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Abstract

In molecular biology, advances in high-throughput technologies have made it possi-
ble to study complex multivariate phenotypes and their simultaneous associations with
high-dimensional genomic and other omics data, a problem that can be studied with
high-dimensional multi-response regression, where the response variables are potentially
highly correlated. To this purpose, we recently introduced several multivariate Bayesian
variable and covariance selection models, e.g., Bayesian estimation methods for sparse
seemingly unrelated regression for variable and covariance selection. Several variable se-
lection priors have been implemented in this context, in particular the hotspot detection
prior for latent variable inclusion indicators, which results in sparse variable selection for
associations between predictors and multiple phenotypes. We also propose an alternative,
which uses a Markov random field (MRF) prior for incorporating prior knowledge about
the dependence structure of the inclusion indicators. Inference of Bayesian seemingly un-
related regression (SUR) by Markov chain Monte Carlo methods is made computationally
feasible by factorization of the covariance matrix amongst the response variables.

In this paper we present BayesSUR, an R package, which allows the user to easily
specify and run a range of different Bayesian SUR models, which have been implemented in
C++ for computational efficiency. The R package allows the specification of the models in
a modular way, where the user chooses the priors for variable selection and for covariance
selection separately. We demonstrate the performance of sparse SUR models with the
hotspot prior and spike-and-slab MRF prior on synthetic and real data sets representing
eQTL or mQTL studies and in vitro anti-cancer drug screening studies as examples for
typical applications.
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1. Introduction

With the development of high-throughput technologies in molecular biology, the large-scale
molecular characterization of biological samples has become common-place, for example by
genome-wide measurement of gene expression, single nucleotide polymorphisms (SNP) or
CpG methylation status. Other complex phenotypes, for example, pharmacological profiling
from large-scale cancer drug screens, are also measured in order to guide personalized cancer
therapies (Garnett et al. 2012; Barretina et al. 2012; Gray and Mills 2015). The analysis
of joint associations between multiple correlated phenotypes and high-dimensional molecular
features is challenging.
When multiple phenotypes and high-dimensional genomic information are jointly analyzed,
the Bayesian framework allows to specify in a flexible manner the complex relationships
between the highly structured data sets. Much work has been done in this area in recent
years. Our software package BayesSUR (Banterle, Zhao, and Lewin 2021) gathers together
several models that we have proposed for high-dimensional regression of multiple responses
and also introduces a novel model, allowing for different priors for variable selection in the
regression models and for different assumptions about the dependence structure between
responses.
Bayesian variable selection uses latent indicator variables to explicitly add or remove predic-
tors in each regression during the model search. Here, as we consider simultaneously many
predictors and several responses, we have a matrix of variable selection indicators. Different
variable selection priors have been proposed in the literature. For example, Jia and Xu (2007)
mapped multiple phenotypes to genetic markers (i.e., expression quantitative trait loci, eQTL)
using the spike-and-slab prior and hyper predictor-effect prior. Liquet, Mengersen, Pettitt,
and Sutton (2017) incorporated group structures of multiple predictors via a (multivariate)
spike-and-slab prior. The corresponding R (R Core Team 2021) package MBSGS (Liquet and
Sutton 2017) is available from the Comprehensive R Archive Network (CRAN) at https://
CRAN.R-project.org/package=MBSGS. Bottolo et al. (2011) and Lewin et al. (2015b) further
proposed the hotspot prior for variable selection in multivariate regression, in which the prob-
ability of association between the predictors and responses is decomposed multiplicatively into
predictor and response random effects. This prior is implemented in a multivariate Bayesian
hierarchical regression setup in the software R2HESS (Lewin, Campanella, Saadi, Liquet, and
Chadeau-Hyam 2015a), available from https://www.mrc-bsu.cam.ac.uk/software/. Lee,
Tadesse, Baccarelli, Schwartz, and Coull (2017) used the Markov random field (MRF) prior
to encourage joint selection of the same variable across several correlated response variables.
Their C-based R package mBvs (Lee, Tadesse, Coull, and Starr 2021) is available from CRAN
(https://CRAN.R-project.org/package=mBvs).
For high-dimensional predictors and multivariate responses, the space of models is very large.
To overcome the infeasibility of the enumerated model space for the MCMC samplers in
the high-dimensional situation, Bottolo and Richardson (2010) proposed an evolutionary
stochastic search (ESS) algorithm based on evolutionary Monte Carlo. This sampler has
been extended in a number of situations and efficient implementation of ESS for multivariate
Bayesian hierarchical regression has been provided by the C++-based R package R2GUESS
(Liquet, Bottolo, Campanella, Richardson, and Chadeau-Hyam 2016). Richardson, Bottolo,
and Rosenthal (2011) proposed a new model and computationally efficient hierarchical evolu-
tionary stochastic search algorithm (HESS) for multi-response (i.e., multivariate) regression

https://CRAN.R-project.org/package=MBSGS
https://CRAN.R-project.org/package=MBSGS
https://www.mrc-bsu.cam.ac.uk/software/
https://CRAN.R-project.org/package=mBvs
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which assumes independence between residuals across responses and is implemented in the
R2HESS package. Petretto et al. (2010) used the inverse Wishart prior on the covariance ma-
trix of residuals in order to do simultaneous analysis of multiple response variables allowing
for correlations in response residuals, for more moderate sized data sets.
In order to analyze larger numbers of response variables, yet retain the ability to estimate de-
pendence structures between them, sparsity can be introduced into the residual covariances,
as well as into the regression model selection. Holmes, Denison, and Mallick (2002) adapted
seemingly unrelated regression (SUR) to the Bayesian framework and used a Markov chain
Monte Carlo (MCMC) algorithm for the analytically intractable posterior inference. The
hyper-inverse Wishart prior has been used to learn a sparser graph structure for the covari-
ance matrix of high-dimensional variables (Carvalho, Massam, and West 2007; Wang 2010;
Bhadra and Mallick 2013), thus performing covariance selection. However, these approaches
are not computationally feasible if the number of input variables is very large. Bottolo,
Banterle, Richardson, Ala-Korpela, Järvelin, and Lewin (2021) recently developed a Bayesian
variable selection model which employs the hotspot prior for variable selection, learns a struc-
tured covariance matrix and implements the ESS algorithm in the SUR framework to further
improve computational efficiency.
The BayesSUR package implements many of these possible choices for high-dimensional multi-
response regressions by allowing the user to choose among three different prior structures for
the residual covariance matrix and among three priors for the joint distribution of the variable
selection indicators. This includes a novel model setup, where the MRF prior for incorporating
prior knowledge about the dependence structure of the inclusion indicators is combined with
Bayesian SUR models (Zhao, Banterle, Lewin, and Zucknick 2021). BayesSUR employs ESS
as a basic variable selection algorithm.

