼𝑝} 𝛿{𝐴0
𝛼0...𝛼𝑝} 0

𝑑 ↑ … {𝐾𝛼0...𝛼𝑝+1}
𝛿 → ̌𝐶0 ̌𝐶1 … ̌𝐶𝑝 ̌𝐶𝑝+1 ̌𝐶𝑝+2

.

(2.12)
The action of the exterior derivative 𝑑 moves us one step up in the table (with two steps up
always yielding zero because 𝑑2 = 0), and the action of the Čech coboundary operator 𝛿
moves us one step to the right (with two steps right always yielding zero because 𝛿2 = 0).
Conversely, if an element lies beneath a zero entry (which means the locally-defined forms
are closed), we can use the Poincaré lemma to move one step down,17 and if an element lies
to the left of a zero entry, the existence of a partition of unity enables us to “undo” 𝛿 and
move one step to the left, analogous to the Poincaré lemma for “undoing” 𝑑.18 The element
in the bottom right of the tic-tac-toe table, which we denote by {𝐾} ∶= 𝛿{𝐴0}, is a set of
0-forms defined on (𝑝 + 2)-fold intersections, which is both 𝑑 and 𝛿 closed. The importance
of this object shall become clear after we have written down the action (phase), and so we
postpone further discussion for now.

The action shall be a sum of integrals of all of these locally-defined forms. We now
describe how to obtain the set of chains on which to integrate these forms. Having applied
Sd𝑛, we thus far have chosen a set of 𝒰-small 𝑝-chains {𝑐𝑝,𝛼} on which to integrate {𝐴𝑝

𝛼}
(wherever a 𝒰-small simplex lies in a double intersection, say 𝑈𝛼𝛽 , simply make a choice to
include this simplex in either 𝑐𝑝,𝛼 or 𝑐𝑝,𝛽). Given each 𝑐𝑝,𝛼, its boundary can be written as a
sum over (𝑝−1)-chains which are contained in the double intersections of 𝑈𝛼 with each of the
other open sets, viz. 𝜕𝑐𝑝,𝛼 = ∑𝛽 𝑐(𝑝−1),𝛼𝛽 . By taking the boundary of each 𝑐𝑝,𝛼 and collecting
terms defined on each double intersection, we thus obtain a set of (𝑝 − 1)-chains {𝑐(𝑝−1),𝛼𝛽},
which are 𝒰-small in the sense of being contained wholly in double intersections, on which
we can integrate the local (𝑝 − 1)-forms {𝐴𝑝−1

𝛼𝛽 }.
17We note that the result of doing so is not unique.
18A partition of unity is a collection of functions {𝑝𝛼} on the open sets such that 𝑝𝛼 ≥ 0, ∑𝛼 𝑝𝛼 = 1, and 𝑝𝛼

has compact support in 𝑈𝛼 . If {𝑇𝛼0𝛼1…𝛼𝑟
} ∈ ̌𝐶𝑟(𝒰, Λ𝑞), then the object {𝑆𝛼0𝛼1…𝛼𝑟−1

} ∈ ̌𝐶𝑟−1(𝒰, Λ𝑞) defined by
{𝑆𝛼0𝛼1…𝛼𝑟−1

} = {Σ𝛾𝑇𝛼0𝛼1…𝛼𝑟−1𝛾𝑝𝛾} satisfies {𝑇 } = 𝛿{𝑆}.
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Proceeding, given a set {𝑐(𝑝−𝑞+1),𝛼0…𝛼𝑞−1} of (𝑝 − 𝑞 + 1)-chains defined on 𝑞-fold inter-
sections, we construct the appropriate (𝑝 − 𝑞) chains in the obvious way: simply take the
boundary, expressed as a sum of (𝑝 − 𝑞)-chains lying wholly in the (𝑞 + 1)-fold intersec-
tions of our good cover. Thus, in analogy to how we started from the global (𝑝 + 1)-form 𝜔
and constructed a tower of local forms, we can start from a 𝑝-cycle and construct a tower of
𝒰-small chains of degree 𝑝, 𝑝 − 1, … , 0, right down to a set of points (0-chains) {𝑐0,𝛼0...𝛼𝑝}
defined on (𝑝 + 1)-fold intersections.

We have now constructed all the objects that we need to write down a consistent action.
We define the action to be the following sum of integrals, of the locally-defined forms on the
corresponding 𝒰-small chains:

𝑆[𝑧] = ∑𝛼

ˆ
𝑐𝑝,𝛼

𝐴𝑝
𝛼 − ∑

𝛼𝛽

ˆ
𝑐(𝑝−1),𝛼𝛽

𝐴𝑝−1
𝛼𝛽 + ⋯ + (−)𝑝

∑𝛼0...𝛼𝑝+1

𝐴0
𝛼0...𝛼𝑝(𝑐0,𝛼0...𝛼𝑝). (2.13)

One can show that this action is free of any ambiguities in degree > 0, which potentially arise
when there is a choice of local forms to integrate on a particular simplex. The argument is a
rather technical digression, which we therefore reserve for Appendix A. The essential idea
behind this argument is that any ambiguity in forms of a given degree is removed by the
presence of forms constructed in one degree lower, by virture of the relations coded in the
tic-tac-toe table 2.12.

However, once we get all the way down to the ambiguity in the 0-forms, it is no longer
possible to remove the ambiguity by adding forms of one lower degree, since no such forms
exist. Thus, there is a seemingly irremovable ambiguity in the presence of non-vanishing
(𝑝 + 2)-fold intersections, since then we can choose to evaluate one of (𝑝 + 2) different 0-
forms on a 0-chain contained therein. This 0-form ambiguity between different choices can,
in general, be written as

𝑆′ − 𝑆 = 𝐾𝛼0...𝛼𝑝+1 , (2.14)

where 𝐾𝛼0...𝛼𝑝+1 is an element of the Čech (𝑝 + 1)-cochain {𝐾} ∶= 𝛿{𝐴0}. For example,
in 𝑝 = 1, the ambiguity occurs when a 1-simplex 𝜎 is contained in a triple intersection, say
𝑈𝛼𝛽𝛾 . In this case, choosing to integrate either 𝐴𝛼, 𝐴𝛽 , or 𝐴𝛾 over the simplex 𝜎 leads to
actions that differ by 𝑆′ − 𝑆 = 𝐴𝛼𝛽 + 𝐴𝛽𝛾 + 𝐴𝛾𝛼. Sure enough, the RHS is an element of
{𝐾} = 𝛿{𝐴0}.

Thus, consistency appears to require that {𝐾}, which are, a priori, real-valued functions
on 𝑈𝛼0…𝛼𝑝+1 , must vanish. In fact this is too strong, because only the action phase needs to
be well-defined, so that each 𝐾𝛼0...𝛼𝑝+1 need only equal an integer. Even this seems to require
a miracle, but it is, very nearly, a fait accompli. To see this, recall from the tic-tac-toe table
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(2.12) that {𝐾} is closed under both 𝑑 and 𝛿. Given {𝐾} is valued in 0-forms, 𝑑-closure
implies that each 𝐾𝛼0...𝛼𝑝+1 is, in fact, constant on the (𝑝 + 2)-fold intersection on which it is
defined. Thus, {𝐾} defines an element in ̌𝐶𝑝+1(𝒰, ℝ) ⊂ ̌𝐶𝑝+1(𝒰, Λ0). So the only miracle
that need occur is that the real constants {𝐾} be integers. Moreover, 𝛿-closure implies {𝐾}
is a Čech (𝑝 + 1)-cocycle, and thus defines a cohomology class, [{𝑐}] ∈ �̌�𝑝+1(𝐺/𝐻, ℝ).
Therefore, in the usual language of cohomology, [{𝑐}] ∈ �̌�𝑝+1(𝐺/𝐻, ℤ) must be an integral
class for the action to define a well-defined path integral [91] for all p-cycles in 𝐺/𝐻 .

The desired integrality of the Čech (𝑝 + 1)-cocycle [{𝑐}] is equivalent, via the Čech-de
Rham isomorphism, to the requirement that 𝜔 be an integral (𝑝 + 1)-form,

[𝜔] ∈ 𝐻𝑝+1(𝐺/𝐻, ℤ). (2.15)

The Čech-de Rham isomorphism can be seen from the tic-tac-toe table (2.12). The external
row of the tic-tac-toe table is reserved for real-valued Čech cocycles, such as {𝐾}, on which
𝛿 has non-vanishing cohomology (since using the partition of unity construction would take
us out of the space of constant functions). The external column is reserved for globally-
defined forms, on which 𝑑 has non-vanishing cohomology (since using the Poincaré lemma
would us out of the space of globally-defined forms). The tic-tac-toe table allows us to move
between Čech and de Rham cocycles of the same degree, by successive applications of (say)
the exterior derivative 𝑑 and a partition of unity to undo 𝛿 (if going from Čech to de Rham,
that is, from bottom right to top left of the table). This provides an explicit construction of
the isomorphism on cohomology [100].

For a more physical way to see the integrality condition, consider the case 𝑝 = 1. In
𝑝 = 1, the action specializes to that first introduced by Wu & Yang [90] in their formulation
of the action for the Dirac monopole, with the additional terms in the action due to the 0-
forms {𝐴0} being precisely the transition function insertions that Wu & Yang introduced. In
this simplest case, the integral of 𝜔 over a 2-cycle 𝑦 in 𝐺/𝐻 , which can be written in terms
of a sum over 𝒰-small 2-chains 𝑐2,𝛼 contained in 𝑈𝛼, viz.

´
𝑦 𝜔 = ∑𝛼

´
𝑐2,𝛼

𝜔|𝛼 =
´

𝑐2,𝛼
𝑑𝐴1

𝛼.
Using Stokes’ theorem twice, one obtains

ˆ
𝑦

𝜔 = ∑
𝛼𝛽𝛾

𝐾𝛼𝛽𝛾 , (2.16)

where on the RHS we sum (the appropriate number of times) over those triple intersections
which have non-vanishing intersection with the image of 𝑦. Since the RHS is an integer for
any 2-cycle, 𝜔 is therefore an integral 2-form. This generalises to higher 𝑝.
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It is instructive, at this point, to return to our earlier, prototypical examples. We now see
that, whenever 𝜔 lies in a non-trivial de Rham cohomology class, we obtain a “quantisation
condition” on the coupling in the action, just as we did for the Dirac monopole. But if 𝜔
is de Rham exact, as in the case of the Landau problem, the integral over any (𝑝 + 1)-cycle
vanishes automatically, and there will be no quantisation condition on the coupling in the
action. Moreover, the Čech-de Rham isomorphism guarantees that the correspondence goes
the other way, such that for every integral (𝑝 + 1)-form, there exists a corresponding choice
of integer Čech (𝑝 + 1)-cocycle, and hence a well-defined action phase.

How does the definition (2.13) of the action for a WZ term connect with Witten’s con-
struction, in the special cases where the latter may be used? When the action (2.13) is eval-
uated for a cycle 𝑧 = 𝜕𝑏 that is in fact the boundary of a (𝑝 + 1)-chain 𝑏, one can show that
the action phase does indeed reduce to Witten’s exp(2𝜋𝑖

´
𝑏 𝜔). To see this, consider to begin

with the special case 𝑝 = 1, and consider a 1-cycle 𝑧 whose image intersects three double
intersections 𝑈𝛼𝛽 , 𝑈𝛽𝛾 , and 𝑈𝛾𝛼. The action (2.13) may in this case be written as

𝑆[𝑧] =
ˆ

𝑐1,𝛼
𝐴1

𝛼 − 𝐴0
𝛼𝛽(𝑐0,𝛼𝛽) +

ˆ
𝑐1,𝛽

𝐴1
𝛽 − 𝐴0

𝛽𝛾 (𝑐0,𝛽𝛾 ) +
ˆ

𝑐1,𝛾
𝐴1

𝛾 − 𝐴0
𝛾𝛼(𝑐0,𝛾𝛼). (2.17)

If 𝑧 is in fact the boundary of a 2-chain 𝑏, then the three open sets share a non-vanishing triple
intersection, 𝑈𝛼𝛽𝛾 ≠ ∅. Let ̃𝑐0 be an arbitrary 0-chain (point) whose image is contained in
this triple intersection, Im ̃𝑐0 ∈ 𝑈𝛼𝛽𝛾 . After subdivision, the 2-chain 𝑏 may be written as
the sum of three 𝒰-small 2-chains, 𝑏 = 𝑏𝛼 + 𝑏𝛽 + 𝑏𝛾 each contained within the open sets,
with common point ̃𝑐0 in the triple intersection. Moreover, the boundaries of these 2-chains
define a set of 1-cycles, 𝑧𝛼 = 𝜕𝑏𝛼 etc., which are necessarily also 𝒰-small.

One can then show, using 𝛿{𝐴1} = {𝑑𝐴0}, that (2.17) is equal to

𝑆[𝑧] =
ˆ

𝑧𝛼
𝐴1

𝛼 +
ˆ

𝑧𝛽
𝐴1

𝛽 +
ˆ

𝑧𝛾
𝐴1

𝛾 − 𝐴0
𝛼𝛽( ̃𝑐) − 𝐴0

𝛽𝛾 ( ̃𝑐) − 𝐴0
𝛾𝛼( ̃𝑐). (2.18)

Using Stokes’ theorem on each open set, this reduces to

𝑆[𝑧] =
ˆ

𝑏𝛼
𝜔𝛼 +

ˆ
𝑏𝛽

𝜔𝛽 +
ˆ

𝑏𝛾
𝜔𝛾 − 𝐾𝛼𝛽𝛾 ( ̃𝑐), (2.19)

where we have also used {𝐾} = 𝛿{𝐴0}. But since the 2-form 𝜔 is globally-defined, and
𝐾𝛼𝛽𝛾 is constant throughout triple intersections, we have simply that

𝑆[𝑧] =
ˆ

𝑏
𝜔 − 𝐾𝛼𝛽𝛾 . (2.20)
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Moreover, we know that the Čech 2-cocycle {𝐾} must be valued in integers, for consis-
tency’s sake. Hence,

𝑒2𝜋𝑖𝑆[𝑧] = 𝑒2𝜋𝑖
´

𝑏 𝜔, 𝑧 = 𝜕𝑏. (2.21)

That is, the action phase prescribed by (2.13) does indeed reduce to that prescribed by the
Witten construction. This argument generalises straightforwardly to generic boundaries and
higher dimensions.

The action (2.13) we have defined, which is free of ambiguities over which local forms
to integrate, is moreover well defined on the fundamental class, ergo is a well-defined 𝒪-
invariant of Σ𝑝. Indeed, let 𝑧 and 𝑧′ be two fundamental cycles on Σ, and let 𝜙∗𝑧 and 𝜙∗𝑧′

be the corresponding cycles on 𝐺/𝐻 . Suppose that 𝑛 subdivisions are enough to split the
simplices in both 𝑧 and 𝑧′ sufficiently.19 The difference in the action for the two cycles is
then 𝛿𝑆 = 𝑆[Sd𝑛𝜙∗𝑧] − 𝑆[Sd𝑛𝜙∗𝑧′]. Using the facts that all maps are homomorphisms,
that the 2 cycles 𝑧 and 𝑧′ are homologous, and that 𝜕 is a natural map, this simplifies to

𝛿𝑆 = 𝑆[Sd𝑛𝜙∗(𝑧 − 𝑧′)] = 𝑆[Sd𝑛𝜙∗𝜕𝑏] = 𝑆[𝜕Sd𝑛𝜙∗𝑏]. (2.22)

The shift in the action is thus expressed as a contribution on a boundary, which we have
already shown (2.21) reduces to

´
Sd𝑛𝜙∗𝑏 𝜔 =

´
𝜙∗Sd𝑛𝑏 𝜔 =

´
Sd𝑛𝑏 𝜙∗𝜔, where we used the fact

that the subdivision operator is also a natural map. Now, Sd𝑛𝑏 is a (𝑝 + 1)-chain on Σ𝑝, so
pulling back 𝜔 to the constituent simplices and integrating must yield 0. Hence the action 𝑆
is well-defined on [Σ𝑝] and Σ𝑝.

Before we continue, let us pause to give more detail on the interpretations on the mathe-
matics and physics sides in 𝑝 = 1. Mathematically, given the quantisation condition on the
closed 2-form 𝜔, the collection of 1-forms {𝐴1

𝛼} defines a connection on a 𝑈(1)-principal
fibre bundle with base 𝐺/𝐻 , with 𝜔 (or rather its pullback via the bundle map) being the
curvature of that connection [101]. The quantisation of 𝜔 corresponds to the condition, nec-
essary for the existence of the bundle, that the first Chern class 𝑐1 be an integer. The action
phase we have defined using local forms on 𝐺/𝐻 is, from the bundle perspective, nothing
but the holonomy of the connection on the cycle 𝑧. In physical terms, {𝐴1

𝛼} constitutes a
𝑈(1) gauge field, with {𝐴0

𝛼𝛽} denoting gauge transformations on the overlaps, and 𝜔 being
the gauge invariant electromagnetic field strength. The integrality of 𝜔 means that the mag-
netic flux through any 2-cycle is quantised. When 𝐺/𝐻 = 𝑆𝑂(3)/𝑆𝑂(2) is homeomorphic
to the 2-sphere, such that the cohomology is generated by a single class, this is equivalent to
Dirac’s quantisation condition on the charge of a magnetic monopole.

19Once the chains are 𝒰-small, further applications of the subdivision operator do not change the value of
the action.
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Such a geometric viewpoint, in which the WZ term is understood to define a 𝑈(1)-
principal bundle over 𝐺/𝐻 , may be generalised to higher dimensions 𝑝 > 1. In that case,
𝐴𝛼 is a 𝑝-form generalisation of a background gauge field, also known as a 𝑝-form connec-
tion, and the action phase becomes the appropriate higher dimensional generalisation of the
holonomy. We will develop this viewpoint in Chapter 5 when we recast the present classifi-
cation of topological terms using the more powerful tools of differential cohomology theory.
In particular, see §5.1.3.

2.4.2 Invariance and the Manton condition
With a consistent action for WZ terms in hand, we may now turn to the issue of invariance
under the action of the Lie group 𝐺. Indeed, in quantum field theory we would like the 𝐺-
action on 𝐺/𝐻 to be a symmetry of the path integral. We can use the left Haar measure to
define the path integral measure and so (at least in the absence of fermions and associated
anomalies) we can, in what follows, concentrate our attention on 𝐺-invariance of the action
phase.

We already argued in §2.4.1 that, when the worldvolume cycle 𝑧 is the boundary of a
(𝑝 + 1)-chain, 𝑧 = 𝜕𝑏, the action can be written as the integral of a (𝑝 + 1)-form 𝜔 over 𝑏, and
so is invariant under the 𝐺-action when 𝜔 is invariant under pullback by the action of 𝐺. (As
usual, we call such a form a 𝐺-invariant form on 𝐺/𝐻 .) However, when the worldvolume
cycle is homologically non-trivial, the action must be written in the form of equation 2.13,
with contributions from a slew of locally-defined 𝑝, 𝑝 − 1, … forms, so 𝐺-invariance of the
action does not necessarily follow from 𝐺-invariance of 𝜔 alone. What is worse, it is difficult,
a priori, to even imagine how a simple condition for 𝐺-invariance can be obtained, given
that the pullback of forms by the action of 𝐺 on 𝐺/𝐻 takes locally-defined forms out of the
patches on which they are defined. Thus, there is no simple notion of 𝐺-action on, let alone
𝐺-invariance of, locally-defined forms. Nonetheless, there is a well-defined action of the Lie
algebra of 𝐺 on locally-defined forms, given by the Lie derivative. By requiring invariance
of (2.13) under this infinitesimal action, we will be able to obtain a necessary and sufficient
condition for invariance when 𝐺 is connected.

Let us start by considering, for simplicity, the variation of the action (2.13) when 𝑝 = 1
under an infinitesimal 𝐺 transformation, generated by vector field 𝑋 on 𝐺/𝐻 . A 1-cycle that
is not the boundary of a 2-chain in 𝐺/𝐻 must intersect at least three double intersections in
a good cover of 𝐺/𝐻 , so let us consider this minimal non-trivial possibility. The action for a
cycle 𝑧 which intersects three double intersections 𝑈𝛼𝛽 , 𝑈𝛽𝛾 , and 𝑈𝛾𝛼 is given by (2.17), ex-
cept that the triple intersection is now taken to vanish, 𝑈𝛼𝛽𝛾 = ∅. The infinitesimal variation
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of the action is

𝛿𝑋𝑆[𝑧] =
ˆ

𝑐1,𝛼
𝐿𝑋𝐴1

𝛼−𝐿𝑋𝐴0
𝛼𝛽(𝑐0,𝛼𝛽)+

ˆ
𝑐1,𝛽

𝐿𝑋𝐴1
𝛽−𝐿𝑋𝐴0

𝛽𝛾 (𝑐0,𝛽𝛾 )+
ˆ

𝑐1,𝛾
𝐿𝑋𝐴1

𝛾−𝐿𝑋𝐴0
𝛾𝛼(𝑐0,𝛾𝛼),

(2.23)
where 𝐿𝑋 is the Lie derivative. Applying Cartan’s formula 𝐿𝑋 = 𝑑𝜄𝑋 + 𝜄𝑋𝑑 to the local
forms appearing in the action, we have

𝐿𝑋𝐴1
𝛼 = 𝜄𝑋𝜔𝛼 + 𝑑𝜄𝑋𝐴1

𝛼, and 𝐿𝑋𝐴0
𝛼𝛽 = 𝜄𝑋𝑑𝐴0

𝛼𝛽 = 𝜄𝑋(𝐴1
𝛼 − 𝐴1

𝛽), (2.24)

since 𝐴0
𝛼𝛽 , &c., are just 0-forms in 𝑝 = 1, and since 𝛿{𝐴1} = {𝑑𝐴0}. Hence, integrating

and using Stokes’ theorem, we are left with

𝛿𝑋𝑆[𝑧] =
ˆ

𝑐1,𝛼
𝜄𝑋𝜔𝛼 +

ˆ
𝑐1,𝛽

𝜄𝑋𝜔𝛽 +
ˆ

𝑐1,𝛾
𝜄𝑋𝜔𝛾 =

ˆ
𝑧

𝜄𝑋𝜔, (2.25)

where in the second step we have used the fact that 𝜔, and therefore 𝜄𝑋𝜔, is globally-defined.
By a straightforward generalisation, this applies for any 1-cycle 𝑧 in 𝐺/𝐻 .

This argument for 𝑝 = 1 generalises straightforwardly to 𝑝 > 1. For example, in 𝑝 = 2,
a consistent topological term corresponds to a global closed 3-form 𝜔 such that 𝜔𝛼 = 𝑑𝐴2

𝛼
on patches, for locally-defined 2-forms {𝐴2

𝛼}. On double intersections we have 𝐴2
𝛼 − 𝐴2

𝛽 =
𝑑𝐴1

𝛼𝛽 for locally-defined 1-forms {𝐴1
𝛼𝛽}, which in turn satisfy 𝐴1

𝛼𝛽 + 𝐴1
𝛽𝛾 + 𝐴1

𝛾𝛼 = 𝑑𝐴0
𝛼𝛽𝛾

on triple intersections for 0-forms {𝐴0
𝛼𝛽𝛾}. Consider, for simplicity, a 2-cycle 𝑧 contained

within four open sets 𝑈𝛼, 𝑈𝛽 , 𝑈𝛾 and 𝑈𝛿,20 which we write as a sum of 𝒰-small 2-chains,
𝑧 = 𝑐2,𝛼 + 𝑐2,𝛽 + 𝑐2,𝛾 + 𝑐2,𝛿. The boundaries of these 2-chains provide the 1-chains over
which we will integrate {𝐴1

𝛼𝛽} (for example, 𝜕𝑐2,𝛼 is a sum of 𝒰-small 1-chains contributing
to 𝑐1,𝛼𝛽 , 𝑐1,𝛼𝛾 , and 𝑐1,𝛼𝛿, &c.), and the boundaries of the resulting 1-chains provide the points
on which we evaluate {𝐴0

𝛼𝛽𝛾}. The action (2.13) for this cycle is then

𝑆[𝑧] = ∑𝛼

ˆ
𝑐2,𝛼

𝐴2
𝛼 − ∑

𝛼𝛽

ˆ
𝑐1,𝛼𝛽

𝐴1
𝛼𝛽 + ∑

𝛼𝛽𝛾
𝐴0

𝛼𝛽𝛾 (𝑐0,𝛼𝛽𝛾 ), (2.26)

where we sum over all 2-chains, 1-chains, and 0-chains just described. Taking the Lie deriva-
tives, using relations (from the tic-tac-toe table (2.12)) such as 𝛿{𝐴2} = {𝑑𝐴1}, and using
Cartan’s formula, we obtain

𝐿𝑋𝐴2
𝛼 = 𝜄𝑋𝜔𝛼+𝑑𝜄𝑋𝐴2

𝛼, 𝐿𝑋𝐴1
𝛼𝛽 = 𝜄𝑋(𝐴2

𝛼−𝐴2
𝛽)+𝑑𝜄𝑋𝐴1

𝛼𝛽 , 𝐿𝑋𝐴0
𝛼𝛽𝛾 = 𝜄𝑋 (𝐴1

𝛼𝛽 + 𝐴1
𝛽𝛾 + 𝐴1

𝛾𝛼) .
(2.27)

20This is the minimal possibility for a non-trivial cycle in 𝑝 = 2.
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Again using Stokes’ theorem, the variation of the action reduces to

𝛿𝑋𝑆[𝑧] =
ˆ

𝑐2,𝛼
𝜄𝑋𝜔𝛼 +

ˆ
𝑐2,𝛽

𝜄𝑋𝜔𝛽 +
ˆ

𝑐2,𝛾
𝜄𝑋𝜔𝛾 +

ˆ
𝑐2,𝛿

𝜄𝑋𝜔𝛿 =
ˆ

𝑧
𝜄𝑋𝜔, (2.28)

exactly as we found for 𝑝 = 1. The equations relating the Čech-de Rham double cochains
which appear in our action (which follow from consistency) will guarantee similar cancella-
tions in general 𝑝, such that

𝛿𝑋𝑆[𝑧] =
ˆ

𝑧
𝜄𝑋𝜔 (2.29)

holds in general 𝑝.21
For the action to be invariant under all infinitesimal 𝐺 transformations,

´
𝑧 𝜄𝑋𝜔 must

therefore vanish for all vector fields 𝑋 that generate the 𝐺-action, on all 𝑝-cycles 𝑧 ∈
𝑍𝑝(𝑀, ℤ). From (2.1) we conclude that 𝜄𝑋𝜔 must be an exact form for all such 𝑋. In
other words, the interior product of 𝜔 with each vector field must lie in the trivial de Rham
cohomology class

[𝜄𝑋𝜔]𝑑𝑅 = 0, ∀𝑋, (2.30)

where [⋅]𝑑𝑅 indicates the de Rham cohomology class of a form.
We call the condition (2.30) the ‘Manton condition’, since its failure in the case of 𝑝 = 1

and 𝐺/𝐻 ≅ 𝑇 2, which corresponds to the quantum mechanics of a particle on the torus
in a uniform 𝐵 field, leads to the breaking of translation invariance, an ‘anomaly’ that was
first appreciated by Manton [92, 93]. Manton’s derivation relied on an explicit solution for
the wavefunctions of the corresponding quantum mechanics problem. We now see that it
has a rather broad generalisation to any homogeneous space sigma model in quantum field
theory, which can be phrased in terms of a simple, geometric condition, whose derivation,
serendipitously, does not require a solution of the field theory, but can be derived directly
from the topological action. Explicitly, it may be understood as arising from the requirement
that the action be invariant for all cycles. This is non-trivial in a general quantum field theory,
because even defining the action for all cycles is, as we have seen, non-trivial.

At the beginning of this Subsection, we saw that, for homologically trivial cycles, 𝐺-
invariance of the action follows from 𝐺-invariance of the (𝑝+1)-form 𝜔. At the infinitesimal
level, this is equivalent to the vanishing of the Lie derivatives, 𝐿𝑋𝜔 = 0. How does this
relate to the Manton condition? Applying Cartan’s formula to 𝜔, which is closed, tells us
that 𝐿𝑋𝜔 = 𝑑𝜄𝑋𝜔, and so left-invariance of 𝜔 only implies that 𝑖𝑋𝜔 is closed, but not
necessarily that it is exact. Hence, the Manton condition is a stronger condition than 𝐺-

21We note that the shift in the action reduces to an AB term. In fact this remains true even when 𝐺 is
disconnected.
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invariance of 𝜔. When there exist non-trivial homology cycles, such that 𝐻𝑝(𝐺/𝐻, ℤ) ≠ 0,
the weaker condition 𝐿𝑋𝜔 = 0 is insufficient for the existence of a 𝐺-invariant WZ term, as
we have already seen from the torus example. At least at the infinitesimal level, the Manton
condition strengthens the necessary condition of vanishing Lie derivatives to a necessary
and sufficient condition.

As a consistency check, we show that when all cycles are boundaries, i.e. when𝐻𝑝(𝐺/𝐻, ℤ) =
0 (such that the Witten construction can be applied), the Manton condition is equivalent to
𝐿𝑋𝜔 = 0. We have already shown that the action (2.13) can in this case be written as
𝑆[𝑧] =

´
𝑏 𝜔, where 𝑏 is any (𝑝 + 1)-chain such that 𝑧 = 𝜕𝑏. The variation of the action

is then 𝛿𝑋𝑆[𝑧] =
´

𝑏 𝐿𝑋𝜔, which must vanish on all chains, so invariance is obtained if
and only if 𝐿𝑋𝜔 = 0, using (2.1). To show that (in this situation) this is equivalent to the
Manton condition, we note firstly that if 𝐻𝑝(𝐺/𝐻, ℤ) = 0, then 𝐻𝑝(𝐺/𝐻, ℝ) = 0 too. But
the real (smooth singular) cohomology is simply the dual of real homology, and is moreover
isomorphic to the 𝑝th de Rham cohomology. The latter therefore vanishes, and hence the
closed 𝑝-form 𝜄𝑋𝜔 is automatically exact. Therefore, our procedure is seen to be equivalent
to (the homological version of) Witten’s construction in all cases where the latter is valid.

We have shown that theManton condition is necessary and sufficient for invariance under
infinitesimal 𝐺 transformations generated by vector fields 𝑋. By arguments similar to those
given in §2.3, this invariance extends at the group level both to the image of the exponential
map in 𝐺 and thence to the component connected to the identity. The Manton condition is
thus both necessary and sufficient at the group level when 𝐺 is connected, as we here assume.

2.4.3 Injectivity of WZ terms
We have shown that there exists a consistent, 𝐺-invariant topological term for every closed,
integral (𝑝 + 1)-form 𝜔 on 𝐺/𝐻 satisfying the Manton condition. In order to claim that WZ
terms are classified by the space of such (𝑝 + 1)-forms 𝜔, we must take care to establish two
properties; firstly, that any such 𝜔 uniquely specifies a WZ term. And secondly, that every
such 𝜔 corresponds to a physically distinct topological term.

To establish the former, wemust first define aWZ term in the action phasemore carefully.
Observe that 𝜔 = 0 is a closed, integral (𝑝 + 1)-form 𝜔 on 𝐺/𝐻 satisfying the Manton
condition, and this trivial case corresponds to, in general, a whole set of topological terms,
namely the AB terms of §2.3. Thus, we should define a WZ term as a topological term in
the action phase constructed (following §2.4.1) from an integral (𝑝 + 1)-form 𝜔 on 𝐺/𝐻
satisfying the Manton condition, but identified up to the addition of arbitrary AB terms.
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Then any such 𝜔 uniquely specifies a WZ term, given this equivalence, and so there is a map
from the space of such (𝑝 + 1)-forms 𝜔 to WZ terms.22

To establish the latter, we must now show that this map is injective. To do so, let 𝑏 be
any (𝑝 + 1)-chain in 𝐺/𝐻 . Two (𝑝 + 1)-forms 𝜔 and 𝜔′ could yield the same action phase
only if they agree on cycles 𝑧 = 𝜕𝑏 for all 𝑏. But for such 𝑝-cycles which are the boundaries
of (𝑝 + 1)-chains, we can write the action phase directly using the Witten construction as
exp 2𝜋𝑖

´
𝑏(𝜔′ − 𝜔), whence we would need

´
𝑏(𝜔′ − 𝜔) ∈ ℤ in order for the two action

phases to coincide. In fact, we will now show that
´

𝑏(𝜔′ − 𝜔) would have to vanish for all
(𝑝 + 1)-chains 𝑏. To wit, given any (𝑝 + 1)-simplex 𝜎 ∶ Δ𝑝+1 → 𝐺/𝐻 , consider the maps
𝑇𝑡 ∶ Δ𝑝+1 → Δ𝑝+1 ∶ 𝑥 ↦ 𝑡𝑥, with 𝑡 ∈ [0, 1] and form the simplex 𝜎𝑡 = 𝜎 ∘ 𝑇𝑡. The simplex
𝜎𝑡 defines a chain, so the integral

´
𝜎𝑡

(𝜔′ − 𝜔) must be a continuous, integer-valued function
on 𝑡 ∈ [0, 1]. But

´
𝜎0

(𝜔′ − 𝜔) = 0. Therefore, by continuity, 0 =
´

𝜎1
(𝜔′ − 𝜔) =

´
𝜎(𝜔′ − 𝜔).

The integral thus vanishes on all simplices and thence vanishes on all chains. By (2.1), this
means that 𝜔′ = 𝜔. In other words, the only topological terms which can lead to the same
action phase on all cycles have 𝜔 = 0, i.e. they are of AB type (where we know from §2.3
that the injectivity requirement leads to a quotient by closed integral 𝑑 forms).

2.4.4 The classical limit and Noether currents
ByNoether’s theorem, the invariance of the action under the action of a Lie algebra 𝔤 implies
the existence of conserved currents, at least at the classical level. We now explore the status
of these currents in the presence of topological terms. We find an interesting connection with
the Manton condition. To wit, whilst the weaker condition of 𝐺-invariance of 𝜔 ensures 𝐺-
invariance of the equations of motion, a corresponding Noether current exists only when the
stronger Manton condition is satisfied. Thus, the Manton condition, which we derived as the
condition for 𝐺-invariance of the quantum theory, has a physical vestige even in the classical
limit.

To derive the Noether currents associated with 𝐺-invariance, we take the variation of
the action (2.13) induced by the vector field 𝜖𝑎 (𝑥) 𝑋𝑎, where 𝑎 runs over the vector fields
generating 𝐺, for some non-constant functions 𝜖𝑎 (𝑥). Recall that when the 𝜖𝑎 are constants
the action is 𝐺-invariant, and so the variation of the action will be proportional to the 1-form
𝑑𝜖𝑎. We can then read off the Noether current and deduce that it is conserved on the classical
equations on motion.

22Indeed, these statements will be mademore precise in Chapter 5 using the tools of differential cohomology.
Specifically, we will prove that there is a short exact sequence (5.24), which exhibits the group of WZ terms
as the quotient of the space of topological terms taken with respect to the group of AB terms.
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We first consider, for simplicity, 𝑝 = 1, with the action given by (2.17) (i.e. evaluated on
a 1-cycle intersecting three double intersections). The variation in the local 1-forms is given
by 𝐿𝜖𝑎𝑋𝑎𝐴1

𝛼 = 𝜖𝑎𝐿𝑋𝑎𝐴1
𝛼 + 𝜄𝑋𝑎𝐴1

𝛼𝑑𝜖𝑎. Since the action is 𝐺-invariant, the Manton condition
holds and there exists a set of globally-defined 0-forms, 𝑓𝑎, one for each vector field 𝑋𝑎,
such that

𝜄𝑋𝑎𝜔 = 𝑑𝑓𝑎 (2.31)

Therefore, we may write

𝐿𝜖𝑎𝑋𝑎𝐴1
𝛼 = 𝑑[𝜖𝑎(𝑓𝑎 + 𝜄𝑋𝑎𝐴1

𝛼)] − 𝑓𝑎𝑑𝜖𝑎. (2.32)

The variation in the 0-forms that appear in the action is

𝐿𝜖𝑎𝑋𝑎𝐴0
𝛼𝛽 = 𝜖𝑎𝜄𝑋𝑎(𝐴1

𝛼 − 𝐴1
𝛽). (2.33)

The only piece that survives in the variation of the action (noting that we have already used
the fact that 𝑋 generates a symmetry by writing 𝜄𝑋𝑎𝜔 = 𝑑𝑓𝑎) is

𝛿𝜖𝑋𝑆[𝑧] = −
ˆ

𝑧
𝑓𝑎𝑑𝜖𝑎. (2.34)

When the equations of motion hold, any field variation vanishes. We can integrate by parts
to deduce that 𝑑𝑓𝑎 = 0, and so the functions 𝑄𝑎 = 𝑓𝑎 are conserved on-shell and may be
identified as the 0-form Noether charges in 𝑝 = 1.

In general 𝑝, the 𝑓𝑎 are (𝑝−1)-forms, and the variation of the action (on a generic 𝑝-cycle
𝑧) induced by 𝜖𝑎 (𝑥) 𝑋𝑎 is

𝛿𝜖𝑋𝑆[𝑧] = −
ˆ

𝑧
𝑑𝜖𝑎 ∧ 𝑓𝑎. (2.35)

Again, when the equations of motion hold, we deduce that

𝑑𝑓𝑎 = 0, (2.36)

and somay identify the 𝑓𝑎 as the (𝑝−1)-formNoether currents corresponding to𝐺-invariance,
with (2.36) being the equations for current conservation on-shell.23 In a Lorentzian theory,
we may obtain the conserved Noether charges by integrating the (𝑝−1) forms 𝑓𝑎 over spatial
hypersurfaces.

23It is usual, in the presence of a metric, to define a Noether current as a 1-form via the Hodge dual, viz.
𝑗𝑎 = ⋆𝑓𝑎, with 𝑑𝑓𝑎 = 0 being equivalent to div𝑗𝑎 = 0. But since a metric is not presumed to be available, we
prefer to formulate Noether’s theorem directly in terms of the (𝑝 − 1)-forms 𝑓𝑎.
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Thus, 𝐺-invariant topological terms in the action result in a shift of the conserved cur-
rents. Now, let us examine more closely the role played by the Manton condition in the
argument just given. If the Manton condition does not hold, then the (𝑝 − 1)-forms 𝑓𝑎, while
guaranteed to exist locally by the Poincaré lemma, are not globally-defined. Thus, there is
no way to patch together the locally-defined currents to make a bona fide, globally-defined,
conserved current.

Nevertheless, it is still possible that classical dynamics is 𝐺-invariant, even when the
Manton condition fails to hold. Indeed, we know that the equations of motion only feature
the (𝑝+1)-form 𝜔. Thus, the classical dynamics will be invariant under the weaker condition
of 𝐺-invariance of 𝜔, but there will be no conserved current associated to 𝑋 unless 𝜄𝑋𝜔 is
also exact.

For the example of particle motion on the torus in the presence of a uniform magnetic
field, specified by the electromagnetic field strength 𝐵𝑑𝑥 ∧ 𝑑𝑦 (which is invariant under
𝑈(1) × 𝑈(1)), with 𝑥 ∼ 𝑥 + 1 and 𝑦 ∼ 𝑦 + 1, the equations of motion have 𝑈(1) × 𝑈(1)
symmetry, but there are no conserved currents even classically, and in the quantum theory
the true symmetry is at most a discrete subgroup of 𝑈(1) × 𝑈(1). Indeed, as we saw in
§2.1, the action phase for a cycle wrapping the 𝑦 direction is 𝑒2𝜋𝑖𝐵𝑥0 , which is invariant
under a translation 𝑥 → 𝑥 + 𝑎 only if 𝑎 ∈ {0, 1/𝐵, 2/𝐵, … , (𝐵 − 1)/𝐵} ≅ ℤ/𝐵ℤ (we recall
that consistency forces 𝐵 to be an integer). A similar argument for a cycle wrapping the 𝑥
direction shows that the full unbroken subgroup is (ℤ/𝐵ℤ)2. The order 𝐵2 of this subgroup
is of course the degeneracy of the ground state Landau level in the presence of a uniform 𝐵
field with periodic boundary conditions.

Finally, it is interesting to note from (2.31) that the contribution from the topological term
to the current is conserved off -shell if 𝜄𝑋𝜔 = 0, ∀𝑋. This can only happen for AB terms, as
the following argument shows. Since 𝐺 acts transitively on 𝑀 = 𝐺/𝐻 , the vector fields {𝑋}
span the tangent space 𝑇 𝑀 at each point. Moreover, 𝜄𝑋(𝜔) = 0 implies 𝜄𝑋1(𝜄𝑋2 ...(𝜄𝑋𝑑 (𝜔))) =
0, where 𝑋1, 𝑋2, … , 𝑋𝑑 ∈ 𝑇 𝑀 . Hence, 𝜔 is a (𝑝 + 1)-fold skew-symmetric linear map
that yields zero on all elements of 𝑇 𝑝+1𝑀 , that is, it is the zero map. Thus, off-shell current
conservation implies (and is implied by) 𝜔 = 0, such that the off-shell conserved currents are
in one-to-one correspondencewith theAB terms classified in §2.3. In retrospect this is hardly
surprising, since an arbitrary infinitesimal variation of fields takes cycles into homologous
cycles, on which the value of an AB term (but not a WZ term) is unchanged.
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2.4.5 Examples
The chiral lagrangian

In the case of the chiral lagrangian, describing the low energy limit of QCD with 3 mass-
less flavours of quarks, we have 𝑝 = 4 and 𝐺/𝐻 = 𝑆𝑈(3) × 𝑆𝑈(3)/𝑆𝑈(3) ≅ 𝑆𝑈(3).
Since 𝐻4

𝑑𝑅(𝑆𝑈(3)) = 0, the homological version of Witten’s construction can be employed
and our classification suggests that the topological terms correspond to closed, integral,
𝑆𝑈(3) × 𝑆𝑈(3)-invariant 5-forms. Now, no such form can be the exterior derivative of
an 𝑆𝑈(3) × 𝑆𝑈(3)-invariant 4-form, because 𝑆𝑈(3) × 𝑆𝑈(3)/𝑆𝑈(3) is a symmetric space
and all invariant forms are closed on such a space [102]. Hence the topological terms cor-
respond to integral classes in the Chevalley-Eilenberg cohomology of invariant forms [103]
(cf. §2.5), which in turn (since 𝐺 is compact and connected) correspond to integral classes in
𝐻5

𝑑𝑅(𝑆𝑈(3)) = ℤ. Thus, there is aWZ term given by integrating an integral 𝑆𝑈(3)×𝑆𝑈(3)-
invariant 5-form over any 5-chain bounding the 4-cycle 𝜙∗[Σ4].

Though these results are superficially identical to those obtained by homotopical argu-
ments by Witten [45], there is a small, but significant, difference. If one fixes the worldvol-
ume to be homeomorphic to 𝑆4, then one may define the action by integrating the 5-form
on a 5-disk and the possible ambiguity that arises from the choice of 5-disk may be removed
from the action phase by insisting that the integral of the 5-form over any 5-sphere be inte-
gral. In our homological language, such 5-spheres correspond to a restricted set of 5-cycles;
it turns out that a 5-formwhose integral over every cycle is an integer has an integral over this
restricted set of cycles given by an even integer. Thus, if one is only interested in topological
terms in a theory with worldvolume 𝑆4, one may safely take the 5-form to be a ‘half-integral
form’.24

This fact, which corresponds to Witten’s observation [45] that ‘the normalization of 𝜔 is
a subtle mathematical problem’, follows straightforwardly, provided one is willing to accept
that 𝜋5(𝑆3) = 𝜋4(𝑆3) = ℤ2. Since 𝑆𝑈(3) may be regarded as a fibre bundle 𝑆3 ≅ 𝑆𝑈(2) →
𝑆𝑈(3) → 𝑆𝑈(3)/𝑆𝑈(2) ≅ 𝑆5,25 we have a long exact sequence in homotopy, as well
as a long exact sequence in homology arising from the Serre spectral sequence. Now, the
Hurewicz map ℎ is a natural map from homotopy to homology, meaning that we have a

24In fact, the same is true for any worldvolume manifold admitting a spin structure [104].
25To see this, note that 𝑆𝑈(3) has a transitive action on unit vectors in ℂ3 with any such vector stabilized

by some 𝑆𝑈(2) ⊂ 𝑆𝑈(3).
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commutative diagram

𝜋5(𝑆3) −−−→ 𝜋5(𝑆𝑈(3)) −−−→ 𝜋5(𝑆5) −−−→ 𝜋4(𝑆3) −−−→ 𝜋4(𝑆𝑈(3))

ℎ⏐⏐⏐↓ ℎ⏐⏐⏐↓
𝐻5(𝑆3) −−−→ 𝐻5(𝑆𝑈(3)) −−−→ 𝐻5(𝑆5) −−−→ 𝐻4(𝑆3)

(2.37)

given explicitly by

ℤ2 −−−→ ℤ −−−→ ℤ −−−→ ℤ2 −−−→ 0

ℎ
⏐⏐⏐↓ ℎ

⏐⏐⏐↓
0 −−−→ ℤ −−−→ ℤ −−−→ 0

(2.38)

The right-hand arrow in the square is an isomorphism by the Hurewicz theorem, while the
bottom arrow in the square is an isomorphism. A bit of algebraic su doku shows that the
top arrow in the square can only be multiplication by 2, so the Hurewicz map 𝜋5(𝑆𝑈(3)) →
𝐻5(𝑆𝑈(3)) must be given by multiplication by 2 as well. Hence the integral of the 5-form
over a cycle corresponding to a 5-sphere results in an even integer.

Beyond the minimal Composite Higgs model

In Chapter 3, which is based on Ref. [2], we shall apply our results to classify the topological
terms appearing in a host of non-minimal Composite Higgs models. That Chapter shall thus
provide the reader with a stack of examples of WZ terms in four-dimensional quantum field
theories (as well as AB terms), many of which are new.

For example, in §3.2 we will discuss the WZ term with ℤ-valued coefficient that appears
in the 𝐺/𝐻 = 𝑆𝑂(6)/𝑆𝑂(5) ≅ 𝑆5 model [105], corresponding to a closed, integral 5-form
𝜔, proportional to the 𝑆𝑂(6)-invariant volume form on 𝑆5. This term was discussed in
Ref. [105]. For a second example, in §3.3 we explain why there is in fact noWZ term in the
Composite Higgs model based on homogeneous space 𝐺/𝐻 = (𝑆𝑂(5) × 𝑈(1))/𝑆𝑂(4) ≅
𝑆4 × 𝑆1, contrary to the claims in Ref. [106]. The WZ term that was postulated therein
suffers from a subtle anomaly in the 𝑈(1) factor of the 𝐺 symmetry, due to failure of the
Manton condition. We shall discuss both of these examples, alongside others, in detail in
Chapter 3.

In the context of the present Chapter, it is important to point out that the erroneous term
in Ref. [106] was proposed based on a classification given byWeinberg and d’Hoker [89]. As
we soon show in §2.5.2, this classification is invalid if 𝐺 is disconnected or if 𝜋𝑝(𝐺/𝐻) ≠ 0.
The latter of these conditions fails in the case of the Composite Higgs model just discussed.
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Another toy example from quantum mechanics

When the Manton condition is violated for a 𝐺-invariant integral (𝑝 + 1)-form on 𝐺/𝐻 , then
there is no corresponding 𝐺-invariant topological term in the 𝑝-dimensional sigma model.
Another physical interpretation of this fact is that, if onewere to include a topological term in
the action phase corresponding to such aManton-violating form, then the symmetry group of
the quantum theory is reduced from 𝐺 down to some subgroup 𝐾 ⊂ 𝐺 on which the Manton
condition holds. Since the classical equations of motion nevertheless retain invariance under
all of 𝐺 (as discussed at the start of §2.4.4), this symmetry breaking may be interpreted as an
anomaly of the quantum theory, albeit of a kind that might be unfamiliar to many readers.26

Wehave of course already seen an example of this type of anomaly in quantummechanics
on the torus, as well as a field theory example in the shape of a Composite Higgs model
(with 𝐺/𝐻 = 𝑆𝑂(5) × 𝑈(1)/𝑆𝑂(4)). For a new quantum mechanical toy example where
the Manton condition is violated, consider quantum mechanics on the compact Heisenberg
manifold, which we denote (for now) by 𝑀 . This will furnish us with a more intricate
example of the Manton condition failing than the previous examples, because in this case
the anomaly is in a non-abelian symmetry group.

The three-dimensional Heisenberg manifold (which should not be confused with the
Heisenberg group) can be parametrised by the set of triples (𝑥, 𝑦, 𝑧) ∈ ℝ3 together with
the equivalence relation

𝑥 ∼ 𝑥 + 𝑝, (2.39)
𝑦 ∼ 𝑦 + 𝑚, (2.40)

𝑧 ∼ 𝑧 + 𝑛 + 𝑥𝑚, (2.41)

where (𝑝, 𝑛, 𝑚) ∈ ℤ3. There is a transitive action of the (continuous) Heisenberg group
Hb(ℝ) on this space, itself defined to be the set of triples (𝑥, 𝑦, 𝑧) ∈ ℝ3 equipped with
multiplication law

(𝑥′, 𝑦′, 𝑧′) ⋅ (𝑥, 𝑦, 𝑧) = (𝑥 + 𝑥′, 𝑦 + 𝑦′, 𝑧 + 𝑧′ + 𝑦𝑥′), (2.42)

where the action of Hb(ℝ) on [(𝑥, 𝑦, 𝑧)] ∈ 𝑀 is by left multiplication. The stabilizer of the
action of Hb(ℝ) on the Heisenberg manifold is its discrete subgroup in which 𝑥, 𝑦, and 𝑧 are

26In particular, this kind of anomaly does not derive from an inability to appropriately regularize the path in-
tegral measure for fermions in a way that is compatible with the symmetry, as was the case for all the anomalies
we discussed in §1.3. Indeed, this anomaly is not related to fermions at all, but follows purely from topological
considerations.
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all integers, denoted Hb(ℤ).27 Thus, the Heisenberg manifold is modelled by the homoge-
neous space 𝐺/𝐻 = Hb(ℝ)/Hb(ℤ).

One might at first think there is a WZ term in this theory, since there is an Hb-invariant
integral 2-form on 𝐺/𝐻 = Hb(ℝ)/Hb(ℤ),

𝜔 = 𝐵𝑑𝑥 ∧ 𝑑𝑦, 𝐵 ∈ ℤ, (2.43)

which is unique up to normalization.28 However, despite being invariant under the action
of 𝐺 = Hb(ℝ), this 2-form 𝜔 does not satisfy the (stronger) Manton condition. In our
coordinates, a basis for the right-Hb-invariant vector fields (which generate left translations
on 𝑀) is

{𝑋1, 𝑋2, 𝑋3} = {𝜕𝑥 + 𝑦𝜕𝑧, 𝜕𝑦, 𝜕𝑧}. (2.44)

When a linear combination of these vector fields is contracted with 𝜔, we obtain

𝜄𝛼1𝑋1+𝛼2𝑋2+𝛼3𝑋3(𝐵𝑑𝑥 ∧ 𝑑𝑦) = 𝐵 (𝛼1𝑑𝑦 − 𝛼2𝑑𝑥) . (2.45)

Just as the 1-form 𝑑𝜃 on a circle is closed but not exact because 𝜃 ∼ 𝜃 + 2𝜋, so 𝑑𝑥 and 𝑑𝑦
are closed but not exact 1-forms on the Heisenberg manifold because of the identifications
in (2.39-2.41). Thus, the Manton condition is only satisfied for 𝑋3, hence the topological
term remains invariant on the 1-parameter subgroup that corresponds to the integral curves
of 𝑋3.29

Nonetheless, the continuous symmetries that are generated by 𝑋1 and 𝑋2 are not broken
completely; as in the case of quantum mechanics on the torus discussed above, a discrete
subgroup of the ℝ2 subgroup generated by 𝑋1 and 𝑋2 remains unbroken. The unbroken
symmetry group 𝐾 turns out to be the subgroup

𝐾 = {(
𝑛
𝐵 , 𝑚

𝐵 , 𝑏) ∈ Hb | 𝑏 ∈ ℝ, (𝑛, 𝑚) ∈ ℤ𝐵 × ℤ𝐵} . (2.46)

This group is a (non-trivial) central extension (by ℝ) of the discrete subgroup ℤ𝐵 × ℤ𝐵,
defined by the exact sequence

0 ℝ 𝐾 ℤ𝐵 × ℤ𝐵 0, (2.47)

27Note that the discrete subgroup of Hb just described is not a normal subgroup of Hb; hence, the coset
space does not itself have the structure of a group.

28The quantisation condition on the coefficient 𝐵 ensures that 𝜔 is an integral 2-form.
29Indeed, it is not surprising that the Manton condition is satisfied for 𝑋3, but not for 𝑋1 or 𝑋2. As we will

prove in §2.5 below, the Manton condition is necessarily satisfied for any element in [𝔤, 𝔤], which in this case
is just 𝑋3.
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where the group homomorphisms involved should be obvious given (2.46). Thus, we see
from this toy example that this new type of anomaly, which occurs when the Manton con-
dition fails due to purely topological reasons, can lead to an interesting symmetry breaking
structure.

2.5 Computing the spaces of AB and WZ terms
Now we would like to summarize our classification, and also to show how the computation
of the space of possible terms may be achieved in a given case. The classification states
that there are two types of topological term in 𝑝-dimensional sigma models on 𝐺/𝐻 , subject
to our physical assumptions of §2.2, which we have classified for general 𝐺/𝐻 (at least for
connected 𝐺). These are:

1. Aharonov-Bohm (AB) terms, classified by

𝐻𝑝(𝐺/𝐻, 𝑈(1)), (2.48)

the 𝑝th singular cohomology of 𝐺/𝐻 valued in 𝑈(1). In this Chapter, we have only
discussed AB terms corresponding to the free part of 𝐻𝑝(𝐺/𝐻, 𝑈(1)), which are clas-
sified by the quotient of the 𝑝th de Rham cohomology by its integral subgroup:

𝐻𝑝
𝑑𝑅(𝐺/𝐻, ℝ)/𝐻𝑝

𝑑𝑅(𝐺/𝐻, ℤ). (2.49)

2. Wess-Zumino (WZ) terms, classified by the space of closed, integral, (𝑝 + 1)-forms
on 𝐺/𝐻 satisfying the Manton condition, that is

{𝜔 ∈ 𝑍𝑝+1(𝐺/𝐻, ℤ) | ∀𝑋 ∈ 𝔤 ∃𝑓𝑋 ∈ Λ𝑝−1(𝐺/𝐻) s. t. 𝑖𝑋(𝜔) = 𝑑𝑓𝑋}, (2.50)

where 𝑍𝑝+1(𝐺/𝐻, ℤ) is the space of closed, integral (𝑝 + 1)-forms.

As we have seen, both the spaces of AB terms andWZ terms have the structure of an abelian
Lie group; addition in the group corresponds to addition of the associated actions (or, equiv-
alently, multiplication of the 𝑈(1)-valued action phases).

We now turn to the question of how to compute these two groups in a given case. The
group of (torsionless) AB terms (2.49) is relatively easy to compute, being directly related
to de Rham cohomology, for which a variety of tools are available. One of those, which is
especially pertinent here, is that when 𝑀 ≅ 𝐺/𝐻 and 𝐺 is connected and compact, the 𝑝th
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de Rham cohomology is isomorphic to the Chevalley-Eilenberg cohomology [103] obtained
from the complex of 𝐺-invariant 𝑝-forms on 𝐺/𝐻 under the exterior derivative 𝑑.

This complex is, moreover, useful for the computation of WZ terms, because they arise
as a subspace of the closed 𝐺-invariant forms on 𝐺/𝐻 in degree 𝑝 + 1.

So, how do we compute the 𝐺-invariant 𝑞-forms on 𝐺/𝐻 (where we are interested in 𝑞
being 𝑝 or 𝑝 + 1)? Starting from the Maurer-Cartan form on 𝐺 itself, we form left-invariant
𝑞-forms on 𝐺 by choosing a basis for the Lie algebra and taking 𝑞-fold wedge products of
the basis 1-forms. From these forms, one constructs well-defined (and 𝐺-invariant) 𝑞-forms
on 𝐺/𝐻 by restricting to the subset {Ω} which are projectable onto 𝐺/𝐻 , that is, those Ω
for which there is a unique 𝑞-form Ω̄ on 𝐺/𝐻 which pulls back to Ω under the canonical
projection onto cosets.

At least if 𝐻 is connected, the algorithm simplifies further to a computation at the level
of the Lie algebras of 𝐺 and 𝐻 , in that projectability is guaranteed by the local conditions
𝐿𝑌 Ω = 0 and 𝜄𝑌 Ω = 0, for all vector fields 𝑌 on 𝐺 generating right 𝐻 transformations
[103]. In this case, the cohomology of such forms under 𝑑 is isomorphic to the relative Lie
algebra cohomology of 𝔤 with respect to 𝔥 [103], which we denote by the cohomology ring
𝐻∗

Alg(𝔤, 𝔥, ℝ).
Thus, if 𝐺/𝐻 is compact and 𝐻 is connected, we may compute the space of AB terms

algebraically, by finding the 𝑝th relative Lie algebra cohomology, and quotienting by inte-
gral classes. In other words, the AB terms are here classified by 𝐻𝑝

Alg(𝔤, 𝔥, ℝ)/𝐻𝑝
Alg(𝔤, 𝔥, ℤ).

Moreover, given only that 𝐻 is connected (𝐺/𝐻 may now be non-compact), we may com-
pute the space ofWZ terms by finding the space of (𝑝+1)-cocycles in the relative Lie algebra
cohomology (over integers),30 and then restricting to the subset that satisfy the Manton con-
dition. This last step is not, in general, reducible to algebra.

How then, in practice, does one enforce the Manton condition? In fact, the Manton
condition is automatically satisfied for all vector fields 𝑋 ∈ [𝔤, 𝔤] ⊂ 𝔤, and so need only be
checked for generators of the Abelianization of 𝔤, that is the quotient 𝔤/[𝔤, 𝔤]. The proof is
as follows. For each vector field 𝑋 ∈ [𝔤, 𝔤], one can write 𝑋 = [𝑌 , 𝑍], for 𝑌 , 𝑍 also in
𝔤. This, together with the identity [𝐿𝑌 , 𝜄𝑍]𝛼 = 𝜄[𝑌 ,𝑍]𝛼 (where 𝛼 is any differential form),
implies that

𝜄𝑋𝜔 = 𝜄[𝑌 ,𝑍]𝜔 = 𝐿𝑌 𝜄𝑍𝜔 = 𝑑(𝜄𝑌 𝜄𝑍𝜔), (2.51)
30An important distinction to note is that, unlike the AB group, the possibleWZ terms are properly classified

by cocycles, not cohomology classes. Nevertheless, because these cocycles are a subspace of the space of 𝐺-
invariant forms on 𝐺/𝐻 , they are guaranteed to form a subspace of a finite-dimensional vector space. Thus,
even in the worst-case scenario, the computation of the space of topological terms can be carried out in an
algorithmic fashion.
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where in the second equality we used 𝐿𝑌 𝜔 = 0, and in the final equality we used 𝐿𝑌 =
𝜄𝑌 𝑑 + 𝑑𝜄𝑌 and that 𝑑(𝜄𝑍𝜔) = 0. This proves the claim. Furthermore, this argument gives us
an explicit construction for the Noether current (𝑝 − 1)-forms associated with those vector
fields 𝑋 ∈ [𝔤, 𝔤]; we simply contract 𝜔 with two vector fields 𝑌 and 𝑍 whose Lie bracket is
𝑋. We find it striking that a local version of the result (2.51) was formulated by Manton and
collaborators, in the context of spacetime symmetries of gauge theories [107, 108]; however,
considerations of the global topology of 𝐺 and 𝐺/𝐻 , which have been central to the present
work (most evidently in the formulation of theManton condition), were not considered there.

As an important corollary, if 𝐺 is a semi-simple Lie group (i.e. when 𝔤 = [𝔤, 𝔤]), the
Manton condition for 𝐺-invariance is necessarily satisfied for any 𝐺-invariant form; thus, in
this case, the computation of the space of WZ terms indeed reduces to algebra (assuming
only connectedness of 𝐻).

Finally, we address the subtlety that arises when the subgroup 𝐻 is disconnected. When
𝐻 is disconnected, one can no longer restrict to the subset {Ω} of 𝐺-invariant forms that are
projectable to 𝐺/𝐻 using only local conditions (at the level of the Lie algebra). Rather, one
must check in addition that the putatively projectable form on 𝐺 is in fact invariant under the
group of disconnected components of 𝐻 . As an example in 𝑝 = 1 of the consequences of
disconnected 𝐻 for our classification, consider the difference between quantum mechanics
on 𝑆2 ≅ 𝑆𝑂(3)/𝑆𝑂(2) vs. ℝ𝑃 2 ≅ 𝑆𝑂(3)/𝑂(2), the real projective plane. The first case
corresponds to the Dirac monopole, and there is a WZ term as we have discussed, which can
be established using the conditions above at the level of the Lie algebra alone. But despite
the fact that 𝑂(2) and 𝑆𝑂(2) have the same Lie algebra, there is noWZ term for 𝑆𝑂(3)/𝑂(2),
for the simple reason that any candidate 𝑆𝑂(3)-invariant 2-form must be proportional to the
volume form, and there is no volume form on the non-orientable manifold ℝ𝑃 2.

The reader may have noticed that of the examples we have discussed so far, none have
featured both AB and WZ terms. It is nonetheless easy to construct examples which do.
For example, consider quantum mechanics on 𝐺/𝐻 = ℝ3/ℤ ≅ 𝑆1 × ℝ2, for which the AB
group is ℝ/ℤ ≅ 𝑈(1) and the WZ group is ℝ. A highly non-trivial example featuring both
AB and WZ terms is provided by a Composite Higgs theory based on the coset 𝐺/𝐻 =
𝑆𝑂(6)/𝑆𝑂(4). We shall describe the topological terms in this model in §3.4.

In Chapter 5 we shall present a more rigorous classification of topological terms us-
ing the more powerful notion of a differential cohomology theory. This shall allow us to
tackle the more general scenario of a 𝑝-dimensional sigma model on any smooth manifold
𝑀 with topological terms invariant under any 𝐺-action on 𝑀 , for some Lie group 𝐺.31 In
this case, we will propose that topological terms are classified by the abelian group of ‘𝐺-

31In other words, the group action of 𝐺 on 𝑀 will not be assumed to be transitive.
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invariant differential characters’ of 𝑀 in degree 𝑝 + 1, which we shall define carefully, and
shall denote by �̂�𝑝+1

𝐺 (𝑀, 𝑈(1)). Moreover, we show that this group sits inside a number of
short exact sequences of abelian groups, which can provide powerful tools for computing
�̂�𝑝+1

𝐺 (𝑀, 𝑈(1)).
Importantly, we suspect that when we restrict to the special case where the Lie group

action on 𝑀 is transitive, one of these short exact sequences splits, and thence that in this
case �̂�𝑝+1

𝐺 (𝑀, 𝑈(1)) is isomorphic to the direct product of two groups, which we identify as
being precisely the groups of AB and WZ terms given in Eqns. (2.48) and (2.50). Thus, the
formalism we introduce in Chapter 5 shall lend further evidence to support the classification
presented in the present Chapter.

2.5.1 The case of disconnected 𝐺
At this juncture we pause to discuss, as a somewhat technical aside, how the conditions for
𝐺-invariance of both AB and WZ terms must be modified when 𝐺 is a disconnected Lie
group. We shall, by considering some pertinent examples, get a flavour for the problems that
arise when trying to derive a general classification in this case; although such a classification
ultimately evades us. We first discuss the story for AB terms, and then WZ terms.

AB terms

Let 𝐺0 be the normal subgroup of 𝐺 given by the maximal component connected to the
identity in 𝐺. The group of components 𝐺/𝐺0 is then a discrete group. A 𝐺0-invariant
AB term (constructed as in §2.3) will be 𝐺-invariant iff. the corresponding closed 𝑝-form
𝐴 shifts by an exact form under the action of 𝐺/𝐺0, by (2.1). Indeed, the action on a cycle
𝑧, 𝑆[𝑧] =

´
𝑧 𝐴, shifts to

´
𝑧 𝐿∗

𝑔𝐺0
𝐴 under the action of 𝑔𝐺0 ∈ 𝐺/𝐺0, where in general 𝐿∗

𝑔
denotes the action of 𝐺 that is induced on forms via pullback of the action of 𝑔 ∈ 𝐺 on 𝐺/𝐻 .
So the action phase will be invariant iff.

´
𝑧(𝐿∗

𝑔𝐺0
−1)𝐴 ∈ ℤ for all 𝑧 and for all 𝑔𝐺0 ∈ 𝐺/𝐺0.

This condition is inequivalent to the (stronger) condition that 𝐴 be 𝐺/𝐺0-invariant, as
the following example shows. Let 𝐺/𝐻 = 𝑂(2)/𝑂(1) ≅ 𝑆1. The action of the non-trivial
element in 𝐺/𝐺0 = 𝑂(2)/𝑆𝑂(2) ≅ ℤ2 sends the 𝑆𝑂(2)-invariant 1-form 𝑏𝑑𝑥 to minus
itself. Hence, we obtain an 𝑂(2)-invariant action upon integrating 𝑏𝑑𝑥 iff. 2𝑏 is integral
(despite 𝑏𝑑𝑥 not being an 𝑂(2)-invariant 1-form). But if 𝑏 is integral, then we obtain a
trivial action phase. Hence the space of AB terms for 𝑂(2)/𝑂(1) are isomorphic with the
group ℤ2, generated by 𝑑𝑥/2.

This example illustrates that, even though the group of components is finite, one cannot
obtain the full set of 𝐺-invariant AB terms simply by averaging the 𝑝-form appearing in a
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𝐺0-invariant term with respect to the 𝐺/𝐺0-action. Indeed, in this example, averaging any
such 𝑝-form yields 0.

WZ terms

Again let 𝐺0 be the normal subgroup of 𝐺 given by the maximal component connected to
the identity in 𝐺. For WZ terms, we have shown in §2.4.1 that the integral over a boundary
may be written in terms of the (𝑝 + 1)-form 𝜔. So the action phase will be invariant only if´

𝑏(𝐿∗
𝑔𝐺0

− 1)𝜔 ∈ ℤ for all chains 𝑏. In fact, by the arguments of §2.4.3, we have the stronger
requirement that

´
𝑏(𝐿∗

𝑔𝐺0
− 1)𝜔 = 0, for all chains 𝑏, which by de Rham’s theorem (2.1)

implies that 𝜔 must be 𝐺-invariant. Thus 𝐺-invariance of 𝜔 is a necessary condition.
Evidently, 𝐺-invariance of 𝜔 cannot be a sufficient condition, since it fails in the case

where 𝐺 is in fact connected (in which case we need the stronger Manton condition if the
action is to be invariant on all cycles, not just those which are boundaries). It also fails
when 𝜔 = 0, such that we are, in fact, describing an AB term. Indeed, we have already
seen that 𝐺-invariance of AB terms is automatic only when 𝐺 is connected, and is otherwise
non-trivial.

It is, however, possible to establish that, when 𝜔 is 𝐺-invariant, the shift in the corre-
sponding topological term is itself a topological term, but of AB type. In other words, it is
always possible to write the shift in the action on a 𝑝-cycle in terms of an integral of some
closed, globally-defined 𝑝-form over the cycle. In particular, the shift due to 𝑔 ∈ 𝐺 of an AB
term described by 𝑝-form 𝐴 can be written as the integral of the closed 𝑝-form (𝐿∗

𝑔 − 1)𝐴,
and the infinitesimal shift of a WZ term described by (𝑝 + 1)-form 𝜔 can be written as the
integral of the closed 𝑝-form 𝜄𝑋𝜔.

We postpone proof of this result, and exploration of its consequences, to future work,
contenting ourselves here with an illustrative example: consider quantum mechanics (𝑝 = 1)
on 𝐺/𝐻 = 𝑂(3)/𝑂(2) ≅ 𝑆2. The action of the non-trivial element in 𝐺/𝐺0 = 𝑂(3)/𝑆𝑂(3) ≅
ℤ2 sends the 𝑆𝑂(3)-invariant 2-form 𝜔 to minus itself. The physics action in this case can
be written using Witten’s construction as the integral of the volume form over a 2-chain
𝑏 (representing a disk) bounding the 1-cycle representing the worldline. The shift in the
action may be written as

´
𝑏(𝐿∗

𝑔𝐺0
− 1)𝜔 = −2

´
𝑏 𝜔, which must equal an integer. Shrinking

the worldline and disk to a point shows that it must equal zero, and hence 𝜔 = 0.

2.5.2 Comparison with previous classifications
We have already given some indication of how our homological approach to topological
terms differs from a homotopic approach (which applies only for worldvolumes that are
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homeomorphic to 𝑝-dimensional spheres). In this Section, we comment in more detail on
how our classification compares with previous partial classifications of topological terms
presented in Refs. [89] and [65].

The classification by Weinberg and d’Hoker in Ref. [89] is based on homotopy and pur-
ports to apply to arbitrary 𝐺/𝐻 , provided only that 𝐺 is compact. The claim is thatWZ terms
(defined there as terms in the lagrangian which shift by a non-vanishing total derivative un-
der the 𝐺-action) are in one-to-one correspondence with the (𝑝 + 1)th de Rham cohomology
of 𝐺/𝐻 .

It is claimed in Ref. [89] that when the sigma model map 𝜙 ∶ 𝑆𝑝 → 𝐺/𝐻 is not homo-
topic to a constant map, one can nevertheless define the action as the sum of two pieces, as
follows. One piece is an action assigned to any one fixed representative in each homotopy
class; the other piece is the integral (as in the Witten construction) of a closed (𝑝 + 1)-form
over a (𝑝 + 1)-dimensional submanifold (call it 𝑁) defined by a homotopy linking the map
𝜙 to the fixed representative.

This prescription is not only somewhat cumbersome (especially in cases where there are
infinitely many homotopy classes), but also leads to problems with 𝐺-invariance, as we now
discuss.

Let us start by considering the closed (𝑝 + 1)-form. It is claimed in Ref. [89] that ‘The
group 𝐺 acts transitively on the manifold 𝐺/𝐻 , so a 𝐺 transform of a form define[s] the
same de Rham cohomology class.’ The simplest example that shows this claim to be false in
general is given by 𝐺 = ℤ2 acting on itself. We have that 𝐻0

𝑑𝑅(ℤ2) = ℝ2, whose 2 generators
may be represented by the 0-forms taking value unity on one component and vanishing on the
other. The 𝐺-action does not send these forms (nor their classes) into themselves, but rather
interchanges them.32 What is true is that the action of any 𝑔 ∈ 𝐺 on 𝐺/𝐻 (or indeed on
any manifold on which it acts) is a diffeomorphism of 𝐺/𝐻 which induces an automorphism
on de Rham cohomology and that when 𝑔 is connected to the identity the diffeomorphism
is homotopic to the identity map and so induces the identity automorphism on de Rham
chomology, sending each class into itself.

Thus the specific claim in Ref. [89] would be valid if one additionally assumes that 𝐺
is connected. But even this further restriction is not enough to guarantee 𝐺-invariance of
the action, because the action of 𝐺 on 𝐺/𝐻 moves the image of the worldvolume, but not
the fixed representative. Therefore, the 𝐺-action results in a new submanifold 𝑁′, which is

32To give a more physically-relevant example, the classification given in [89] also yields the wrong answer
for a non-minimal Composite Higgs model based on 𝐺/𝐻 = 𝑂(6)/𝑂(5) ≅ 𝑆5, featuring custodial protection
of 𝑍 → 𝑏𝑏. Elements in 𝑂(6) that are disconnected from the identity send the volume form (and hence the de
Rham class) to minus itself, such that there is no 𝑂(6)-invariant topological term.
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not the one induced from 𝑁 by the action of 𝐺 on 𝐺/𝐻 . As a result, 𝐺-invariance of the
(𝑝 + 1)-form does not guarantee invariance of the action.

This problem invalidates the classification given in Ref. [89] when 𝜋𝑝(𝐺/𝐻) ≠ 0, and
it is far from clear how to fix it in a homotopy-based approach. But from the homological
perspective, the problem is already fixed: a topological term is possible iff. the Manton
condition (which is stronger than the condition of 𝐺-invariance of 𝜔) is satisfied. Moreover,
this condition is also valid for non-compact 𝐺.

Our examples of quantum mechanics on the torus and the Composite Higgs model based
on 𝑆𝑂(5)×𝑈(1)/𝑆𝑂(4), where the relevant homotopy groups are non-vanishing, show that,
in many cases, the classification in [89] suggests the existence of a WZ term when in fact
there is none. But it is also quite possible that there do existWZ terms even when 𝜋𝑝(𝐺/𝐻) ≠
0. Good candidates for 𝐺/𝐻 are those for which 𝜋𝑝(𝐺/𝐻) ≠ 0 but 𝐺 is semi-simple, such
that the Manton condition is implied by 𝐺-invariance of 𝜔. The Composite Higgs theory
with 𝑝 = 4 and 𝐺/𝐻 = 𝑆𝑂(6)/𝑆𝑂(4) (for which 𝜋4 = ℤ), provides such an example.

Turning to the other partial classification, it is claimed in a paper by Dijkgraaf and Wit-
ten [65] that topological terms in a 𝑝 = 2 sigma model with target space being a compact
group 𝐺 (not necessarily connected or simply connected), that are invariant under the left-
right action by 𝐺×𝐺, are classified by 𝐻3(𝐺, ℤ). Such theories with two-sided 𝐺-invariance
are appropriately termed ‘chiral theories’.

One can see that our classification agrees with that of Dijkgraaf and Witten [65] in the
case where 𝐺 is semi-simple. In this case 𝐺 × 𝐺 is also semi-simple, and thus the Manton
condition is necessarily satisfied.33 The space of WZ terms is thence given by the space of
closed, integral, bi-invariant 3-forms. Because 𝐺 is a symmetric space, every bi-invariant
form is closed [102], hence the closed, integral, bi-invariant 3-forms are in one-to-one cor-
respondence with the integral cohomology classes in the Chevalley-Eilenberg cohomology
of 𝐺 × 𝐺 relative to 𝐺. Since 𝐺 is assumed compact, there is an isomorphism between the
Chevalley-Eilenberg cohomology and the de Rham cohomology of (𝐺 × 𝐺)/𝐺 ≅ 𝐺 [103].
Thus, the WZ terms are in one-to-one correspondence with the integral de Rham cohomol-
ogy classes of 𝐺 in degree 3. Our classification also contains, in general, AB terms, but these
vanish because 𝐻2(𝐺, ℝ) = 0. There is, however, a contribution coming from the torsion
subgroup of 𝐻2(𝐺, 𝑈(1)), which does not necessarily vanish for such 𝐺. When torsion is
included, one can prove that the full space of topological terms is given by 𝐻3(𝐺, ℤ), in
agreement with Dijkgraaf and Witten.

33In fact, when the target space is a Lie group 𝐺, as it is here, 𝐺 being semi-simple implies 𝐻2(𝐺, ℝ) = 0,
such that any closed 2-form is necessarily exact.
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When 𝐺 is not semi-simple, Dijkgraaf and Witten claim that a topological term is given
by “any differential character” and that the space of such terms contains extra pieces “corre-
sponding to generalised 𝜃 angles on the torus 𝐻2(𝐺, ℝ)/𝜌(𝐻2(𝐺, ℤ))”. We certainly agree
with the second claim, since the generalised 𝜃 angles are just our AB terms. But we do not
agreewith the first part of the claim, because it neglects the requirement of𝐺-invariance. The
differential characters include those corresponding to all closed, integer, 3-forms, whereas
in fact only those satisfying the Manton condition lead to a 𝐺-invariant action. Given our
discussion in §2.5, we see that it remains to check the Manton condition on 𝔤/[𝔤, 𝔤].

A simple example should suffice to highlight the discrepancy. Let 𝐺 = 𝑈(1)3, for which
𝐻3(𝐺, ℤ) = 𝐻3(𝑇 3, ℤ) = ℤ, generated by the 3-form 𝜔 = 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 which integrates
to unity over the 3-torus (where 𝑥 ∼ 𝑥 + 1, 𝑦 ∼ 𝑦 + 1, and 𝑧 ∼ 𝑧 + 1). Exactly as we have
seen for quantum mechanics on the 2-torus, the Manton condition fails for each vector field
generating 𝐺, and one cannot write down a 𝐺-invariant WZ term. Explicitly, the problem is
that one cannot write down an invariant action for cycles corresponding to non-trivial classes
in 𝐻2(𝑇 3, ℤ), corresponding to toroidal worldsheets.

In this Chapter we have classified, from a homological perspective, the space of topolog-
ical terms for a generic non-linear sigma model on a homogeneous space 𝐺/𝐻 , assuming
those terms can be written in terms of local differential forms. In the next Chapter we apply
these rather formal results to particle physics phenomenology, to classify the topological
terms appearing in Composite Higgs models.





Chapter 3

Topological terms in Composite Higgs
Models

In this Chapter, which is based on Ref. [2], we shall apply the classification of topological
terms developed in Chapter 2 to a class of theories which are of interest in particle physics
phenomenology, in which the Higgs boson is a composite particle.

The idea that the Higgs boson is composite remains an attractive solution to the elec-
troweak hierarchy problem, albeit a slightly fine-tuned one. In the most plausible such mod-
els, the Higgs arises as a pseudo Nambu Goldstone boson (pNGB) associated with the break-
ing of an approximate global symmetry 𝐺 down to a subgroup 𝐻 . Consequently, the Higgs
mass would naturally reside somewhere below the energy scale associated with this sym-
metry breaking. Regardless of the details of the microscopic theory at high energies, at low
energies the presence of a mass gap separating the pNGBs from other, heavier resonances
means that such other fields can be integrated out. The long distance physics is thus de-
scribed by a non-linear sigma model on the homogeneous space 𝐺/𝐻 , parametrised by the
pNGB fields.

In order to successfully describe electroweak symmetry breaking, 𝐺/𝐻 should satisfy
the following requirements. Firstly, the linearly-realized subgroup 𝐻 should contain the
electroweak gauge group, 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 . Secondly, to guarantee consistency with elec-
troweak precision measurements, specifically the mass ratio of the 𝑊 and 𝑍 bosons, we
shall require that 𝐻 contains the larger custodial symmetry 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅 [109], which
is an accidental global symmetry of the SM.1 Finally, in order to identify a subset of the
pNGBs with the Composite Higgs, the spectrum of pNGBs parametrising 𝐺/𝐻 (which can

1In fact, to prevent large corrections to the 𝑍𝑏�̄� coupling, it is desirable to enlarge this even further [110],
though we will mostly ignore this nicety here.
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be decomposed into irreducible representations of the unbroken symmetry group 𝐻) must
contain at least one copy of the (2, 2) representation of the 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅 subgroup.

Even after these requirements have been imposed, there remains a lengthy list of viable
cosets with reasonable phenomenology; for example, 𝐺/𝐻 = 𝑆𝑂(5)/𝑆𝑂(4), 𝑆𝑂(6)/𝑆𝑂(5),
and 𝑆𝑈(5)/𝑆𝑂(5) have all been explored extensively in the literature, due to various attrac-
tive features. A shortlist of candidates can be found, for example, in Table 1 of [111].

We expect that topological terms may play an important role in the phenomenology of
the Composite Higgs. Motivated by the role of the WZW term in the chiral lagrangian,
which we discussed in some detail in the Introduction to this thesis, we now describe more
explicitly some possible ways in which topological terms could be important in the case of
a Composite Higgs.

Firstly, it is worth pointing out that in the SM, the Higgs lives on the flat, non-compact
space ℂ2. In contrast, a Composite Higgs lives (typically) on a compact space 𝐺/𝐻 (for ex-
ample, a 4-sphere), which is only locally diffeomorphic to ℂ2; topologically, ℂ2 and (say) 𝑆4

are very different beasts. Different coset spaces are distinguished from one another both by
their local algebraic structure (which determines, for example, the representations in which
the various pNGBs transform under the unbroken subalgebra 𝔥), but also by their differing
global structures. Topological terms in the action allow us to probe these global properties
of the Composite Higgs, which are intrinsically Beyond the SM effects.

Just as we saw for the chiral lagrangian, the presence of a WZ term in the action would
yield unambiguous information about the ultraviolet (UV) theory from which the Compos-
ite Higgs emerges, via anomaly matching (which is not renormalised). To put this statement
in a concrete setting, we first recall that certain Composite Higgs theories are favoured be-
cause they are believed to arise at low energies from gauge theories in the UV which contain
only fermions (i.e. from theories which are free of fundamental scalars, and thus free of
hierarchy problems of their own). For example, it appears that the 𝑆𝑂(6)/𝑆𝑂(5) model
can be reached in the flow towards the infrared (IR) from a gauge theory with gauge group
𝑆𝑝(2𝑁𝐶 ), for some number of colours 𝑁𝐶 , with four Weyl fermions transforming in the
fundamental representation of 𝑆𝑝(2𝑁𝐶 ). The argument for this is that this gauge theory has
an 𝑆𝑈(4) ≅ 𝑆𝑂(6) (where ≅ here denotes local isomorphism) global flavour symmetry,
corresponding to unitary rotations of the four fermions amongst themselves, which can be
spontaneously broken to an 𝑆𝑝(4) ≅ 𝑆𝑂(5) subgroup by giving a vacuum expectation value
(VEV) to the fermion bilinear [112].

Now, a gauge theory with a symplectic gauge group cannot suffer from a chiral anomaly,
so by anomaly matching, the corresponding low energy Composite Higgs model should also
be anomaly free. Now, as we shall see in §3.2, there is in fact aWZ term in the 𝑆𝑂(6)/𝑆𝑂(5)
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Composite Higgs theory, which can be written by integrating the 𝑆𝑂(6)-invariant volume
form on 𝑆5 over a 5-dimensional submanifold whose boundary is the four-dimensional
worldvolume. Moreover, this WZ term results in a chiral anomaly [106]. Hence, we con-
clude that, if the 𝑆𝑂(6)/𝑆𝑂(5) Composite Higgs theory does indeed derive from a gauge
theory with symplectic gauge group, then the WZ term must have its coefficient set to zero
for consistency. Reversing the argument, if the WZ term in the low-energy 𝑆𝑂(6)/𝑆𝑂(5)
sigma model were measured to be non-zero, this would tell us that the UV completion could
not be the 𝑆𝑝(2𝑁𝐶 ) theory! Thus, we see yet again how topological terms in the sigma
model can provide us with pertinent probes of the UV theory.

More generally, in any Composite Higgs model which has a viable UV completion in the
form of a gauge theory (with only fermions), one must reproduce the chiral anomaly present
(or not) in the gauge theory at low energies via a WZ term in the 𝐺/𝐻 sigma model.

We now give an altogether different example which demonstrates the potential impor-
tance of topological terms to the Composite Higgs. In [106], the effect of a WZ term in
a Composite Higgs model with the coset space 𝑆𝑂(5) × 𝑈(1)/𝑆𝑂(4) was discussed. This
model features a singlet pNGB, 𝜂, in addition to the complex doublet identified with the
SM Higgs. The (gauged version of the) WZ term that was identified was found to domi-
nate the decay of this singlet, as well as facilitating otherwise extremely rare decays such
as 𝜂 → ℎ𝑊 +𝑊 −𝑍.2 In fact, as we shall discuss in §3.3, the addition of this putative WZ
term turns out to break the 𝑈(1)-invariance of the theory (due to failure of the Manton con-
dition for the WZ term), and so there would in fact be no light 𝜂 boson at all if the WZ term
were turned on. Nonetheless, it remains generally true that topological terms can provide
the dominant decay channels for pNGBs in the low energy theory.

Although it is peripheral to the main thrust of this Chapter, it would be remiss of us not
to remark that there may exist other topological effects in Composite Higgs models, albeit
ones not directly associated to terms in the action. One such possible effect is the existence
of topological defects analogous to the skyrmion, which plays the role of the baryon in the
chiral lagrangian. If the third homotopy group of 𝐺/𝐻 vanishes, then one expects there to
exist topologically stable solutions to the classical equations of motion which correspond to
homotopically non-trivial maps from a worldvolume with the topology 𝑆3 × 𝑆1 to 𝐺/𝐻 .
This occurs, for example, in the “littlest Higgs” theory based on the coset 𝑆𝑈(5)/𝑆𝑂(5),
which has 𝜋3(𝑆𝑈(5)/𝑆𝑂(5)) = ℤ2. Being stable, the skyrmions have been suggested as a
candidate for Dark Matter [113, 114].

2This model was originally proposed as a potential explanation for the resonance observed at 750 GeV in
the diphoton channel, subsequently found to be but a statistical fluctuation.
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Given the possible physical effects, it is evidently useful to be able to find all possible
topological terms in a given Composite Higgs model. In this Chapter, we shall try to answer
this question in a more-or-less systematic fashion, by applying the formalism from Chap-
ter 2 to classify the topological terms appearing in a selection of well-studied Composite
Higgs cosets 𝐺/𝐻 . To wit, we study 𝑆𝑂(5)/𝑆𝑂(4), 𝑆𝑂(6)/𝑆𝑂(5), 𝑆𝑂(5) × 𝑈(1)/𝑆𝑂(4),
𝑆𝑂(6)/𝑆𝑂(4), 𝑆𝑂(6)/𝑆𝑂(4) × 𝑆𝑂(2), and 𝑆𝑈(5)/𝑆𝑂(5). We find different results to those
claimed earlier in the literature for four of these six models. Sometimes these differences
are rather subtle from the phenomenological perspective, such as in the case of the Mini-
mal Model (with coset 𝑆𝑂(5)/𝑆𝑂(4)), while sometimes they are rather more drastic, such
as in the case 𝑆𝑂(5) × 𝑈(1)/𝑆𝑂(4). In the case of 𝑆𝑂(6)/𝑆𝑂(4), a rather rich topological
structure is uncovered.

There is one caveat to our analysis in this Chapter, which is that we neglect possible
torsion terms that can appear in the classification of AB terms set forth in Chapter 2. In
other words, we only consider the free part of the group (2.48), thereby taking the AB group
to be the quotient of the fourth de Rham cohomology by its integral subgroup. We plan to
return to the issue of torsion terms in Composite Higgs models in future work.

Without further ado, we now turn to classifying the topological terms appearing in our
list of phenomenologically relevant Composite Higgs models, in (approximate) order of in-
creasing difficulty through §§3.1–3.6. Each of the cosets chosen reveals its own distinct
topological story. In §3.7, we discuss how the different Composite Higgs models can be de-
formed into one another by the addition of explicit symmetry breaking operators; we show
explicitly how, in one case, the topological terms identified in the different theories can be
matched onto each other under such a deformation.

We begin with the minimal model.

3.1 The Aharonov-Bohm term in the 𝑆𝑂(5)/𝑆𝑂(4) model
The minimal Composite Higgs model (MCHM) [99] is a sigma model whose target space
is 𝐺/𝐻 = 𝑆𝑂(5)/𝑆𝑂(4) ≅ 𝑆4. There are no non-trivial 5-forms on the target, it being
a four-manifold, and so there are no WZ terms in the minimal model. However, since
𝐻4

𝑑𝑅(𝑆4, ℝ) = ℝ, and 𝐻4
𝑑𝑅(𝑆4, ℤ) = ℤ, there is an AB term given by the integral of a

4-form proportional to the volume form on 𝑆4.
In terms of the Higgs doublet fields 𝐻 = (ℎ1, ℎ2, ℎ3, ℎ4) which transform in the fun-

damental representation of the linearly-realized 𝑆𝑂(4) subgroup, and which provide local
coordinates on the 𝑆4 target space (i.e. coordinates only a patch of 𝑆4, albeit a rather large
patch which covers all but a finite set of points), the contribution to the AB term from a local
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patch may be written

𝑆𝐴𝐵 = 𝜃
2𝜋

ˆ
1
𝑉4

𝑑ℎ1 ∧ 𝑑ℎ2 ∧ 𝑑ℎ3 ∧ 𝑑ℎ4, 𝜃 ∈ [0, 2𝜋), (3.1)

where 𝑉4 = 8
3𝜋2 is the volume of the unit 4-sphere,3 and 𝑑ℎ1 ∧ 𝑑ℎ2 ∧ 𝑑ℎ3 ∧ 𝑑ℎ4 denotes

the volume form on 𝑆4.4 The space of inequivalent topological action phases is thus ℝ/ℤ =
𝑈(1), labelled by the coefficient 𝜃 ∼ 𝜃 + 2𝜋. The existence of a topological term in the
MCHM, which we pointed out in [1], had gone previously unnoticed in the literature.

The effects of this term, like all AB terms, are entirely quantum-mechanical and non-
perturbative. Unlike the theta term in two-dimensional sigma models, whose physical ef-
fects are largest in the deep IR, we expect the effects of an AB term in a four-dimensional
sigma model such as a Composite Higgs theory to become large in the UV. This conclusion
follows from an instanton argument, which we expect to hold generically for any AB term
in a Composite Higgs model, and which we now outline.

3.1.1 Instantons and the physical effects of AB terms
To investigate the physical effects of an AB term in a Composite Higgs theory, we consider
the Euclidean path integral 𝑍 for the theory. In the case of the MCHM, whose target space
is 𝐺/𝐻 = 𝑆𝑂(5)/𝑆𝑂(4) ≅ 𝑆4, the partition function 𝑍 is defined by integrating the action
phase over the entire space of maps 𝜙 ∶ Σ4 → 𝑆4.

We begin by considering an action consisting of only the two-derivative kinetic term
𝑆kin, obtained from an 𝑆𝑂(5)-invariant metric on the target, together with the AB term 𝑆𝐴𝐵.
This action is scale-invariant, and admits instanton solutions (which extremize the classical
action) in each topological sector (i.e. in each homotopy class) labelled by 𝑛 ∈ ℤ.5 One
can approximate the Euclidean path integral by decomposing it into a sum over topological

3Of course, the normalising volume that enters the denominator is accompanied by a parameter of mass
dimension four, corresponding to four powers of the inverse radius. We shall assume units in which this radius
is set to one for simplicity, but the reader should be aware that throughout this Chapter such volume factors
carry a dimension.

4For the reader who seeks an explicit expression for the lagrangian in this example, one may of course
pull-back the 4-form in (3.1) to obtain the 𝑆𝑂(5)-invariant lagrangian density

ℒ𝐴𝐵 (ℎ𝑖(𝑥𝜇)) = 𝜃
2𝜋 𝜖𝜇𝜈𝜌𝜎𝜕𝜇ℎ1𝜕𝜈ℎ2𝜕𝜌ℎ3𝜕𝜎ℎ4,

such that 𝑆𝐴𝐵 =
´

𝑑4𝑥 ℒ𝐴𝐵 , where 𝑥𝜇 are coordinates on the worldvolume. Of course, ℒ𝐴𝐵 is locally a total
derivative as for any AB term.

5Since the target space is here an almost quaternionic manifold, there are instantons in each homotopy class
corresponding to so-called “tri-holomorphic maps” from Σ4 to 𝑆4, as introduced in [115].
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sectors, and expanding about the saddle points of the classical action in each sector:

𝑍 =
ˆ

[𝒟𝜙]𝑒−𝑆kin+𝑖𝑆𝐴𝐵 = ∑𝑛
𝑒−𝑆𝑛+𝑖𝑛𝜃𝐾𝑛, (3.2)

where 𝑆𝑛 is the classical kinetic term evaluated on an instanton in sector 𝑛, and 𝐾𝑛 is a
functional determinant that results from the Gaussian functional integral over quantum fluc-
tuations. For any given field configuration, the AB term just counts the degree 𝑛 of the map
into the target space.

The factor 𝐾𝑛 involves divergent integrals over collective coordinates which parametrise
the instanton solutions. Because the two-derivative action is scale-invariant, there will be a
collective coordinate 𝜌 parametrising the size of the instanton. We want to know whether
the integral over this coordinate diverges for large or small instantons; in other words, in the
IR or the UV. On purely dimensional grounds, this integral is of the form

𝐽 =
ˆ 𝑑𝜌

𝜌5 𝐹 (𝜌𝜇), (3.3)

where 𝜇 is the renormalisation scale, and 𝐹 (𝜌𝜇) is a function to be determined. Since 𝑍 is a
physical quantity (recall that − log𝑍 is the vacuum energy density), the combination 𝐽𝑒−𝑆𝑛

must be independent of the renormalisation scale 𝜇.
Now, the instanton action 𝑆𝑛 depends on the coupling constant in the Composite Higgs

theory, which for the kinetic term alone is simply the scale of global symmetry breaking 𝑓 ,
which, in four spacetime dimensions, has mass dimension one. Since this is a dimensionful
coupling, its dependence on the renormalisation scale 𝜇 is dominated by the classical contri-
bution. Thus, if we neglect the quantum correction to the running of 𝑓 , the instanton action
is independent of 𝜇. Hence, the function 𝐹 (𝜌𝜇), needed to ensure RG-invariance, is simply
a constant, and the integral over the collective coordinate is just

ˆ 𝑑𝜌
𝜌5 ∼ 𝜌−4, (3.4)

which diverges for small instantons, i.e. in the UV.
Of course, since 𝐾𝑛 is UV divergent, the above calculation is not reliable. What we ex-

pect really happens is that at short distances (where instantons give large contributions), the
higher derivative terms in the sigma model action become increasingly important relative
to the leading two-derivative kinetic term. When these terms are included in the action, the
theory will no longer be scale invariant and the instantons will be stabilised at some finite
size. Their size will be of order Λ, where Λ is the cut-off for the effective field theory expan-
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sion, because the extra terms in the action just feature extra powers of 𝜕/Λ. Our conclusion
from all of this is that instantons have a size of order the UV cut-off.6

The upshot of this instanton argument is that we expect any effects associated with an
AB term in a Composite Higgs model to become large in the UV - or more specifically, the
scale at which the effective field theory description (i.e. the sigma model) breaks down. This
raises an exciting prospect for searches at the TeV scale and beyond. However, by that same
argument, at low energies (relative to the effective field theory cut-off) the non-perturbative
effects of this AB term in the MCHM are exponentially suppressed. Thus, whether there are
any measurable effects at the energy scales probed by the Large Hadron Collider (LHC), say,
is unclear.

What physical effects might the AB term have? Some hope of being sensitive to this
term in the action comes from the fact that, as we will now show, the AB term in the MCHM
violates both 𝑃 and 𝐶𝑃 .7 Violation of these symmetries in the Higgs sector is known to lead
to effects in a variety of physical processes and is strongly constrained. Thus, even though
the effects of the topological term at lower energies are expected to be small, they may,
nevertheless, have observable consequences. If the angle 𝜃 in (3.1) could be measured to
be neither zero nor 𝜋, perhaps by observing some instanton-induced effect, then one would
deduce that the microscopic theory the sigma model originates from breaks 𝑃 and 𝐶𝑃 .

3.1.2 𝑃 and 𝐶𝑃 violation
To see that 𝑃 and 𝐶𝑃 are violated, we must first discuss how they are implemented in the
𝑆𝑂(5)/𝑆𝑂(4) model. The leading-order (two-derivative) term in the low-energy effective
theory is built using the CCWZ construction and requires a metric on both the target space
and the worldvolume. The metric on the target space 𝑆4 should be invariant under the action
of at least the group 𝐺 = 𝑆𝑂(5), but such a metric (which is, of course, just the round metric
on 𝑆4) is, in fact, invariant under the full orthogonal group 𝑂(5). Moreover, since this a

6It might be helpful for the reader to compare this four-dimensional instanton argument with the more
familiar story for the theta term in a two-dimensional sigma model (such as the ℂ𝑃 𝑁 model, in which the AB
term is proportional to the integral of the Kähler form on ℂ𝑃 𝑁 ). In two dimensions, the coupling constant
1/𝑔2 that appears in front of the kinetic term is dimensionless, and so its running under RG flow is dominated
by the 1-loop beta function. The action for an instanton is proportional to 1/𝑔2, and thus 𝑒−𝑆𝑛 has power-law
dependence on the renormalisation scale 𝜇. The upshot is an enhancement of the integral over 𝜌 for large 𝜌 due
to this 1-loop running, such that the integral in fact diverges in the IR, and the AB term consequently modifies
the vacuum structure of the theory.

7To be clear, we are not suggesting this AB term is the leading order term in the effective field theory
expansion that breaks 𝑃 and 𝐶𝑃 , which it is certainly not: indeed, four-derivative (non-topological) operators
exist in the ordinary CCWZ construction which break these discrete symmetries. Note that in the effective field
theory expansion of the sigma model action, the AB term may be regarded as an “infinite order” contribution,
since it corresponds locally to a total derivative in the lagrangian.
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maximal isometry group of four-manifolds, there is no larger group that can act isometrically.
The metric on the worldvolume 𝑆4 is just the Euclideanised version of theMinkowski metric
on ℝ4, which is also the round metric on 𝑆4, itself with isometry group 𝑂(5). The full
symmetry of the two-derivative term is thus 𝑂(5) × 𝑂(5).

The usual parity transformation 𝑃 corresponds (in the Euclideanised theory) to the fac-
tor group 𝑂(5)/𝑆𝑂(5) ≅ ℤ2 acting on the worldvolume. This is an orientation-reversing
diffeomorphism of the worldvolume, and so the topological term, which is proportional to
the volume form on the worldvolume after pullback, changes sign under the action of 𝑃 . It
is invariant only for forms whose integral over 𝑆4 is equal to zero or 1/2 (mod an integer),
corresponding to 𝜃 = 0 or 𝜃 = 𝜋.

As for charge conjugation, it is defined in the SM as the automorphism of the Lie alge-
bra 𝔰𝔲(3) ⊕ 𝔰𝔲(2) ⊕ 𝔲(1) corresponding to complex conjugation of the underlying unitary
transformations that define the group and its algebra. We wish to extend this transformation
to the composite sector in such a way as to obtain a 𝐶-invariant two-derivative term. To
do so, we may focus our attention on the electroweak subalgebra 𝔰𝔲(2) ⊕ 𝔲(1), which is
embedded in the composite sector as a subalgebra of 𝔰𝔬(4) ≅ 𝔰𝔲(2) ⊕ 𝔰𝔲(2), correspond-
ing to the algebra of 𝐻 = 𝑆𝑂(4). Now, the automorphism of 𝔰𝔲(2) ⊕ 𝔲(1) corresponding
to complex conjugation can be extended to an automorphism of 𝔰𝔲(2) ⊕ 𝔰𝔲(2), given ex-
plicitly by conjugating each 𝔰𝔲(2) factor by the Pauli matrix 𝜎2 ∶= ( 0 −𝑖

𝑖 0 ) = −𝑖𝑒𝑖 𝜋
2 𝜎2 .

Neither of these automorphisms are inner (because 𝔲(1) has no non-trivial inner automor-
phisms and because 𝜎2 ∉ 𝑆𝑈(2)), but the latter does induce an inner automorphism on
the factor group 𝑆𝑂(4) ≅ (𝑆𝑈(2) × 𝑆𝑈(2))/ℤ2: it sends 𝑆𝑈(2) × 𝑆𝑈(2) ∋ (𝑎, 𝑏) ↦
(𝜎2𝑎𝜎−1

2 , 𝜎2𝑏𝜎−1
2 ) ∼ (−𝜎2𝑎𝜎−1

2 , −𝜎2𝑏𝜎−1
2 ) = (𝑖𝜎2𝑎𝑖𝜎−1

2 , 𝑖𝜎2𝑏𝑖𝜎−1
2 ) (where ∼ denotes the

ℤ2 equivalence). Hence the action on the factor group is equivalent to conjugation by
[(𝑖𝜎2, 𝑖𝜎2)] ∈ (𝑆𝑈(2) × 𝑆𝑈(2))/ℤ2.

Now, quite generally, an inner automorphism of 𝐻 by ℎ ∈ 𝐻 defines an inner automor-
phism of 𝐺 ⊃ 𝐻 as 𝐺 ∋ 𝑔 ↦ ℎ𝑔ℎ−1, whose action on cosets, 𝐺/𝐻 ∋ 𝑔𝐻 ↦ ℎ𝑔ℎ−1𝐻 =
ℎ𝑔𝐻 , is not only well-defined, but also is equivalent to the original action of 𝐻 ⊂ 𝐺 induced
by left multiplication in 𝐺 that is central to the discussion in this Chapter. Thus we see that
we can not only naturally extend the definition of 𝐶 in the SM to the MCHM (in a way that
the leading order action term is manifestly invariant, even after we gauge the SM subgroup),
but that doing so is equivalent to an action on 𝐺/𝐻 by an element in 𝑆𝑂(4) ⊂ 𝑆𝑂(5). Since
the topological term is 𝑆𝑂(5)-invariant by construction, it is invariant under 𝐶 . Hence it
changes by a sign under 𝐶𝑃 , except for forms whose integral over 𝑆4 is equal to zero or 1/2
(mod an integer).
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We remark that, just as for the parity transformation, the topological term also changes
by a sign under the action of the factor group 𝑂(5)/𝑆𝑂(5) ≅ ℤ2 on the target space. This
symmetry has been exploited in the literature [110] to prevent unobserved corrections to the
decay rate of the 𝑍-boson to 𝑏-quarks, compared to the SM prediction. We can see that it
is incompatible with a non-vanishing topological term, except for forms whose integral over
𝑆4 is equal to 1/2 (mod an integer).

The physics associated with AB terms appearing in other Composite Higgs models fol-
lows a similar story to that discussed here in the context of the minimal model. To sum-
marize, the essential features are (i) that AB terms are likely to violate discrete symmetries,
such as 𝑃 and 𝐶𝑃 , and (ii) they can only affect physics at the non-perturbative level.

3.2 The Wess-Zumino term in the 𝑆𝑂(6)/𝑆𝑂(5) model
Consider the Composite Higgsmodel based on the homogeneous space𝐺/𝐻 = 𝑆𝑂(6)/𝑆𝑂(5) ≅
𝑆5 [105]. The five pNGBs transform in the fundamental representation of the unbroken
𝑆𝑂(5) symmetry, which decomposes under 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅 as (2, 2) ⊕ (1, 1). Thus, in
addition to the Higgs doublet 𝐻 = (ℎ1, ℎ2, ℎ3, ℎ4), there is a SM singlet 𝜂 in this theory.
The fields (𝜂, 𝐻) provide (local) coordinates on the 𝑆5 target space.

The principal appeal of this model, compared to the minimal model, is that one can easily
imagine a UV completion in the form of a (technically natural) strongly coupled 𝑆𝑝(2𝑁𝑐)
gauge theory with four Weyl fermions transforming in the fundamental of the gauge group,
which has 𝑆𝑈(4) flavour symmetry. An explicit realization of the necessary spontaneous
symmetry breaking of 𝑆𝑈(4) down to an 𝑆𝑝(4) ≅ 𝑆𝑂(5) subgroup has been proposed
in [112]. An explicit formulation of the microscopic theory such as this would of course
provide a unique prediction for the quantised coefficient of theWZ term in the 𝑆𝑂(6)/𝑆𝑂(5)
Composite Higgs model, via anomaly matching.

TheWZ term in this theory corresponds to the closed, integral, 𝑆𝑂(6)-invariant 5-form 𝜔
on 𝑆5, which is simply the volume form, as originally described in [105]. Indeed, a straight-
forward calculation using the relative Lie algebra cohomology cochain complex8 reveals that
this is the unique 𝑆𝑂(6)-invariant 5-form on 𝑆𝑂(6)/𝑆𝑂(5), up to normalization (in fact, the
volume form is the only 𝑆𝑂(6)-invariant differential form on 𝑆5 of any positive degree).
Thus, there is a single WZ term in this model.

The Manton condition is satisfied trivially here, because the fourth de Rham cohomol-
ogy of 𝑆5 vanishes, so the closed 4-forms 𝜄𝑋𝜔 are necessarily exact. For the same reason,
there are no AB terms. Since the fourth singular homology vanishes, we can always follow

8We shall expand on the role of Lie algebra cohomology in §3.4.1.
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Witten’s construction and write the action as the (manifestly 𝑆𝑂(6)-invariant) integral of 𝜔
over a 5-ball 𝐵 whose boundary 𝑧 = 𝜕𝐵 is our worldvolume cycle:

𝑆𝑊 𝑍[𝑧 = 𝜕𝐵] = 𝑛
𝑉5

ˆ
𝐵

𝑑𝜂 ∧ 𝑑4𝐻, 𝑛 ∈ ℤ, (3.5)

where 𝑑𝜂 ∧ 𝑑4𝐻 is short-hand for the volume form on 𝑆5 in our local “Higgs” coordinates
(𝜂, 𝐻), with 𝑑4𝐻 ≡ 𝑑ℎ1∧𝑑ℎ2∧𝑑ℎ3∧𝑑ℎ4, and 𝑉5 = 𝜋3 is just the volume of a unit 5-sphere.
As noted above, depending on the details of the microscopic theory, the integer coefficient
𝑛 will be fixed by anomaly matching.

What phenomenological effects are associated with thisWZ term? Naïvely, theWZ term
is a dimension-9 operator, as can be seen by considering the action locally. The Poincaré
lemma means we can write 𝜔 = 𝑑𝐴 on a local patch, for example

𝑆𝑊 𝑍[𝑧] = 𝑛
𝑉5

ˆ
𝑧

𝜂 𝑑ℎ1 ∧ 𝑑ℎ2 ∧ 𝑑ℎ3 ∧ 𝑑ℎ4, (3.6)

which contains 5 fields and 4 derivatives, and is thus dimension-9. Wemight therefore expect
this operator to be entirely irrelevant to the phenomenology at low energies. However, in
order to study the phenomenology, it is necessary to first gauge the SM subgroup 𝑆𝑈(2)𝐿 ×
𝑈(1)𝑌 ⊂ 𝑆𝑂(5).

Gauging the WZ term is a subtle issue, because the four-dimensional lagrangian for the
WZ term (which, remember, is only valid in a local patch) is not 𝐺-invariant, but shifts by an
exact form. This means that a naïve “covariantization” of the derivative 𝑑 → 𝑑 − 𝐴 does not
yield a gauge-invariant action. The gauging of topological terms is a subtle problem, even in
cases where the construction of Witten can be carried out [45, 116–119]. We postpone the
discussion the gauging of topological terms in the general case to future work, remarking
here only that upon gauging, one expects theWZ term to give rise to operators of dimension-
5 which couple the Composite Higgs fields to the electroweak gauge bosons 𝑊 ± and 𝑍,9

which are certainly important to the TeV scale physics of this theory.
We now turn to a more subtle example, where the subtlety is concerning 𝐺-invariance of

the putative WZ term.
9This is precisely analogous to the gauging of electromagnetism in the chiral lagrangian, whichwe discussed

in the Introduction, which leads to the dimension-5 operator 𝜋0𝐹 ̃𝐹 and thus pion decay to two photons.
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3.3 The 𝑆𝑂(5) × 𝑈(1)/𝑆𝑂(4) model
Consider the Composite Higgs model on the coset space 𝐺/𝐻 = (𝑆𝑂(5) × 𝑈(1))/𝑆𝑂(4) ≅
𝑆4 ×𝑆1, in which a WZ term was incorrectly identified [106]. The error was that a WZ term
was postulated due to the existence of a 𝐺-invariant 5-form, when it turns out that one cannot
write down a corresponding 𝐺-invariant action (phase) for worldvolumes corresponding to
homologically non-trivial 4-cycles.

The target space is homeomorphic to 𝑆4 × 𝑆1, which has non-vanishing 4th and 5th
cohomology, so there are potentially both AB andWZ terms. The potential problem with 𝐺-
invariance of the putative WZ term arises due to the non-trivial 4-cycles in 𝐺/𝐻 which wrap
around the 𝑆4 factor, which mean that Witten’s construction cannot be applied; moreover,
the group 𝐺 is not semi-simple because of the 𝑈(1) factor. This means we will have to
check the Manton condition explicitly. Indeed, the 𝑆𝑂(5) × 𝑈(1)-invariant, closed, integral
5-form 𝜔, which is just the volume form on 𝑆4 × 𝑆1, fails to satisfy the Manton condition
for the generator of 𝑈(1) ⊂ 𝐺,10 and so the putative WZ term in fact explicitly breaks 𝑈(1)-
invariance in the quantum theory. Thus, there is no such WZ term.

To see more explicitly how the problem with 𝑈(1) invariance arises, we again introduce
local Higgs coordinates (𝜂, 𝐻), where now 𝜂 ∈ 𝑆1, and the Higgs field provides local coor-
dinates on the 𝑆4 factor. Consider a worldvolume which corresponds to a non-trivial 4-cycle
𝑧 in the target space; for example, let 𝑧 wrap the 𝑆4 factor some 𝑊 times, at some fixed value
of the 𝑆1 coordinate, 𝜂0. On this cycle, we may write 𝜔 = 𝑑𝐴, where 𝐴 ∝ 𝜂0𝑑4𝐻 is well-
defined on 𝑧 (again, 𝑑4𝐻 is shorthand for the volume form on the 𝑆4 factor), and the WZ
term is then given by the integral

𝑛
2𝜋𝑉4

ˆ
𝑧

𝜂0 𝑑4𝐻 = 𝑛
2𝜋 𝜂0𝑊 , (3.7)

where 𝑉4 = 8
3𝜋2 is the volume of the 4-sphere (the factor 2𝜋𝑉4 is just the volume of the

target space, such that 𝑛 ∈ ℤ corresponds to 𝜔 being an integral form). This is clearly
not invariant under the action of 𝑈(1) on this cycle, which shifts 𝜂0 → 𝜂0 + 𝑎 for some
𝑎 ∈ [0, 2𝜋). However, the 𝑈(1) symmetry is not completely broken, because the action
phase 𝑒2𝜋𝑖𝑆[𝑧] remains invariant under discrete shifts (for any 𝑊 ), such that 𝑎𝑛 ∈ 2𝜋ℤ.
Thus, the symmetry of the corresponding classical theory is broken, due to the WZ term,
from

𝑆𝑂(5) × 𝑈(1) → 𝑆𝑂(5) × ℤ/𝑛ℤ (3.8)
10The interior product of the volume form on 𝑆4 × 𝑆1 with the vector field generating the 𝑈(1) factor is

proportional to the volume form on the 𝑆4 factor, which is closed but not exact.
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in the quantum theory. This is directly analogous to the breaking of translation invariance
that occurs for quantummechanics on the 2-torus when coupled to a translationally-invariant
magnetic field, a fact which was first observed by Manton [93] and that we discussed in
Chapter 2.

There is nonetheless still an AB term in this model, equal to (𝜃/2𝜋)
´

𝑧
1

𝑉4
𝑑4𝐻 , where

𝜃 ∼ 𝜃 + 2𝜋, which counts the winding number into the 𝑆4 factor of the target.

3.4 The 𝑆𝑂(6)/𝑆𝑂(4) model
In this Section, we turn to a model with a very rich topological structure, based on the coset
𝑆𝑂(6)/𝑆𝑂(4). As we shall soon see, this model exhibits both AB and WZ terms, in a non-
trivial way.

The spectrum features two Higgs doublets, in addition to a singlet 𝜂. This model is
attractive partly because the coset space is isomorphic to 𝑆𝑈(4)/𝑆𝑂(4), and this global
symmetry breaking pattern may therefore be exhibited by an 𝑆𝑂(𝑁𝑐) gauge theory with
4 fundamental Weyl fermions. A closely related model was discussed at length in [111],
which quotients by a further 𝑆𝑂(2) factor, thus removing the additional scalar. We will turn
to that model in §3.5.

From our topological viewpoint, the manifolds 𝑆𝑂(𝑛)/𝑆𝑂(𝑛−2)11 are rather unusual, in
that, for even 𝑛, they have two non-vanishing cohomology groups, in neighbouring degrees
𝑛 − 2 and 𝑛 − 1. This occurs, somewhat serendipitously, at the 4th and 5th cohomologies
when 𝑛 = 6, which is the particular case of interest as a Composite Higgs model for group
theoretic reasons.12

In order to elucidate the topological sector of this theory, it is helpful to first describe the
topology of this target space. For any integer 𝑛 ≥ 3, the homogeneous space 𝑆𝑂(𝑛)/𝑆𝑂(𝑛 −
2) can be realised as a fibre bundle over 𝑆𝑛−1 with fibre 𝑆𝑛−2, namely the unit tangent bundle
of 𝑆𝑛−1, which can be described by a point on 𝑆𝑛−1 and a unit tangent vector at that point. To
see this, observe that 𝑆𝑂(𝑛) has a transitive action on this space (induced by the usual action
on ℝ𝑛), with stabilizer 𝑆𝑂(𝑛 − 2). Indeed, the point on 𝑆𝑛−1 is stabilized by 𝑆𝑂(𝑛 − 1),
while a given unit vector tangent to that point gets moved by 𝑆𝑂(𝑛 − 1), but is stabilized by

11The manifold 𝑆𝑂(𝑛)/𝑆𝑂(𝑛−2) is an example of a Stiefel manifold. It is the space of orthonormal 2-frames
in ℝ𝑛.

12There is a low-dimensional analogue of this problem, which is a 𝑝 = 2 sigma model (i.e. describing a
string) with target space 𝑆𝑂(4)/𝑆𝑂(2), for which non-vanishing 𝐻2

𝑑𝑅 yields an AB term, and non-vanishing
𝐻3

𝑑𝑅 implies there is at least one WZ term. This model may be studied as a useful warm-up for the Composite
Higgs example discussed in the text.
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the subgroup 𝑆𝑂(𝑛− 2) ⊂ 𝑆𝑂(𝑛− 1). Thus, by the orbit-stabilizer theorem, the unit tangent
bundle is isomorphic to the homogeneous space 𝑆𝑂(𝑛)/𝑆𝑂(𝑛 − 2).

Our target space 𝑆𝑂(6)/𝑆𝑂(4) is thus a 4-sphere fibred over a 5-sphere, and it is helpful
to define the projection map for this bundle (which we shall on occasion refer to as 𝐸 for
brevity):

𝜋 ∶ 𝐸 ≡ 𝑆𝑂(6)/𝑆𝑂(4) → 𝑆5, (3.9)

with which we can pull-back (𝜋∗) forms from 𝑆5 to 𝐸, and also push-forward (𝜋∗) cycles in
𝐸 to cycles in the base 𝑆5. The non-vanishing homology groups

𝐻4(𝐸, ℤ) = 𝐻5(𝐸, ℤ) = ℤ (3.10)

are generated by cycles which wrap the 𝑆4 fibre and the 𝑆5 base respectively.
These claims may be proven by considering the Gysin and Wang exact sequences in

homology for the bundle 𝑆4 → 𝐸 → 𝑆5. We shall briefly digress to explain how. Firstly,
the Gysin sequence tells us that the following sequence of group homomorphisms is exact,

⋯ → 𝐻1(𝑆5) → 𝐻5(𝐸)
𝜋∗−→ 𝐻5(𝑆5) → 𝐻0(𝑆5) → 𝐻4(𝐸)

𝜋∗−→ 𝐻4(𝑆5) → … , (3.11)

where 𝜋 denotes the bundle projection, which reduces to

0 → ℤ
𝑖=𝜋∗−−→ ℤ 𝑗−→ ℤ 𝑘−→ ℤ

𝜋∗−→ 0. (3.12)

From the fact that this is an exact sequence, we can deduce that the map ℤ 𝑘−→ ℤ is multipli-
cation by one, the middle map ℤ 𝑗−→ ℤ is multiplication by zero, and the map ℤ

𝑖=𝜋∗−−→ ℤ is
multiplication by one. Hence projection induces the identity map 𝐻5(𝐸)

𝑝∗−→ 𝐻5(𝑆5), and
thus the generating 5-cycles in the bundle 𝐸 are simply related to the generating 5-cycles
that wrap the 𝑆5 base by projection. A similar argument, using the Wang sequence

⋯ → 𝐻1(𝑆4) → 𝐻4(𝑆4)
𝑖∗−→ 𝐻4(𝐸) → 𝐻0(𝑆4) → 𝐻3(𝑆4) → … ,

where 𝑖 now denotes the inclusion map 𝑖 ∶ 𝑆4 → 𝐸, tells us that inclusion induces the
identity map 𝐻4(𝑆4)

𝑖∗−→ 𝐻4(𝐸), and thus the generating 4-cycles in 𝐸 are indeed those
which wrap the 𝑆4 fibre.

Correspondingly, we have the non-vanishing de Rham cohomology groups

𝐻4
𝑑𝑅(𝐸) = 𝐻5

𝑑𝑅(𝐸) = ℝ. (3.13)



90 Topological terms in Composite Higgs Models

Given that the 4th singular homology is non-vanishing, we must consider worldvolumes
whose corresponding 4-cycles are not boundaries. On such non-trivial cycles, we cannot
necessarily write a WZ term using Witten’s construction, but we can certainly write the
action in terms of locally-defined forms in degrees 4, 3, 2, 1, and 0, integrated over chains of
the corresponding degree, constructed using Čech (co)homology data as set out in §2.4.1. In
fact, we shall soon see that, because of the bundle structure of (𝐸, 𝜋), a variant of Witten’s
construction can in fact be carried out, and locally-defined forms (and all the technicalities
they entail) will not be needed after all!

3.4.1 WZ terms
As we have emphasized, there may exist WZ terms corresponding to exact 5-forms. Thus,
it is not sufficient to know the cohomology groups (3.13); rather, we need to identify the
complete space of 𝑆𝑂(6)-invariant, integral, closed 5-forms on the target space 𝐸 that satisfy
the Manton condition. Because 𝐺 = 𝑆𝑂(6) is here a semi-simple Lie group, we know that
the Manton condition will be automatically satisfied for any 𝐺-invariant 5-form 𝜔 (even
though the Witten construction cannot be used on non-trivial 4-cycles). So, our problem is
reduced to finding the space of𝑆𝑂(6)-invariant, closed 5-forms on𝑆𝑂(6)/𝑆𝑂(4). Moreover,
because the subgroup 𝐻 = 𝑆𝑂(4) is connected, this task reduces to an algebraic calculation
using the relative Lie algebra cohomology cochain complex, as we explained in §2.5.

In order to perform this algebraic calculation, and map the resulting space of relative
Lie algebra 5-cocycles into a space of WZ terms, we need to introduce local coordinates
parametrising the coset space 𝑆𝑂(6)/𝑆𝑂(4). We parametrise the 𝑆𝑂(6)/𝑆𝑂(4) cosets by the
matrix 𝑈(𝑥) = exp(𝜙𝑎(𝑥) ̂𝑇 𝑎) ∶ Σ4 → 𝑆𝑂(6)/𝑆𝑂(4), identified up to right multiplication by
𝐻 = 𝑆𝑂(4), where 𝑥 are the coordinates on the worldvolume Σ4, { ̂𝑇 𝑎} are a basis for the
broken generators, and the fields 𝜙𝑎(𝑥) define the sigma model map into the target space.

We choose to embed the 𝐻 = 𝑆𝑂(4) subgroup as the top left 4-by-4 block in 𝑆𝑂(6).
The nine pNGB fields 𝜙𝑎(𝑥) divide into two Composite Higgs doublets transforming in the
(2, 2) of the unbroken 𝑆𝑂(4) ∼ 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅 subgroup, which we denote by 𝐻𝐴 =
(ℎ1

𝐴, ℎ2
𝐴, ℎ3

𝐴, ℎ4
𝐴) and 𝐻𝐵 = (ℎ1

𝐵, ℎ2
𝐵, ℎ3

𝐵, ℎ4
𝐵), together with a singlet 𝜂. They are embedded

in 𝔰𝔬(6) as follows

𝜙𝑎 ̂𝑇 𝑎 =
⎛
⎜
⎜
⎜
⎝

04×4 𝐻𝑇
𝐴 𝐻𝑇

𝐵
−𝐻𝐴 0 𝜂
−𝐻𝐵 −𝜂 0

⎞
⎟
⎟
⎟
⎠

. (3.14)

In our geometric picture, 𝐻𝐴 provide local coordinates on the 𝑆4 fibre, and the five coordi-
nates (𝐻𝐵, 𝜂) provide local coordinates on the 𝑆5 base.
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Given a suitable basis for the Lie algebras of 𝑆𝑂(6) and the 𝑆𝑂(4) subgroup as embed-
ded above, we compute the space of closed relative Lie algebra cochains of degree 5 using
the LieAlgebra[Cohomology] package in Maple. Using the canonical map from the rela-
tive Lie algebra cochain complex to the ring of 𝐺-invariant forms on 𝐺/𝐻 , we identify the
following basis for the space of 𝑆𝑂(6)-invariant closed 5-forms on 𝐸:

{𝑑4𝐻𝐵 ∧ 𝑑𝜂,
𝑑4𝐻𝐴 ∧ 𝑑𝜂,
𝜖𝑖𝑗𝑘𝑙 𝑑ℎ𝑖

𝐴 ∧ 𝑑ℎ𝑗
𝐵 ∧ 𝑑ℎ𝑘

𝐵 ∧ 𝑑ℎ𝑙
𝐵 ∧ 𝑑𝜂,

𝜖𝑖𝑗𝑘𝑙 𝑑ℎ𝑖
𝐴 ∧ 𝑑ℎ𝑗

𝐴 ∧ 𝑑ℎ𝑘
𝐵 ∧ 𝑑ℎ𝑙

𝐵 ∧ 𝑑𝜂,
𝜖𝑖𝑗𝑘𝑙 𝑑ℎ𝑖

𝐴 ∧ 𝑑ℎ𝑗
𝐴 ∧ 𝑑ℎ𝑘

𝐴 ∧ 𝑑ℎ𝑙
𝐵 ∧ 𝑑𝜂}, (3.15)

where 𝜖𝑖𝑗𝑘𝑙 is the usual Levi-Civita symbol with four indices.
We have chosen this basis such that the first element, 𝑑4𝐻𝐵 ∧ 𝑑𝜂, is closed but not exact,

and is therefore a representative of the non-trivial 5th cohomology class (3.13), while the
remaining four elements are all exact. Given this choice, the first element corresponds to a
WZ term with an integer-quantised coefficient, while the others yield real-valued WZ terms.
The space ofWZ terms in this theory is therefore ℤ×ℝ4. Note that our chosen representative
of the non-trivial cohomology class is simply the pull-back to the bundle 𝐸 of the evidently
𝑆𝑂(6)-invariant volume form on the base 𝑆5, as one would expect.

Before wemove on to discuss the AB term in this model, we now describemore explicitly
how these WZ terms in the action can be written. Firstly, the integer-quantised WZ term is
unique in that the corresponding 5-form 𝑑4𝐻𝐵 ∧ 𝑑𝜂 can be written as the pull-back to 𝐸 of
a form on 𝑆5. Thus, to evaluate the corresponding WZ term, we can in fact push-forward
the worldvolume 4-cycle from the target space 𝐸 to the base 𝑆5, using the bundle projection
𝜋, and evaluate the WZ term by performing an integral in the base space. Moreover, since
𝐻4(𝑆5, ℤ) = 0, the push-forward of any 4-cycle to 𝑆5 is in fact the boundary of a 5-chain
𝐵 in the base. The corresponding WZ term evaluated for 4-cycle 𝑧 is then given, in local
coordinates, by the manifestly 𝑆𝑂(6)-invariant 5-dimensional integral:

𝑆𝑊 𝑍[𝑧] = 𝑛
𝑉5

ˆ
𝐵

𝑑4𝐻𝐵 ∧ 𝑑𝜂, 𝜕𝐵 = 𝜋∗𝑧, 𝑛 ∈ ℤ, (3.16)

So, for this particular term, there is a sense in which Witten’s construction goes through, but
only after exploiting the bundle structure of the target space.

The remaining four WZ terms correspond to exact 5-forms on 𝐸, and hence for each we
can find a global 4-form 𝐴 whose exterior derivative is the corresponding 5-form. These
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terms can therefore all be written as four-dimensional integrals of globally defined 4-forms
over the 4-cycle 𝑧, each with a different ℝ-valued coefficient. Thus, again, there is no need
to introduce locally-defined forms.