2. Models specification
The BayesSUR package fits a Bayesian seemingly unrelated regression model with a number
of options for variable selection, and where the covariance matrix structure is allowed to be
diagonal, dense or sparse. It encompasses three classes of Bayesian multi-response linear re-
gression models: hierarchical related regressions (HRR, Richardson et al. 2011), dense and
sparse seemingly unrelated regressions (dSUR and SSUR, Bottolo et al. 2021), and the struc-
tured seemingly unrelated regression, which makes use of a Markov random field (MRF) prior
(Zhao et al. 2021).
The regression model is written as

Y = XB + U, (1)
vec(U) ∼ N (0, C ⊗ In),

where Y is a n× s matrix of outcome variables with s× s covariance matrix C, X is a n× p
matrix of predictors for all outcomes, B is a p× s matrix of regression coefficients, U is the
matrix of residuals, vec(·) indicates the vectorization of a matrix, N (µ,Σ) denotes a normal
distribution with mean vector µ and covariance matrix Σ, 0 denotes a column vector with
all elements zero, ⊗ is the Kronecker product and In is the identity matrix of size n× n.
We use a binary latent indicator matrix Γ = {γjk} to perform variable selection. A spike-
and-slab prior is used to find a sparse relevant subset of predictors that explain the variability
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γjk ∼ Bernoulli γjk ∼ Hotspot γ ∼ MRF
C ∼ indep HRR-B HRR-H HRR-M
C ∼ IW dSUR-B dSUR-H dSUR-M
C ∼ HIWG SSUR-B SSUR-H SSUR-M

Table 1: Nine models across three priors of C by three priors of Γ.

of Y: conditional on γjk = 0 (j = 1, · · · , p and k = 1, · · · , s) we set βjk = 0 and conditional
on γjk = 1 regression coefficients follow a diffuse normal distribution:

βγ ∼ N
(
0,W−1

γ

)
, (2)

where β = vec(B), γ = vec(Γ), βγ consists of the selected regression coefficients only (i.e.,
where γjk = 1), and likewiseWγ is the sub-matrix ofW formed by the corresponding selected
coefficients.
The precision matrix W is generally decomposed into a shrinkage coefficient and a matrix
that governs the covariance structure of the regression coefficients. Here we use W = w−1Isp,
meaning that all the regression coefficients are a priori independent, with an inverse gamma
hyperprior on the shrinkage coefficient w, i.e., w ∼ IGamma(aw, bw). The binary latent in-
dicator matrix Γ has three possible options for priors: the independent hierarchical Bernoulli
prior, the hotspot prior and the MRF prior. The covariance matrix C also has three possi-
ble options for priors: the independent inverse gamma prior, the inverse Wishart prior and
hyper-inverse Wishart prior. Thus, we consider nine possible models (Table 1) across all
combinations of three priors for C and three priors for Γ.

2.1. Hierarchical related regression (HRR)

The hierarchical related regression model assumes that C is a diagonal matrix

C =

σ
2
1 · · · 0

. . .
0 · · · σ2

s

 , (3)

which translates into conditional independence between the multiple response variables, so
the likelihood factorizes across responses. An inverse gamma prior is specified for the residual
covariance, i.e., σ2

k ∼ IGamma(aσ, bσ) which, combined with the priors in (2) is conjugate
with the likelihood in the model in (1). We can thus sample the variable selection structure
Γ marginally with respect to C and B. For inference for this model, Richardson et al. (2011)
implemented the hierarchical evolutionary stochastic search algorithm (HESS).

HRR with independent Bernoulli prior
For a simple independent prior on the regression model selection, the binary latent indicators
follow a Bernoulli prior

γjk|ωjk ∼ Ber(ωj), j = 1, · · · , p, k = 1, · · · , s, (4)

with a further hierarchical Beta prior on ωj , i.e., ωj ∼ Beta(aω, bω), which quantifies the
probability for each predictor to be associated with any response variable.
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HRR with hotspot prior

Richardson et al. (2011) and Bottolo et al. (2011) proposed decomposing the probability of
association parameter ωjk in (4) as ωjk = ok × πj , where ok accounts for the sparsity of each
response model and πj controls the propensity of each predictor to be associated with multiple
responses simultaneously.

γjk|ωjk ∼ Ber(ωjk), j = 1, · · · , p, k = 1, · · · , s, (5)
ωjk = ok × πj ,
ok ∼ Beta(ao, bo),
πj ∼ Gamma(aπ, bπ).

HRR with MRF prior

To consider the relationship between different predictors and associate highly correlated re-
sponses with the same predictors, we set a Markov random field prior on the latent binary
vector γ

f(γ|d, e,G) ∝ exp{d1>γ + eγ>Gγ}, (6)

where G is an adjacency matrix containing prior information about similarities amongst the
binary model selection indicators γ = vec(Γ). The parameters d and e are treated as fixed
in the model. Alternative approaches include the use of a hyperprior on e (Stingo, Chen,
Tadesse, and Vannucci 2011) or to fit the model repeatedly over a grid of values for these
parameters, in order to detect the phase transition boundary for e (Lee et al. 2017) and to
identify a sensible combination of d and e that corresponds to prior expectations of overall
model sparsity and sparsity for the MRF graph.

2.2. Dense seemingly unrelated regression (dSUR)

The HRR models in Section 2.1 assume residual independence between any two response
variables because of the diagonal matrix C in (3). It is possible to estimate a full covariance
matrix by specifying an inverse Wishart prior, i.e., C ∼ IW(ν, τIs). To avoid estimating the
dense and large covariance matrix directly, Bottolo et al. (2021) exploited a factorization of
the dense covariance matrix to transform the parameter space (ν, τ) of the inverse Wishart
distribution to space {σ2

k, ρkl|σ2
k : k = 1, · · · , s; l < k}, with priors

σ2
k ∼ IGamma

(
ν − s+ 2k − 1

2 ,
τ

2

)
,

ρkl|σ2
k ∼ N

(
0, σ

2
k

τ

)
.

(7)

Here, we assume that τ ∼ Gamma(aτ , bτ ). Thus, model (1) is rewritten as

yk = Xβk +
∑
l<k

ulρkl + εk, k = 1, · · · , s,

εk ∼ N (0, σ2
kIn),

(8)
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where ul = yl−Xβl and βl is the lth column of B, so again the likelihood is factorized across
responses.
Similarly to the HRR model, employing either the simple independence prior (4), the hotspot
prior (5) or the MRF prior (6) for the indicator matrix Γ results in different sparsity specifi-
cations for the regression coefficients in the dSUR model. The marginal likelihood integrating
out B is no longer available for this model, so joint sampling of B, Γ and C is required.
However, the reparameterization of the model (8) enables fast computation using the MCMC
algorithm.

2.3. Sparse seemingly unrelated regression (SSUR)

Another approach to model the covariance matrix C is to specify a hyper-inverse Wishart
prior, which means the multiple response variables have an underlying graph G encoding the
conditional dependence structure between responses. In this setup, a sparse graph corresponds
to a sparse precision matrix C−1. From a computational point of view, it is infeasible to
specify a hyper-inverse Wishart prior directly on C−1 in high dimensions (Carvalho et al. 2007;
Jones, Carvalho, Dobra, Hans, Carter, and West 2005; Uhler, Lenkoski, and Richards 2018;
Deshpande, Ročková, and George 2019). However, Bottolo et al. (2021) used a transformation
of C to factorize the likelihood as in Equation 8. The hyper-inverse Wishart distribution, i.e.,
C ∼ HIWG(ν, τIs), becomes in the transformed variables the scalar variance σ2

qt and the
associated correlation vector ρqt = (ρ1,qt, ρ2,qt, · · · , ρt−1,qt)> with

σ2
qt ∼ IGamma

(
ν − s+ t+ |Sq|

2 ,
τ

2

)
, q = 1, · · · , Q, t = 1, · · · , |Rq|,

ρqt|σ2
qt ∼ N

(
0,
σ2
qt

τ
It−1

)
,

(10)

where Q is the number of prime components in the decomposable graph G, and Sq and Rq are
the separators and residual components of G, respectively. |Sq| and |Rq| denote the number
of variables in these components. For more technical details, please refer to Bottolo et al.
(2021).
As prior for the graph we use a Bernoulli prior with probability η on each edge Ekk′ of the
graph as in

P(Ekk′ ∈ G) = η,

η ∼ Beta(aη, bη).
(11)

The three priors on βγ , i.e., independence (4), hotspot (5) and MRF (6) priors can be used
in the SSUR model.