3.4.2 AB term
The AB term in the action is the integral of a closed (but necessarily not exact) 4-form
over the worldvolume 4-cycle, and only depends on the de Rham cohomology class of that
4-form. The 4th de Rham cohomology of 𝑆𝑂(6)/𝑆𝑂(4) is one-dimensional (3.13), so we
simply need to find a representative of that class.

Because 𝐺/𝐻 is compact and 𝐺 is connected, the de Rham cohomology is in fact isomor-
phic to the cohomology of 𝐺-invariant forms, and as stated above, because 𝐻 is connected,
this is furthermore isomorphic to the Lie algebra cohomology of 𝔤 relative to 𝔥. Hence, we
can find such a representative 4-form for our AB term by performing an algebraic calculation
in the relative Lie algebra cochain complex, which we again implement in Maple.

Such a representative is given by (now suppressing wedges for brevity)

𝑑4𝐻𝐴 + 𝑑4𝐻𝐵 + 1
3𝜖𝑖𝑗𝑘𝑙 𝑑ℎ𝑖

𝐴 𝑑ℎ𝑗
𝐴 𝑑ℎ𝑘

𝐵 𝑑ℎ𝑙
𝐵. (3.17)

Thus, the AB term in the action is locally given by the integral

𝑆𝐴𝐵[𝑧] = 𝜃
2𝜋

ˆ
𝑧

1
𝑉4 (𝑑4𝐻𝐴 + 𝑑4𝐻𝐵 + 1

3𝜖𝑖𝑗𝑘𝑙 𝑑ℎ𝑖
𝐴 𝑑ℎ𝑗

𝐴 𝑑ℎ𝑘
𝐵 𝑑ℎ𝑙

𝐵) , 𝜃 ∈ [0, 2𝜋).
(3.18)

As usual, quotienting by the space of integral cohomology classes results in a 𝑈(1)-valued
coefficient for the AB term. Thus, putting everything together, the total space of topological
terms in a Composite Higgs model based on the coset 𝑆𝑂(6)/𝑆𝑂(4) is given by

ℤ × ℝ4 × 𝑈(1). (3.19)

3.4.3 Twisted versus trivial bundles
We conclude this Section by contrasting the Composite Higgs model on 𝑆𝑂(6)/𝑆𝑂(4),
which is a (twisted) 𝑆4 fibre bundle over 𝑆5, with a Composite Higgs model on the cor-
responding trivial bundle 𝑆4 × 𝑆5, which we may realize as the coset space

𝑆𝑂(5)
𝑆𝑂(4) × 𝑆𝑂(6)

𝑆𝑂(5) . (3.20)
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Let 𝐻𝐴 = (ℎ1
𝐴, ℎ2

𝐴, ℎ3
𝐴, ℎ4

𝐴) and (𝐻𝐵, 𝜂) = (ℎ1
𝐵, ℎ2

𝐵, ℎ3
𝐵, ℎ4

𝐵, 𝜂) provide local coordinates on
the 𝑆4 and 𝑆5 factors respectively (which is of course locally isomorphic to the coordinates
introduced above on a patch of 𝑆𝑂(6)/𝑆𝑂(4)). The transitive action of 𝐺 = 𝑆𝑂(5) × 𝑆𝑂(6)
on this space simply factorizes over the two components.

Clearly, the AB term is now simply the integral of the volume form on the 𝑆4 factor, viz.
𝑆𝐴𝐵[𝑧] = (𝜃/2𝜋𝑉4)

´
𝑧 𝑑4𝐻𝐴, which is 𝑆𝑂(5)-invariant and trivially 𝑆𝑂(6)-invariant. This

is precisely analogous to the AB term in the Minimal Model of §3.1. In contrast, in the more
complicated 𝑆𝑂(6)/𝑆𝑂(4) model above, the 𝑆𝑂(6) acts non-trivially on the 𝑆4 fibre, such
that the volume form on the fibre is not 𝐺-invariant on its own.

For theWZ terms, we require an 𝑆𝑂(5)×𝑆𝑂(6)-invariant 5-form on this space. Since, in
general, the only 𝑆𝑂(𝑛)-invariant form (in any positive degree) on an 𝑛-sphere is the volume
form, the only such 5-form must be the volume form on the 𝑆5 factor. Hence, there is a
single WZ term in this model, with quantised coefficient, corresponding to that 5-form. This
is precisely analogous to theWZ term in the 𝑆𝑂(6)/𝑆𝑂(5) model considered in §3.2. Again,
this is in sharp contrast to the more complicated story for 𝑆𝑂(6)/𝑆𝑂(4), in which we found
a four-dimensional space of ℝ-valued WZ terms, corresponding to exact, 𝑆𝑂(6)-invariant
5-forms on 𝑆𝑂(6)/𝑆𝑂(4).

In conclusion, we see that even two Composite Higgs models which are locally identi-
cal, being products of 𝑆4 and 𝑆5 locally, nevertheless have completely different spectra of
topological terms. The differences arise as a subtle interplay between the differing group
actions, together with the way that products are globally twisted as bundles.

3.5 Two AB terms in the 𝑆𝑂(6)/𝑆𝑂(4) × 𝑆𝑂(2) model
We now consider a variant of the previous two-Higgs-doublet model, in which the linearly
realized subgroup 𝐻 ⊂ 𝑆𝑂(6) is enlarged from 𝑆𝑂(4) to 𝑆𝑂(4) × 𝑆𝑂(2). This model
contains exactly two Higgs doublets, with no singlet 𝜂. A detailed discussion of this model
can be found in [111]. Geometrically, the target space is a Grassmannian, that is, the space
of planes in ℝ6. The story concerning topological terms is much simpler here than in §3.4,
because demanding right-𝑆𝑂(2) invariance restricts the basis of projectable forms signifi-
cantly.

We find that there are no 𝑆𝑂(6)-invariant forms on this Grassmanian in any odd degree.
In particular, there are no 𝑆𝑂(6)-invariant 5-forms, and so no WZ terms here.

There are, however, invariant forms in even degrees; indeed, there is a two-dimensional
basis of 𝑆𝑂(6)-invariant 4-forms. Given there are no invariant forms in degrees 3 or 5, these
4-forms are necessarily both closed and not exact, and hence they span a basis for the AB
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terms in this model:

𝑆𝐴𝐵[𝑧] = 𝜃1
2𝜋

ˆ
1
𝑁 (𝑑4𝐻𝐴 + 𝑑4𝐻𝐵 + 1

3𝜖𝑖𝑗𝑘𝑙 𝑑ℎ𝑖
𝐴 𝑑ℎ𝑗

𝐴 𝑑ℎ𝑘
𝐵 𝑑ℎ𝑙

𝐵)

+ 𝜃2
2𝜋

ˆ
1

𝑀 ∑
𝑖𝑗

𝑑ℎ𝑖
𝐴 𝑑ℎ𝑗

𝐴 𝑑ℎ𝑖
𝐵 𝑑ℎ𝑗

𝐵, (3.21)

where the sum in the second line is over all six pairs of indices (𝑖, 𝑗), and both coefficients
𝜃1, 𝜃2 ∈ [0, 2𝜋) are periodic. The coefficients 𝑁 and 𝑀 are appropriate normalization
factors, chosen such that the 4-forms within the integrals are integral.

3.6 The Littlest Higgs
For our final example, we consider the little Higgs model with coset 𝑆𝑈(5)/𝑆𝑂(5).13 This
is the smallest coset known to give a little Higgs, and is therefore known as the “Littlest
Higgs” model [121]. The presence of topological terms in this model was discussed in Ref.
[122], and has been mentioned in passing elsewhere (e.g. in [113]). Despite this interest, a
classification of all topological terms occurring in this model has not been attempted. Indeed,
the authors of [122] merely assert that there is a WZ term in this model, ‘related to the non-
vanishing homotopy group 𝜋5(𝑆𝑈(5)/𝑂(5)) = ℤ’. While we shall find that this is essentially
the right result, we note that the occurrence of WZ terms in such a sigma model is in fact
due to the non-vanishing of the space of 𝑆𝑈(5)-invariant, closed 5-forms on 𝑆𝑈(5)/𝑆𝑂(5),
which is unrelated a priori to the fifth homotopy group.

The fact that
𝐻4

𝑑𝑅(𝑆𝑈(5)/𝑆𝑂(5), ℝ) = 0 (3.22)

means that there are no AB terms in this model; but there are certainly WZ terms. WZ
terms are in one-to-one correspondence with the space of closed, integral, 𝑆𝑈(5)-invariant
5-forms on 𝑆𝑈(5)/𝑆𝑂(5) (because the Manton condition is guaranteed to be satisfied by
virtue of 𝑆𝑈(5) being semi-simple). We know from the fact that

𝐻5
𝑑𝑅(𝑆𝑈(5)/𝑆𝑂(5), ℝ) = ℝ (3.23)

that there is at least one WZ term, because, given compactness of 𝐺/𝐻 and connectedness
of 𝐻 , the de Rham cohomology is isomorphic to the Lie algebra cohomology of 𝔰𝔲(5)

13The little Higgs models are a subset of Composite Higgs models which exhibit a natural hierarchy between
the Higgs VEV and the scale of the symmetry breaking 𝐺 → 𝐻 , with the Higgs mass being hierarchically
lighter than the other pNGBs. This is achieved by the mechanism of “collective symmetry breaking”, which
causes the Higgs potential to be loop-suppressed. For a review of little Higgs models, see Ref. [120].
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relative to 𝔰𝔬(5), which in turn is isomorphic to the cohomology of 𝑆𝑈(5)-invariant forms
on the coset 𝑆𝑈(5)/𝑆𝑂(5) [103]. However, to deduce that this WZ term is unique (up to
normalization), we must show that there are noWZ terms corresponding to (de Rham) exact
invariant 5-forms. In other words, we must show that the trivial class in the fifth Lie algebra
cohomology is empty.

This is indeed the case, as one may show via a (computationally rather expensive) calcu-
lation using the package LieAlgebra[Cohomology] in Maple. In fact, one finds that there
are no invariant, exact forms in any degree.14

Thus, theWZ term is indeed unique. The fact that it belongs to a non-trivial cohomology
class (in the de Rham sense) means that the restriction to integral classes results in the co-
efficient of the WZ term being quantised. The upshot is that the space of topological terms
in the Littlest Higgs model are indeed classified by a single integer 𝑛 ∈ ℤ. An explicit
expression for the WZW term in this case is given in [122].

Was it a coincidence that, in this example, the homotopy-based classification yielded
the correct answer? While, as we noted, there is a priori no direct link between homotopy
and cohomology groups, there is of course an indirect link between the two, proceding (via
homology) through the Hurewicz map. Indeed, because 𝑆𝑈(5)/𝑆𝑂(4) happens to be 4-
connected (which means its first non-vanishing homotopy group is 𝜋5 = ℤ), the Hurewicz
map ℎ∗ ∶ 𝜋5(𝑆𝑈(5)/𝑆𝑂(5)) → 𝐻5(𝑆𝑈(5)/𝑆𝑂(5)) is in fact an isomorphism. Hence, the
fifth homology group, and its dual in singular cohomology, are both ℤ, from which we
deduce (3.23). However, the homotopy can certainly tell us nothing about the existence of
invariant 5-forms which are exact; in this case, that final piece of information was supplied
by an explicit calculation using Lie algebra cohomology.

3.7 Connecting the cosets
In this final Section, we discuss how topological terms in different Composite Higgs models
can in fact be related to each other under RG flow. Firstly, of course, one needs to know how
different Composite Higgs models can themselves be related by RG flow.

The idea here is straightforward: if the global symmetry 𝐺 (which, recall, is sponta-
neously broken to𝐻) is in fact explicitly broken (via some small parameter) to a subgroup𝐺′,
then the Goldstones parametrising the coset space 𝐺/𝐻 will no longer all be strictly mass-

14It is well-known that there are no two-sided 𝐺-invariant exact forms on 𝐺/𝐻 if 𝐺/𝐻 is a symmetric space,
which 𝑆𝑈(5)/𝑆𝑂(5) is. However, the differential forms that appear in the relative Lie algebra cohomology
(and which correspond to topological terms in our sigma model) are two-sided invariant only for the subgroup
𝐻 ⊂ 𝐺, and one-sided invariant for all of 𝐺.
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less. Rather, a potential will turn on for the Goldstones, which will acquire small masses15

(thus becoming pNGBs). Only the subgroup 𝐻′ = 𝐺′ ∩ 𝐻 will then be linearly realized
in vacuo, yielding exact Goldstone bosons on the reduced coset space 𝐺′/𝐻′. If we flow
down to sufficiently low energies, we will be able to integrate out the pNGBs which acquire
masses, and thereby arrive at a deep IR theory describing only the massless degrees of free-
dom. This theory will be a sigma model on 𝐺′/𝐻′. This concept was recently introduced in
Ref. [123], under the name of “Composite Higgs Models in Disguise”.

We postulate that, under such a flow between Composite Higgs Models, the topological
terms in the 𝐺/𝐻 theory should match onto the topological terms in the eventual 𝐺′/𝐻′

theory. We now illustrate this proposal with its most simple incarnation, namely the flow
between theories based on the cosets:

𝑆𝑂(6)/𝑆𝑂(5) → 𝑆𝑂(5)/𝑆𝑂(4), (3.24)

that is, from a theory of Goldstones living on 𝑆5, to a theory of Goldstones living on 𝑆4.16

This flow was discussed in [123], but we reformulate it here from a more geometric perspec-
tive, since this is better suited to a discussion of the topological terms.

3.7.1 From the 5-sphere to the 4-sphere
We begin by considering the sigma model on target space 𝑀 = 𝑆5, which has a transitive
group action by 𝐺 = 𝑆𝑂(6). A particular subgroup 𝐺′ = 𝑆𝑂(5) is defined unambiguously
by explicit symmetry breaking, as follows. Pick a point 𝑝 on 𝑀 , which we will define to be
the origin in local coordinates (𝑥1, … , 𝑥5). The stabilizer of this point 𝑝 under the action of
𝐺 is a subgroup of 𝐺 isomorphic to 𝑆𝑂(5). Define this group to be 𝐺′, the subgroup of 𝐺
that remains an exact symmetry of the lagrangian after the explicit breaking is introduced.17

Because there is explicit breaking of 𝑆𝑂(6), a potential is turned on for the coordinates.
What form does it take? We claim that, in suitable coordinates, the potential must be a func-
tion of 𝑟2 ∶= ∑5

𝑖=1 𝑥2
𝑖 . The reasoning is as follows. The potential 𝑉 (𝑥𝑖) must be invariant

under the action of the exact symmetry 𝐺′ = 𝑆𝑂(5), which implies that 𝑉 (𝑥𝑖) must be con-
stant on the orbits of the 𝐺′ action. We shall now show that these orbits are indeed surfaces
of constant 𝑟.

15By “small”, we mean that the pNGBs will nevertheless remain light relative to the other composite reso-
nances in the theory.

16Given the theory on 𝑆𝑂(6)/𝑆𝑂(5) ≅ 𝑆𝑈(4)/𝑆𝑝(4) has a UV completion (in the form of an 𝑆𝑝(2𝑁𝑐)
gauge theory with an 𝑆𝑈(4) flavour symmetry), this provides a model for a UV completion of the MCHM, in
the form of an 𝑆𝑝(2𝑁𝑐) gauge theory with an approximate 𝑆𝑈(4) flavour symmetry.

17To see how this explicit breaking might be achieved at the level of the lagrangian, we refer the reader to
Ref. [123].
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Consider an arbitrary point 𝑥𝑖 away from the origin. The stabilizer of that point under
the original action of 𝐺 = 𝑆𝑂(6) on 𝑀 is again an 𝑆𝑂(5) subgroup of 𝐺, that is conjugate
to 𝐺′; call this subgroup 𝐻𝑥. The action of the exact symmetry 𝐺′ = 𝑆𝑂(5) at that point
𝑥𝑖 is not trivial, so long as 𝐻𝑥 ≠ 𝐺′; but there is nevertheless a stabilizer of this 𝐺′ action
given by the intersection of 𝐺′ with 𝐻𝑥. This intersection is an 𝑆𝑂(4). So the action of
𝐺′ = 𝑆𝑂(5) traces out orbits which are, by the orbit-stabilizer theorem, isomorphic to

𝐺′/(𝐺′ ∩ 𝐻𝑥) =
{

𝑆𝑂(5)/𝑆𝑂(4) ≅ 𝑆4, 𝑥𝑖 ∉ {0, 0̄},
𝑆𝑂(5)/𝑆𝑂(5) ≅ {0}, 𝑥𝑖 ∈ {0, 0̄},}

(3.25)

where 0̄ denotes the antipodal point on 𝑆5 to the origin 0 (both the origin and its antipode are
stabilized by the same subgroup, equal to 𝐺′; in this sense, the 𝐺′ action picks out a special
pair of points {0, 0̄}). Note that, because the 𝐺′ action on 𝑀 is not transitive, there need not
be only one orbit; in this case, the origin and its antipode are special points, for which the
orbit trivially contains only the point itself. Because the theory is 𝐺′-invariant, the potential
should be constant on each 𝑆𝑂(5)/𝑆𝑂(4) orbit through any given non-zero point.

Continuing, if the minimum of the potential is at the origin or its antipode (which are
special points with respect to the 𝐺′ action), we find that there are no massless degrees of
freedom (unless the potential equals zero, which just means there is no explicit breaking).
But for a minimum at any point which is not the origin, we know from (3.25) that there is a
whole four-manifold of degenerate vacua with constant ∑5

𝑖=1 𝑥2
𝑖 = 𝑎2 ≠ 0. Thus, there are

precisely four Goldstones everywhere (except at the pair of special points), and one massive
mode.

Integrating out the massive mode just corresponds (at least at leading order) to restricting
to the level set of the minimum of the potential. For the minimum being at the origin, that
level set is a point, while for a minimum away from the origin that level set is a 4-sphere, on
which the four light degrees of freedom live. Given this 𝑆4 has an action of 𝐺′ = 𝑆𝑂(5)
(the non-linearly realised global symmetry) with stabilizer 𝑆𝑂(4) = 𝐺′ ∩ 𝐻𝑥 (the subgroup
that is linearly realised), this theory may be identified with the MCHM.

Looking at it in this way shows that a more convenient set of coordinates is as follows.
Let 𝑟 = √∑5

𝑖=1 𝑥2
𝑖 be a radial coordinate measuring the distance from the origin, while

𝜃𝑗 , for 𝑗 = 1, … , 4, are four angular coordinates on the level set 𝑆4. In these coordinates,
we have that the potential 𝑉 (𝑟, 𝜃𝑗) = 𝑉 (𝑟). We identify the massive radial mode 𝑟, which
is integrated out, with the 𝜂, and the massless angular coordinates 𝜃𝑗 with the Composite
Higgs.
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3.7.2 From the WZ term to the AB term
Now we consider the WZ term. As set out in §3.2, the WZ term in the 𝑆𝑂(6)/𝑆𝑂(5) the-
ory is proportional to the volume form on 𝑀 = 𝑆5, integrated over a 5-disk 𝐵 bounding
the 4-cycle 𝑧 = 𝜕𝐵 which defines the field configuration, which may locally be written
𝑆𝑊 𝑍[𝜕𝐵] ∝

´
𝐵 𝑑𝑟 𝑑4𝜃 in our new coordinates. On such a local patch, the closed 5-form

we have integrated is of course exact, and so locally we can re-write 𝑆𝑊 𝑍[𝜕𝐵] ∝
´

𝜕𝐵 𝑟 𝑑4𝜃
(more correctly, we can write the WZ term in this way for any cycle 𝑧 on which the 4-form
𝑟 𝑑4𝜃 is well-defined). But what happens when we integrate out the massive degrees of free-
dom? If the minimum is at the origin or its antipode, then all degrees of freedom are massive,
and integrated out, so we are left with no dynamics at all, which is clearly uninteresting. So
we assume the minimum in 𝑉 (𝑟) is at some value 𝑟 = 𝑎 away from the origin, in which case
integrating out the radial mode has the effect of constraining the field configuration to the
level set (which is an 𝑆4) through 𝑟 = 𝑎.

This can be achieved by taking the original 4-cycle 𝑧 on 𝑆5, and pushing it forward onto
this level set (under the obvious map 𝜋 ∶ 𝑆5 → 𝑆4 ∶ (𝑟, 𝜃𝑗) ↦ (𝑎, 𝜃𝑗)).18 The 4-form 𝑟 𝑑4𝜃
is well-defined on this level set, and so the WZ term can be written 𝑆𝑊 𝑍[𝜋∗𝑧] ∝ 𝑎

´
𝜋∗

𝑑4𝜃,
which is nothing but the AB term in the MCHM defined on the 𝑆4 which minimizes 𝑉 .

We shall conclude this Section with a few words on how this theory makes contact with
the SM electroweak sector, from the geometric perspective we have developed here. At
this level of description, we have a theory which is fully 𝐺′ = 𝑆𝑂(5) invariant, with light
degrees of freedom living on 𝑆𝑂(5)/𝑆𝑂(4). But to get to the SM, we need to go further.
In particular, we need to gauge a subgroup corresponding to the electroweak interactions,
which we’ll take to be 𝐾 = 𝑆𝑂(4) for ease of description. 𝐾 must be a subgroup of 𝐺′,
because the interactions that give 𝑟 a mass should not break the SM gauge symmetry. The
gauging also breaks the 𝑆𝑂(6) symmetry and leads to another potential on 𝑀 = 𝑆5. What
do we know about this potential? It has level sets which are subsets of the level sets of
the original potential (because 𝐾 ⊂ 𝐺′ and because the level sets are just the orbits of
𝐾), but they are now only orbits of 𝑆𝑂(4), generically19 with a stabiliser 𝑆𝑂(3) (viz. the
intersection of two 𝑆𝑂(4) subgroups, 𝐾 with 𝐺′ ∩ 𝐻𝑥). In other words, the true minima
of the theory generically have only a non-linearly realised symmetry 𝐾 ≅ 𝑆𝑂(4), of which
a subgroup 𝑆𝑂(3) is preserved in vacuo. So, the true vacuum picture is that there are 3
Goldstone bosons (the longitudinal modes of 𝑊 ± and 𝑍) with an unbroken gauged 𝑆𝑂(3)

18In other words, we compose the original sigma model map into 𝑆5 with the projection 𝜋 onto the level set
of 𝑉 (𝑎) which minimizes the potential on 𝑆5.

19Of course, a non-generic miracle is possible: there may be points at which 𝐺′ ∩ 𝐻𝑥 coincides with 𝐾 .
The level sets here are points. Again, there are no light degrees of freedom about such singular points, and so
they are not interesting for us.
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symmetry, corresponding to custodial symmetry. This is precisely the spectrum that we
phenomenologically desire.

Let us recap what we have achieved in this Chapter. We have introduced a systematic
approach for the identification of topological terms that may appear in the action for a Com-
posite Higgs model, by following the general classification put forward in Chapter 2. We
have applied this classification to a variety of well-studied Composite Higgs models based
on different cosets 𝐺/𝐻 , and found topological terms appearing in every one. To sum-
marize, we find AB terms for cosets 𝑆𝑂(5)/𝑆𝑂(4), 𝑆𝑂(5) × 𝑈(1)/𝑆𝑂(4), 𝑆𝑂(6)/𝑆𝑂(4),
and 𝑆𝑂(6)/𝑆𝑂(4) × 𝑆𝑂(2). In the last example, the space of AB terms is found to be 2-
dimensional. We findWZ terms for cosets 𝑆𝑂(6)/𝑆𝑂(5), 𝑆𝑂(6)/𝑆𝑂(4), and 𝑆𝑈(5)/𝑆𝑂(5).
In the case of 𝑆𝑂(6)/𝑆𝑂(4), the space of WZ terms is isomorphic to ℤ × ℝ4.

For any given coset, this classification of topological terms is of course exhaustive only
to the extent that the assumptions underlying the classification from Chapter 2 are good ones.
If we choose to extend our analysis beyond topological terms that can be constructed out of
locally-defined differential forms, there may be yet further topological terms. One possibility
for generating such ‘exotic’ topological terms is to impose more geometric structure on our
worldvolume beyond just an orientation, for example a spin structure (or variant thereof),
with which one may be able to construct further topological terms [104]. We shall say more
regarding this matter when we discuss future work in Chapter 8.

In the next Chapter we turn to a rather different application of the formal results of Chap-
ter 2, to the problem of a quantum point particle moving on a smooth manifold 𝑀 in the
presence of a background magnetic field.





Chapter 4

Quantum mechanics in magnetic
backgrounds

Consider a point particlemoving on a smoothmanifold𝑀 , whoseworldline is thus described
by a map 𝜙 ∶ 𝑆1 → 𝑀 , in the presence of some background magnetic field. Suppose
furthermore that the dynamics is invariant under some Lie group 𝐺 of global symmetries
acting smoothly on𝑀 . Aswe shall see, coupling to amagnetic field corresponds to including
a topological term in the action phase. Moreover, that topological term will be written in
terms of (possibly locally-defined) differential forms. Thus, we may use what we learnt in
Chapter 2 about AB and WZ terms (and their classification), specialised to the case where
𝑝 = 1, to attack this problem.

While the problem studied in this Chapter is thus in one sense a specialisation (to 𝑝 = 1)
of the setup considered in Chapter 2, in a different sense it will be a generalisation. Specif-
ically, we shall not require that the Lie group 𝐺 acts transitively on 𝑀 , meaning 𝑀 is not
necessarily a homogeneous space.1 We will, however, consider only examples where 𝐺 and
𝑀 are connected.

The study of the quantummechanics of such a system is complicated by two well-known
facts, which we may couch in the now-familiar language (and notation) of Chapter 2. The
first complication is that the 1-forms {𝐴𝛼} that we integrate to define the topological term
might only be locally-defined (where recall each 𝐴𝛼 is defined on an open set 𝑈𝛼 in an open
cover of 𝑀). In the present case in which 𝑝 = 1, the 1-forms {𝐴𝛼} are identified with
the familiar magnetic vector potential for the background field, with the (globally-defined)

1Recall that in Chapter 2, the consideration of only transitive group actions on 𝑀 , i.e. the restriction to
homogeneous spaces 𝑀 = 𝐺/𝐻 , was well-motivated by the fact that, for 𝑝 ≥ 3, such a setup describes the
dynamics of Goldstone bosons that result from only a subgroup 𝐻 of a global symmetry 𝐺 being realised in
vacuo.
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closed 2-form 𝜔 = 𝑑𝐴𝛼 being identified as the background field strength tensor. The most
famous example of this is probably one we discussed in §2.1, due to Dirac [124],2 in which
an electrically-charged particle moves in the presence of a magnetic monopole. We will
see in this Chapter that there exists an example that is arguably even simpler (and certainly
more prevalent in everyday life!), given by the motion of a rigid body which happens to be
a fermion.3

The second complication is that the corresponding lagrangian (or lagrangians) will not be
invariant under the action of 𝐺. Rather, as was proven in §2.4.2, the shift in the lagrangian(s)
for a general WZ term is given by 𝜄𝑋𝜔, which is a globally-defined, closed 𝑝-form (which
must be moreover exact if the action is to be invariant under the 𝐺-action). In other words,
the lagrangian shifts by a total derivative. Perhaps the simplest example, made famous by
Landau [127], is given by the motion of a particle in a plane in the presence of a uniform
magnetic field, where there is no choice of gauge such that the lagrangian is invariant under
translations in more than one direction.

At the classical level, neither of these complications causes any problems, since they
disappear once we pass from the lagrangian to the classical equations of motion. Indeed, the
equations of motion are both globally valid and invariant (or rather covariant) under 𝐺. Thus,
we can attempt to solve for the classical dynamics using our usual arsenal of techniques.
But this is not the case at the quantum level. There, our usual technique is to convert the
hamiltonian into an operator on 𝐿2(𝑀) and to exploit the conserved charges corresponding
to 𝐺 to solve, at least partially, the resulting Schrödinger equation. Here though, we do not
have a unique hamiltonian, but rather several; even if we did have a unique hamiltonian, we
would, in general, find that the naïve operators corresponding to the conserved charges of 𝐺
do not commute with it, because of the non-invariance of the lagrangian.4

These two complications are apparently unrelated, at least as we have presented them.
But they are related in the sense that neither could occur in the first place, were it not for a
basic tenet of quantum mechanics, namely that physical states are represented by rays in a
Hilbert space, reflecting the fact that the overall phase of a vector in a Hilbert space is not

2We remark that the problemwas not actually solved byDirac, but rather by Tamm [125]. See also Refs. [90,
126].

3This latter example is interesting for another reason, which is that it shows that our set-up includes systems
in which there is no apparent magnetic field, but rather a vector potential is being used to encode a global
topological effect – spin, in the case at hand – in a manifestly local way. Thus, we will be able to write a local
term in the lagrangian that accounts for the extra factor of −1 that the state of the fermion acquires when it
undergoes a complete rotation, rather than arbitrarily assigning it by hand, as is usually done. This is desirable,
given our prejudice that physics should be local.

4The last problem is often remedied by redefining the conserved charges, but then one finds that the new
charges do not form a Lie algebra, unless we add further charges. As we shall see, our formalism subsumes
this approach in a natural way.
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physical. This is what makes it possible, ultimately, to resolve the apparent paradox that,
at a point in 𝑀 where two patches overlap, we have multiple, distinct lagrangians, but each
of them gives rise to the same physics. Similarly, it allows us to absorb extra phases that
arise from boundary contributions in the path integral under a 𝐺 transformation, when the
lagrangian is not strictly invariant.

In this Chapter we show that, by exploiting this basic property, one can formulate and
solve (or at least, attempt to solve) such quantum systems in a unified way, using methods
from harmonic analysis. Thus, we will in some sense delve further into our study of topo-
logical effects than we did in the previous two Chapters (where we were for the most part
restricted to classifying topological terms and writing them down); here, we investigate the
consequences of topological terms for locality and the symmetries of the theory, and ul-
timately their effect on the spectrum. An important new character enters our story in this
Chapter, namely representation theory (or analysis). The observations we make here shall
exhibit aspects of the interplay between representation theory and the topology of the target
space.

In a nutshell, the idea behind our formulation of the problem will be as follows. A mag-
netic field defines a connection on a 𝑈(1)-principal bundle 𝑃 over 𝑀 . From 𝐺 (which acts
on 𝑀), we can construct a central extension �̃� of 𝐺 by 𝑈(1) (which depends on the connec-
tion and on 𝑃 , and which acts on 𝑃 ). We reformulate the original dynamical system on 𝑀 in
terms of an equivalent system (with a redundant degree of freedom) of a particle moving on
𝑃 . This reformulation allows us to circumvent both of the complications discussed above:
not only do we have a unique, globally-valid, local lagrangian on 𝑃 , but also the Hilbert
space carries a bona fide representation of �̃� (in contrast to the original theory, in which the
Hilbert space carries only a projective representation of 𝐺). As a result, we can attempt a
solution using harmonic analysis, with respect to the group �̃�.

When viewed in themore general context provided by Chapter 2, the constructions of this
Chapter exploit the existence of twowell-studiedmathematical structures associated with the
topological terms that are peculiar to the case 𝑝 = 1. To wit, it is somewhat accidental that
a 𝐺-invariant topological term on 𝑀 in 𝑝 = 1 (or more broadly, a differential character in
degree 𝑘 = 2 - see Chapter 5) defines, firstly, a 𝑈(1)-principal bundle over 𝑀 with connec-
tion, and, secondly, a 𝑈(1)-central extension of the group 𝐺. While there is a generalisation
of the former structure to the case of higher 𝑝 (in the form of a Hitchin gerbe for 𝑝 = 2, or
‘higher gerbes’ in general), the author is not aware of a corresponding generalisation of Lie
group central extensions that can be constructed from closed (𝑝 + 1)-cocycles.

It should be remarked that neither the formulation nor the method of solution that we
describe here can really be considered new. The formulation via central extensions has ap-
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peared in a number of places in the literature, mainly with applications to symplectic geom-
etry and geometric quantisation (see e.g., Refs. [128, 129]) and the use of harmonic analysis
to solve quantum systems in the absence of magnetic fields (and hence without the compli-
cations described above) was described in Ref. [54]. What is new, we hope, is the synthesis
of these ideas, which leads to a uniform approach to solving quantum-mechanical systems,
including cases with magnetic fields or other non-trivial topological terms.

The methods are most powerful in cases where 𝐺 acts transitively on 𝑀 , which corre-
sponds precisely to the 𝑝 = 1 special case of the non-linear sigma models on homogeneous
spaces 𝐺/𝐻 , considered in Chapter 2. The constraint that 𝐺 acts transitively is a strong one;
it implies, in particular, that any potential term in the lagrangian must be a constant. We thus
have a ‘free’ particle, in the sense that, in the absence of the magnetic field (and ignoring pos-
sible higher-derivative terms), the classical trajectories are given by the geodesics of some
𝐺-invariant metric. Despite the strong restrictions, one finds that a large class of interesting
quantum mechanical models fall into this class and can be solved in this way. Examples
discussed in the sequel include the systems considered by Landau (which, in contrast with
Landau, we solve by keeping a transitive group of symmetries - either translations or the
full Euclidean group - manifest) and Dirac (where we constrain the particle to move on the
surface of a sphere, so that the rotation group acts transitively). In cases where 𝐺 does not
act transitively, the methods typically provide only a partial solution, in that they allow us to
reduce the Schrödinger equation to one on the space of orbits of 𝐺. But even here we find
interesting examples where a complete solution is possible.

We start this Chapter by illustrating the ideas with elementary (but incomplete) discus-
sions of the examples of planar motion in a uniformmagnetic field (§4.1.1) and of rigid body
rotation (§4.1.2). These examples are particularly transparent because, for the former, the
bundle is (topologically) trivial, so all the effects come from the magnetic field, while for the
latter, the magnetic field vanishes (though the vector potential does not) so all effects arise
from the topology of the bundle. After this, in §4.2, we give full mathematical details of the
method. We then complete the discussion of rigid body rotation (§4.3.1) and give a series
of other examples which illustrate the method, which are summarised in Table 4.1.

This Chapter is based on joint work carried out with Ben Gripaios and Joseph Tooby-
Smith, as published in Ref. [3].
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4.1 Prototypes

4.1.1 Planar motion in a uniform magnetic field
Our first example is one made famous by Landau, in which a particle moves in the 𝑥𝑦-plane
with a uniform magnetic field 𝐵 ∈ ℝ in the 𝑧-direction.5 In this example, the subtleties
are entirely due to the presence of the magnetic field. In particular, no matter what gauge is
chosen, the usual lagrangian shifts by a non-vanishing total derivative under the action of the
symmetry group, which for the purposes of the present discussion we take to be translations
in ℝ2. As a result, the usual quantum hamiltonian does not commute with the momenta
and one cannot solve via a Fourier transform (which corresponds to harmonic analysis with
respect to the group ℝ2).

To circumvent this we write the action6 as

𝑆 =
ˆ

𝑑𝑡 (
1
2�̇�2 + 1

2 ̇𝑦2 − ̇𝑠 − 𝐵𝑦�̇�) , (4.1)

with an additional degree of freedom 𝑠 ∈ ℝ, with 𝑠 ∼ 𝑠 + 2𝜋, which shall be redundant.
The advantage of doing so is that, unlike the lagrangian without 𝑠, which shifts by a total
derivative proportional to 𝐵�̇� under a translation in 𝑦, the lagrangian in (4.1) is genuinely
invariant under a central extension by 𝑈(1) of the translation group.

This central extension is the Heisenberg group, Hb, (re-)defined here as the equivalence
classes of (𝑥, 𝑦, 𝑠) ∈ ℝ3 under the equivalence relation 𝑠 ∼ 𝑠 + 2𝜋,7 with multiplication law

[(𝑥′, 𝑦′, 𝑠′)] ⋅ [(𝑥, 𝑦, 𝑠)] = [(𝑥 + 𝑥′, 𝑦 + 𝑦′, 𝑠 + 𝑠′ − 𝐵𝑦′𝑥)]. (4.2)

Notice that the group ℝ2 of translations appears not as a subgroup of Hb, but rather as the
quotient group of Hb with respect to the central 𝑈(1) subgroup {[(0, 0, 𝑠)]}. Thus we have
a homomorphism Hb → ℝ2, given explicitly by [(𝑥, 𝑦, 𝑠)] ↦ (𝑥, 𝑦), whose kernel is the

5According to the classification presented in Chapter 2, this is the unique topological term that one can write
down in this theory, for which 𝑝 = 1 and 𝑀 = 𝐺 = ℝ2. There are noAB terms because 𝐻1(ℝ2, 𝑈(1)) vanishes.
WZ terms correspond to closed, integral 2-forms on ℝ2 satisfying the Manton condition for the generators of
translations; since 𝐻1(ℝ2) = 𝐻2(ℝ2) = 0, this reduces to the space of translation invariant, closed 2-forms.
The only such form is proportional to the volume form on ℝ2, in other words 𝜔 = 𝐵𝑑𝑥 ∧ 𝑑𝑦, which defines
a uniform magnetic field ‘perpendicular to the plane’, for which there is a globally-defined lagrangian e.g.
𝐴 = −𝐵𝑦𝑑𝑥. When pulled back to the worldline this gives the topological term as written in (4.1).

6In this Chapter, we shall revert to the usual convention for the normalisation of the action in which ℏ = 1;
in other words, the action phase is here understood as being 𝑒𝑖𝑆 . The reason for changing our conventions at
this point is so that operators can be canonically quantised with the usual normalisation, viz. 𝑝𝑥 → −𝑖ℏ𝜕𝑥, &c.

7Thus Hb is ℝ2 × 𝑆1 as a manifold.
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central 𝑈(1).8 Notice that our definition of the group multiplication law depends on 𝐵 ∈ ℝ,
reflecting the fact that even though the groups with distinct values of 𝐵 are isomorphic as
groups, they are not isomorphic as central extensions.9

Given (4.1), the momentum 𝑝𝑠 conjugate to 𝑠 satisfies the constraint 𝑝𝑠 + 1 = 0. We take
care of this in the usual way, by forming the total hamiltonian (see e.g. Ref. [130])

𝐻 = 1
2 (𝑝𝑥 + 𝐵𝑦)2 + 1

2𝑝2
𝑦 + 𝑣(𝑡) (𝑝𝑠 + 1) , (4.3)

with 𝑝𝑥 and 𝑝𝑦 being the momenta conjugate to 𝑥 and 𝑦 respectively, and with 𝑣(𝑡) being a
Lagrange multiplier. Upon quantising,10 we obtain the hamiltonian operator

�̂� = 1
2 (−𝑖 𝜕

𝜕𝑥 + 𝐵𝑦)
2

− 1
2

𝜕2

𝜕𝑦2 + 𝑣(𝑡) (−𝑖 𝜕
𝜕𝑠 + 1) , (4.4)

which has a natural action on the space of square integrable functions on the Heisenberg
group, 𝐿2(Hb). The physical Hilbert space ℋ must take account of the constraint (or, equiv-
alently, the redundancy in our description), so we define it to be not 𝐿2(Hb), but rather the
subspace

ℋ = {Ψ(𝑥, 𝑦, 𝑠) ∈ 𝐿2(Hb) |(−𝑖 𝜕
𝜕𝑠 + 1) Ψ(𝑥, 𝑦, 𝑠) = 0} . (4.5)

Note that this subspace of 𝐿2(Hb) is closed under the action of the Heisenberg group and
under the action of �̂� , implying that it is also closed under time evolution.

We then want to solve the time-independent Schrödinger equation (from hereon ‘SE’)
�̂�Ψ = 𝐸Ψ. To solve the SE, we decompose Ψ into unitary irreducible representations
(henceforth ‘unirreps’) of Hb:11

Ψ(𝑥, 𝑦, 𝑠) =
ˆ

𝑑𝑟𝑑𝑡|𝐵|
2𝜋 𝜋𝐵(𝑟, 𝑡; 𝑥, 𝑦, 𝑠)𝑓 (𝑟, 𝑡), (4.6)

where 𝑟, 𝑡 ∈ ℝ are real numbers. Here,

𝜋𝑘(𝑟, 𝑡; 𝑥, 𝑦, 𝑠) = 𝑒𝑖𝑘(𝑥𝑟−𝑠/𝐵)𝛿(𝑟 + 𝑦 − 𝑡), 𝑘/𝐵 ∈ ℤ, (4.7)
8In other words, there exists a short exact sequence of Lie groups and Lie group homomorphisms given by

0 → 𝑈(1) → Hb → ℝ2 → 0, with 𝑈(1) central in Hb.
9The isomorphism classes of sequences 0 → 𝑈(1) → Hb → ℝ2 → 0 with 𝑈(1) central in Hb are in 1-1

correspondence with points in ℝ (in other words, with possible values of 𝐵).
10Wewill define ‘quantisation’ more carefully in the formalism Section. But for now let us follow our noses.
11To say we are ‘decomposing Ψ into unirreps of Hb’ is a slight abuse of terminology; what we mean,

precisely, will be discussed in §4.2.
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which denote the matrix elements of the infinite-dimensional unirreps of Hb, which act on
the vector space 𝐿2(ℝ, 𝑑𝑡).12 The fact that only the unirrep with 𝑘 = 𝐵 appears in the
decomposition (4.6) follows from enforcing the constraint in (4.5), as we show in Appendix
B.13

Substituting the decomposition (4.6) into the SE, and using the constraint to eliminate
the Lagrange multiplier, yields

|𝐵|
2𝜋

ˆ
𝑑𝑟𝑑𝑡 (

1
2 (−𝑖 𝜕

𝜕𝑥 + 𝐵𝑦)
2

− 1
2

𝜕2

𝜕𝑦2 − 𝐸) 𝑓(𝑟, 𝑡)𝑒𝑖(𝐵𝑥𝑟−𝑠)𝛿(𝑟 + 𝑦 − 𝑡) = 0. (4.8)

After some straightforward manipulation, this reduces to

(
1
2𝐵2𝑡2 − 1

2
𝜕2

𝜕𝑡2 − 𝐸) 𝑓(𝑟, 𝑡) = 0. (4.9)

This differential equation, which we recognise as the SE for the simple harmonic oscillator,
has the solutions

𝑓(𝑟, 𝑡) = 𝐻𝑛 (√|𝐵|𝑡) 𝑒−|𝐵|𝑡2/2𝑔(𝑟), 𝐸 = |𝐵|(𝑛 + 1/2), (4.10)

where 𝐻𝑛(𝑥) are the Hermite polynomials and 𝑔(𝑟) is an arbitrary function of 𝑟. The corre-
sponding eigenfunctions are thus

Ψ𝑛(𝑥, 𝑦, 𝑠) = |𝐵|
2𝜋

ˆ
𝑑𝑟𝑑𝑡𝐻𝑛 (√|𝐵|𝑡) 𝑒−|𝐵|𝑡2/2𝑔(𝑟)𝑒𝑖(𝐵𝑥𝑟−𝑠)𝛿(𝑟 + 𝑦 − 𝑡). (4.11)

We can of course eliminate our redundant degree of freedom, by setting 𝑠 = 0 for example,
to obtain corresponding wavefunctions living in 𝐿2(ℝ2) (more precisely, the wavefunction
is described by a section of a Hermitian line bundle). In the above expression 𝑔(𝑟) accounts

12To confirm that this is a representation, it is enough to check that

𝑓(𝑡) ∈ 𝐿2(ℝ, 𝑑𝑡) ↦
ˆ

𝜋𝑘(𝑡, 𝑡′; 𝑥, 𝑦, 𝑠)𝑓 (𝑡′)𝑑𝑡′ ∈ 𝐿2(ℝ, 𝑑𝑡)

and that the group multiplication rule is satisfied. Indeed, we have that
ˆ

𝜋𝑘(𝑟, 𝑞; 𝑥′, 𝑦′, 𝑠′)𝜋𝑘(𝑞, 𝑡; 𝑥, 𝑦, 𝑠)𝑑𝑞 = 𝜋𝑘(𝑟, 𝑡; 𝑥 + 𝑥′, 𝑦 + 𝑦′, 𝑠 + 𝑠′ − 𝐵𝑦′𝑥),

c.f. (4.2).
13Notice that with this decomposition Ψ(𝑥, 𝑦, 𝑠) may not be square integrable (as the matrix elements of 𝜋𝐵

themselves are not). As such, once we have found our ‘solutions’ to the SE with this decomposition we must
check that they are square integrable (or more generally the limit of a Weyl sequence). This subtlety will be
omitted here due to the familiar form our final solutions will take.
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for the degeneracy in the Landau levels. On choosing 𝑔(𝑟) = 𝛿(𝑟 − 𝛼/𝐵) for 𝛼 ∈ ℝ (and
setting 𝑠 = 0) we arrive at familiar solutions to this system, of the form

Ψ𝑛,𝛼(𝑥, 𝑦) = 𝑒𝑖𝛼𝑥𝐻𝑛 (√|𝐵|(𝑦 + 𝛼/𝐵)) 𝑒− |𝐵|
2 (𝑦+𝛼/𝐵)2 . (4.12)

Now let us now recap what we have achieved. Certainly, our result for the spectrum
is not new; nor are our observations regarding the momentum generators. Rather, what is
new is the observation that we can reformulate the problem via a redundant description, in
which a central extension of 𝐺 by 𝑈(1) acts on the configuration space of that redundant
description, in a way that allows us to solve for the spectrum using methods of harmonic
analysis. While this may seem like overkill, it is important to realise that Landau’s original
method of solution [127] only works for this specific system of a particle on ℝ2 in a magnetic
background, and moreover works only in a particular gauge (the ‘Landau gauge’). It is not
at all clear how such an approach could be generalised to other target spaces (or gauges). In
contrast, as we shall soon see in §4.2, using harmonic analysis on a central extension can
be generalised to any group 𝐺 acting on any target space manifold 𝑀 , since it exploits the
underlying group-theoretic structure of the system.

4.1.2 Bosonic versus fermionic rigid bodies
Our second prototypical example illustrates the approach in a case where one cannot form a
globally-defined lagrangian without extending the configuration space by a redundant degree
of freedom. This prototype also provides an example where the relation to magnetic fields
is not immediately apparent.

To wit, we consider the quantum mechanics of a rigid body in three space dimensions,
whose configuration space is 𝑆𝑂(3), with dynamics invariant under the rotation group. Ev-
idently, such a rigid body could be either a boson or a fermion (it could, for example, be
a composite made up of either an even or odd number of electrons and protons). If it is a
fermion, then its wavefunction should acquire a factor of −1 when the body undergoes a
complete rotation about some axis and we expect, on general physical grounds, that we can
represent this effect via a local lagrangian term. To see how it can be done, we first note that
the term should be both 𝑆𝑂(3) invariant and topological. It is thus reasonable to guess that
it can be written in terms of a magnetic field, or more precisely, a connection on some 𝑈(1)-
principal bundle over 𝑆𝑂(3). Confirmation that this is indeed the case comes from the fact
that (up to equivalence), there are just two 𝑈(1)-principal bundles over 𝑆𝑂(3) (to see this,
note that such bundles are classified by the first Chern class, which is a cohomology class in
𝐻2(𝑆𝑂(3), ℤ) ≅ ℤ2). Thus we have the trivial bundle 𝑆𝑂(3) × 𝑈(1) and a non-trivial bun-
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dle, which we may take to be 𝑈(2), the group of 2×2 unitary matrices. Clearly, these are not
only 𝑈(1)-principal bundles, but also they have the structure of central extensions of 𝑆𝑂(3)
by 𝑈(1), which we need for our construction. The trivial bundle admits the zero connection
and describes the boson, while the non-trivial bundle admits a non-zero (but nevertheless
flat) connection, which accounts for the fermionic phase.

The fact that there is a ℤ2-valued topological term for this theory accords with our gen-
eral classification of topological terms from Chapter 2,14 where we would interpret it as an
AB term,15 albeit one of torsion type. The space of AB terms is here given by the group
𝐻1(𝑆𝑂(3), 𝑈(1)), which sits inside the exact sequence

0 → 𝐻1(𝑆𝑂(3), ℝ)
𝐻1(𝑆𝑂(3), ℤ)ℝ

→ 𝐻1(𝑆𝑂(3), 𝑈(1)) → Tor(𝐻1(𝑆𝑂(3), ℤ)) → 0, (4.13)

which follows from the long exact sequence in cohomology, induced by the coefficient se-
quence 0 → ℤ → ℝ → 𝑈(1) → 0. Since the first de Rham cohomology of 𝑆𝑂(3) vanishes,
we thus have that

𝐻1(𝑆𝑂(3), 𝑈(1)) ≅ Tor(𝐻1(𝑆𝑂(3), ℤ)) = ℤ2, (4.14)

as we expected from our preceding discussion of bundles with connection.16 This is the first
example we have seen in this thesis of a torsion term that is captured by our classification of
topological terms.

Before we explain more explicitly how the ℤ2-valued topological term arises, we shall
briefly recall the definitions of two concepts that will be important to the discussion, namely
holonomy and horizontal lift. We shall define these concepts in the context of a general
principal bundle with structure group 𝐺. Thus, given a connection 𝐴 on a principal 𝐺-
bundle 𝑃 over 𝑀 , the horizontal lift of a curve 𝛾(𝑡) in 𝑀 is a curve 𝛾ℎ𝑙(𝑡) in 𝑃 such that 𝛾(𝑡) =
𝜋(𝛾ℎ𝑙(𝑡)), and such that the tangent vector at each point, call it 𝑌𝛾ℎ𝑙(𝑡), satisfies 𝐴(𝑌𝛾ℎ𝑙(𝑡)) = 0,
i.e. is horizontal with respect to the connection. The horizontal lift of a curve is unique, up
to specifying the start point in the fibre above, say, 𝛾(0).

14In general, one would also expect WZ terms in this theory, since there is an ℝ3’s worth of closed, integral
𝑆𝑂(3)-invariant 2-forms on 𝑆𝑂(3) which satisfy the Manton condition; we here suppose the coefficients of
these WZ terms are set to zero, since we are interested in the topological effects associated with the AB term.

15In the language of Chapter 5, AB terms correspond to flat differential characters, which for 𝑝 = 1 corre-
spond to flat 𝑈(1)-bundles with connection.

16The exact sequences used in this argument shall become more familiar in Chapter 5, since they are central
to the theory of differential cohomology, with which we shall recast our classification of topological terms. In
that Chapter, the precise connection between topological terms and 𝑈(1)-principal bundles with connection
shall also be discussed in more detail.
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Using a horizontal lift one can define the holonomy. The holonomy of a loop 𝛾(𝑡) in 𝑀
for 𝑡 ∈ [0, 2𝜋] is defined to be the element 𝑔 ∈ 𝐺 such that

𝛾ℎ𝑙(2𝜋) = 𝑅𝑔𝛾ℎ𝑙(0), (4.15)

where 𝑅𝑔 denotes the right-action of 𝐺 on 𝑃 (which acts freely and transitively on the fibre,
and such that 𝜋 ∘ 𝑅𝑔 = 𝜋 where 𝜋 ∶ 𝑃 → 𝑀 is the usual bundle projection map). From
this definition, it trivially follows that if the horizontal lift of a loop is itself a loop, then the
holonomy vanishes. We can also derive an equivalent (and perhaps more familiar) formula
for the holonomy which involves integrating the connection 𝐴. To wit, let ̃𝛾(𝑡) be a loop in
𝑃 which projects down to 𝛾(𝑡) under 𝜋. For any such loop ̃𝛾(𝑡), the horizontal lift is related
to ̃𝛾(𝑡) by

𝛾ℎ𝑙(𝑡) = 𝑅
(𝑒−𝑖

´ 𝑡
0 ̃𝛾∗𝐴

)
̃𝛾(𝑡). (4.16)

Using (4.15) and (4.16), one finds that the holonomy of 𝛾(𝑡) (with respect to the connection
𝐴) is equal to 𝑒−𝑖

´ 2𝜋
0 ̃𝛾∗𝐴.

With these definitions, we are ready to resume our discussion of a particle on 𝑆𝑂(3). We
suggested above that choosing the non-trivial ℤ2-valued coefficient for the topological term
corresponds to defining a 𝑈(1)-principal bundle over 𝑆𝑂(3) that is isomorphic as a manifold
to 𝑈(2). To see that 𝑈(2) is indeed such a bundle, consider that an element 𝑈 ∈ 𝑈(2) may
be mapped to an element 𝑂 ∈ 𝑆𝑂(3) by projecting out its (𝑈(1)-valued) overall phase. We
parametrise a matrix 𝑈 ∈ 𝑈(2) by

𝑈 = 𝑒𝑖𝜒
(

𝑒𝑖(𝜓+𝜙)/2 cos(𝜃/2) 𝑒−𝑖(𝜓−𝜙)/2 sin(𝜃/2)
−𝑒𝑖(𝜓−𝜙)/2 sin(𝜃/2) 𝑒−𝑖(𝜓+𝜙)/2 cos(𝜃/2))

, (4.17)

where 𝜃 ∈ [0, 𝜋], 𝜙 ∈ [0, 2𝜋), 𝜓 ∈ [0, 4𝜋) and 𝜒 ∈ [0, 2𝜋) with the equivalence relation
(𝜃, 𝜙, 𝜓, 𝜒) ∼ (𝜃, 𝜙, 𝜓 + 2𝜋, 𝜒 + 𝜋). Now, consider the curve 𝛾′(𝑡) in 𝑈(2) defined by

𝛾′(𝑡) =
(

𝑒𝑖𝑡 0
0 𝑒−𝑖𝑡)

, 𝑡 ∈ [0, 𝜋], (4.18)

and define the curve 𝛾(𝑡) to be the projection of 𝛾′(𝑡) to 𝑆𝑂(3), which one might think of
as the particle worldline in the original configuration space. The curve 𝛾′(𝑡) is a horizontal
lift of 𝛾(𝑡) with respect to the connection, which in our coordinates can be represented by
𝐴 = 𝑑𝜒 . For our purposes here, this simply means that the tangent vector 𝑋𝛾′ to the curve
𝛾′(𝑡) satisfies 𝐴(𝑋𝛾′) = 0, i.e. it has no component in the 𝜒 direction.
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Notice that in 𝑈(2) we have 𝛾′(0) = 𝐼 and 𝛾′(𝜋) = −𝐼 , and that these two points, while
distinct in 𝑈(2), both project to the identity in 𝑆𝑂(3). The relative phase of 𝜋 between
𝛾′(0) and 𝛾′(𝜋) is the holonomy of 𝛾(𝑡). This implies that the rigid body is in this case a
fermion, because the loop 𝛾(𝑡) in 𝑆𝑂(3) corresponds to a 2𝜋-rotation about the 𝑧-axis in ℝ3.
If we had instead equipped the rigid body with the trivial choice of bundle 𝑆𝑂(3) × 𝑈(1),
instead of 𝑈(2), then the phase returns to zero upon traversing any closed loop in 𝑆𝑂(3),
thus corresponding to a boson.

This fermionic versus bosonic nature is furthermore manifest in the differing represen-
tation theory of the Lie groups 𝑈(2) and 𝑆𝑂(3) × 𝑈(1). This shall be important when we
solve for the spectrum of this quantum mechanical system in §4.3.1. While the unirreps of
𝑆𝑂(3) × 𝑈(1) are all odd-dimensional (as we would expect for the integral angular momen-
tum eigenstates of a bosonic rigid body), 𝑈(2) also contains unirreps of even dimension (for
example, the defining 2-d representation), leading to the possibility of eigenstates with half-
integral angular momentum, which is exactly what we expect for a fermionic rigid body, via
the spin-statistics theorem.

For our purposes, it will be useful to consider a different path ̃𝛾(𝑡) in 𝑈(2) that also
projects down to 𝛾 in 𝑆𝑂(3), defined by

̃𝛾(𝑡) =
(

𝑒2𝑖𝑡 0
0 1)

, 𝑡 ∈ [0, 𝜋]. (4.19)

While this path ̃𝛾 is not a horizontal lift of the worldline 𝛾 , it nonetheless still projects down
to 𝛾 , but is now a closed loop in 𝑈(2) with the property that the exponential of the integral
over ̃𝛾 of the connection 𝐴 = 𝑑𝜒 is equal to the holonomy, viz. 𝑒−𝑖

´
̃𝛾 𝐴 = 𝑒−𝑖

´ 𝜋
0 𝑑𝑡 = −1. This

means that we can represent the holonomy (which is the contribution to the action phase from
the topological term) in terms of a local action, namely the integral of the connection over
an appropriately chosen loop ̃𝛾 . Given the existence of the horizontal lift, the fact that 𝑈(1)
is connected means such a loop always exists. As we might expect from the fact that there
is a redundancy in our description, the choice of loop is, however, not unique. Nevertheless,
the integral is of course independent of this choice.

The upshot is that this topological phase, which results in fermionic statistics of the rigid
body, can be obtained from the integral of a lagrangian (the connection) on the principal
bundle, here 𝑈(2), which is both globally-defined and manifestly local. Due to the topo-
logical twisting of the bundle, there is no corresponding globally-defined lagrangian on the
original configuration space, here 𝑆𝑂(3).

In this Section we have discussed two quantum mechanical prototypes, which are at first
sight very different from a physical perspective. What both examples have in common is
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the possibility of a topological term in the action phase. In our first example of quantum
mechanics on the plane (§4.1.1), this topological term corresponded to the familiar coupling
of our particle to a magnetic field transverse to the plane of motion. We saw that, in order to
identify a symmetry group that commutes with the hamiltonian, it was necessary to pass to an
equivalent description on an extended space, with that symmetry group being the Heisenberg
group. We then saw how one could obtain the Landau level spectrum by using harmonic
analysis on the Heisenberg group, a method that works in any gauge. In contrast, in our
second example of a rigid body (in this Subsection), the topological term corresponded to a
vanishing magnetic field, but we nonetheless saw that the term can have interesting effects,
in this case leading to either fermionic or bosonic character of the rigid body.

Mathematically, both examples admit a common description as AB or WZ terms of the
kind classified in Chapter 2. When specialised to 𝑝 = 1 (i.e. to quantum mechanics), the
topological term in the action phase is nothing but the holonomy of a connection on a 𝑈(1)-
principal bundle 𝑃 over the configuration space 𝑀 . Such a topological term may not corre-
spond to any globally-defined lagrangian on 𝑀 (as in §4.1.2), or may not be invariant under
the action of the group 𝐺 which acts on 𝑀 (as in §4.1.1); or, indeed, both (interconnected)
issues may arise. Having demonstrated in our two prototypes that these problems can be
remedied by passing to an equivalent description on an extended space (namely, the princi-
pal bundle 𝑃 ) with an action by a central extension of 𝐺, we are now ready to explain the
general formalism.

4.2 Geometry and analysis for the general case
We shall consider quantum mechanics of a point particle whose configuration space is a
smooth, connected manifold 𝑀 . This can be described by an action whose degrees of free-
dom are maps 𝜙 from the 1-dimensional worldline, Σ, to the target space 𝑀 , viz. 𝜙 ∶ Σ →
𝑀 . We consider the smooth action 𝛼 ∶ 𝐺 × 𝑀 → 𝑀 of a connected Lie group 𝐺 on
𝑀 , which shall define the (global) symmetries of the system. We are free to consider only
worldlines which are closed, without loss of generality.

Quantum mechanics in magnetic backgrounds
We will now define the dynamics of the particle on 𝑀 by specifying a 𝐺-invariant action
phase, 𝑒𝑖𝑆[𝜙], defined on all closed worldlines, or equivalently on all piecewise-smooth loops
in 𝑀 .
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The action consists of two pieces. The first piece is the kinetic term, constructed out of a
𝐺-invariant metric on 𝑀 .17 The second piece in the action couples the (electrically charged)
particle to a background magnetic field. This is a topological term in the action phase, equal
to the holonomy of a connection 𝐴 (whose curvature we shall denote by the closed, integral
2-form 𝜔) on a 𝑈(1)-principal bundle 𝑃 over 𝑀 , evaluated over the loop 𝜙. We know from
§2.4.2 that for the topological term to be invariant under the action 𝛼 of the (connected)
Lie group 𝐺, the Manton condition must be satisfied. In this context, the Manton condition
requires that the contraction of each vector field 𝑋 generating 𝛼 with the curvature 2-form
𝜔 is an exact 1-form. That is, we require

𝜄𝑋𝜔 = 𝑑𝑓𝑋 ∀𝑋 ∈ 𝔤, (4.20)

where each 𝑓𝑋 is a globally-defined function on 𝑀 .18

It will be of use later, when we end up constructing an equivalent action on 𝑃 , to specify
a local trivialisation of 𝑃 over a suitable set of coordinate charts {𝑈𝛼} on 𝑀 . We let 𝑠𝛼 ∈
[0, 2𝜋) be the 𝑈(1)-phase in this local trivialisation and define the transition functions 𝑡𝛼𝛽 =
𝑒𝑖(𝑠𝛼−𝑠𝛽 ). Technically speaking, we need two coordinate charts on 𝑃 , denote them 𝑉𝛼,1 (𝑠𝛼 ≠
𝜋) and 𝑉𝛼,2 (𝑠𝛼 ≠ 0), for each 𝑈𝛼, to cover the 𝑆1 fibre. In what follows, we will often
gloss over this technicality; from hereon, 𝑠𝛼 should be assumed to be written locally in one
of these coordinate charts,19 which we shall denote collectively by 𝑉𝛼 to avoid drowning in
a sea of indices. Following this ethos, we will also tend to drop the 𝛼 subscript on 𝑠𝛼 when
we turn to solving the examples in §4.3.

Our objective is to solve the SE corresponding to this 𝐺-invariant quantum mechanics,
which we shall ultimately achieve by passing to a central extension of 𝐺 by 𝑈(1), and using
harmonic analysis on that central extension.

To motivate our method, we shall first review how harmonic analysis can be used to
solve the corresponding (time-independent) SE in the absence of the magnetic background,
by exploiting the group-theoretic structure of the system [54]. Solving the SE amounts to
finding the spectrum of an appropriate hamiltonian operator �̂� , which in this case can be
quantised as the Laplace-Beltrami operator corresponding to the choice of𝐺-invariant metric
on 𝑀 , on an appropriate Hilbert space. In the absence of a magnetic field, the Hilbert space

17More generally the action may contain a potential term (if 𝐺 acts non-transitively on 𝑀), which adds no
further complication to our discussion. There may also be higher-derivative terms, but we will assume for
simplicity that they are absent.