2.4. MCMC sampler and posterior inference

To sample from the posterior distribution, we use the evolutionary stochastic search algorithm
(Bottolo and Richardson 2010; Bottolo et al. 2011; Lewin et al. 2015b), which uses a particular
form of evolutionary Monte Carlo (EMC) introduced by Liang and Wong (2000). Multiple
tempered Markov chains are run in parallel and both exchange and crossover moves are
allowed between the chains to improve mixing between potentially different modes in the
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posterior. Note that we run multiple tempered chains at the same temperature instead of a
ladder of different temperatures as was proposed in the original implementations of the (H)ESS
sampler in Bottolo and Richardson (2010); Bottolo et al. (2011); Lewin et al. (2015b). The
temperature is adapted during the burn-in phase of the MCMC sampling.
The main chain samples from the un-tempered posterior distribution, which is used for all
inference. For each response variable, we use a Gibbs sampler to update the regression
coefficients vector, βk (k = 1, · · · , s), based on the conditional posterior corresponding to the
specific model selected among the models presented in Sections 2.2 and 2.3. After L MCMC
iterations, we obtain B(1), · · · ,B(L) and the estimate of the posterior mean is

B̂ = 1
L− b

L∑
t=b+1

B(t),

where b is the number of burn-in iterations. Posterior full conditionals are also available to
update σ2

k and ρkl for the dSUR model and σ2
qt and ρqt for the SSUR model. In the HRR

models in Section 2.1, the regression coefficients and residual covariances have been integrated
out and therefore the MCMC output cannot be used directly for posterior inference of these
parameters. However, for B, the posterior distribution conditional on Γ can be derived
analytically for the HRR models and this is the output forB that is provided in the BayesSUR
package for HRR models.
At MCMC iteration t we also update each binary latent vector γk (k = 1, · · · , s) via a
Metropolis-Hastings sampler, jointly proposing an update for the corresponding βk. After L
iterations, using the binary matrices Γ(1), · · · ,Γ(L), the marginal posterior inclusion proba-
bilities (mPIP) of the predictors are estimated by

Γ̂ = 1
L− b

L∑
t=b+1

Γ(t).

In the SSUR models, another important parameter is G in the hyper-inverse Wishart prior
for the covariance matrix C. It is updated by the junction tree sampler (Green and Thomas
2013; Bottolo et al. 2021) jointly with the corresponding proposal for σ2

qt and ρqt|σ2
qt in (10).

At each MCMC iteration we then extract the adjacency matrix G(t) (t = 1, · · · , L), from
which we derive posterior mean estimators of the edge inclusion probabilities as

Ĝ = 1
L− b

L∑
t=b+1

G(t).

Note that even though a priori the graph G is decomposable, the posterior mean estimate Ĝ
can be outside the space of decomposable models (see Bottolo et al. 2021).
The hyper-parameter τ in the inverse Wishart prior or hyper-inverse Wishart prior is updated
by a random walk Metropolis-Hastings sampler. The hyper-parameter η and the variance w in
the spike-and-slab prior are sampled from their posterior conditionals. For details see Bottolo
et al. (2021).
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3. The R package BayesSUR
The package BayesSUR is available from CRAN at http://CRAN.R-project.org/package=
BayesSUR. This article refers to version 2.0-1.
The main function is BayesSUR(), which has various arguments that can be used to specify
the models introduced in Section 2, by setting the priors for the covariance matrix C and the
binary latent indicator matrix Γ. In addition, MCMC parameters (nIter, burnin, nChains)
can also be defined. The following syntax example introduces the most important function
arguments, which are further explained below. The full list of all arguments in function
BayesSUR() is given in Table 2.

BayesSUR(data, Y, X, X_0, covariancePrior, gammaPrior,
nIter, burnin, nChains, ...)

The data can be provided as a large combined numeric matrix [Y,X,X0] of dimension n ×
(s + p) via the argument data; in that case the arguments Y, X and X_0 need to contain
the dimensions of the individual response variables Y, predictors under selection X and
fixed predictors X0 (i.e., mandatory predictors that will always be included in the model).
Alternatively, it is also possible to supply X0, X and Y directly as numeric matrices via
the arguments X_0, X and Y. In that case, argument data needs to be NULL, which is the
default.
The arguments covariancePrior and gammaPrior specify the different models introduced
in Section 2. When using the Markov random field prior (6) for the latent binary vec-
tor γ, an additional argument mrfG is needed to assign the edge potentials; this can ei-
ther be specified as a numeric matrix or as a file directory path leading to a text file
with the corresponding information. For example, the HRR model with independent hi-
erarchical prior in Section 2.1 is specified by (covariancePrior = "IG", gammaPrior =
"hierarchical"), the dSURmodel with hotspot prior in Section 2.2 by (covariancePrior =
"IW", gammaPrior = "hotspot") and the SSUR model with MRF prior in Section 2.3 for ex-
ample by (covariancePrior = "HIW", gammaPrior = "MRF", mrfG = "mrfFile.txt").
The MCMC parameter arguments nIter, burnin and nChains indicate the total number of
MCMC iterations, the number of iterations in the burn-in period and the number of parallel
tempered chains in the evolutionary stochastic search MCMC algorithm, respectively. See
Section 2.4 and, e.g., Bottolo and Richardson (2010) for more details on the ESS algorithm.
The main function BayesSUR() is used to fit the model. It returns an object of S3 class
‘BayesSUR’ in a list format, which includes the input parameters and directory paths of
output text files, so that other functions can retrieve the MCMC output from the output
files, load them into R and further process the output for posterior inference of the model
output.
In particular, a summary() function has been provided for ‘BayesSUR’ class objects, which
is used to summarize the output produced by BayesSUR(). For this purpose, a number of
predictors are selected into the model by thresholding the posterior means of the latent indi-
cator variables. By default, the threshold is 0.5, i.e., variable j is selected into the model for
response k if γ̂jk > 0.5. The summary() function also outputs the quantiles of the conditional
predictive ordinates (CPO, Gelfand 1996), top predictors with respect to average marginal

http://CRAN.R-project.org/package=BayesSUR
http://CRAN.R-project.org/package=BayesSUR
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Argument Description
data Combined numeric data matrix [Y,X] or [Y,X,X0]. Default is NULL.
Y Numeric matrix or indices with respect to the argument data for the

responses.
X Numeric matrix or indices with respect to the argument data for the

predictors.
X_0 Numeric matrix or indices with respect to the argument data for

predictors forced to be included (i.e., that are not part of the variable
selection procedure). Default is NULL.