18In the quantum mechanical context (𝑝 = 1), the Manton condition is in analogy with the moment map
formula for a group action to be hamiltonian with respect to a given symplectic structure. The difference here,
mathematically, is that (unlike a symplectic form) the field strength 𝜔 need not be a non-degenerate 2-form.

19For example, using a coordinate 𝜁1 = sin 𝑠𝛼
1+cos 𝑠𝛼

for a point in 𝑉𝛼,1, and 𝜁2 = sin 𝑠𝛼
1−cos 𝑠𝛼

for a point in 𝑉𝛼,2.
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can be taken to be 𝐿2(𝑀). We can endow this Hilbert space with a highly reducible, unitary
representation of 𝐺, namely the left-regular representation defined by

𝜌(𝑔)Ψ(𝑚) ∶= Ψ(𝛼𝑔−1𝑚) for 𝑚 ∈ 𝑀 , 𝑔 ∈ 𝐺, and Ψ ∈ 𝐿2(𝑀). (4.21)

The action of 𝜌 allows us to decompose the vector space 𝐿2(𝑀) into a direct sum (or, more
generally, a direct integral) of vector spaces 𝑉 𝜆,𝑡, such that the restriction of 𝜌 to each 𝑉 𝜆,𝑡

yields an unirrep of 𝐺, which we label by its equivalence class 𝜆 ∈ Λ. Each unirrep may,
of course, appear more than once in the decomposition of 𝐿2(𝑀) and so we index these by
𝑡 ∈ 𝑇 𝜆. We will fix a basis for each vector space 𝑉 𝜆,𝑡, which we denote by 𝑒𝜆,𝑡

𝑟 , where 𝑟 ∈ 𝑅𝜆

indexes the (possibly infinite-dimensional) basis, which does not depend on 𝑡.
In our examples we often specify the operator in the unirrep 𝜆 by its form in the chosen

basis, which we denote 𝜋𝜆(𝑠, 𝑞), where 𝑠 and 𝑞 index the basis. In many cases, as in §4.1.1,
it will transpire that we can set 𝑒𝜆,𝑡

𝑟 = 𝜋𝜆(𝑟, 𝑡). In other instances were this is not the case,
one can nonetheless infer a suitable form for the 𝑒𝜆,𝑡

𝑟 from 𝜋𝜆(𝑠, 𝑞).
It is then a consequence of Schur’s lemma20 that if

�̂�𝜌(𝑔)𝑓(𝑚) = 𝜌(𝑔)�̂�𝑓(𝑚), (4.22)

then the operator �̂� will be diagonal in both 𝜆 and 𝑟, and can only mix 𝑒𝜆,𝑡
𝑟 in the index 𝑡 and

not 𝑟 or 𝜆, i.e. it only mixes between equivalent unirreps. In most cases this simplifies the
SE by reducing the number of different types of partial derivatives present, often resulting
in a family of ODEs [54].

An equivalent action with manifest symmetry and locality
Interestingly, coupling our particle on 𝑀 to a magnetic background, in the manner just de-
scribed, may prevent one from constructing a local hamiltonian that satisfies (4.22). As
elucidated by our pair of prototypes in §4.1, there are two obstructions to this method.

Firstly, as demonstrated by our prototypical example (§4.1.2), it may not be possible
to form a globally-valid lagrangian on 𝑀 . Secondly, as demonstrated by our prototypical
example (§4.1.1), even when the construction of a globally-valid lagrangian is possible (i.e.
when 𝜔, the magnetic field strength, is the exterior derivative of a globally-defined 1-form),
the lagrangian may vary by a total derivative under the action of 𝐺. This means that (4.22)
will fail to hold, and the hamiltonian will not act only between equivalent unirreps of 𝐺.

20Schur’s lemma states that for a complex irreducible finite-dimensional representation 𝜌 acting on a vector
space 𝑉 , a linear map 𝜙 such that 𝜙 ∘ 𝜌 = 𝜌 ∘ 𝜙 must take the form 𝜙 = 𝜆 id𝑉 for 𝜆 ∈ ℂ, see e.g. Ref. [131].
This statement is also true if the representation is infinite dimensional and unitary, see e.g. Ref. [132].
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It is possible to overcome both these problems by considering an equivalent dynamics on
the principal bundle 𝜋 ∶ 𝑃 → 𝑀 , instead of on 𝑀 , as we shall now explain in the general
case.

The topological term, which is just the holonomy of the connection 𝐴 on 𝑃 , can be
written as the integral of 𝐴 over any loop ̃𝜙 in 𝑃 which projects down to our original loop 𝜙
on 𝑀 , i.e. one that satisfies 𝜋 ∘ ̃𝜙 = 𝜙. Pulling back 𝐴 to the worldline using ̃𝜙, we obtain
on a patch 𝑉𝛼 of 𝑃

̃𝜙∗𝐴 = ( ̇𝑠𝛼(𝑡) + 𝐴𝛼,𝑖 (𝑥𝑘(𝑡)) �̇�𝑖(𝑡)) 𝑑𝑡, (4.23)

where 𝑥𝑖(𝑡) ≡ 𝑥𝑖(𝜋 ∘ ̃𝜙(𝑡)) denote local coordinates in 𝑀 (with 𝑖 = 1, … , dim 𝑀), 𝑠𝛼(𝑡) ≡
𝑠𝛼( ̃𝜙(𝑡)), ̇𝑠𝛼 ≡ 𝑑𝑠𝛼/𝑑𝑡 &c, and 𝐴|𝑉𝛼 ≡ 𝑑𝑠𝛼 + 𝐴𝛼,𝑖𝑑𝑥𝑖 is the connection restricted to the patch
𝑉𝛼. Given that we can also pull back the metric, and thus the kinetic term, from 𝑀 to 𝑃 ,
we can ‘lift’ our original definition of the action from 𝑀 to the principal bundle 𝑃 . The
contribution to the action from a local patch 𝑉𝛼 is then

𝑆[ ̃𝜙]|𝑉𝛼
=
ˆ

𝑑𝑡 {𝑔𝑖𝑗 �̇�𝑖�̇�𝑗 − ̇𝑠𝛼 − 𝐴𝛼,𝑖�̇�𝑖} , (4.24)

where 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 will henceforth denote the pullback of the metric to 𝑃 .
As we have anticipated, this reformulation of the dynamics on 𝑃 has two important

virtues. Firstly, there is a globally-defined lagrangian 1-form on 𝑃 for the topological term,
namely the connection 𝐴. Secondly, this lagrangian is strictly invariant under the Lie group
central extension �̃� of 𝐺 by 𝑈(1), defined to be the set

�̃� = {(𝑔, 𝜑) ∈ 𝐺 × Aut(𝑃 , 𝐴) ∣ 𝜋 ∘ 𝜑 = 𝛼𝑔 ∘ 𝜋}, (4.25)

endowed with the group action (𝑔, 𝜑) ⋅ (𝑔′, 𝜑′) = (𝑔𝑔′, 𝜑 ∘ 𝜑′) [133, 129].21 Here, Aut(𝑃 , 𝐴)
denotes the group of principal bundle automorphisms22 of 𝑃 which preserve 𝐴, i.e. for
𝜑 ∈ Aut(𝑃 , 𝐴) we have 𝜑∗𝐴 = 𝐴. There is a short exact sequence

0 𝑈(1) �̃� 𝐺 0,𝜄 𝜋′
(4.26)

with the subgroup Im(𝜄) central in �̃�, thus exhibiting �̃� as a central extension of 𝐺 by 𝑈(1).
Here 𝜄 ∶ 𝑈(1) ∋ 𝑒𝑖𝜃 ↦ (id, 𝑅𝑒𝑖𝜃 ) ∈ �̃�, where 𝑅𝑔 ∈ Aut(𝑃 , 𝐴) indicates the right action of
𝑈(1) on the bundle 𝑃 , and 𝜋′ ∶ �̃� ∋ (𝑔, 𝜙) ↦ 𝑔 ∈ 𝐺. This group has a natural action on

21As a manifold �̃� is the pullback bundle of 𝜋 ∶ 𝑃 → 𝑀 by the orbit map of 𝐺 acting on 𝑀 , viz. 𝜙𝑚 ∶
𝐺 → 𝑀 , 𝑔 ↦ 𝑔 ⋅ 𝑚, for any 𝑚 ∈ 𝑀 [133].

22Principal bundle automorphisms are diffeomorphismswhich commute with the right action of the structure
group on 𝑃 .
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the principal bundle 𝑃 , which we denote by �̃� ∶ �̃� × 𝑃 → 𝑃 , defined by �̃�(𝑔,𝜑)𝑝 = 𝜑(𝑝), for
𝑝 ∈ 𝑃 .

The price to pay for these two virtues is that we have introduced a redundancy (which
locally comes in the form of an extra coordinate 𝑠𝛼) into our description. We must account
for this redundancy with an appropriate definition of the Hilbert space, to which we turn in
the next Subsection.

Quantisation
Equipped with this reformulation of the dynamics on 𝑃 , and the extended Lie group �̃�, we
are now in a position to construct a local hamiltonian operator and solve for its spectrum by
decomposing into unirreps of �̃�.

To do this, we first form the classical hamiltonian by taking the Legendre transform of
the lagrangian, defined on the ‘extended phase space’ 𝑇 ∗𝑃 . At this stage the redundancy
in our description becomes apparent, with the momentum 𝑝𝑠𝛼 conjugate to the (local) fibre
coordinate 𝑠𝛼 being constant, viz. 𝑝𝑠𝛼 + 1 = 0, as we saw in §4.1.1. We can enforce this
constraint by quantising the so-called ‘total hamiltonian’

𝐻|𝑉𝛼 = 1
2(𝑝𝑖 + 𝐴𝛼,𝑖)𝑔𝑖𝑗(𝑝𝑗 + 𝐴𝛼,𝑗) + 𝑣(𝑡)(𝑝𝑠𝛼 + 1), (4.27)

where 𝑝𝑖 is the momentum conjugate to the coordinate 𝑥𝑖, and 𝑣(𝑡) is an arbitrary function
of 𝑡 which plays the role of a Lagrange multiplier. This hamiltonian is naturally quantised as
the magnetic analogue of the Laplace-Beltrami operator, in which the covariant derivative
∇ on 𝑀 is replaced by ∇ + 𝐴, giving

�̂�|𝑉𝛼
= 1

2 (
−𝑖 1

√𝑔
𝜕

𝜕𝑥𝑖 √𝑔 + 𝐴𝛼,𝑖)
𝑔𝑖𝑗

(−𝑖 𝜕
𝜕𝑥𝑗 + 𝐴𝛼,𝑗) + 𝑣(𝑡) (−𝑖 𝜕

𝜕𝑠𝛼
+ 1) , (4.28)

which is a Hermitian operator acting on the Hilbert space

ℋ = {Ψ ∈ 𝐿2(𝑃 , ̃𝜇) |(−𝑖 𝜕
𝜕𝑠𝛼

+ 1) Ψ = 0 on 𝑉𝛼 } (4.29)

where locally the measure is given by ̃𝜇 = √𝑔 𝑑𝑠𝑑𝑥1 … 𝑑𝑥𝑛. The Hilbert space ℋ is
isomorphic to the space of square integrable sections on the hermitian line bundle associated
with 𝑃 with respect to the measure 𝜇 = √𝑔 𝑑𝑥1 … 𝑑𝑥𝑛 [134, 126].
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Method of solution: harmonic analysis on central extensions
Because the local hamiltonian commutes with the left regular representation of �̃�, we expect
to be able to use harmonic analysis on �̃� (when it exists!) to solve for the spectrum of (4.28).
The Hilbert space ℋ is endowed with the left-regular representation 𝜌 of �̃�, under which a
wavefunction Ψ ∈ ℋ transforms as

̃𝜌( ̃𝑔)Ψ(𝑝) ≡ Ψ(�̃� ̃𝑔−1𝑝) ∀𝑝 ∈ 𝑃 , ̃𝑔 ∈ �̃�. (4.30)

We use harmonic analysis to decompose this representation into unirreps of �̃�, in analogy
with howwe decomposed into unirreps of 𝐺 in the absence of a magnetic background, above.
Thus, let 𝑒𝜆,𝑡

𝑟 (𝑝 ∈ 𝑃 ) now denote a basis for this decomposition,23 which schematically takes
the form

Ψ = ∑
𝜆

ˆ
𝜇(𝜆, 𝑟, 𝑡)𝑓 𝜆(𝑟, 𝑡)𝑒𝜆,𝑡

𝑟 (𝑝) ∈ 𝐿2(𝑃 , ̃𝜇) (4.32)

for an appropriate measure 𝜇(𝜆, 𝑟, 𝑡).24 In the presence of the magnetic background, we
have passed to a redundant formulation of the dynamics on 𝑃 , and the crucial difference
is that we must now account for this redundancy when using harmonic analysis. It turns
out (see Appendix B) that this redundancy can often be accounted for by restricting the
decomposition in (4.32) to the subspace of unirreps which satisfy the constraint (−𝑖𝜕𝑠 +
1)𝑒𝜆,𝑡

𝑟 (𝑝) = 0, which we can moreover equip with an appropriate completeness relation. In
the examples that follow in §4.3, this decomposition into a restricted subspace of unirreps
will serve as our starting point for harmonic analysis.

Then, exactly as above, the fact that the hamiltonian commutes with the left-regular rep-
resentation (of �̃�, not 𝐺) means that the action of �̂� will only mix equivalent representations
(that is, it can mix between different values of the 𝑡 index, but not the 𝑟 index or 𝜆 label).
Thus, the SE will be simplified, often to a family of ODEs, as we shall see explicitly in a
plethora of examples in the following Section.

23As a technical aside, it is in fact possible that the functions here are not square integrable. If this is the case
we need to check that our solutions are the limit of a Weyl sequence, which is a sequence of square integrable
functions {𝜔𝑛 ∣ 𝑛 ∈ ℕ} such that ‖𝜔𝑛‖ = 1 ∀𝑛 and

‖(�̂� − 𝐸)𝜔𝑛‖ → 0 as 𝑛 → ∞. (4.31)

In our examples we will skip over this detail since in the cases where it is necessary the functions are all well
known. For an explicit example of such a check, the reader is invited to consult Ref. [54].

24As shown in Ref. [54], such a decomposition of the wavefunction and its subsequent substitution into the
SEmay be useful in determining both the spectrum and the degeneracies of the eigenstates, even in cases where
the problem cannot be solved analytically.
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It is important to acknowledge that performing harmonic analysis in the manner we have
described, for the general setup of interest in which a (possibly non-compact) general Lie
group acts non-transitively on the underlying manifold, is far from being a solved problem
in mathematics. For example, it is not known under what conditions the integrals denoted in
(4.32) actually exist, and whether the functions 𝑓 𝜆(𝑟, 𝑡) can be extracted from Ψ by appro-
priate integral transform methods. Thus, much of what has been said should be taken with a
degree of caution. Fortunately, in the examples that we consider in §4.3, all of the required
properties follow from properties of the usual Fourier transform, and in all cases the method
that we have outlined in this Section works satisfactorily.

4.3 Examples
In §§4.1.1 and 4.1.2 we explained the use of our method for planar motion in a magnetic
field, then pointed out the existence of a topological term for the quantum mechanical rigid
body, and explained how this term can endow the rigid body with fermionic statistics. We
will start this Section where §4.1.2 left off, by solving for the spectrum of this fermionic
rigid body using harmonic analysis on the group 𝑈(2).

After this we will look at a series of other examples where our method is of use, which
we considered in Ref. [3]. Some of these are well known systems, e.g. charged particle
motion in the field of a Dirac monopole, whilst others are new, e.g. the motion of a particle
on the Heisenberg manifold. In this thesis we omit some of the examples that were treated
in Ref. [3] for the sake of brevity, and in other examples we streamline the discussion of
harmonic analysis. Table 4.1 provides a full summary of all the examples we studied in
Ref. [3].

4.3.1 Back to the rigid body
We resume the example discussed in §4.1.2. On a local coordinate patch on 𝑃 = 𝑈(2), we
define a 𝑈(2)-invariant action incorporating a kinetic term by

𝑆 =
ˆ

𝑑𝑡 (
1
2

̇𝜃2 + 1
2

̇𝜙2 sin2 𝜃 + 1
2 (�̇� + ̇𝜙 cos 𝜃)2 − ̇𝑠) . (4.33)

The total hamiltonian on this patch is

𝐻 = 1
2𝑝2

𝜃 + 1
2 sin2 𝜃 (𝑝2

𝜙 + 𝑝2
𝜓 − 2 cos 𝜃 𝑝𝜙𝑝𝜓 ) + 𝑣(𝑡)(𝑝𝑠 + 1), (4.34)
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§ 𝑀
[𝐺]

𝑃
[�̃�] Lagrangian on 𝑃 Spectrum

Landau
levels
(§4.1.1)

ℝ2

[ℝ2]
ℝ2 × 𝑈(1)

[Hb]
1
2 �̇�2 + 1

2 ̇𝑦2 − ̇𝑠 − 𝐵𝑦�̇� |𝐵|(𝑛 + 1/2),
𝑛 ∈ ℕ0

Fermionic
rigid
body
(§4.3.1)

ℝ𝑃 3

[𝑆𝑂(3)]
𝑈(2)

[𝑈(2)]
1
2 ( ̇𝜃2 + ̇𝜙2 sin2(𝜃) + (�̇� + ̇𝜙 cos(𝜃))2

) − ̇𝑠 𝑗(𝑗 + 1)/2,
𝑗 ∈ ℕ0 + 1/2

Dirac
monopole
(§4.3.2)

𝑆2

[𝑆𝑈(2)] 𝐿(𝑔, 1)
[𝑆𝑈(2) × 𝑈(1)]

1
2 ( ̇𝜃2 + sin2(𝜃) ̇𝜙2

) − 1
2 ̇𝜒 − 𝑔

2 cos(𝜃) ̇𝜙 1
8 (4𝑗2 + 4𝑗 − 𝑔2),
𝑗 ∈ ℕ0 + 𝑔/2

Dyon
(See
Ref. [3])

ℝ+ × 𝑆2

[𝑆𝑈(2)] ℝ+ × 𝐿(𝑔, 1)
[𝑆𝑈(2) × 𝑈(1)]

1
2 ( ̇𝜃2 + sin2(𝜃) ̇𝜙2

) − 𝑞
𝑟 − 1

2 ̇𝜒 − 𝑔
2 cos(𝜃) ̇𝜙 −𝑞2/(2(𝑛 + 𝑎)),

𝑛 ∈ ℕ>0,
𝑎 = 1

2 (1 + ((2𝑗 +
1)2 − 𝑔2)1/2)

Landau
levels
(again -
see
Ref. [3])

ℝ2

[𝐼𝑆𝑂(2)]

ℝ2 × 𝑈(1)
[ĨSO(2)]

1
2 (�̇�2+ ̇𝑦2)− ̇𝑠−𝜕𝑥ℎ(𝑥, 𝑦)�̇�−𝜕𝑦ℎ(𝑥, 𝑦) ̇𝑦−𝐵𝑦�̇� |𝐵|(𝑛 + 1/2),

𝑛 ∈ ℕ0

§4.3.3 ℝ3

[Hb]
ℝ4

[H̃b]
1
2 (�̇�2 + ̇𝑦2 + ( ̇𝑧 − 𝑥 ̇𝑦)2) − ̇𝑠 − 𝑥 ̇𝑧 + 𝑥2

2 ̇𝑦 Anharmonic
oscillator

See
Ref. [3]

ℝ3

[ℝ2]
ℝ3 × 𝑈(1)

[Hb]
1
2 ( 1

𝑎+𝑧2 �̇�2 + 1
𝑎+𝑧2 ̇𝑦2 + ̇𝑧2

) − ̇𝑠 − 𝐵𝑦�̇� √|𝐵|(2𝑛 + 1)(𝑚+
1/2) + 𝑎|𝐵|(𝑛 +
1/2),
𝑛, 𝑚 ∈ ℕ0

Table 4.1 Summary of examples considered in Ref. [3]. The particle lives on the manifold
𝑀 , with dynamics invariant under 𝐺. Coupling to a magnetic background defines a 𝑈(1)-
principal bundle 𝜋 ∶ 𝑃 → 𝑀 , on which we form a lagrangian strictly invariant under a
𝑈(1)-central extension of 𝐺, denoted �̃�.
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which we quantise as the operator

�̂� = − 1
2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃 𝜕

𝜕𝜃 ) − 1
2 sin2 𝜃 (

𝜕2

𝜕𝜓2 + 𝜕2

𝜕𝜙2 − 2 cos 𝜃 𝜕2

𝜕𝜙𝜕𝜓 )

+ 𝑣(𝑡) (−𝑖 𝜕
𝜕𝑠 + 1) , (4.35)

acting on wavefunctions Ψ(𝜃, 𝜙, 𝜓, 𝑠) ∈ 𝐿2(𝑈(2)) satisfying (−𝑖 𝜕
𝜕𝑠 + 1) Ψ = 0. The unir-

reps whose matrix elements satisfy this condition when considered as functions on 𝑈(2), are
given by

𝜋𝑗
𝑚,𝑚′(𝜃, 𝜙, 𝜓, 𝑠) = 𝑒−𝑖𝑠𝐷𝑗

𝑚′𝑚(𝜃, 𝜙, 𝜓), (4.36)

where 𝑗 is a positive half-integer, 𝑚, 𝑚′ ∈ {−𝑗, −𝑗 + 1, … , 𝑗}, and 𝐷𝑗
𝑚′𝑚 is a Wigner D-

matrix, defined (in our local coordinates) by

𝐷𝑗
𝑚′𝑚(𝜃, 𝜙, 𝜓) = (

(𝑗 + 𝑚)! (𝑗 − 𝑚)!
(𝑗 + 𝑚′)! (𝑗 − 𝑚′)!)

1/2
(sin(𝜃/2))𝑚−𝑚′(cos(𝜃/2))𝑚+𝑚′

𝑃 (𝑚−𝑚′,𝑚+𝑚′)
𝑗−𝑚 (cos 𝜃)𝑒−𝑖𝑚′𝜓𝑒−𝑖𝑚𝜙. (4.37)

These are matrix elements of an unirrep of 𝑈(2) and, as was the case in §4.1.1, transform in
the corresponding conjugate representation when the left-regular representation is applied.
The Wigner D-matrices satisfy the completeness relation

∑
𝑚′∈ℤ+1/2

∑
𝑚∈ℤ+1/2

∞

∑
𝑗=max(|𝑚|,|𝑚′|)

2𝑗 + 1
8𝜋2 (𝐷𝑗

𝑚′𝑚(𝜃′, 𝜙′, 𝜓′))
∗

𝐷𝑗
𝑚′𝑚(𝜃, 𝜙, 𝜓)

= 𝛿2𝜋(𝜙 − 𝜙′)𝛿2𝜋(𝜓 − 𝜓′)𝛿(cos 𝜃 − cos 𝜃′), (4.38)

where 𝛿2𝜋(⋯) represents a Dirac delta comb with periodicity 2𝜋, and the sum over 𝑗 is over
half-integers.

Following the formalism set out in §4.2, we decomposeΨ into a basis {𝑒𝑗,𝑚′
𝑚 } for𝐿2(𝑈(2)),

which in this case can be chosen to be 𝑒𝑗,𝑚′
𝑚 = 𝜋𝑗

𝑚,𝑚′ , the matrix elements of unirreps of 𝑈(2)
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introduced above, giving us 25 26

Ψ = ∑
𝑚′∈ℤ+1/2

∑
𝑚∈ℤ+1/2

∞

∑
𝑗=max(|𝑚|,|𝑚′|)

2𝑗 + 1
8𝜋 𝑒−𝑖𝑠𝐷𝑗

𝑚′𝑚(𝜃, 𝜙, 𝜓)𝑓 𝑗
𝑚′𝑚. (4.40)

The SE then reduces to

∑
𝑚′∈ℤ+1/2

∑
𝑚∈ℤ+1/2

∞

∑
𝑗=max(|𝑚|,|𝑚′|)

2𝑗 + 1
8𝜋 {

𝑗(𝑗 + 1)
2 − 𝐸} 𝑒−𝑖𝑠𝐷𝑗

𝑚′𝑚(𝜃, 𝜙, 𝜓)𝑓 𝑗
𝑚′𝑚 = 0,

(4.41)
yielding the energy levels

𝐸𝑗
𝑚′𝑚 = 1

2𝑗(𝑗 + 1), for 𝑗 half-integer. (4.42)

The corresponding wavefunctions, on our local coordinate patch, can be written

Ψ𝑗
𝑚′𝑚(𝜃, 𝜙, 𝜓, 𝑠) = 𝑒−𝑖𝑠𝐷𝑗

𝑚′𝑚(𝜃, 𝜙, 𝜓). (4.43)

Setting the fibre coordinate 𝑠 to zero defines a section on the hermitian line bundle associated
with the principal bundle 𝑈(2), in other words a physical wavefunction. On traversing a
double intersection of coordinate charts on 𝑆𝑂(3), the above expression for the section will
shift by a transition function.

Using our formalism, one naturally arrives at the appearance of spin-1
2 representations in

the spectrum for the particular choice of the topological term that defines the bundle 𝑈(2),
rather than 𝑆𝑂(3) × 𝑈(1), by decomposing into representations of �̃� = 𝑈(2). This example
elegantly exhibits the non-trivial connection between topological terms in the action and
representation theory.

25The inverse transform is given by

𝑓 𝑗
𝑚′𝑚 =

ˆ
𝑑 (cos(𝜃′)) 𝑑𝜓′𝑑𝜙′

(𝐷𝑗
𝑚′𝑚(𝜃′, 𝜙′, 𝜓′)𝑒−𝑖𝑠

)
∗

Ψ(𝜃′, 𝜙′, 𝜓′, 𝑠). (4.39)

26We note in passing that on setting 𝑠 = 0 the 𝑈(2) representations appearing in this decomposition reduce
to representations of 𝑆𝑈(2). This occurs due to a well-known happy accident, namely that the projective
representations of a Lie group 𝐺 (here 𝑆𝑂(3)) whose second Lie algebra cohomology vanishes (as is the case
for every semi-simple Lie group) in fact correspond to bona fide representations of the universal cover of 𝐺
(here 𝑆𝑈(2)). That is, under these conditions, familiar to most physicists, we may decompose the Hilbert
space into unirreps of the universal cover of 𝐺, without technically needing to pass to a central extension. It
is, however, important to point out that even in an example such as this, one cannot write down a local action
for the topological term on the universal cover 𝑆𝑈(2), but must pass to the central extension, 𝑈(2).
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4.3.2 The Dirac monopole
Here we consider the 𝐺 = 𝑆𝑈(2)-invariant dynamics of a particle moving on the 2-sphere.
We may embed 𝑀 = 𝑆2 in ℝ3, parametrised by the standard spherical coordinates (𝜃 ∼
𝜃 + 𝜋, 𝜙 ∼ 𝜙 + 2𝜋). We cover 𝑆2 with two charts 𝑈+ and 𝑈−, which exclude the South
and North poles respectively. At the centre sits a magnetic monopole of charge 𝑔 ∈ ℤ.
This background magnetic field specifies a particular 𝑈(1)-principal bundle 𝑃𝑔 over 𝑆2 with
connection 𝐴, which we may write in our coordinates as

𝐴|𝑈+ = 𝑑𝑠+ − 𝑔
2 (1 − cos 𝜃) 𝑑𝜙

𝐴|𝑈− = 𝑑𝑠− − 𝑔
2 (−1 − cos 𝜃) 𝑑𝜙,

(4.44)

where 𝑠± denotes a local coordinate in the 𝑈(1) fibre. This can be conveniently written as

𝐴 = 1
2𝑑𝜒 + 𝑔

2 cos 𝜃𝑑𝜙, (4.45)

where 1
2𝜒 = 𝑠+ − 𝑔

2 𝜙 on 𝑈+ and 1
2𝜒 = 𝑠− + 𝑔

2 𝜙 on 𝑈−. The transition functions over a
trivialisation on {𝑈+, 𝑈−} are specified via the choice

(𝑝, 𝑒𝑖𝛿) ∈ 𝑈+ × 𝑈(1) ↦ (𝑝, 𝑒𝑖𝛿𝑒𝑖𝑔𝜙) ∈ 𝑈− × 𝑈(1). (4.46)

For general 𝑔, this bundle 𝑃𝑔 is in fact the lens space 𝐿(𝑔, 1), which is a particular quotient
of 𝑆3 by a ℤ/𝑔ℤ action. When 𝑔 = 1, the bundle is simply 𝑃1 ≅ 𝑆3, described via the
Hopf fibration, and when 𝑔 = 2, the bundle is simply ℝ𝑃 3.27 As was the case in the pre-
vious example, it is here not possible to write down a global 1-form lagrangian on 𝑆2 that
corresponds to the magnetic coupling.

Following our formalism, we should instead reformulate the problem by writing down an
equivalent, globally-defined lagrangian on the 𝑈(1)-principal bundle 𝑃𝑔 = 𝐿(𝑔, 1) defined
above. The action is

𝑆 =
ˆ

𝑑𝑡 {
1
2 ( ̇𝜃2 + sin2 𝜃 ̇𝜙2) − 1

2 ̇𝜒 − 𝑔
2 cos 𝜃 ̇𝜙} . (4.47)

The topological term in this lagrangian (which couples the particle to themagnetic monopole
background field) is indeed the most general topological term in the theory according to our
classification in Chapter 2, which tells us there are no AB terms because 𝐻1(𝑆2, 𝑈(1)) = 0,

27The lens spaces 𝐿(𝑔, 1) make another appearance in physics as the possible vacuum manifolds for the
electroweak interaction [135].
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while there is an integer-quantised WZ term corresponding to the unique (up to normal-
isation) 𝑆𝑈(2)-invariant, closed, integral 2-form on 𝑆2, which is of course just propor-
tional to the volume form, and which is equal to the curvature of the connection (4.45) on
𝑃𝑔 = 𝐿(𝑔, 1). This lagrangian is invariant under �̃� = 𝑆𝑈(2) × 𝑈(1), the unique (up to Lie
group isomorphisms) 𝑈(1)-central extension of 𝑆𝑈(2).28 We parametrise an element ̃𝑔 ∈ �̃�
by

̃𝑔 =
⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

𝑒𝑖(𝜓+𝜙)/2 cos 𝜃
2 𝑒−𝑖(𝜓−𝜙)/2 sin 𝜃

2

−𝑒𝑖(𝜓−𝜙)/2 sin 𝜃
2 𝑒−𝑖(𝜓+𝜙)/2 cos 𝜃

2

⎞
⎟
⎟
⎟
⎠

, 𝑒𝑖(𝑔𝜓−𝜒)/2
⎞
⎟
⎟
⎟
⎠

∈ 𝑆𝑈(2) × 𝑈(1). (4.48)

The corresponding total hamiltonian is

�̂� = 1
2𝑝2

𝜃 + 1
2 sin2 𝜃 (𝑝𝜙 + 𝑔

2 cos 𝜃)
2

+ 𝑣(𝑡) (𝑝𝜒 + 1
2) , (4.49)

which when quantised gives

�̂� = − 1
2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃 𝜕

𝜕𝜃 ) + 1
2 sin2 𝜃 (−𝑖 𝜕

𝜕𝜙 + 𝑔
2 cos 𝜃)

2
+ 𝑣(𝑡) (−𝑖 𝜕

𝜕𝜒 + 1
2) , (4.50)

where the Hilbert space ℋ is the subspace of square integrable functions on 𝐿(𝑔, 1) for
which the last term in (4.50) vanishes.

We now wish to solve for the spectrum of this hamiltonian using harmonic analysis on
the Lie group �̃� = 𝑆𝑈(2) × 𝑈(1). Matrix elements of unirreps of 𝑆𝑈(2) × 𝑈(1) which are
annihilated by the constraint (−𝑖 𝜕

𝜕𝜒 + 1
2) 𝜋𝑗

𝑚,𝑚′ = 0 are given by

𝜋𝑗
𝑚,𝑚′(𝜃, 𝜙, 𝜓, 𝜒) = 𝑒𝑖(𝑔𝜓−𝜒)/2𝐷𝑗

𝑚′𝑚(𝜃, 𝜙, 𝜓). (4.51)

Here 𝐷𝑗
𝑚′𝑚 ≡ 𝑒−𝑖𝑚′𝜓−𝑖𝑚𝜙𝑑𝑗

𝑚′𝑚(𝜃) are the same Wigner 𝐷-matrices as defined in (4.37), and
the matrices 𝑑𝑗

𝑚′𝑚(𝜃) are conventionally referred to as ‘Wigner 𝑑-matrices’. The subspace of
these unirreps with 𝑚′ = 𝑔/2 do not depend on the coordinate 𝜓 , and provide a suitable basis
for decomposing square-integrable functions on the lens space𝐿(𝑔, 1). We denote these basis
functions by 𝑒𝑗,𝑔/2

𝑚 (𝜃, 𝜙, 𝜒) = 𝜋𝑗
𝑚,𝑔/2(𝜃, 𝜙, 𝜓, 𝜒), which satisfy the constraint condition and

which transform as unirreps of 𝑆𝑈(2) × 𝑈(1). This subspace of ℋ carries the completeness
28Because 𝑆𝑈(2) is a simple and simply-connected Lie group, it only has trivial central extensions by 𝑈(1),

i.e. such central extensions can only be direct products [129].
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relation

∑
𝑚+𝑔/2∈ℤ

∞

∑
𝑗=max(|𝑚|,𝑔/2)

2𝑗 + 1
4𝜋 (𝑒𝑗,𝑔/2

𝑚 (𝜃′, 𝜙′, 𝜒′))
∗

𝑒𝑗,𝑔/2
𝑚 (𝜃, 𝜙, 𝜒)

= 𝑒−𝑖(𝜒−𝜒′)/2𝛿2𝜋(𝜙 − 𝜙′)𝛿(cos 𝜃 − cos 𝜃′), (4.52)

which allows us to decompose any wavefunction in Ψ ∈ ℋ into unirreps as follows

Ψ(𝜃, 𝜙, 𝜒) = 𝑒−𝑖𝜒/2
∑

𝑚+𝑔/2∈ℤ

∞

∑
𝑗=max(|𝑚|,𝑔/2)

2𝑗 + 1
4𝜋 𝑓 𝑗

𝑚𝑒−𝑖𝑚𝜙𝑑𝑗
𝑔/2,𝑚(𝜃), (4.53)

where
𝑓 𝑗

𝑚 =
ˆ

𝑑(cos 𝜃′)𝑑𝜙′ 𝑒𝑖𝑚𝜙′+𝑖𝜒′/2𝑑𝑗
𝑔/2,𝑚(𝜃′)Ψ(𝜃′, 𝜙′, 𝜒′). (4.54)

If we now substitute the decomposition (4.53) into the SE, after simplification, we get

∑
𝑚+𝑔/2∈ℤ

∞

∑
𝑗=max(|𝑚|,𝑔/2)

2𝑗 + 1
4𝜋 (

1
8(4𝑗2 + 4𝑗 − 𝑔2) − 𝐸) 𝑒−𝑖𝜒/2𝑒−𝑖𝑚𝜙𝑑𝑗

𝑔/2,𝑚(𝜃) = 0. (4.55)

Thus the solution to the SE is

Ψ𝑗
𝑚(𝜃, 𝜙, 𝜒) = 𝑒−𝑖𝜒/2−𝑖𝑚𝜙𝑑𝑗

𝑔/2,𝑚(𝜃), 𝐸𝑗
𝑚 = 1

8(4𝑗2 + 4𝑗 − 𝑔2). (4.56)

Notice that the eigenstates are labeled by two quantum numbers 𝑗 and 𝑚, but that for a given
𝑗 the eigenstates with different values of 𝑚 are degenerate in energy due to the rotational
invariance of the problem.

To write our solution in terms of a section on a hermitian line bundle associated with 𝑃𝑔,
we set 𝑠+ = 0 on 𝑈+ and 𝑠− = 0 on 𝑈−, corresponding to 𝜒 = −𝑔𝜙 and 𝜒 = 𝑔𝜙 respectively.
This yields

Ψ𝑗
𝑚,+(𝜃, 𝜙) = 𝑒𝑖 𝑔

2 𝜙−𝑖𝑚𝜙𝑑𝑗
𝑔/2,𝑚(𝜃),

Ψ𝑗
𝑚,−(𝜃, 𝜙) = 𝑒−𝑖 𝑔

2 𝜙−𝑖𝑚𝜙𝑑𝑗
𝑔/2,𝑚(𝜃).

(4.57)

These solutions agree with the solutions of Wu and Yang [126], who solved this system by
considering local hamiltonians on 𝑈+ and 𝑈− separately.

In Ref. [3] we extended this treatment of the monopole to solve for the spectrum of a
charged particle orbiting a dyon, by adapting our formalism to a case with 𝑀 = ℝ+×𝑆2 with
dynamics invariant under a non-transitive action of �̃� = 𝑆𝑈(2)×𝑈(1). In Ref. [3] we also re-
examined (and re-solved) the ‘Landau example’ of planar motion in a uniformmagnetic field
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using a different implementation of our general method, by instead considering the particle
as living on the quotient space 𝑀 = ISO(2)/𝑆𝑂(2) ≅ ℝ2, with 𝐺 = ISO(2) being the (three-
dimensional) Euclidean group in two dimensions, which is the full symmetry group of the
original problem. This solution therefore involved the representation theory of a central
extension of 𝐺 = ISO(2), that is a four-dimensional group which we denoted ĨSO(2), rather
than the representation theory of Hb which was used in §4.1.1. The results of both these
examples, which we omit here, are recorded in Table 4.1 for completeness.

4.3.3 Quantum mechanics on the Heisenberg group
In this Section, we turn to a new example not previously considered in the literature, of par-
ticle motion on the Heisenberg group. We equip 𝑀 = Hb with a left-invariant metric, and
thus take 𝐺 = Hb also. We shall couple the particle to a background magnetic field, corre-
sponding to an Hb-invariant closed 2-form on Hb, for which the magnetic vector potential
which appears in the lagrangian shifts by a total derivative under the action of the group Hb
on itself.

While a version of the Heisenberg group appeared in §4.1.1 (as the central extension
of the translation group ℝ2), for our purposes in this Section we shall revert to defining
the Heisenberg group (as in (2.42)) to be the set of triples (𝑥, 𝑦, 𝑧) ∈ ℝ3 equipped with
multiplication law29

(𝑥′, 𝑦′, 𝑧′) ⋅ (𝑥, 𝑦, 𝑧) = (𝑥 + 𝑥′, 𝑦 + 𝑦′, 𝑧 + 𝑧′ + 𝑦𝑥′). (4.58)

To avoid any possible confusion, we emphasise that in this Section the Heisenberg group is
taken as the original configuration space of our particle dynamics, which we shall reformu-
late as an equivalent dynamics on a central extension of the Heisenberg group. This central
extension will be a four-dimensional Lie group which we shall denote H̃b.30

Before we proceed with writing down the action for this system (and eventually solv-
ing for the spectrum using harmonic analysis on H̃b), we first pause to offer a few words of
motivation for considering this system, since it does not correspond to any physical quan-
tum mechanics system (although there are indirect links to the anharmonic oscillator, see
e.g. [137]). In any case, our motivation is entirely mathematical. Firstly, we wanted a new
example where the central extension of Lie groups 0 → 𝑈(1) → �̃� → 𝐺 is non-trivial,

29This group is isomorphic to the group of upper-triangular unit determinant matrices (over the reals) under
matrix multiplication.

30In the classification of four-dimensional real Lie groups presented in Ref. [136], the group which we call
H̃b is denoted 𝐺4.1.
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i.e. �̃� is not just a direct product, and moreover that it corresponds to a non-trivial cen-
tral extension of Lie algebras 0 → ℝ → �̃� → 𝔤. The requirement that a Lie algebra 𝔤
admits a non-trivial central extension requires, by a theorem of Whitehead [138, 139], that
the Lie algebra 𝔤 cannot be semi-simple.31 Of course, abelian Lie groups provide a source
of such non-trivial central extensions, because their Lie algebra cohomology is in a sense
maximal.32 However, we sought a more interesting example where the original group 𝐺 is
non-abelian. To that end, non-abelian nilpotent Lie groups provide a richer source of suit-
able central extensions, because the second Lie algebra cohomology of any nilpotent 𝔤 is at
least two-dimensional [140]. The Heisenberg Lie algebra, and the corresponding Lie group
Hb, provides the simplest such example.

Since we are taking the Heisenberg group to be topologically just ℝ3, we can cover the
target space with a single patch and write the lagrangian using globally-defined coordinates
(𝑥, 𝑦, 𝑧). The action on Hb, including the topological term, is

𝑆 =
ˆ

𝑑𝑡 (
1
2 (�̇�2 + ̇𝑦2 + ( ̇𝑧 − 𝑥 ̇𝑦)2) − 𝑥 ̇𝑧 + 𝑥2

2 ̇𝑦) . (4.59)

The kinetic term corresponds to a left-Hb-invariant metric on Hb, as mentioned above, and
we have chosen a normalisation for the (real-valued) coefficient of the topological term−𝑥 ̇𝑧+
𝑥2
2 ̇𝑦.33 This topological term in the lagrangian shifts by a total derivative under the group
action (4.58). Following our now-familiar procedure, we thus reformulate the action on a
𝑈(1)-principal bundle 𝑃 over Hb, on which 𝑠 provides a local coordinate in the fibre. The
action on 𝑃 is written

𝑆 =
ˆ

𝑑𝑡 (
1
2 (�̇�2 + ̇𝑦2 + ( ̇𝑧 − 𝑥 ̇𝑦)2) − ̇𝑠 − 𝑥 ̇𝑧 + 𝑥2

2 ̇𝑦) , (4.60)

31Indeed, of the examples considered until now, the only non-trivial central extensions, at the Lie algebra
level, were for 𝐺 = ℝ2 (extended to �̃� = Hb) and 𝐺 = ISO(2) (discussed in detail in Ref. [3]), neither of which
are semi-simple (in the latter case, the subalgebra of translations is a non-trivial ideal). Note that it is nonethe-
less possible for a semi-simple Lie group to have non-trivial Lie group central extensions, corresponding to
torsion elements in its (co)homology; an example is furnished by 𝑈(2), which is a 𝑈(1)-central extension of
the semi-simple group 𝑆𝑂(3) which is not isomorphic to 𝑆𝑂(3) × 𝑈(1) (see §§4.1.2 and 4.3.1).

32The second Lie algebra cohomology of 𝔤 is isomorphic to the group of inequivalent (up to Lie algebra
isomorphisms) central extensions of 𝔤.

33Note that this is not the most general Hb-invariant topological term we can write down. There is in fact
a three-parameter family of WZ terms, corresponding to the most general Hb-invariant, closed 2-form on Hb,
viz. 𝜔 = 𝑎𝑑𝑥 ∧ 𝑑𝑦 + 𝑏(𝑑𝑥 ∧ 𝑑𝑧 − 𝑥𝑑𝑥 ∧ 𝑑𝑦) + 𝑐𝑑𝑧 ∧ 𝑑𝑦, where (𝑎, 𝑏, 𝑐) ∈ ℝ3. The topological term in (4.59)
corresponds to the choice 𝑎 = 𝑐 = 0 and 𝑏 = 1. Each distinct choice of (𝑎, 𝑏, 𝑐) determines a different central
extension of Hb by 𝑈(1), though only those generated by 𝑏 and 𝑐 are distinct up to Lie group isomorphisms (this
two-parameter family of central extensions corresponds to the fact that the second Lie algebra cohomology of
Hb is two-dimensional, generated by 𝑑𝑥 ∧ 𝑑𝑧 − 𝑥𝑑𝑥 ∧ 𝑑𝑦 and 𝑑𝑧 ∧ 𝑑𝑦).
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where the only difference is the ̇𝑠 term. By adding this redundant degree of freedom to the
action it becomes strictly invariant under the 𝑈(1)-central extension of Hb defined by the
multiplication law

(𝑥′, 𝑦′, 𝑧′, 𝑠′) ⋅ (𝑥, 𝑦, 𝑧, 𝑠) = (𝑥 + 𝑥′, 𝑦 + 𝑦′, 𝑧 + 𝑧′ + 𝑦𝑥′, 𝑠 + 𝑠′ − 𝑧𝑥′ − 𝑦𝑥′2

2 ) , (4.61)

which we denote by �̃� = H̃b.
The total hamiltonian corresponding to the action (4.59) is given by

𝐻 = 1
2𝑝2

𝑥 + 1
2 (𝑝𝑧 + 𝑥)2 + 1

2 (𝑝𝑦 − 𝑥2

2 + 𝑥 (𝑝𝑧 + 𝑥))
2

+ 𝑣(𝑡) (𝑝𝑠 + 1) , (4.62)

which quantises to

�̂� = −1
2

𝜕2

𝜕𝑥2 + 1
2 (−𝑖 𝜕

𝜕𝑧 + 𝑥)
2

+ 1
2 (−𝑖 𝜕

𝜕𝑦 − 𝑥2

2 + 𝑥 (−𝑖 𝜕
𝜕𝑧 + 𝑥))

2

+ 𝑣(𝑡) (−𝑖 𝜕
𝜕𝑠 + 1) . (4.63)

acting on the Hilbert space of square integrable functions on H̃b that are annihilated by
(−𝑖 𝜕

𝜕𝑠 + 1).
Because the group H̃b defined in (4.61) has a nilpotent Lie algebra, its representation

theory can be found via Kirillov’s orbit method [141]. The unirrep matrix elements that we
are interested in, which in this case are functions on H̃b, are infinite-dimensional, given by

𝜋𝑞(𝑟, 𝑡; 𝑥, 𝑦, 𝑧, 𝑠) = 𝛿(𝑡 − 𝑟 − 𝑥)𝑒𝑖(−𝑠+𝑧𝑟+ 1
2 𝑦𝑟2)+𝑞/2𝑦, (4.64)

which satisfy the completeness relation
ˆ 𝑑𝑞𝑑𝑟𝑑𝑡

2(2𝜋)2 (𝜋𝑞(𝑟, 𝑡; 𝑥′, 𝑦′, 𝑧′, 𝑠′))∗ 𝜋𝑞(𝑟, 𝑡; 𝑥, 𝑦, 𝑧, 𝑠) = 𝑒−𝑖(𝑠−𝑠′)𝛿(𝑥 − 𝑥′)𝛿(𝑦 − 𝑦′)𝛿(𝑧 − 𝑧′).
(4.65)

We thus decompose a wavefunction into unirreps using these functions as our basis elements,
𝑒𝑞,𝑡

𝑟 (𝑥, 𝑦, 𝑧, 𝑠) = 𝜋𝑞(𝑟, 𝑡; 𝑥, 𝑦, 𝑧, 𝑠), giving us

Ψ(𝑥, 𝑦, 𝑧, 𝑠) =
ˆ 𝑑𝑞𝑑𝑟𝑑𝑡

2(2𝜋)2 𝑒𝑞,𝑡
𝑟 (𝑥, 𝑦, 𝑧, 𝑠)𝑓𝑞(𝑟, 𝑡), (4.66)

where
𝑓𝑞(𝑟, 𝑡) =

ˆ
𝑑𝑥′𝑑𝑦′𝑑𝑧′

(𝑒𝑞,𝑡
𝑟 (𝑥′, 𝑦′, 𝑧′, 𝑠′))

∗
Ψ(𝑥′, 𝑦′, 𝑧′, 𝑠′). (4.67)
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Using this decomposition, and the expression (4.63) for the hamiltonian, the SE reduces to

− 1
4(2𝜋)3

ˆ
𝑑𝑞𝑑𝑟𝑑𝑡 𝑒𝑞,𝑡

𝑟 (𝑥, 𝑦, 𝑧, 𝑠)

(
𝜕2𝑓𝑞(𝑟, 𝑡)

𝜕𝑡2 + 2𝐸𝑓𝑞(𝑟, 𝑡) − 1
4 ((𝑡2 + 𝑞)2 + 4𝑡2) 𝑓𝑞(𝑟, 𝑡)

)
= 0. (4.68)

The ODE in the parentheses coincides with the SE for an anharmonic oscillator. This dif-
ferential equation can be solved order-by-order in perturbation theory (in the parameter 𝑞),
as is discussed in numerous sources, for example in Ref. [142].

In Ref. [3] we examined one final example in detail, corresponding to a particle on 𝑀 =
ℝ3 with dynamics symmetric only under a subgroup of translations, 𝐺 = ℝ2 ⊂ ℝ3. The
purpose of this example, which is summarized in Table 4.1, was to illustrate that even when
the action of 𝐺 on 𝑀 is non-transitive our application of harmonic analysis still bears fruit
in reducing the SE to one on the space of orbits.

We anticipate that there are many more quantum mechanics problems which can be de-
scribed by dynamics on a manifold with invariance under a Lie group action, and a coupling
to a magnetic field, because this setup is a very general one. For example, the cases where
𝑀 = ℝ𝑛 or 𝑆𝑂(𝑛) appear ubiquitously in physics and chemistry, and one might describe
more realistic molecular systems moving in magnetic fields, for example, by using a pertur-
bative analysis around these simple cases. Another possible source of examples, of interest
to condensed matter physicists and particle theorists, might be provided by quantum field
theories admitting instanton solutions, in which great insight can be gained by solving for
quantum mechanics on the instanton moduli space. Since such theories typically also con-
tain topological terms in the action, the method of solution we have outlined in this Chapter,
in which we first construct the bona fide symmetry group using central extensions, and then
bring to bear the heavy machinery of harmonic analysis, would be applicable.



Chapter 5

Differential cohomology and topological
terms in sigma models

In the previous Chapter, we saw that a topological term in a quantum mechanics model with
target space 𝑀 can be written as the holonomy of a connection 𝐴 on a 𝑈(1)-principal bundle
𝑃 over 𝑀 (subject to a condition - the Manton condition - on the curvature 𝜔 to enforce
invariance under a group action by some Lie group 𝐺). Specifying (𝑃 , 𝐴), a 𝑈(1)-principal
bundle over 𝑀 with connection, is equivalent (up to connection-preserving isomorphisms)
to specifying a differential character on 𝑀 of degree 2, whose curvature 2-form 𝜔 is equal to
the curvature of the principal bundle, andwhose characteristic class measures the topological
twisting of the bundle.

In this Chapter, we suggest that specifying a differential character in degree 𝑝+1 (subject
to some condition for 𝐺-invariance) provides the appropriate quantum field theory generali-
sation of a topological term appearing in a sigma model whose worldvolume has dimension
𝑝. The topological term in the action phase shall be identified with the higher holonomy
of the 𝑝-form connection associated with such a differential character. The condition for
𝐺-invariance will be derived using the homotopy formula for differential characters, and
is found to coincide with the Manton condition; we shall moreover find that this condition
remains necessary and sufficient for 𝐺-invariance under slightly weaker conditions than con-
nectedness of 𝐺. In this way, we shall recast (and generalise) the classification presented in
Chapter 2, which we arrived at by more humble methods, using the language of differential
cohomology.

The results we shall arrive at in the present Chapter shall be a generalisation of the classi-
fication of Chapter 2, in the sense that the target space 𝑀 of the sigma model is not assumed
to be a homogeneous space 𝐺/𝐻 ; rather, we consider the more general situation (as in Chap-
ter 4) of a manifold 𝑀 equipped with a smooth action 𝛼 ∶ 𝐺 × 𝑀 → 𝑀 of a Lie group
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𝐺 on 𝑀 , and again demand invariance of the action phase under the induced action of 𝐺.
As advertised above, it is also a generalisation in the sense that we shall not require 𝐺 be
connected from the outset.

Differential characters have been used before in the literature to describe topological
terms in quantum field theories. The classical Chern-Simons action in three dimensions is
the higher holonomy of a certain degree-4 differential character [143, 144]. Correspond-
ingly, the topological action for a two-dimensional “Wess-Zumino-Witten model” living on
the boundary of a Chern-Simons theory is described by a differential character in degree-
3 [145–149]. Moreover, differential cohomology is recognised as providing an elegant lan-
guage for describing “higher (abelian) gauge theories” (see e.g. Refs. [150, 151]), which
are themselves of interest because they describe certain geometric structures in string the-
ory [146, 152, 153]. The topological terms in 𝑝-dimensional sigma models that we discuss
in this Chapter can be thought of as coupling (𝑝−1)-dimensional extended objects to a back-
groundmagnetic field in such a higher abelian gauge theory (in the same way that we thought
of the topological terms in Chapter 4 as coupling a point particle to an ordinary background
magnetic field).

We shall begin this Chapter by defining differential characters, which may be unfamil-
iar to our readers, and explaining why differential characters define topological terms of the
kind set forth in §2.2. Our main reference for differential characters is the monograph by
Bär-Becker [154], and the original paper of Cheeger-Simons [155]. In §5.2 we turn to the
issue of 𝐺-invariance. We prove the Manton condition for invariance of a differential char-
acter under the induced action of a Lie group 𝐺, and thence introduce the notion of ‘invariant
differential characters’. As far as we are aware, invariant differential characters (as we de-
fine them) have not been studied in the mathematical literature before. The remainder of this
Chapter is therefore devoted to finding out as much as we can about these invariant differ-
ential characters. We discuss how the abelian group of such characters provides a rigorous
foundation for the classification we originally set forth in Chaper 2 of this thesis.

5.1 An introduction to differential characters
Back in §2.2, we argued that for a topological term in the action phase, one can consider
the degrees of freedom of the sigma model to be smooth singular 𝑝-cycles on 𝑀 . To re-
cap the argument, one can trade a given field configuration 𝜙 ∶ Σ𝑝 → 𝑀 for a (smooth
singular) 𝑝-cycle 𝑧 ∈ 𝑍𝑝(𝑀, ℤ) by taking a cycle in the fundamental class of the worldvol-
ume, ̃𝑧 ∈ [Σ𝑝], and pushing-forward to 𝑀 in the obvious way (i.e. by composing the maps
𝜎 ∶ Δ𝑝 → Σ𝑝 that define the constituents of ̃𝑧 with the map 𝜙). Our definition of the action
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phase must be well-defined on the fundamental class [Σ𝑝] for consistency, in which case it is
automatically invariant under the group 𝒪 of orientation-preserving diffeomorphisms. Since
such a construction does not require the structure of a metric (on either Σ𝑝 or on 𝑀), then it
defines a topological term.

We then went one step further in §2.2, by requiring that an action phase should be defined
on all 𝑝-cycles in 𝑀 . Loosely, this assumption is motivated by requiring the sigma model
can be coupled to quantum gravity, which should allow for the topology of spacetime to be
arbitrary. We made one final assumption, motivated by locality, by stipulating that one can
define the action phase associated to a given 𝑝-cycle by integrating (possibly locally-defined)
differential forms on smooth singular chains (of degrees zero through 𝑝). As we advertised
in the Introduction, in this Section we shall relax this strong assumption that the action phase
can be constructed by integrating differential forms.

We instead use Atiyah’s definition of locality [9], which we summarised in the Introduc-
tion, which implies the action phase factorises over disjoint union of 𝑝-manifolds, and also
over gluing of 𝑝-manifolds along common (𝑝−1)-dimensional boundaries. That is, if Σ𝑝

1 and
Σ𝑝

2 are glued along a common boundary 𝑉 𝑝−1 (in the fashion described in the Introduction,
in the vicinity of equation (1.4)) to make a manifold Σ𝑝

1 ∪𝑉 𝑝−1 Σ𝑝
2, then we require

𝑒2𝜋𝑖𝑆 (𝜙 (Σ𝑝
1 ∪𝑉 𝑝−1 Σ𝑝

2)) = 𝑒2𝜋𝑖𝑆 (𝜙 (Σ𝑝
1)) ⋅ 𝑒2𝜋𝑖𝑆 (𝜙 (Σ𝑝

2)) . (5.1)

Upon such a gluing of Σ𝑝
1 and Σ𝑝

2, the 𝑝-cycle (call it ̃𝑧) associated to Σ𝑝
1 ∪𝑉 𝑝−1 Σ𝑝

2 (by taking
a cycle in the fundamental class and pushing forward, as above) can be written as the sum
of 𝑝-cycles 𝑧1 and 𝑧2 associated (in the same way) to Σ𝑝

1 and Σ𝑝
2, because the manifolds are

glued with opposite orientation along their common boundary 𝑉 𝑝−1. Thus, we can write
̃𝑧 = 𝑧1 + 𝑧2, and (5.1) then implies that

𝑒2𝜋𝑖𝑆[𝑧1 + 𝑧2] = 𝑒2𝜋𝑖𝑆[𝑧1] ⋅ 𝑒2𝜋𝑖𝑆[𝑧2], (5.2)

where we regard the action phase now as being defined on the space of 𝑝-cycles.
The upshot of these assumptions is that the action phase for a topological term in a sigma

model on 𝑀 is a homomorphism from the group 𝑍𝑝(𝑀, ℤ) of smooth singular 𝑝-cycles to
the abelian group 𝑈(1), viz.

𝑒2𝜋𝑖𝑆[𝑧] ∈ Hom (𝑍𝑝(𝑀, ℤ), 𝑈(1)) . (5.3)

In other words, the action phase is a character of the group 𝑍𝑝(𝑀, ℤ). Within our over-
arching programme of classifying topological terms, a far off goal would be to classify the
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space of such characters without any further conditions (save the imposition of criteria for 𝐺-
invariance). Unfortunately, little is known inmathematics about the structure of the (abelian)
group of such characters. Nonetheless, progress can be made by restricting to the subgroup
of differential characters of 𝑍𝑝(𝑀, ℤ), which we shall define next.

The (abelian) group1 �̂�𝑘(𝑀, 𝑈(1)) of differential characters of 𝑀 in degree 𝑘,2 as in-
troduced by Cheeger-Simons [155], is defined as

�̂�𝑘(𝑀, 𝑈(1)) = {𝑓 ∈ Hom(𝑍𝑘−1(𝑀, ℤ), 𝑈(1)) | 𝑓 ∘ 𝜕 ∈ Ω𝑘
0(𝑀)}, (5.4)

where 𝑓 ∘ 𝜕 ∈ Ω𝑘
0(𝑀) means that there exists a closed, integral 𝑘-form 𝜔 such that the value

of 𝑓 evaluated on a boundary 𝑧𝑘−1 ≡ 𝜕𝑐𝑘 is given by

𝑓(𝜕𝑐𝑘) = exp(2𝜋𝑖
ˆ

𝑐𝑘
𝜔) , (5.5)

where the differential form 𝜔 from (5.5) is called the curvature of the differential character
𝑓 . When applied to topological terms, this extra condition 𝑓 ∘ 𝜕 ∈ Ω𝑘

0(𝑀) amounts to
requiring that Witten’s construction (see Chapters 1 and 2) may be used to write the action
for a topological term when it is evaluated on boundaries. We find this a very reasonable
assumption to make in our definition of a topological term.

Both the AB andWZ terms of our classification from Chapter 2, for 𝑝-dimensional sigma
models, are immediately seen to be examples of differential characters in degree 𝑝+1. Using
basic properties of the integration of differential forms, together with our care to construct
both types of term on all 𝑝-cycles, the definitions of AB and WZ terms are readily seen to
be elements in Hom(𝑍𝑝(𝑀, ℤ), 𝑈(1)). An AB term evaluates to the trivial action phase on
cycles that are boundaries, and so is a differential character with zero curvature, also known
as a flat differential character. As was shown in (2.21), any WZ term (defined by the action
(2.13), in terms of integrals of local forms) can be obtained from the Witten construction
when evaluated on a boundary, with its curvature identified with the closed, integral (𝑝 + 1)
form 𝜔 that moreover satisfied the Manton condition. Thus, the classification of Chapter 2
must, at least, fit inside a classification of topological terms in terms of differential charac-

1We note in passing that �̂�𝑘(𝑀, 𝑈(1)) may also be endowed with a natural multiplication operation
�̂�𝑘(𝑀, 𝑈(1)) × �̂� 𝑙(𝑀, 𝑈(1)) → �̂�𝑘+𝑙(𝑀, 𝑈(1)) which gives �̂�𝑘(𝑀, 𝑈(1)) the structure of a ring [155].
We shall not make any use of the multiplicative structure in what follows, so for us it shall be good enough to
think of �̂�𝑘(𝑀, 𝑈(1)) as an abelian group.

2Note that there are a number of conflicting notational conventions used in the literature; the object we call
�̂�𝑘(𝑀, 𝑈(1)) corresponds to the object �̂�𝑘−1(𝑀, 𝑈(1)) in the original Cheeger-Simons paper [155], and is
denoted by �̂�𝑘(𝑀, ℤ) in the monograph by Bär-Becker [154]. Our preferred notation agrees, for example,
with that of Simons-Sullivan in Ref. [156].
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ters. To investigate the latter, we must first describe some basic properties of differential
characters.