outFilePath Directory path where the output files are saved.
covariancePrior Prior for the covariance matrix; "IG": independent inverse gamma

prior, "IW": inverse Wishart prior, "HIW": hyper-inverse Wishart
prior (default).

gammaPrior Prior for the binary latent variable Γ; "hierarchical": Bernoulli
prior, "hotspot": hotspot prior (default), "MRF": Markov random
field prior.

mrfG A numeric matrix or a path to the file containing (the edge list of)
the G matrix for the MRF prior on Γ. Default is NULL.

nIter Total number of MCMC iterations.
burnin Number of iterations in the burn-in period.
nChains Number of parallel chains in the evolutionary stochastic search

MCMC algorithm.
gammaSampler Local move sampler for the binary latent variable Γ, either (default)

"bandit" for a Thompson-sampling inspired sampler or "MC3" for
the usual MC3 sampler.

gammaInit Γ initialization to either all zeros ("0"), all ones ("1"),
MLE-informed ("MLE") or (default) randomly ("R").

hyperpar A list of named prior hyperparameters to use instead of the default
values, including a_w, b_w, a_sigma, b_sigma, a_omega, b_omega,
a_o, b_o, a_pi, b_pi, nu, a_tau, b_tau, a_eta and b_eta. They
correspond to w ∼ IGamma(a_w, b_w), σ2

k ∼ IGamma(a_sigma,
b_sigma), ωj ∼ Beta(a_omega, b_omega), ok ∼ Beta(a_o, b_o),
πj ∼ Gamma(a_pi, b_pi), ν=nu, τ ∼ Gamma(a_tau, b_tau),
η ∼ Beta(a_eta, b_eta). For default values see help("BayesSUR").

maxThreads Maximum threads used for parallelization. Default is 1.
output_* Allow (TRUE) or suppress (FALSE) the output for *; possible outputs

are Γ, G, B, σ, π, tail (hotspot tail probability, see Bottolo and
Richardson 2010) or model_size. Default is all: TRUE.

tmpFolder The path to a temporary folder where intermediate data files are
stored (will be erased at the end of the MCMC sampling). It is
specified relative to outFilePath.

Table 2: Overview of the arguments in the main function BayesSUR().
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Function Description
BayesSUR() Main function of the package. Fits any of the models introduced in

Section 2. Returns an object of S3 class ‘BayesSUR’, which is a list
which includes the input parameters (input) and directory paths of
output text files (output), as well as the run status and function call.

print() Print a short summary of the fitted model generated by BayesSUR(),
which is an object of class ‘BayesSUR’.

summary() Summarize the fitted model generated by BayesSUR(), which is an
object of class ‘BayesSUR’.

coef() Extract the posterior mean of the coefficients of a ‘BayesSUR’ class
object.

fitted() Return the fitted response values that correspond to the posterior
mean of the coefficients matrix of a ‘BayesSUR’ class object.

predict() Predict responses corresponding to the posterior mean of the
coefficients, return posterior mean of coefficients or indices of
non-zero coefficients of a ‘BayesSUR’ class object.

plot() Main plot function to be called by the user. Creates a selection of
plots for a ‘BayesSUR’ class object by calling one or several of the
specific plot functions below as specified by the combination of the
two arguments estimator and type.

elpd() Measure the prediction accuracy by the expected log pointwise
predictive density (elpd). The out-of-sample predictive fit can either
be estimated by Bayesian leave-one-out cross-validation (LOO) or by
widely applicable information criterion (WAIC, Vehtari et al. 2017).
See Appendix A for details.

getEstimator() Extract the posterior mean of the parameters (i.e., B, Γ and G) of a
‘BayesSUR’ class object. Also, the log-likelihood of Γ, model size and
G can be extracted for the MCMC diagnostics.

plotEstimator() Plot the estimated relationships between response variables and
estimated coefficients of a ‘BayesSUR’ class object with argument
estimator = c("beta", "gamma", "Gy").

plotGraph() Plot the estimated graph for multiple response variables from a
‘BayesSUR’ class object with argument estimator = "Gy".

plotNetwork() Plot the network representation of the associations between responses
and predictors, based on the estimated Γ̂ matrix of a ‘BayesSUR’
class object with argument estimator = c("gamma", "Gy").

plotManhattan() Plot Manhattan-like plots for marginal posterior inclusion
probabilities (mPIP) and numbers of responses of association for
predictors of a ‘BayesSUR’ class object with argument estimator =
"gamma".

plotMCMCdiag() Show trace plots and diagnostic density plots of a ‘BayesSUR’ class
object with argument estimator = "logP".

plotCPO() Plot the conditional predictive ordinate (CPO) for each individual of
a fitted model generated by BayesSUR() with argument estimator
= "CPO". CPO is used to identify potential outliers (Gelfand 1996).

Table 3: Overview of the functions in package BayesSUR.
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posterior inclusion probabilities (mPIP) across all response variables and top response vari-
ables with respect to average mPIP across all predictors, expected log pointwise predictive
density (i.e., elpd.LOO and elpd.WAIC, Vehtari et al. 2017), model specification parameters,
MCMC running parameters and hyperparameters.

To use a specific estimator, the function getEstimator() is convenient to extract point
estimates of the coefficients matrix B̂, latent indicator variable matrix Γ̂ or learned structure
Ĝ from the directory path of the model object. All point estimates are posterior means,
thus γ̂jk is the marginal posterior inclusion probability for variable j to be selected in the
regression for response k, and Ĝkl is the marginal posterior edge inclusion probability between
responses k and l, i.e., the marginal posterior probability of conditional dependence between
k and l. The regression coefficient estimates B̂ can be the marginal posterior means over
all models, independently of Γ̂ (with default argument beta.type = "marginal"). Then,
β̂jk represents the shrunken estimate of the effect of variable j in the regression for response
k. Alternatively, β̂jk can be the posterior mean conditional on γjk = 1 with argument
beta.type = "conditional". If beta.type = "conditional" and Pmax = 0.5 are chosen,
then these conditional β̂jk estimates correspond to the coefficients in a median probability
model (Barbieri and Berger 2004).

In addition, the generic S3 methods coef(), predict(), and fitted() can be used to extract
regression coefficients, predicted responses, or indices of non-zero coefficients, all correspond-
ing to the posterior mean estimates of an ‘BayesSUR’ object.

The main function for creating plots of a fitted BayesSUR model, is the generic S3 method
plot(). It creates a selection of the above plots, which the user can specify via the estimator
and type arguments. If both arguments are set to NULL (default), then all available plots
are shown in an interactive manner. The main plot() function uses the following spe-
cific plot functions internally. These can also be called directly by the user. The function
plotEstimator() visualizes the three estimators. To show the relationship of multiple re-
sponse variables with each other, the function plotGraph() prints the structure graph based
on Ĝ. Furthermore, the structure relations between multiple response variables and predictors
can be shown via function plotNetwork(). The marginal posterior probabilities of individual
predictors are illustrated via the plotManhattan() function, which also shows the number of
associated response variables of each predictor.

Model fit can be investigated with elpd() and plotCPO(). elpd() estimates the expected log
pointwise predictive density (Vehtari et al. 2017) to assess out-of-sample prediction accuracy.
plotCPO() plots the conditional predictive ordinate for each individual, i.e., the leave-one-
out cross-validation predictive density. CPOs are useful for identifying potential outliers
(Gelfand 1996). To check convergence of the MCMC sampler, function plotMCMCdiag()
prints traceplots and density plots for moving windows over the MCMC chains.