5.1.1 The curvature and character maps
To see that the curvature 𝜔 must be a closed 𝑘-form, we know because 𝑓 is a homomorphism
(and 𝜕2 = 0) that 1 = 𝑓(𝜕2𝑐𝑘+1) = exp 2𝜋𝑖

´
𝜕𝑐𝑘+1

𝜔 = exp 2𝜋𝑖
´

𝑐𝑘
𝑑𝜔 for any 𝑘-chain 𝑐𝑘,

which implies 𝑑𝜔 = 0 (using the fact that no non-vanishing differential form can take values
only in integers [155]). To see that 𝜔 must be furthermore integral, we know that if 𝑧𝑘 is
any 𝑘-cycle (𝜕𝑧𝑘 = 0) then 1 = 𝑓(𝜕𝑧𝑘) = exp 2𝜋𝑖

´
𝑧𝑘

𝜔, which is true if and only if 𝜔 is
integral. Let us henceforth denote 𝜔 = curv(𝑓 ). Moreover, the curvature 𝜔 of a differential
character is unique.3 This means that taking the curvature supplies a well-defined map from
the abelian group of differential characters (in each degree 𝑘) to the abelian group of closed,
integral differential forms (in each degree 𝑘),

curv ∶ �̂�𝑘(𝑀, 𝑈(1)) → Ω𝑘
0(𝑀); 𝑓 ↦ 𝜔 = curv(𝑓 ), (5.6)

which is moreover a group homomorphism.
As well as its curvature, a differential character also determines a characteristic class,

which is an element in singular cohomology, ch(𝑓 ) ∈ 𝐻𝑘(𝑀, ℤ). The computation of ch(𝑓 )
is somewhat technical, as follows. Let ∼∶ ℝ → ℝ/ℤ ≅ 𝑈(1), 𝑎 ↦ ̃𝑎 = 𝑒2𝜋𝑖𝑎 denote the
usual reduction of reals modulo integers. Since the group 𝑍𝑘−1(𝑀, ℤ) is a free ℤ-module,
there exists a real cochain 𝑇 such that under the induced map ∼ it agrees with 𝑓 . In other
words, 𝑇 is a real lift of 𝑓 , with 𝑇 (𝑧𝑘−1) = 𝑒2𝜋𝑖𝑇 (𝑧𝑘−1) = 𝑓(𝑧𝑘−1) ∀𝑧𝑘−1 ∈ 𝑍𝑘−1(𝑀, ℤ).
Then, with 𝛿 the singular coboundary operator dual to 𝜕, we have (̃𝛿𝑇 ) = 𝛿𝑇 = 𝑓 ∘ 𝜕 = 𝜔
(using (5.5) and duality), and can write 𝛿𝑇 = 𝜔−𝑐, where 𝜔 = curv(𝑓 ) and 𝑐 ∈ 𝐶𝑘(𝑀, ℤ) is
some integral cochain (whose contribution therefore vanishes upon reducing mod ℤ). Then
𝛿2𝑇 = 𝛿𝜔 − 𝛿𝑐 = 0, which implies 𝑑𝜔 = 𝛿𝑐 = 0.4 Hence 𝑐 is in fact a cocycle, not just a
cochain. One then defines ch(𝑓 ) to be the cohomology class of the cocycle 𝑐,

ch(𝑓 ) = [𝑐] ∈ 𝐻𝑘(𝑀, ℤ). (5.7)
3If 𝜔 and 𝜔′ were two possible curvature forms for the same differential character 𝑓 , then we have that

1 = 𝑓(𝜕𝑐𝑘 − 𝜕𝑐𝑘) = exp(2𝜋𝑖
´

𝑐𝑘
𝜔 − 𝜔′), which implies 𝜔 − 𝜔′ = 0.

4Both 𝑑𝜔 and 𝛿𝑐 must be individually set to zero to satisfy 𝛿𝜔 − 𝛿𝑐 = 0 because, as we used previously,
a non-vanishing differential form 𝜔 never takes values only in the proper subring ℤ ⊂ ℝ, and so cannot be
cancelled by 𝛿𝑐.
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If we map to real cohomology using the inclusion 𝑟 ∶ 𝐻𝑘(𝑀, ℤ) → 𝐻𝑘(𝑀, ℝ), then the
exactness of 𝛿𝑇 = 𝜔 − 𝑐 implies

[𝜔] = 𝑟 (ch(𝑓 )) , (5.8)

which confirms the assertion that 𝜔 has integral periods. The definition of ch(𝑓 ) is indepen-
dent of the choice of real lift 𝑇 of 𝑓 , and is thus unique; hence, taking the characteristic class
supplies another well-defined map out of �̂�𝑘(𝑀, 𝑈(1)), this time to the singular cohomol-
ogy,

ch ∶ �̂�𝑘(𝑀, 𝑈(1)) → 𝐻𝑘(𝑀, ℤ); 𝑓 ↦ ch(𝑓 ), (5.9)

which is moreover a group homomorphism.5

5.1.2 Short exact sequences
In their original paper [155], Cheeger-Simons show how one can ‘measure the size’ of the
group �̂�𝑘(𝑀, 𝑈(1)) (for any 𝑘) by fitting it inside a number of short exact sequences, which
involve the natural maps curv and ch which we have introduced.

To do so, we need first show that both maps surject onto their respective codomains.
To see this, note firstly that given any 𝜔 ∈ Ω𝑘

0(𝑀) there exists a 𝑢 ∈ 𝐻𝑘(𝑀, ℤ) such that
[𝜔] = 𝑟(𝑢) (because 𝜔 has integral periods). Conversely, given any 𝑢 ∈ 𝐻𝑘(𝑀, ℤ) one can
find such an 𝜔 by taking any representative form in 𝑟(𝑢). If we find also a representative
integral 𝑘-cocycle 𝑐 such that [𝑐] = 𝑢, then one can form the real 𝑘-cochain 𝜔 − 𝑐, which is
exact because [𝜔] = 𝑟([𝑐]). Thus, there exists a real (𝑘 − 1)-cochain 𝑇 such that 𝛿𝑇 = 𝜔 − 𝑐,
from which one can construct a differential character by evaluating on (𝑘 − 1)-cycles and
reducing mod ℤ, viz. 𝑓(𝑧𝑘−1) = exp(2𝜋𝑖𝑇 (𝑧𝑘−1)). Hence, both curv and ch surject.

We now look for an exact sequence of the form

0 → 𝐴 𝑗−→ �̂�𝑘(𝑀, 𝑈(1)) curv−−→ Ω𝑘
0(𝑀) → 0, (5.10)

where we know that the last arrow is exact, and we want to find a group 𝐴 and map 𝑗 such
that the whole sequence is exact. The kernel of curv consists of those differential charac-
ters ℎ for which curv(ℎ) = 0, in other words the subgroup of flat differential characters.
We previously identified flat differential characters with AB terms, which in Chapter 2 we
suggested were classified by the cohomology group 𝐻𝑘−1(𝑀, 𝑈(1)). Indeed, if one defines
𝐴 = 𝐻𝑘−1(𝑀, 𝑈(1)), then given any 𝑈(1)-valued cocycle 𝑢 ∈ 𝐴 one can define a differen-

5The maps curv and ch are both natural maps (in the category theory sense).
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tial character 𝑗(𝑢) by setting 𝑗(𝑢)(𝑧𝑘−1) = ⟨𝑢, [𝑧𝑘−1]⟩. The map 𝑗 so defined clearly injects,
and moreover we have that im𝑗 = ker curv. Thus,

0 → 𝐻𝑘−1(𝑀, 𝑈(1)) 𝑗−→ �̂�𝑘(𝑀, 𝑈(1)) curv−−→ Ω𝑘
0(𝑀) → 0 (5.11)

is a short exact sequence of abelian groups.
There is also a short exact sequence involving the map ch, which one can build in a

similar fashion. Let 𝜂 ∈ Λ𝑘−1(𝑀) be any differential (𝑘 − 1)-form on 𝑀 .6 One can always
define a differential character 𝜄(𝜂) by setting

𝜄(𝜂)(𝑧𝑘−1) ∶= exp(2𝜋𝑖
ˆ

𝑧𝑘−1
𝜂) . (5.12)

Evaluating on a boundary, and using Stokes’ theorem, tell us that curv(𝜄(𝜂)) = 𝑑𝜂, i.e. an
exact 𝑘-form. Thus, ch(𝜄(𝜂)) = 0, and we say that the differential character 𝜄(𝜂) is topolog-
ically trivial. If the differential form 𝜂 ∈ Ω𝑘−1

0 (𝑀) (closed with integral periods), then the
differential character defined by (5.12) is the trivial one. Thus, if we quotient by this sub-
group, the map 𝜄 defines an injection 𝜄 ∶ Λ𝑘−1(𝑀)/Ω𝑘−1

0 (𝑀) → �̂�𝑘(𝑀, 𝑈(1)). Moreover,
the image of 𝜄 is the space of topologically trivial differential characters, which equals the
kernel of the map ch, which we have already shown surjects. Thus,

0 → Λ𝑘−1(𝑀)
Ω𝑘−1

0 (𝑀)
𝜄−→ �̂�𝑘(𝑀, 𝑈(1)) ch−→ 𝐻𝑘(𝑀, ℤ) → 0 (5.13)

is also a short exact sequence of abelian groups.

5.1.3 Bundles, gerbes, and beyond
The formalism of differential characters also enables us to make contact between the con-
struction of AB and WZ terms that we set out in Chapter 2 (in terms of ‘sewing together’
local data), and the alternative geometric picture we drew in Chapter 4 for the specialisation
to 𝑝 = 1. In the latter, we saw that a topological term in the action phase is equal to the
holonomy of a connection on a 𝑈(1)-principal bundle over 𝑀 .

With the present formalism, we would now say that a topological term in the case 𝑝 = 1
is defined by a differential character in degree 2. This is indeed equivalent to the statements
in Chapter 4, because �̂�2(𝑀, 𝑈(1)) in fact classifies 𝑈(1)-principal bundle over 𝑀 with

6To be clear about our notation, we use Λ∗ to refer to the ring of differential forms, and Ω∗ to denote those
differential forms which are closed (with Ω∗

0 indicating the closed, integral forms, and so on).
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connection (and equivalent up to connection-preserving isomorphisms), with the map from
the latter to the former being given precisely by the holonomy of the connection (see e.g.
Ref. [154]), which is the action phase for the topological term.

The notion of a differential character then provides us with the generalisation of holon-
omy appropriate for describing topological terms in higher-𝑝 sigma models. Moreover, for
each 𝑝, there is a geometric structure associated with the differential character, and thus with
the topological term, analogous to the principal bundle which is the relevant structure when
𝑝 = 1.

For sigma models in dimension 𝑝 = 2, a case explored in depth by the string theory
community (in particular, in the context of so-called ‘𝐵-fields’), a topological term corre-
sponds to a differential character in degree 𝑘 = 3 [145–149], and these are in one-to-one
correspondence with bundle gerbes7 [158, 159]. The sets of locally-defined differential
forms which we constructed in §2.4.1, together with the consistency conditions between
them (as tabulated in the tic-tac-toe table (2.12)), define a 2-form connection in the case
𝑝 = 2, and moreover this local data furnishes one with a local description of a bundle gerbe.
The development of a corresponding geometric definition of a bundle gerbe, analogous to
the familiar notion of an ordinary principal bundle, was provided by Murray [160] (see also
Ref. [161] for a pedagogical introduction). As is well known, the topological term in such a
two-dimensional field theory then corresponds to the higher holonomy associated with the
‘2-form connection’ on such a gerbe. Indeed, our construction of WZ terms in Chapter 2
using Čech cohomology to sew together local data provides one definition of this higher
holonomy.

Going beyond 𝑝 = 2, the differential characters in degree (𝑝+1) (which define topological
terms in 𝑝-dimensional sigma models) are in one-to-one correspondence with analogous
geometric structures, sometimes called higher (abelian) gerbes [162]. One definition of such
a higher gerbe is precisely in terms of the sets of locally-defined differential forms satisfying
the relations of (2.12), for general 𝑝. For a geometric definition, see e.g. Ref. [162]. These
higher gerbes provide the appropriate geometric structures with which to describe higher
abelian gauge theories, just as principal bundles are used to describe ordinary gauge theory.

We remark in passing that one can also go in the other direction, and consider topological
terms in a zero-dimensional sigma model, i.e. a somewhat peculiar theory of maps from
points into a smooth manifold 𝑀 . We would now posit that differential characters in degree
𝑘 = 1 define topological terms in such theories, and these simply correspond to 𝑈(1)-valued

7Bundle gerbes are also commonly known as Hitchin gerbes, or Hitchin-Chatterjee gerbes. The original
idea, however, goes back to work by Giraud [157].
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smooth functions. Invariance under, say, a transitive Lie group action on 𝑀 would then
restrict this to constant 𝑈(1)-valued functions on 𝑀 .

5.1.4 Differential cohomology
The ring of differential characters on a manifold 𝑀 , which we may denote �̂�∗(𝑀, 𝑈(1)),
has several equivalent descriptions in the mathematical literature, including Deligne coho-
mology (see e.g. [145]), differential forms with singularities [163], or de Rham-Federer cur-
rents [164, 165]. The reason for these equivalences is that the ring of differential characters
(as well as these other objects) provides a model for a quite general mathematical structure
called differential cohomology.

To see differential characters in this broader context requires a categorical perspective,
which we shall touch upon most briefly. The ring �̂�∗(⋅, 𝑈(1)) of differential characters may
be defined axiomatically as a graded functor on the category of smooth manifolds,8 together
with the four natural transformations we have already encountered in §§5.1.1 & 5.1.2:

• Curvature, curv ∶ �̂�∗(⋅, 𝑈(1)) → Ω∗
0(⋅),

• Characteristic class, ch ∶ �̂�∗(⋅, 𝑈(1)) → 𝐻∗(⋅, ℤ),

• Inclusion of flat classes, 𝑗 ∶ 𝐻∗−1(⋅, 𝑈(1)) → �̂�∗(⋅, 𝑈(1)), and

• Topological trivialisation, 𝜄 ∶ Λ∗−1(⋅)/Ω∗−1
0 (⋅) → �̂�∗(⋅, 𝑈(1)),

such that the following Character Diagram is commutative and its diagonals are short exact
sequences:

8Bär-Becker prefer to define differential cohomology as a functor on so-called smooth spaces [154], for
technical reasons which we prefer not to go into here.
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The sequence of homomorphisms (𝛼, 𝐵, 𝑟) along the top row denotes the Bockstein long ex-
act sequence in cohomology associated to the coefficient sequence ℤ → ℝ → 𝑈(1), and
sequence along the bottom row follows the de Rham theorem. In a seminal paper, Simons-
Sullivan showed [156] that the Character Diagram fixes uniquely the central object �̂�𝑘 (up
to a ‘natural equivalence’, as defined in Ref. [156]); thus, any functor satisfying the same
axioms is equivalent (including all the functors mentioned at the beginning of this Subsec-
tion). For a proof of the uniqueness of differential cohomology, which is not short, we invite
the reader to consult Refs. [156, 154].

Differential cohomology, as modelled by differential characters, is an essentially differ-
ent object to any ordinary cohomology theory. In particular, it is a refinement of the latter
to include geometric, rather than purely topological, information. Previous classifications
of topological terms in sigma models from the literature, most notably that of Weinberg-
d’Hoker [89] that we described in §2.5.2, were based on an ordinary cohomology theory.
Given also the uniqueness of ordinary cohomology,9 we suggest that any classification based
on an ordinary cohomology theory is essentially incomplete, and that a correct classification
should be based on a differential cohomology theory.

With a measure of hindsight, this is perhaps clear just from the humble quantum me-
chanical models we investigated in Chapter 4. For example, consider our discussion of the
Landau problem in terms of topological terms on ℝ2 (§4.1.1). Any classification based on
ordinary cohomology would suggest there are no topological terms for a particle moving on,
for example, ℝ2, because there are no topologically non-trivial bundles over it. But classes

9Recall that an ordinary cohomology theory admits a similar categorical description, in terms of the
Eilenberg-Steenrod axioms [166]. These axioms uniquely determine ordinary cohomology.
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in differential cohomology ‘notice’ the difference between topologically-trivial bundles if
they have different curvature, even when the character map vanishes. Hence, any classifi-
cation based on differential cohomology would tell you there are topological terms in such
a theory, and moreover that distinct values of the curvature (i.e. magnetic field strength 𝐵)
correspond to distinct differential characters (i.e. topological terms in the action). It is this
geometrically-enriched classification, rather than a purely topological one based on coho-
mology, that leads to the correct physical understanding of the Landau problem.

All our results for Composite Higgs models in Chapter 3 are based on the same differen-
tial cohomology theory but in degree 𝑘 = 5. Therefore, we should (and do throughout this
thesis) consistently distinguish between topological terms corresponding to the same class
in ordinary cohomology if they nonetheless have different curvature (our treatment of WZ
terms in §3.4 is perhaps the best, or at least the most intricate, example of this).

5.2 Invariant differential characters
Nothing that we have discussed in §5.1 is new, mathematically (although the subject of dif-
ferential cohomology is still relatively young). We nonetheless hope that we have drawn out
the importance of differential cohomology, as modelled for example by differential charac-
ters, in describing topological terms in sigma models.

Having said that, we shall in fact propose in this Section that 𝐺-invariant topological
terms in a sigma model on 𝑀 are not strictly classified by a differential cohomology the-
ory, but by a slightly different theory, which we shall call the theory of invariant differential
characters, or IDCs. We shall prove that this theory is not equivalent (functorially) to differ-
ential cohomology.10 We shall, however, demonstrate that the group of IDCs sits inside its
own ‘hexagon’ diagram of commuting short exact sequences analogous to that drawn above
for ordinary differential cohomology, albeit a less constraining one. Thus, in this Section
we attempt something entirely new, from a mathematical perspective, motivated by the same
physics objective that motivated Chapter 2. We caution the reader that the material in the
rest of this Chapter is still a work in progress.

The idea is as follows. As usual, we equip our smooth manifold 𝑀 with a Lie group
action by some 𝐺, which from the physical perspective defines a group of global symme-
tries of the sigma model on 𝑀 , and we seek to classify only those topological terms (i.e.
differential characters) which are invariant under this symmetry.

10To be clear, it is certainly not functorially equivalent to an (extra-)ordinary cohomology theory either. It
is most likely (from the functorial perspective) an example of a generalised differential cohomology theory,
though we are yet to prove this.
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To arrive at such a classification, we of course need to define an invariant differen-
tial character precisely. A Lie group action of 𝐺 on 𝑀 is a group homomorphism 𝐺 →
Diff(𝑀) ∶ 𝑔 ↦ 𝐿𝑔, such that the action map 𝐺 × 𝑀 → 𝑀 ∶ (𝑔, 𝑚) ↦ 𝑔 ⋅ 𝑚 is smooth. This
induces, for each 𝑔 ∈ 𝐺, a chain map from the complex of smooth singular chains to itself,
which we denote by 𝐿𝑔∗. The 𝐺-action on a differential character 𝑓 ∈ �̂�𝑘(𝑀, 𝑈(1)) is then
defined by

𝐿∗
𝑔𝑓(𝑧𝑘−1) = 𝑓(𝐿𝑔∗𝑧𝑘−1). (5.14)

A 𝐺-invariant differential character 𝑓 is such that

𝐿∗
𝑔𝑓 = 𝑓, ∀𝑔 ∈ 𝐺. (5.15)

We denote the group of𝐺-invariant differential characters on𝑀 , in degree 𝑘, by �̂�𝑘
𝐺(𝑀, 𝑈(1)).

We now seek a simple condition for 𝐺-invariance of differential characters.
This condition, which we shall prove is necessary and sufficient for 𝐺-invariance of a

differential character 𝑓 , shall be a generalisation of the condition proven in §2.4.2 (which
was proven using humbler Čech-based methods). We shall therefore call it the generalised
Manton condition for 𝐺-invariance of differential characters.

Recall that our proof in §2.4.2 of the Manton condition required connectedness of 𝐺.
Here, we shall relax this assumption rather substantially, to consider Lie groups 𝐺 such that
the action 𝐿𝑔 on 𝑀 is, for every 𝑔 ∈ 𝐺, homotopic to the identity diffeomorphism 𝐿𝑒
(where 𝑒 denotes the identity in 𝐺). This means that for every 𝑔 ∈ 𝐺, the action map may be
written (𝑔, 𝑚) ↦ 𝑔 ⋅ 𝑚 = exp𝑋 ⋅ 𝑚 for some vector field 𝑋 ∈ Diff(𝑀), where a homotopy
𝐹 ∶ 𝑀 × 𝐼 → 𝑀 (where 𝐼 = [0, 1] is the unit interval) between this and the identity map
on 𝑀 is given by

𝐹 (𝑚, 𝑡) = 𝐹𝑡(𝑚) = exp(𝑡𝑋) ⋅ 𝑚, 𝑡 ∈ 𝐼. (5.16)

This condition is weaker than requiring 𝐺 be connected, and we shall refer to such a group
as a ‘homotopic 𝐺’. To see that this condition is indeed weaker than connectedness of 𝐺,
consider an example, in which the modular group 𝐺 = ℤ/𝑛ℤ, which is not connected, acts
on 𝑀 = 𝑈(1) by translation, viz. 𝑈(1) ∋ 𝑒𝑖𝜃 ↦ 𝑒2𝜋𝑖𝑝/𝑛 ⋅ 𝑒𝑖𝜃, for 𝑝 ∈ ℤ/𝑛ℤ, which is clearly
homotopic to the identity. Indeed, the difference is that for homotopic 𝐺, only the endpoints
𝐹 (𝑚, 0) and 𝐹 (𝑚, 1) need to correspond to the action of a group element on 𝑀 , whereas for
connected 𝐺 this will be true also for all interpolating maps 𝐹 (𝑚, 𝑡). A consequence is that,
while any discrete group is not connected, its action on a manifold may well be homotopic.
Hence, in this Chapter we shall extend the validity of the Manton condition to the case of
invariance under many discrete group actions.
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The generalised Manton condition is then that

𝜄𝑋curv 𝑓 ∈ Ω𝑘−1
0 (𝑀), (5.17)

for every such 𝑋 ∈ Diff(𝑀) that generates the action of some 𝑔 ∈ 𝐺 on 𝑀 as described
above. This is therefore a generalisation of the Manton condition in two ways: firstly, we
require 𝐺 be only homotopic, rather than connected; secondly, the condition is that the con-
traction of the curvature formwith each 𝑋 must be an integral form on 𝑀 , rather than having
to be a strictly exact form as we suggested before.

5.2.1 Proving the (generalised) Manton condition
Unlike ordinary cohomology classes, which are invariant under homotopy, classes in dif-
ferential cohomology are not homotopy invariants. The crucial element in our proof of
the generalised Manton condition will be the well-known homotopy formula for differential
characters [167]. This tells us that, for the homotopy (5.16), which interpolates between the
identity map and that induced by 𝑔 = exp𝑋 ∈ 𝐺, the variation of a differential character
𝑓 ∈ �̂�𝑘(𝑀, 𝑈(1)) (when evaluated on a (𝑘 − 1)-cycle 𝑧) is11

(𝑔∗𝑓 − 𝑓)(𝑧) = exp 2𝜋𝑖 (

 
𝑧

ˆ
[0,1]

𝐹 ∗curv 𝑓) , (5.18)

where the slash denotes a fibre integration,12 which reduces the degree of the integrand
(which is a 𝑘-form on 𝑀 × 𝐼) by one. Interestingly, the right-hand-side of the homotopy
formula for differential characters involves integration (along a fibre) of ordinary differen-
tial forms (as opposed to more advanced notions of integration of differential characters
themselves - see e.g. Refs. [167, 154]). This is surely equivalent to our discovery in §2.4.2
(in particular, see (2.29)) that the variation of a WZ term, which itself is stitched together
out of integrals of only locally-defined forms, in fact reduces to an ordinary integral of a
globally-defined differential form. In the present reformulation using differential characters,
the powerful homotopy formula is here doing the work for us.

11Lest there is any confusion, we note that while the (abelian) group operation on 𝑈(1) is usually written
multiplicatively, we shall write the (abelian) group operation on �̂�𝑘(𝑀, 𝑈(1)) additively, to avoid confusion
with the multiplicative operation that makes �̂�𝑘(𝑀, 𝑈(1)) into a ring. The identity element on 𝑈(1) is thus de-
noted by 1, while the identity differential character will be denoted zero; we hope this does not cause confusion
interpreting formulae such as (5.18, 5.20).

12The notion of fibre integration may not be familiar to many physicists, despite being a standard notion in
differential geometry. See e.g. Ref. [168].
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To evaluate the integral on the right-hand-side of (5.18), we need that the pull-back by
the homotopy of the curvature is

𝐹 ∗curv𝑓 = 𝜋∗(𝐹 ∗
𝑡 curv 𝑓) + 𝜋∗(𝜄𝑋curv 𝑓) ∧ 𝑑𝑡, (5.19)

where 𝜋 ∶ 𝑀 × 𝐼 → 𝑀 is the projection 𝜋(𝑚, 𝑡) = 𝑚. The first term on the rhs of (5.19)
is horizontal to the fibre, meaning its fibre integration yields zero, and the second term inte-
grates to 𝜄𝑋curv 𝑓 . So the homotopy formula (5.18) yields

(𝑔∗𝑓 − 𝑓)(𝑧) = exp 2𝜋𝑖 (

ˆ
𝑧

𝜄𝑋curv 𝑓) , for 𝑔 = exp(𝑋). (5.20)

The character is then invariant (on all (𝑘−1)-cycles) if and only if
´

𝑧 𝜄𝑋curv 𝑓 vanishes mod
ℤ, in other words 𝜄𝑋curv 𝑓 is an integral (𝑘 − 1)-form. This proves the generalised Manton
condition.

5.2.2 Computing the group of invariant differential characters
Thus, for homotopic 𝐺, we may define the group �̂�𝑘

𝐺(𝑀, 𝑈(1)) of 𝐺-invariant differential
characters to be

�̂�𝑘
𝐺(𝑀, 𝑈(1)) = {𝑓 ∈ Hom(𝑍𝑘−1(𝑀, ℤ), 𝑈(1)) | 𝑓 ∘ 𝜕 ∈ Ω𝑘

0(𝑀), 𝜄𝑋curv 𝑓 ∈ Ω𝑘−1
0 (𝑀)},

(5.21)
for all vector fields 𝑋 such that 𝑔 = exp𝑋 for some 𝑔 ∈ 𝐺. We shall henceforth denote
the subgroup of closed, integral 𝑘-forms that satisfy the generalised Manton condition by
Ω𝑘

1,𝐺 (so that we might replace the two conditions in the definition (5.21) with just one, viz.
𝑓 ∘ 𝜕 ∈ Ω𝑘

1,𝐺(𝑀)).
How can we compute this group? In §§5.1.2 & 5.1.4 we saw how the group of (ordi-

nary) differential characters can be ‘measured’ by fitting it inside a number of short exact
sequences, and moreover that these sequences form an interlocking commutative ‘hexagon’
of exact sequences (with which Simons-Sullivan proved the uniqueness of differential co-
homology). While the group of IDCs, as defined in (5.21), does not fit into precisely such a
diagram, we here investigate to what extent we can compute the group of IDCs by fitting it
inside comparable short exact sequences and/or commutative diagrams of group homomor-
phisms. In special cases, we expect this to bemore than enough to determine �̂�𝑝+1

𝐺 (𝑀, 𝑈(1))
completely.
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Recall that for ordinary differential cohomology, we began by constructing a pair of short
exact sequences involving the curvature and character maps in §5.1.2. Can we derive similar
sequences involving the group of IDCs?

When restricted to the invariant differential characters, the codomain of the curvature
map is modified from Ω𝑘

0(𝑀) to Ω𝑘
1,𝐺(𝑀). It is straightforward to show that curv still surjects

onto its codomain. One must show that for any element 𝜔 ∈ Ω𝑘
1,𝐺(𝑀), there exists an IDC 𝑓

such that curv(𝑓 ) = 𝜔, and the argument is simply adapted from that in §5.1.2. To wit, given
such an 𝜔 there exists a cohomology class 𝑢 ∈ 𝐻𝑘(𝑀, ℤ) such that [𝜔] = 𝑟(𝑢). Using any
representative integral cocycle 𝑐 (where [𝑐] = 𝑢), one can form the real coboundary 𝜔 − 𝑐,
and hence a 𝑇 such that 𝛿𝑇 = 𝜔 − 𝑐 and thence a differential character 𝑓 by reducing 𝑇 mod
ℤ. By construction, curv(𝑓 ) = 𝜔 ∈ Ω𝑘

1,𝐺(𝑀) and so 𝑓 is an IDC.
For homotopic 𝐺, a flat differential character is necessarily an invariant differential char-

acter, because the action of homotopic 𝐺 on 𝑀 does not change the homology class of
cycles. Thus, the map 𝑗 ∶ 𝐻𝑘−1(𝑀, 𝑈(1)) → �̂�𝑘

𝐺(𝑀, 𝑈(1)), defined by 𝑗(𝑢)(𝑧) ∶= ⟨𝑢, [𝑧]⟩
(inclusion of flat classes) still injects to �̂�𝑘

𝐺(𝑀, 𝑈(1)), and its image is the kernel of the
curvature map. Thus,

0 → 𝐻𝑘−1(𝑀, 𝑈(1)) 𝑗−→ �̂�𝑘
𝐺(𝑀, 𝑈(1)) curv−−→ Ω𝑘

0,𝐺(𝑀) → 0 (5.22)

is a short exact sequence of abelian groups.
However, one has trouble simultaneously constructing a similar short exact sequence

involving the character map. We can show that the sequence of homomorphisms

0 →
Ω𝑘−1

2,𝐺 (𝑀)
Ω𝑘−1

0 (𝑀)
𝜄−→ �̂�𝑘

𝐺(𝑀, 𝑈(1)) ch−→ 𝐻𝑘(𝑀, ℤ) (5.23)

is exact, where Ω𝑘−1
2,𝐺 (𝑀) denotes the (𝑘 − 1)-forms 𝜆 on M such that 𝜄𝑋𝑑𝜆 is integral (which

is equivalent to 𝐿𝑋𝜆 being integral). The map 𝜄 is the topological trivialisation map as
before. The condition that 𝜄𝑋𝑑𝜆 be integral ensures that the differential character 𝜄(𝜆) is 𝐺-
invariant, and thus that 𝜄 is a map into �̂�𝑘

𝐺(𝑀, 𝑈(1)). The quotient by Ω𝑘−1
0 ensures that this

map is moreover an injection. The image of 𝜄 consists of the topologically trivial invariant
characters, which coincides with the kernel of the map ch, thereby demonstrating exactness
of the above sequence. However, ch does not surject onto 𝐻𝑘(𝑀, ℤ), so one cannot turn the
above into a short exact sequence.

One can assemble these sequences into a commutative diagram of group homomor-
phisms, somewhat analogous to the Character Diagram introduced earlier for ordinary dif-
ferential cohomology:
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0 0
�
��� @

@@R

Ω𝑘−1
2,𝐺 (𝑀)/Ω𝑘−1

0 (𝑀) - Ω𝑘
1,𝐺(𝑀)𝑑

�
��� @

@@R

𝛽 𝜄
�

��� @
@@R

curv 𝑠
�
��� @

@@R

𝐻𝑘−1(𝑀, ℝ) �̂�𝑘
𝐺(𝑀, 𝑈(1)) 𝐻𝑘(𝑀, ℝ)

@
@@R

𝛼
�
��� @

@@R
𝑗 ch

�
��� @

@@R
𝑟

�
���

𝐻𝑘−1(𝑀, 𝑈(1)) - 𝐻𝑘(𝑀, ℤ)𝐵

@
@@R

0

However, this is not quite a diagram of exact sequences. Even though the top row (𝛼, 𝐵, 𝑟)
remains exact (its still the Bockstein sequence), exactness fails for the bottom row (𝛽, 𝑑, 𝑠).
Note that we could replace the codomain of the ch map with the subgroup 𝐻𝑘

1,𝐺(𝑀, ℤ) ⊂
𝐻𝑘(𝑀, ℤ) corresponding to the characteristic classes of differential characters whose cur-
vature satisfies the generalised Manton condition, to complete the short exact sequence on
this second diagonal (and thus append an external ‘0’ at the top-right corner), but only at the
expense of the long exact sequence along the top row.

In other words, it seems possible to fit �̂�𝑘
𝐺(𝑀, 𝑈(1)) into a number of commutative

‘hexagon’ diagrams with which to constrain it, with various possibilities for the exactness of
its rows and diagonals. One could obtain short exact sequences on both diagonals, but at the
expense of exactness of the long sequences along both the top and bottom row. Alternatively,
one could (as in the diagram above) preserve exactness along one of the diagonals, and one
of the top or bottom rows. Finally, it seems likely (at least given certain conditions on 𝐺) that
one could forgo exactness of both the diagonals, by relaxing injectivity and/or surjectivity at
the corners, and in so doing try to preserve exactness of the long sequences along the bottom
and top. What seems certain is that the theory of IDCs does not reduce to the differential
cohomology of Simons-Sullivan. The investigation of these ‘hexagon diagrams’ is work in
progress, about which we have little more to say at present.

Before we conclude this part of the thesis, it is worth taking a closer look at the exact
sequence (5.22) we have derived involving the curvature map, to make clear the correspon-
dence with our previous classification into AB and WZ terms of Chapter 2.
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5.2.3 Back to AB and WZ terms
Even if we cannot fix the group �̂�𝑘

𝐺(𝑀, 𝑈(1)) completely, the formalism of IDCs already
gives us the tools to propose the following definitions of topological terms and their classi-
fication, and thence make contact with our discussion from Chapter 2:

1. Given a manifold 𝑀 equipped with a 𝐺-action, a topological term in a 𝐺-invariant 𝑝-
dimensional sigma model on 𝑀 is a 𝐺-invariant differential character on 𝑀 of degree
𝑝+1. The space of topological terms therefore carries the structure of an abelian group
equal to �̂�𝑝+1

𝐺 (𝑀, 𝑈(1)).

2. An AB term in such a theory is a flat invariant differential character. The space of AB
terms defines a subgroup of the group of topological terms, which we might call the
‘AB group’, and which is isomorphic to the cohomology group 𝐻𝑝(𝑀, 𝑈(1)).

3. A WZ term is an invariant differential character which is not flat. The space of WZ
terms does not form a subgroup of �̂�𝑝+1

𝐺 (𝑀, 𝑈(1)). Rather, one may define the space
of WZ terms to be the quotient of �̂�𝑝+1

𝐺 (𝑀, 𝑈(1)) by the (normal subgroup) of AB
terms, i.e. by 𝐻𝑝(𝑀, 𝑈(1)). This quotient itself carries the structure of an abelian
group under the usual ‘product of cosets’ operation, and we may identify this as the
‘WZ group’.

With these identifications, we have then already proven (5.22) that there is a short exact
sequence

0 → AB group
𝑗−→ �̂�𝑝+1

𝐺 (𝑀, 𝑈(1)) curv−−→ WZ group → 0. (5.24)

Thus, if this short exact sequence splits, then we would have that

�̂�𝑝+1
𝐺 (𝑀, 𝑈(1)) ≅ AB group ⊕ WZ group, (5.25)

which would therefore provide a rigorous proof of our classification as set out in Chapter
2.13 Thus, an exciting next step would be to investigate under which conditions the sequence
(5.22) does indeed split. Of course, the classification of Chapter 2 was presented only for
the case where the Lie group 𝐺 acts transitively on 𝑀 , which may therefore be modelled
as a homogeneous space 𝑀 ≅ 𝐺/𝐻 (where 𝐻 is the stabiliser of the 𝐺 action). Thus, one
might try to prove whether transitivity leads to the splitting of (5.22) - or, perhaps, find a
counterexample to this claim, which would be even more interesting.

13Up to the fact that we have generalised the Manton condition in the present Chapter.
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This concludes the first part of this thesis, which was about topological terms in sigma
models. In the following twoChapters we shall tell our second story, which concerns the can-
cellation of anomalies in gauge theories of phenomenological importance in particle physics.



Chapter 6

Anomaly-free model building for flavour
physics

The StandardModel (SM) of particle physics is a four-dimensional gauge theory, with gauge
group

𝐺 = 𝐺SM
Γ , 𝐺SM = 𝑆𝑈(3) × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 , Γ ∈ {0, ℤ2, ℤ3, ℤ6}. (6.1)

The matter content consists of quarks and leptons, which are chiral fermions transforming
in the following representations of 𝐺

𝑄𝑖 ∼ (3, 2, 1/6), 𝑢𝑖 ∼ (3, 1, 2/3), 𝑑𝑖 ∼ (3, 1, −1/3),

𝐿𝑖 ∼ (1, 2, −1/2), 𝑒𝑖, ∼ (1, 1, −1),

where 𝑖 ∈ {1, 2, 3} labels three different families, together with a complex scalar field called
the Higgs boson, transforming as

𝐻 ∼ (1, 2, −1/2),

whose non-zero VEV 𝑣 is responsible for electroweak symmetry breaking. The 𝑆𝑈(2)𝐿
doublet fermions 𝑄𝑖 and 𝐿𝑖 have left-handed chirality, with the 𝑆𝑈(2)𝐿 singlets 𝑢𝑖, 𝑑𝑖, and
𝑒𝑖 being right-handed. The gauge interactions of the SM respect a large global flavour sym-
metry of the form 𝑈(3)5, which is broken only by the Yukawa couplings

ℒYukawa = 𝑌 𝑢
𝑖𝑗𝑄𝑖𝐻𝑢𝑗 + 𝑌 𝑑

𝑖𝑗 𝑄𝑖𝐻𝑐𝑑𝑗 + 𝑌 𝑒
𝑖𝑗𝐿𝑖𝐻𝑐𝑒𝑗 + h.c., (6.2)
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where 𝑌 𝑢
𝑖𝑗 , 𝑌 𝑑

𝑖𝑗 , and 𝑌 𝑒
𝑖𝑗 are 3 by 3 complex matrices. These Yukawa couplings result in Dirac

masses for the SM fermions after electroweak symmetry breaking.
The SM has been tremendously successful in explaining all the data collected from col-

lider physics experiments such as at the LHC, with the gauge, flavour, and Higgs sectors hav-
ing been tested at the per mille, per cent, and ten per cent levels respectively [169]. However
despite its successes, there are a number of unsolved problems in the SM. The most straight-
forward deficiency in the SM, in some sense, is its inability to explain the neutrino masses
and mixings that have been definitively established by a collection of experiments includ-
ing Super-Kamiokande, SNO, and KamLAND [169]. One naïve solution to this problem is
to append three “right-handed neutrinos” to the SM chiral fermion content, which are right-
handed fields transforming in the singlet representation of 𝐺, with which one can write down
Yukawa couplings for neutrinos similar to (6.2).

There are many other problems in the SM, a number of which appear conceptually very
challenging at this point in time. Some of these are experimental or observational in origin,
such as the inability to account for the dark matter and dark energy that are observed by
astrophysicists and cosmologists, while other problems are more theoretical or ‘aesthetic’,
such as the inability to describe physics beyond the Planck scale, and the (two) hierarchy
problems associated with the two super-renormalisable operators in the SM lagrangian.

In addition to these ‘big challenges’, there are somewhat milder theoretical puzzles in
the SM associated with its flavour sector. The matrices of Yukawa couplings in (6.2) ex-
hibit rather peculiar structures; roughly, the quark Yukawa matrices 𝑌 𝑢

𝑖𝑗 and 𝑌 𝑑
𝑖𝑗 are highly

‘hierarchical’, meaning that the off-diagonal elements of each are very small with respect to
those elements on the diagonal, and moreover there is a hierarchy in the three eigenvalues of
each, with (in the case of 𝑌 𝑢) the largest (𝑚𝑡) and the smallest (𝑚𝑢) being separated by about
five orders of magnitude. On the other hand, measurements of neutrino oscillations suggest
there is large mixing between the mass and gauge eigenstates in the leptons; depending on
the mechanism by which neutrinos acquire their mass, one would usually expect the lepton
Yukawa matrices to be more ‘anarchic’ than hierarchical. Finally, it is intriguing that of all
the Yukawa couplings in the SM, only the matrix element 𝑌 𝑢

33 is of order one, as might be
expected from naturalness arguments. Together, we might refer to this special structure of
(6.2), for which there is no explanation in the SM, as the flavour puzzle.

It is clear that in order to offer a complete description of Nature, one must go beyond
the Standard Model (BSM). A particularly minimal extension of the SM, which can help
to explain various problems with the SM (such as dark matter, or the flavour puzzle), is to
supplement the SM with an additional, electrically-neutral, heavy vector gauge boson, often
called a 𝑍′ boson, which we shall assume arises from a spontaneously broken 𝑈(1) gauge
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symmetry. In this Chapter and the next, we shall be concerned with a topological aspect
of the SM and BSM theories involving 𝑍′ bosons, namely anomaly cancellation. This is
of course a topological effect with much phenomenological importance in particle physics,
since the consistency conditions implied by anomaly cancellation (which can be quite subtle)
can offer an especially clean way of ruling out inconsistent extensions of the SM.

In order to be a consistent quantum field theory, any BSM theory that we construct (as
well as the SM itself) must not suffer from any anomalies associated with its gauge group.1

Anomalies can arise in gauge theories with chiral fermions, for which the partition function
𝑍𝜓 [𝐴] obtained by integrating over the fermions may not in fact be gauge invariant, viz.
𝑍𝜓 [𝐴] ≠ 𝑍𝜓 [𝐴𝑔], even though the action phase may well be gauge invariant. We discussed
various types of anomaly in §1.3, and unified them within a more ‘modern’ viewpoint based
on a theorem of Dai-Freed. In this Chapter, however, we shall be concerned only with the
cancellation of local anomalies in the 𝑍′ theories of interest (or ABJ anomalies, as we shall
frequently call them), rather than the more subtle global anomalies. In the following Chapter
we then turn to global anomalies, where we will show (amongst other things) that the 𝑍′

extensions of the SM which we consider in this Chapter are indeed automatically free of
global anomalies, except for the usual Witten anomaly associated with the 𝑆𝑈(2)𝐿 factor of
𝐺.2

In fact, before we consider going beyond the SM, it is important to emphasise that there
is not even an unique SM, but many possible Standard Models, all of which are consistent
with the same experimental data. The experimentally-observed SM gauge bosons and their
interactions, together with the representations of the SM fermion fields, in fact only tell us
that the Lie algebra of the SM gauge group is 𝔰𝔲(3)⊕𝔰𝔲(2)⊕𝔲(1). The four possible gauge
groups in (6.1) above all share this Lie algebra, and even this is far from an exhaustive list.3

The potential physical distinctions between the four options in (6.1) were studied recently in
Ref. [170], and amount to different periodicities of the 𝜃 angle (associated with the 𝑆𝑈(3)
factor), and different spectra of Wilson lines in the theory; unsurprisingly, these differences
are all examples of topological effects.

Another possible distinction, which is also topological (but which was not discussed in
Ref. [170]), is that some of these options might not in fact be consistent after closer inspec-
tion, in the sense that they might suffer from anomalies. Of course, since all the possible 𝐺
share the same Lie algebra the conditions for local anomaly cancellation will be the same,

1We shall comment below (§6.1.1) on the importance of anomaly cancellation in the more realistic situation
that we regard our BSM theory as only an Effective Field Theory (EFT) valid up to some cut-off scale.

2At least, we will show that there are no global anomalies under a very general bordism condition for global
anomaly cancellation, which is motivated by the so-called ‘Dai-Freed theorem’.

3What is true is that the connected component of the SM gauge group 𝐺 is one of the four possibilities
given in (6.1).
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and thus all the SMs are free of local anomalies, as is well known. However, this does not
rule out the possibility of more subtle global anomalies in the SMs associated with the global
topology of the gauge group. We shall analyse such possible global anomalies in Chapter 7,
in which, as mentioned, we also study BSM theories with any number of 𝑍′ bosons, as well
as the Pati-Salam unified model. We thus postpone any further discussion of the ambiguities
in the SM gauge group due to discrete quotients to Chapter 7.

The outline of the rest of this Chapter is as follows. In §6.1 we motivate the study of
family-dependent 𝑈(1) extensions of the SM, before introducing an exhaustive ‘atlas’ of all
anomaly-free 𝑈(1) extensions of the SM. We provide analytic results in a number of special
cases, which we extracted using some elementary arithmetic techniques; for example, in
the case where only two families of SM fermions are charged under the 𝑈(1), we provide
an explicit parametrisation of the space of anomaly-free charge assignments. In §6.2, we
pick out two anomaly-free charge assignments from this atlas, and show how they can be
developed into interesting new models in flavour physics, which we call the ‘Third Family
Hypercharge Model’ [4, 8] and the ‘Deformed Third Family Hypercharge Model’ [5]. These
models are capable of explaining a number of recent experimental discrepancies with the
SM predictions in the semi-leptonic decays of 𝐵-mesons, as well as shedding light on some
coarse features of the fermion mass spectrum.

This Chapter is the result of joint work done with Ben Allanach [4, 5], and with Ben
Allanach and Scott Melville [6].

6.1 𝑈(1) extensions of the Standard Model
Spontaneously broken, gauged 𝑈(1) extensions of the SM are currently enjoying a high level
of interest in particle physics, thanks to their ability to answer various phenomenological
questions. For example, they have been successfully employed to model dark matter, to
explain measurements of the anomalous magnetic moment of the muon, to provide axions
or leptogenesis, to explain the stability of the proton in supersymmetric models, to break
supersymmetry, and to provide fermion masses through the Froggatt-Nielsen mechanism,
to name but a few. For a review of such 𝑈(1) extensions of the SM, covering all these
phenomenological uses as well as many more, see e.g. Ref. [171] (and further references
therein).

Inmany of these examples, fermions are given family-dependent𝑈(1) charges. A notable
recent impetus comes fromLHCbmeasurements of lepton flavour non-universality in certain
rare neutral current 𝐵-meson decays [172–174]. Prima facie, there are two classes of new
particle which might be responsible for such an effect at tree-level: a leptoquark, or a new
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charge-neutral heavy vector boson (called a 𝑍′). In 𝑍′ models for the 𝐵-meson decays,4 the
𝑍′ arises as the new heavy gauge boson from a spontaneously broken 𝑈(1) extension to the
SM gauge symmetry, under which the charges of chiral fermions are family-dependent. We
shall return to discuss 𝑍′ models for 𝐵-meson decays in §6.2.

Our goal here is to chart the space of family-dependent 𝑈(1) charge assignments in such
extensions of the SM in which all local gauge anomalies cancel,5 in the following two cases:

• the SM chiral fermion content, and

• the SM plus (up to) three right-handed neutrinos, i.e. three chiral fermions transform-
ing in the singlet representation 𝜈 ∼ (1, 1, 0) of the SM gauge group, but with 𝑈(1)𝐹
charge. We henceforth refer to this scenario as the SM𝜈𝑅.

The latter is a popular minimal extension of the SM that, as we already mentioned, can ex-
plain the origin of neutrino masses inferred from neutrino oscillation data. We shall hence-
forth denote the additional gauge symmetry by 𝑈(1)𝐹 , where the subscript reminds us that
its couplings will be family-dependent. If such a BSM theory is to be interpreted as a renor-
malisable, UV complete theory, then anomaly-freedom is of course essential for consistency
of the theory.

6.1.1 Anomaly cancellation in an EFT context
Of course, it is highly unlikely that one would in fact want to interpret such a minimal ex-
tension of the SM by a 𝑈(1)𝐹 factor as a fundamental theory that persists up to the UV
scale. Supplementing the SM by a single 𝑍′ gauge boson, with interactions designed to
explain one or more of the phenomenological questions listed above, is usually regarded as
a ‘bottom-up’ model building exercise, in which we append to the SM as few new particles
as possible that are capable of explaining the problem at hand. In this sense, the SM×𝑈(1)𝐹
theory is interpreted as an Effective Field Theory (EFT) that can be used to make precise
predictions only at energies up to some cut-off scale Λ (much like the SM itself, though with
the cut-off scale pushed to higher energies). Thus, before we attack our goal in earnest, we
would like to comment on the role of anomaly cancellation in realistic model building, in
which the SM×𝑈(1)𝐹 theory is necessarily regarded as “only” a low-energy EFT.

In this case, it is of course feasible that anomalies do not cancel in the low-energy EFT,
since heavy chiral fermions may have been integrated out of the fundamental theory at higher

4The literature on such models has grown vast in recent years. An incomplete list of 𝑍′ models may be
found in Refs. [175–196].

5As mentioned above, and shown in Chapter 7, the global anomalies in such models also vanish, so they
really are all anomaly-free.
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energies, whose presence would cancel the apparent low-energy anomaly. The SM with the
heavy top quark integrated out provides a phenomenologically important realisation of this
scenario. Indeed, the presence of an anomaly in the low-energy description can often be
cancelled by a WZ term [197].6 One might therefore suggest that one need not impose
anomaly cancellation in the EFT context.

However, our view is that even when building such a low-energy EFT, it remains prudent
to insist on anomaly cancellation. If not, one should explicitly construct the appropriate
gauged WZ terms to cancel all anomalies in the otherwise anomalous EFT, and derive the
various phenomenological consequences of these terms. We know, for example, that they
will entail new interactions of the SM gauge bosons, as we have discussed in the context of
the chiral lagrangian as well as in Composite Higgs models. Moreover, even if a specific set
of anomalies can be cancelled by new UV physics, such as a set of heavy chiral fermions
(whose vestige at low energies is the WZ term), it is usually difficult know for certain that
these chiral fermions can be given heavy enough masses in a consistent framework.7

Finally, if anomaly cancellation in low-energy EFTs may be ignored, it is at best curious
that the SM cancels the anomalies of its gauge groups. We strongly suspect that the SM is at
most an EFT description of fundamental physics, since it does not include dark matter, have
sufficient baryogenesis, or include gravity, for example. And yet, the SM conspires to be an
anomaly-free, perfectly consistent renormalisable gauge field theory in and of itself. Such a
conspiracy might suggest that we should take anomaly cancellation seriously when we try
to go beyond the SM.

Thus, for these reasons, it is pragmatic to ensure anomaly cancellation without the need
for WZ terms,8 as this removes a potential obstacle to finding an UV complete description
of the EFT. This surely motivates an exploration of the space of solutions to the anomaly
cancellation equations.

6Such a WZ term will, in this context, often be gauged. Note that our formalism for classifying and con-
structing WZ terms, developed in Chapters 2 and 5, only applies in the ungauged case.

7Indeed, the example of the SM𝜈𝑅 shall prove to be pertinent and pedagogical here. In the low-energy
effective theory below some high scale associated with the masses of RH neutrinos (which one expects to be
around 1011 − 1013 GeV in order to explain the smallness of the neutrino masses after the see-saw mechanism
has been invoked), two of the “SM anomaly cancellation equations” (i.e. those not including the RH neutrinos)
will appear to be violated, but in a correlated manner. RH neutrinos are a special case where one can give them
large enough masses so that they can ‘soak up’ the anomalies at high energies, being chiral fermions but SM
singlets (so their mass terms are invariant under the SM symmetries). It is hard to imagine how to give non-
SM singlet chiral representations a large mass in an UV anomaly-free theory without breaking electroweak
symmetry prematurely (i.e. at a scale much above the empirically determined electroweak scale around 100
GeV), since the Dirac mass term will necessarily require left-handed particles and a vacuum expectation value
of an electroweak non-singlet.

8Thanks to the topological nature of WZ terms, their coefficients are typically not renormalised. In this
case, their coefficients can be tuned to zero in the EFT in a radiatively stable way.



6.1 𝑈(1) extensions of the Standard Model 153

6.1.2 Diophantine methods for anomaly cancellation
In the more general case of the SM𝜈𝑅 (which contains the SM as a special case in which the
right-handed neutrinos decouple) we have fields transforming in the following representa-
tions of 𝑆𝑈(3) × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 × 𝑈(1)𝐹 :

𝑄𝑖 ∼ (3, 2, 1/6, 𝐹𝑄𝑖), 𝑢𝑖 ∼ (3, 1, 2/3, 𝐹𝑢𝑖), 𝑑𝑖 ∼ (3, 1, −1/3, 𝐹𝑑𝑖),

𝐿𝑖 ∼ (1, 2, −1/2, 𝐹𝐿𝑖), 𝑒𝑖 ∼ (1, 1, −1, 𝐹𝑒𝑖), 𝜈𝑖 ∼ (1, 1, 0, 𝐹𝜈𝑖),

where the index 𝑖 on each charge allows for generic family-dependent charges under 𝑈(1)𝐹 .
Thus, there are eighteen (three families times six ‘species’ of fermion per family) charges
to assign. These charges are rational numbers, which label representations of the compact
group𝑈(1)𝐹 .9 By rescaling the gauge coupling, wemaymoreover take these rational charges
to be valued in integers.

There are six anomaly cancellation conditions (ACCs), arising from the six (potentially
non-vanishing) triangle diagrams involving at least one 𝑈(1)𝐹 gauge boson. The 𝑆𝑈(3)2 ×
𝑈(1)𝐹 ACC is

3

∑
𝑖=1

(2𝐹𝑄𝑖 − 𝐹𝑢𝑖 − 𝐹𝑑𝑖) = 0, (6.3)

the 𝑆𝑈(2)2
𝐿 × 𝑈(1)𝐹 ACC is

3

∑
𝑖=1

(3𝐹𝑄𝑖 + 𝐹𝐿𝑖) = 0, (6.4)

the 𝑈(1)2
𝑌 × 𝑈(1)𝐹 ACC is

3

∑
𝑖=1

(𝐹𝑄𝑖 + 3𝐹𝐿𝑖 − 8𝐹𝑢𝑖 − 2𝐹𝑑𝑖 − 6𝐹𝑒𝑖) = 0, (6.5)

9The reader might wonder whether we could instead consider a gauge group 𝑆𝑈(3)×𝑆𝑈(2)𝐿 ×𝑈(1)𝑌 ×ℝ,
and thus allow the family-dependent charges to be valued in the reals rather than rationals. There are several
theoretical reasons for preferring 𝑈(1) over ℝ (and thus for assuming charges be rational). In a holographic
setting, if the boundary conformal field theory is finitely generated (notationally, has a finite number of fields
in the path integral), then the bulk gauge group must be compact [198, Theorem 6.1]. As finite dimensional
representations of a compact Lie group have charges on a discrete weight lattice, we are then guaranteed rational
charges. In more down-to-earth language, if the ratio of two charges is irrational, they will not fit into a unified,
compact, semi-simple, non-abelian group. For instance, we may imagine that the 𝑈(1)𝑌 × 𝑈(1)𝐹 part of the
SM symmetry (which would otherwise suffer from Landau poles in the gauge coupling at some high energy
scale) is in fact embedded in a unified gauge-symmetry with semi-simple gauge group.
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and the gauge-gravity ACC is

3

∑
𝑖=1

(6𝐹𝑄𝑖 + 2𝐹𝐿𝑖 − 3𝐹𝑢𝑖 − 3𝐹𝑑𝑖 − 𝐹𝑒𝑖 − 𝐹𝜈𝑖) = 0. (6.6)

In addition to these four linear equations, there are two ACCs which are non-linear in the
𝑈(1)𝐹 charges, which correspond to triangle diagrams involvingmore than one 𝑈(1)𝐹 gauge
boson. The 𝑈(1)𝑌 × 𝑈(1)2

𝐹 ACC is the quadratic

3

∑
𝑖=1

(𝐹 2
𝑄𝑖

− 𝐹 2
𝐿𝑖

− 2𝐹 2
𝑢𝑖 + 𝐹 2

𝑑𝑖
+ 𝐹 2

𝑒𝑖) = 0, (6.7)

and finally the 𝑈(1)3
𝐹 ACC is the cubic

3

∑
𝑖=1

(6𝐹 3
𝑄𝑖

+ 2𝐹 3
𝐿𝑖

− 3𝐹 3
𝑢𝑖 − 3𝐹 3

𝑑𝑖
− 𝐹 3

𝑒𝑖 − 𝐹 3
𝜈𝑖) = 0. (6.8)

Thus, solving the set of ACCs in the general case amounts to solving a non-linear system of
Diophantine equations over eighteen integer variables.

Of course, four of the ACCs are linear, so these can be used to eliminate four (of the
eighteen) degrees of freedom. Furthermore, since the system of equations is homogeneous,
one may rescale all charges that specify a solution by any rational number and arrive at
another solution. Thus, the overall normalisation of a solution is not physical. Hence, the
problem reduces to solving for rational points on the intersection of a quadratic with a cubic
over thirteen integer variables; generically, this is a challenging problem to solve in number
theory.

Note also that the ACCs are invariant under permutations of family indices within each
individual ‘species’ of fermion. Hence, we shall identify anomaly-free solutions up to such
permutations, thus quotienting by the discrete group 𝑆5

3 for the SM case, which is of order
65 = 7776. In practice this is implemented by choosing an ordering within each species. In
what follows we choose:

𝐹𝑋1 ≤ 𝐹𝑋2 ≤ 𝐹𝑋3 , ∀𝑋 ∈ {𝑄, 𝐿, 𝑒, 𝑢, 𝑑, 𝜈}. (6.9)

We note that this ordering choice means that 𝐹𝑋1 , 𝐹𝑋2 , and 𝐹𝑋3 do not necessarily corre-
spond to the usual families defined by increasing mass of the corresponding fermion within
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the species 𝑋. The usual ordering is then defined by a permutation of {𝐹𝑋1 , 𝐹𝑋2 , 𝐹𝑋3},
which will in general be a different permutation for each 𝑋.

In what follows, we shall start by considering the simple case where only a single family
of fermions are charged under 𝑈(1)𝐹 , and thence build up to the general case by extending
this to two families, and finally to all three families. For one family, all anomaly-free charge
assignments are indexed by specifying two integers, which we may take to be {𝐹𝑄 , 𝐹𝜈}. For
two families, we shall show that there still exists an explicit parametrisation of all solutions
to the ACCs, which is indexed by choosing {𝐹𝑄+ = 𝐹𝑄1 + 𝐹𝑄2 , 𝐹𝜈+ = 𝐹𝜈1 + 𝐹𝜈2} as well
as four other integers. For three families, such an explicit solution evades us, but we are
nonetheless able to show that all solutions lie in one of two distinct classes by using basic
modular arithmetic arguments.

One family

We begin by rewriting the linear ACCs (6.3-6.6) in terms of the sum of 𝑈(1)𝐹 charges within
a species:

𝐹𝑢+ = 4𝐹𝑄+ + 𝐹𝜈+, 𝐹𝑑+ = −2𝐹𝑄+ − 𝐹𝜈+,
𝐹𝑒+ = −6𝐹𝑄+ − 𝐹𝜈+, 𝐹𝐿+ = −3𝐹𝑄+. (6.10)

If there is only one non-zero 𝑈(1)𝐹 charge per species, or several families where the charges
are all the same within a species,10 then we have 𝐹𝑋+ = 𝐹𝑋 and thus six integers to solve
for, given the four linear constraints (6.10). Once these linear constraints are imposed, the
quadratic and cubic constraints turn out to be automatically satisfied.11 This can be un-
derstood physically; if there is only one family, then 𝑈(1)𝑌 × 𝑈(1)2

𝐹 and 𝑈(1)3
𝐹 are not

independent of the other anomalies. All solutions can be specified by two integers, say 𝐹𝑄
and 𝐹𝜈 , in terms of which the other charges are

𝐹𝑢 = 4𝐹𝑄 + 𝐹𝜈 , 𝐹𝑑 = −2𝐹𝑄 − 𝐹𝜈 , 𝐹𝑒 = −6𝐹𝑄 − 𝐹𝜈 , 𝐹𝐿 = −3𝐹𝑄. (6.11)

Using 𝐹𝑄 to index the solutions has the advantage that any 𝐹𝑄 ∈ Z admits a solution.
10Or, indeed, only two families with non-zero (but identical within a species) charges.
11It is well known that for the SM itself with a single family of fermions, the analogous linear constraints (in-

cluding cancellation of the gauge-gravity anomaly) are sufficient to fix the hypercharges of all the SM fermions,
and the cubic 𝑈(1)3

𝑌 anomaly thence automatically vanishes. Interestingly, it was recently shown that a ‘con-
verse’ of this statement is true [199], in that the equations for cancelling only the gauge anomalies (i.e. including
𝑈(1)3

𝑌 anomaly cancellation, but not gauge-gravity cancellation) admit only a pair of rational solutions, on both
of which the gauge-gravity anomaly automatically vanishes.
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Note that if we set 𝐹𝜈 = 0 and decouple the RH neutrinos, the solution in (6.11) is
unique up to normalisation, and corresponds to gauging an additional hypercharge in a direct
product, such as in the Third Family Hypercharge model [4] (which we discuss in §6.2.1).

For another example of a one-family solution that has received much attention in the
literature, consider setting 𝐹𝜈 = −3𝐹𝑄. Then the solution in (6.11) reduces to gauging 𝐵−𝐿,
baryon number minus lepton number within one family (or universally), as has appeared in
Refs. [190, 200].

Two families

For two families, we now have twelve integer charges to solve for. As before, we can imme-
diately apply the four linear constraints to remove four variables, although now the quadratic
and cubic constraints are not automatically satisfied; thus, it is only with multiple families of
the SM that the non-linearity of the ACCs becomes important. We shall find that elementary
methods from Diophantine analysis can be brought to bear to solve this system completely,
resulting in a solution space parametrised by four integers. This solvability is largely thanks
to a simplification: the cubic ACC (6.8) reduces to a quadratic constraint, and moreover
vanishes completely if 𝐹𝜈+ = 0.

To solve the ACCs with two families, we use the following change of variables

𝐹𝑋+ = 𝐹𝑋1 + 𝐹𝑋2 , 𝐹𝑋− = 𝐹𝑋1 − 𝐹𝑋2 , (6.12)

This choice is a judicious one, because we find that the linear ACCs depend only on {𝐹𝑋+},
with the pair of nonlinear conditions depending only on {𝐹𝑋−}. We can therefore fix all
𝐹𝑋+ in terms of 𝐹𝑄+ and 𝐹𝜈+ just as in the one family case, and then solve the remaining
pair of equations

0 = 𝐹 2
𝑄− + 𝐹 2

𝑑− + 𝐹 2
𝑒− − 𝐹 2

𝐿− − 2𝐹 2
𝑢−, (6.13)

0 = 𝐹𝜈+ (3𝐹 2
𝑑− + 𝐹 2

𝑒− − 𝐹 2
𝜈− − 3𝐹 2

𝑢−) , (6.14)

which are now both quadratic Diophantine equations.
Any quadratic Diophantine equation of the form

𝑥2
1 +

𝑁−1

∑
𝑘=2

𝑛𝑘𝑥2
𝑘 = 𝑥2

𝑁 (6.15)
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has an infinite number of solutions. Fortunately, they can be parametrised explicitly by a set
{𝑎𝑗} of 𝑁 − 1 integers,12 viz.

𝑥𝑗 =
⎧
⎪
⎨
⎪
⎩

𝑎2
1 − ∑𝑁−1

𝑘=2 𝑛𝑘𝑎2
𝑘, 𝑗 = 1

2𝑎1𝑎𝑗 , 2 ≤ 𝑗 ≤ 𝑁 − 1
𝑎2

1 + ∑𝑁−1
𝑘=2 𝑛𝑘𝑎2

𝑘, 𝑗 = 𝑁.
(6.16)

In the present case, this allows us to parametrise the 𝐹𝑋− when 𝐹𝜈+ = 0 in terms of four
positive integers {𝑎, 𝑎𝑒, 𝑎𝑑 , 𝑎𝑢}:

𝐹𝑄− = 𝑎2 − 𝑎2
𝑑 − 𝑎2

𝑒 + 2𝑎2
𝑢, 𝐹𝐿− = 𝑎2 + 𝑎2

𝑑 + 𝑎2
𝑒 − 2𝑎2

𝑢,
𝐹𝑑− = 2𝑎𝑎𝑑 , 𝐹𝑒− = 2𝑎𝑎𝑒, 𝐹𝑢− = 2𝑎𝑎𝑢, (6.17)

and when 𝐹𝜈+ ≠ 0 in terms of four positive integers {𝑎, 𝐴, 𝐴𝑑 , 𝐴𝑢}, where the parametrisa-
tion is now given by

𝐹𝑄− = 𝑎2 − 4𝐴2𝐴2
𝑑 − (𝐴2 − 3𝐴2

𝑑 + 3𝐴2
𝑢)2 + 8𝐴2𝐴2

𝑢,
𝐹𝐿− = 𝑎2 + 4𝐴2𝐴2

𝑑 + (𝐴2 − 3𝐴2
𝑑 + 3𝐴2

𝑢)2 − 8𝐴2𝐴2
𝑢,

𝐹𝜈− = 2𝑎 (𝐴2 + 3𝐴2
𝑑 − 3𝐴2

𝑢) ,
𝐹𝑒− = 2𝑎 (𝐴2 − 3𝐴2

𝑑 + 3𝐴2
𝑢) ,

𝐹𝑑− = 4𝑎𝐴𝐴𝑑 , 𝐹𝑢− = 4𝑎𝐴𝐴𝑢. (6.18)

Scanning over these positive integers will generate a complete list of the 𝐹𝑋− .
For an example of a well-studied charge assignment in this two family class, one may

obtain the well-known 𝐿𝜇 − 𝐿𝜏 anomaly-free assignment of charges [201, 178, 184] by first
setting all of the quark charges to zero, which implies (by (6.11)) that the remaining sums of
charges all vanish also. Then (6.13, 6.14) reduce to a single non-trivial equation, 𝐹 2

𝑒− =
𝐹 2

𝐿−, with 𝐹𝜈− being unconstrained, leading to solutions (𝐹𝐿2 , 𝐹𝐿3 , 𝐹𝑒2 , 𝐹𝑒3 , 𝐹𝜈2 , 𝐹𝜈3) =
(𝑎, −𝑎, 𝑎, −𝑎, 𝑏, −𝑏) for any two integers 𝑎 and 𝑏, from which we recover the 𝐿𝜇 − 𝐿𝜏 as-
signment, which is known to be anomaly-free either with (𝑏 = 𝑎) or without (𝑏 = 0) the
inclusion of RH neutrinos.

12To see that this parametrisation provides a complete list of all solutions (up to rescalings), consider any
particular solution {𝑥′

𝑗 }. This solution will be generated by the map in (6.16), given the set of integers 𝑎1 =
𝑥′

1 + 𝑥′
𝑁 and 𝑎𝑗 = 𝑥′

𝑗 for 2 ≤ 𝑗 ≤ 𝑁 − 1, up to a rescaling by 1/2(𝑥1 + 𝑥𝑁 ). Thus scanning over all {𝑎𝑗} will
generate all possible solutions.
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Three families

Finally we consider the case of three non-trivial 𝑈(1)𝐹 charges per species, for which there
are eighteen integer charges to solve for: {𝐹𝑄𝑖 , 𝐹𝑢𝑖 , 𝐹𝑑𝑖 , 𝐹𝑒𝑖 , 𝐹𝐿𝑖 , 𝐹𝜈𝑖}, where 𝑖 = 1, 2, 3.
As before, we can apply the four linear constraints to remove four variables, but now the
quadratic and cubic constraints (6.7) and (6.8) are fully independent.

We make an analogous change of variables

𝐹𝑋+ = 𝐹𝑋1 + 𝐹𝑋2 + 𝐹𝑋3 , 𝐹𝑋32 = 𝐹𝑋3 − 𝐹𝑋2 , ̄𝐹𝑋 = 𝐹𝑋3 + 𝐹𝑋2 − 2𝐹𝑋1 , (6.19)

which is again a wise choice because the linear conditions depend only on 𝐹𝑋+, meaning all
the 𝐹𝑋+ are fixed as above in terms of 𝐹𝑄+ and 𝐹𝜈+, and the nonlinear conditions depend
only on 𝐹𝑋32 and ̄𝐹𝑋 . But this is not all. As we noted above, the six ACCs are invariant
under permuting the three families. In our new variables, such family permutations are
implemented by the transformations

𝐹𝑋32 → −𝐹𝑋32 and ̄𝐹𝑋 → ̄𝐹𝑋 (permute families 2 and 3), (6.20)

and

𝐹𝑋32 →
𝐹𝑋32 + ̄𝐹𝑋

2 and ̄𝐹𝑋 →
3𝐹𝑋32 − ̄𝐹𝑋

2 (permute families 1 and 2). (6.21)

Thus, permutation invariance ensures that the cubic ACC cannot depend on odd powers of
𝐹𝑋32 , and so can at most be quadratic in 𝐹𝑋32 .

Indeed, the remaining non-linear ACCs are

3 (𝐹 2
𝑄32

+ 𝐹 2
𝑒32 + 𝐹 2

𝑑32
− 𝐹 2

𝐿32
− 2𝐹 2

𝑢32) + ( ̄𝐹 2
𝑄 + ̄𝐹 2

𝑒 + ̄𝐹 2
𝑑 − ̄𝐹 2

𝐿 − 2 ̄𝐹 2
𝑢 ) = 0, (6.22)

and

9[6 ̄𝐹𝑄𝐹 2
𝑄32

+ 2 ̄𝐹𝐿𝐹 2
𝐿32

+ 3(2𝐹𝜈+ − ̄𝐹𝑑)𝐹 2
𝑑32

+ (2𝐹𝜈+ − ̄𝐹𝑒)𝐹 2
𝑒32

− 3(2𝐹𝜈+ + ̄𝐹𝑢)𝐹 2
𝑢32 − (2𝐹𝜈+ + ̄𝐹𝜈)𝐹 2

𝜈32]
= 6 ̄𝐹 3

𝑄 + 2 ̄𝐹 3
𝐿 − 3 ̄𝐹 3

𝑑 − 3 ̄𝐹 3
𝑢 − ̄𝐹 3

𝑒 − ̄𝐹 3
𝜈 − 6𝐹𝜈+ [3 ̄𝐹 2

𝑑 − 3 ̄𝐹 2
𝑢 + ̄𝐹 2

𝑒 − ̄𝐹 2
𝜈 ] . (6.23)

Thus, if we specify the six ̄𝐹𝑋 , then we are left with a pair of quadratic Diophantine equations
for the 𝐹𝑋32 to solve. Unfortunately, these cannot be solved using the neat parametrisation
used in the two-family case above, and in this thesis we will not give an explicit solution in
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this general three-family case. At least we can say that, given our ordering condition (6.9)
(which translates to 0 ≤ 𝐹𝑋32 ≤ ̄𝐹𝑋), each choice of the ̄𝐹𝑋 restricts the set of 𝐹𝑋32 to a
finite range for which there is guaranteed to be a finite family of solutions, which can be
found numerically.

We can in fact say a littlemore than this. By applying basicmodular arithmetic arguments
to this pair of quadratics, we shall show that the sets of ̄𝐹𝑋 charges which admit solutions
for the 𝐹𝑋32 can in fact be classified in the case where 𝐹𝜈+ = 0, and fall into two distinct
classes. In the case of the SM𝜈𝑅 with three families and no other constraints on the charges,
we find that the full solution space evades even a classification such as this, at least using
our methods.

To that end, consider parametrising the charges modulo 3. One may deduce that

̄𝐹𝑋 = 𝐹𝑋+ mod 3, (6.24)

which follows the definitions of ̄𝐹𝑋 and 𝐹𝑋+.13 In the case where 𝐹𝜈+ = 0, (6.10) then
immediately implies that (since 𝐹𝑄+ ∈ ℤ)

̄𝐹𝐿 = ̄𝐹𝑒 = 0 mod 3. (6.25)

If we parametrise the remaining ̄𝐹 variables using

̄𝐹𝑋 = 3𝑛𝑋 + 𝑟𝑋 (6.26)

for integer 𝑛𝑋 and 𝑟𝑋 = −1, 0, +1, then the quadratic ACC implies

𝑟2
𝑄 + 𝑟2

𝑑 = 2𝑟2
𝑢 mod 3, (6.27)

and the cubic constraint turns out to be automatically satisified modulo 3 iff. 𝑟𝜈 = 0 (as can
be seen by substituting in 𝑟3

𝑋 = 𝑟𝑋). The equation (6.27) then has the following solutions:
either 𝑟𝑄 = 𝑟𝑑 = 𝑟𝑢 = 0, which implies ̄𝐹𝑄 = ̄𝐹𝑑 = ̄𝐹𝑢 = 0 modulo 3, or else each of 𝑟𝑄,
𝑟𝑑 , and 𝑟𝑢 are equal to ±1.

In fact, we can go further still and rule out some of these classes by now considering the
cubic ACC modulo 9 (which gives us more information than the same equation considered

13We are very grateful to Joseph Tooby-Smith for sharing this observation with us, and the resulting two-
family classification, which is an improvement on the five-family classification which we originally proposed
in Ref. [6].
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modulo 3). One can show that this implies the constraint

𝑟𝑄 + 𝑟𝑑 + 𝑟𝑢 = 0 mod 3. (6.28)

This, together with (6.27), admits only the solutions 𝑟𝑄 = 𝑟𝑑 = 𝑟𝑢 = 0, 𝑟𝑄 = 𝑟𝑑 = 𝑟𝑢 = +1,
and 𝑟𝑄 = 𝑟𝑑 = 𝑟𝑢 = −1. We can identify the latter two as corresponding to the same
equivalence class of solutions, since it is always possible to perform a rescaling to set (say)
𝑟𝑢 = +1.

Thus, solutions for 𝐹𝑋32 only exist when

( ̄𝐹𝑢, ̄𝐹𝑄, ̄𝐹𝑑 , ̄𝐹𝑒, ̄𝐹𝐿, ̄𝐹𝜈) ∈ (3Z, 3Z, 3Z, 3Z, 3Z, 3Z),
(3Z + 1, 3Z + 1, 3Z + 1, 3Z, 3Z, 3Z). (6.29)

In terms of efficiency, if we scan the six ̄𝐹𝑋 from 1 to 3𝑁 , this has reduced the number of
computations from 36𝑁6 = 729𝑁6 to only 2𝑁6, whenever 𝐹𝜈+ = 0. In Ref. [6], we also
applied our methods to various special cases, motivated by phenomenological criteria.

If we include three right-handed neutrinos with generic charges (i.e. we do not force
𝐹𝜈+ = 0), then we have not been able to obtain a general classification of anomaly-free
solutions similar to (6.29).

6.1.3 An anomaly-free atlas
In the absence of such a classification, in Ref. [6] we also developed an efficient computa-
tional search program which can be used to find all anomaly-free charge assignments, with
integer charges whose magnitudes are bounded by some user-defined 𝑄max ∈ ℕ. The de-
tails of the program, which was designed and written by Ben Allanach, are described in
Ref. [6]. The full lists of solutions that result, which we refer to as the ‘anomaly-free atlas’,
are made available in the form of labelled, easily read ASCII files for public use on Zenodo
at http://doi.org/10.5281/zenodo.1478085 [202] for 𝑄max ≤ 10 in both the SM and in the
SM𝜈𝑅. The program itself is also made available there if a larger value of 𝑄max is desired
by the user.

For the purposes of this thesis, we content ourselves to summarize some results from
our numerical investigations. Needless to say, we find a vast space of anomaly-free theo-
ries, of which only some small fraction have been explored in the literature. For example,
with 𝑄max = 6, there are more than 105 inequivalent (up to rescalings and permuting fami-
lies) charge assignments if three right-handed neutrinos are included. We list the number of
(equivalence classes of) solutions as a function of 𝑄max ≤ 10, for the SM and the SM𝜈𝑅, in

http://doi.org/10.5281/zenodo.1478085
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𝑄max Solutions Symmetry Quadratics Cubics Time/sec

1 8 8 32 8 0.0
2 22 14 1861 161 0.0
3 82 32 23288 1061 0.0
4 251 56 303949 7757 0.0
5 626 114 1966248 35430 0.0
6 1983 144 11470333 143171 0.2
7 3902 252 46471312 454767 0.6
8 7068 336 176496916 1311965 2.2
9 14354 492 539687692 3310802 6.7
10 23800 582 1580566538 7795283 20

Table 6.1 Number of inequivalent solutions to the anomaly equations for SM fermion content
and different maximum 𝑈(1)𝐹 charge 𝑄max. The column marked “Symmetry” shows how
many of the solutions are invariant under invariant under reversing the signs of all charges,
which we can see soon becomes a minority as 𝑄max gets larger. We also list the number
of quadratic and cubic anomaly equations checked by the program, as well as the real time
taken for computation on a DELL� XPS 13-9350 laptop.

Tables 6.1 and 6.2. We display this information graphically on the left-hand-side of Fig. 6.1,
along with some approximate numerical fits to the asymptotic behaviour for larger 𝑄max. For
the case of the SM, we checked that all solutions do indeed fall into one of the two classes
that were identified analytically in (6.29).

On the other side of the coin, anomaly cancellation is a stringent constraint on 𝑈(1)𝐹
charges. With 𝑄max = 6, say, and including right-handed neutrinos, only about one in every
billion possible charge assignments happens to be anomaly-free. The fraction of possible
charge assignments which are anomaly-free is plotted as a function of 𝑄max on the right-
hand-side of Fig. 6.1. Interestingly, while the number of solutions is of course larger in the
SM𝜈𝑅 than in the SM (by about two or three orders of magnitude), the anomaly-free fraction
is roughly the same in the SM and the SM𝜈𝑅 as a function of 𝑄max, at least up to 𝑄max = 10.
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𝑄max Solutions Symmetry Quadratics Cubics Time/sec

1 38 16 144 38 0.0
2 358 48 31439 2829 0.0
3 4116 154 1571716 69421 0.1
4 24552 338 34761022 932736 0.6
5 111152 796 442549238 7993169 6.8
6 435305 1218 3813718154 49541883 56
7 1358388 2332 24616693253 241368652 312
8 3612734 3514 127878976089 978792750 1559
9 9587085 5648 558403872034 3432486128 6584
10 21546920 7540 2117256832910 10687426240 24748

Table 6.2 Number of inequivalent solutions to the anomaly equations for SM𝜈𝑅 fermion
content and different maximum 𝑈(1)𝐹 charges 𝑄max.
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Fig. 6.1 Left - the number of inequivalent anomaly-free solutions with a given 𝑄max, together
with the functions 1 + 𝑎 exp(𝑏𝑄max + 𝑐𝑄2

max) − 𝑎 which fit the growth of the number of
solutions, with 𝑎 = 22.5, 𝑏 = 2.0, and 𝑐 = −0.062 for the SM𝜈𝑅, and 𝑎 = 2.50, 𝑏 = 1.34,
and 𝑐 = −0.043 for the SM. Right - the fraction of all inequivalent charge assignments which
is anomaly-free for a given 𝑄max.
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6.2 𝑍 ′ model building for rare 𝐵-meson decays
Extensions of the SM by a family-dependent 𝑈(1)𝐹 gauge symmetry have been explored
extensively in the recent phenomenology literature, thanks to their potential to explain some
interesting data in neutral current rare 𝐵-meson decays that is in tension with SM predic-
tions. Having charted in detail the space of such SM×𝑈(1)𝐹 charge assignments which are
anomaly-free, in this Section we shall develop two anomaly-free charge assignments from
the anomaly-free atlas of §6.1 into models capable of explaining these 𝐵-meson decays.
These models, which we summarize in the rest of this Chapter, are described in detail in
Refs. [4, 5].

The tension which these models will purport to explain is between various experimen-
tal measurements involving 𝑏 → 𝑠𝜇𝜇 transitions, for example in the LHCb collaboration’s
measurements of the lepton flavour universality (LFU) ratios

𝑅𝐾(∗) = 𝐵𝑅(𝐵 → 𝐾 (∗)𝜇+𝜇−)
𝐵𝑅(𝐵 → 𝐾 (∗)𝑒+𝑒−)

, (6.30)

and their SM predictions. For the di-lepton invariant mass-squared bin 𝑞2 ∈ [1.1, 6]GeV2,
the SMpredicts𝑅𝐾 (∗) is equal to unity at the percent level, but LHCb hasmeasured [173, 203]
𝑅𝐾 = 0.846+0.060

−0.054
+0.016
−0.014 and 𝑅𝐾∗ = 0.69+0.11

−0.07 ± 0.05 in this 𝑞2 bin, where the first (second)
uncertainty is statistical (systematic). LHCb has also measured 𝑅𝐾∗ = 0.66+0.11

−0.07 ± 0.03 for
the low momentum bin 𝑞2 ∈ [0.045, 1.1]GeV2, which is again about 2.5𝜎 under the SM
prediction [204]. There are further notable discrepancies with the SM predictions in mea-
surements of 𝐵𝑅(𝐵𝑠 → 𝜇𝜇) [205–207, 204], and in 𝐵 → 𝐾∗𝜇+𝜇− angular observables such
as 𝑃 ′

5 [208–213]. For a comprehensive survey of these anomalies in the decays of neutral
𝐵 mesons, which we henceforth refer to collectively as the ‘neutral current 𝐵 anomalies’
(NCBAs), see e.g. Ref. [7].

While none of these individual measurements are particularly striking, they all point
coherently towards a common new physics explanation, which features lepton flavour uni-
versality violation between electrons and muons. In particular, all these deviations in the
data can be explained by including BSM contributions to the following pair of dimension
six operators in the Standard Model Effective Field Theory (SMEFT)

ℒ𝑏𝑠𝜇𝜇 = 𝐶𝐿
(36 TeV)2 (𝑠𝐿𝛾𝜌𝑏𝐿)(𝜇𝐿𝛾𝜌𝜇𝐿) + 𝐶𝑅

(36 TeV)2 (𝑠𝐿𝛾𝜌𝑏𝐿)(𝜇𝑅𝛾𝜌𝜇𝑅). (6.31)

The dimensionful denominator in front of each effective coupling is equal to 4𝜋𝑣2/(𝑉𝑡𝑏𝑉 ∗
𝑡𝑠𝛼),

where 𝑣 = 174 GeV is the SMHiggs VEV, 𝛼 is the fine structure constant and 𝑉𝑡𝑏 and 𝑉𝑡𝑠 are
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Cabbibo-Kobayashi-Maskawa (CKM) matrix elements.14 The SM contributes 𝐶𝑆𝑀
𝐿 = 8.64

and 𝐶𝑆𝑀
𝑅 = −0.18 (where we have borrowed the numerics from Ref. [214]), arising from

one-loop 𝑊 boson exchange.
Indeed, either of the one-parameter families where 𝐶𝑅 = 0 (purely left-handed coupling

to muons) or 𝐶𝐿 = 𝐶𝑅 (vector-like coupling to muons) gives a better fit to the data by five
or six standard deviations (at the best fit point) compared to the SM, a robust conclusion that
has been found using various methodologies for performing the global fit to data [215, 216,
7, 217].

These EFT operators may arise from integrating out some heavy new particle which
preferentially couples to muons rather than electrons. At tree-level, this new particle could
either be a flavour-dependent leptoquark or a 𝑍′ with flavour dependent couplings, as we
noted above.15 It is the latter possibility that we focus on in the rest of this Chapter, for which
the 𝑍′ derives from a spontaneously broken 𝑈(1)𝐹 gauge symmetry with family-dependent
couplings, of the kind studied in §6.1.

Such a family-dependent 𝑈(1)𝐹 gauge interaction is intriguing because it necessarily
breaks the 𝑈(3)5 flavour symmetry of the gauge sector of the SM. As we discussed at the
beginning of this Chapter, this 𝑈(3)5 flavour symmetry is otherwise broken only by the
Yukawa sector of the SM. It therefore seems plausible that such a family-dependent gauge
interaction might be connected to the family-dependent Yukawa couplings of the SM, and
might indeed offer some explanation for the peculiar structures observed in the Yukawa
sector. In both the models that we shall describe in the remainder of this Chapter, we indeed
find that the particular 𝑈(1)𝐹 gauge symmetries that we invoke to explain the rare 𝐵-meson
decay data simultaneously shed some light on coarse features of the flavour puzzle.

More generally, one might view the flavour universality violation observed in rare 𝐵-
meson decays as opening a window onto BSM physics linked with the flavour puzzle. The
measurements of rare 𝐵-meson decays therefore raises the exciting possibility of experimen-
tally probing new physics which could explain the pattern of hierarchies in fermion masses
and mixings.

6.2.1 The Third Family Hypercharge Model
Let us suppose that the NCBAs are mediated by a heavy 𝑍′ boson, deriving from a sponta-
neously broken 𝑈(1)𝐹 gauge symmetry by which we extend the SM. In addition to the 𝑍′,
we require a complex scalar field, call it 𝜙, which we suppose is charged only under 𝑈(1)𝐹

14𝑉𝑡𝑠 has a tiny imaginary component, which we neglect.
15Other approaches based on more complete model set-ups have been discussed, for example Composite

Higgs [218, 219], composite leptoquark [220], or warped extra dimensional [221, 222] models.
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𝐹𝑄′
𝑖

= 0 𝐹𝑢𝑅
′
𝑖

= 0 𝐹𝑑𝑅
′
𝑖

= 0 𝐹𝐿′
𝑖

= 0 𝐹𝑒𝑅
′
𝑖

= 0 𝐹𝐻 = −1/2
𝐹𝑄′

3
= 1/6 𝐹𝑢′

𝑅3
= 2/3 𝐹𝑑′

𝑅3
= −1/3 𝐹𝐿′

3
= −1/2 𝐹𝑒′

𝑅3
= −1 𝐹𝜙

Table 6.3 𝑈(1)𝐹 charges of the fields in the Third Family Hypercharge Model, where 𝑖 ∈
{1, 2}. All gauge anomalies, mixed gauge anomalies and mixed gauge-gravity anomalies
cancel.

for simplicity, responsible for breaking 𝑈(1)𝐹 at the TeV scale. In the spirit of bottom-up
model building, we shall not introduce any further fields beyond those of the SM. Nonethe-
less, as long as we generate the required 𝑍′ couplings to 𝑏𝑠 and 𝜇𝜇, there remains a huge
space of possible 𝑈(1)𝐹 charge assignments we might care to consider that could explain the
NCBAs (while being consistent with other experimental bounds). We therefore need some
additional theory input to constrain the 𝑈(1)𝐹 charges.

As we put forward in §6.1.1, even if we interpret the SM extension by 𝑈(1)𝐹 as only an
EFT that extends the realm of validity of the SM up past the TeV scale, it is prudent to insist
on anomaly cancellation. Thus, we shall restrict our attention to the atlas of anomaly-free
𝑈(1)𝐹 charge assignments that formed the subject of §6.1.

Yet even within this atlas there is a huge anomaly-free parameter space to explore. We
should thus cast an eye back to the data, in search of further guidance. One stand-out feature
of the data is the absence of similar experimental discrepancies in the semileptonic decays
of lighter mesons, such as kaons, pions, or charm-mesons. The fact that the tension is seen
only in the decay of bottommesons suggests that whatever new physics underlies the NCBAs
couples primarily to the third-family quarks. This third-family-alignment is further hinted at
by both the absence of significant deviations with respect to the SM predictions for neutral
meson mixing in the kaon and 𝐵𝑑 systems, and also the current absence of direct 𝑍′ pro-
duction in 𝑝𝑝 collisions at the LHC (since the production cross-section would be enhanced
by sizeable couplings of the 𝑍′ to valence quarks).

Taking this hint seriously, we first suppose that only the third family of quarks and lep-
tons are charged under 𝑈(1)𝐹 in the weak eigenbasis, with couplings to the lighter families
generated by the rotation to the mass eigenbasis. In this case, our analysis in §6.1.2 tells us
that anomaly cancellation fixes a unique charge assignment for the third family SM fermions,
which is simply proportional to hypercharge.
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The heaviness of the third family

Thus, we introduce the ‘Third Family Hypercharge Model’ (TFHM) to explain the NCBAs,
inwhich the charges of the third family fields in theweak eigenbasis equal their hypercharges,
with the first two families being uncharged under 𝑈(1)𝐹 . The charge assignment is listed in
Table 6.3, where in this Section we shall use primed symbols to denote fields in the weak
eigenbasis (for both fermions and gauge bosons), with unprimed symbols reserved for the
physical mass eigenstates. Intriguingly, this charge assignment, which is the unique choice
following our assumption of third-family-alignment, has interesting consequences for the
SM Yukawa sector and the flavour problem.

With such a charge assignment the Yukawa couplings of the SM are not now all gauge
invariant. If we assign the Higgs a 𝑈(1)𝐹 charge also equal to its hypercharge, then the only
gauge invariant Yukawa couplings are those of the third family:

ℒYukawa = 𝑌𝑡𝑄3′𝐻𝑢′
3 + 𝑌𝑏𝑄3′𝐻𝑐𝑑′

3 + 𝑌𝜏𝐿3′𝐻𝑐𝑒′
3 + 𝐻.𝑐., (6.32)

where we suppress gauge indices and 𝐻𝑐 = (𝐻+, −𝐻0∗)𝑇 . In the spirit of EFT, we nonethe-
less expect a perturbation around this renormalisable Yukawa sector due to higher-dimension
operators. While an explanation of the precise hierarchies observed in the quark and lepton
masses andmixing angles would requiremore detailedmodel building of the UV physics, the
zeroth-order predictions of such a setup are that (i) the third family is hierarchically heav-
ier than the first two, and (ii) quark mixing angles are small,16 thus shedding light on the
coarsest features of the SM flavour problem.

In the next few Subsections we shall flesh out some of the details of the model. We
begin by discussing the pattern of spontaneous symmetry breaking in the model, and the
corresponding spectrum of massive gauge bosons.

Masses of gauge bosons and 𝑍 − 𝑍′ mixing

The 𝑈(1)𝐹 symmetry is assumed to be spontaneously broken by the complex scalar field 𝜙,
which is a SM singlet but has non-zero charge 𝐹𝜙 under 𝑈(1)𝐹 , acquiring a non-zero VEV
⟨𝜙⟩ = 𝑣𝐹 . We denote the original 𝑈(1)𝐹 gauge boson by 𝑋, reserving the name 𝑍′ for the
physical boson (which is a mass eigenstate).

The mass terms for the neutral gauge bosons, which of course come from the kinetic
terms for𝐻 and𝜙 once expanded about their VEVs, are of the formℒ𝑁,mass = 1

2A
′𝑇
𝜇 ℳ2

𝑁A′
𝜇,

16Note that lepton mixing is not necessarily expected to be small, because we have not specified a mass
sector for neutrinos.



6.2 𝑍′ model building for rare 𝐵-meson decays 167

where A′
𝜇 = (𝐵𝜇, 𝑊 3

𝜇 , 𝑋𝜇)𝑇 are the gauge eigenstates, and

ℳ2
𝑁 = 𝑣2

4

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑔′2 −𝑔𝑔′ 𝑔′𝑔𝐹

−𝑔𝑔′ 𝑔2 −𝑔𝑔𝐹

𝑔′𝑔𝐹 −𝑔𝑔𝐹 𝑔2
𝐹 (1 + 4𝑟2𝐹 2

𝜙)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (6.33)

where 𝑟 ≡ 𝑣𝐹 /𝑣 ≫ 1 is the ratio of the VEVs and, as usual, 𝑔 and 𝑔′ denote the gauge
couplings for 𝑆𝑈(2)𝐿 and 𝑈(1)𝑌 respectively, and 𝑔𝐹 denotes the gauge coupling for 𝑈(1)𝐹 .
The mass basis of physical neutral gauge bosons is defined via the rotation (𝐴𝜇, 𝑍𝜇, 𝑍′

𝜇)𝑇 ≡
A𝜇 = 𝑂𝑇A′

𝜇, with

𝑂 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

cos 𝜃𝑤 − sin 𝜃𝑤 cos 𝛼𝑧 sin 𝜃𝑤 sin 𝛼𝑧

sin 𝜃𝑤 cos 𝜃𝑤 cos 𝛼𝑧 − cos 𝜃𝑤 sin 𝛼𝑧

0 sin 𝛼𝑧 cos 𝛼𝑧

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (6.34)

where 𝜃𝑤 is the Weinberg angle (such that tan 𝜃𝑤 = 𝑔′/𝑔). In the (consistent) limit that
𝑀𝑍 /𝑀′

𝑍 ≪ 1 and sin 𝛼𝑧 ≪ 1, the masses of the heavy neutral gauge bosons are given by

𝑀𝑍 ≈ 𝑣
2

√𝑔2 + 𝑔′2, 𝑀𝑍′ ≈ 𝑔𝐹 𝑣𝐹 𝐹𝜙, (6.35)

where the third eigenvalue is zero corresponding to the massless photon. The 𝑍 −𝑍′ mixing
angle is

sin 𝛼𝑧 ≈ 𝑔𝐹

√𝑔2 + 𝑔′2 (
𝑀𝑍
𝑀′

𝑍 )
2

. (6.36)

Recall that we expect 𝑣𝐹 ≫ 𝑣, so that the 𝑍′ is indeed expected to be much heavier than
the electroweak gauge bosons of the SM, and the mixing angle is parametrically small in the
mass ratio.

From the relations A𝜇 = 𝑂𝑇A′
𝜇 and (6.34), one deduces that the photon remains the

same linear combination of 𝐵 and 𝑊 3 as in the SM. The physical 𝑍 boson, however, now
contains a small admixture of the 𝑋 field:

𝑍𝜇 = cos 𝛼𝑧 (− sin 𝜃𝑤𝐵𝜇 + cos 𝜃𝑤𝑊 3
𝜇 ) + sin 𝛼𝑧𝑋𝜇, (6.37)
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and so will inherit small flavour-changing corrections to its fermionic couplings. In partic-
ular, the 𝑍 boson inherits some small flavour non-universality in its couplings to leptons,
which is tightly constrained by precision measurements at LEP (Large Electron-Positron
Collider). These LEP lepton universality measurements shall provide an important bound
on 𝑍′ models of this kind in which the Higgs is charged.

𝑍′ couplings to fermions

We begin with the couplings of the 𝑈(1)𝐹 gauge boson 𝑋𝜇 to fermions in the Lagrangian in
the weak eigenbasis

ℒ𝑋𝜓 = 𝑔𝐹 (
1
6𝑄′

3𝐿𝛾𝜌𝑄′
3𝐿 − 1

2𝐿′
3𝛾𝜌𝐿′

3 − 𝑒′
3𝛾𝜌𝑒′

3 + 2
3𝑢′

3𝛾𝜌𝑢′
3 − 1

3𝑑′
3𝛾𝜌𝑑′

3) 𝑋𝜌. (6.38)

The connection between the weak and mass eigenbases for the fermions is formally the same
as it is in the SM. To wit, the (effective) matrices of Yukawa couplings for each fermion
species, which result in fermion mass terms once the Higgs acquires its VEV, are diagonal-
ized by bi-unitary transformations of the form u′

L → uL ≡ 𝑉 †
𝑢𝐿u

′
L, u

′
R → uR ≡ 𝑉 †

𝑢𝑅u
′
R, &c,

defining the mass eigenbasis (which we denote by the unprimed fields). Where here distin-
guish between the left- and right-handed components of each field using subscripts (𝐿 or 𝑅),
and package together the three families for each species in three-component vectors, denoted
by boldface. The CKM matrix 𝑉 and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-
trix 𝑈 are identified as the particular combinations 𝑉 = 𝑉 †

𝑢𝐿𝑉𝑑𝐿 , and 𝑈 = 𝑉 †
𝜈𝐿𝑉𝑒𝐿 .

Rotating to the mass basis, the couplings in (6.38) become

ℒ𝑋𝜓 = 𝑔𝐹 (
1
6uLΛ(𝑢𝐿)𝛾𝜌uL + 1

6dLΛ(𝑑𝐿)𝛾𝜌dL − 1
2nLΛ(𝑛𝐿)𝛾𝜌nL − 1

2eLΛ(𝑒𝐿)𝛾𝜌eL

+2
3uRΛ(𝑢𝑅)𝛾𝜌uR − 1

3dRΛ(𝑑𝑅)𝛾𝜌dR − eRΛ(𝑒𝑅)𝛾𝜌eR) 𝑍′
𝜌, (6.39)

where each of the couplings ismissing small𝒪 (𝑀2
𝑍 /𝑀′

𝑍
2) terms induced by𝑍−𝑍′ mixing,

and we have defined the 3 by 3 dimensionless Hermitian coupling matrices

Λ(𝐼) ≡ 𝑉 †
𝐼 𝜉𝑉𝐼 , (6.40)
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where 𝐼 ∈ {𝑢𝐿, 𝑑𝐿, 𝑒𝐿, 𝜈𝐿, 𝑢𝑅, 𝑑𝑅, 𝑒𝑅} and

𝜉 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0

0 0 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (6.41)

This completes our definition of the Third FamilyHyperchargeModel. Provided that (𝑉𝑒𝐿)23 ≠
0 and (𝑉𝑑𝐿)23 ≠ 0, (6.39) contains couplings to 𝑏𝐿𝑠𝐿 and 𝜇𝐿𝜇𝐿, and so is a promising model
for explaining the NCBAs.

Phenomenology in an example case

At the coarse level of model building we have presented here, we do not specify the UV
dynamics which are presumed to be responsible for populating the Yukawa sector (beyond
the renormalisable third family matrix elements) via higher-dimension operators in the low-
energy EFT. We do not, as a result, have an explicit model for the mixing matrices {𝑉𝐼};
in order to identify the couplings of the model further, and concretely examine the phe-
nomenology, we need to specify a possible set of {𝑉𝐼}. We now make a number of (fairly
strong) assumptions in order to specify a possible example case of the model with viable
phenomenology, as a proof of principle.

Knowing that we need to generate couplings to 𝑏𝐿𝑠𝐿 and 𝜇𝐿𝜇𝐿 to explain the NCBAs,
we consider the limiting case defined by the rotation matrices

𝑉𝑑𝐿 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0

0 cos 𝜃𝑠𝑏 − sin 𝜃𝑠𝑏

0 sin 𝜃𝑠𝑏 cos 𝜃𝑠𝑏

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and 𝑉𝑒𝐿 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0

0 0 1

0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (6.42)

where we expect | sin 𝜃𝑠𝑏| ∼ 𝒪(|𝑉𝑡𝑠|), together with 𝑉𝑢𝐿 = 𝑉𝑑𝐿𝑉 †, 𝑉𝑢𝑅 = 𝑉𝑑𝑅 = 1, 𝑉𝜈𝐿 =
𝑉𝑒𝐿𝑈 †, and𝑉𝑒𝑅 = 1.17 We shall refer to this particular one-parameter (𝜃𝑠𝑏) family of example
cases of the Third Family Hypercharge Model as the ‘TFHMeg’.

17Note that this choice of 𝑉𝑒𝐿
, which prevents tightly-constrained lepton flavour violating processes such as

𝜏 → 𝜇𝜇𝜇 decay [169] by setting the 𝑍′ coupling to 𝜇±𝜏∓ pairs to zero, implies that the tauon Yukawa must in
fact be suppressed relative to the naïve order one expectation. We will address this issue in §6.2.2.
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With this choice, the lagrangian contains the following couplings relevant for the NCBA
data,

ℒ𝑋𝜓 = (𝑔𝑠𝑏𝑠𝐿𝛾𝜌𝑏𝐿 + 𝑔𝜇𝐿𝜇𝐿𝛾𝜌𝜇𝐿 + 𝑔𝜇𝑅𝜇𝑅𝛾𝜌𝜇𝑅 + 𝐻.𝑐.) 𝑍′
𝜌 + … , (6.43)

where
𝑔𝑠𝑏 = 𝑔𝐹

12 sin 2𝜃𝑠𝑏, 𝑔𝜇𝐿 = −𝑔𝐹
2 , and 𝑔𝜇𝑅 = 0. (6.44)

After integrating out the 𝑍′, we generate a BSM contribution to 𝐶𝐿 in (6.31) that can provide
a good fit to the NCBAs. From a global fit [7] to the most recent NCBA data, the bound on
the TFHMeg is

𝑔𝐹 = 𝑀𝑍′

36 TeV√
24𝑥

sin 2𝜃𝑠𝑏
, where 𝑥 = 1.06 ± 0.16, (6.45)

at the 95% confidence level (CL) [223].
We now address the other important constraints on this model. Firstly, the 𝑔𝑠𝑏 coupling

of the 𝑍′ leads to a tree-level contribution to 𝐵𝑠 − 𝐵𝑠 mixing, which is loop-suppressed
in the SM.18 While there are a number of different calculations, the most recent constraint,
which incorporates lattice data and sum rules [225] with experimental measurements [226],
yields the bound |𝑔𝑠𝑏| ≤ 𝑀𝑍′ /(194 TeV) [223], and thus

𝑔𝐹 < 6𝑀𝑍′

97 TeV
1

sin 2𝜃𝑠𝑏
(6.46)

at the 95% CL. In addition to the 𝑍′ contribution, there is also a tree level contribution to
𝐵𝑠 − 𝐵𝑠 mixing from 𝑍 boson exchange in our model, due to the 𝑍 − 𝑍′ mixing. However,
this contribution is suppressed with respect to the 𝑍′ contribution by 𝒪(𝑀𝑍 /𝑀′

𝑍)2 and so
we neglect it.

Secondly, as we anticipated above, the flavour-dependent couplings inherited by the 𝑍
boson (as a result of mass-mixing between the 𝑍 and 𝑍′) are tightly constrained by LEP
measurements of lepton flavour universality, most notably [169]

𝑅LEP = 0.999 ± 0.003, 𝑅 ≡ Γ(𝑍 → 𝑒+𝑒−)
Γ(𝑍 → 𝜇+𝜇−) . (6.47)

18In our straightforward example case, defined by (6.42), there are no flavour changing currents induced
involving the first generation of down-type quarks; this circumvents similar neutral meson mixing bounds
from the kaon and 𝐵𝑑 systems. Deviating from the example case, such bounds can be computed using the
results of Ref. [224].
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In the Third Family Hypercharge Model, the partial width for 𝑍 → 𝑒+𝑒− is unchanged from
the SM, to leading order in 𝛼𝑧, because the 𝑍′ does not couple to (left-handed or right-
handed) electrons.19 In contrast, the partial width for 𝑍 → 𝜇+𝜇− is modified at leading
order, because of the 𝑋 coupling to left-handed muon pairs. We compute that in the TFHM,
to leading order in sin 𝛼𝑧, we have

𝑅model = 1 − 2𝑔𝐹 (𝑔 cos 𝜃𝑤 − 𝑔′ sin 𝜃𝑤) sin 𝛼𝑧
(𝑔 cos 𝜃𝑤 − 𝑔′ sin 𝜃𝑤)2 + 4𝑔′2 sin2 𝜃𝑤

= 1 − 4.2𝑔2
𝐹 (

𝑀𝑍
𝑀𝑍′ )

2
, (6.48)

which results in the bound
𝑔𝐹 < 𝑀𝑍′

(2.2 TeV) , (6.49)

at the 95% CL [4]. Note that this bound is purely a constraint on the size of the 𝑍′ coupling
to muons, and so is independent of the mixing angle 𝜃𝑠𝑏. The constraints discussed thus
far, coming from the fit to the NCBA data, 𝐵𝑠 − 𝐵𝑠 mixing, and the LFU of 𝑍 couplings,
are displayed in the left-hand-plot of Fig. 6.2, which corresponds to the plot as published in
Ref. [8].

Because the SM Higgs field is charged under the 𝑈(1)𝐹 symmetry in this model, there
will be a multitude of other constraints on the TFHMeg coming from precise measurements
of electroweak observables. In order to properly estimate these constraints, one should re-
ally perform a global fit to the data for all electroweak precision observables, of the kind
performed in Ref. [227]. We postpone such global fits for 𝑍′ models of this ilk for future
work. Here, we shall estimate the severity of these constraints by considering the BSM con-
tribution (at tree level) to the 𝜌-parameter. Depending on which of the electroweak precision
observables 𝑆, 𝑇 , and 𝑈 (see Ref. [169] for their definitions) are allowed to float from zero
when performing the fit to the data, three different experimental bounds on the 𝜌-parameter
may be extracted from the data [169]:

𝜌0 =
⎧
⎪
⎨
⎪
⎩

1.00039 ± 0.00019, 𝑆 = 𝑈 = 0,
1.0005 ± 0.0005, 𝑈 = 0,
1.0005 ± 0.0009, 𝑆, 𝑇 , 𝑈 all unconstrained.

(6.50)

19There is of course a reduction in the 𝑍 boson couplings to electrons arising from the factor of cos 𝛼𝑧 in
(6.37), however this shift is of order 𝛼2

𝑧 and is therefore subleading.
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Fig. 6.2 Bounds on the TFHMeg; in both plots, the white region is allowed parameter space.
Left - the bounds on 𝑔𝐹 /𝑀𝑍′ versus 𝜃𝑠𝑏 from fitting the NCBAs (blue), including constraints
from LEP LFU (red) and 𝐵𝑠 − 𝐵𝑠 mixing (green). Right - we also include an estimate
of constraints coming from the 𝜌-parameter. The shaded violet region is excluded by the
experimental bound on 𝜌 under the assumption that 𝑆, 𝑇 , and 𝑈 all deviate from zero, as is
a reasonable assumption in the TFHM in which 𝑆, 𝑇 , and 𝑈 all receive corrections of order
𝑔2

𝐹 /𝑀2
𝑍′ . For reference, we also plot more aggressive estimates of this bound (the other two

horizontal violet lines), calculated by assuming either that 𝑈 = 0, or that 𝑈 = 𝑆 = 0,
with the latter giving the most aggressive upper bound on 𝑔𝐹 , that would rule out the whole
parameter space of the TFHMeg.
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The TFHM predicts, at tree-level (and up to 𝒪(𝑀𝑍 /𝑀′
𝑍)4),

𝑀2
𝑍 cos2 𝛼𝑧 + 𝑀2

𝑍′ sin2 𝛼𝑧 =
𝑀2

𝑊
cos2 𝜃𝑤

= 𝜌𝑀2
𝑍 ⟹ 𝜌 − 1 =

𝑔2
𝐹

𝑔2 + 𝑔′2
𝑀2

𝑍
𝑀2

𝑍′
(6.51)

where 𝑀𝑊 = 𝑣𝑔/2 as in the SM. The three inferred bounds above translate to the following
constraints at the 95% CL, ranging from the most aggressive estimate of the bound (first) to
the least aggressive (third):

𝑔𝐹 <
⎧
⎪
⎨
⎪
⎩

𝑀𝑍′ /(4.3 TeV),
𝑀𝑍′ /(3.1 TeV),
𝑀𝑍′ /(2.5 TeV).

(6.52)

Arguably, the third (and weakest) of these bounds is the most appropriate for the TFHMeg,
because all of 𝑆, 𝑇 , and 𝑈 receive comparable BSM corrections of order 𝑔2

𝐹 /𝑀2
𝑍′ in the

TFHM. In the right-hand-plot of Fig. 6.2, these three upper bounds on 𝑔𝐹 /𝑀𝑍′ are illus-
trated by the three horizontal violet lines, with the shaded violet region corresponding to
the exclusion by the least aggressive estimate of the bound. While a global fit is required
to accurately locate the bound, it is reasonable to suggest the true bound lies somewhere
between the weakest and strongest of the three bounds plotted. Note, however, that the most
aggressive bound closes out the entire parameter space of the TFHMeg, and so it will be
important to perform a complete electroweak analysis in the future to determine whether or
not the TFHMeg is ruled out.

Finally, there is a constraint coming from direct searches for the 𝑍′ at colliders, for
example in the dimuon decay channel. This constraint was computed for the TFHM in
Ref. [223], by recasting the most recent 𝑍′ → 𝜇+𝜇− search from ATLAS [228], which
uses 139 fb−1 of 13 TeV 𝑝𝑝 collisions at the LHC. There are also less stringent constraints
coming from 𝑍′ searches to other final states. Specifically, ATLAS has released 13 TeV
36.1 fb−1 𝑍′ → 𝑡 ̄𝑡 searches [229, 230], which impose 𝜎 × 𝐵𝑅(𝑍′ → 𝑡 ̄𝑡) < 10 fb for large
𝑀𝑍′ . There is also a search [231] for 𝑍′ → 𝜏+𝜏− for 10 fb−1 of 8 TeV data, which rules
out 𝜎 × 𝐵𝑅(𝑍′ → 𝜏+𝜏−) < 3 fb for large 𝑀𝑍′ . The dimuon search is, of these, the most
constraining, and it is this bound which is plotted in Fig. 6.3, a plot we have borrowed from
Ref. [223]. Note that this plot does not include constraints from the 𝜌-parameter, but does in-
clude (weaker) constraints coming from other LHC searches, as computed using the CONTUR
tool (turquoise) [223, 232].
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Fig. 6.3 Constraints on the TFHMeg, including the constraint from direct 𝑍′ → 𝜇𝜇 searches
at ATLAS, in the 𝜃𝑠𝑏 vs. 𝑀𝑍′ plane. Here, the value of the coupling 𝑔𝐹 is fixed to the central
value from the fit to the NCBAs. Constraints from other electroweak precision observables
such as the 𝜌-parameter are not included in this plot.

Predictions

In addition to direct𝑍′ → 𝜇+𝜇− searches, there are other distinct predictions of the TFHMeg
(and the TFHM in general). Firstly, the 𝑍′ decays predominantly to third family fermions,
with the largest branching ratios to 𝑡 ̄𝑡 (42%) and 𝜏+𝜏− (30%). Nevertheless, the bounds from
dimuon searches (branching ratio of 8%) provide the strongest constraint at present [223].
With the nominal integrated luminosity expected at the HL-LHC being 3000 fb−1, we expect
the parameter space of the TFHMeg to be fully covered by the HL-LHC [223]. In addition
to these exciting prospects from direct searches at the LHC, the TFHM also predicts rare top
decays, 𝑡 → 𝑍𝑢 and 𝑡 → 𝑍𝑐, as a result of flavour-changing 𝑍′ couplings to up-type quarks
and the 𝑍 − 𝑍′ mixing. The current constraints from LHC bounds on 𝐵𝑅(𝑡 → 𝑢, 𝑐), which
we computed in Ref. [4], are weak, but likely to become important in the HL-LHC. Finally,
the TFHMeg predicts a deficit in 𝐵𝑅(𝐵 → 𝐾 (∗)𝜏+𝜏−). Advances in 𝜏 identification and
measurements of, for example, the LFU-probing ratio 𝐵𝑅(𝐵 → 𝐾𝜏+𝜏−)/𝐵𝑅(𝐵 → 𝐾𝑒+𝑒−)
are much anticipated at both LHCb and Belle II.



6.2 𝑍′ model building for rare 𝐵-meson decays 175

6.2.2 Naturalising the Third Family Hypercharge Model
Despite the virtues of the TFHM, there is a somewhat ugly feature arising in the charged
lepton sector of the model, as follows. In order to transfer the 𝑍′ coupling from 𝜏′

𝐿 to 𝜇𝐿,
the TFHM requires large mixing between the weak and mass eigenstates of these two fields
if we are to fit the NCBAs. However, this mixing introduces a flavour-changing interaction
through the coupling 𝑔𝜇𝜏𝜇𝐿 /𝑍′𝜏𝐿 + 𝐻.𝑐, which is tightly constrained experimentally by
𝐵𝑅(𝜏 → 3𝜇) [169]. This favours a mixing angle which is very close to 𝜋/2 between the
second and third family left-handed charged leptons, as was chosen in (6.42) to define the
TFHMeg.

However, such a choice is in fact at tension with the setup of the model. A mixing angle
close to 𝜋/2 implies the renormalisable (3,3) Yukawa coupling for charged leptons must
in fact be highly suppressed with respect to the (2,3) and (3,2) Yukawa couplings which,
recall, can only arise from non-renormalisable operators given the charge assignment in the
TFHM. The TFHM model presented above has no explanation for this per se, because the
(3,3) charged lepton Yukawa coupling should be present at the renormalisable level and
must therefore be set to be small without explanation. From the outset, the model appears
less natural because of this. We also saw that, from the phenomenological perspective, the
TFHM is currently close to exclusion due to bounds from electroweak precision observables,
in combination with bounds from 𝐵𝑠 − 𝐵𝑠 mixing.

In this Section, which is based on Ref. [5] written with Ben Allanach, we construct a
deformed version of the TFHMwhich does not require large 𝜇𝐿−𝜏𝐿 mixing in order to obtain
𝑍′ couplings to muons, resulting in a model that preserves the virtues of the TFHM, but is
more natural. We do so by here assuming the third family quarks and leptons and the second
family leptons are charged under 𝑈(1)𝐹 , which we shall see remedies the aforementioned
ugly feature, while preserving the successes of the TFHM. Interestingly, we shall find that,
subject to these assumptions, there is a unique charge assignment in the anomaly-free atlas
for us to use. To wit, the linear subset of ACCs (6.10), along with a choice for the constant
of proportionality, fixes

𝐹𝑄3 = 1, 𝐹𝑢3 = 4, 𝐹𝑑3 = −2, (6.53)

as well as
𝐹𝐿2 + 𝐹𝐿3 = −3, 𝐹𝑒2 + 𝐹𝑒3 = −6. (6.54)

Of the two non-linear ACCs, the cubic one vanishes (aswas shown to be generally true in §6.1
for any two-family charge assignment without right-handed neutrinos), and the quadratic one
becomes simply

𝐹 2
𝑒− − 𝐹 2

𝐿− = 27. (6.55)
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𝐹𝑄′
1

= 0 𝐹𝑢𝑅
′
1

= 0 𝐹𝑑𝑅
′
1

= 0
𝐹𝑄′

2
= 0 𝐹𝑢𝑅

′
2

= 0 𝐹𝑑𝑅
′
2

= 0
𝐹𝑄′

3
= 1/6 𝐹𝑢′

𝑅3
= 2/3 𝐹𝑑′

𝑅3
= −1/3

𝐹𝐿′
1

= 0 𝐹𝑒𝑅
′
1

= 0 𝐹𝐻 = −1/2
𝐹𝐿′

2
= 5/6 𝐹𝑒𝑅

′
2

= 2/3 𝐹𝜙

𝐹𝐿′
3

= −4/3 𝐹𝑒′
𝑅3

= −5/3

Table 6.4 𝑈(1)𝐹 charges of the fields in the Deformed Third Family Hypercharge Model
(DTFHM), in the weak eigenbasis. All gauge anomalies, mixed gauge anomalies and mixed
gauge-gravity anomalies cancel with this charge assignment. At this stage, 𝐹𝜙 is left unde-
termined.

This equation is guaranteed to have at least one integer solution, because any odd number
2𝑚 + 1 can be written as the difference of two consecutive squares, since 2𝑚 + 1 = (𝑚 +
1)2 − 𝑚2. Thus, we have the solution

142 − 132 = 27. (6.56)

While (6.55) has one other integer solution, corresponding to 62 − 32 = 27, this solution just
returns us to the TFHM charge assignment. Thus, choosing 𝐹𝑒− = 14 and 𝐹𝐿− = 13, we
deduce the unique assignment of lepton charges:20

𝐹𝐿2 = +5, 𝐹𝐿3 = −8, 𝐹𝑒2 = +4, 𝐹𝑒3 = −10. (6.57)

In this way, just as in §6.2.1, we see the constraining power of anomaly cancellation in
guiding model building. From hereon we divide all the 𝑈(1)𝐹 charges by 6, so that the
quarks and Higgs doublet have their charges equal to the usual hypercharge assignment. We
use this charge assignment, listed in Table 6.4, to construct a model for the NCBAs which
we call the ‘Deformed Third Family Hypercharge Model’ (DTFHM).

20 Of course, the charge assignment in (6.57) is only unique up to permutations of the family indices within
each species; there are four such permutations, each corresponding to a different deformation of the TFHM.
We choose the particular permutation in (6.57) for simple phenomenological reasons. Firstly, we choose
(𝐹𝐿2

, 𝐹𝐿3
) = (+5, −8) so that 𝐹𝐿2

and 𝐹𝑄3
have the same sign, allowing for the quark mixing to come from the

down quarks only. Secondly, we choose the permutation (𝐹𝑒2
, 𝐹𝑒3

) = (+4, −10) so that |𝐹𝐿2
| > |𝐹𝑒2

|, since
fits to the NCBAs prefer a dominant coupling to left-handed muons, rather than right-handed muons.
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There was in fact a second, albeit less troublesome, niggle in the TFHM setup. If we
were to assume that CKM mixing came from down quarks only, the TFHM would obtain
the wrong sign for 𝐶𝐿 ∝ 𝑔𝑠𝑏𝑔𝜇𝐿 . Thus, additional CKM mixing (of the opposite sign and
roughly double the magnitude) was invoked in the TFHMeg between 𝑡𝐿 and 𝑐𝐿, allowing 𝑔𝑠𝑏
to be of the correct sign andmagnitude. In the DTFHMhowever, 𝐹𝐿2 (and 𝐹𝑒2) now have the
same sign as 𝐹𝑄3 . This means that we may assume the CKM mixing comes from the down
quarks only, which would produce a coupling 𝑔𝑠𝑏 ∝ 𝑉𝑡𝑏𝑉 ∗

𝑡𝑠𝐹𝑄′
3
, and obtain 𝐶𝐿 ∝ 𝑔𝑠𝑏𝑔𝜇𝐿 < 0

(neglecting small imaginary parts in the CKM matrix elements), the correct sign for fitting
the NCBAs.

At this stage, let us make a couple more comments concerning this new charge assign-
ment. Firstly, the magnitude of the lepton charges are large compared with 𝐹𝑄3 , which shall
make the constraints from 𝐵𝑠 − 𝐵𝑠 mixing easier to satisfy while simultaneously providing
a good fit to the NCBAs. Secondly, the 𝑍′ coupling to the muon is no longer left-handed,
but we now have 𝐶𝑅 = 4

5𝐶𝐿 (if we assume the mass and weak eigenstates are aligned for the
charged leptons). To our knowledge, no model has been suggested to explain the NCBAs
with this particular ratio ofWilson coefficients. We find that such a combination of operators
can indeed provide a good fit to the NCBA data.

The heaviness of the third family quarks

What are the implications of this new charge assignment for the Yukawa sector of the model,
and thus for the flavour problem? The only renormalisable Yukawa couplings are now

ℒ = 𝑌𝑡𝑄3′𝐻𝑢′
3 + 𝑌𝑏𝑄′

3𝐻𝑐𝑑′
3 + 𝐻.𝑐, (6.58)

In contrast to the TFHM, all Yukawa couplings for the charged leptons are now banned at the
renormalisable level, even the (3,3) element. So there is no expectation for a heavy tauon in
this theory, whose mass would therefore, like the first and second family fermions, arise from
non-renormalisable operators. We find this palatable given 𝑚𝜏 ≃ 1.7 GeV ≪ 𝑚𝑡. Indeed, 𝑚𝜏
is closer to the charm mass, 𝑚𝑐 ≃ 1.3 GeV (which like other second family fermion masses
must also arise at the non-renormalisable level) than it is to either of the third family quark
masses.

In this model, one would still expect the bottom and top quarks to be hierarchically heav-
ier than the lighter quarks, and expect small CKM angles mixing the first two families with
the third. One would not necessarily expect the CKM mixing between the first two families
to be small (as indeed it is not), given the approximate 𝑈(2) symmetry in the light quarks,
as is also the case in the TFHM and many other models.
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Phenomenology of the DTFHM

The phenomenological analysis for this variant 𝑍′ model shares much in common with that
presented above for the TFHM, so we shall avoid repeating ourselves here, and only discuss
in any detail where the analysis differs.

As for the TFHM, we must again specify a set of mixing matrices {𝑉𝐼} which define
the fermion rotation to the mass basis, and thus an example case of the model. The obvious
choice here is simply to assume that the currently measured CKM quark mixing is due to
the down quarks, thus 𝑉𝑑𝐿 = 𝑉 , 𝑉𝑢𝐿 = 1. We shall also assume that the observed PMNS
mixing is due solely to the neutrinos, i.e. 𝑉𝜈𝐿 = 𝑈 †, 𝑉𝑒𝐿 = 1. We note that (in contrast to
the original TFHM), despite there being no charged lepton mixing, there is a 𝑍′ coupling
to muons. For simplicity and definiteness, we choose 𝑉𝑢𝑅 = 1 = 𝑉𝑑𝑅 = 𝑉𝑒𝑅 . These choices
define the DTFHM example case, or ‘DTFHMeg’ for short.

Themost notable difference in the phenomenology is that there is a right-handed coupling
of the 𝑍′ to muons, not just a left-handed coupling, in the specific ratio 𝐶𝑅 = 4

5𝐶𝐿. This
therefore probes a different parameter space in the fit to the NCBAs. Wilson coefficients in
this ratio can still provide a good fit to the NCBAs, with a best-fit 𝜒2 value 38.0 lower than
the SM. Writing (𝐶𝐿, 𝐶𝑅) = (𝛼, 4

5𝛼), we can extract the best-fit point for the normalisation
𝛼 using Fig. 1 of Ref. [7], obtaining

𝛼 = −0.53 ± 0.09. (6.59)

We describe the details of this fit, which was done by Ben Allanach in our joint work [5], in
Appendix C. The couplings in the DTFHMeg relevant to a new physics contribution to the
( ̄𝑏𝑠)( ̄𝜇𝜇) vertices in (6.43) are

𝑔𝑠𝑏 = 𝑉 ∗
𝑡𝑠𝑉𝑡𝑏𝑔𝐹 /6, 𝑔𝜇𝐿 = 5𝑔𝐹 /6, and 𝑔𝜇𝑅 = 2𝑔𝐹 /3. (6.60)

Using 𝑉 ∗
𝑡𝑠𝑉𝑡𝑏 ≈ −0.04 and matching 𝐶𝐿 to 𝛼’s fit value in (6.59), we obtain

0.22 ≤ 𝑔𝐹
1 TeV
𝑀𝑍′

≤ 0.31. (6.61)

as the 95% CL fit to the NCBAs.
The remaining phenomenological bounds are computed in a similar fashion to the TFHM

case, presented in §6.2.1. Of course, given the different couplings in this theory, the nu-
merical values of the bounds all come out different. The constraint from 𝐵𝑠 − ̄𝐵𝑠 mixing,
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computed using the same methodology as in §6.2.1, is here

𝑔𝐹
1 TeV
𝑀𝑍′

< 0.77, (6.62)

which is satisfied by the whole 2𝜎 range favoured by a fit to the NCBAs in (6.61). In the
DTFHMeg, the flavour-changing couplings of the 𝑍′ to down quarks (which arise from our
choice 𝑉𝑑𝐿 = 𝑉 ) also produce BSM corrections to the mixings of other neutral mesons,
specifically to kaon and 𝐵𝑑 mixing. For the DTFHMeg, we compute the 95% CL bound
from neutral kaon mixing to be 𝑔𝐹 (1 TeV/𝑀𝑍′) < 1.46, while that from 𝐵𝑑 mixing is
𝑔𝐹 (1 TeV/𝑀𝑍′) < 0.82, where in both cases we have used the constraints presented in
Ref. [224]. Thus, the bound from 𝐵𝑠 mixing given above turns out to be the strongest of
the three, with none of these bounds intersecting the 2𝜎 region that fits the NCBAs. The
fact that the meson mixing constraints are less severe in the DTFHM than in the TFHM
may be understood by the fact that the magnitudes of the lepton charges are larger in the
DTFHM, which allows the 𝑍′ coupling to 𝑏 ̄𝑠 to be correspondingly weaker while still fitting
the NCBAs.

The bound from LEP measurements of the lepton flavour universality ratio 𝑅 = Γ(𝑍 →
𝑒+𝑒−)/Γ(𝑍 → 𝜇+𝜇−) are computed as before, with the result

𝑅model = 1 + 2
3

𝑔𝐹 (5𝑔 cos 𝜃𝑤 − 13𝑔′ sin 𝜃𝑤) sin 𝛼𝑧
(𝑔 cos 𝜃𝑤 − 𝑔′ sin 𝜃𝑤)2 + 4𝑔′2 sin2 𝜃𝑤

= 1 + 2.6𝑔2
𝐹 (

𝑀𝑍
𝑀𝑍′ )

2
, (6.63)

which results in the bound
𝑔𝐹 < 𝑀𝑍′

(2.1 TeV) , (6.64)

at the 95% CL [4]. Again, as for the 𝐵𝑠 − ̄𝐵𝑠 mixing constraint, this is satisfied by the entire
range favoured by fits to the NCBAs. One might have expected that, due to the enhanced 𝑍′

couplings to muons, the LEP LFU bound would be more aggressive in the DTFHM than in
the TFHM. However, in the DTFHM, a partial cancellation occurs between the contributions
to 𝑅model coming from 𝑔𝜇𝐿𝜇𝐿

𝑍 and 𝑔𝜇𝑅𝜇𝑅
𝑍 . This does not occur in the original TFHM, in which

the coupling of the 𝑍′ (and thus of the 𝑍, after 𝑍 − 𝑍′ mixing) to muons is purely left-
handed. Due to this partial cancellation, this constraint from LEP LFU in the DTFHMeg
is somewhat less aggressive than it would be otherwise, ending up very close to that of the
TFHM example case.
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Finally, there is the bound from direct searches for the 𝑍′ boson at the LHC.We describe
how this constraint was computed in Appendix C.
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Fig. 6.4 Constraints on parameter space of the DTFHMeg. The white region is allowed at
95% CL. We show the regions excluded at the 95% CL by the fit to NCBAs, and by the most
recent direct searches for 𝑍′ → 𝜇+𝜇− (labelled by ‘ATLAS 𝜇𝜇 excl’). Other constraints,
such as from 𝐵𝑠 mixing, or lepton flavour universality of the 𝑍 boson couplings, are less
restrictive than those shown. The example point displayed in Table 6.5 is shown by the dot.
Values of Γ/𝑀𝑍′ label the dashed line contours, where Γ is the width of the 𝑍′. In this plot
we have not included bounds coming from electroweak precision observables such as the
𝜌-parameter, which we plan to compute accurately in future work.