Table 3 lists all functions. BayesSUR uses the Rcpp (Eddelbuettel and François 2011) and
RcppArmadillo (Eddelbuettel and Sanderson 2014) R packages to integrate C++ code with R.
The igraph package (Csárdi and Nepusz 2006) is used for constructing the graph plots. Note
that the igraph package creates the layout in a dynamic way, which is determined among
other things by the size of the figure window. The layout of the plots obtained with the
replication material may thus differ from those shown in the manuscript.
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4. Quick start with a simple example
In the following example, we illustrate a simple simulation study where we run two models:
the default model choice, which is an SSUR model with the hotspot prior, and in addition
an SSUR model with the MRF prior. The purpose of the latter is to illustrate how we can
construct an MRF prior graph. We simulate a data set X with dimensions n× p = 10× 15,
i.e., 10 observations and 15 input variables, a sparse coefficients matrix B with dimension
p × s = 15 × 3, which creates associations between the input variables and s = 3 response
variables, and random noise E. The response matrix is generated by the linear model Y =
XB + E.

R> set.seed(82193)
R> n <- 10; s <- 3; p <- 15
R> X <- matrix(rnorm(n * p, 2, 1), nrow = n)
R> B <- matrix(c(0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1,
+ rep(0, s * p - 12)), nrow = p, byrow = TRUE)
R> E <- matrix(rnorm(n * s, 0, 0.2), nrow = n)
R> Y <- X %*% B + E

Note that B is sparse and only the first four input variables have non-zero coefficients:

R> B

[,1] [,2] [,3]
[1,] 0 0 1
[2,] 1 1 0
[3,] 1 1 0
[4,] 0 0 1
[5,] 0 0 0
[6,] 0 0 0
[7,] 0 0 0
[8,] 0 0 0
[9,] 0 0 0

[10,] 0 0 0
[11,] 0 0 0
[12,] 0 0 0
[13,] 0 0 0
[14,] 0 0 0
[15,] 0 0 0

First, let us fit the default model. The default is to run two MCMC chains with 10000 itera-
tions each, of which the first 5000 iterations are discarded as the burn-in period. The function
print() returns a short summary of the results from the fitted model object, including the
number of selected predictors by thresholding the marginal posterior inclusion probabilities
(mPIP) at 0.5, and two measures of the model’s prediction accuracy (i.e., elpd.LOO and
elpd.WAIC).
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R> library("BayesSUR")
R> library("tictoc")
R> tic("Time of model fitting")
R> set.seed(1294)
R> fit <- BayesSUR(Y = Y, X = X, outFilePath = "results",
+ output_CPO = TRUE)
R> toc()

Time of model fitting: 2.755 sec elapsed

R> fit

Call:
BayesSUR(Y = Y, X = X, outFilePath = "results", ...)

Number of selected predictors (mPIP > 0.5): 6 of 3x15

Expected log pointwise predictive density (elpd):
elpd.LOO = -40.84189, elpd.WAIC = -41.12761

The posterior means of the coefficients and latent indicator matrices are printed by the
function plot() with arguments estimator = c("beta", "gamma") and type = "heatmap"
(Figure 1). Note, that the argument fig.tex = TRUE produces PDF figures through LATEX
with the tools::texi2pdf() function, which creates authentic math formulas in the figure
labels, but requires that the user has LATEX installed. The argument output specifies the
name of the PDF file.

R> plot(fit, estimator = c("beta", "gamma"), type = "heatmap",
+ fig.tex = TRUE, output = "exampleEst", xlab = "Predictors",
+ ylab = "Responses")

Before running the SSUR model with the MRF prior, we need to construct the edge potentials
matrix G. If we assume (in accordance with the true matrix B in this simulation scenario)
that the second and third predictors are related to the first two response variables, this implies
that γ21, γ22, γ31 and γ32 are expected to be related and therefore we might want to encourage
these variables to be selected together. In addition, we assume that we know that the first and
fourth predictors are associated with the third response variable, and therefore we encourage
the selection of γ13 as well. Since matrix G represents prior relations of any two predictors
corresponding to vec{Γ}, it can be generated by the following code:

R> G <- matrix(0, ncol = s * p, nrow = s * p)
R> combn1 <- combn(rep((1:2 - 1) * p, each = length(2:3)) +
+ rep(2:3, times = length(1:2)), 2)
R> combn2 <- combn(rep((3-1) * p, each = length(c(1, 4))) +
+ rep(c(1, 4), times = length(3)), 2)
R> G[c(combn1[1, ], combn2[1]), c(combn1[2, ], combn2[2])] <- 1
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Figure 1: The posterior mean estimates of the coefficients matrix B̂ and latent indicator
matrix Γ̂ for the SSUR model with the hotspot prior plotted with plot(fit, estimator =
c("beta", "gamma"), type = "heatmap", ...).

Calling BayesSUR() with the argument gammaPrior = "MRF" will run the SSUR model with
the MRF prior, and the argument mrfG = G imports the edge potentials for the MRF prior.
The two hyper-parameters d and e for the MRF prior (6) can be specified through the ar-
gument hyperpar; here we use the default values d = −3, e = 0.03. The posterior mean
estimates for the coefficients matrix and latent indicator matrix are shown in Figure 2.

R> tic("Time of model fitting")
R> set.seed(5294)
R> fit <- BayesSUR(Y = Y, X = X, outFilePath = "results",
+ gammaPrior = "MRF", mrfG = G)
R> toc()

Time of model fitting: 2.506 sec elapsed

R> plot(fit, estimator = c("beta", "gamma"), type = "heatmap",
+ fig.tex = TRUE, output = "exampleEst2", xlab = "Predictors",
+ ylab = "Responses")

5. Two extended examples based on real data
In this section, we use a simulated eQTL data set and real data from a pharmacogenomic
database to illustrate the usage of the BayesSUR package. The first example is under the
known true model and demonstrates the recovery performance of the models introduced in
Section 2. It also demonstrates a full data analysis step by step. The second example
illustrates how to use potential relationships between multiple response variables and input
predictors as the prior information in Bayesian SUR models and showcases how the resulting
estimated graph structures can be visualized with functions provided in the package.
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Figure 2: The posterior mean estimates of the coefficients matrix B̂ and latent indicator ma-
trix Γ̂ for the SSUR model with MRF prior plotted with plot(fit, estimator = c("beta",
"gamma"), type = "heatmap", ...).

5.1. Simulated eQTL data
Similarly to Bottolo et al. (2021), we simulate single nucleotide polymorphism (SNP) data X
by resampling from the scrime package (Schwender 2018), with p = 150 SNPs and n = 100
subjects. To construct multiple response variables Y (with s = 10) with structured correlation
– which we imagine to represent gene expression measurements of genes that are potentially
affected by the SNPs – we first fix a sparse latent indicator variable Γ and then design
a decomposable graph for responses to build association patterns between multi-response
variables and predictors. The non-zero coefficients are sampled from the normal distribution
independently and the noise term from a multivariate normal distribution with the precision
matrix sampled from the G-Wishart distribution WG(2,M) (Mohammadi and Wit 2019).
Finally, the simulated gene expression data Y is then generated from the linear model (1).
The concrete steps are as follows:

• Simulate SNPs data X from the scrime package, dim(X) = n× p.