We display the resulting constraints upon the DTFHMeg in Fig. 6.4, with the allowed
region shown in white. This allowed region extends out (beyond the range of the figure) to
𝑀𝑍′ = 12.5 TeV, where the model becomes non-perturbative (i.e. when the width Γ of the
𝑍′ approaches its mass). We see that there is plenty of parameter space where the NCBAs
are fit and where current bounds are not contravened. Bounds from 𝐵𝑠 mixing and lepton
flavour universality of 𝑍 couplings are much weaker than those shown, and do not impact
on the domain of parameter space shown in the figure; the model is much less constrained
than the TFHM introduced in §6.2.1. The region to the right-hand-side of the Γ/𝑀𝑍′ = 0.1
contour in the figure is an extrapolation of the bounds from direct searches (using (C.5) -
see Appendix C), rather than an interpolation; one should bear in mind therefore that the
extrapolation may be less accurate the further we move toward the right, away from this
contour. As was the case for the TFHM, it will be important to compute the constraints
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Γ/𝑀𝑍′ 𝜎/fb 𝐵𝑅(𝑍′ → 𝜇+𝜇−) 𝐵𝑅(𝑍′ → 𝑡 ̄𝑡) 𝐵𝑅(𝑍′ → 𝑏 ̄𝑏) 𝐵𝑅(𝑍′ → 𝜏+𝜏−)
0.087 0.046 0.11 0.14 0.04 0.46

Table 6.5 Example point in the DTFHMeg parameter space, with (𝑔𝐹 , 𝑀𝑍′) =
(0.81, 3 TeV). We display the fiducial production cross-section times branching ratio into
di-muons as 𝜎. By far the dominant 13 TeV LHC production mode is 𝑏�̄� → 𝑍′ (the next
largest, 𝑏 ̄𝑠 + 𝑠 ̄𝑏 → 𝑍′, yields 𝜎 = 6.1 × 10−5 fb).

on the DTFHM coming from electroweak precision observables; to compute these bounds
properly will require a full fit to the electroweak data. Note, however, that the bounds (6.52)
we estimated using the 𝜌-parameter are significantly less constraining on the DTFHM than
they were on the TFHM. Even the most aggressive estimate of the bound would here leave
an open region of parameter space.

This Chapter began with a study of anomaly cancellation in theories which extend the
SM by a family-dependent 𝑈(1) gauge symmetry. Firstly, in §6.1 we investigated the space
of possible anomaly-free charge assignments in generality, by solving Diophantine equations
in the 𝑈(1) charges. In the case of one or two families of SM fermions (with or without the
addition of three right-handed neutrinos), we found that the space of anomaly-free theories
can be parametrised explicitly. In the full three-family case, such a parametrisation evaded
us, and we were content (analytically) to show that all anomaly-free theories fall into one
of two classes (6.29). To supplement this, we discussed the ‘anomaly-free atlas’, which is
the result of a computational search, which reveals interesting asymptotic behaviours for
anomaly cancellation as 𝑄max becomes large.

Then in §6.2, we constructed two models to explain a number of experimental measure-
ments of rare 𝐵-meson decays which are discrepant with their SM predictions. Both models
correspond to anomaly-free 𝑈(1) extensions of the SM, with the heavy 𝑍′ gauge boson
(that results from spontaneous breaking of this 𝑈(1)) serving as a tree level mediator for
the 𝐵-meson decays. We presented a brief but careful analysis of the phenomenology of
these models; for more phenomenological details, we refer the reader to Refs. [4] and [5]. In
both cases, we saw that insisting on anomaly cancellation supplies very stringent (and well
motivated) constraints on 𝑈(1) model building.

Throughout this Chapter, we have only considered the cancellation of local anomalies.
Indeed, we justified this at the beginning of the Chapter by claiming that there are in fact no
global anomalies in such 𝑈(1) extensions of the SM. In the next and final Chapter of this
thesis, we turn to this issue of global anomalies in gauge theories, with a particular focus on
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the SM and some popular extensions thereof. In doing so, we shall discuss 𝑈(1) extensions
of the SM, and thus complete the discussion of anomaly freedom in such theories. While
the present Chapter saw us dive rather deeply into phenomenological concerns, and stray
for the most part from topological ideas, in the final Chapter the use of algebraic topology
shall return in full force, as our primary tool shall be the computation of bordism groups of
classifying spaces of Lie groups.



Chapter 7

Global anomalies in the Standard
Model(s) and Beyond

Back in Chapter 2 (and again in Chapter 5), we proposed a classification of topological terms
appearing in sigma models that was based on homology, in the sense that we required the
topological terms could be defined on worldvolumes of arbitrary topology (corresponding
to arbitrary smooth singular homology cycles in the target space). One justification for this
starting point was that if we want to consider a dynamical spacetime whose topology is
not fixed but allowed to vary, then we had better make sure the action can be defined for
arbitrary topology. This condition is surely a requirement for coupling such a theory to
quantum gravity.

Such a consistency requirement is not, of course, particular to sigma models, but can
be applied to any quantum field theory. In this Chapter, we shall investigate what conclu-
sions can be drawn from requiring that certain four-dimensional gauge theories with chiral
fermions (such as the SM) be well-defined on arbitrary four-manifolds Σ4. This is a rich
question, because defining a gauge theory with chiral fermions requires Σ4 be equipped with
various geometric structures. We begin by reviewing what these structures are, before turn-
ing to the idea of (global) anomalies, interpreted along the lines of the so-called ‘Dai-Freed
theorem’ as set out in §1.3 of the Introduction to this thesis. The upshot shall be that if a
certain bordism group vanishes, then one may conclude that there are no possible global
anomalies (at least of the kind captured by the Dai-Freed theorem) in the theory.

We apply this formalism to examine global anomalies in the SM and variants thereof,
as well as a number of well-motivated BSM theories. The computations we report in this
Chapter were inspired by, and build upon, those of Ref. [233]. Therein, the relevant bordism
groups were computed for a number of simple gauge groups including 𝑆𝑈(𝑛), 𝑃 𝑆𝑈(𝑛),
𝑈𝑆𝑝(2𝑘), and 𝑆𝑂(𝑛), as well as for 𝑈(1). From there it was argued as a corollary that there
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are no global anomalies in the SM, by exploiting the somewhat fortunate fact that the SM
fermion representations can be embedded in an 𝑆𝑈(5) grand unified theory (GUT).

In this Chapter we extend the formalism of Ref. [233] to various gauge groups involving
direct products of simple factors and 𝑈(1), with which we compute the bordism groups
relevant to the SM directly, for the gauge groups listed in (6.1). Our results, unlike those
of Ref. [233], can then be applied to theories with one of the SM gauge groups but with
different fermion content (that do not necessarily fit inside an 𝑆𝑈(𝑛) GUT). We will also
briefly consider more subtle variations of the SM, in which the chiral fermions are defined
using exotic variants on the usual spin structure on spacetime (for example, for theories
in which spacetime is a non-orientable manifold). We will then turn to a number of BSM
theories, including the entire atlas of theories with gauge group 𝐺SM×𝑈(1) that were studied
in Chapter 6, and compute whether there are global anomalies in these theories.

The calculations reported in this Chapter are the result of ongoing work with Nakarin
Lohitsiri and Ben Gripaios, none of which is yet published.

7.1 A geometer’s recipe for a chiral gauge theory
Defining a gauge theory (with gauge group 𝐺) with chiral fermions requires spacetime be
equipped with certain geometric structures. In short, the important such structures shall be:

• A form of spin structure to define fermions,

• A principal 𝐺-bundle to define gauge fields,

• A Dirac operator to couple fermions to gauge fields, whose determinant is a well-
defined function on the background data if the theory is to be non-anomalous.

In describing these structures, we might as well be more general and work in 𝑝 spacetime
dimensions. We will always assume that spacetime is Wick-rotated, and thus consider a
general Riemannian 𝑝-manifold Σ𝑝. At times it will be helpful to suppose Σ𝑝 is equipped
with a (Riemannian) metric, but this shall not be especially important to our arguments.

7.1.1 Fermions: spin structures and the like
Firstly, fermions are by definition spinors on Σ𝑝. Defining spinors requires a spin structure,
or some variant thereof.1 To explain what a spin structure is, we first assume that Σ𝑝 is

1A helpful summary of how fermions are defined using various spin structures is provided by Witten in
Appendix A of Ref. [75].
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orientable. A spinor is then a section of a so-called spinor bundle over Σ𝑝, whose structure
group is the group Spin(𝑝), the double cover of 𝑆𝑂(𝑝) (which is the structure group of the
tangent bundle). What this means is that two locally-valid descriptions of a spinor field, Ψ𝛼
(defined on an open set 𝑈𝛼 of Σ𝑝) and Ψ𝛽 (defined on 𝑈𝛽), are related by Ψ𝛼 = 𝑇𝛼𝛽Ψ𝛽 , for
some matrix 𝑇𝛼𝛽 ∈ Spin(𝑝) defined on the double-overlap 𝑈𝛼 ∪ 𝑈𝛽 ≡ 𝑈𝛼𝛽 (to borrow the
efficient Čech-style notation from Chapter 2).2 In order to be able to define spinors globally,
we must be able to piece together locally-valid descriptions on open sets {𝑈𝛼} consistently.
This requires a set of Spin(𝑝)-valued transition functions defined on every double overlap
𝑈𝛼𝛽 , whichmoreover satisfy a consistency condition on triple overlaps, viz. 𝑇𝛼𝛽 ⋅𝑇𝛽𝛾 ⋅𝑇𝛾𝛼 = 1
on 𝑈𝛼𝛽𝛾 . A consistent set of {𝑇𝛼𝛽} is called a spin structure on Σ𝑝.

Not every Riemannian manifold admits such a collection of Spin(𝑝)-valued transition
functions that satisfy the consistency condition. An orientable manifold admits a spin struc-
ture, which can be used to define spinors, if and only if both the first and second Stiefel-
Whitney classes (which take values in 𝐻1(Σ𝑝, ℤ2) and 𝐻2(Σ𝑝, ℤ2) respectively) vanish. If
this is the case, Σ𝑝 is called a spin manifold. For example, all orientable manifolds in dimen-
sion 𝑝 ≤ 3 are spin; whereas four-manifolds are not, necessarily. The Spin(𝑝)-valued 𝑇𝛼𝛽
then define transition functions on a vector bundle 𝑆 → Σ𝑝, called a spinor bundle, of which
a fermion field is a section.

This is not the only way to define a geometric object which behaves as a fermion. If
spacetime is non-orientable, alternative structures (called pin structures) may still be used
to define an analogue of the spinor,3 and hence to define fermions. The idea here is very
similar to defining spinors in the case that Σ𝑝 was orientable, except that now the transition
functions of the tangent bundle are valued in 𝑂(𝑝), rather than 𝑆𝑂(𝑝), because they need
not preserve orientation. Consequently, the structure group of the ‘pinor’ bundle is a double
cover of 𝑂(𝑝), which is called a Pin(𝑝) group. But now there is not just one such double cover
of 𝑂(𝑝), but two possible choices called Pin+ and Pin−, as follows. One may choose a spatial
reflection R to satisfy R2 = 1 when acting on spinors, which defines the double cover Pin+,
or choose R2 = −1, which defines the double cover Pin−. A pin structure is then defined in
a similar way to a spin structure; the 𝑂(𝑝)-valued transition functions of the tangent bundle
are lifted to (say) Pin+-valued functions, which must satisfy a consistency relation on triple
overlaps. A non-orientable manifold that admits a (say) pin+ structure is, not surprisingly,
called a pin+ manifold. Again, there are topological obstructions (involving Stiefel-Whitney

2The spin-valued matrices 𝑇𝛼𝛽 are moreover obtained by lifting the transition functions from the tangent
bundle, which are valued in the (orientation-preserving) structure group 𝑆𝑂(𝑝).

3In the unorientable case, the fermion might better be called a ‘pinor’.
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classes) to defining such pin structures, which are different for pin+ and pin− structures.4

Notably, every non-orientable 2-manifold and 3-manifold admits a pin− structure, but not
necessarily a pin+ structure.5

In both the orientable and non-orientable cases, one may in fact still define fermions
using weaker structures on Σ𝑝, provided there are additional gauge symmetries acting on the
fermions. For example, a manifold that is not spin may nonetheless admit a spin𝑐 structure,
which is defined analogously to a spin structure, but where the transition functions can be
valued in the Spin𝑐(𝑝) group rather than Spin(𝑝). The group Spin𝑐(𝑝) is defined by the exact
sequence 0 → ℤ2 → Spin𝑐(𝑝) → 𝑆𝑂(𝑝) × 𝑈(1) → 0; in an intuitive sense, this “allows”
the transition functions to vary by a (local) 𝑈(1)-valued phase, which can be used to “stitch
together” transition functions where a spin structure might not be possible. If a fermion is
acted upon by a 𝑈(1) gauge symmetry, then it is invariant under such local 𝑈(1) rephasings,
and so will be well-defined using only the spin𝑐 structure. The obstruction to a manifold
admitting a spin𝑐 structure now lies in its third Stiefel-Whitney class valued in ℤ (rather
than ℤ2). Importantly, all orientable manifolds in dimension 𝑝 ≤ 4 are spin𝑐 .6 Analogously
defined pin𝑐 structures may be used to define fermions on non-orientable spacetimes with a
𝑈(1) gauge symmetry.

In this discussion, we have seen examples of the interesting geometric and topological
properties implicated in the definition of fermions on a manifold, which requires some kind
of “spin structure”. The reason we have described these structures in some detail is that
choosing different structures places different topological constraints on spacetime, and so
will generically result in different conditions for anomaly cancellation. Even if there is an
anomaly in a certain gauge theory defined on arbitrary dimension-𝑝 spin manifolds, it might
nonetheless be possible to define such a gauge theory on non-orientable spacetimes, by using
a pin structure to define fermions, or it might be possible to use a spin𝑐 structure if spacetime
is orientable. In §7.3.2, we shall briefly consider variants of the SM in which fermions are
defined using a variety of such structures, and discuss the role played by these various choices
of “spin structure” on the global anomalies that can arise.

4For a readable account of these topological obstructions from the physics literature, we invite the reader
to consult Ref. [234].

5For example, the manifold ℝ𝑃 2 admits only pin− structures.
6In recent literature, still weaker structures have been used to define fermions, such as the use of ‘spin-

𝑆𝑈(2) structures’ if the fermions are coupled to 𝑆𝑈(2) gauge fields [235]. One might like to generalise this
idea to consider spin-𝐺 structures for various Lie groups 𝐺.
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7.1.2 Gauge fields: principal 𝐺-bundles
Defining gauge fields for some gauge group 𝐺 on an arbitrary 𝑝-dimensional spacetime Σ𝑝

requires the existence of a principal 𝐺-bundle over Σ𝑝. We will assume the reader is familiar
with the notion of a principal 𝐺-bundle.

We here introduce the notion of the classifying space 𝐵𝐺 of a Lie group 𝐺, which has the
property that the homotopy classes of maps from a space 𝑋 to 𝐵𝐺 are in one-to-one corre-
spondence with the set of (isomorphism classes of) principal 𝐺 bundles over 𝑋.7 Defining a
gauge theory over spacetime Σ𝑝 means that a principal 𝐺-bundle is defined over Σ𝑝, which is
therefore equivalent to equipping Σ𝑝 with a map 𝑓 ∶ Σ𝑝 → 𝐵𝐺. We shall therefore consider
spacetimes equipped with such a map into the classifying space of 𝐺, in addition to one of
the “spin structures” described in the previous Subsection. We shall moreover insist that a
gauge theory be defined on all manifolds admitting these structures, leading to a very broad
notion of whether there is an ‘anomaly’ in the theory.

The existence of these structures may face topological obstructions, as we have discussed
briefly in the case of spin structures (where these obstructions are in the Stiefel-Whitney
classes). The interplay between the topological conditions on Σ𝑝 may be subtle, however,
with interesting consequences for the existence of anomalies. For example, the fact that a
spin𝑐 structure, say, places looser topological constraints on a manifold than the requirement
of a spin structure, does not necessarily imply there must be ‘fewer’ anomalies in the spin𝑐

formulation. This is because of our premise that such a theory defined with spin𝑐 structure
should be defined on all spin𝑐 manifolds; there is of course the possibility of anomalies
arising only on those spin𝑐 manifolds that are not also spin.8 On the other hand, it is of
course possible that the tighter conditions involved in equipping Σ𝑝 with a more restrictive
spin structure are inconsistent with simultaneously defining a principal 𝐺-bundle over Σ𝑝,
resulting in anomalies for theories defined with (say) spin structure that disappear if one uses
a spin𝑐 structure instead.

7The classifying space 𝐵𝐺 is the quotient of a weakly contractible space 𝐸𝐺 by a proper free action of 𝐺.
Any principal 𝐺-bundle over 𝑋 is the pullback bundle 𝑓 ∗𝐸𝐺 along a map 𝑓 ∶ 𝑋 → 𝐵𝐺.

8The ‘new 𝑆𝑈(2) anomaly’ of Wang-Wen-Witten [235] is an excellent example of this idea. As we de-
scribed in the Introduction, if an 𝑆𝑈(2) gauge theory is formulated on spin manifolds, then there is the familiar
Witten anomaly if 𝑛𝐿 − 𝑛𝑅 = 1 mod 2, where 𝑛𝐿 (𝑛𝑅) is the number of left-handed (right-handed) 𝑆𝑈(2)
doublets [79]. But if an 𝑆𝑈(2) gauge theory is formulated instead on all manifolds admitting the weaker spin-
𝑆𝑈(2) structure with which to define fermions transforming in representations of 𝑆𝑈(2), there is in fact a new
anomaly, if there is an odd number of fermion multiplets in spin 4𝑟 + 3/2 representations of 𝑆𝑈(2) (where
𝑟 ∈ ℤ).
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7.1.3 Coupling the two: Dirac operators and global anomalies
Given a principal 𝐺-bundle over spacetime, and some form of spin structure with which
to define chiral fermions, one couples the fermions to the gauge fields via the lagrangian
�̄�𝑖 /𝐷𝜓 , where 𝑖 /𝐷 is a Dirac operator. As we discussed in some detail in the Introduction, the
naïve fermionic partition function 𝑍𝜓 obtained by integrating over the fermions (1.25) is in
general a section of the determinant line bundle on the space of ‘background data’, which
here consists of the space of connections on principal 𝐺-bundles over Σ4 modulo gauge
transformations, and possibly the space of metrics on Σ4. If there exists a global section
(which implies the determinant line bundle is trivial) then the theory can be defined to be
anomaly-free. If there is no such global section then 𝑍𝜓 does not define a bona fide function
on this background data, and we say the theory is anomalous.

Recall that theDai-Freed theorem gives a prescription (1.26) for writing down a fermionic
partition function 𝑍𝜓 that varies smoothly on the background data. This prescription re-
quires spacetime Σ4 be the boundary of a five-manifold 𝑋,9 to which we must be able to
extend our chiral gauge theory and thus all the geometric structures described above, i.e. the
spin structure, the map to 𝐵𝐺, and the Dirac operator. Recall that near the boundary, this
five-manifold must approach a cylinder (−𝜏0, 0] × Σ4, and the extension of the Dirac oper-
ator to 𝑋, which we denote by 𝑖 /𝐷𝑋 , here takes the form 𝑖 /𝐷𝑋 = 𝑖𝛾5(𝜕𝜏 + 𝑖 /𝐷) (and satisfies
appropriate ‘APS boundary conditions’ to ensure its hermiticity (see e.g. Refs. [75, 80])).
One might picture the five-manifold 𝑋 as a ‘cigar’ (possibly with ‘holes’) whose boundary
is Σ4, as depicted in Fig. 7.1.

Fig. 7.1 The results of Dai-Freed give a prescription for writing down a fermionic partition
function 𝑍𝜓 when spacetime Σ4 is the boundary of a five-manifold 𝑋.

In this Chapter of the thesis, we will consider only gauge theories for which the local
gauge (and gauge-gravity) anomalies all cancel. If this is the case, then the Dai-Freed theo-

9Of course, in the first part of this thesis, we gave careful consideration to sigma models in which spacetime
was not assumed to be the boundary of a manifold in one dimension higher. Defining topological terms in such
theories where spacetime was not itself a boundary gave rise to the possibility of AB terms, and also of the
Manton condition failing for putative WZ terms leading to an interesting type of ‘non-fermionic’ anomaly. As
far as we are aware, it is not known how to extend the Dai-Freed criterion of anomaly cancellation in gauge
theories to the case where spacetime is not assumed to be a boundary. This surely warrants further study.
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rem (1.26) implies the fermionic partition function may be written as

𝑍𝜓 = |𝑍𝜓 | exp (−2𝜋𝑖𝜂𝑋) , (7.1)

where 𝜂 denotes the 𝜂-invariant (defined in Eq. (1.27)) of the five-dimensional Dirac operator
𝑖 /𝐷𝑋 , as introduced in the Atiyah-Patodi-Singer (APS) index theorem [83–85]. It shall be
useful in what follows to recall that the 𝜂-invariant possesses an important ‘gluing’ property,
as follows; if two manifolds 𝑌1 and 𝑌2 are glued along a common boundary (to give manifold
𝑌1 ∪ 𝑌2), then the (exponentiated) 𝜂-invariant factorizes,

exp(2𝜋𝑖𝜂𝑌1∪𝑌2) = exp(2𝜋𝑖𝜂𝑌1) exp(2𝜋𝑖𝜂𝑌2) . (7.2)

The idea is that the Dai-Freed prescription (7.1) for 𝑍𝜓 yields a well-defined smooth section
of the determinant line bundle, i.e. it varies smoothly with the background data.

The phase of the partition function, which is the exponentiated 𝜂-invariant, is the source
of any potential global anomalies. Indeed, as we reported in the Introduction, the partition
function (7.1) will be invariant under any global gauge transformations, and is moreover
independent of the choice of the five-manifold 𝑋, when

exp (−2𝜋𝑖𝜂�̄�) = 1 (7.3)

on all closed five-manifolds �̄�. This condition offers a large generalisation of Witten’s orig-
inal mapping torus argument for the vanishing of global anomalies.

However, the condition (7.3) is not at all easy to interpret. Thankfully, one may translate
(7.3) into a more straightforward, bordism-based criterion for anomaly cancellation, as we
now explain.

Bordism is an equivalence relation between manifolds (possibly equipped with some
additional structures), which we partially explained in the Introduction. It shall be helpful to
restate the definition again here. We say that twomanifolds 𝑋1 and 𝑋2 of the same dimension
𝑝 are ‘bordant’ (𝑋1 ∼ 𝑋2) if there exists an oriented manifold 𝑌 in one dimension higher that
interpolates between the two, i.e. 𝜕𝑌 = (−𝑋1) ∪ 𝑋2, and to which any additional structures
can be extended. So defined, bordism is an equivalence relation on such 𝑝-manifolds, and
partitions the space of 𝑝-manifolds into equivalence classes under bordism, which we denote
[𝑋]𝑝, which themselves form an abelian group under taking the disjoint union of manifolds,
i.e. [𝑋1]𝑝 + [𝑋2]𝑝 = [𝑋1 ∪ 𝑋2]𝑝.

When the anomaly polynomial 𝐼0
𝑝+1(𝐹 ) vanishes, i.e. when local anomalies cancel, it

follows from the APS index theorem that the 𝜂-invariant, which is in general a topologi-
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cal invariant (of the spacetime), becomes a bordism invariant of possible five-manifolds on
which 𝑖 /𝐷𝑋 is defined. In other words, it vanishes on every five-manifold that is the boundary
of a six-manifold (with such five-manifolds being bordant to zero).

Given bordism invariance of exp (−2𝜋𝑖𝜂�̄�), and given also the gluing property (7.2), it
is straightforward to verify that the 𝜂-invariant provides a group homomorphism

exp (2𝜋𝑖𝜂𝑋) ∈ Hom(ΩSpin
5 (𝐵𝐺), 𝑈(1)) , (7.4)

where ΩSpin
5 (𝐵𝐺) is the abelian group of equivalence classes of five-manifolds (equipped

both with a spin structure and a map to 𝐵𝐺) under bordism. Condition (7.3) will evidently
hold if the group Hom(ΩSpin

5 (𝐵𝐺), 𝑈(1)) is trivial, and the latter is true if and only if

ΩSpin
5 (𝐵𝐺) = 0, (7.5)

because ΩSpin
5 (𝐵𝐺) is a finitely-generated abelian group. This condition, in the absence of

local anomalies, guarantees that there is a well-defined fermionic partition function (7.1)
given by the Dai-Freed theorem which is independent of the choice of five-manifold 𝑋 (and
thus respects locality in the four-dimensional theory), and which is invariant under global
gauge transformations in 𝐺. We think it important to fully explore the implications of this
condition for theories of phenomenological importance in particle physics, and this forms
the goal of the rest of this Chapter.

At this point, we provide two further arguments that such a general bordism-based cri-
terion for global anomaly cancellation is a good idea. Firstly, and as we noted in passing
above, if one wishes to ultimately couple the gauge theory to a theory of quantum grav-
ity, in which spacetime is allowed to vary dynamically, then one ought to allow its topol-
ogy to change also, and thus require the theory be well defined on spacetimes of arbitrary
topology. The condition (7.5) allows the chiral gauge theory to be defined on arbitrary four-
manifolds that are the boundary of five-manifolds (as is requisite for the Dai-Freed theorem
to apply). Secondly, much of the recent impetus for computing bordism groups in physics
comes from the condensed matter community, where bordism groups have been suggested
(see e.g. Refs.[234, 75, 81]) as the correct classification of so-called ‘Symmetry Protected
Topological Phases’ (SPT phases). It is moreover known that this classification is ‘dual’ to
identifying possible anomalies in field theories of one dimension lower, where these field
theories are associated with ‘edge modes’ of fermions on the boundary that are themselves
needed to cancel anomalies in the bulk of the SPT phase. It has been shown by alternative
arguments that in a number of non-trivial examples (such as the one-dimensional Majorana
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spin chain [75]), the bordism group gives the correct classification of SPT phases. This gives
further evidence that bordism groups also give an appropriate characterisation of the space
of possible anomalies in chiral gauge theories, to which the SPT phases are supposedly dual.

A couple of caveats are warranted here. Firstly, we emphasise that this condition for the
absence of anomalies is a particularly strong one; it is by no means necessary, although it
is certainly sufficient (at least, it is sufficient when Σ4 is the boundary of a five-manifold).
To see that it is not necessary, consider an 𝑆𝑈(2) gauge theory with two multiplets of fun-
damental Weyl fermions. The theory could suffer from the Witten 𝑆𝑈(2) anomaly, as is
captured by the fact that ΩSpin

5 (𝐵𝑆𝑈(2)) = ℤ2, but the anomaly cancels because there is
an even number of fermions in the fundamental representation. The condition (7.5) rather
implies that, if satisfied, there can be no anomaly regardless of the fermionic content.

The second caveat is that we still don’t have a definition for spacetimes Σ4 that do not
bound five-manifolds, in other words for spacetimes in non-trivial bordism classes (in de-
gree four). In general, locality forces such spacetimes to appear in the theory (and they are
presumably physically realisable in a quantum theory of gravity, as discussed above). Thus,
one needs a general prescription for the fermionic partition function evaluated on spacetimes
in non-trivial bordism classes, which goes beyond the original Dai-Freed theorem. We leave
such considerations for future work.

7.2 Methodology
It remains to explain how we actually compute a bordism group of the form ΩSpin

5 (𝐵𝐺) for a
specific 𝐺. The computational method is, perhaps not surprisingly, rather complicated, with
our main tool being the Atiyah-Hirzebruch spectral sequence [236]. Refs. [237, 238] provide
suitable introductions to using spectral sequences. The method we follow is precisely that
set out in Ref. [233].

Spectral sequences of this kind are an important calculational tool in algebraic topology.
So, what is a spectral sequence? In essence, a spectral sequence is a collection of abelian
groups 𝐸𝑟

𝑝,𝑞 labelled by three non-negative integers 𝑟, 𝑝, and 𝑞, together with a collection of
group homomorphisms between them. Perhaps more appealingly, one can picture a spectral
sequence to be a ‘book’ consisting of (infinitely) many pages, labelled by a ‘page number’ 𝑟,
with a two-dimensional array of abelian groups 𝐸𝑟

𝑝,𝑞 on each page. There are maps (called
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‘boundary maps’ or ‘differentials’) between the groups within a given page of the form10

𝑑𝑟
𝑝,𝑞 ∶ 𝐸𝑟

𝑝,𝑞 → 𝐸𝑟
𝑝−𝑟,𝑞+𝑟−1, such that 𝑑𝑟

𝑝−𝑟,𝑞+𝑟−1 ∘ 𝑑𝑟
𝑝,𝑞 = 0, (7.6)

which endows the groups 𝐸𝑟
𝑝,𝑞 on a given page with the structure of a chain complex. More-

over, one passes from one page to the next by ‘taking the homology’ with respect to the
differentials, specifically

𝐸𝑟+1
𝑝,𝑞 ≅ ker(𝑑𝑟

𝑝,𝑞)/ Im(𝑑𝑟
𝑝+𝑟,𝑞−𝑟+1). (7.7)

As we keep ‘turning the pages’ in this way, the abelian group appearing in any given (𝑝, 𝑞)
position will eventually stabilise (because there are only a finite number of differentials going
‘in’ and ‘out’ for any (𝑝, 𝑞)). It is conventional to refer to the ‘last page’, after which all entries
of the AHSS have stabilised, as 𝐸∞

𝑝,𝑞. Important topological information will be contained
in this last page.

For example, the Serre spectral sequence can be used to compute the (co)homology
groups of a topological space 𝑋 appearing as the total space in a Serre fibration 𝐹 → 𝑋 →
𝐵,11 from the (co)homology of the two spaces 𝐹 and 𝐵.12 For the Serre spectral sequence,
we can in fact ignore the first page, and begin at the second page, whose entries are given
by the peculiar formula 𝐸2

𝑝,𝑞 = 𝐻𝑝(𝐵; 𝐻𝑞(𝐹 ; 𝐴)); in words, the homology groups of the
base space with coefficients valued in the homology groups of the fibre (for some coefficient
group 𝐴). We then proceed to turn the pages using the differentials (7.6), until we get to the
last page at which all the entries have stabilised. Then the 𝑛th homology group of the total
space 𝑋 can be pieced together for each 𝑛, using 𝐻𝑛(𝑋; 𝐴) = ⨁𝑝 𝐸∞

𝑝,𝑛−𝑝, in others words,
by taking the direct sum of all the groups on the 𝑛th diagonal of the last page of the Serre
spectral sequence.13 As another example of their use, various spectral sequences (most no-
tably the Adams spectral sequence), give powerful tools for computing the higher homotopy
groups of spheres.

The Atiyah-Hirzebruch spectral sequence (AHSS) is a generalisation of the Serre spec-
tral sequence just described, in which ordinary (co)homology is replaced by generalised

10Note that we are here describing the homological version of a spectral sequence, which shall also be the
kind we employ in our bordism computations. There is an analogous cohomological version, in which the
boundary maps go in the opposite directions.

11A Serre fibration is one in which the fibres at different points in the base need only be homotopy-equivalent
to eachother.

12Note that while there is a long exact sequence relating the homotopy groups of 𝐹 , 𝑋, and 𝐵 for such a
fibration, there is no simple such sequence for (co)homology.

13This is in fact a simplification, and only holds when the coefficient group 𝐴 is a field. Otherwise, a non-
trivial group extension problem must be solved.
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(co)homology. The bordism groups ΩSpin
5 (𝐵𝐺) that we want to compute to classify global

anomalies are examples of generalised homology groups,14 and so the AHSS provides an
appropriate tool for our computation, if we can fit 𝐵𝐺 into a useful Serre fibration 𝐹 →
𝐵𝐺 → 𝐵. Given such a fibration, the AHSS is then constructed in a similar fashion to the
Serre spectral sequence. We begin at the second page, whose entries are now the homology
groups

𝐸2
𝑝,𝑞 = 𝐻𝑝(𝐵; ΩSpin

𝑞 (𝐹 )). (7.8)

If the singular homology groups 𝐻𝑝(𝐵; ℤ) are free (i.e. do not contain torsion) then this
simplifies to

𝐸2
𝑝,𝑞 = 𝐻𝑝(𝐵; ΩSpin

𝑞 (𝐹 )) = 𝐻𝑝(𝐵; ℤ) ⊗ ΩSpin
𝑞 (𝐹 ). (7.9)

If this is not the case, then the universal coefficient theorem (in homology) must be used to
calculate (7.8). This second page comes equipped with differentials as specified in Eq. (7.6),
and if the differentials are known we can turn to the next page. If we are able to continue
turning pages until all the entries with 𝑝 + 𝑞 = 5 are stabilised, then we can use these entries
to extract ΩSpin

5 (𝐵𝐺). Analogous to the example of the Serre spectral sequence, it shall be
the case in all the examples we consider that ΩSpin

5 (𝐵𝐺) shall simply be the direct sum of the
entries 𝐸∞

𝑝,𝑞 with 𝑝 + 𝑞 = 5.15
The simplest fibration involving𝐵𝐺, whichwe shall employmost frequently, is the trivial

one in which 𝐵𝐺 is fibred over a point, which we denote by ⋆:

⋆ → 𝐵𝐺 → 𝐵𝐺. (7.10)

In this case, computing the elements (7.9) of the second page of the AHSS requires two in-
gredients: (i) the singular homology groups of the classifying space, 𝐻𝑝(𝐵𝐺, ℤ), and (ii) the
bordism groups (preserving the appropriate spin structure) equipped with maps to a point; in
other words, simply the equivalence classes (under bordism) of spin five-manifolds. Fortu-
nately for us, these bordism groups are well known in low dimensions, and we record them

14As we shall see, the bordism groups do not satisfy the ‘dimension’ axiom of an ordinary homology theory,
which requires the homology groups of a point vanish in all degrees greater than zero.

15While there is a straightforward condition telling us when this is the case for the Serre sequence - namely,
when the coefficient group 𝐴 is a field - there is (as far as we are aware) no similarly straightforward condition
pertaining to the AHSS and our bordism calculations. Rather, one must refer to the definition of the spectral
sequence in terms of filtrations of the bordism groups we are trying to compute, using which the answer can
often be extracted unambiguously from the last page. In particular, this was the case in all the examples we
present in the sequel.
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for the various spin structures we shall consider [239–242]:

𝑑 0 1 2 3 4 5 6 7 8 9 10

ΩSpin
𝑛 (⋆) ℤ ℤ2 ℤ2 0 ℤ 0 0 0 2ℤ 2ℤ2 3ℤ2

ΩPin−
𝑛 (⋆) ℤ2 ℤ2 ℤ8 0 0 0 ℤ16 0 2ℤ2 2ℤ2

ℤ2 ⊕ ℤ8
⊕ℤ128

ΩSpin𝑐

𝑛 (⋆) ℤ 0 ℤ 0 2ℤ 0 2ℤ 0 4ℤ 0 4ℤ

ΩPin+
𝑛 (⋆) ℤ2 0 ℤ2 ℤ2 ℤ16 0 0 0 ℤ2 ⊕ ℤ32 0 3ℤ2

ΩPin𝑐
𝑛 (⋆) ℤ2 0 ℤ4 0 ℤ2 ⊕ ℤ8

⊕ℤ16
0 ℤ4 ⊕ ℤ16 0 2ℤ2 ⊕ ℤ8

⊕ℤ32
0 ℤ2 ⊕ 2ℤ4

⊕ℤ16
(7.11)

The other ingredient we need is the homology ring of the classifying space of any gauge
group 𝐺 we want to consider. As we have advertised above, we will consider many examples
where 𝐺 is a direct product of simple factors and 𝑈(1)s, and our strategy here will be to build
up the homology groups of such groups from the homology groups of their factors. We shall
make frequent use of the fact that

𝐵(𝐺 × 𝐻) = 𝐵𝐺 × 𝐵𝐻, (7.12)

which follows from the definition of the classifying space of a group. Thence, we shall
use the Künneth theorem to compute the homology of the product space 𝐵𝐺 × 𝐵𝐻 with
coefficients in ℤ. In the absence of torsion,16 this is simply

𝐻𝑝(𝐵𝐺 × 𝐵𝐻; ℤ) ≅ ⨁𝑚+𝑛=𝑝
𝐻𝑚(𝐵𝐺, ℤ) ⊗ 𝐻𝑛(𝐵𝐻; ℤ). (7.13)

The classifying spaces (and their homology rings) for some elementary groups are well-
known; for example, 𝐵𝑈(1) = ℂ𝑃 ∞, with

𝐻𝑝(𝐵𝑈(1) = ℂ𝑃 ∞; ℤ) =
⎧⎪
⎨
⎪⎩

ℤ when 𝑝 ≡ 0 mod 2 ,
0 otherwise ,

(7.14)

16If there is torsion, the correct statement of the Künneth theorem involves a short exact sequence. See
Theorem 3B.5. of Ref. [243].
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and 𝐵𝑆𝑈(2) = ℍ𝑃 ∞, with

𝐻𝑝(𝐵𝑆𝑈(2) = ℍ𝑃 ∞; ℤ) =
⎧⎪
⎨
⎪⎩

ℤ when 𝑝 ≡ 0 mod 4 ,
0 otherwise .

(7.15)

While the homology groups for these two examples are known in all degrees, it is often
enough for our purposes to know the groups 𝐻𝑃 (𝐵𝐺; ℤ) in sufficiently low dimensions; for
instance, the result

𝐻𝑝(𝐵𝑆𝑈(𝑛); ℤ) = {ℤ, 0, 0, 0, ℤ, …} (7.16)

shall be especially useful for our consideration of gauge theories relevant to particle physics.
Alternatively, the cohomology ring of𝐵𝐺 may be known for the given𝐺 of interest (typically
generated by the Chern classes), from which we might be able to compute the homology
groups by using the duality between homology and cohomology.

Turning the pages

We have now proposed how to obtain all the ingredients with which to write down the second
page of the AHSS associated with the fibration (7.10); but we do not yet know how to turn to
the next page of the AHSS, which requires knowledge of the differential maps introduced in
(7.6). One thing we know for certain is that the differentials are group homomorphisms, and
in many cases this shall turn out to be enough to deduce the image and/or kernel of many
differentials unambiguously; for example, we make frequent use of the fact that the only
homomorphism from ℤ𝑛 → ℤ (for any finite 𝑛) is the trivial one. Similarly straightforward
statements can be made for homomorphisms from ℤ𝑛 → ℤ𝑚 for a pair of finite integers 𝑛
and 𝑚, or from ℤ → ℤ𝑛.

However, simple algebraic arguments like this will seldom be enough to determine all
the differentials in the AHSS. Fortunately, we can make use of the fact that some of the
differentials on the second page 𝐸2

𝑝,𝑞 are known for the case of the spin bordism groups
ΩSpin

𝑞 . In particular, we have that the differential

𝑑2
𝑝,0 ∶ 𝐻𝑝(𝐵; ΩSpin

0 ) → 𝐻𝑝−2(𝐵; ΩSpin
1 ) (7.17)

is the composition of the (homology) dual of the Steenrod square and reduction modulo
2 [244, 245], and that the differential

𝑑2
𝑝,1 ∶ 𝐻𝑝(𝐵; ΩSpin

1 ) → 𝐻𝑝−2(𝐵; ΩSpin
2 ) (7.18)
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is the dual of the Steenrod square [244, 245]. The Steenrod square, Sq2, is an operation on
cohomology classes, Sq2 ∶ 𝐻𝑛 → 𝐻𝑛+2, whose particular action on the generators of 𝐻𝑛

are known for the classifying spaces of Lie groups, thanks to Borel and Serre [246]. We will
make regular use of their results in what follows.

7.3 Computations
Now that we have laid the groundwork and described the computational tools we shall use
to identify potential global anomalies, we are ready to report our computations. We begin
with a gauge theory of indisputable importance to particle physics phenomenology, namely
the Standard Model(s). All our results are summarised in Table 7.1.

7.3.1 The Standard Model(s)
It is well-known that there is an ambiguity in the SM gauge group, as we discussed at the
beginning of Chapter 6. In general the gauge group can be any Lie group 𝐺 whose Lie
algebra is 𝔰𝔲(3) ⊕ 𝔰𝔲(2) ⊕ 𝔲(1). We shall here be concerned with the four possibilities we
listed in (6.1), for which 𝐺 is connected, which we denote as above by 𝐺 = 𝐺SM/Γ where
𝐺SM = 𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3) and Γ ∈ {0, ℤ2, ℤ3, ℤ6} is a finite subgroup of the centre
of 𝐺SM (which is 𝑈(1) × ℤ2 × ℤ3 ≅ 𝑈(1) × ℤ6).

We shall compute the fifth bordism group (preserving spin structure) for all these four
groups, and so identify potential global anomalies in these theories. Recall that in Ref. [233],
it was argued that there are no global anomalies in the SM with any of these four gauge
groups, by fitting all four possibilities inside an 𝑆𝑈(5) GUT which is easily shown to be
anomaly-free (since the computation of the spin-bordism group for 𝑆𝑈(𝑛) is straightfor-
ward). What we shall prove is a more general result, since it shall apply to gauge theories
with one of these four gauge groups, but with arbitrary fermion content. Thus, the results
we find shall apply immediately to any BSM theories in which the gauge group is that of the
SM, but in which there are additional chiral fermion fields.

No discrete quotient

For the simplest case where 𝐺 = 𝐺SM = 𝑆𝑈(3)×𝑆𝑈(2)×𝑈(1) with a regular spin structure,
we shall use the AHSS associated with the fibration (7.10) to compute the bordism groups
ΩSpin

𝑑≤5(𝐵𝐺SM).
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To begin, recall that the cohomology ring of 𝐵𝐺SM is generated by the Chern classes
associated with each factor of the gauge group,

𝐻• (𝐵𝐺SM; ℤ) ≅ ℤ [𝑥, 𝑐′
2, 𝑐2, 𝑐3] , (7.19)

where 𝑥 ∈ 𝐻2 (𝐵𝐺SM; ℤ) indicates the first Chern class associated with the 𝑈(1) factor,
𝑐′

2 ∈ 𝐻4 (𝐵𝐺SM; ℤ) indicates the second Chern class of 𝑆𝑈(2), and 𝑐2 ∈ 𝐻4 (𝐵𝐺SM; ℤ)
and 𝑐3 ∈ 𝐻6 (𝐵𝐺SM; ℤ) indicate the second and third Chern classes respectively of the
𝑆𝑈(3) factor. We thus have the following low dimension cohomology groups

𝐻0 (𝐵𝐺SM; ℤ) ≅ ℤ,
𝐻2 (𝐵𝐺SM; ℤ) ≅ ℤ,
𝐻4 (𝐵𝐺SM; ℤ) ≅ 3ℤ,
𝐻6 (𝐵𝐺SM; ℤ) ≅ 4ℤ,

(7.20)

with all cohomology groups in odd degrees vanishing. Because of this, and because these
groups are all torsion-free, there is an isomorphism

𝐻2𝑘 (𝐵𝐺SM; ℤ) ≅ 𝐻2𝑘 (𝐵𝐺SM; ℤ) , (7.21)

yielding the homology groups that we need to populate the entries of the second page of the
AHSS relevant for computing the bordism groups ΩSpin

𝑑 (𝐵𝐺SM) up to 𝑑 = 5, since we know
that

𝐸2
𝑝,𝑞 = 𝐻𝑝(𝐵𝐺SM; ΩSpin

𝑞 (⋆)) = 𝐻𝑝(𝐵𝐺SM; ℤ) ⊗ ΩSpin
𝑞 (⋆), (7.22)

where the bordism groups of a point ΩSpin
𝑞 (⋆) are as listed in (7.11). The entries of the second

page are shown in Fig. 7.2.
The Steenrod square action on each of the generators of the cohomology ring (7.19) is

given by [246]
Sq2(𝑥) = 𝑥2,
Sq2(𝑐′

2) = 0,
Sq2(𝑐2) = 𝑐3,
Sq2(𝑐3) = 0,

(7.23)

where 𝑥2 is a shorthand notation for 𝑥 ∪ 𝑥, the cup product of cohomology classes. We
see from Fig. 7.2 that there is only a single entry on the diagonal 𝑝 + 𝑞 = 5 which is thus
relevant to the computation of ΩSpin

5 (𝐵𝐺SM), and that is 𝐸2
4,1. We need to compute what
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Fig. 7.2 The 𝐸2 page of the Atiyah-Hirzebruch spectral sequence for 𝐺 = 𝐺SM. We see
that there is only a single entry relevant to the computation of ΩSpin

5 (𝐵𝐺SM), with a map (𝛾)
going in and a map (𝛽) going out.

this stabilises to, so we begin by turning to the third page, which requires us to compute the
differentials labelled 𝛽 and 𝛾 in Fig. 7.2.

Using the Steenrod squares (7.23), together with (7.18) and the fact that ΩSpin
1 (⋆) =

ΩSpin
2 (⋆) = ℤ2, we have that the differential labelled 𝛽 in Fig. 7.2 is the dual of the Steenrod

square
Sq2 ∶ 𝐻2 (𝐵𝐺SM; ℤ2) ⟶ 𝐻4 (𝐵𝐺SM; ℤ2)

𝑥 ↦ 𝑥2.
(7.24)

Let us denote the generators of 𝐸4,1
2 ≅ 3ℤ2 as 𝑥2, 𝑐′

2, and 𝑐2, which are dual to the generators
𝑥2, 𝑐′

2, 𝑐2 ∈ 𝐻4 (𝐵𝐺SM; ℤ2) by the Kronecker pairing (denoted ⟨⋅, ⋅⟩) between homology
and cohomology. Then we see that

⟨Sq2
⋆𝑥2, 𝑥⟩ = ⟨𝑥2, 𝑥2

⟩ = 1,

⟨Sq2
⋆𝑐′

2, 𝑥⟩ = ⟨𝑐′
2, 𝑥2

⟩ = 0,

⟨Sq2
⋆𝑐2, 𝑥⟩ = ⟨𝑐2, 𝑥2⟩ = 0.

(7.25)
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Hence, the kernel of 𝛽 is ker 𝛽 ≅ 2ℤ2, generated by 𝑐′
2 and 𝑐2.

The differential labelled 𝛾 in Fig. 7.2 is the composition of the dual Steenrod square and
the reduction mod 2:

𝛾 ∶ 4ℤ mod 2−−−−−→ 4ℤ2
Sq2

⋆−−→ 3ℤ2, (7.26)

where the relevant Steenrod square is

Sq2 ∶ 𝐻4 (𝐵𝐺SM; ℤ2) ⟶ 𝐻6 (𝐵𝐺SM; ℤ2)
𝑥2 ↦ 2𝑥3 ≡ 0 mod 2,
𝑐′

2 ↦ 0,
𝑐2 ↦ 𝑐3,

(7.27)

where to deduce 𝑥2 ↦ 2𝑥3 we have used Cartan’s formula. Again using the Kronecker
pairing, we deduce that Sq2

⋆ kills 𝑥3 and 𝑐′
2 ∪ 𝑥, and sends 𝑐3 to 𝑐2. Therefore Im 𝛾 ≅ ℤ2,

generated only by 𝑐2. We can then ‘take the homology’ with respect to the differentials 𝛽
and 𝛾 to ‘turn the page’ of the AHSS and deduce the (4, 1) element of the third page,

𝐸3
4,1 = ker 𝛽

Im 𝛾 ≅ 2ℤ2
ℤ2

≅ ℤ2. (7.28)

Since the entries in every odd column vanish, there are no non-trivial differentials on the
third page, and so we can turn to the fourth page with 𝐸4

𝑝,𝑞 = 𝐸3
𝑝,𝑞 for all (𝑝, 𝑞).

On the fourth page the only differential relevant to computing ΩSpin
5 (𝐵𝐺SM) is 𝑑4 ∶

𝐸4
4,1 → 𝐸4

0,5, which is a homomorphism from ℤ2 to ℤ and is thus trivial. So the (4, 1) entry
stabilises to 𝐸4,1

∞ ≅ ℤ2, and since this is the only non-zero element on the 𝑝+𝑞 = 5 diagonal
it follows that

ΩSpin
5 (𝐵𝐺SM) ≅ ℤ2, (7.29)

where we can presumably identify the potential global anomaly in this theory with theWitten
anomaly associated to the 𝑆𝑈(2) factor.

We can continue to compute the bordism groups of 𝐵𝐺SM in lower degrees in a similar
fashion. From Fig. 7.2 we can immediately read off

ΩSpin
0 (𝐵𝐺SM) ≅ ℤ, and ΩSpin

1 (𝐵𝐺SM) ≅ ℤ2, (7.30)

and it is straightforward to show that

ΩSpin
2 (𝐵𝐺SM) ≅ ℤ ⊕ ℤ2, (7.31)
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Next, to compute ΩSpin
3 (𝐵𝐺SM), we need the differential

𝛼 ∶ 3ℤ mod 2−−−−−→ 3ℤ2
Sq2

⋆−−→ ℤ2, (7.32)

as well as the map 𝑑2
2,1 ∶ ℤ2 → ℤ2. The dual Steenrod square is precisely the same as for

the map 𝛽, which maps 𝑥2 ↦ �̃�, and the other generators to zero, so we have that Im 𝛼 = ℤ2.
Then, we do not need to compute the map 𝑑2

2,1 to deduce that its kernel must be ℤ2, because
we know that Im 𝛼 ⊂ ker 𝑑2

2,1. Hence, taking the homology, we deduce that 𝐸∞
2,1 = 0. All

elements on the 𝑝 + 𝑞 = 3 diagonal thus stabilise to zero and we have that

ΩSpin
3 (𝐵𝐺SM) ≅ 0. (7.33)

To compute ΩSpin
4 (𝐵𝐺SM), we know from above that the map 𝛽 into 𝐸2

2,2 has image Im 𝛽 ≅
ℤ2, generated by the element �̃� ∈ 𝐻2(𝐵𝐺SM; ℤ2). The map out of 𝐸2

2,2 is to zero and so its
kernel is ℤ2; turning to the next page, this element therefore stabilises at ℤ2/ℤ2 ≅ 0. More
care is required to deduce ker 𝛼, as follows. We have that 𝑐′

2 and 𝑐2 certainly map to zero,
where note that the elements 𝑥2, 𝑐′

2, and 𝑐2 are here valued in homology over integers (rather
than integers modulo 2). Thus, while 𝑥2 ∈ 𝐻4 (𝐵𝐺SM; ℤ) maps to the non-zero element
�̃� ∈ 𝐻2 (𝐵𝐺SM; ℤ2), the element 2𝑥2 ∈ 𝐻4 (𝐵𝐺SM; ℤ) maps to zero in 𝐻2 (𝐵𝐺SM; ℤ2).
Hence, the map 𝛼 has a kernel ker 𝛼 ≅ 3ℤ (which may look strange given its image is non-
zero), and so we deduce 𝐸∞

4,0 ≅ 3ℤ. Given also that 𝐸∞
0,4 ≅ ℤ, we compute

ΩSpin
4 (𝐵𝐺SM) ≅ 4ℤ, (7.34)

thus concluding our computation of the spin-bordism groups ΩSpin
𝑑≤5(𝐵𝐺SM) for the SM gauge

group without a quotient. This result, along with others, is summarized in Table 7.1.

ℤ2 quotient

Wenow turn to the variants of the SM involving quotients of 𝐺SM by discrete subgroups of its
center, as listed in (6.1). Recall that the generator ofℤ2 in the quotient of (𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3)) /ℤ2
is

𝜉 = e𝜋i ⊕ 𝜂 ⊕ 1, (7.35)
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𝐺 0 1 2 3 4 5

𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3) ℤ ℤ2 ℤ ⊕ ℤ2 0 4ℤ ℤ2

(𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3))/ℤ2 ℤ ℤ2 ℤ ⊕ ℤ2 0 4ℤ 0
(𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3))/ℤ3 ℤ ℤ2 ℤ ⊕ ℤ2 0 4ℤ ℤ2

(𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3))/ℤ6 - - - 0 - 0
𝑈(1)𝑚 × 𝑆𝑈(2) × 𝑆𝑈(3) ℤ ℤ2 𝑚ℤ ⊕ ℤ2 0 [3+ 1

2 𝑚(𝑚+1)]ℤ ℤ2

𝑆𝑈(4) × 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅, ℤ ℤ2 ℤ2 0 4ℤ 2ℤ2

Table 7.1 Summary of results from our bordism computations. We tabulate the bordism
groups in degrees zero through five for various 𝐵𝐺, including the four variants of the SM
gauge group, as well as two groups of relevance to BSM physics.

where 𝜂 is the generator of the ℤ2 centre of 𝑆𝑈(2) (with 𝜂2 = 1 ∈ 𝑆𝑈(2)). Thus, we can
write this particular quotient of the SM gauge group as

𝑈(1) × 𝑆𝑈(2)
ℤ2

× 𝑆𝑈(3) ≅ 𝑈(2) × 𝑆𝑈(3), (7.36)

and hence𝐵(𝐺SM/ℤ2) = 𝐵𝑈(2)×𝐵𝑆𝑈(3). This shall prove useful, because the cohomology
ring of the classifying space of the groups 𝑈(𝑛) is well-known.

Using the usual fibration ⋆ ⟶ 𝐵(𝐺SM/ℤ2) ⟶ 𝐵(𝐺SM/ℤ2), the second page of the
AHSS is given by 𝐸2

𝑝,𝑞 = 𝐻𝑝 (𝐵𝑈(2) × 𝐵𝑆𝑈(3); ΩSpin
𝑞 (⋆)), as shown in figure 7.3. Recall

that the relevant cohomology rings are

𝐻∗ (𝐵𝑆𝑈(3)) =ℤ[𝑐2, 𝑐3]
𝐻∗ (𝐵𝑈(2)) =ℤ[𝑐′

1, 𝑐′
2]

(7.37)

where 𝑐𝑖, 𝑐′
𝑖 are the 𝑖th Chern classes (which are cohomology classes in degree 2𝑖) for 𝑆𝑈(3)

and 𝑈(2), respectively. Thus, we have the integral cohomology groups

𝐻0 (𝐵(𝐺SM/ℤ2); ℤ) ≅ ℤ,
𝐻2 (𝐵(𝐺SM/ℤ2); ℤ) ≅ ℤ, generated by 𝑐′

1,
𝐻4 (𝐵(𝐺SM/ℤ2); ℤ) ≅ 3ℤ, generated by 𝑐′2

1 , 𝑐′
2, 𝑐2,

𝐻6 (𝐵(𝐺SM/ℤ2); ℤ) ≅ 4ℤ, generated by 𝑐′3
1 , 𝑐′

1𝑐′
2, 𝑐′

1𝑐2, 𝑐3.

(7.38)
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Fig. 7.3 The 𝐸2 page of the Atiyah-Hirzebruch spectral sequence for 𝐺 = 𝑈(2)×SU(3), with
differentials relevant to the computation of the fourth and fifth spin-bordism groups labelled.

Again, because these are torsion-free and the cohomology groups all vanish in odd degrees,
we deduce from these the integral homology groups,

𝐻2𝑘 (𝐵(𝐺SM/ℤ2); ℤ) ≅ 𝐻2𝑘 (𝐵(𝐺SM/ℤ2); ℤ) . (7.39)

Thus far, this appears superficially identical to the case of no discrete quotient considered
above, and indeed the second page of the AHSS is populated by the same groups; however,
the action of the Steenrod squares is subtely different, meaning the action of the differentials
(and, specifically, the maps 𝛼, 𝛽, and 𝛾) is not necessarily the same as above. It turns out
that an important difference shall be in the map 𝛾 . In particular, we have that the action on
the generators of the cohomology ring of 𝐵(𝑈(2) × 𝑆𝑈(3)) is [246]

Sq2(𝑐′
1) = 𝑐′2

1 ,
Sq2(𝑐′

2) = 𝑐′
1 ∪ 𝑐′

2,
Sq2(𝑐2) = 𝑐3,
Sq2(𝑐3) = 0.

(7.40)

Notice the second line in particular, to be contrasted with the second line in (7.23).
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The differentials relevant to the calculation ofΩSpin
4 (𝐵(𝐺SM/ℤ2)) andΩSpin

5 (𝐵(𝐺SM/ℤ2))
are again given by

𝛼 = Sq2
(2)⋆ ∘ 𝜌,

𝛽 = Sq2
(2)⋆,

𝛾 = Sq2
(4)⋆ ∘ 𝜌,

(7.41)

where 𝜌 denotes reduction modulo 2, and Sq2
(𝑝)⋆ is a shorthand for the dual Steenrod square

that acts on the homology group 𝐻𝑝. Since Sq2
(2) ∶ 𝐻2 → 𝐻4 maps 𝑐′

1 ↦ 𝑐′2
1 , we see that

both 𝛼, 𝛽 maps 𝑐′2
1 ↦ 𝑐′

1 and others to zero. Moreover, 𝛼 maps 2𝑐′2
1 to zero. So we have,

using similar arguments as before, that

ker 𝛼 = 3ℤ, Im 𝛼 = ℤ2, ker 𝛽 = 2ℤ2, Im 𝛽 = ℤ2, (7.42)

which is as it was in the previous case.
We now turn to the map 𝛾 . The relevant Steenrod square is here

Sq2 ∶ 𝐻4 (𝐵(𝐺SM/ℤ2); ℤ2) ⟶ 𝐻6 (𝐵(𝐺SM/ℤ2); ℤ2)
𝑐′2

1 ↦ 2𝑐′3
1 ≡ 0 mod 2,

𝑐′
2 ↦ 𝑐′

1 ∪ 𝑐′
2,

𝑐2 ↦ 𝑐3,

(7.43)

where the second line should be contrasted with that in (7.27). So 𝛾 maps 𝑐′
1 ∪ 𝑐′

2 ↦ 𝑐′
2 and

𝑐3 ↦ 𝑐2, while mapping other generators to zero. This gives Im 𝛾 = 2ℤ2. Then

𝐸3
4,1 = ker 𝛽

Im 𝛾 = 0, (7.44)

to be contrasted with the non-zero result in (7.28). Thus, this entry stabilises, and there are
no non-zero entries on the diagonal 𝑝 + 𝑞 = 5 of the last page of this AHSS. Hence, we
deduce

ΩSpin
5 (𝐵(𝐺SM/ℤ2)) = 0. (7.45)

One can compute the spin-bordism groups in lower degrees using the same methods as in the
previous example, and one finds no other differences in the results, which are again recorded
in Table 7.1.
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ℤ3 quotient

Our approach for tackling this variant of the SM is qualitatively very similar to that em-
ployed for the ℤ2 quotient in the previous Subsection. The generator of the ℤ3 quotient in
(𝑈(1) × SU(2) × SU(3)) /ℤ3 is

𝜉 = e2𝜋i/3 ⊕ 1 ⊕ 𝜔, (7.46)

where 𝜔 is the generator of the ℤ3 centre of SU(3) (with 𝜔3 = 1 ∈ 𝑆𝑈(3)). This enables us
to write this particular quotient of the SM gauge group as 𝑆𝑈(2) × 𝑈(3), so 𝐵(𝐺SM/ℤ3) =
𝐵𝑆𝑈(2) × 𝐵𝑈(3). The revelant cohomology rings are now

𝐻∗ (𝐵𝑈(3)) =ℤ[𝑐1, 𝑐2, 𝑐3]
𝐻∗ (𝐵𝑆𝑈(2)) =ℤ[𝑐′

2]
(7.47)

where 𝑐𝑖, 𝑐′
𝑖 are the 𝑖th Chern classes for 𝐵𝑈(3) and 𝐵𝑆𝑈(2), respectively. From this, we find

that 𝐻2(𝐵(𝐺SM/ℤ3)) is generated by 𝑐1, 𝐻4(𝐵(𝐺SM/ℤ3)) by 𝑐2
1 , 𝑐2, 𝑐′

2, and 𝐻6(𝐵(𝐺SM/ℤ3))
by 𝑐3

1 , 𝑐1𝑐′
2, 𝑐1𝑐2, 𝑐3, and again the absence of torsion means these cohomology groups are

isomorphic to the corresponding groups in homology.
We again form the AHSS associated to the trivial fibration over a point. The entries on

the second page of the AHSS are identical to those of the previous two cases, albeit with
different action of the differentials, so we choose not to reproduce the diagram for a third
time. Again, the difference shall enter in the action of the differential labelled 𝛾 .

The differentials relevant to the calculation ofΩSpin
4 (𝐵(𝐺SM/ℤ3)) andΩSpin

5 (𝐵(𝐺SM/ℤ3))
may be labelled precisely as in (7.41) above. Since Sq2

(2) ∶ 𝐻2 → 𝐻4 maps 𝑐1 ↦ 𝑐2
1 , we see

that both 𝛼, 𝛽 maps 𝑐2
1 ↦ 𝑐1 and others to zero, and moreover 𝛼 maps 2𝑐2

1 to zero as before.
So we again have ker 𝛼 = 3ℤ, Im 𝛼 = ℤ2, ker 𝛽 = 2ℤ2, and Im 𝛽 = ℤ2.

We turn to the action of 𝛾 . The relevant Steenrod square is here

Sq2 ∶ 𝐻4 (𝐵(𝐺SM/ℤ3); ℤ2) ⟶ 𝐻6 (𝐵(𝐺SM/ℤ3); ℤ2)
𝑐2

1 ↦ 2𝑐3
1 ≡ 0 mod 2,

𝑐′
2 ↦ 0,

𝑐2 ↦ 𝑐1𝑐2 + 𝑐3.