• Design a decomposable graph G as in the right panel of Figure 3, dim(G) = s× s.

• Design a sparse matrix Γ as in the left panel of Figure 3, dim(Γ) = p× s.

• Simulate βjk ∼ N (0, 1), j = 1, · · · , p and k = 1, · · · , s.

• Simulate ũij ∼ N (0, 0.52), i = 1, · · · , n and j = 1, · · · , p.

• Simulate P ∼ WG(2,M) where diagonals ofM are 1 and off-diagonals are 0.9, dim(P ) =
s× s.

• Use Cholesky decomposition chol(P−1) to get U = Ũ · chol(P−1).

• Generate Y = (XB)Γ + U.

The resulting average signal-to-noise ratio is 25. The R code for the simulation can be found
through help("exampleEQTL").
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Figure 3: True parameters of the simulated data set exampleEQTL. The left panel is the de-
signed sparse matrix Γ and the right panel is the given true structure of responses represented
by the decomposible graph G. Black indicates a value of 1 and white indicates 0.

R> data("exampleEQTL", package = "BayesSUR")
R> str(exampleEQTL)

List of 4
$ data : num [1:100, 1:160] -0.185 -1.01 -2.102 -2.88 1.749 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:100] "1" "2" "3" "4" ...
.. ..$ : chr [1:160] "GEX1" "GEX2" "GEX3" "GEX4" ...

$ blockList:List of 2
..$ : int [1:10] 1 2 3 4 5 6 7 8 9 10
..$ : num [1:150] 11 12 13 14 15 16 17 18 19 20 ...

$ gamma : num [1:150, 1:10] 0 0 0 0 0 0 0 0 0 0 ...
$ Gy : num [1:10, 1:10] 1 1 1 1 1 1 0 0 0 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:10] "GEX1" "GEX2" "GEX3" "GEX4" ...

R> attach(exampleEQTL)

In the BayesSUR package, the data Y and X are provided as a numeric matrix in the
first list component data of the example data set exampleEQTL. Here the first 10 columns
of data are the Y variables, and the last 150 columns are the X variables. The second
component of exampleEQTL is blockList which specifies the indices of Y and X in data.
The third component is the true latent indicator matrix Γ of regression coefficients. The
fourth component is the true graph G between response variables. Throughout this section
we attach the data set for more concise R code.
Figure 3 shows the true Γ and decomposible graph G used in the eQTL simulation scenario.
The following code shows how to fit an SSUR model with hotspot prior for the indicator
variables Γ and the sparsity-inducing hyper-inverse Wishart prior for the covariance using
the main function BayesSUR().
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Figure 4: The estimated coefficients matrix B̂, latent indicator variable matrix Γ̂ and learned
structure Ĝ of the SSUR model with hotspot prior and sparse covariance prior by plot().
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Figure 5: The estimated structure of the ten response variables is visualized by plot(fit,
estimator = "Gy", type = "graph") with Ĝ thresholded at 0.5 (left). The true structure
is shown with plotGraph(Gy), where Gy is the true adjacency matrix (right).

R> set.seed(28173)
R> tic("Time of model fitting")
R> fit <- BayesSUR(data = data, Y = blockList[[1]], X = blockList[[2]],
+ outFilePath = "results", nIter = 200000, nChains = 3,
+ burnin = 100000, covariancePrior = "HIW", gammaPrior = "hotspot")

R> toc()

Time of model fitting: 1159.871 sec elapsed

Figure 4 summarizes the posterior inference results by plots for B̂, Γ̂ and Ĝ created with
the function plot() with arguments estimator = c("beta", "gamma", "Gy") and type =
"heatmap". When comparing with Figure 3, we see that this SSUR model has good recovery
of the true latent indicator matrix Γ and of the structure of the responses as represented by
G. The function plot() can also visualize the estimated structure of the ten gene expression
variables as shown in the right panel of Figure 5 with arguments estimator = "Gy" and type
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Figure 6: Network representation between the ten gene expression variables and 150 SNP
variables by plot(fit, estimator = c("gamma", "Gy"), type = "network", ...). The
connections between gene expression variables are based on Ĝ thresholded at 0.5, and the
connections between the gene expression variables and SNPs are based on Γ̂ thresholded at 0.5.

= "graph". For comparison, the true structure is shown in the left panel (created by function
plotGraph()). When we threshold the posterior selection probability estimates for G and for
Γ at 0.5, the resulting full network between the ten gene expression variables and 150 SNPs
is displayed in Figure 6. Furthermore, the Manhattan-like plots in Figure 7 show both, the
marginal posterior inclusion probabilities (mPIP) of the SNP variables (top panel) and the
number of gene expression response variables associated with each SNP (bottom panel).

R> plot(fit, estimator = c("beta", "gamma", "Gy"), type = "heatmap",
+ fig.tex = TRUE)
R> layout(matrix(1:2, ncol = 2))
R> plot(fit, estimator = "Gy", type = "graph")
R> plotGraph(Gy)
R> plot(fit, estimator = c("gamma", "Gy"), type = "network",
+ name.predictors = "SNPs", name.responses = "Gene expression")
R> plot(fit, estimator = "gamma", type = "Manhattan")

In order to investigate the behavior of the MCMC sampler, the top two panels of Figure 8
show the trace plots of the log-likelihood and model size, i.e., the total number of selected
predictors. We observe that the Markov chain seems to start sampling from the correct
distribution after ca. 50,000 iterations. The bottom panels of Figure 8 indicate that the log
posterior distribution of the latent indicator variable Γ is stable for the last half of the chains
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Figure 8: Diagnostic plots of the MCMC sampler by plot(fit, estimator = "logP", type
= "diagnostics").
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after subtracting the burn-in length.

R> plot(fit, estimator = "logP", type = "diagnostics")

We finish this example analysis by detaching the eQTL example data set.

R> detach(exampleEQTL)

5.2. The genomics of drug sensitivity in cancer data

In this section we analyze a subset of the Genomics of Drug Sensitivity in Cancer (GDSC) data
set from a large-scale pharmacogenomic study (Yang et al. 2013; Garnett et al. 2012). We an-
alyze the pharmacological profiling of n = 499 cell lines from p0 = 13 different tissue types for
s = 7 cancer drugs. The sensitivity of the cell lines to each of the drugs was summarized by the
log(IC50) values estimated from in vitro dose response experiments. The cell lines are charac-
terized by p1 = 343 selected gene expression features (GEX), p2 = 426 genes affected by copy
number variations (CNV) and p3 = 68 genes with point mutations (MUT). The data sets were
downloaded from ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-5.0/
and processed as described in help("exampleGDSC"). Gene expression features are log-
transformed.
Garnett et al. (2012) provide the target genes or pathways for all drugs. The aim of this
study was to identify molecular characteristics that help predict the response of a cell line
to a particular drug. Because many of the drugs share common targets and mechanisms of
action, the response of cell lines to many of the drugs is expected to be correlated. Therefore,
a multivariate model seems appropriate:

Ydrugs = XtissuesB0 + XGEXB1 + XCNVB2 + XMUTB3 + Uerror,

where the elements of B0 and non-zero elements of B1, B2 and B3 are independent and
identically distributed with the prior N (0, w).
We may know the biological relationships within and between drugs and molecular features,
so that the MRF prior (6) can be used to learn the above multivariate model well. In our
example, we know that the four drugs RDEA119, PD-0325901, CI-1040 and AZD6244 are
MEK inhibitors which affect the MAPK/ERK pathway. Drugs Nilotinib and Axitinib are
Bcr-Abl tyrosine kinase inhibitors which inhibit the mutated BCR-ABL gene. Finally, the
drug Methotrexate is a chemotherapy agent and general immune system suppressant, which
is not associated with a particular molecular target gene or pathway. For the target genes
(and genes in target pathways) we consider all characteristics (GEX, CNV, MUT) available
in our data set as being potentially associated. Based on this information, we construct edge
potentials for the MRF prior:

• edges between all features representing genes in the MAPK/ERK pathway and the four
MEK inhibitors;

• edges between all features representing the Bcr-Abl fusion gene and the two Bcr-Abl
inhibitors, see illustration in Figure 9(a);

ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-5.0/
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Figure 9: Illustration of the relationship between drugs and a group of related genes. The left
panel is for the Bcr-Abl fusion gene and the corresponding related genes. The right panel is
for all drugs and gene TP35 as one example with features representing all three data sources.
The names with suffix “.GEX”, “.CNV” and “.MUT” are features of expression, copy number
variation and mutation, respectively.

• edges between all features from different data sources (i.e., GEX, CNV and MUT)
representing a gene and all drugs, see illustration in Figure 9(b).

By matching the selected genes with the gene set of the MAPK/ERK pathway from the
KEGG database, 57 features are considered to be connected to the four MEK inhibitors.
The two genes (i.e., BCR and ABL) representing the Bcr-Abl fusion are connected with five
features in the data set, which are BCR-ABL mutation, BCR gene expression, BCR copy
number variation, ABL gene expression and ABL copy number variation (Figure 9(a)). In
addition, there are 347 small feature groups representing the different available data sources
for each of the genes in the data set, which are potentially connected to all drugs. Figure 9(a)
illustrates the edges between drugs Nilotinib, Axitinib and the related genes of the Bcr-Abl
fusion gene, and Figure 9(b) uses the TP53 gene as an example for how the different data
sources representing a gene are related to each drug, thus linking the data sources together.
Based on this information, we construct an edge list of the matrix G for the MRF prior.
First, we load and attach the data. Note that in this example, we illustrate the use of the
specific plot functions plotEstimator(), plotGraph() and plotNetwork(), which are called
directly here rather than via the generic plot() function as in the examples above.

R> data("exampleGDSC", package = "BayesSUR")
R> attach(exampleGDSC)

The following code chunk will run the MCMC sampler to fit the model. This represents a
full analysis, which might take several hours to run with the chosen MCMC parameter values
(nIter = 200000, nChains = 6, burnin = 100000) and no parallelization (maxThreads =
1 by default). Approximate results for an initial assessment of the model can be achieved with
much shorter MCMC runs. Note that we use the X_0 argument for the thirteen cancer tissue
types, which are included in the model as mandatory predictors that are always selected.

R> hyperpar <- list(mrf_d = -3, mrf_e = 0.2)
R> set.seed(6437)
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Figure 10: Estimated structure of the seven drugs Ĝ. Their associations as visualized in the
right panel are based on Ĝ thresholded at 0.5. Figures created with plotEstimator() (left)
and plotGraph() (right).

R> tic("Time of model fitting")
R> fit <- BayesSUR(data = data, Y = blockList[[1]], X_0 = blockList[[2]],
+ X = blockList[[3]], outFilePath = "results", nIter = 200000,
+ burnin = 100000, nChains = 6, covariancePrior = "HIW",
+ gammaPrior = "MRF", hyperpar = hyperpar, mrfG = mrfG)
R> toc()

Time of model fitting: 7468.874 sec elapsed

After fitting an SSUR model with the MRF prior, the structure of the seven drugs, G, has
been learned as illustrated in Figure 10, where edges between two drugs k and k′ indicate
that Ĝkk′ > 0.5. All expected associations between the drugs within each drug group are
found, but some additional connections are also identified: there are edges between Axitinib
and Methotrexate and between CI-1040 and both Nilotinib and Axitinib.

R> plotEstimator(fit, estimator = "Gy", name.responses = c("Methotrexate",
+ "RDEA119", "PD.0325901", "CI.1040", "AZD6244", "Nilotinib", "Axitinib"),
+ fig.tex = TRUE, output = "ResponseGraphGDSC1")
R> plotGraph(fit, estimator = "Gy")
R> plotNetwork(fit, estimator = c("gamma", "Gy"), label.predictor = "",
+ name.predictors = "Genes", name.responses = "Drugs",
+ nodesizePredictor = 2)

The estimated relationships between the drugs and genes are displayed in Figure 11. There
are 259 of all 5859 coefficients selected in total when thresholding Γ̂ at 0.5. This results in 82
molecular features being selected for at least one of the drugs, 7 for Methotrexate, 69 for the
four MEK inhibitors and 11 for the two Bcr-Abl tyrosine kinase inhibitors.
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Figure 11: Estimated network between the seven drugs and selected genes based on thresholds
0.5. Figure created with plotNetwork().
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Figure 12: Estimated network between the MEK inhibitors and selected target genes based
on thresholds 0.5. Figure created with plotNetwork().
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Figure 13: Estimated network between the Bcr-Abl inhibitors and selected target genes. The
left panel is based on a threshold on Γ̂ of 0.5 while the right panel is based on a threshold of
0.01. Both panels use a threshold on Ĝ of 0.5. The edges are weighted by the corresponding
inclusion probabilities, if they are greater than the specified thresholds. Figures created with
plotNetwork().

Network substructures of interest can also be selected and visualized individually, since the
user can specify, which response variables (drugs) and which input variables (molecular fea-
tures) to include in a figure. For example, Figures 12 and 13 show the estimated network
representations of the two groups of drugs, respectively.

R> data("targetGene", package = "BayesSUR")
R> plotNetwork(fit, estimator = c("gamma", "Gy"),
+ includeResponse = c("RDEA119", "PD.0325901", "CI.1040", "AZD6244"),
+ includePredictor = names(targetGene$group1))

In addition, Figure 13 illustrates, how one can customize the display of the edges between
input and response variables to visualize the strength of the association between nodes. In
particular, one can either simply use a threshold, e.g., 0.5, to show all edges with marginal
posterior inclusion probabilities larger than the threshold equally (left panel), or the width of
edges (greater than the specified threshold) can be weighted by the corresponding inclusion
probability (right panel).

R> layout(matrix(1:2, ncol = 2))
R> plotNetwork(fit, estimator = c("gamma", "Gy"), edge.weight = TRUE,
+ includeResponse = c("Nilotinib", "Axitinib"),
+ includePredictor = names(targetGene$group2))
R> plotNetwork(fit, estimator = c("gamma", "Gy"),
+ edge.weight = TRUE, PmaxPredictor = 0.01,
+ includeResponse = c("Nilotinib", "Axitinib"),
+ includePredictor = names(targetGene$group2))

6. Conclusion
The BayesSUR package presents a series of multivariate Bayesian variable selection models,
for which the ESS algorithm is employed for posterior inference over the model space. It
provides a unified R package and a consistent interface for the C++ implementations of indi-
vidual models. The package supports all combinations of the covariance priors and variable
selection priors from Section 2 in the Bayesian HRR and SUR model frameworks. This in-
cludes the MRF prior on the latent indicator variables to allow the user to make use of prior
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knowledge of the relationships between both response variables and predictors. To overcome
the computational cost for data sets with large numbers of input variables, parallel process-
ing is also implemented with respect to multiple chains, and for calculation of likelihoods of
parameters and samples, although the MCMC algorithm itself is still challenging to be paral-
lelized. We demonstrated the modeling aspects of variable selection and structure recovery to
identify relationships between multivariate (potentially high-dimensional) responses as well as
between responses and high-dimensional predictors, by applying the package to a simulated
eQTL data set and to pharmacogenomic data from the GDSC project.
Possible extensions of the R package include the implementation of different priors to introduce
even more flexibility in the modeling choices. In particular, the g-prior could be considered
for the regression coefficients matrix B (Bottolo and Richardson 2010; Richardson et al.
2011; Lewin et al. 2015b), whereas currently only the independence prior is available. In
addition, the spike-and-slab prior on the covariance matrix C (Wang 2015; Banerjee and
Ghosal 2015; Deshpande et al. 2019) might be useful, or the horseshoe prior on the latent
indicator variable Γ, which was recently implemented in the multivariate regression setup by
Ruffieux et al. (2020).
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A. The elpd
Without loss of generality, here we only consider each response variable y of the whole response
matrix Y, predictor matrix X and corresponding coefficients p-column vector β. Then the
basic linear model is

y|X,β, σ2 ∼ N (Xβ, σ2
Im),

β|σ2 ∼ N (µβ, σ2Vβ),
σ2 ∼ IG(a, b).

(A.1)

In Bottolo et al. (2011) and the HRR model of this article, µβ = 0 and Vβ = Ip for non-zero
coefficients.

A.1. Posterior predictive for the HRR model

From (A.1), the joint distribution of (β, σ2) is Normal-Inverse-Gamma, i.e.,

f(β, σ2) = f(β|σ2)f(σ2) = N (µβ, σ2Vβ) · IG(a, b) = NIG(µβ, Vβ, a, b).

Further we know that the posterior distribution of (β, σ2) is still Normal-Inverse-Gamma
NIG(µ∗β, V ∗β , a∗, b∗) (Banerjee 2008), where

µ∗ = (V −1
β + X>X)−1(V −1

β µβ + X>y),
V ∗ = (V −1

β + X>X)−1,

a∗ = a+ n

2 ,

b∗ = b+ 1
2(µ>β V −1

β µβ + y>y − µ∗>V ∗−1µ∗).

Now we derive the posterior predictive w.r.t. the individual response yi. Let f(yi|β, σ2) =
N (Xiβ, σ

2), where Xi = (Xi1, · · · , Xip) the ith row of matrix X.

f(yi|y) =
∫
f(yi|β, σ2)f(β, σ2|y)dβdσ2

=
∫
N (Xiβ, σ

2) · NIG(µ∗, V ∗, a∗, b∗)dβdσ2

=
∫

b∗a
∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2

( 1
σ2

)a∗+ p+1
2 +1

×

exp
{
− 1
σ2

[
b∗ + 1

2
{

(β − µ∗)>V ∗−1(β − µ∗) + (yi −Xiβ)2
}]}

dβdσ2

=
∫

b∗a
∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2

( 1
σ2

)a∗+ p+1
2 +1

×

exp
{
− 1
σ2

[
b∗∗ + 1

2(β − µ∗∗)>V ∗∗−1(β − µ∗∗)
]}

dβdσ2
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where | · | is the determinant and

µ∗∗ = (V ∗−1 +X>i Xi)−1(V ∗−1µ∗ +X>i yi),
V ∗∗ = (V ∗−1 +X>i Xi)−1,

b∗∗ = b∗ + 1
2(µ∗>β V ∗−1µ∗ + y2

i − µ∗∗>V ∗∗−1µ∗∗).

Let z , c
σ2 , c , b∗∗ + 1

2(β − µ∗∗)>V ∗∗−1(β − µ∗∗), and then

f(yi|y) = b∗a
∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2

∫
c−(a∗+ p+1

2 +1)za
∗+ p+1

2 +1e−zdcz−1dβ

= b∗a
∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2

∫
c−(a∗+ p+1

2 )dβ

= b∗a
∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2

∫ [
b∗∗ + 1

2(β − µ∗∗)>V ∗∗−1(β − µ∗∗)
]
dβ

= b∗a
∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2
b∗∗
− 2a∗+p+1

2
∫ Γ(2a∗+p+1

2 )
Γ(2a∗+1

2 )πp/2|(2a∗ + 1)[ 2b∗∗
2a∗+1V

∗∗]| 12
×

[
1 +

(β − µ∗∗)>[ 2b∗∗
2a∗+1V

∗∗]−1(β − µ∗∗)
2a∗ + 1

]− 2a∗+p+1
2

dβ.

The integrand above is the density of β, which is actually a multivariate t-distribution
MVSt2a∗+1(µ∗∗, 2b∗∗

2a∗+1V
∗∗). Since

|2b∗∗V ∗∗|1/2 = 2p/2b∗∗
1
2

|V ∗|1/2

|1 +XiV ∗X>i |1/2 ,

then we have

f(yi|y) =
Γ(2a∗+1

2 )
√

2a∗πΓ(2a∗
2 )[ 2b∗

2a∗ (1 +XiV ∗X>i )]1/2

[
1 +

(yi −Xiµ
∗)2{ 2b∗

2a∗ (1 +XiV
∗X>i )}

2a∗

]− 2a∗+1
2

.

This is like a univariate t-distribution shifted by −Xiµ
∗ and scaled by

2b∗
2a∗ (1+XiV

∗X>i )
2a∗ .

Vehtari et al. (2017) proposed the expected log pointwise predictive density (elpd) to measure
the predictive accuracy for the new data ỹi (i = 1, · · · , n). The elpd is defined as

elpd =
n∑
i=1

∫
f(ỹi) log f(ỹi|y)dỹi.

Therefore, we use the log pointwise predictive density (lpd) to measure the predictive accu-
racy, i.e., lpd = ∑n

i=1 log f(yi|y). The widely applicable information criterion (WAIC) is an
alternative approach which is

lpd−
n∑
i=1

Var[log f(yi|y)],
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where Var[·] denotes the variance of logarithm yi|y that can be estimated from the MCMC
iterations.

A.2. Posterior predictive for the dSUR and SSUR models

For the dSUR and SSUR models, the response variables are independent in their parame-
terized forms. It is feasible to use the out-of-sample predictive to measure the elpd. The
Bayesian leave-one-out estimate is

elpdloo =
n∑
i=1

log f(yi|y−i).

As derived via importance sampling, we get

f(yi|y−i) ≈
1

1
T

∑T
t=1

1
f(yi|θt)

,

where all related parameters θt are drawn from their full posteriors. The WAIC is estimated
by

êlpdwaic = êlpdloo −
n∑
i=1

VarTt=1[log f(yi|θt)].

The posterior predictive f(yi|y−i) can be used to check outliers, which is also named the
conditional predictive ordinate (CPO, Gelfand 1996).
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