(7.48)

So 𝛾 maps 𝑐1𝑐2 ↦ 𝑐2 and 𝑐3 ↦ 𝑐2, while mapping other generators to zero. This gives
Im 𝛾 = ℤ2, and hence

𝐸3
4,1 = ker 𝛽

Im 𝛾 = ℤ2, (7.49)
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and this entry stabilises. This is the only non-vanishing entry on the 𝑝 + 𝑞 = 5 diagonal, and
so we find

ΩSpin
5 (𝐵(𝐺SM/ℤ3)) = ℤ2. (7.50)

Since the discrete ℤ3 quotient is here embedded ‘orthogonally’ to the 𝑆𝑈(2) factor in 𝐺,
we feel safe in suggesting that this ℤ2 captures the Witten anomaly coming from the 𝑆𝑈(2)
factor. As for the previous example, the lower-degree bordism groups are unchanged (see
Table 7.1).

ℤ6 quotient

Interestingly, we cannot use the same trick as in the two previous Subsection when the quo-
tient is ℤ6. The ℤ6 quotient is generated by the element

𝜉 = e𝜋i/3 ⊕ 𝜂 ⊕ 𝜔, (7.51)

for which there is no straightforward way to write the group 𝐺SM/ℤ6 as a direct product
involving unitary and special unitary groups, as we did in the previous two cases. This
means a direct attempt to use the AHSS to compute the bordism groups of 𝐺SM/ℤ6 seems
unlikely to work, given we do not know how the differentials on the second page act.

Instead, we consider the following fibration17

ℤ3 ⟶ 𝑈(2) × 𝑆𝑈(3) ⟶ 𝐺SM/ℤ6. (7.52)

This induces the fibration 𝐵ℤ3 → 𝐵(𝑈(2)×𝑆𝑈(3)) → 𝐵(𝐺SM/ℤ6), which turns into the fol-
lowing, more useful, fibration after we invoke the Puppe sequence (we here follow a similar
strategy to that used in Ref. [247]):

𝐵 (𝑈(2) × 𝑆𝑈(3)) ⟶ 𝐵(𝐺SM/ℤ6) ⟶ 𝐾 (ℤ3, 2) , (7.53)

where 𝐾 (ℤ3, 2) = 𝐵(𝐵(ℤ3)) is an Eilenberg-Maclane space.
The second page of the AHSS associated with this fibration is given by

𝐸2
𝑝,𝑞 = 𝐻𝑝 (𝐾 (ℤ3, 2) ; ΩSpin

𝑞 (𝐵(𝑈(2) × 𝑆𝑈(3)))) . (7.54)

While this may look like a rather unwieldy expression, note that the spin-bordism groups
ΩSpin

𝑞 (𝐵(𝑈(2) × 𝑆𝑈(3))) are precisely those that we have already computed in our study of
17Note that the fibration (7.52) does not uniquely specific the embedding of the ℤ6 subgroup in 𝐺SM; for

example, it is also consistent with 𝑈(3) × 𝑆𝑂(3).
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global anomalies for the case𝐺 = 𝐺SM/ℤ2, as recorded in the second line of Table 7.1. These
groups only feature factors of ℤ and ℤ2, and the homology groups of the Eilenberg-Maclane
space 𝐾(ℤ3, 2) valued in ℤ and ℤ2 were computed in Ref. [248] to be

𝑖 0 1 2 3 4 5

𝐻𝑖(𝐾(ℤ3, 2), ℤ) ℤ 0 ℤ3 0 ℤ3 0

𝐻𝑖(𝐾(ℤ3, 2), ℤ2) ℤ2 0 0 0 0 0

(7.55)

We can thence compute all the entries (7.54) in the second page of the AHSS. These are
shown in Fig. 7.4.

E2 page

0 1 2 3 4 5

0

1

2

3

4

5

Z

Z2

Z⊕Z2

0

4Z

0

Z3

0

Z3

0

4Z3

0

Z3

0

Z3

0

4Z3

0

0

0

0

0

0

0

Fig. 7.4 The second page of the Atiyah-Hirzebruch spectral sequence corresponding to the
fibration (7.53). The entries relevant to the computation of ΩSpin

5 (𝐵𝐺SM/ℤ6) are highlighted,
all of which vanish already on the second page.

Somewhat fortunately (for the sake of being able to perform the computation), all the
entries on the 𝑝 + 𝑞 = 5 diagonal relevant for the computation of ΩSpin

5 (𝐵𝐺SM/ℤ6) vanish
already on the second page. This is just as well, because for this fibration we do not know
any formula for the action of the differentials (with which to turn to the next page) in terms
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of Steenrod squares (or indeed any other operation on (co)homology).18 We thus conclude
that

ΩSpin
5 (𝐵(𝐺SM/ℤ6)) = 0. (7.56)

We may also deduce that ΩSpin
3 (𝐵(𝐺SM/ℤ6)) = 0 because every entry on the 𝑝 + 𝑞 = 3

diagonal of Fig. 7.4 also vanishes. But we are not able to compute the remaining non-trivial
differentials required to turn to the third page, and so cannot compute the other remaining
bordism groups in this case. We tabulate our results in Table 7.1.

Interplay between global and local anomalies

It is interesting that in the case of the ℤ2 and ℤ6 quotients, there are no global anomalies at
all, whereas in the case of a quotient by ℤ3 (or the case with no quotient at all) there is a ℤ2
global anomaly which we have identified with the familiar Witten anomaly associated with
the 𝑆𝑈(2) factor.

This might at first appear puzzling. We know that cancellation of the Witten anomaly in
an 𝑆𝑈(2) gauge theory, and in the SM, requires 𝑛𝐿 − 𝑛𝑅 = 0 mod 2 if there are 𝑛𝐿 (𝑛𝑅) left-
handed (right-handed) fermions in 𝑆𝑈(2) doublets. Does the fact that we have computed
that there are no such conditions for global anomaly cancellation in two variants of the SM
mean that in these cases we can dispense with Witten’s condition, and consider extensions
of the SM with odd numbers of 𝑆𝑈(2) doublets? The answer is no, due to a subtle interplay
between global and local anomaly cancellation, which we now describe. The key point is
that taking discrete quotients of 𝐺SM changes the set of representations that fermions can
transform in, since every fermion must be in a bona fide representation of the group 𝐺. In
particular, when we quotient by ℤ2 or ℤ6 any fermion doublets must have odd charges under
hypercharge (in units of one sixth).

To see why this must be the case, consider the case where 𝐺 = 𝐺SM/ℤ2 = 𝑆𝑈(3)×𝑈(2).
We first recall some relevant representation theory of𝑈(2). Given𝑈(2) = (𝑈(1) × 𝑆𝑈(2)) /ℤ2,
one may write a 𝑈(2) representation in terms of a 𝑈(1) × 𝑆𝑈(2) representation, which we
denote by r𝑞 (where r denotes the 𝑟-dimensional representation of 𝑆𝑈(2) and 𝑞 ∈ ℤ is
the integer-normalised 𝑈(1) charge), with some restrictions imposed. We will restrict our
attention to the fundamental representation (r = 2) only, since this is the 𝑆𝑈(2) represen-
tation of relevance to the Witten anomaly. Suppose that a field 𝜓 transforms in the repre-
sentation 2𝑞. This means that under the action of the 𝑈(2) group element corresponding to

18Note that the similar-looking fibration ℤ2 ⟶ 𝑈(3) × 𝑆𝑈(2) ⟶ 𝐺SM/ℤ6 does not yield such simplifi-
cations, and so cannot be used to compute the relevant bordism group because there are unknown differentials
on the second page. This is roughly because the homology of 𝐾(ℤ2, 2) is ‘more complicated’ than that of
𝐾(ℤ3, 2).
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(exp i𝜃, 𝑔) ∈ 𝑈(1) × 𝑆𝑈(2) the field transforms as

𝜓 ↦ 𝜓′ = exp (i𝑞𝜃) 𝑔 ⋅ 𝜓. (7.57)

For this to be a kosher representation of 𝑈(2), one must identify the action of (exp i𝜋, 1) and
(1, −1), which gives us the constraint

exp i𝑞𝜋 = −1 (7.58)

Therefore, 𝑞 can only be an odd integer. This is the case in the SM, where the doublet
representations 𝑄 and 𝐿 carry hypercharges 1 and −3 respectively, using the normalisation
of interest where the smallest charge (that belonging to the quark doublet 𝑄) is set to one.
This means that the fermion content of the SM is indeed consistent with the electroweak
gauge group being 𝑈(2).

We now analyse the cancellation of local, or ABJ type anomalies. In order for the 𝑈(1)×
𝑆𝑈(2)2 anomaly coefficient to cancel requires the sum of hypercharges of fermions that
transforming in the 2 representation of 𝑆𝑈(2) must vanish. Given the hypercharges of such
doublets are all odd integers in a theory in which the electroweak gauge group is 𝑈(2), this
implies there must be an even number of such doublets.

Note that the ‘local’ conditions for anomaly cancellation are identical in both the 𝑈(1) ×
𝑆𝑈(2) and 𝑈(2) cases, because the ABJ type anomalies are fixed entirely by the Lie al-
gebra of the gauge group. The difference is that in the former case, both even and odd
hypercharges are permitted, and so one cannot in general infer a condition on the number of
allowed fermions by considering the anomaly cancellation equations mod 2; in this case, the
requirement that there be an even number of chiral 𝑆𝑈(2) doublets instead follows from a
potential ‘global’ anomaly.

Thus, whether the electroweak gauge group is 𝑈(1) × 𝑆𝑈(2) or 𝑈(2), in either case we
require an even number of fermion doublets for an anomaly-free theory - even though there
is no global anomaly requiring this to be so in the case of 𝑈(2).

7.3.2 Alternative spin structures
The computations we have made thus far assume that the SM fermions are defined using
an ‘ordinary’ spin structure. As we discussed above, this need not be the case. Firstly, in
the presence of a 𝑈(1) gauge symmetry, fermions on an orientable spacetime may in fact
be defined using only a spin𝑐 structure. Secondly, it is possible to define fermions on non-
orientable spacetimes, by using one of two ‘pin structures’, called pin+ and pin−. Moreover,
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again if there is a 𝑈(1) gauge symmetry, only a pin𝑐 structure is sufficient. In the presence
of a larger gauge symmetry, such as 𝑆𝑈(2), one could get away with only a spin-𝑆𝑈(2)
structure to define fermions, and so on.

In this Section, we comment briefly on the possibility of global anomalies in variants of
the SM in which fermions are defined with one of these ‘exotic’ spin structures. As we have
suggested above, the groups of bordism-equivalent five-manifolds admitting these different
structures are different, and so each possible ‘spin structure’ leads to different possibilities
for the 𝜂-invariant, and thus potentially different conditions for the cancellation of global
anomalies.

The bordism groups of a point with the different spin structures were given in (7.11)
above. Our first important observation is that for the cases spin𝑐 and pin𝑐 there is a big
simplification, which follows the fact that the bordism groups of a point here vanish in all
odd degrees, at least up to ΩSpin𝑐

9 (⋆) and ΩPin𝑐

9 (⋆).
What this means is that, for any gauge group 𝐺 for which 𝐻𝑝(𝐵𝐺, ℤ) also vanishes in all

odd degrees, non-zero entries in 𝐸2
𝑝,𝑞 can only appear when 𝑝 + 𝑞 is even. In other words, all

entries on the odd diagonals (i.e. with 𝑝 + 𝑞 odd) trivially stabilise to zero. For the examples
𝐺 = 𝐺SM, 𝐺 = 𝐺SM/ℤ2 = 𝑈(2) × 𝑆𝑈(3), and 𝐺 = 𝐺SM/ℤ3 = 𝑆𝑈(2) × 𝑈(3) this is indeed
the case. Thus, we may immediately conclude that

ΩSpin𝑐

5 (𝐵𝐺SM) = ΩSpin𝑐

5 (𝐵𝐺SM/ℤ2) = ΩSpin𝑐

5 (𝐵𝐺SM/ℤ3) = 0,
ΩPin𝑐

5 (𝐵𝐺SM) = ΩPin𝑐

5 (𝐵𝐺SM/ℤ2) = ΩPin𝑐

5 (𝐵𝐺SM/ℤ3) = 0,
(7.59)

so there are no possibilities of any global anomalies (not even theWitten anomaly) if fermions
coupled to any one of these gauge groups are defined using spin𝑐 or pin𝑐 structures. The ex-
ample of 𝐺SM/ℤ6 is less straightforward. However, we may once again proceed via the
Puppe sequence and use the homology groups of 𝐾(ℤ3, 2), to deduce that

ΩSpin𝑐

5 (𝐵𝐺SM/ℤ6) = ΩPin𝑐

5 (𝐵𝐺SM/ℤ6) = 0, (7.60)

thus completing the story with these structures.
Moreover, due to the simplicity of the argument, it extends straightforwardly to any bor-

dism group in (low enough) odd degrees (preserving spin𝑐 or pin𝑐 structures). Thus, the
absence of global anomalies in such theories persists in any even number of spacetime di-
mensions.

Given the absence of any ℤ2-valued anomalies, even in the cases with 𝐺 = 𝐺SM and
𝐺 = 𝐺SM/ℤ3 (for which 𝐺 contains an 𝑆𝑈(2) subgroup), we might once again be puzzled
by what has happened to the Witten anomaly. Is it really the case, for example, that using
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spin𝑐 structure one can define a consistent theory of a single Weyl fermion? To answer this
question, we must be careful to specify which 𝑈(1) gauge symmetry we use to define the
spin𝑐 structure; in the SM there are of course many possible 𝑈(1) subgroups of 𝐺 that we
could use. We shall see that this issue is a rather delicate one, leading to strong constraints
on the allowed fermion content.

Perhaps the obvious choice in the case of the SM is to define a spin𝑐 structure using
𝑈(1)𝑌 , hypercharge transformations. With this choice, fermions must then transform in
representations of the group

Spin𝑐(4) ≅ Spin(4) × 𝑈(1)𝑌
ℤ2

≅ 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅 × 𝑈(1)𝑌
ℤ2

. (7.61)

A Weyl fermion transforms in the (2, 1) or (1, 2) representation of the 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅
factor. So, when considering Weyl fermions we may restrict our attention to a subgroup of
Spin𝑐(4) isomorphic to

(𝑆𝑈(2) × 𝑈(1)𝑌 )/ℤ2 ≅ 𝑈(2), (7.62)

and thus any Weyl fermion must transform in a bona fide rep of this 𝑈(2). We emphasise
that here, unlike in the case of the 𝑈(2) electroweak theory we considered previously, the
𝑆𝑈(2) factor corresponds to spacetime symmetries, whereas the 𝑈(1)𝑌 is an internal gauge
symmetry. But nonetheless, we may use the same 𝑈(2) representation theoretic arguments
as before to deduce that any Weyl fermion (which transforms in the doublet representation
of the ‘spacetime 𝑆𝑈(2)’ factor appearing in (7.62)) must have odd hypercharge, if it is to
be defined on a spin𝑐 manifold using the spin𝑐 structure (7.61).

This is not the case in the SM, for which the right-handed electroweak singlet fields 𝑢 and
𝑑 have even hypercharges (in units where the smallest hypercharge, that of the left-handed
𝑄 field, is set to one). Thus, one cannot in fact define the SM with using this choice spin𝑐

structure, for purely representation theoretic reasons! Of course, this does not imply that
there is no possible choice of spin𝑐 structure that one could use to define the SM fermions,
since there are many other 𝑈(1) subgroups of 𝐺 to play with. It would be interesting to
explore these possibilities in future. In the event that one can find a spin𝑐 structure for which
the SM fermions transform in genuine representations of the corresponding Spin𝑐(4) group
(as well as of the SM gauge group, of course), then it would be interesting to track downwhat
happens to the Witten anomaly, since there will be non-trivial relations between the spin and
𝑈(1) charges19 of the allowed fermion fields which will have implications for satisfying the
local anomaly cancellation conditions modulo 2.

19Similar ‘spin-charge relations’ have been recently discussed by Seiberg and Witten [249], also in the con-
text of defining fermions on spin𝑐 manifolds.
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What about the case of a non-orientable spacetime equipped with either a pin+ or pin−

structure? In general, no such simple arguments can be made to deduce the relevant bordism
groups for the cases of pin± structures. While we are able to compute the bordism groups in
special cases where they happen to vanish trivially (for example, we find ΩPin±

5 (𝐵𝑆𝑈(𝑛)) =
0), in non-trivial cases it is difficult to turn past the second page of the AHSS, because there
are no explicit formulae for the differentials analogous to those for the spin case (in terms
of Steenrod squares), as far as we are aware. We are content to leave the case of the SM
equipped with pin± structures for future work.

7.3.3 Examples from BSM
Finally, we shall show how to extend these methods to compute whether there are any poten-
tial global anomalies in BSM theories, by considering some popular examples. Firstly, we
consider extensions of the SM by an arbitrary product of gauged 𝑈(1) symmetries (such as
in theories featuring heavy 𝑍′ gauge bosons), and then we consider the Pati-Salam model.

Mutliple 𝑍′ extensions of the SM

We consider a four-dimensional gauge theory with gauge group

𝐺𝑍′ ≡ 𝑈(1)𝑚 × 𝑆𝑈(2) × 𝑆𝑈(3), 𝑚 ≥ 2, (7.63)

corresponding to an extension of the SM gauge group by arbitrary 𝑈(1) factors, with a priori
arbitrary fermion content. We will compute whether there are potential global anomalies in
such a BSM theory, assuming that the fermions are defined using an ordinary spin structure.

The cohomology ring for 𝐵𝐺𝑍′ is

𝐻• (𝐵𝐺𝑍′ ; ℤ) ≅ ℤ [𝑥1, … , 𝑥𝑚, 𝑐′
2, 𝑐2, 𝑐3] , (7.64)

where 𝑥𝑘 is the first Chern class associated with the 𝑘th 𝑈(1) factor, and the remaining
Chern classes are defined as in (7.19). In particular, we have the following low-dimensional
cohomology groups

𝐻0 (𝐵𝐺𝑍′ ; ℤ) ≅ ℤ,
𝐻2 (𝐵𝐺𝑍′ ; ℤ) ≅ 𝑚ℤ,

𝐻4 (𝐵𝐺𝑍′ ; ℤ) ≅ [(
𝑚 + 1

2 ) + 2] ℤ =∶ 𝑚′ℤ,

𝐻6 (𝐵𝐺𝑍′ ; ℤ) ≅ [(
𝑚 + 2

3 ) + 2𝑚 + 1] ℤ =∶ 𝑚′′ℤ,

(7.65)
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with all cohomology groups in odd degrees vanishing, which of course coincides with the
SM case when 𝑚 = 1. Again, these groups are isomorphic to the corresponding groups
in homology, with which we can deduce the entries 𝐸2

𝑝,𝑞 of the AHSS, which are shown in
Fig. 7.5.

We task ourselves here with the computation of ΩSpin
5 (𝐵𝐺𝑍′), which measures the po-

tential global anomalies in the four-dimensional gauge theory we are interested in from the
point of view of BSM. The relevant entries of the AHSS, lying on the 𝑝 + 𝑞 = 5 diagonal,
are highlighted in Fig. 7.5. To turn to the third (and thence fourth) page, we thus need to
compute the differentials here labelled 𝛼 and 𝛽.

This is again similar to the case of the SM considered above. The map 𝛽 is the dual to
the Steenrod square

Sq2 ∶ 𝐻2 (𝐵𝐺𝑍′ ; ℤ2) ⟶ 𝐻4 (𝐵𝐺𝑍′; ℤ2)
𝑥𝑖 ↦ 𝑥2

𝑖
(7.66)

So the kernel of 𝛽 is spanned by 𝑐2, 𝑐′
2, and 𝑥𝑖 ∪ 𝑥𝑗 with 𝑖 < 𝑗. Hence ker 𝛽 ≅ [1

2𝑚(𝑚 − 1) + 2] ℤ2.
To calculate Im 𝛼, where 𝛼 = Sq2

⋆ ∘ 𝜌, we first look at the corresponding Steenrod square

Sq2 ∶ 𝐻4 (𝐵𝐺𝑍′ ; ℤ2) ⟶ 𝐻6 (𝐵𝐺𝑍′; ℤ2)
𝑥2

𝑖 ↦ 2𝑥3
𝑖 ≡ 0 mod 2,

𝑥𝑖𝑥𝑗 ↦ 𝑥2
𝑖 𝑥𝑗 + 𝑥𝑖𝑥2

𝑗

𝑐2 ↦ 𝑐3

𝑐′
2 ↦ 0

(7.67)

So the image of Sq2
⋆, and also of 𝛼, is spanned by 𝑐2 and 𝑥𝑖𝑥𝑗 , for 𝑖 < 𝑗. Thus Im 𝛼 ≅

[1
2𝑚(𝑚 − 1) + 1] ℤ2. Taking the quotient then yields

𝐸4,1
3 = 𝐸4,1

4 ≅ ℤ2. (7.68)

On the 𝐸4 page (see Fig. 7.5) the only relevant differential must be trivial as it is a homo-
morphism from ℤ2 to ℤ, so the (4, 1) entry stabilises to 𝐸4,1

∞ ≅ ℤ2 and it follows that

ΩSpin
5 (𝐵 (𝑈(1)𝑚 × 𝑆𝑈(2) × 𝑆𝑈(3))) ≅ ℤ2, (7.69)

where we can again presumably identify the potential global anomaly in this theory with
the Witten anomaly associated to the 𝑆𝑈(2) factor. Thus we find, perhaps surprisingly, that
there are no potential new global anomalies associated with extending the SM by arbitrary
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extra 𝑈(1) gauge symmetries, and indeed by arbitrary fermion content coupled to such a
gauge group. We have also calculated the lower-degree bordism groups for this example,
which we simply tabulate in Table 7.1. We find that the additional 𝑈(1) factors do indeed
affect the bordism groups in lower degrees, in particular in degrees two and four.
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Fig. 7.5 The 𝐸2 and 𝐸4 pages of the Atiyah-Hirzebruch spectral sequence for 𝐺 = 𝐺𝑍′ =
𝑈(1)𝑚 × 𝑆𝑈(2) × 𝑆𝑈(3) with all elements and differentials relevant to the calculation of
ΩSpin

5 highlighted.

Pati-Salam gauge groups

For our final example, we consider the simplest incarnation (for our purposes) of the Pati-
Salam model. Here, the SM gauge group is embedded in the larger group20

𝐺PS ≡ 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅 × 𝑆𝑈(4). (7.70)

Again, we assume a standard spin structure. The cohomology ring for 𝐵𝐺PS is

𝐻• (𝐵𝐺PS; ℤ) ≅ ℤ [𝑐𝐿
2 , 𝑐𝑅

2 , 𝑐′
2, 𝑐′

3, 𝑐′
4] , (7.71)

where 𝑐𝐿/𝑅
2 denote the second Chern classes of the 𝑆𝑈(2)𝐿/𝑅 factors, and 𝑐′

𝑖 denotes the 𝑖th
Chern class of 𝑆𝑈(4). A notable difference between this example and all those considered

20We hope it is clear to the reader that the 𝑆𝑈(2)𝐿/𝑅 factors here correspond to internal gauge symmetries
of the unified theory, not to be confused with the same terminology used in (7.61), which there referred to
(Euclideanised) spacetime symmetries.
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previously is that the second homology group is here vanishing. However, this does not
much alter how the AHSS plays out in practice, and so we choose to omit the details of its
computation for brevity. The upshot is that we find

ΩSpin
5 (𝐵𝐺PS) ≅ ℤ2 ⊕ ℤ2. (7.72)

We identify the two ℤ2-valued global anomalies with the Witten anomalies associated with
each 𝑆𝑈(2) factor in the Pati-Salam group, a result that follows straightforwardly from Wit-
ten’s original arguments. We quote the remaining results of our calculations for all bordism
groups ΩSpin

𝑑≤5 (𝐵𝐺PS) in Table 7.1.
There are several variants on the Pati-Salam gauge group that involve various discrete

factors, which would complicate the computation of the classifying space and its homol-
ogy. For example, there are various left-right symmetric models which feature an additional
semidirect product of 𝐺PS with ℤ2, as well as variants featuring quotients by ℤ2. These vari-
ants might require further techniques beyond the arsenal we have developed in this Chapter,
and we plan to address these models in future work.

In this Chapter, we have investigated the constraints that might follow from a very gen-
eral global anomaly vanishing condition for a four-dimensional chiral gauge theory, that is
ΩSpin

5 (𝐵𝐺) = 0. This condition was motivated by the Dai-Freed theorem. We have ap-
plied this condition to a wide variety of theories in particle physics, including a number of
‘possible versions’ of the SM, in all of which we find only the Witten anomaly, or else no
global anomaly at all. We then considered BSM theories, where one might have hoped that
the condition ΩSpin

5 (𝐵𝐺) = 0 would provide extra constraints on the space of consistent
BSM theories. We have shown that this is largely not the case, since every possible global
anomaly detected by ΩSpin

5 (𝐵𝐺) appears to be understandable using Witten’s much simpler
homotopy-based arguments. Nonetheless, we hope our stack of new results are in some
ways surprising, at least from the mathematical perspective. In any case, the large collection
of ‘null results’ may at least provide assurance for those conscientious model-builders who
worry that their theories suffer from secret global anomalies. Finally, it is worth pointing out
that from our bordism computations we suspect there are plenty of new global anomalies in
lower dimensions, which may be of interest to others, for example in the condensed matter
physics community.



Chapter 8

Summary and Outlook

In this thesis we have investigated a variety of topological effects in quantum field theories,
with a particular focus on applications to four-dimensional theories of interest to particle
physics phenomenologists. The body of work reported in this thesis thus ranges from more
mathematical material lying close to topology, such as the use of Čech cohomology in Chap-
ter 2, the study of differential characters in Chapter 5, or the extensive use of the Atiyah-
Hirzebruch spectral sequence in Chapter 7, through to rather detailed model-building and
phenomenological analysis in Chapter 6. It is our hope that given this breadth, the material
presented in this thesis might interest a correspondingly wide range of readers. In this con-
cluding Section, we summarise the main achievements of this thesis, and point out several
exciting directions in which we would like to develop our ideas in the future.

We began in Chapter 2 by classifying 𝐺-invariant topological terms appearing in a 𝑝-
dimensional sigma model on a homogeneous space 𝐺/𝐻 . The classification was based on
the assumption that, for topological terms, one can replace the sigma model maps by singu-
lar homology 𝑝-cycles in 𝐺/𝐻 , and moreover that the action (or, rather, the action phase)
should be well-defined on all such 𝑝-cycles. We presented a classification in two parts, con-
sisting of Aharonov-Bohm (AB) terms, for which the action is simply the integral of a closed
𝑝-form, and Wess-Zumino (WZ) terms, for which the action is more complicated, which we
carefully constructed out of locally-defined differential forms using Čech cohomology. This
approach may be used to write down WZ terms for worldvolumes that correspond to ho-
mologically non-trivial 𝑝-cycles, in constrast to Witten’s construction of the original Wess-
Zumino-Witten (WZW) term, which operates only when spacetime bounds a five-manifold.
A key result in this classification was the derivation of a new condition for the 𝐺-invariance
of WZ terms, which we called the Manton condition, which we showed to be necessary and
sufficient for invariance of the action on all cycles when the Lie group 𝐺 is connected.
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In Chapters 3 and 4 we then applied this classification to two special cases. In Chapter 3
our goal was to classify topological terms in Composite Higgs models, which we carried out
in a plethora of examples from the literature. Our analysis revealed the existence of many
new topological terms, such as an AB term in the minimal Composite Higgs model, and a
whole slew of new topological terms in a model based on the coset 𝑆𝑂(6)/𝑆𝑂(4), which
features two Higgs doublets and a scalar singlet.

These topological terms are expected to play an important role in the phenomenology
of a given Composite Higgs model, as can be seen by analogy with the original WZW term
in the chiral lagrangian that describes pions, in which, after gauging electromagnetism, the
WZW term gives rise to the decay 𝜋0 → 𝛾𝛾 . Similarly, one would expect WZ terms in the
Composite Higgs models we have studied to give rise to BSM interactions of the Higgs (and
any other pNGBs) with electroweak gauge bosons. Moreover, the coefficient of such a WZ
term is often integer quantised and not renormalised, and so measuring the branching ratios
of decays mediated by the WZ term could allow one to extract its coefficient, and thence
deduce unambiguous information about the underlying microscropic theory that gives rise
to the composite model at low energies.

However, to understand properly such phenomenological effects, we must first learn how
to gauge the electroweak subgroup of the unbroken symmetry group 𝐻 . As we discussed
in Chapter 3, while it is known how to gauge WZ terms in the case where spacetime is the
boundary of a five-manifold [116–119] (i.e. when the Witten construction operates), it is
not known how to gauge a general WZ term when evaluated on field configurations that
correspond to homologically non-trivial cycles in 𝐺/𝐻 . Thus, we would like to extend our
formulation and classification of topological terms in sigma models on homogeneous spaces
𝐺/𝐻 to the case where a subgroup of 𝐻 is gauged, while still allowing for the possibility of
worldvolumes that are not boundaries.

Furthermore, in our analysis of topological terms in Composite Higgs models, we ne-
glected one aspect of our general classification from Chapter 2, which was the possibility
of torsion terms in Composite Higgs models, which we know are classified by the group
Tor (𝐻4(𝐺/𝐻, 𝑈(1))) ⊂ 𝐻4(𝐺/𝐻, 𝑈(1)). It would be interesting to revisit the cosets con-
sidered in Chapter 3 and compute the torsion group for each 𝐺/𝐻 (as well as others), then
investigate what phenomenology might be associated with such exotic topological terms.

Even with such torsion terms included, it is known that there can exist yet more topo-
logical terms for sigma models on homogeneous spaces, which cannot be captured by a ho-
mological classification such as ours. To give one example, consider a (fixed) worldvolume
homeomorphic to 𝑆4 and a target space 𝐺/𝐻 = 𝑆𝑈(2) ≅ 𝑆3. Since 𝜋4(𝑆3) = ℤ2, there are
two homotopy classes of maps and one may define a topological action phase by assigning
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a phase of −1 to maps 𝜙 ∶ 𝑆4 → 𝑆𝑈(2) in the non-trivial homotopy class. While this is
somewhat reminiscent of the topological term we discussed at length in §4.1.2 for quantum
mechanics on 𝑆𝑂(3), a term such as this cannot in fact be captured by a homological clas-
sification, because 𝐻4(𝑆3) = 0. The physics of such a term is nonetheless non-trivial, as
follows [250, 64]. Since 𝜋3(𝑆3) = ℤ, the theory contains solitons. A map 𝜙 corresponding
to a process in which a solition-antisoliton pair is created and the soliton is rotated by 2𝜋
before the pair annihilates lies in the non-trivial homotopy class. The topological term may
thus be interpreted as assigning fermionic character to the solitons of the theory.

For a second example, consider a three-dimensional sigma model with target space ℂ𝑃 1.
The dimension of the worldvolume exceeds that of the target space, so again there are cer-
tainly no AB or WZ terms. Nonetheless, it has been recently appreciated that there is a
topological term in this theory, associated with the Hopf invariant 𝜋3(ℂ𝑃 1) = ℤ, which
cannot be written in terms of locally-defined forms (the “lagrangian” for this term can only
be given as a non-local expression) [251]. In fact, requirements of unitarity and locality have
been recently used in Ref. [251] to show that this topological term is only well-defined for
certain discrete choices of its coefficient, from which we learn a general lesson: if we seek
to extend our classification of topological terms beyond locally-defined differential forms,
we must take care to ensure locality and unitarity.

In Chapter 4 we considered the problem of quantising a particle moving on a manifold
𝑀 in a background magnetic field, with dynamics invariant under some Lie group action
of a group 𝐺 on 𝑀 . The magnetic coupling corresponds to a topological term in the action
phase of the kind captured by our general classification of Chapter 2, which thus afforded
another opportunity to apply results from Chapter 2 (such as the Manton condition for 𝐺-
invariance). In this case, where the sigma model worldvolume is simply a one-dimensional
worldline, the topological term naturally defines a 𝑈(1)-principal bundle 𝑃 over 𝑀 with
connection, and the topological contribution to the action phase is precisely the holonomy
of that connection.

Even though we saw in Chapter 2 that the action for a WZ term can in general only
be written by sewing together contributions from different patches using Čech cohomology,
we showed in Chapter 4 that in the one-dimensional case one can always write down an
equivalent action by integrating a globally-defined lagrangian not on 𝑀 , but on the bundle
𝑃 . Moreover, the topological termmay be used to define a central extension �̃� of the original
symmetry group 𝐺 which, unlike 𝐺 itself, is a bona fide symmetry group of the lagrangian
for the topological term. Thus, we carefully establish how this generic class of problems can
be cast in a manifestly symmetric and local way, before proceeding to show how harmonic
analysis on �̃� can be used to solve the Schrödinger equation in a stack of example problems.
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The correspondence in 𝑝 = 1 spacetime dimensions between topological terms in the
action and the geometric structure of a principal bundle with connection can be extended
naturally to higher 𝑝 via the notion of a higher abelian gerbe (with 𝑝-form connection). In
this geometric picture, both AB and WZ terms in the action phase correspond to the higher
holonomy associated with such a 𝑝-form connection. These higher gerbes with connection
are alternatively classified by the abelian group of differential characters on 𝑀 in degree
𝑝 + 1; the notion of a differential character then furnishes us with a more powerful definition
of a topological term in such a sigma model, a viewpoint that we developed in Chapter 5.

Thus, in Chapter 5 we made rigorous the classification of Chapter 2, and generalised it to
the case of a sigma model on 𝑀 equipped with any Lie group action by 𝐺 (i.e. the Lie group
action need no longer be transitive). We proved a generalisation of the Manton condition for
𝐺-invariance of the topological terms, which moreover holds not just for connected groups
𝐺, but for ‘homotopic group actions’ on 𝑀 (which includes not only all connected 𝐺 but also,
for example, actions by discrete groups). We introduced the notion of invariant differential
characters (IDCs) in order to arrive at this classification, and we then studied the group of
IDCs using tools from homological algebra, placing it in a number of exact sequences and
commutative diagrams of abelian groups. With these tools, the group of IDCs, and thus the
space of 𝐺-invariant topological terms in a given sigmamodel, may be computed efficiently.1

This characterisation of the ring of IDCs is work in progress, and we have reasons to hope
that, at least in some special cases, we will be able to prove that the IDCs of a manifold
furnish an example of a generalised differential cohomology theory.2

In addition to fleshing out the theory of invariant differential characters, we look forward
to using these ideas in other physics applications. An obvious route is to investigate the clas-
sification of gauged topological terms, as mentioned above, in terms of some generalised dif-
ferential cohomology theory. A second application concerns a recent exploration of ‘anoma-
lies in the space of coupling constants’ due to Córdova, Freed, Lam, and Seiberg [252, 253].
Some of the ’t Hooft anomalies that are there shown to arise when certain scalar param-
eters are promoted to background fields can be understood, using our formalism, to arise
due to failure of the Manton condition in a theory in which the parameters are promoted to
target space coordinates in the sigma model. Indeed, ideas from (generalised) differential
cohomology are used in Refs. [252, 253] to analyse the ’t Hooft anomalies in these theories
on a case-by-case basis, and it would be interesting to explore whether there is a precise
connection to the IDCs we have introduced in this thesis.

1We emphasise that evenwith such a differential cohomology based classification, the two topological terms
described above, for four-dimensional sigma models on 𝑆𝑈(2) and ℂ𝑃 1 respectively, evade classification.

2See e.g. Ref. [167] for a detailed exposition of generalised differential cohomology.



219

In Chapters 6 and 7 we departed from our study of sigma models to consider anomaly
cancellation in four-dimensional gauge theories including the Standard Model (SM) and
various popular theories beyond the Standard Model (BSM). Anomaly cancellation is an in-
trinsically topological effect; both the original ‘local’ anomalies of ABJ, and the more subtle
‘global’ anomalies first discovered byWitten, can be understood using the Atiyah-Singer in-
dex theorem. Indeed, both types of anomaly can be understood from a unified perspective,
in which the fermionic partition function of an anomalous theory is a section of the so-called
‘determinant line bundle’ over the space of background data. This viewpoint, together with
important theorems due to Dai and Freed, lead one to a more general understanding in which
global anomalies are captured by the 𝜂-invariant (that appears in the Atiyah-Patodi-Singer
index theorem).

In Chapter 6 we analysed the conditions for local anomaly cancellation in a class of BSM
theories in which the SM gauge symmetry is extended by a direct product with a 𝑈(1) factor
with family-dependent couplings to the SM fermions, which is spontaneously broken to give
rise to a heavy 𝑍′ boson. We used elementary techniques from Diophantine analysis to
characterise the space of solutions to the anomaly cancellation equations; for example, in the
case of only two families of SM fermions, we are able to parametrise all solutions explicitly
(including the case where the SM fermion content is supplemented by three right-handed
neutrinos). In the full three-family case, we used simple modular arithmetic arguments to
show that all solutions must fall in one of two classes, and we complemented this with a
numerical study of the full solution space, which we referred to as an ‘anomaly-free atlas’.

We then demonstrated how charge assignments from this anomaly-free atlas could be
used to build BSMmodels of flavour physics, that can explain a number of discrepancies that
have recently been observed in rare semileptonic decays of 𝐵-mesons. We built the ‘Third
FamilyHyperchargeModel’ (TFHM), and themore theoretically appealing ‘Deformed Third
Family Hypercharge Model’ (DTFHM), and examined their phenomenology. Both these
models also shed light on certain coarse aspects of the flavour puzzle, such as the heaviness
of the third family and the smallness of quark mixing angles in the CKM matrix. Future
measurements of rare 𝐵-meson decays are eagerly anticipated (from LHCb, Belle II, and
others [254]), with which to put models such as these to the test. We are intrigued more
generally by the implications of the rare 𝐵-meson decays for the flavour puzzle of the SM.

Finally, in Chapter 7 we analysed global anomalies in the ‘Standard Models’ and some
BSM theories. The (connected component of) the SM gauge group 𝐺 is only known up to
quotients by discrete subgroups {0, ℤ2, ℤ3, ℤ6} of the center of 𝐺SM = 𝑆𝑈(3) × 𝑆𝑈(2) ×
𝑈(1), and it is possible that the various gauge groups of the SM could exhibit different
global anomalies. We applied a very general criterion for the cancellation of global anoma-
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lies, namely that the fifth spin-bordism group of the classifying space of 𝐺 vanishes, viz.
ΩSpin

5 (𝐵𝐺) = 0, to each possible SM gauge group. We computed these bordism groups
using the Atiyah-Hirzebruch spectral sequence, which is an important and powerful tool in
algebraic topology. We found that in the theories with gauge group 𝐺SM and 𝐺SM/ℤ3 there
is a ℤ2 global anomaly, which we identified simply with the Witten anomaly associated with
the 𝑆𝑈(2)𝐿 factor of 𝐺, whereas we found that there are no global anomalies in the theo-
ries with gauge group 𝐺SM/ℤ2 and 𝐺SM/ℤ6. While this might at first seem puzzling given
Witten’s arguments for the original 𝑆𝑈(2) global anomaly, it turns out that one still needs
an even number of 𝑆𝑈(2) doublet fermions in these theories, simply to cancel the ABJ type
anomalies.

We also showed that there are no new global anomalies (beyond the Witten anomaly)
for extensions of the SM gauge group by arbitrary 𝑈(1) factors, and thus all the solutions in
the ‘anomaly-free atlas’ of Chapter 6 are free of global anomalies also. Finally, a bordism
computation reveals that a Pati-Salam unified model with gauge group 𝑆𝑈(4) × 𝑆𝑈(2)𝐿 ×
𝑆𝑈(2)𝑅 features, unsurprisingly, a pair of ℤ2 anomalies, associated with each 𝑆𝑈(2) factor.
In the future, wemight like to extend this analysis to consider BSM theories with other gauge
groups, for example involving any of the exceptional Lie groups, to investigate whether there
are any new conditions for global anomaly cancellation.

We also presented a partial discussion of global anomalies in variants of the SM defined
using alternatives to the usual spin structure, with some preliminary results. For example,
we showed that there are no global anomalies in any of the ‘Standard Models’ if fermions
are defined using a spin𝑐 structure - provided, of course, that there is a suitable choice of
the group Spin𝑐(4) for which the SM fermions transform in bona fide representations, which
we saw was a subtle issue. We would like to settle this question definitively in the future,
by exploring well-posed variants of the SM on spin𝑐 manifolds, and investigating the global
anomaly cancellation conditions in such theories. We have also left the cases of pin± struc-
tures (for a SM defined on non-orientable spacetimes) for future work, since new algebraic
techniques are required to compute the relevant entries of the Atiyah-Hirzebruch spectral
sequence with these pin± structures, at least in the case of the SM gauge groups.
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Appendix A

Consistency of the action phase for
Wess-Zumino terms

As we described in §2.4.1, the action for a WZ term is written as a sum of integrals of
locally-defined forms (which are constructed from a closed (𝑝 + 1)-form 𝜔) over 𝒰-small
chains of the appropriate degree, and contained within the appropriate intersections of open
sets (which are constructed from the worldvolume cycle by repeated subdivision). In this
Appendix, we show that the action (2.13) constructed in this way is free of any ambiguities
that might arise when there is a choice of locally-defined forms to integrate on a given chain.

First consider a 𝑝-simplex 𝜎 which is contained in a double intersection 𝑈𝛼𝛽 , and on
which we can therefore integrate either 𝐴𝑝

𝛼 or 𝐴𝑝
𝛽 . The boundary of 𝜎 is the sum of two

(𝑝 − 1)-chains, which we denote 𝑒𝛼 and 𝑒𝛽 (that is 𝜕𝜎 = 𝑒𝛼 + 𝑒𝛽), which originate from
taking the boundary of 𝑐𝑝,𝛼 and 𝑐𝑝,𝛽 respectively. If we choose to integrate 𝐴𝑝

𝛼 on 𝜎, the
relevant pieces of the action are

𝑆𝛼 =
ˆ

𝜎
𝐴𝑝

𝛼 −
ˆ

𝑒𝛽
𝐴𝑝−1

𝛼𝛽 . (A.1)

If we choose to integrate 𝐴𝑝
𝛽 on 𝜎, the relevant pieces of the action are

𝑆𝛽 =
ˆ

𝜎
𝐴𝑝

𝛽 −
ˆ

𝑒𝛼
𝐴𝑝−1

𝛽𝛼 . (A.2)

The difference is

𝑆𝛼 − 𝑆𝛽 =
ˆ

𝜎
(𝐴𝑝

𝛼 − 𝐴𝑝
𝛽) −

ˆ
𝜕𝜎

𝐴𝑝−1
𝛼𝛽 =

ˆ
𝜎
(𝐴𝑝

𝛼 − 𝐴𝑝
𝛽 − 𝑑𝐴𝑝−1

𝛼𝛽 ), (A.3)
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𝑐𝛼 𝑐𝛽

𝑐𝛾

𝜎𝑒𝛼 𝑒𝛽

𝑒𝛾

𝐶

𝐴𝐵

Fig. A.1 In 𝑝 = 2, there is a potential ambiguity in the action when a 2-simplex 𝜎 in our
𝒰-small chain complex lies in a triple intersection of open sets. In this diagram, 𝑈𝛼 is the
region to the left of the curved red line, such that Im 𝑐𝛼 ⊂ 𝑈𝛼, and 𝑈𝛽 (𝑈𝛾 ) are the regions
to the right of (below) the curved blue (orange) lines respectively. The 0-, 1-, and 2-chains
depicted are labelled as in the main text.

where in the second equality we have used Stokes’ theorem. Hence, the ambiguity vanishes
if {𝑑𝐴𝑝−1

𝛼𝛽 } = 𝛿{𝐴𝑝
𝛼}, as encoded in the tic-tac-toe table (2.12).

However, as we anticipated above, there are further ambiguities. Suppose there exists a
𝑝-simplex 𝜎 which is contained not just in a double intersection, but in a triple intersection
of open sets, 𝑈𝛼𝛽𝛾 , and on which we can therefore integrate 𝐴𝑝

𝛼, 𝐴𝑝
𝛽 , or 𝐴𝑝

𝛾 . We suppose that
𝑐𝛼, 𝑐𝛽 , and 𝑐𝛾 all intersect 𝑈𝛼𝛽𝛾 , and that the boundary 𝜕𝜎 is thus now the sum of three (𝑝−1)
chains, viz. 𝜕𝜎 = 𝑒𝛼 + 𝑒𝛽 + 𝑒𝛾 , each originating from the boundary of 𝑐𝑝,𝛼, 𝑐𝑝,𝛽 , and 𝑐𝑝,𝛾 .
To be concrete, let us consider the case 𝑝 = 2, in which case 𝜎 is a 2-simplex at which the
𝒰-small 2-chains 𝑐𝛼, 𝑐𝛽 , and 𝑐𝛾 meet, and 𝑒𝛼, 𝑒𝛽 , and 𝑒𝛾 are 1-chains whose sum is 𝜕𝜎. The
boundaries of these 1-chains are themselves three 0-chains (i.e. points), call them 𝐴, 𝐵, and
𝐶 , corresponding to the vertices of the 2-simplex 𝜎. Specifically, let 𝐴 be the point common
to 𝜕𝑒𝛽 and 𝜕𝑒𝛾 , let 𝐵 be the point common to 𝜕𝑒𝛾 and 𝜕𝑒𝛼, and 𝐶 be the point common to
𝜕𝑒𝛼 and 𝜕𝑒𝛽 . The situation is depicted in Fig. A.1.
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If we choose to integrate, respectively, 𝐴2
𝛼, 𝐴2

𝛽 or 𝐴2
𝛾 on 𝜎, the relevant pieces of the

action are, respectively,

𝑆𝛼 =
ˆ

𝜎
𝐴2

𝛼 −
ˆ

𝑒𝛽
𝐴1

𝛼𝛽 −
ˆ

𝑒𝛾
𝐴1

𝛼𝛾 + 𝐴0
𝛼𝛽𝛾 (𝐴),

𝑆𝛽 =
ˆ

𝜎
𝐴2

𝛽 −
ˆ

𝑒𝛾
𝐴1

𝛽𝛾 −
ˆ

𝑒𝛼
𝐴1

𝛽𝛼 + 𝐴0
𝛽𝛾𝛼(𝐵),

𝑆𝛾 =
ˆ

𝜎
𝐴2

𝛾 −
ˆ

𝑒𝛼
𝐴1

𝛾𝛼 −
ˆ

𝑒𝛽
𝐴1

𝛾𝛽 + 𝐴0
𝛾𝛼𝛽(𝐶).

(A.4)

The difference between, say, 𝑆𝛼 and 𝑆𝛽 is

𝑆𝛼 − 𝑆𝛽 =
ˆ

𝜎
(𝐴𝛼 − 𝐴𝛽) −

ˆ
𝑒𝛾

(𝐴𝛼𝛾 + 𝐴𝛾𝛽) −
ˆ

𝜕𝜎−𝑒𝛾
𝐴𝛼𝛽 + 𝐴𝛼𝛽𝛾 (𝐴) − 𝐴𝛼𝛽𝛾 (𝐵) (A.5)

(where we have suppressed the superscripts indicating the degree of the forms). This is equal
to

𝑆𝛼 − 𝑆𝛽 =
ˆ

𝜎
(𝐴𝛼 − 𝐴𝛽 − 𝑑𝐴𝛼𝛽) −

ˆ
𝑒𝛾

(𝐴𝛼𝛾 + 𝐴𝛾𝛽 + 𝐴𝛽𝛼 − 𝑑𝐴𝛼𝛽𝛾 ), (A.6)

where Stokes’ theorem has been used twice, noting that𝐴−𝐵 = 𝜕𝑒𝛾 (we obtain a permutation
of this expression for each pairwise difference of the three actions in (A.4)). The first term
is guaranteed to vanish given we have removed the ambiguity in (A.3). Hence, this second
ambiguity due to triple intersections vanishes, in general 𝑝, when {𝑑𝐴𝑝−2

𝛼𝛽𝛾 } = 𝛿{𝐴𝑝−1
𝛼𝛽 }, again

as encoded in the tic-tac-toe table (2.12).
In a similar way, the tower of terms that we have included in the action, and the tic-

tac-toe relations between them (2.12), are such that there are no ambiguities over which
form to integrate at any degree greater than zero, with the ambiguity in forms of a given
degree being removed by the presence of forms of one degree lower. In the case of general
𝑝, schematically, one has to remove ambiguities arising from 𝑝 + 1 diagrams, where in the
𝑞th diagram we consider the ambiguities in our definition of the action when a 𝑝-simplex is
contained in a (𝑞 +1)-fold intersection, for 𝑞 = 1, ..., 𝑝+1. For this 𝑞th diagram, there will be
𝑞+1 possible ways of writing the action, and insisting that their differences vanish thus yields
𝑞 independent constraints; (𝑞 − 1) of these constraints will be satisfied by the conditions that
arise from the preceding (𝑞 − 1) diagrams (which will all be successive relations from the
tic-tac-toe table), with the final 𝑞th constraint being that {𝑑𝐴𝑝−𝑞} = 𝛿{𝐴𝑝−𝑞+1}.





Appendix B

Rudiments of harmonic analysis with
constraints

In this Appendix we will review, by way of an example, the form of harmonic analysis used
to solve the various quantum mechanics examples considered throughout Chapter 4 of this
thesis. The example we will use is that of planar motion in a magnetic field, as discussed in
§4.1.1.

In all the examples in Chapter 4, we decompose the left-regular representation of �̃�,
which recall is a central extension by 𝑈(1) of the original group 𝐺 (constructed in §4.2),
into unirreps of �̃�. In our prototypical example, we have 𝐺 = 𝑀 = ℝ2 and �̃� = Hb, and
the left-regular representation of Hb is defined by

𝜌((𝑥′, 𝑦′, 𝑠′)) ⋅ Ψ(𝑥, 𝑦, 𝑠) = Ψ(𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑠 − 𝑠′ − 𝐵𝑥′𝑦′ + 𝐵𝑦′𝑥). (B.1)

for Ψ(𝑥, 𝑦, 𝑠) ∈ ℋ , where the Hilbert space ℋ was defined in (4.5).
In this example we first decompose a general Ψ̃(𝑥, 𝑦, 𝑠) ∈ 𝐿2(Hb) into unirreps of Hb,

following [54]:

Ψ̃(𝑥, 𝑦, 𝑠) = ∑
𝑘

ˆ
𝑑𝑟𝑑𝑡 |𝑘|

4𝜋2 𝐷𝑘(𝑟, 𝑡; 𝑥, 𝑦, 𝑠)𝑔𝑘(𝑟, 𝑡) ∈ 𝐿2(Hb), (B.2)

where recall the unirreps 𝐷𝑘 are

𝐷𝑘(𝑟, 𝑡; 𝑥, 𝑦, 𝑠) = 𝑒𝑖𝑘(𝑥𝑟−𝑠/𝐵)𝛿(𝑟 + 𝑦 − 𝑡), 𝑘/𝐵 ∈ ℤ, (B.3)
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which transform under the left-regular representation as

𝜌((𝑥′, 𝑦′, 𝑠′)) ⋅ 𝐷𝐵(𝑞, 𝑡; 𝑥, 𝑦, 𝑠) =
ˆ

𝐷−𝐵(𝑞, 𝑟; 𝑥′, 𝑦′, 𝑠′)𝐷𝐵(𝑞, 𝑡; 𝑥, 𝑦, 𝑠)𝑑𝑞, (B.4)

i.e. in the unirrep 𝐷−𝐵. The inverse transform is

𝑔𝑘(𝑟, 𝑡) =
ˆ

𝑑𝑥𝑑𝑦𝑑𝑠 (𝐷𝑘(𝑟, 𝑡; 𝑥, 𝑦, 𝑠))∗ Ψ(𝑥, 𝑦, 𝑠). (B.5)

These unirreps satisfy the Schur orthogonality relation
ˆ

𝑑𝑥𝑑𝑦𝑑𝑠 (𝐷𝑘(𝑟, 𝑡; 𝑥, 𝑦, 𝑠))∗ 𝐷𝑘′(𝑟′, 𝑡′; 𝑥, 𝑦, 𝑠) = 4𝜋2

|𝑘| 𝛿 𝑘
𝐵 , 𝑘′

𝐵
𝛿(𝑟 − 𝑟′)𝛿(𝑡 − 𝑡′). (B.6)

Enforcing the constraint (−𝑖𝜕𝑠 + 1)Ψ̃ = 0, and using the orthogonality relation (B.6), imme-
diately implies 𝑔𝑘(𝑟, 𝑡) = 0, ∀𝑘 ≠ 𝐵. We can then write

Ψ(𝑥, 𝑦, 𝑠) =
ˆ

𝑑𝑟𝑑𝑡|𝐵|
2𝜋 𝐷𝐵(𝑟, 𝑡; 𝑥, 𝑦, 𝑠)𝑓 (𝑟, 𝑡) ∈ ℋ , (B.7)

thus recovering the decomposition in (4.6), where 𝑔𝑘(𝑟, 𝑡) = 2𝜋𝛿 𝑘
𝐵 ,1𝑓(𝑟, 𝑡), and the inverse

of this decomposition is given by

𝑓(𝑟, 𝑡) =
ˆ

𝑑𝑥′𝑑𝑦′ (𝐷𝐵(𝑟, 𝑡; 𝑥′, 𝑦′, 𝑠′))∗ Ψ(𝑥′, 𝑦′, 𝑠′). (B.8)

In other words, we may restrict our decomposition to those unirreps which satisfy the con-
straint. This restricted subspace of unirreps (which satisfy the constraint) inherits the fol-
lowing completeness relation

ˆ
𝑑𝑟𝑑𝑡|𝐵|

2𝜋 (𝐷𝐵(𝑟, 𝑡; 𝑥′, 𝑦′, 𝑠′))∗ 𝐷𝐵(𝑟, 𝑡; 𝑥, 𝑦, 𝑠) = 𝑒−𝑖(𝑠−𝑠′)𝛿(𝑥 − 𝑥′)𝛿(𝑦 − 𝑦′). (B.9)

It seems plausible that, under suitably general assumptions, one may decompose a general
state Ψ ∈ ℋ into a basis of unirreps of �̃� which satisfy the constraint, following a similar
procedure to that used in this example. We have indeed found this to be the case in all
examples considered, as can be verified on a case-by-case basis by obtaining a completeness
relation on the Hilbert space ℋ , analogous to (B.9).



Appendix C

Phenomenological details in the DTFHM

In this Appendix we record some phenomenological details in the Deformed Third Family
HyperchargeModel (DTFHM) presented in §6.2.2. Firstly, we describe the fitting procedure
by which we extract the best-fit values of the Wilson Coefficients pertinent to explaining the
rare 𝐵 meson decay data. We then summarize how we extracted the constraints from direct
searches for the 𝑍′ boson at the LHC. Both these analyses, summarized in Ref. [5], were
carried out by Ben Allanach.

The fit to rare 𝐵 decay data
From the global fit to 𝐶9 and 𝐶10 in Ref. [7] (the left-hand panel of Fig. 1), we extract the
fitted BSM contributions from the 68% confidence level (CL) ellipse

⎛
⎜
⎜
⎜
⎝

𝐶9

𝐶10

⎞
⎟
⎟
⎟
⎠

= c + 𝑠1

√2.3
v1 + 𝑠2

√2.3
v2, (C.1)

where1 c = (−0.72, 0.40)𝑇 , v1 = (0.29, 0.15)𝑇 , v2 = (−0.08, 0.16)𝑇 is orthogonal to v1 and
𝑠1, 𝑠2 are independent one-dimensional Gaussian probability density functions with mean
zero and unit standard deviation. We are thus working in the approximation that the fit yields
a two-dimensional Gaussian PDF near the likelihoodmaximum. We plot our characterisation
of the 68% and 95% error ellipses in Fig. C.1 (left). Overlaying it on top of Fig. 1 of Ref. [7]
shows that this is a good approximation in the vicinity of the best-fit point.

1The 1/√2.3 factors come from the fact that the combined fit is in 2 dimensions, so Ref. [7] plots the 68%
confidence level region as Δ𝜒2 = 2.3 from the best-fit point.
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Fig. C.1 Our digitisation of the fits of Ref. [7]. Left - the point shows the best-fit in (𝐶9, 𝐶10)
space, surrounded by 68% (inner) and 95% (outer) CL regions. The dashed line shows the
trajectory of our model, which predicts that 𝐶9 = −9𝐶10. Right - Δ𝜒2(𝛼) as a function of 𝛼
along the line. The horizontal dotted line shows Δ𝜒2 of unity above the best-fit value, and
is used to calculate the 1𝜎 uncertainties on 𝛼.

The best-fit point has a𝜒2 of some 42.2 units less than the SM [7]. We have𝐶9 = 𝐶𝐿+𝐶𝑅
and 𝐶10 = 𝐶𝑅 − 𝐶𝐿, so, for the DTFHMeg in which 𝐶𝐿 = 𝛼 and 𝐶𝑅 = 4/5𝛼, we have
(𝐶9, 𝐶10) = d(𝛼) ≡ 𝛼(9/5, −1/5). We may use the orthogonality of v1 and v2 to solve for

𝑠𝑖(𝛼) = √2.3
|vi|2 vi ⋅ (d(𝛼) − c) , (C.2)

where 𝑖 ∈ {1, 2}. The value of Δ𝜒2 that we extract from the fit is then the difference in 𝜒2

between our fit and the best fit point in (𝐶9, 𝐶10) space:

Δ𝜒2(𝛼) = 𝑠2
1(𝛼) + 𝑠2

2(𝛼). (C.3)

The value of 𝛼 which minimises this function (𝛼min) is the best-fit value and the places where
it crosses Δ𝜒2(𝛼min) + 1 yield the ±1𝜎 estimate for its uncertainty under the hypothesis that
the model is correct, i.e.:

𝛼 = −0.53 ± 0.09. (C.4)

Δ𝜒2(𝛼) is plotted in the vicinity of the minimum in Fig. C.1 (right).
This minimum is obtained at a higher Δ𝜒2(𝛼min) = 4.2 as compared to the unconstrained

fit to (𝐶9, 𝐶10), for one parameter fewer, i.e. one additional degree of freedom. The model
still constitutes a good fit to the NCBAs, having a best-fit 𝜒2 value 38.0 lower than the SM.
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Direct 𝑍 ′ searches in the DTFHMeg
ATLAS has released 13 TeV 36.1 fb−1 𝑍′ → 𝑡 ̄𝑡 searches [229, 230], which impose 𝜎 ×
𝐵𝑅(𝑍′ → 𝑡 ̄𝑡) < 10 fb for large 𝑀𝑍′ . There is also a search [231] for 𝑍′ → 𝜏+𝜏− for 10 fb−1

of 8 TeV data, which rules out 𝜎 × 𝐵𝑅(𝑍′ → 𝜏+𝜏−) < 3 fb for large 𝑀𝑍′ . These searches
constrain the DTFHMeg, but they produce less stringent constraints than an ATLAS search
for 𝑍′ → 𝜇+𝜇− in 139 fb−1 of 13 TeV 𝑝𝑝 collisions [228]. We shall therefore concentrate
upon this search. The constraint is in the form of upper limits upon the fiducial cross-section
𝜎 times branching ratio to di-muons 𝐵𝑅(𝑍′ → 𝜇+𝜇−) as a function of 𝑀𝑍′ . At large
𝑀𝑍′ ≈ 6 TeV, 𝜎 × 𝐵𝑅(𝑍′ → 𝜇+𝜇−) < 0.015 fb [255], and indeed this will prove to be the
most stringent 𝑍′ direct search constraint, being stronger than the others mentioned above.

In its recent 𝑍′ → 𝜇+𝜇− search, ATLAS defines [228] a fiducial cross-section 𝜎 where
each muon has transverse momentum 𝑝𝑇 > 30 GeV and pseudo-rapidity |𝜂| < 2.5, and
the di-muon invariant mass satisfies 𝑚𝜇𝜇 > 225 GeV. No evidence for a significant bump
in 𝑚𝜇𝜇 was found, and so 95% upper limits on 𝜎 × 𝐵𝑅(𝜇+𝜇−) were placed. Re-casting
constraints from such a bump-hunt is fairly simple: one must simply calculate 𝜎×𝐵𝑅(𝜇+𝜇−)
for the model in question and apply the bound at the relevant value of 𝑀𝑍′ and Γ/𝑀𝑍′ .
Efficiencies are taken into account in the experimental bound and so there is no need for
us to perform a detector simulation. Following Ref. [223], for generic 𝑧 ≡ Γ/𝑀𝑍′ , we
interpolate/extrapolate the upper bound 𝑠(𝑧, 𝑀𝑍′) on 𝜎 × 𝐵𝑅(𝜇+𝜇−) from those given by
ATLAS at 𝑧 = 0 and 𝑧 = 0.1. In practice, we use a linear interpolation in ln 𝑠:

𝑠(𝑧, 𝑀𝑍′) = 𝑠(0, 𝑀𝑍′) [
𝑠(0.1, 𝑀𝑍′)
𝑠(0, 𝑀𝑍′) ]

𝑧
0.1

, (C.5)

which is a reasonable fit [223] within the range Γ/𝑀𝑍′ ∈ [0, 0.1]. We shall also use (C.5)
to extrapolate out of this range.

In order to use Eq. C.5, we must calculate 𝜎 × 𝐵𝑅(𝜇+𝜇−), and so we now detail the
method of our calculation. For theDTFHMeg, wemade a UFOfile2 by using FeynRules [256,
257]. We use the MadGraph.2.6.5 event generator [258] to estimate 𝜎 × 𝐵𝑅(𝑍′ → 𝜇+𝜇−)
in 13 TeV centre of mass energy 𝑝𝑝 collisions. Five flavour parton distribution functions are
used in order to re-sum the logarithms associated with the initial state 𝑏-quark [259].

2The UFO file may be found in the ancillary information submitted with the arXiv version of Ref. [5].
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